intel/fs: Drop the gl_program from fs_visitor
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "dev/gen_device_info.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 struct brw_compiler {
42 const struct gen_device_info *devinfo;
43
44 struct {
45 struct ra_regs *regs;
46
47 /**
48 * Array of the ra classes for the unaligned contiguous register
49 * block sizes used.
50 */
51 int *classes;
52
53 /**
54 * Mapping for register-allocated objects in *regs to the first
55 * GRF for that object.
56 */
57 uint8_t *ra_reg_to_grf;
58 } vec4_reg_set;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 int classes[16];
68
69 /**
70 * Mapping from classes to ra_reg ranges. Each of the per-size
71 * classes corresponds to a range of ra_reg nodes. This array stores
72 * those ranges in the form of first ra_reg in each class and the
73 * total number of ra_reg elements in the last array element. This
74 * way the range of the i'th class is given by:
75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76 */
77 int class_to_ra_reg_range[17];
78
79 /**
80 * Mapping for register-allocated objects in *regs to the first
81 * GRF for that object.
82 */
83 uint8_t *ra_reg_to_grf;
84
85 /**
86 * ra class for the aligned pairs we use for PLN, which doesn't
87 * appear in *classes.
88 */
89 int aligned_pairs_class;
90 } fs_reg_sets[3];
91
92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95 bool scalar_stage[MESA_SHADER_STAGES];
96 bool use_tcs_8_patch;
97 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
98
99 /**
100 * Apply workarounds for SIN and COS output range problems.
101 * This can negatively impact performance.
102 */
103 bool precise_trig;
104
105 /**
106 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
107 * Base Address? (If not, it's a normal GPU address.)
108 */
109 bool constant_buffer_0_is_relative;
110
111 /**
112 * Whether or not the driver supports pull constants. If not, the compiler
113 * will attempt to push everything.
114 */
115 bool supports_pull_constants;
116
117 /**
118 * Whether or not the driver supports NIR shader constants. This controls
119 * whether nir_opt_large_constants will be run.
120 */
121 bool supports_shader_constants;
122 };
123
124 /**
125 * We use a constant subgroup size of 32. It really only needs to be a
126 * maximum and, since we do SIMD32 for compute shaders in some cases, it
127 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
128 * subgroup size of 32 but will act as if 16 or 24 of those channels are
129 * disabled.
130 */
131 #define BRW_SUBGROUP_SIZE 32
132
133 /**
134 * Program key structures.
135 *
136 * When drawing, we look for the currently bound shaders in the program
137 * cache. This is essentially a hash table lookup, and these are the keys.
138 *
139 * Sometimes OpenGL features specified as state need to be simulated via
140 * shader code, due to a mismatch between the API and the hardware. This
141 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
142 * in the program key so it's considered when searching for a program. If
143 * we haven't seen a particular combination before, we have to recompile a
144 * new specialized version.
145 *
146 * Shader compilation should not look up state in gl_context directly, but
147 * instead use the copy in the program key. This guarantees recompiles will
148 * happen correctly.
149 *
150 * @{
151 */
152
153 enum PACKED gen6_gather_sampler_wa {
154 WA_SIGN = 1, /* whether we need to sign extend */
155 WA_8BIT = 2, /* if we have an 8bit format needing wa */
156 WA_16BIT = 4, /* if we have a 16bit format needing wa */
157 };
158
159 /**
160 * Sampler information needed by VS, WM, and GS program cache keys.
161 */
162 struct brw_sampler_prog_key_data {
163 /**
164 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
165 */
166 uint16_t swizzles[MAX_SAMPLERS];
167
168 uint32_t gl_clamp_mask[3];
169
170 /**
171 * For RG32F, gather4's channel select is broken.
172 */
173 uint32_t gather_channel_quirk_mask;
174
175 /**
176 * Whether this sampler uses the compressed multisample surface layout.
177 */
178 uint32_t compressed_multisample_layout_mask;
179
180 /**
181 * Whether this sampler is using 16x multisampling. If so fetching from
182 * this sampler will be handled with a different instruction, ld2dms_w
183 * instead of ld2dms.
184 */
185 uint32_t msaa_16;
186
187 /**
188 * For Sandybridge, which shader w/a we need for gather quirks.
189 */
190 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
191
192 /**
193 * Texture units that have a YUV image bound.
194 */
195 uint32_t y_u_v_image_mask;
196 uint32_t y_uv_image_mask;
197 uint32_t yx_xuxv_image_mask;
198 uint32_t xy_uxvx_image_mask;
199 uint32_t ayuv_image_mask;
200 uint32_t xyuv_image_mask;
201
202 /* Scale factor for each texture. */
203 float scale_factors[32];
204 };
205
206 /** An enum representing what kind of input gl_SubgroupSize is. */
207 enum PACKED brw_subgroup_size_type
208 {
209 BRW_SUBGROUP_SIZE_API_CONSTANT, /**< Default Vulkan behavior */
210 BRW_SUBGROUP_SIZE_UNIFORM, /**< OpenGL behavior */
211 BRW_SUBGROUP_SIZE_VARYING, /**< VK_EXT_subgroup_size_control */
212
213 /* These enums are specifically chosen so that the value of the enum is
214 * also the subgroup size. If any new values are added, they must respect
215 * this invariant.
216 */
217 BRW_SUBGROUP_SIZE_REQUIRE_8 = 8, /**< VK_EXT_subgroup_size_control */
218 BRW_SUBGROUP_SIZE_REQUIRE_16 = 16, /**< VK_EXT_subgroup_size_control */
219 BRW_SUBGROUP_SIZE_REQUIRE_32 = 32, /**< VK_EXT_subgroup_size_control */
220 };
221
222 struct brw_base_prog_key {
223 unsigned program_string_id;
224
225 enum brw_subgroup_size_type subgroup_size_type;
226
227 struct brw_sampler_prog_key_data tex;
228 };
229
230 /**
231 * The VF can't natively handle certain types of attributes, such as GL_FIXED
232 * or most 10_10_10_2 types. These flags enable various VS workarounds to
233 * "fix" attributes at the beginning of shaders.
234 */
235 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
236 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
237 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
238 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
239 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
240
241 /**
242 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
243 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
244 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
245 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
246 */
247 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
248 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
249
250 /** The program key for Vertex Shaders. */
251 struct brw_vs_prog_key {
252 struct brw_base_prog_key base;
253
254 /**
255 * Per-attribute workaround flags
256 *
257 * For each attribute, a combination of BRW_ATTRIB_WA_*.
258 *
259 * For OpenGL, where we expose a maximum of 16 user input atttributes
260 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
261 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
262 * expose up to 28 user input vertex attributes that are mapped to slots
263 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
264 * enough to hold this many slots.
265 */
266 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
267
268 bool copy_edgeflag:1;
269
270 bool clamp_vertex_color:1;
271
272 /**
273 * How many user clipping planes are being uploaded to the vertex shader as
274 * push constants.
275 *
276 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
277 * clip distances.
278 */
279 unsigned nr_userclip_plane_consts:4;
280
281 /**
282 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
283 * are going to be replaced with point coordinates (as a consequence of a
284 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
285 * our SF thread requires exact matching between VS outputs and FS inputs,
286 * these texture coordinates will need to be unconditionally included in
287 * the VUE, even if they aren't written by the vertex shader.
288 */
289 uint8_t point_coord_replace;
290 };
291
292 /** The program key for Tessellation Control Shaders. */
293 struct brw_tcs_prog_key
294 {
295 struct brw_base_prog_key base;
296
297 GLenum tes_primitive_mode;
298
299 unsigned input_vertices;
300
301 /** A bitfield of per-patch outputs written. */
302 uint32_t patch_outputs_written;
303
304 /** A bitfield of per-vertex outputs written. */
305 uint64_t outputs_written;
306
307 bool quads_workaround;
308 };
309
310 /** The program key for Tessellation Evaluation Shaders. */
311 struct brw_tes_prog_key
312 {
313 struct brw_base_prog_key base;
314
315 /** A bitfield of per-patch inputs read. */
316 uint32_t patch_inputs_read;
317
318 /** A bitfield of per-vertex inputs read. */
319 uint64_t inputs_read;
320
321 /**
322 * How many user clipping planes are being uploaded to the tessellation
323 * evaluation shader as push constants.
324 *
325 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
326 * clip distances.
327 */
328 unsigned nr_userclip_plane_consts:4;
329 };
330
331 /** The program key for Geometry Shaders. */
332 struct brw_gs_prog_key
333 {
334 struct brw_base_prog_key base;
335
336 /**
337 * How many user clipping planes are being uploaded to the geometry shader
338 * as push constants.
339 *
340 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
341 * clip distances.
342 */
343 unsigned nr_userclip_plane_consts:4;
344 };
345
346 enum brw_sf_primitive {
347 BRW_SF_PRIM_POINTS = 0,
348 BRW_SF_PRIM_LINES = 1,
349 BRW_SF_PRIM_TRIANGLES = 2,
350 BRW_SF_PRIM_UNFILLED_TRIS = 3,
351 };
352
353 struct brw_sf_prog_key {
354 uint64_t attrs;
355 bool contains_flat_varying;
356 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
357 uint8_t point_sprite_coord_replace;
358 enum brw_sf_primitive primitive:2;
359 bool do_twoside_color:1;
360 bool frontface_ccw:1;
361 bool do_point_sprite:1;
362 bool do_point_coord:1;
363 bool sprite_origin_lower_left:1;
364 bool userclip_active:1;
365 };
366
367 enum brw_clip_mode {
368 BRW_CLIP_MODE_NORMAL = 0,
369 BRW_CLIP_MODE_CLIP_ALL = 1,
370 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
371 BRW_CLIP_MODE_REJECT_ALL = 3,
372 BRW_CLIP_MODE_ACCEPT_ALL = 4,
373 BRW_CLIP_MODE_KERNEL_CLIP = 5,
374 };
375
376 enum brw_clip_fill_mode {
377 BRW_CLIP_FILL_MODE_LINE = 0,
378 BRW_CLIP_FILL_MODE_POINT = 1,
379 BRW_CLIP_FILL_MODE_FILL = 2,
380 BRW_CLIP_FILL_MODE_CULL = 3,
381 };
382
383 /* Note that if unfilled primitives are being emitted, we have to fix
384 * up polygon offset and flatshading at this point:
385 */
386 struct brw_clip_prog_key {
387 uint64_t attrs;
388 bool contains_flat_varying;
389 bool contains_noperspective_varying;
390 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
391 unsigned primitive:4;
392 unsigned nr_userclip:4;
393 bool pv_first:1;
394 bool do_unfilled:1;
395 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
396 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
397 bool offset_cw:1;
398 bool offset_ccw:1;
399 bool copy_bfc_cw:1;
400 bool copy_bfc_ccw:1;
401 enum brw_clip_mode clip_mode:3;
402
403 float offset_factor;
404 float offset_units;
405 float offset_clamp;
406 };
407
408 /* A big lookup table is used to figure out which and how many
409 * additional regs will inserted before the main payload in the WM
410 * program execution. These mainly relate to depth and stencil
411 * processing and the early-depth-test optimization.
412 */
413 enum brw_wm_iz_bits {
414 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
415 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
416 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
417 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
418 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
419 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
420 BRW_WM_IZ_BIT_MAX = 0x40
421 };
422
423 enum brw_wm_aa_enable {
424 BRW_WM_AA_NEVER,
425 BRW_WM_AA_SOMETIMES,
426 BRW_WM_AA_ALWAYS
427 };
428
429 /** The program key for Fragment/Pixel Shaders. */
430 struct brw_wm_prog_key {
431 struct brw_base_prog_key base;
432
433 /* Some collection of BRW_WM_IZ_* */
434 uint8_t iz_lookup;
435 bool stats_wm:1;
436 bool flat_shade:1;
437 unsigned nr_color_regions:5;
438 bool alpha_test_replicate_alpha:1;
439 bool alpha_to_coverage:1;
440 bool clamp_fragment_color:1;
441 bool persample_interp:1;
442 bool multisample_fbo:1;
443 bool frag_coord_adds_sample_pos:1;
444 enum brw_wm_aa_enable line_aa:2;
445 bool high_quality_derivatives:1;
446 bool force_dual_color_blend:1;
447 bool coherent_fb_fetch:1;
448
449 uint8_t color_outputs_valid;
450 uint64_t input_slots_valid;
451 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
452 float alpha_test_ref;
453 };
454
455 struct brw_cs_prog_key {
456 struct brw_base_prog_key base;
457 };
458
459 /* brw_any_prog_key is any of the keys that map to an API stage */
460 union brw_any_prog_key {
461 struct brw_base_prog_key base;
462 struct brw_vs_prog_key vs;
463 struct brw_tcs_prog_key tcs;
464 struct brw_tes_prog_key tes;
465 struct brw_gs_prog_key gs;
466 struct brw_wm_prog_key wm;
467 struct brw_cs_prog_key cs;
468 };
469
470 /*
471 * Image metadata structure as laid out in the shader parameter
472 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
473 * able to use them. That's okay because the padding and any unused
474 * entries [most of them except when we're doing untyped surface
475 * access] will be removed by the uniform packing pass.
476 */
477 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 0
478 #define BRW_IMAGE_PARAM_SIZE_OFFSET 4
479 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 8
480 #define BRW_IMAGE_PARAM_TILING_OFFSET 12
481 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 16
482 #define BRW_IMAGE_PARAM_SIZE 20
483
484 struct brw_image_param {
485 /** Offset applied to the X and Y surface coordinates. */
486 uint32_t offset[2];
487
488 /** Surface X, Y and Z dimensions. */
489 uint32_t size[3];
490
491 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
492 * pixels, vertical slice stride in pixels.
493 */
494 uint32_t stride[4];
495
496 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
497 uint32_t tiling[3];
498
499 /**
500 * Right shift to apply for bit 6 address swizzling. Two different
501 * swizzles can be specified and will be applied one after the other. The
502 * resulting address will be:
503 *
504 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
505 * (addr >> swizzling[1])))
506 *
507 * Use \c 0xff if any of the swizzles is not required.
508 */
509 uint32_t swizzling[2];
510 };
511
512 /** Max number of render targets in a shader */
513 #define BRW_MAX_DRAW_BUFFERS 8
514
515 /**
516 * Max number of binding table entries used for stream output.
517 *
518 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
519 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
520 *
521 * On Gen6, the size of transform feedback data is limited not by the number
522 * of components but by the number of binding table entries we set aside. We
523 * use one binding table entry for a float, one entry for a vector, and one
524 * entry per matrix column. Since the only way we can communicate our
525 * transform feedback capabilities to the client is via
526 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
527 * worst case, in which all the varyings are floats, so we use up one binding
528 * table entry per component. Therefore we need to set aside at least 64
529 * binding table entries for use by transform feedback.
530 *
531 * Note: since we don't currently pack varyings, it is currently impossible
532 * for the client to actually use up all of these binding table entries--if
533 * all of their varyings were floats, they would run out of varying slots and
534 * fail to link. But that's a bug, so it seems prudent to go ahead and
535 * allocate the number of binding table entries we will need once the bug is
536 * fixed.
537 */
538 #define BRW_MAX_SOL_BINDINGS 64
539
540 /**
541 * Binding table index for the first gen6 SOL binding.
542 */
543 #define BRW_GEN6_SOL_BINDING_START 0
544
545 /**
546 * Stride in bytes between shader_time entries.
547 *
548 * We separate entries by a cacheline to reduce traffic between EUs writing to
549 * different entries.
550 */
551 #define BRW_SHADER_TIME_STRIDE 64
552
553 struct brw_ubo_range
554 {
555 uint16_t block;
556 uint8_t start;
557 uint8_t length;
558 };
559
560 /* We reserve the first 2^16 values for builtins */
561 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
562
563 enum brw_param_builtin {
564 BRW_PARAM_BUILTIN_ZERO,
565
566 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
567 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
568 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
569 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
570 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
571 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
572 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
573 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
574 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
575 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
576 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
577 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
578 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
579 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
580 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
581 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
582 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
583 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
584 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
585 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
586 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
587 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
588 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
589 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
590 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
591 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
592 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
593 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
594 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
595 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
596 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
597 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
598
599 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
600 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
601 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
602 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
603 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
604 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
605
606 BRW_PARAM_BUILTIN_PATCH_VERTICES_IN,
607
608 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
609 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
610 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
611 BRW_PARAM_BUILTIN_SUBGROUP_ID,
612 };
613
614 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
615 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
616
617 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
618 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
619 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
620
621 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
622 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
623
624 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
625 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
626
627 struct brw_stage_prog_data {
628 struct {
629 /** size of our binding table. */
630 uint32_t size_bytes;
631
632 /** @{
633 * surface indices for the various groups of surfaces
634 */
635 uint32_t pull_constants_start;
636 uint32_t texture_start;
637 uint32_t gather_texture_start;
638 uint32_t ubo_start;
639 uint32_t ssbo_start;
640 uint32_t image_start;
641 uint32_t shader_time_start;
642 uint32_t plane_start[3];
643 /** @} */
644 } binding_table;
645
646 struct brw_ubo_range ubo_ranges[4];
647
648 GLuint nr_params; /**< number of float params/constants */
649 GLuint nr_pull_params;
650
651 unsigned curb_read_length;
652 unsigned total_scratch;
653 unsigned total_shared;
654
655 unsigned program_size;
656
657 /**
658 * Register where the thread expects to find input data from the URB
659 * (typically uniforms, followed by vertex or fragment attributes).
660 */
661 unsigned dispatch_grf_start_reg;
662
663 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
664
665 /* 32-bit identifiers for all push/pull parameters. These can be anything
666 * the driver wishes them to be; the core of the back-end compiler simply
667 * re-arranges them. The one restriction is that the bottom 2^16 values
668 * are reserved for builtins defined in the brw_param_builtin enum defined
669 * above.
670 */
671 uint32_t *param;
672 uint32_t *pull_param;
673 };
674
675 static inline uint32_t *
676 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
677 unsigned nr_new_params)
678 {
679 unsigned old_nr_params = prog_data->nr_params;
680 prog_data->nr_params += nr_new_params;
681 prog_data->param = reralloc(ralloc_parent(prog_data->param),
682 prog_data->param, uint32_t,
683 prog_data->nr_params);
684 return prog_data->param + old_nr_params;
685 }
686
687 enum brw_barycentric_mode {
688 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
689 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
690 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
691 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
692 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
693 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
694 BRW_BARYCENTRIC_MODE_COUNT = 6
695 };
696 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
697 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
698 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
699 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
700
701 enum brw_pixel_shader_computed_depth_mode {
702 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
703 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
704 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
705 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
706 };
707
708 /* Data about a particular attempt to compile a program. Note that
709 * there can be many of these, each in a different GL state
710 * corresponding to a different brw_wm_prog_key struct, with different
711 * compiled programs.
712 */
713 struct brw_wm_prog_data {
714 struct brw_stage_prog_data base;
715
716 GLuint num_varying_inputs;
717
718 uint8_t reg_blocks_8;
719 uint8_t reg_blocks_16;
720 uint8_t reg_blocks_32;
721
722 uint8_t dispatch_grf_start_reg_16;
723 uint8_t dispatch_grf_start_reg_32;
724 uint32_t prog_offset_16;
725 uint32_t prog_offset_32;
726
727 struct {
728 /** @{
729 * surface indices the WM-specific surfaces
730 */
731 uint32_t render_target_read_start;
732 /** @} */
733 } binding_table;
734
735 uint8_t computed_depth_mode;
736 bool computed_stencil;
737
738 bool early_fragment_tests;
739 bool post_depth_coverage;
740 bool inner_coverage;
741 bool dispatch_8;
742 bool dispatch_16;
743 bool dispatch_32;
744 bool dual_src_blend;
745 bool replicate_alpha;
746 bool persample_dispatch;
747 bool uses_pos_offset;
748 bool uses_omask;
749 bool uses_kill;
750 bool uses_src_depth;
751 bool uses_src_w;
752 bool uses_sample_mask;
753 bool has_render_target_reads;
754 bool has_side_effects;
755 bool pulls_bary;
756
757 bool contains_flat_varying;
758 bool contains_noperspective_varying;
759
760 /**
761 * Mask of which interpolation modes are required by the fragment shader.
762 * Used in hardware setup on gen6+.
763 */
764 uint32_t barycentric_interp_modes;
765
766 /**
767 * Mask of which FS inputs are marked flat by the shader source. This is
768 * needed for setting up 3DSTATE_SF/SBE.
769 */
770 uint32_t flat_inputs;
771
772 /* Mapping of VUE slots to interpolation modes.
773 * Used by the Gen4-5 clip/sf/wm stages.
774 */
775 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
776
777 /**
778 * Map from gl_varying_slot to the position within the FS setup data
779 * payload where the varying's attribute vertex deltas should be delivered.
780 * For varying slots that are not used by the FS, the value is -1.
781 */
782 int urb_setup[VARYING_SLOT_MAX];
783 };
784
785 /** Returns the SIMD width corresponding to a given KSP index
786 *
787 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
788 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
789 * kernel start pointer (KSP) indices that is based on what dispatch widths
790 * are enabled. This function provides, effectively, the reverse mapping.
791 *
792 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
793 * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
794 */
795 static inline unsigned
796 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
797 bool simd16_enabled, bool simd32_enabled)
798 {
799 /* This function strictly ignores contiguous dispatch */
800 switch (ksp_idx) {
801 case 0:
802 return simd8_enabled ? 8 :
803 (simd16_enabled && !simd32_enabled) ? 16 :
804 (simd32_enabled && !simd16_enabled) ? 32 : 0;
805 case 1:
806 return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
807 case 2:
808 return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
809 default:
810 unreachable("Invalid KSP index");
811 }
812 }
813
814 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
815 brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
816 (wm_state)._16PixelDispatchEnable, \
817 (wm_state)._32PixelDispatchEnable)
818
819 #define brw_wm_state_has_ksp(wm_state, ksp_idx) \
820 (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
821
822 static inline uint32_t
823 _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
824 unsigned simd_width)
825 {
826 switch (simd_width) {
827 case 8: return 0;
828 case 16: return prog_data->prog_offset_16;
829 case 32: return prog_data->prog_offset_32;
830 default: return 0;
831 }
832 }
833
834 #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
835 _brw_wm_prog_data_prog_offset(prog_data, \
836 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
837
838 static inline uint8_t
839 _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
840 unsigned simd_width)
841 {
842 switch (simd_width) {
843 case 8: return prog_data->base.dispatch_grf_start_reg;
844 case 16: return prog_data->dispatch_grf_start_reg_16;
845 case 32: return prog_data->dispatch_grf_start_reg_32;
846 default: return 0;
847 }
848 }
849
850 #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
851 _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
852 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
853
854 static inline uint8_t
855 _brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
856 unsigned simd_width)
857 {
858 switch (simd_width) {
859 case 8: return prog_data->reg_blocks_8;
860 case 16: return prog_data->reg_blocks_16;
861 case 32: return prog_data->reg_blocks_32;
862 default: return 0;
863 }
864 }
865
866 #define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
867 _brw_wm_prog_data_reg_blocks(prog_data, \
868 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
869
870 struct brw_push_const_block {
871 unsigned dwords; /* Dword count, not reg aligned */
872 unsigned regs;
873 unsigned size; /* Bytes, register aligned */
874 };
875
876 struct brw_cs_prog_data {
877 struct brw_stage_prog_data base;
878
879 unsigned local_size[3];
880 unsigned simd_size;
881 unsigned threads;
882 unsigned slm_size;
883 bool uses_barrier;
884 bool uses_num_work_groups;
885
886 struct {
887 struct brw_push_const_block cross_thread;
888 struct brw_push_const_block per_thread;
889 struct brw_push_const_block total;
890 } push;
891
892 struct {
893 /** @{
894 * surface indices the CS-specific surfaces
895 */
896 uint32_t work_groups_start;
897 /** @} */
898 } binding_table;
899 };
900
901 /**
902 * Enum representing the i965-specific vertex results that don't correspond
903 * exactly to any element of gl_varying_slot. The values of this enum are
904 * assigned such that they don't conflict with gl_varying_slot.
905 */
906 typedef enum
907 {
908 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
909 BRW_VARYING_SLOT_PAD,
910 /**
911 * Technically this is not a varying but just a placeholder that
912 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
913 * builtin variable to be compiled correctly. see compile_sf_prog() for
914 * more info.
915 */
916 BRW_VARYING_SLOT_PNTC,
917 BRW_VARYING_SLOT_COUNT
918 } brw_varying_slot;
919
920 /**
921 * We always program SF to start reading at an offset of 1 (2 varying slots)
922 * from the start of the vertex URB entry. This causes it to skip:
923 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
924 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
925 */
926 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
927
928 /**
929 * Bitmask indicating which fragment shader inputs represent varyings (and
930 * hence have to be delivered to the fragment shader by the SF/SBE stage).
931 */
932 #define BRW_FS_VARYING_INPUT_MASK \
933 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
934 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
935
936 /**
937 * Data structure recording the relationship between the gl_varying_slot enum
938 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
939 * single octaword within the VUE (128 bits).
940 *
941 * Note that each BRW register contains 256 bits (2 octawords), so when
942 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
943 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
944 * in a vertex shader), each register corresponds to a single VUE slot, since
945 * it contains data for two separate vertices.
946 */
947 struct brw_vue_map {
948 /**
949 * Bitfield representing all varying slots that are (a) stored in this VUE
950 * map, and (b) actually written by the shader. Does not include any of
951 * the additional varying slots defined in brw_varying_slot.
952 */
953 uint64_t slots_valid;
954
955 /**
956 * Is this VUE map for a separate shader pipeline?
957 *
958 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
959 * without the linker having a chance to dead code eliminate unused varyings.
960 *
961 * This means that we have to use a fixed slot layout, based on the output's
962 * location field, rather than assigning slots in a compact contiguous block.
963 */
964 bool separate;
965
966 /**
967 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
968 * not stored in a slot (because they are not written, or because
969 * additional processing is applied before storing them in the VUE), the
970 * value is -1.
971 */
972 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
973
974 /**
975 * Map from VUE slot to gl_varying_slot value. For slots that do not
976 * directly correspond to a gl_varying_slot, the value comes from
977 * brw_varying_slot.
978 *
979 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
980 */
981 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
982
983 /**
984 * Total number of VUE slots in use
985 */
986 int num_slots;
987
988 /**
989 * Number of per-patch VUE slots. Only valid for tessellation control
990 * shader outputs and tessellation evaluation shader inputs.
991 */
992 int num_per_patch_slots;
993
994 /**
995 * Number of per-vertex VUE slots. Only valid for tessellation control
996 * shader outputs and tessellation evaluation shader inputs.
997 */
998 int num_per_vertex_slots;
999 };
1000
1001 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
1002
1003 /**
1004 * Convert a VUE slot number into a byte offset within the VUE.
1005 */
1006 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
1007 {
1008 return 16*slot;
1009 }
1010
1011 /**
1012 * Convert a vertex output (brw_varying_slot) into a byte offset within the
1013 * VUE.
1014 */
1015 static inline
1016 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
1017 {
1018 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
1019 }
1020
1021 void brw_compute_vue_map(const struct gen_device_info *devinfo,
1022 struct brw_vue_map *vue_map,
1023 uint64_t slots_valid,
1024 bool separate_shader);
1025
1026 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
1027 uint64_t slots_valid,
1028 uint32_t is_patch);
1029
1030 /* brw_interpolation_map.c */
1031 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
1032 struct nir_shader *nir,
1033 struct brw_wm_prog_data *prog_data);
1034
1035 enum shader_dispatch_mode {
1036 DISPATCH_MODE_4X1_SINGLE = 0,
1037 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
1038 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
1039 DISPATCH_MODE_SIMD8 = 3,
1040
1041 DISPATCH_MODE_TCS_SINGLE_PATCH = 0,
1042 DISPATCH_MODE_TCS_8_PATCH = 2,
1043 };
1044
1045 /**
1046 * @defgroup Tessellator parameter enumerations.
1047 *
1048 * These correspond to the hardware values in 3DSTATE_TE, and are provided
1049 * as part of the tessellation evaluation shader.
1050 *
1051 * @{
1052 */
1053 enum brw_tess_partitioning {
1054 BRW_TESS_PARTITIONING_INTEGER = 0,
1055 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
1056 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
1057 };
1058
1059 enum brw_tess_output_topology {
1060 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
1061 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
1062 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
1063 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
1064 };
1065
1066 enum brw_tess_domain {
1067 BRW_TESS_DOMAIN_QUAD = 0,
1068 BRW_TESS_DOMAIN_TRI = 1,
1069 BRW_TESS_DOMAIN_ISOLINE = 2,
1070 };
1071 /** @} */
1072
1073 struct brw_vue_prog_data {
1074 struct brw_stage_prog_data base;
1075 struct brw_vue_map vue_map;
1076
1077 /** Should the hardware deliver input VUE handles for URB pull loads? */
1078 bool include_vue_handles;
1079
1080 GLuint urb_read_length;
1081 GLuint total_grf;
1082
1083 uint32_t clip_distance_mask;
1084 uint32_t cull_distance_mask;
1085
1086 /* Used for calculating urb partitions. In the VS, this is the size of the
1087 * URB entry used for both input and output to the thread. In the GS, this
1088 * is the size of the URB entry used for output.
1089 */
1090 GLuint urb_entry_size;
1091
1092 enum shader_dispatch_mode dispatch_mode;
1093 };
1094
1095 struct brw_vs_prog_data {
1096 struct brw_vue_prog_data base;
1097
1098 GLbitfield64 inputs_read;
1099 GLbitfield64 double_inputs_read;
1100
1101 unsigned nr_attribute_slots;
1102
1103 bool uses_vertexid;
1104 bool uses_instanceid;
1105 bool uses_is_indexed_draw;
1106 bool uses_firstvertex;
1107 bool uses_baseinstance;
1108 bool uses_drawid;
1109 };
1110
1111 struct brw_tcs_prog_data
1112 {
1113 struct brw_vue_prog_data base;
1114
1115 /** Should the non-SINGLE_PATCH payload provide primitive ID? */
1116 bool include_primitive_id;
1117
1118 /** Number vertices in output patch */
1119 int instances;
1120 };
1121
1122
1123 struct brw_tes_prog_data
1124 {
1125 struct brw_vue_prog_data base;
1126
1127 enum brw_tess_partitioning partitioning;
1128 enum brw_tess_output_topology output_topology;
1129 enum brw_tess_domain domain;
1130 };
1131
1132 struct brw_gs_prog_data
1133 {
1134 struct brw_vue_prog_data base;
1135
1136 unsigned vertices_in;
1137
1138 /**
1139 * Size of an output vertex, measured in HWORDS (32 bytes).
1140 */
1141 unsigned output_vertex_size_hwords;
1142
1143 unsigned output_topology;
1144
1145 /**
1146 * Size of the control data (cut bits or StreamID bits), in hwords (32
1147 * bytes). 0 if there is no control data.
1148 */
1149 unsigned control_data_header_size_hwords;
1150
1151 /**
1152 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1153 * if the control data is StreamID bits, or
1154 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1155 * Ignored if control_data_header_size is 0.
1156 */
1157 unsigned control_data_format;
1158
1159 bool include_primitive_id;
1160
1161 /**
1162 * The number of vertices emitted, if constant - otherwise -1.
1163 */
1164 int static_vertex_count;
1165
1166 int invocations;
1167
1168 /**
1169 * Gen6: Provoking vertex convention for odd-numbered triangles
1170 * in tristrips.
1171 */
1172 GLuint pv_first:1;
1173
1174 /**
1175 * Gen6: Number of varyings that are output to transform feedback.
1176 */
1177 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1178
1179 /**
1180 * Gen6: Map from the index of a transform feedback binding table entry to the
1181 * gl_varying_slot that should be streamed out through that binding table
1182 * entry.
1183 */
1184 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1185
1186 /**
1187 * Gen6: Map from the index of a transform feedback binding table entry to the
1188 * swizzles that should be used when streaming out data through that
1189 * binding table entry.
1190 */
1191 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1192 };
1193
1194 struct brw_sf_prog_data {
1195 uint32_t urb_read_length;
1196 uint32_t total_grf;
1197
1198 /* Each vertex may have upto 12 attributes, 4 components each,
1199 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1200 * rows.
1201 *
1202 * Actually we use 4 for each, so call it 12 rows.
1203 */
1204 unsigned urb_entry_size;
1205 };
1206
1207 struct brw_clip_prog_data {
1208 uint32_t curb_read_length; /* user planes? */
1209 uint32_t clip_mode;
1210 uint32_t urb_read_length;
1211 uint32_t total_grf;
1212 };
1213
1214 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1215 union brw_any_prog_data {
1216 struct brw_stage_prog_data base;
1217 struct brw_vue_prog_data vue;
1218 struct brw_vs_prog_data vs;
1219 struct brw_tcs_prog_data tcs;
1220 struct brw_tes_prog_data tes;
1221 struct brw_gs_prog_data gs;
1222 struct brw_wm_prog_data wm;
1223 struct brw_cs_prog_data cs;
1224 };
1225
1226 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1227 static inline struct brw_##stage##_prog_data * \
1228 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1229 { \
1230 return (struct brw_##stage##_prog_data *) prog_data; \
1231 }
1232 DEFINE_PROG_DATA_DOWNCAST(vue)
1233 DEFINE_PROG_DATA_DOWNCAST(vs)
1234 DEFINE_PROG_DATA_DOWNCAST(tcs)
1235 DEFINE_PROG_DATA_DOWNCAST(tes)
1236 DEFINE_PROG_DATA_DOWNCAST(gs)
1237 DEFINE_PROG_DATA_DOWNCAST(wm)
1238 DEFINE_PROG_DATA_DOWNCAST(cs)
1239 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1240 DEFINE_PROG_DATA_DOWNCAST(clip)
1241 DEFINE_PROG_DATA_DOWNCAST(sf)
1242 #undef DEFINE_PROG_DATA_DOWNCAST
1243
1244 struct brw_compile_stats {
1245 uint32_t dispatch_width; /**< 0 for vec4 */
1246 uint32_t instructions;
1247 uint32_t loops;
1248 uint32_t cycles;
1249 uint32_t spills;
1250 uint32_t fills;
1251 };
1252
1253 /** @} */
1254
1255 struct brw_compiler *
1256 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1257
1258 /**
1259 * Returns a compiler configuration for use with disk shader cache
1260 *
1261 * This value only needs to change for settings that can cause different
1262 * program generation between two runs on the same hardware.
1263 *
1264 * For example, it doesn't need to be different for gen 8 and gen 9 hardware,
1265 * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
1266 */
1267 uint64_t
1268 brw_get_compiler_config_value(const struct brw_compiler *compiler);
1269
1270 unsigned
1271 brw_prog_data_size(gl_shader_stage stage);
1272
1273 unsigned
1274 brw_prog_key_size(gl_shader_stage stage);
1275
1276 void
1277 brw_prog_key_set_id(union brw_any_prog_key *key, gl_shader_stage, unsigned id);
1278
1279 /**
1280 * Compile a vertex shader.
1281 *
1282 * Returns the final assembly and the program's size.
1283 */
1284 const unsigned *
1285 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1286 void *mem_ctx,
1287 const struct brw_vs_prog_key *key,
1288 struct brw_vs_prog_data *prog_data,
1289 struct nir_shader *shader,
1290 int shader_time_index,
1291 struct brw_compile_stats *stats,
1292 char **error_str);
1293
1294 /**
1295 * Compile a tessellation control shader.
1296 *
1297 * Returns the final assembly and the program's size.
1298 */
1299 const unsigned *
1300 brw_compile_tcs(const struct brw_compiler *compiler,
1301 void *log_data,
1302 void *mem_ctx,
1303 const struct brw_tcs_prog_key *key,
1304 struct brw_tcs_prog_data *prog_data,
1305 struct nir_shader *nir,
1306 int shader_time_index,
1307 struct brw_compile_stats *stats,
1308 char **error_str);
1309
1310 /**
1311 * Compile a tessellation evaluation shader.
1312 *
1313 * Returns the final assembly and the program's size.
1314 */
1315 const unsigned *
1316 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1317 void *mem_ctx,
1318 const struct brw_tes_prog_key *key,
1319 const struct brw_vue_map *input_vue_map,
1320 struct brw_tes_prog_data *prog_data,
1321 struct nir_shader *shader,
1322 int shader_time_index,
1323 struct brw_compile_stats *stats,
1324 char **error_str);
1325
1326 /**
1327 * Compile a vertex shader.
1328 *
1329 * Returns the final assembly and the program's size.
1330 */
1331 const unsigned *
1332 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1333 void *mem_ctx,
1334 const struct brw_gs_prog_key *key,
1335 struct brw_gs_prog_data *prog_data,
1336 struct nir_shader *shader,
1337 struct gl_program *prog,
1338 int shader_time_index,
1339 struct brw_compile_stats *stats,
1340 char **error_str);
1341
1342 /**
1343 * Compile a strips and fans shader.
1344 *
1345 * This is a fixed-function shader determined entirely by the shader key and
1346 * a VUE map.
1347 *
1348 * Returns the final assembly and the program's size.
1349 */
1350 const unsigned *
1351 brw_compile_sf(const struct brw_compiler *compiler,
1352 void *mem_ctx,
1353 const struct brw_sf_prog_key *key,
1354 struct brw_sf_prog_data *prog_data,
1355 struct brw_vue_map *vue_map,
1356 unsigned *final_assembly_size);
1357
1358 /**
1359 * Compile a clipper shader.
1360 *
1361 * This is a fixed-function shader determined entirely by the shader key and
1362 * a VUE map.
1363 *
1364 * Returns the final assembly and the program's size.
1365 */
1366 const unsigned *
1367 brw_compile_clip(const struct brw_compiler *compiler,
1368 void *mem_ctx,
1369 const struct brw_clip_prog_key *key,
1370 struct brw_clip_prog_data *prog_data,
1371 struct brw_vue_map *vue_map,
1372 unsigned *final_assembly_size);
1373
1374 /**
1375 * Compile a fragment shader.
1376 *
1377 * Returns the final assembly and the program's size.
1378 */
1379 const unsigned *
1380 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1381 void *mem_ctx,
1382 const struct brw_wm_prog_key *key,
1383 struct brw_wm_prog_data *prog_data,
1384 struct nir_shader *shader,
1385 int shader_time_index8,
1386 int shader_time_index16,
1387 int shader_time_index32,
1388 bool allow_spilling,
1389 bool use_rep_send, struct brw_vue_map *vue_map,
1390 struct brw_compile_stats *stats, /**< Array of three stats */
1391 char **error_str);
1392
1393 /**
1394 * Compile a compute shader.
1395 *
1396 * Returns the final assembly and the program's size.
1397 */
1398 const unsigned *
1399 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1400 void *mem_ctx,
1401 const struct brw_cs_prog_key *key,
1402 struct brw_cs_prog_data *prog_data,
1403 const struct nir_shader *shader,
1404 int shader_time_index,
1405 struct brw_compile_stats *stats,
1406 char **error_str);
1407
1408 void brw_debug_key_recompile(const struct brw_compiler *c, void *log,
1409 gl_shader_stage stage,
1410 const struct brw_base_prog_key *old_key,
1411 const struct brw_base_prog_key *key);
1412
1413 static inline uint32_t
1414 encode_slm_size(unsigned gen, uint32_t bytes)
1415 {
1416 uint32_t slm_size = 0;
1417
1418 /* Shared Local Memory is specified as powers of two, and encoded in
1419 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1420 *
1421 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1422 * -------------------------------------------------------------------
1423 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1424 * -------------------------------------------------------------------
1425 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1426 */
1427 assert(bytes <= 64 * 1024);
1428
1429 if (bytes > 0) {
1430 /* Shared Local Memory Size is specified as powers of two. */
1431 slm_size = util_next_power_of_two(bytes);
1432
1433 if (gen >= 9) {
1434 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1435 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1436 } else {
1437 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1438 slm_size = MAX2(slm_size, 4096) / 4096;
1439 }
1440 }
1441
1442 return slm_size;
1443 }
1444
1445 /**
1446 * Return true if the given shader stage is dispatched contiguously by the
1447 * relevant fixed function starting from channel 0 of the SIMD thread, which
1448 * implies that the dispatch mask of a thread can be assumed to have the form
1449 * '2^n - 1' for some n.
1450 */
1451 static inline bool
1452 brw_stage_has_packed_dispatch(ASSERTED const struct gen_device_info *devinfo,
1453 gl_shader_stage stage,
1454 const struct brw_stage_prog_data *prog_data)
1455 {
1456 /* The code below makes assumptions about the hardware's thread dispatch
1457 * behavior that could be proven wrong in future generations -- Make sure
1458 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1459 * the NIR front-end before changing this assertion.
1460 */
1461 assert(devinfo->gen <= 11);
1462
1463 switch (stage) {
1464 case MESA_SHADER_FRAGMENT: {
1465 /* The PSD discards subspans coming in with no lit samples, which in the
1466 * per-pixel shading case implies that each subspan will either be fully
1467 * lit (due to the VMask being used to allow derivative computations),
1468 * or not dispatched at all. In per-sample dispatch mode individual
1469 * samples from the same subspan have a fixed relative location within
1470 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1471 * general and we should return false.
1472 */
1473 const struct brw_wm_prog_data *wm_prog_data =
1474 (const struct brw_wm_prog_data *)prog_data;
1475 return !wm_prog_data->persample_dispatch;
1476 }
1477 case MESA_SHADER_COMPUTE:
1478 /* Compute shaders will be spawned with either a fully enabled dispatch
1479 * mask or with whatever bottom/right execution mask was given to the
1480 * GPGPU walker command to be used along the workgroup edges -- In both
1481 * cases the dispatch mask is required to be tightly packed for our
1482 * invocation index calculations to work.
1483 */
1484 return true;
1485 default:
1486 /* Most remaining fixed functions are limited to use a packed dispatch
1487 * mask due to the hardware representation of the dispatch mask as a
1488 * single counter representing the number of enabled channels.
1489 */
1490 return true;
1491 }
1492 }
1493
1494 /**
1495 * Computes the first varying slot in the URB produced by the previous stage
1496 * that is used in the next stage. We do this by testing the varying slots in
1497 * the previous stage's vue map against the inputs read in the next stage.
1498 *
1499 * Note that:
1500 *
1501 * - Each URB offset contains two varying slots and we can only skip a
1502 * full offset if both slots are unused, so the value we return here is always
1503 * rounded down to the closest multiple of two.
1504 *
1505 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1506 * part of the vue header, so if these are read we can't skip anything.
1507 */
1508 static inline int
1509 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1510 const struct brw_vue_map *prev_stage_vue_map)
1511 {
1512 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1513 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1514 int varying = prev_stage_vue_map->slot_to_varying[i];
1515 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1516 return ROUND_DOWN_TO(i, 2);
1517 }
1518 }
1519
1520 return 0;
1521 }
1522
1523 #ifdef __cplusplus
1524 } /* extern "C" */
1525 #endif
1526
1527 #endif /* BRW_COMPILER_H */