intel/compiler: Inline get_src_index()
[mesa.git] / src / intel / compiler / brw_eu_compact.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_eu_compact.c
25 *
26 * Instruction compaction is a feature of G45 and newer hardware that allows
27 * for a smaller instruction encoding.
28 *
29 * The instruction cache is on the order of 32KB, and many programs generate
30 * far more instructions than that. The instruction cache is built to barely
31 * keep up with instruction dispatch ability in cache hit cases -- L1
32 * instruction cache misses that still hit in the next level could limit
33 * throughput by around 50%.
34 *
35 * The idea of instruction compaction is that most instructions use a tiny
36 * subset of the GPU functionality, so we can encode what would be a 16 byte
37 * instruction in 8 bytes using some lookup tables for various fields.
38 *
39 *
40 * Instruction compaction capabilities vary subtly by generation.
41 *
42 * G45's support for instruction compaction is very limited. Jump counts on
43 * this generation are in units of 16-byte uncompacted instructions. As such,
44 * all jump targets must be 16-byte aligned. Also, all instructions must be
45 * naturally aligned, i.e. uncompacted instructions must be 16-byte aligned.
46 * A G45-only instruction, NENOP, must be used to provide padding to align
47 * uncompacted instructions.
48 *
49 * Gen5 removes these restrictions and changes jump counts to be in units of
50 * 8-byte compacted instructions, allowing jump targets to be only 8-byte
51 * aligned. Uncompacted instructions can also be placed on 8-byte boundaries.
52 *
53 * Gen6 adds the ability to compact instructions with a limited range of
54 * immediate values. Compactable immediates have 12 unrestricted bits, and a
55 * 13th bit that's replicated through the high 20 bits, to create the 32-bit
56 * value of DW3 in the uncompacted instruction word.
57 *
58 * On Gen7 we can compact some control flow instructions with a small positive
59 * immediate in the low bits of DW3, like ENDIF with the JIP field. Other
60 * control flow instructions with UIP cannot be compacted, because of the
61 * replicated 13th bit. No control flow instructions can be compacted on Gen6
62 * since the jump count field is not in DW3.
63 *
64 * break JIP/UIP
65 * cont JIP/UIP
66 * halt JIP/UIP
67 * if JIP/UIP
68 * else JIP (plus UIP on BDW+)
69 * endif JIP
70 * while JIP (must be negative)
71 *
72 * Gen 8 adds support for compacting 3-src instructions.
73 */
74
75 #include "brw_eu.h"
76 #include "brw_shader.h"
77 #include "brw_disasm_info.h"
78 #include "dev/gen_debug.h"
79
80 static const uint32_t g45_control_index_table[32] = {
81 0b00000000000000000,
82 0b01000000000000000,
83 0b00110000000000000,
84 0b00000000000000010,
85 0b00100000000000000,
86 0b00010000000000000,
87 0b01000000000100000,
88 0b01000000100000000,
89 0b01010000000100000,
90 0b00000000100000010,
91 0b11000000000000000,
92 0b00001000100000010,
93 0b01001000100000000,
94 0b00000000100000000,
95 0b11000000000100000,
96 0b00001000100000000,
97 0b10110000000000000,
98 0b11010000000100000,
99 0b00110000100000000,
100 0b00100000100000000,
101 0b01000000000001000,
102 0b01000000000000100,
103 0b00111100000000000,
104 0b00101011000000000,
105 0b00110000000010000,
106 0b00010000100000000,
107 0b01000000000100100,
108 0b01000000000101000,
109 0b00110000000000110,
110 0b00000000000001010,
111 0b01010000000101000,
112 0b01010000000100100,
113 };
114
115 static const uint32_t g45_datatype_table[32] = {
116 0b001000000000100001,
117 0b001011010110101101,
118 0b001000001000110001,
119 0b001111011110111101,
120 0b001011010110101100,
121 0b001000000110101101,
122 0b001000000000100000,
123 0b010100010110110001,
124 0b001100011000101101,
125 0b001000000000100010,
126 0b001000001000110110,
127 0b010000001000110001,
128 0b001000001000110010,
129 0b011000001000110010,
130 0b001111011110111100,
131 0b001000000100101000,
132 0b010100011000110001,
133 0b001010010100101001,
134 0b001000001000101001,
135 0b010000001000110110,
136 0b101000001000110001,
137 0b001011011000101101,
138 0b001000000100001001,
139 0b001011011000101100,
140 0b110100011000110001,
141 0b001000001110111101,
142 0b110000001000110001,
143 0b011000000100101010,
144 0b101000001000101001,
145 0b001011010110001100,
146 0b001000000110100001,
147 0b001010010100001000,
148 };
149
150 static const uint16_t g45_subreg_table[32] = {
151 0b000000000000000,
152 0b000000010000000,
153 0b000001000000000,
154 0b000100000000000,
155 0b000000000100000,
156 0b100000000000000,
157 0b000000000010000,
158 0b001100000000000,
159 0b001010000000000,
160 0b000000100000000,
161 0b001000000000000,
162 0b000000000001000,
163 0b000000001000000,
164 0b000000000000001,
165 0b000010000000000,
166 0b000000010100000,
167 0b000000000000111,
168 0b000001000100000,
169 0b011000000000000,
170 0b000000110000000,
171 0b000000000000010,
172 0b000000000000100,
173 0b000000001100000,
174 0b000100000000010,
175 0b001110011000110,
176 0b001110100001000,
177 0b000110011000110,
178 0b000001000011000,
179 0b000110010000100,
180 0b001100000000110,
181 0b000000010000110,
182 0b000001000110000,
183 };
184
185 static const uint16_t g45_src_index_table[32] = {
186 0b000000000000,
187 0b010001101000,
188 0b010110001000,
189 0b011010010000,
190 0b001101001000,
191 0b010110001010,
192 0b010101110000,
193 0b011001111000,
194 0b001000101000,
195 0b000000101000,
196 0b010001010000,
197 0b111101101100,
198 0b010110001100,
199 0b010001101100,
200 0b011010010100,
201 0b010001001100,
202 0b001100101000,
203 0b000000000010,
204 0b111101001100,
205 0b011001101000,
206 0b010101001000,
207 0b000000000100,
208 0b000000101100,
209 0b010001101010,
210 0b000000111000,
211 0b010101011000,
212 0b000100100000,
213 0b010110000000,
214 0b010000000100,
215 0b010000111000,
216 0b000101100000,
217 0b111101110100,
218 };
219
220 static const uint32_t gen6_control_index_table[32] = {
221 0b00000000000000000,
222 0b01000000000000000,
223 0b00110000000000000,
224 0b00000000100000000,
225 0b00010000000000000,
226 0b00001000100000000,
227 0b00000000100000010,
228 0b00000000000000010,
229 0b01000000100000000,
230 0b01010000000000000,
231 0b10110000000000000,
232 0b00100000000000000,
233 0b11010000000000000,
234 0b11000000000000000,
235 0b01001000100000000,
236 0b01000000000001000,
237 0b01000000000000100,
238 0b00000000000001000,
239 0b00000000000000100,
240 0b00111000100000000,
241 0b00001000100000010,
242 0b00110000100000000,
243 0b00110000000000001,
244 0b00100000000000001,
245 0b00110000000000010,
246 0b00110000000000101,
247 0b00110000000001001,
248 0b00110000000010000,
249 0b00110000000000011,
250 0b00110000000000100,
251 0b00110000100001000,
252 0b00100000000001001,
253 };
254
255 static const uint32_t gen6_datatype_table[32] = {
256 0b001001110000000000,
257 0b001000110000100000,
258 0b001001110000000001,
259 0b001000000001100000,
260 0b001010110100101001,
261 0b001000000110101101,
262 0b001100011000101100,
263 0b001011110110101101,
264 0b001000000111101100,
265 0b001000000001100001,
266 0b001000110010100101,
267 0b001000000001000001,
268 0b001000001000110001,
269 0b001000001000101001,
270 0b001000000000100000,
271 0b001000001000110010,
272 0b001010010100101001,
273 0b001011010010100101,
274 0b001000000110100101,
275 0b001100011000101001,
276 0b001011011000101100,
277 0b001011010110100101,
278 0b001011110110100101,
279 0b001111011110111101,
280 0b001111011110111100,
281 0b001111011110111101,
282 0b001111011110011101,
283 0b001111011110111110,
284 0b001000000000100001,
285 0b001000000000100010,
286 0b001001111111011101,
287 0b001000001110111110,
288 };
289
290 static const uint16_t gen6_subreg_table[32] = {
291 0b000000000000000,
292 0b000000000000100,
293 0b000000110000000,
294 0b111000000000000,
295 0b011110000001000,
296 0b000010000000000,
297 0b000000000010000,
298 0b000110000001100,
299 0b001000000000000,
300 0b000001000000000,
301 0b000001010010100,
302 0b000000001010110,
303 0b010000000000000,
304 0b110000000000000,
305 0b000100000000000,
306 0b000000010000000,
307 0b000000000001000,
308 0b100000000000000,
309 0b000001010000000,
310 0b001010000000000,
311 0b001100000000000,
312 0b000000001010100,
313 0b101101010010100,
314 0b010100000000000,
315 0b000000010001111,
316 0b011000000000000,
317 0b111110000000000,
318 0b101000000000000,
319 0b000000000001111,
320 0b000100010001111,
321 0b001000010001111,
322 0b000110000000000,
323 };
324
325 static const uint16_t gen6_src_index_table[32] = {
326 0b000000000000,
327 0b010110001000,
328 0b010001101000,
329 0b001000101000,
330 0b011010010000,
331 0b000100100000,
332 0b010001101100,
333 0b010101110000,
334 0b011001111000,
335 0b001100101000,
336 0b010110001100,
337 0b001000100000,
338 0b010110001010,
339 0b000000000010,
340 0b010101010000,
341 0b010101101000,
342 0b111101001100,
343 0b111100101100,
344 0b011001110000,
345 0b010110001001,
346 0b010101011000,
347 0b001101001000,
348 0b010000101100,
349 0b010000000000,
350 0b001101110000,
351 0b001100010000,
352 0b001100000000,
353 0b010001101010,
354 0b001101111000,
355 0b000001110000,
356 0b001100100000,
357 0b001101010000,
358 };
359
360 static const uint32_t gen7_control_index_table[32] = {
361 0b0000000000000000010,
362 0b0000100000000000000,
363 0b0000100000000000001,
364 0b0000100000000000010,
365 0b0000100000000000011,
366 0b0000100000000000100,
367 0b0000100000000000101,
368 0b0000100000000000111,
369 0b0000100000000001000,
370 0b0000100000000001001,
371 0b0000100000000001101,
372 0b0000110000000000000,
373 0b0000110000000000001,
374 0b0000110000000000010,
375 0b0000110000000000011,
376 0b0000110000000000100,
377 0b0000110000000000101,
378 0b0000110000000000111,
379 0b0000110000000001001,
380 0b0000110000000001101,
381 0b0000110000000010000,
382 0b0000110000100000000,
383 0b0001000000000000000,
384 0b0001000000000000010,
385 0b0001000000000000100,
386 0b0001000000100000000,
387 0b0010110000000000000,
388 0b0010110000000010000,
389 0b0011000000000000000,
390 0b0011000000100000000,
391 0b0101000000000000000,
392 0b0101000000100000000,
393 };
394
395 static const uint32_t gen7_datatype_table[32] = {
396 0b001000000000000001,
397 0b001000000000100000,
398 0b001000000000100001,
399 0b001000000001100001,
400 0b001000000010111101,
401 0b001000001011111101,
402 0b001000001110100001,
403 0b001000001110100101,
404 0b001000001110111101,
405 0b001000010000100001,
406 0b001000110000100000,
407 0b001000110000100001,
408 0b001001010010100101,
409 0b001001110010100100,
410 0b001001110010100101,
411 0b001111001110111101,
412 0b001111011110011101,
413 0b001111011110111100,
414 0b001111011110111101,
415 0b001111111110111100,
416 0b000000001000001100,
417 0b001000000000111101,
418 0b001000000010100101,
419 0b001000010000100000,
420 0b001001010010100100,
421 0b001001110010000100,
422 0b001010010100001001,
423 0b001101111110111101,
424 0b001111111110111101,
425 0b001011110110101100,
426 0b001010010100101000,
427 0b001010110100101000,
428 };
429
430 static const uint16_t gen7_subreg_table[32] = {
431 0b000000000000000,
432 0b000000000000001,
433 0b000000000001000,
434 0b000000000001111,
435 0b000000000010000,
436 0b000000010000000,
437 0b000000100000000,
438 0b000000110000000,
439 0b000001000000000,
440 0b000001000010000,
441 0b000010100000000,
442 0b001000000000000,
443 0b001000000000001,
444 0b001000010000001,
445 0b001000010000010,
446 0b001000010000011,
447 0b001000010000100,
448 0b001000010000111,
449 0b001000010001000,
450 0b001000010001110,
451 0b001000010001111,
452 0b001000110000000,
453 0b001000111101000,
454 0b010000000000000,
455 0b010000110000000,
456 0b011000000000000,
457 0b011110010000111,
458 0b100000000000000,
459 0b101000000000000,
460 0b110000000000000,
461 0b111000000000000,
462 0b111000000011100,
463 };
464
465 static const uint16_t gen7_src_index_table[32] = {
466 0b000000000000,
467 0b000000000010,
468 0b000000010000,
469 0b000000010010,
470 0b000000011000,
471 0b000000100000,
472 0b000000101000,
473 0b000001001000,
474 0b000001010000,
475 0b000001110000,
476 0b000001111000,
477 0b001100000000,
478 0b001100000010,
479 0b001100001000,
480 0b001100010000,
481 0b001100010010,
482 0b001100100000,
483 0b001100101000,
484 0b001100111000,
485 0b001101000000,
486 0b001101000010,
487 0b001101001000,
488 0b001101010000,
489 0b001101100000,
490 0b001101101000,
491 0b001101110000,
492 0b001101110001,
493 0b001101111000,
494 0b010001101000,
495 0b010001101001,
496 0b010001101010,
497 0b010110001000,
498 };
499
500 static const uint32_t gen8_control_index_table[32] = {
501 0b0000000000000000010,
502 0b0000100000000000000,
503 0b0000100000000000001,
504 0b0000100000000000010,
505 0b0000100000000000011,
506 0b0000100000000000100,
507 0b0000100000000000101,
508 0b0000100000000000111,
509 0b0000100000000001000,
510 0b0000100000000001001,
511 0b0000100000000001101,
512 0b0000110000000000000,
513 0b0000110000000000001,
514 0b0000110000000000010,
515 0b0000110000000000011,
516 0b0000110000000000100,
517 0b0000110000000000101,
518 0b0000110000000000111,
519 0b0000110000000001001,
520 0b0000110000000001101,
521 0b0000110000000010000,
522 0b0000110000100000000,
523 0b0001000000000000000,
524 0b0001000000000000010,
525 0b0001000000000000100,
526 0b0001000000100000000,
527 0b0010110000000000000,
528 0b0010110000000010000,
529 0b0011000000000000000,
530 0b0011000000100000000,
531 0b0101000000000000000,
532 0b0101000000100000000,
533 };
534
535 static const uint32_t gen8_datatype_table[32] = {
536 0b001000000000000000001,
537 0b001000000000001000000,
538 0b001000000000001000001,
539 0b001000000000011000001,
540 0b001000000000101011101,
541 0b001000000010111011101,
542 0b001000000011101000001,
543 0b001000000011101000101,
544 0b001000000011101011101,
545 0b001000001000001000001,
546 0b001000011000001000000,
547 0b001000011000001000001,
548 0b001000101000101000101,
549 0b001000111000101000100,
550 0b001000111000101000101,
551 0b001011100011101011101,
552 0b001011101011100011101,
553 0b001011101011101011100,
554 0b001011101011101011101,
555 0b001011111011101011100,
556 0b000000000010000001100,
557 0b001000000000001011101,
558 0b001000000000101000101,
559 0b001000001000001000000,
560 0b001000101000101000100,
561 0b001000111000100000100,
562 0b001001001001000001001,
563 0b001010111011101011101,
564 0b001011111011101011101,
565 0b001001111001101001100,
566 0b001001001001001001000,
567 0b001001011001001001000,
568 };
569
570 static const uint16_t gen8_subreg_table[32] = {
571 0b000000000000000,
572 0b000000000000001,
573 0b000000000001000,
574 0b000000000001111,
575 0b000000000010000,
576 0b000000010000000,
577 0b000000100000000,
578 0b000000110000000,
579 0b000001000000000,
580 0b000001000010000,
581 0b000001010000000,
582 0b001000000000000,
583 0b001000000000001,
584 0b001000010000001,
585 0b001000010000010,
586 0b001000010000011,
587 0b001000010000100,
588 0b001000010000111,
589 0b001000010001000,
590 0b001000010001110,
591 0b001000010001111,
592 0b001000110000000,
593 0b001000111101000,
594 0b010000000000000,
595 0b010000110000000,
596 0b011000000000000,
597 0b011110010000111,
598 0b100000000000000,
599 0b101000000000000,
600 0b110000000000000,
601 0b111000000000000,
602 0b111000000011100,
603 };
604
605 static const uint16_t gen8_src_index_table[32] = {
606 0b000000000000,
607 0b000000000010,
608 0b000000010000,
609 0b000000010010,
610 0b000000011000,
611 0b000000100000,
612 0b000000101000,
613 0b000001001000,
614 0b000001010000,
615 0b000001110000,
616 0b000001111000,
617 0b001100000000,
618 0b001100000010,
619 0b001100001000,
620 0b001100010000,
621 0b001100010010,
622 0b001100100000,
623 0b001100101000,
624 0b001100111000,
625 0b001101000000,
626 0b001101000010,
627 0b001101001000,
628 0b001101010000,
629 0b001101100000,
630 0b001101101000,
631 0b001101110000,
632 0b001101110001,
633 0b001101111000,
634 0b010001101000,
635 0b010001101001,
636 0b010001101010,
637 0b010110001000,
638 };
639
640 static const uint32_t gen11_datatype_table[32] = {
641 0b001000000000000000001,
642 0b001000000000001000000,
643 0b001000000000001000001,
644 0b001000000000011000001,
645 0b001000000000101100101,
646 0b001000000101111100101,
647 0b001000000100101000001,
648 0b001000000100101000101,
649 0b001000000100101100101,
650 0b001000001000001000001,
651 0b001000011000001000000,
652 0b001000011000001000001,
653 0b001000101000101000101,
654 0b001000111000101000100,
655 0b001000111000101000101,
656 0b001100100100101100101,
657 0b001100101100100100101,
658 0b001100101100101100100,
659 0b001100101100101100101,
660 0b001100111100101100100,
661 0b000000000010000001100,
662 0b001000000000001100101,
663 0b001000000000101000101,
664 0b001000001000001000000,
665 0b001000101000101000100,
666 0b001000111000100000100,
667 0b001001001001000001001,
668 0b001101111100101100101,
669 0b001100111100101100101,
670 0b001001111001101001100,
671 0b001001001001001001000,
672 0b001001011001001001000,
673 };
674
675 /* This is actually the control index table for Cherryview (26 bits), but the
676 * only difference from Broadwell (24 bits) is that it has two extra 0-bits at
677 * the start.
678 *
679 * The low 24 bits have the same mappings on both hardware.
680 */
681 static const uint32_t gen8_3src_control_index_table[4] = {
682 0b00100000000110000000000001,
683 0b00000000000110000000000001,
684 0b00000000001000000000000001,
685 0b00000000001000000000100001,
686 };
687
688 /* This is actually the control index table for Cherryview (49 bits), but the
689 * only difference from Broadwell (46 bits) is that it has three extra 0-bits
690 * at the start.
691 *
692 * The low 44 bits have the same mappings on both hardware, and since the high
693 * three bits on Broadwell are zero, we can reuse Cherryview's table.
694 */
695 static const uint64_t gen8_3src_source_index_table[4] = {
696 0b0000001110010011100100111001000001111000000000000,
697 0b0000001110010011100100111001000001111000000000010,
698 0b0000001110010011100100111001000001111000000001000,
699 0b0000001110010011100100111001000001111000000100000,
700 };
701
702 static const uint32_t *control_index_table;
703 static const uint32_t *datatype_table;
704 static const uint16_t *subreg_table;
705 static const uint16_t *src_index_table;
706
707 static bool
708 set_control_index(const struct gen_device_info *devinfo,
709 brw_compact_inst *dst, const brw_inst *src)
710 {
711 uint32_t uncompacted; /* 17b/G45; 19b/IVB+ */
712
713 if (devinfo->gen >= 8) {
714 uncompacted = (brw_inst_bits(src, 33, 31) << 16) | /* 3b */
715 (brw_inst_bits(src, 23, 12) << 4) | /* 12b */
716 (brw_inst_bits(src, 10, 9) << 2) | /* 2b */
717 (brw_inst_bits(src, 34, 34) << 1) | /* 1b */
718 (brw_inst_bits(src, 8, 8)); /* 1b */
719 } else {
720 uncompacted = (brw_inst_bits(src, 31, 31) << 16) | /* 1b */
721 (brw_inst_bits(src, 23, 8)); /* 16b */
722
723 /* On gen7, the flag register and subregister numbers are integrated into
724 * the control index.
725 */
726 if (devinfo->gen == 7)
727 uncompacted |= brw_inst_bits(src, 90, 89) << 17; /* 2b */
728 }
729
730 for (int i = 0; i < 32; i++) {
731 if (control_index_table[i] == uncompacted) {
732 brw_compact_inst_set_control_index(devinfo, dst, i);
733 return true;
734 }
735 }
736
737 return false;
738 }
739
740 static bool
741 set_datatype_index(const struct gen_device_info *devinfo, brw_compact_inst *dst,
742 const brw_inst *src)
743 {
744 uint32_t uncompacted; /* 18b/G45+; 21b/BDW+ */
745
746 if (devinfo->gen >= 8) {
747 uncompacted = (brw_inst_bits(src, 63, 61) << 18) | /* 3b */
748 (brw_inst_bits(src, 94, 89) << 12) | /* 6b */
749 (brw_inst_bits(src, 46, 35)); /* 12b */
750 } else {
751 uncompacted = (brw_inst_bits(src, 63, 61) << 15) | /* 3b */
752 (brw_inst_bits(src, 46, 32)); /* 15b */
753 }
754
755 for (int i = 0; i < 32; i++) {
756 if (datatype_table[i] == uncompacted) {
757 brw_compact_inst_set_datatype_index(devinfo, dst, i);
758 return true;
759 }
760 }
761
762 return false;
763 }
764
765 static bool
766 set_subreg_index(const struct gen_device_info *devinfo, brw_compact_inst *dst,
767 const brw_inst *src, bool is_immediate)
768 {
769 uint16_t uncompacted = /* 15b */
770 (brw_inst_bits(src, 52, 48) << 0) | /* 5b */
771 (brw_inst_bits(src, 68, 64) << 5); /* 5b */
772
773 if (!is_immediate)
774 uncompacted |= brw_inst_bits(src, 100, 96) << 10; /* 5b */
775
776 for (int i = 0; i < 32; i++) {
777 if (subreg_table[i] == uncompacted) {
778 brw_compact_inst_set_subreg_index(devinfo, dst, i);
779 return true;
780 }
781 }
782
783 return false;
784 }
785
786 static bool
787 set_src0_index(const struct gen_device_info *devinfo,
788 brw_compact_inst *dst, const brw_inst *src)
789 {
790 uint16_t uncompacted = brw_inst_bits(src, 88, 77); /* 12b */
791
792 for (int i = 0; i < 32; i++) {
793 if (src_index_table[i] == uncompacted) {
794 brw_compact_inst_set_src0_index(devinfo, dst, i);
795 return true;
796 }
797 }
798
799 return false;
800 }
801
802 static bool
803 set_src1_index(const struct gen_device_info *devinfo, brw_compact_inst *dst,
804 const brw_inst *src, bool is_immediate)
805 {
806 if (is_immediate) {
807 uint16_t imm = (brw_inst_imm_ud(devinfo, src) >> 8) & 0x1f;
808 brw_compact_inst_set_src1_index(devinfo, dst, imm);
809 return true;
810 } else {
811 uint16_t uncompacted = brw_inst_bits(src, 120, 109); /* 12b */
812
813 for (int i = 0; i < 32; i++) {
814 if (src_index_table[i] == uncompacted) {
815 brw_compact_inst_set_src1_index(devinfo, dst, i);
816 return true;
817 }
818 }
819 }
820
821 return false;
822 }
823
824 static bool
825 set_3src_control_index(const struct gen_device_info *devinfo,
826 brw_compact_inst *dst, const brw_inst *src)
827 {
828 assert(devinfo->gen >= 8);
829
830 uint32_t uncompacted = /* 24b/BDW; 26b/CHV */
831 (brw_inst_bits(src, 34, 32) << 21) | /* 3b */
832 (brw_inst_bits(src, 28, 8)); /* 21b */
833
834 if (devinfo->gen >= 9 || devinfo->is_cherryview)
835 uncompacted |= brw_inst_bits(src, 36, 35) << 24; /* 2b */
836
837 for (unsigned i = 0; i < ARRAY_SIZE(gen8_3src_control_index_table); i++) {
838 if (gen8_3src_control_index_table[i] == uncompacted) {
839 brw_compact_inst_set_3src_control_index(devinfo, dst, i);
840 return true;
841 }
842 }
843
844 return false;
845 }
846
847 static bool
848 set_3src_source_index(const struct gen_device_info *devinfo,
849 brw_compact_inst *dst, const brw_inst *src)
850 {
851 assert(devinfo->gen >= 8);
852
853 uint64_t uncompacted = /* 46b/BDW; 49b/CHV */
854 (brw_inst_bits(src, 83, 83) << 43) | /* 1b */
855 (brw_inst_bits(src, 114, 107) << 35) | /* 8b */
856 (brw_inst_bits(src, 93, 86) << 27) | /* 8b */
857 (brw_inst_bits(src, 72, 65) << 19) | /* 8b */
858 (brw_inst_bits(src, 55, 37)); /* 19b */
859
860 if (devinfo->gen >= 9 || devinfo->is_cherryview) {
861 uncompacted |=
862 (brw_inst_bits(src, 126, 125) << 47) | /* 2b */
863 (brw_inst_bits(src, 105, 104) << 45) | /* 2b */
864 (brw_inst_bits(src, 84, 84) << 44); /* 1b */
865 } else {
866 uncompacted |=
867 (brw_inst_bits(src, 125, 125) << 45) | /* 1b */
868 (brw_inst_bits(src, 104, 104) << 44); /* 1b */
869 }
870
871 for (unsigned i = 0; i < ARRAY_SIZE(gen8_3src_source_index_table); i++) {
872 if (gen8_3src_source_index_table[i] == uncompacted) {
873 brw_compact_inst_set_3src_source_index(devinfo, dst, i);
874 return true;
875 }
876 }
877
878 return false;
879 }
880
881 static bool
882 has_unmapped_bits(const struct gen_device_info *devinfo, const brw_inst *src)
883 {
884 /* EOT can only be mapped on a send if the src1 is an immediate */
885 if ((brw_inst_opcode(devinfo, src) == BRW_OPCODE_SENDC ||
886 brw_inst_opcode(devinfo, src) == BRW_OPCODE_SEND) &&
887 brw_inst_eot(devinfo, src))
888 return true;
889
890 /* Check for instruction bits that don't map to any of the fields of the
891 * compacted instruction. The instruction cannot be compacted if any of
892 * them are set. They overlap with:
893 * - NibCtrl (bit 47 on Gen7, bit 11 on Gen8)
894 * - Dst.AddrImm[9] (bit 47 on Gen8)
895 * - Src0.AddrImm[9] (bit 95 on Gen8)
896 * - Imm64[27:31] (bits 91-95 on Gen7, bit 95 on Gen8)
897 * - UIP[31] (bit 95 on Gen8)
898 */
899 if (devinfo->gen >= 8) {
900 assert(!brw_inst_bits(src, 7, 7));
901 return brw_inst_bits(src, 95, 95) ||
902 brw_inst_bits(src, 47, 47) ||
903 brw_inst_bits(src, 11, 11);
904 } else {
905 assert(!brw_inst_bits(src, 7, 7) &&
906 !(devinfo->gen < 7 && brw_inst_bits(src, 90, 90)));
907 return brw_inst_bits(src, 95, 91) ||
908 brw_inst_bits(src, 47, 47);
909 }
910 }
911
912 static bool
913 has_3src_unmapped_bits(const struct gen_device_info *devinfo,
914 const brw_inst *src)
915 {
916 /* Check for three-source instruction bits that don't map to any of the
917 * fields of the compacted instruction. All of them seem to be reserved
918 * bits currently.
919 */
920 if (devinfo->gen >= 9 || devinfo->is_cherryview) {
921 assert(!brw_inst_bits(src, 127, 127) &&
922 !brw_inst_bits(src, 7, 7));
923 } else {
924 assert(devinfo->gen >= 8);
925 assert(!brw_inst_bits(src, 127, 126) &&
926 !brw_inst_bits(src, 105, 105) &&
927 !brw_inst_bits(src, 84, 84) &&
928 !brw_inst_bits(src, 7, 7));
929
930 /* Src1Type and Src2Type, used for mixed-precision floating point */
931 if (brw_inst_bits(src, 36, 35))
932 return true;
933 }
934
935 return false;
936 }
937
938 static bool
939 brw_try_compact_3src_instruction(const struct gen_device_info *devinfo,
940 brw_compact_inst *dst, const brw_inst *src)
941 {
942 assert(devinfo->gen >= 8);
943
944 if (has_3src_unmapped_bits(devinfo, src))
945 return false;
946
947 #define compact(field) \
948 brw_compact_inst_set_3src_##field(devinfo, dst, brw_inst_3src_##field(devinfo, src))
949 #define compact_a16(field) \
950 brw_compact_inst_set_3src_##field(devinfo, dst, brw_inst_3src_a16_##field(devinfo, src))
951
952 compact(hw_opcode);
953
954 if (!set_3src_control_index(devinfo, dst, src))
955 return false;
956
957 if (!set_3src_source_index(devinfo, dst, src))
958 return false;
959
960 compact(dst_reg_nr);
961 compact_a16(src0_rep_ctrl);
962 brw_compact_inst_set_3src_cmpt_control(devinfo, dst, true);
963 compact(debug_control);
964 compact(saturate);
965 compact_a16(src1_rep_ctrl);
966 compact_a16(src2_rep_ctrl);
967 compact(src0_reg_nr);
968 compact(src1_reg_nr);
969 compact(src2_reg_nr);
970 compact_a16(src0_subreg_nr);
971 compact_a16(src1_subreg_nr);
972 compact_a16(src2_subreg_nr);
973
974 #undef compact
975 #undef compact_a16
976
977 return true;
978 }
979
980 /* Compacted instructions have 12-bits for immediate sources, and a 13th bit
981 * that's replicated through the high 20 bits.
982 *
983 * Effectively this means we get 12-bit integers, 0.0f, and some limited uses
984 * of packed vectors as compactable immediates.
985 */
986 static bool
987 is_compactable_immediate(unsigned imm)
988 {
989 /* We get the low 12 bits as-is. */
990 imm &= ~0xfff;
991
992 /* We get one bit replicated through the top 20 bits. */
993 return imm == 0 || imm == 0xfffff000;
994 }
995
996 /**
997 * Applies some small changes to instruction types to increase chances of
998 * compaction.
999 */
1000 static brw_inst
1001 precompact(const struct gen_device_info *devinfo, brw_inst inst)
1002 {
1003 if (brw_inst_src0_reg_file(devinfo, &inst) != BRW_IMMEDIATE_VALUE)
1004 return inst;
1005
1006 /* The Bspec's section titled "Non-present Operands" claims that if src0
1007 * is an immediate that src1's type must be the same as that of src0.
1008 *
1009 * The SNB+ DataTypeIndex instruction compaction tables contain mappings
1010 * that do not follow this rule. E.g., from the IVB/HSW table:
1011 *
1012 * DataTypeIndex 18-Bit Mapping Mapped Meaning
1013 * 3 001000001011111101 r:f | i:vf | a:ud | <1> | dir |
1014 *
1015 * And from the SNB table:
1016 *
1017 * DataTypeIndex 18-Bit Mapping Mapped Meaning
1018 * 8 001000000111101100 a:w | i:w | a:ud | <1> | dir |
1019 *
1020 * Neither of these cause warnings from the simulator when used,
1021 * compacted or otherwise. In fact, all compaction mappings that have an
1022 * immediate in src0 use a:ud for src1.
1023 *
1024 * The GM45 instruction compaction tables do not contain mapped meanings
1025 * so it's not clear whether it has the restriction. We'll assume it was
1026 * lifted on SNB. (FINISHME: decode the GM45 tables and check.)
1027 *
1028 * Don't do any of this for 64-bit immediates, since the src1 fields
1029 * overlap with the immediate and setting them would overwrite the
1030 * immediate we set.
1031 */
1032 if (devinfo->gen >= 6 &&
1033 !(devinfo->is_haswell &&
1034 brw_inst_opcode(devinfo, &inst) == BRW_OPCODE_DIM) &&
1035 !(devinfo->gen >= 8 &&
1036 (brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_DF ||
1037 brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_UQ ||
1038 brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_Q))) {
1039 enum brw_reg_file file = brw_inst_src1_reg_file(devinfo, &inst);
1040 brw_inst_set_src1_file_type(devinfo, &inst, file, BRW_REGISTER_TYPE_UD);
1041 }
1042
1043 /* Compacted instructions only have 12-bits (plus 1 for the other 20)
1044 * for immediate values. Presumably the hardware engineers realized
1045 * that the only useful floating-point value that could be represented
1046 * in this format is 0.0, which can also be represented as a VF-typed
1047 * immediate, so they gave us the previously mentioned mapping on IVB+.
1048 *
1049 * Strangely, we do have a mapping for imm:f in src1, so we don't need
1050 * to do this there.
1051 *
1052 * If we see a 0.0:F, change the type to VF so that it can be compacted.
1053 */
1054 if (brw_inst_imm_ud(devinfo, &inst) == 0x0 &&
1055 brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_F &&
1056 brw_inst_dst_type(devinfo, &inst) == BRW_REGISTER_TYPE_F &&
1057 brw_inst_dst_hstride(devinfo, &inst) == BRW_HORIZONTAL_STRIDE_1) {
1058 enum brw_reg_file file = brw_inst_src0_reg_file(devinfo, &inst);
1059 brw_inst_set_src0_file_type(devinfo, &inst, file, BRW_REGISTER_TYPE_VF);
1060 }
1061
1062 /* There are no mappings for dst:d | i:d, so if the immediate is suitable
1063 * set the types to :UD so the instruction can be compacted.
1064 */
1065 if (is_compactable_immediate(brw_inst_imm_ud(devinfo, &inst)) &&
1066 brw_inst_cond_modifier(devinfo, &inst) == BRW_CONDITIONAL_NONE &&
1067 brw_inst_src0_type(devinfo, &inst) == BRW_REGISTER_TYPE_D &&
1068 brw_inst_dst_type(devinfo, &inst) == BRW_REGISTER_TYPE_D) {
1069 enum brw_reg_file src_file = brw_inst_src0_reg_file(devinfo, &inst);
1070 enum brw_reg_file dst_file = brw_inst_dst_reg_file(devinfo, &inst);
1071
1072 brw_inst_set_src0_file_type(devinfo, &inst, src_file, BRW_REGISTER_TYPE_UD);
1073 brw_inst_set_dst_file_type(devinfo, &inst, dst_file, BRW_REGISTER_TYPE_UD);
1074 }
1075
1076 return inst;
1077 }
1078
1079 /**
1080 * Tries to compact instruction src into dst.
1081 *
1082 * It doesn't modify dst unless src is compactable, which is relied on by
1083 * brw_compact_instructions().
1084 */
1085 bool
1086 brw_try_compact_instruction(const struct gen_device_info *devinfo,
1087 brw_compact_inst *dst, const brw_inst *src)
1088 {
1089 brw_compact_inst temp;
1090
1091 assert(brw_inst_cmpt_control(devinfo, src) == 0);
1092
1093 if (is_3src(devinfo, brw_inst_opcode(devinfo, src))) {
1094 if (devinfo->gen >= 8) {
1095 memset(&temp, 0, sizeof(temp));
1096 if (brw_try_compact_3src_instruction(devinfo, &temp, src)) {
1097 *dst = temp;
1098 return true;
1099 } else {
1100 return false;
1101 }
1102 } else {
1103 return false;
1104 }
1105 }
1106
1107 bool is_immediate =
1108 brw_inst_src0_reg_file(devinfo, src) == BRW_IMMEDIATE_VALUE ||
1109 brw_inst_src1_reg_file(devinfo, src) == BRW_IMMEDIATE_VALUE;
1110 if (is_immediate &&
1111 (devinfo->gen < 6 ||
1112 !is_compactable_immediate(brw_inst_imm_ud(devinfo, src)))) {
1113 return false;
1114 }
1115
1116 if (has_unmapped_bits(devinfo, src))
1117 return false;
1118
1119 memset(&temp, 0, sizeof(temp));
1120
1121 #define compact(field) \
1122 brw_compact_inst_set_##field(devinfo, &temp, brw_inst_##field(devinfo, src))
1123
1124 compact(hw_opcode);
1125 compact(debug_control);
1126
1127 if (!set_control_index(devinfo, &temp, src))
1128 return false;
1129 if (!set_datatype_index(devinfo, &temp, src))
1130 return false;
1131 if (!set_subreg_index(devinfo, &temp, src, is_immediate))
1132 return false;
1133
1134 if (devinfo->gen >= 6) {
1135 compact(acc_wr_control);
1136 } else {
1137 compact(mask_control_ex);
1138 }
1139
1140 compact(cond_modifier);
1141
1142 if (devinfo->gen <= 6)
1143 compact(flag_subreg_nr);
1144
1145 brw_compact_inst_set_cmpt_control(devinfo, &temp, true);
1146
1147 if (!set_src0_index(devinfo, &temp, src))
1148 return false;
1149 if (!set_src1_index(devinfo, &temp, src, is_immediate))
1150 return false;
1151
1152 brw_compact_inst_set_dst_reg_nr(devinfo, &temp,
1153 brw_inst_dst_da_reg_nr(devinfo, src));
1154 brw_compact_inst_set_src0_reg_nr(devinfo, &temp,
1155 brw_inst_src0_da_reg_nr(devinfo, src));
1156
1157 if (is_immediate) {
1158 brw_compact_inst_set_src1_reg_nr(devinfo, &temp,
1159 brw_inst_imm_ud(devinfo, src) & 0xff);
1160 } else {
1161 brw_compact_inst_set_src1_reg_nr(devinfo, &temp,
1162 brw_inst_src1_da_reg_nr(devinfo, src));
1163 }
1164
1165 #undef compact
1166
1167 *dst = temp;
1168
1169 return true;
1170 }
1171
1172 static void
1173 set_uncompacted_control(const struct gen_device_info *devinfo, brw_inst *dst,
1174 brw_compact_inst *src)
1175 {
1176 uint32_t uncompacted =
1177 control_index_table[brw_compact_inst_control_index(devinfo, src)];
1178
1179 if (devinfo->gen >= 8) {
1180 brw_inst_set_bits(dst, 33, 31, (uncompacted >> 16));
1181 brw_inst_set_bits(dst, 23, 12, (uncompacted >> 4) & 0xfff);
1182 brw_inst_set_bits(dst, 10, 9, (uncompacted >> 2) & 0x3);
1183 brw_inst_set_bits(dst, 34, 34, (uncompacted >> 1) & 0x1);
1184 brw_inst_set_bits(dst, 8, 8, (uncompacted >> 0) & 0x1);
1185 } else {
1186 brw_inst_set_bits(dst, 31, 31, (uncompacted >> 16) & 0x1);
1187 brw_inst_set_bits(dst, 23, 8, (uncompacted & 0xffff));
1188
1189 if (devinfo->gen == 7)
1190 brw_inst_set_bits(dst, 90, 89, uncompacted >> 17);
1191 }
1192 }
1193
1194 static void
1195 set_uncompacted_datatype(const struct gen_device_info *devinfo, brw_inst *dst,
1196 brw_compact_inst *src)
1197 {
1198 uint32_t uncompacted =
1199 datatype_table[brw_compact_inst_datatype_index(devinfo, src)];
1200
1201 if (devinfo->gen >= 8) {
1202 brw_inst_set_bits(dst, 63, 61, (uncompacted >> 18));
1203 brw_inst_set_bits(dst, 94, 89, (uncompacted >> 12) & 0x3f);
1204 brw_inst_set_bits(dst, 46, 35, (uncompacted >> 0) & 0xfff);
1205 } else {
1206 brw_inst_set_bits(dst, 63, 61, (uncompacted >> 15));
1207 brw_inst_set_bits(dst, 46, 32, (uncompacted & 0x7fff));
1208 }
1209 }
1210
1211 static void
1212 set_uncompacted_subreg(const struct gen_device_info *devinfo, brw_inst *dst,
1213 brw_compact_inst *src)
1214 {
1215 uint16_t uncompacted =
1216 subreg_table[brw_compact_inst_subreg_index(devinfo, src)];
1217
1218 brw_inst_set_bits(dst, 100, 96, (uncompacted >> 10));
1219 brw_inst_set_bits(dst, 68, 64, (uncompacted >> 5) & 0x1f);
1220 brw_inst_set_bits(dst, 52, 48, (uncompacted >> 0) & 0x1f);
1221 }
1222
1223 static void
1224 set_uncompacted_src0(const struct gen_device_info *devinfo, brw_inst *dst,
1225 brw_compact_inst *src)
1226 {
1227 uint32_t compacted = brw_compact_inst_src0_index(devinfo, src);
1228 uint16_t uncompacted = src_index_table[compacted];
1229
1230 brw_inst_set_bits(dst, 88, 77, uncompacted);
1231 }
1232
1233 static void
1234 set_uncompacted_src1(const struct gen_device_info *devinfo, brw_inst *dst,
1235 brw_compact_inst *src, bool is_immediate)
1236 {
1237 if (is_immediate) {
1238 signed high5 = brw_compact_inst_src1_index(devinfo, src);
1239 /* Replicate top bit of src1_index into high 20 bits of the immediate. */
1240 brw_inst_set_imm_ud(devinfo, dst, (high5 << 27) >> 19);
1241 } else {
1242 uint16_t uncompacted =
1243 src_index_table[brw_compact_inst_src1_index(devinfo, src)];
1244
1245 brw_inst_set_bits(dst, 120, 109, uncompacted);
1246 }
1247 }
1248
1249 static void
1250 set_uncompacted_3src_control_index(const struct gen_device_info *devinfo,
1251 brw_inst *dst, brw_compact_inst *src)
1252 {
1253 assert(devinfo->gen >= 8);
1254
1255 uint32_t compacted = brw_compact_inst_3src_control_index(devinfo, src);
1256 uint32_t uncompacted = gen8_3src_control_index_table[compacted];
1257
1258 brw_inst_set_bits(dst, 34, 32, (uncompacted >> 21) & 0x7);
1259 brw_inst_set_bits(dst, 28, 8, (uncompacted >> 0) & 0x1fffff);
1260
1261 if (devinfo->gen >= 9 || devinfo->is_cherryview)
1262 brw_inst_set_bits(dst, 36, 35, (uncompacted >> 24) & 0x3);
1263 }
1264
1265 static void
1266 set_uncompacted_3src_source_index(const struct gen_device_info *devinfo,
1267 brw_inst *dst, brw_compact_inst *src)
1268 {
1269 assert(devinfo->gen >= 8);
1270
1271 uint32_t compacted = brw_compact_inst_3src_source_index(devinfo, src);
1272 uint64_t uncompacted = gen8_3src_source_index_table[compacted];
1273
1274 brw_inst_set_bits(dst, 83, 83, (uncompacted >> 43) & 0x1);
1275 brw_inst_set_bits(dst, 114, 107, (uncompacted >> 35) & 0xff);
1276 brw_inst_set_bits(dst, 93, 86, (uncompacted >> 27) & 0xff);
1277 brw_inst_set_bits(dst, 72, 65, (uncompacted >> 19) & 0xff);
1278 brw_inst_set_bits(dst, 55, 37, (uncompacted >> 0) & 0x7ffff);
1279
1280 if (devinfo->gen >= 9 || devinfo->is_cherryview) {
1281 brw_inst_set_bits(dst, 126, 125, (uncompacted >> 47) & 0x3);
1282 brw_inst_set_bits(dst, 105, 104, (uncompacted >> 45) & 0x3);
1283 brw_inst_set_bits(dst, 84, 84, (uncompacted >> 44) & 0x1);
1284 } else {
1285 brw_inst_set_bits(dst, 125, 125, (uncompacted >> 45) & 0x1);
1286 brw_inst_set_bits(dst, 104, 104, (uncompacted >> 44) & 0x1);
1287 }
1288 }
1289
1290 static void
1291 brw_uncompact_3src_instruction(const struct gen_device_info *devinfo,
1292 brw_inst *dst, brw_compact_inst *src)
1293 {
1294 assert(devinfo->gen >= 8);
1295
1296 #define uncompact(field) \
1297 brw_inst_set_3src_##field(devinfo, dst, brw_compact_inst_3src_##field(devinfo, src))
1298 #define uncompact_a16(field) \
1299 brw_inst_set_3src_a16_##field(devinfo, dst, brw_compact_inst_3src_##field(devinfo, src))
1300
1301 uncompact(hw_opcode);
1302
1303 set_uncompacted_3src_control_index(devinfo, dst, src);
1304 set_uncompacted_3src_source_index(devinfo, dst, src);
1305
1306 uncompact(dst_reg_nr);
1307 uncompact_a16(src0_rep_ctrl);
1308 brw_inst_set_3src_cmpt_control(devinfo, dst, false);
1309 uncompact(debug_control);
1310 uncompact(saturate);
1311 uncompact_a16(src1_rep_ctrl);
1312 uncompact_a16(src2_rep_ctrl);
1313 uncompact(src0_reg_nr);
1314 uncompact(src1_reg_nr);
1315 uncompact(src2_reg_nr);
1316 uncompact_a16(src0_subreg_nr);
1317 uncompact_a16(src1_subreg_nr);
1318 uncompact_a16(src2_subreg_nr);
1319
1320 #undef uncompact
1321 #undef uncompact_a16
1322 }
1323
1324 void
1325 brw_uncompact_instruction(const struct gen_device_info *devinfo, brw_inst *dst,
1326 brw_compact_inst *src)
1327 {
1328 memset(dst, 0, sizeof(*dst));
1329
1330 if (devinfo->gen >= 8 &&
1331 is_3src(devinfo, brw_opcode_decode(
1332 devinfo, brw_compact_inst_3src_hw_opcode(devinfo, src)))) {
1333 brw_uncompact_3src_instruction(devinfo, dst, src);
1334 return;
1335 }
1336
1337 #define uncompact(field) \
1338 brw_inst_set_##field(devinfo, dst, brw_compact_inst_##field(devinfo, src))
1339
1340 uncompact(hw_opcode);
1341 uncompact(debug_control);
1342
1343 set_uncompacted_control(devinfo, dst, src);
1344 set_uncompacted_datatype(devinfo, dst, src);
1345
1346 /* src0/1 register file fields are in the datatype table. */
1347 bool is_immediate = brw_inst_src0_reg_file(devinfo, dst) == BRW_IMMEDIATE_VALUE ||
1348 brw_inst_src1_reg_file(devinfo, dst) == BRW_IMMEDIATE_VALUE;
1349
1350 set_uncompacted_subreg(devinfo, dst, src);
1351
1352 if (devinfo->gen >= 6) {
1353 uncompact(acc_wr_control);
1354 } else {
1355 uncompact(mask_control_ex);
1356 }
1357
1358 uncompact(cond_modifier);
1359
1360 if (devinfo->gen <= 6)
1361 uncompact(flag_subreg_nr);
1362
1363 set_uncompacted_src0(devinfo, dst, src);
1364 set_uncompacted_src1(devinfo, dst, src, is_immediate);
1365
1366 brw_inst_set_dst_da_reg_nr(devinfo, dst,
1367 brw_compact_inst_dst_reg_nr(devinfo, src));
1368 brw_inst_set_src0_da_reg_nr(devinfo, dst,
1369 brw_compact_inst_src0_reg_nr(devinfo, src));
1370
1371 if (is_immediate) {
1372 brw_inst_set_imm_ud(devinfo, dst,
1373 brw_inst_imm_ud(devinfo, dst) |
1374 brw_compact_inst_src1_reg_nr(devinfo, src));
1375 } else {
1376 brw_inst_set_src1_da_reg_nr(devinfo, dst,
1377 brw_compact_inst_src1_reg_nr(devinfo, src));
1378 }
1379
1380 #undef uncompact
1381 }
1382
1383 void brw_debug_compact_uncompact(const struct gen_device_info *devinfo,
1384 brw_inst *orig,
1385 brw_inst *uncompacted)
1386 {
1387 fprintf(stderr, "Instruction compact/uncompact changed (gen%d):\n",
1388 devinfo->gen);
1389
1390 fprintf(stderr, " before: ");
1391 brw_disassemble_inst(stderr, devinfo, orig, true);
1392
1393 fprintf(stderr, " after: ");
1394 brw_disassemble_inst(stderr, devinfo, uncompacted, false);
1395
1396 uint32_t *before_bits = (uint32_t *)orig;
1397 uint32_t *after_bits = (uint32_t *)uncompacted;
1398 fprintf(stderr, " changed bits:\n");
1399 for (int i = 0; i < 128; i++) {
1400 uint32_t before = before_bits[i / 32] & (1 << (i & 31));
1401 uint32_t after = after_bits[i / 32] & (1 << (i & 31));
1402
1403 if (before != after) {
1404 fprintf(stderr, " bit %d, %s to %s\n", i,
1405 before ? "set" : "unset",
1406 after ? "set" : "unset");
1407 }
1408 }
1409 }
1410
1411 static int
1412 compacted_between(int old_ip, int old_target_ip, int *compacted_counts)
1413 {
1414 int this_compacted_count = compacted_counts[old_ip];
1415 int target_compacted_count = compacted_counts[old_target_ip];
1416 return target_compacted_count - this_compacted_count;
1417 }
1418
1419 static void
1420 update_uip_jip(const struct gen_device_info *devinfo, brw_inst *insn,
1421 int this_old_ip, int *compacted_counts)
1422 {
1423 /* JIP and UIP are in units of:
1424 * - bytes on Gen8+; and
1425 * - compacted instructions on Gen6+.
1426 */
1427 int shift = devinfo->gen >= 8 ? 3 : 0;
1428
1429 int32_t jip_compacted = brw_inst_jip(devinfo, insn) >> shift;
1430 jip_compacted -= compacted_between(this_old_ip,
1431 this_old_ip + (jip_compacted / 2),
1432 compacted_counts);
1433 brw_inst_set_jip(devinfo, insn, jip_compacted << shift);
1434
1435 if (brw_inst_opcode(devinfo, insn) == BRW_OPCODE_ENDIF ||
1436 brw_inst_opcode(devinfo, insn) == BRW_OPCODE_WHILE ||
1437 (brw_inst_opcode(devinfo, insn) == BRW_OPCODE_ELSE && devinfo->gen <= 7))
1438 return;
1439
1440 int32_t uip_compacted = brw_inst_uip(devinfo, insn) >> shift;
1441 uip_compacted -= compacted_between(this_old_ip,
1442 this_old_ip + (uip_compacted / 2),
1443 compacted_counts);
1444 brw_inst_set_uip(devinfo, insn, uip_compacted << shift);
1445 }
1446
1447 static void
1448 update_gen4_jump_count(const struct gen_device_info *devinfo, brw_inst *insn,
1449 int this_old_ip, int *compacted_counts)
1450 {
1451 assert(devinfo->gen == 5 || devinfo->is_g4x);
1452
1453 /* Jump Count is in units of:
1454 * - uncompacted instructions on G45; and
1455 * - compacted instructions on Gen5.
1456 */
1457 int shift = devinfo->is_g4x ? 1 : 0;
1458
1459 int jump_count_compacted = brw_inst_gen4_jump_count(devinfo, insn) << shift;
1460
1461 int target_old_ip = this_old_ip + (jump_count_compacted / 2);
1462
1463 int this_compacted_count = compacted_counts[this_old_ip];
1464 int target_compacted_count = compacted_counts[target_old_ip];
1465
1466 jump_count_compacted -= (target_compacted_count - this_compacted_count);
1467 brw_inst_set_gen4_jump_count(devinfo, insn, jump_count_compacted >> shift);
1468 }
1469
1470 void
1471 brw_init_compaction_tables(const struct gen_device_info *devinfo)
1472 {
1473 assert(g45_control_index_table[ARRAY_SIZE(g45_control_index_table) - 1] != 0);
1474 assert(g45_datatype_table[ARRAY_SIZE(g45_datatype_table) - 1] != 0);
1475 assert(g45_subreg_table[ARRAY_SIZE(g45_subreg_table) - 1] != 0);
1476 assert(g45_src_index_table[ARRAY_SIZE(g45_src_index_table) - 1] != 0);
1477 assert(gen6_control_index_table[ARRAY_SIZE(gen6_control_index_table) - 1] != 0);
1478 assert(gen6_datatype_table[ARRAY_SIZE(gen6_datatype_table) - 1] != 0);
1479 assert(gen6_subreg_table[ARRAY_SIZE(gen6_subreg_table) - 1] != 0);
1480 assert(gen6_src_index_table[ARRAY_SIZE(gen6_src_index_table) - 1] != 0);
1481 assert(gen7_control_index_table[ARRAY_SIZE(gen7_control_index_table) - 1] != 0);
1482 assert(gen7_datatype_table[ARRAY_SIZE(gen7_datatype_table) - 1] != 0);
1483 assert(gen7_subreg_table[ARRAY_SIZE(gen7_subreg_table) - 1] != 0);
1484 assert(gen7_src_index_table[ARRAY_SIZE(gen7_src_index_table) - 1] != 0);
1485 assert(gen8_control_index_table[ARRAY_SIZE(gen8_control_index_table) - 1] != 0);
1486 assert(gen8_datatype_table[ARRAY_SIZE(gen8_datatype_table) - 1] != 0);
1487 assert(gen8_subreg_table[ARRAY_SIZE(gen8_subreg_table) - 1] != 0);
1488 assert(gen8_src_index_table[ARRAY_SIZE(gen8_src_index_table) - 1] != 0);
1489 assert(gen11_datatype_table[ARRAY_SIZE(gen11_datatype_table) - 1] != 0);
1490
1491 switch (devinfo->gen) {
1492 case 12:
1493 control_index_table = NULL;
1494 datatype_table = NULL;
1495 subreg_table = NULL;
1496 src_index_table = NULL;
1497 break;
1498 case 11:
1499 control_index_table = gen8_control_index_table;
1500 datatype_table = gen11_datatype_table;
1501 subreg_table = gen8_subreg_table;
1502 src_index_table = gen8_src_index_table;
1503 break;
1504 case 10:
1505 case 9:
1506 case 8:
1507 control_index_table = gen8_control_index_table;
1508 datatype_table = gen8_datatype_table;
1509 subreg_table = gen8_subreg_table;
1510 src_index_table = gen8_src_index_table;
1511 break;
1512 case 7:
1513 control_index_table = gen7_control_index_table;
1514 datatype_table = gen7_datatype_table;
1515 subreg_table = gen7_subreg_table;
1516 src_index_table = gen7_src_index_table;
1517 break;
1518 case 6:
1519 control_index_table = gen6_control_index_table;
1520 datatype_table = gen6_datatype_table;
1521 subreg_table = gen6_subreg_table;
1522 src_index_table = gen6_src_index_table;
1523 break;
1524 case 5:
1525 case 4:
1526 control_index_table = g45_control_index_table;
1527 datatype_table = g45_datatype_table;
1528 subreg_table = g45_subreg_table;
1529 src_index_table = g45_src_index_table;
1530 break;
1531 default:
1532 unreachable("unknown generation");
1533 }
1534 }
1535
1536 void
1537 brw_compact_instructions(struct brw_codegen *p, int start_offset,
1538 struct disasm_info *disasm)
1539 {
1540 if (unlikely(INTEL_DEBUG & DEBUG_NO_COMPACTION) || p->devinfo->gen > 11)
1541 return;
1542
1543 const struct gen_device_info *devinfo = p->devinfo;
1544 void *store = p->store + start_offset / 16;
1545 /* For an instruction at byte offset 16*i before compaction, this is the
1546 * number of compacted instructions minus the number of padding NOP/NENOPs
1547 * that preceded it.
1548 */
1549 int compacted_counts[(p->next_insn_offset - start_offset) / sizeof(brw_inst)];
1550 /* For an instruction at byte offset 8*i after compaction, this was its IP
1551 * (in 16-byte units) before compaction.
1552 */
1553 int old_ip[(p->next_insn_offset - start_offset) / sizeof(brw_compact_inst) + 1];
1554
1555 if (devinfo->gen == 4 && !devinfo->is_g4x)
1556 return;
1557
1558 int offset = 0;
1559 int compacted_count = 0;
1560 for (int src_offset = 0; src_offset < p->next_insn_offset - start_offset;
1561 src_offset += sizeof(brw_inst)) {
1562 brw_inst *src = store + src_offset;
1563 void *dst = store + offset;
1564
1565 old_ip[offset / sizeof(brw_compact_inst)] = src_offset / sizeof(brw_inst);
1566 compacted_counts[src_offset / sizeof(brw_inst)] = compacted_count;
1567
1568 brw_inst inst = precompact(devinfo, *src);
1569 brw_inst saved = inst;
1570
1571 if (brw_try_compact_instruction(devinfo, dst, &inst)) {
1572 compacted_count++;
1573
1574 if (INTEL_DEBUG) {
1575 brw_inst uncompacted;
1576 brw_uncompact_instruction(devinfo, &uncompacted, dst);
1577 if (memcmp(&saved, &uncompacted, sizeof(uncompacted))) {
1578 brw_debug_compact_uncompact(devinfo, &saved, &uncompacted);
1579 }
1580 }
1581
1582 offset += sizeof(brw_compact_inst);
1583 } else {
1584 /* All uncompacted instructions need to be aligned on G45. */
1585 if ((offset & sizeof(brw_compact_inst)) != 0 && devinfo->is_g4x){
1586 brw_compact_inst *align = store + offset;
1587 memset(align, 0, sizeof(*align));
1588 brw_compact_inst_set_hw_opcode(
1589 devinfo, align, brw_opcode_encode(devinfo, BRW_OPCODE_NENOP));
1590 brw_compact_inst_set_cmpt_control(devinfo, align, true);
1591 offset += sizeof(brw_compact_inst);
1592 compacted_count--;
1593 compacted_counts[src_offset / sizeof(brw_inst)] = compacted_count;
1594 old_ip[offset / sizeof(brw_compact_inst)] = src_offset / sizeof(brw_inst);
1595
1596 dst = store + offset;
1597 }
1598
1599 /* If we didn't compact this intruction, we need to move it down into
1600 * place.
1601 */
1602 if (offset != src_offset) {
1603 memmove(dst, src, sizeof(brw_inst));
1604 }
1605 offset += sizeof(brw_inst);
1606 }
1607 }
1608
1609 /* Add an entry for the ending offset of the program. This greatly
1610 * simplifies the linked list walk at the end of the function.
1611 */
1612 old_ip[offset / sizeof(brw_compact_inst)] =
1613 (p->next_insn_offset - start_offset) / sizeof(brw_inst);
1614
1615 /* Fix up control flow offsets. */
1616 p->next_insn_offset = start_offset + offset;
1617 for (offset = 0; offset < p->next_insn_offset - start_offset;
1618 offset = next_offset(devinfo, store, offset)) {
1619 brw_inst *insn = store + offset;
1620 int this_old_ip = old_ip[offset / sizeof(brw_compact_inst)];
1621 int this_compacted_count = compacted_counts[this_old_ip];
1622
1623 switch (brw_inst_opcode(devinfo, insn)) {
1624 case BRW_OPCODE_BREAK:
1625 case BRW_OPCODE_CONTINUE:
1626 case BRW_OPCODE_HALT:
1627 if (devinfo->gen >= 6) {
1628 update_uip_jip(devinfo, insn, this_old_ip, compacted_counts);
1629 } else {
1630 update_gen4_jump_count(devinfo, insn, this_old_ip,
1631 compacted_counts);
1632 }
1633 break;
1634
1635 case BRW_OPCODE_IF:
1636 case BRW_OPCODE_IFF:
1637 case BRW_OPCODE_ELSE:
1638 case BRW_OPCODE_ENDIF:
1639 case BRW_OPCODE_WHILE:
1640 if (devinfo->gen >= 7) {
1641 if (brw_inst_cmpt_control(devinfo, insn)) {
1642 brw_inst uncompacted;
1643 brw_uncompact_instruction(devinfo, &uncompacted,
1644 (brw_compact_inst *)insn);
1645
1646 update_uip_jip(devinfo, &uncompacted, this_old_ip,
1647 compacted_counts);
1648
1649 bool ret = brw_try_compact_instruction(devinfo,
1650 (brw_compact_inst *)insn,
1651 &uncompacted);
1652 assert(ret); (void)ret;
1653 } else {
1654 update_uip_jip(devinfo, insn, this_old_ip, compacted_counts);
1655 }
1656 } else if (devinfo->gen == 6) {
1657 assert(!brw_inst_cmpt_control(devinfo, insn));
1658
1659 /* Jump Count is in units of compacted instructions on Gen6. */
1660 int jump_count_compacted = brw_inst_gen6_jump_count(devinfo, insn);
1661
1662 int target_old_ip = this_old_ip + (jump_count_compacted / 2);
1663 int target_compacted_count = compacted_counts[target_old_ip];
1664 jump_count_compacted -= (target_compacted_count - this_compacted_count);
1665 brw_inst_set_gen6_jump_count(devinfo, insn, jump_count_compacted);
1666 } else {
1667 update_gen4_jump_count(devinfo, insn, this_old_ip,
1668 compacted_counts);
1669 }
1670 break;
1671
1672 case BRW_OPCODE_ADD:
1673 /* Add instructions modifying the IP register use an immediate src1,
1674 * and Gens that use this cannot compact instructions with immediate
1675 * operands.
1676 */
1677 if (brw_inst_cmpt_control(devinfo, insn))
1678 break;
1679
1680 if (brw_inst_dst_reg_file(devinfo, insn) == BRW_ARCHITECTURE_REGISTER_FILE &&
1681 brw_inst_dst_da_reg_nr(devinfo, insn) == BRW_ARF_IP) {
1682 assert(brw_inst_src1_reg_file(devinfo, insn) == BRW_IMMEDIATE_VALUE);
1683
1684 int shift = 3;
1685 int jump_compacted = brw_inst_imm_d(devinfo, insn) >> shift;
1686
1687 int target_old_ip = this_old_ip + (jump_compacted / 2);
1688 int target_compacted_count = compacted_counts[target_old_ip];
1689 jump_compacted -= (target_compacted_count - this_compacted_count);
1690 brw_inst_set_imm_ud(devinfo, insn, jump_compacted << shift);
1691 }
1692 break;
1693
1694 default:
1695 break;
1696 }
1697 }
1698
1699 /* p->nr_insn is counting the number of uncompacted instructions still, so
1700 * divide. We do want to be sure there's a valid instruction in any
1701 * alignment padding, so that the next compression pass (for the FS 8/16
1702 * compile passes) parses correctly.
1703 */
1704 if (p->next_insn_offset & sizeof(brw_compact_inst)) {
1705 brw_compact_inst *align = store + offset;
1706 memset(align, 0, sizeof(*align));
1707 brw_compact_inst_set_hw_opcode(
1708 devinfo, align, brw_opcode_encode(devinfo, BRW_OPCODE_NOP));
1709 brw_compact_inst_set_cmpt_control(devinfo, align, true);
1710 p->next_insn_offset += sizeof(brw_compact_inst);
1711 }
1712 p->nr_insn = p->next_insn_offset / sizeof(brw_inst);
1713
1714 /* Update the instruction offsets for each group. */
1715 if (disasm) {
1716 int offset = 0;
1717
1718 foreach_list_typed(struct inst_group, group, link, &disasm->group_list) {
1719 while (start_offset + old_ip[offset / sizeof(brw_compact_inst)] *
1720 sizeof(brw_inst) != group->offset) {
1721 assert(start_offset + old_ip[offset / sizeof(brw_compact_inst)] *
1722 sizeof(brw_inst) < group->offset);
1723 offset = next_offset(devinfo, store, offset);
1724 }
1725
1726 group->offset = start_offset + offset;
1727
1728 offset = next_offset(devinfo, store, offset);
1729 }
1730 }
1731 }