i965: Move the back-end compiler to src/intel/compiler
[mesa.git] / src / intel / compiler / brw_eu_validate.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_eu_validate.c
25 *
26 * This file implements a pass that validates shader assembly.
27 */
28
29 #include "brw_eu.h"
30
31 /* We're going to do lots of string concatenation, so this should help. */
32 struct string {
33 char *str;
34 size_t len;
35 };
36
37 static void
38 cat(struct string *dest, const struct string src)
39 {
40 dest->str = realloc(dest->str, dest->len + src.len + 1);
41 memcpy(dest->str + dest->len, src.str, src.len);
42 dest->str[dest->len + src.len] = '\0';
43 dest->len = dest->len + src.len;
44 }
45 #define CAT(dest, src) cat(&dest, (struct string){src, strlen(src)})
46
47 #define error(str) "\tERROR: " str "\n"
48 #define ERROR_INDENT "\t "
49
50 #define ERROR(msg) ERROR_IF(true, msg)
51 #define ERROR_IF(cond, msg) \
52 do { \
53 if (cond) { \
54 CAT(error_msg, error(msg)); \
55 } \
56 } while(0)
57
58 #define CHECK(func, args...) \
59 do { \
60 struct string __msg = func(devinfo, inst, ##args); \
61 if (__msg.str) { \
62 cat(&error_msg, __msg); \
63 free(__msg.str); \
64 } \
65 } while (0)
66
67 static bool
68 inst_is_send(const struct gen_device_info *devinfo, const brw_inst *inst)
69 {
70 switch (brw_inst_opcode(devinfo, inst)) {
71 case BRW_OPCODE_SEND:
72 case BRW_OPCODE_SENDC:
73 case BRW_OPCODE_SENDS:
74 case BRW_OPCODE_SENDSC:
75 return true;
76 default:
77 return false;
78 }
79 }
80
81 static unsigned
82 signed_type(unsigned type)
83 {
84 switch (type) {
85 case BRW_HW_REG_TYPE_UD: return BRW_HW_REG_TYPE_D;
86 case BRW_HW_REG_TYPE_UW: return BRW_HW_REG_TYPE_W;
87 case BRW_HW_REG_NON_IMM_TYPE_UB: return BRW_HW_REG_NON_IMM_TYPE_B;
88 case GEN8_HW_REG_TYPE_UQ: return GEN8_HW_REG_TYPE_Q;
89 default: return type;
90 }
91 }
92
93 static bool
94 inst_is_raw_move(const struct gen_device_info *devinfo, const brw_inst *inst)
95 {
96 unsigned dst_type = signed_type(brw_inst_dst_reg_type(devinfo, inst));
97 unsigned src_type = signed_type(brw_inst_src0_reg_type(devinfo, inst));
98
99 if (brw_inst_src0_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
100 (brw_inst_src0_negate(devinfo, inst) ||
101 brw_inst_src0_abs(devinfo, inst)))
102 return false;
103
104 return brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MOV &&
105 brw_inst_saturate(devinfo, inst) == 0 &&
106 dst_type == src_type;
107 }
108
109 static bool
110 dst_is_null(const struct gen_device_info *devinfo, const brw_inst *inst)
111 {
112 return brw_inst_dst_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
113 brw_inst_dst_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
114 }
115
116 static bool
117 src0_is_null(const struct gen_device_info *devinfo, const brw_inst *inst)
118 {
119 return brw_inst_src0_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
120 brw_inst_src0_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
121 }
122
123 static bool
124 src1_is_null(const struct gen_device_info *devinfo, const brw_inst *inst)
125 {
126 return brw_inst_src1_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
127 brw_inst_src1_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
128 }
129
130 static bool
131 src0_is_grf(const struct gen_device_info *devinfo, const brw_inst *inst)
132 {
133 return brw_inst_src0_reg_file(devinfo, inst) == BRW_GENERAL_REGISTER_FILE;
134 }
135
136 static bool
137 src0_has_scalar_region(const struct gen_device_info *devinfo, const brw_inst *inst)
138 {
139 return brw_inst_src0_vstride(devinfo, inst) == BRW_VERTICAL_STRIDE_0 &&
140 brw_inst_src0_width(devinfo, inst) == BRW_WIDTH_1 &&
141 brw_inst_src0_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0;
142 }
143
144 static bool
145 src1_has_scalar_region(const struct gen_device_info *devinfo, const brw_inst *inst)
146 {
147 return brw_inst_src1_vstride(devinfo, inst) == BRW_VERTICAL_STRIDE_0 &&
148 brw_inst_src1_width(devinfo, inst) == BRW_WIDTH_1 &&
149 brw_inst_src1_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0;
150 }
151
152 static unsigned
153 num_sources_from_inst(const struct gen_device_info *devinfo,
154 const brw_inst *inst)
155 {
156 const struct opcode_desc *desc =
157 brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
158 unsigned math_function;
159
160 if (brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MATH) {
161 math_function = brw_inst_math_function(devinfo, inst);
162 } else if (devinfo->gen < 6 &&
163 brw_inst_opcode(devinfo, inst) == BRW_OPCODE_SEND) {
164 if (brw_inst_sfid(devinfo, inst) == BRW_SFID_MATH) {
165 /* src1 must be a descriptor (including the information to determine
166 * that the SEND is doing an extended math operation), but src0 can
167 * actually be null since it serves as the source of the implicit GRF
168 * to MRF move.
169 *
170 * If we stop using that functionality, we'll have to revisit this.
171 */
172 return 2;
173 } else {
174 /* Send instructions are allowed to have null sources since they use
175 * the base_mrf field to specify which message register source.
176 */
177 return 0;
178 }
179 } else {
180 assert(desc->nsrc < 4);
181 return desc->nsrc;
182 }
183
184 switch (math_function) {
185 case BRW_MATH_FUNCTION_INV:
186 case BRW_MATH_FUNCTION_LOG:
187 case BRW_MATH_FUNCTION_EXP:
188 case BRW_MATH_FUNCTION_SQRT:
189 case BRW_MATH_FUNCTION_RSQ:
190 case BRW_MATH_FUNCTION_SIN:
191 case BRW_MATH_FUNCTION_COS:
192 case BRW_MATH_FUNCTION_SINCOS:
193 case GEN8_MATH_FUNCTION_INVM:
194 case GEN8_MATH_FUNCTION_RSQRTM:
195 return 1;
196 case BRW_MATH_FUNCTION_FDIV:
197 case BRW_MATH_FUNCTION_POW:
198 case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT_AND_REMAINDER:
199 case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT:
200 case BRW_MATH_FUNCTION_INT_DIV_REMAINDER:
201 return 2;
202 default:
203 unreachable("not reached");
204 }
205 }
206
207 static struct string
208 sources_not_null(const struct gen_device_info *devinfo,
209 const brw_inst *inst)
210 {
211 unsigned num_sources = num_sources_from_inst(devinfo, inst);
212 struct string error_msg = { .str = NULL, .len = 0 };
213
214 /* Nothing to test. 3-src instructions can only have GRF sources, and
215 * there's no bit to control the file.
216 */
217 if (num_sources == 3)
218 return (struct string){};
219
220 if (num_sources >= 1)
221 ERROR_IF(src0_is_null(devinfo, inst), "src0 is null");
222
223 if (num_sources == 2)
224 ERROR_IF(src1_is_null(devinfo, inst), "src1 is null");
225
226 return error_msg;
227 }
228
229 static struct string
230 send_restrictions(const struct gen_device_info *devinfo,
231 const brw_inst *inst)
232 {
233 struct string error_msg = { .str = NULL, .len = 0 };
234
235 if (brw_inst_opcode(devinfo, inst) == BRW_OPCODE_SEND) {
236 ERROR_IF(brw_inst_src0_address_mode(devinfo, inst) != BRW_ADDRESS_DIRECT,
237 "send must use direct addressing");
238
239 if (devinfo->gen >= 7) {
240 ERROR_IF(!src0_is_grf(devinfo, inst), "send from non-GRF");
241 ERROR_IF(brw_inst_eot(devinfo, inst) &&
242 brw_inst_src0_da_reg_nr(devinfo, inst) < 112,
243 "send with EOT must use g112-g127");
244 }
245 }
246
247 return error_msg;
248 }
249
250 static bool
251 is_unsupported_inst(const struct gen_device_info *devinfo,
252 const brw_inst *inst)
253 {
254 return brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst)) == NULL;
255 }
256
257 static unsigned
258 execution_type_for_type(unsigned type, bool is_immediate)
259 {
260 /* The meaning of the type bits is dependent on whether the operand is an
261 * immediate, so normalize them first.
262 */
263 if (is_immediate) {
264 switch (type) {
265 case BRW_HW_REG_IMM_TYPE_UV:
266 case BRW_HW_REG_IMM_TYPE_V:
267 type = BRW_HW_REG_TYPE_W;
268 break;
269 case BRW_HW_REG_IMM_TYPE_VF:
270 type = BRW_HW_REG_TYPE_F;
271 break;
272 case GEN8_HW_REG_IMM_TYPE_DF:
273 type = GEN7_HW_REG_NON_IMM_TYPE_DF;
274 break;
275 case GEN8_HW_REG_IMM_TYPE_HF:
276 type = GEN8_HW_REG_NON_IMM_TYPE_HF;
277 break;
278 default:
279 break;
280 }
281 }
282
283 switch (type) {
284 case BRW_HW_REG_TYPE_UD:
285 case BRW_HW_REG_TYPE_D:
286 return BRW_HW_REG_TYPE_D;
287 case BRW_HW_REG_TYPE_UW:
288 case BRW_HW_REG_TYPE_W:
289 case BRW_HW_REG_NON_IMM_TYPE_UB:
290 case BRW_HW_REG_NON_IMM_TYPE_B:
291 return BRW_HW_REG_TYPE_W;
292 case GEN8_HW_REG_TYPE_UQ:
293 case GEN8_HW_REG_TYPE_Q:
294 return GEN8_HW_REG_TYPE_Q;
295 case BRW_HW_REG_TYPE_F:
296 case GEN7_HW_REG_NON_IMM_TYPE_DF:
297 case GEN8_HW_REG_NON_IMM_TYPE_HF:
298 return type;
299 default:
300 unreachable("not reached");
301 }
302 }
303
304 /**
305 * Returns the execution type of an instruction \p inst
306 */
307 static unsigned
308 execution_type(const struct gen_device_info *devinfo, const brw_inst *inst)
309 {
310 unsigned num_sources = num_sources_from_inst(devinfo, inst);
311 unsigned src0_exec_type, src1_exec_type;
312 unsigned src0_type = brw_inst_src0_reg_type(devinfo, inst);
313 unsigned src1_type = brw_inst_src1_reg_type(devinfo, inst);
314
315 bool src0_is_immediate =
316 brw_inst_src0_reg_file(devinfo, inst) == BRW_IMMEDIATE_VALUE;
317 bool src1_is_immediate =
318 brw_inst_src1_reg_file(devinfo, inst) == BRW_IMMEDIATE_VALUE;
319
320 /* Execution data type is independent of destination data type, except in
321 * mixed F/HF instructions on CHV and SKL+.
322 */
323 unsigned dst_exec_type = brw_inst_dst_reg_type(devinfo, inst);
324
325 src0_exec_type = execution_type_for_type(src0_type, src0_is_immediate);
326 if (num_sources == 1) {
327 if ((devinfo->gen >= 9 || devinfo->is_cherryview) &&
328 src0_exec_type == GEN8_HW_REG_NON_IMM_TYPE_HF) {
329 return dst_exec_type;
330 }
331 return src0_exec_type;
332 }
333
334 src1_exec_type = execution_type_for_type(src1_type, src1_is_immediate);
335 if (src0_exec_type == src1_exec_type)
336 return src0_exec_type;
337
338 /* Mixed operand types where one is float is float on Gen < 6
339 * (and not allowed on later platforms)
340 */
341 if (devinfo->gen < 6 &&
342 (src0_exec_type == BRW_HW_REG_TYPE_F ||
343 src1_exec_type == BRW_HW_REG_TYPE_F))
344 return BRW_HW_REG_TYPE_F;
345
346 if (src0_exec_type == GEN8_HW_REG_TYPE_Q ||
347 src1_exec_type == GEN8_HW_REG_TYPE_Q)
348 return GEN8_HW_REG_TYPE_Q;
349
350 if (src0_exec_type == BRW_HW_REG_TYPE_D ||
351 src1_exec_type == BRW_HW_REG_TYPE_D)
352 return BRW_HW_REG_TYPE_D;
353
354 if (src0_exec_type == BRW_HW_REG_TYPE_W ||
355 src1_exec_type == BRW_HW_REG_TYPE_W)
356 return BRW_HW_REG_TYPE_W;
357
358 if (src0_exec_type == GEN7_HW_REG_NON_IMM_TYPE_DF ||
359 src1_exec_type == GEN7_HW_REG_NON_IMM_TYPE_DF)
360 return GEN7_HW_REG_NON_IMM_TYPE_DF;
361
362 if (devinfo->gen >= 9 || devinfo->is_cherryview) {
363 if (dst_exec_type == BRW_HW_REG_TYPE_F ||
364 src0_exec_type == BRW_HW_REG_TYPE_F ||
365 src1_exec_type == BRW_HW_REG_TYPE_F) {
366 return BRW_HW_REG_TYPE_F;
367 } else {
368 return GEN8_HW_REG_NON_IMM_TYPE_HF;
369 }
370 }
371
372 assert(src0_exec_type == BRW_HW_REG_TYPE_F);
373 return BRW_HW_REG_TYPE_F;
374 }
375
376 /**
377 * Returns whether a region is packed
378 *
379 * A region is packed if its elements are adjacent in memory, with no
380 * intervening space, no overlap, and no replicated values.
381 */
382 static bool
383 is_packed(unsigned vstride, unsigned width, unsigned hstride)
384 {
385 if (vstride == width) {
386 if (vstride == 1) {
387 return hstride == 0;
388 } else {
389 return hstride == 1;
390 }
391 }
392
393 return false;
394 }
395
396 /**
397 * Checks restrictions listed in "General Restrictions Based on Operand Types"
398 * in the "Register Region Restrictions" section.
399 */
400 static struct string
401 general_restrictions_based_on_operand_types(const struct gen_device_info *devinfo,
402 const brw_inst *inst)
403 {
404 const struct opcode_desc *desc =
405 brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
406 unsigned num_sources = num_sources_from_inst(devinfo, inst);
407 unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
408 struct string error_msg = { .str = NULL, .len = 0 };
409
410 if (num_sources == 3)
411 return (struct string){};
412
413 if (inst_is_send(devinfo, inst))
414 return (struct string){};
415
416 if (exec_size == 1)
417 return (struct string){};
418
419 if (desc->ndst == 0)
420 return (struct string){};
421
422 /* The PRMs say:
423 *
424 * Where n is the largest element size in bytes for any source or
425 * destination operand type, ExecSize * n must be <= 64.
426 *
427 * But we do not attempt to enforce it, because it is implied by other
428 * rules:
429 *
430 * - that the destination stride must match the execution data type
431 * - sources may not span more than two adjacent GRF registers
432 * - destination may not span more than two adjacent GRF registers
433 *
434 * In fact, checking it would weaken testing of the other rules.
435 */
436
437 if (num_sources == 3)
438 return (struct string){};
439
440 if (exec_size == 1)
441 return (struct string){};
442
443 if (inst_is_send(devinfo, inst))
444 return (struct string){};
445
446 if (desc->ndst == 0)
447 return (struct string){};
448
449 unsigned dst_stride = 1 << (brw_inst_dst_hstride(devinfo, inst) - 1);
450 bool dst_type_is_byte =
451 brw_inst_dst_reg_type(devinfo, inst) == BRW_HW_REG_NON_IMM_TYPE_B ||
452 brw_inst_dst_reg_type(devinfo, inst) == BRW_HW_REG_NON_IMM_TYPE_UB;
453
454 if (dst_type_is_byte) {
455 if (is_packed(exec_size * dst_stride, exec_size, dst_stride)) {
456 if (!inst_is_raw_move(devinfo, inst)) {
457 ERROR("Only raw MOV supports a packed-byte destination");
458 return error_msg;
459 } else {
460 return (struct string){};
461 }
462 }
463 }
464
465 unsigned exec_type = execution_type(devinfo, inst);
466 unsigned exec_type_size =
467 brw_hw_reg_type_to_size(devinfo, exec_type, BRW_GENERAL_REGISTER_FILE);
468 unsigned dst_type_size = brw_element_size(devinfo, inst, dst);
469
470 if (exec_type_size > dst_type_size) {
471 ERROR_IF(dst_stride * dst_type_size != exec_type_size,
472 "Destination stride must be equal to the ratio of the sizes of "
473 "the execution data type to the destination type");
474
475 unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
476
477 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 &&
478 brw_inst_dst_address_mode(devinfo, inst) == BRW_ADDRESS_DIRECT) {
479 /* The i965 PRM says:
480 *
481 * Implementation Restriction: The relaxed alignment rule for byte
482 * destination (#10.5) is not supported.
483 */
484 if ((devinfo->gen > 4 || devinfo->is_g4x) && dst_type_is_byte) {
485 ERROR_IF(subreg % exec_type_size != 0 &&
486 subreg % exec_type_size != 1,
487 "Destination subreg must be aligned to the size of the "
488 "execution data type (or to the next lowest byte for byte "
489 "destinations)");
490 } else {
491 ERROR_IF(subreg % exec_type_size != 0,
492 "Destination subreg must be aligned to the size of the "
493 "execution data type");
494 }
495 }
496 }
497
498 return error_msg;
499 }
500
501 /**
502 * Checks restrictions listed in "General Restrictions on Regioning Parameters"
503 * in the "Register Region Restrictions" section.
504 */
505 static struct string
506 general_restrictions_on_region_parameters(const struct gen_device_info *devinfo,
507 const brw_inst *inst)
508 {
509 const struct opcode_desc *desc =
510 brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
511 unsigned num_sources = num_sources_from_inst(devinfo, inst);
512 unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
513 struct string error_msg = { .str = NULL, .len = 0 };
514
515 if (num_sources == 3)
516 return (struct string){};
517
518 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16) {
519 if (desc->ndst != 0 && !dst_is_null(devinfo, inst))
520 ERROR_IF(brw_inst_dst_hstride(devinfo, inst) != BRW_HORIZONTAL_STRIDE_1,
521 "Destination Horizontal Stride must be 1");
522
523 if (num_sources >= 1) {
524 if (devinfo->is_haswell || devinfo->gen >= 8) {
525 ERROR_IF(brw_inst_src0_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
526 brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
527 brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_2 &&
528 brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
529 "In Align16 mode, only VertStride of 0, 2, or 4 is allowed");
530 } else {
531 ERROR_IF(brw_inst_src0_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
532 brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
533 brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
534 "In Align16 mode, only VertStride of 0 or 4 is allowed");
535 }
536 }
537
538 if (num_sources == 2) {
539 if (devinfo->is_haswell || devinfo->gen >= 8) {
540 ERROR_IF(brw_inst_src1_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
541 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
542 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_2 &&
543 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
544 "In Align16 mode, only VertStride of 0, 2, or 4 is allowed");
545 } else {
546 ERROR_IF(brw_inst_src1_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
547 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
548 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
549 "In Align16 mode, only VertStride of 0 or 4 is allowed");
550 }
551 }
552
553 return error_msg;
554 }
555
556 for (unsigned i = 0; i < num_sources; i++) {
557 unsigned vstride, width, hstride, element_size, subreg;
558
559 #define DO_SRC(n) \
560 if (brw_inst_src ## n ## _reg_file(devinfo, inst) == \
561 BRW_IMMEDIATE_VALUE) \
562 continue; \
563 \
564 vstride = brw_inst_src ## n ## _vstride(devinfo, inst) ? \
565 (1 << (brw_inst_src ## n ## _vstride(devinfo, inst) - 1)) : 0; \
566 width = 1 << brw_inst_src ## n ## _width(devinfo, inst); \
567 hstride = brw_inst_src ## n ## _hstride(devinfo, inst) ? \
568 (1 << (brw_inst_src ## n ## _hstride(devinfo, inst) - 1)) : 0; \
569 element_size = brw_element_size(devinfo, inst, src ## n); \
570 subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst)
571
572 if (i == 0) {
573 DO_SRC(0);
574 } else if (i == 1) {
575 DO_SRC(1);
576 }
577 #undef DO_SRC
578
579 /* ExecSize must be greater than or equal to Width. */
580 ERROR_IF(exec_size < width, "ExecSize must be greater than or equal "
581 "to Width");
582
583 /* If ExecSize = Width and HorzStride ≠ 0,
584 * VertStride must be set to Width * HorzStride.
585 */
586 if (exec_size == width && hstride != 0) {
587 ERROR_IF(vstride != width * hstride,
588 "If ExecSize = Width and HorzStride ≠ 0, "
589 "VertStride must be set to Width * HorzStride");
590 }
591
592 /* If Width = 1, HorzStride must be 0 regardless of the values of
593 * ExecSize and VertStride.
594 */
595 if (width == 1) {
596 ERROR_IF(hstride != 0,
597 "If Width = 1, HorzStride must be 0 regardless "
598 "of the values of ExecSize and VertStride");
599 }
600
601 /* If ExecSize = Width = 1, both VertStride and HorzStride must be 0. */
602 if (exec_size == 1 && width == 1) {
603 ERROR_IF(vstride != 0 || hstride != 0,
604 "If ExecSize = Width = 1, both VertStride "
605 "and HorzStride must be 0");
606 }
607
608 /* If VertStride = HorzStride = 0, Width must be 1 regardless of the
609 * value of ExecSize.
610 */
611 if (vstride == 0 && hstride == 0) {
612 ERROR_IF(width != 1,
613 "If VertStride = HorzStride = 0, Width must be "
614 "1 regardless of the value of ExecSize");
615 }
616
617 /* VertStride must be used to cross GRF register boundaries. This rule
618 * implies that elements within a 'Width' cannot cross GRF boundaries.
619 */
620 const uint64_t mask = (1 << element_size) - 1;
621 unsigned rowbase = subreg;
622
623 for (int y = 0; y < exec_size / width; y++) {
624 uint64_t access_mask = 0;
625 unsigned offset = rowbase;
626
627 for (int x = 0; x < width; x++) {
628 access_mask |= mask << offset;
629 offset += hstride * element_size;
630 }
631
632 rowbase += vstride * element_size;
633
634 if ((uint32_t)access_mask != 0 && (access_mask >> 32) != 0) {
635 ERROR("VertStride must be used to cross GRF register boundaries");
636 break;
637 }
638 }
639 }
640
641 /* Dst.HorzStride must not be 0. */
642 if (desc->ndst != 0 && !dst_is_null(devinfo, inst)) {
643 ERROR_IF(brw_inst_dst_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0,
644 "Destination Horizontal Stride must not be 0");
645 }
646
647 return error_msg;
648 }
649
650 /**
651 * Creates an \p access_mask for an \p exec_size, \p element_size, and a region
652 *
653 * An \p access_mask is a 32-element array of uint64_t, where each uint64_t is
654 * a bitmask of bytes accessed by the region.
655 *
656 * For instance the access mask of the source gX.1<4,2,2>F in an exec_size = 4
657 * instruction would be
658 *
659 * access_mask[0] = 0x00000000000000F0
660 * access_mask[1] = 0x000000000000F000
661 * access_mask[2] = 0x0000000000F00000
662 * access_mask[3] = 0x00000000F0000000
663 * access_mask[4-31] = 0
664 *
665 * because the first execution channel accesses bytes 7-4 and the second
666 * execution channel accesses bytes 15-12, etc.
667 */
668 static void
669 align1_access_mask(uint64_t access_mask[static 32],
670 unsigned exec_size, unsigned element_size, unsigned subreg,
671 unsigned vstride, unsigned width, unsigned hstride)
672 {
673 const uint64_t mask = (1 << element_size) - 1;
674 unsigned rowbase = subreg;
675 unsigned element = 0;
676
677 for (int y = 0; y < exec_size / width; y++) {
678 unsigned offset = rowbase;
679
680 for (int x = 0; x < width; x++) {
681 access_mask[element++] = mask << offset;
682 offset += hstride * element_size;
683 }
684
685 rowbase += vstride * element_size;
686 }
687
688 assert(element == 0 || element == exec_size);
689 }
690
691 /**
692 * Returns the number of registers accessed according to the \p access_mask
693 */
694 static int
695 registers_read(const uint64_t access_mask[static 32])
696 {
697 int regs_read = 0;
698
699 for (unsigned i = 0; i < 32; i++) {
700 if (access_mask[i] > 0xFFFFFFFF) {
701 return 2;
702 } else if (access_mask[i]) {
703 regs_read = 1;
704 }
705 }
706
707 return regs_read;
708 }
709
710 /**
711 * Checks restrictions listed in "Region Alignment Rules" in the "Register
712 * Region Restrictions" section.
713 */
714 static struct string
715 region_alignment_rules(const struct gen_device_info *devinfo,
716 const brw_inst *inst)
717 {
718 const struct opcode_desc *desc =
719 brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
720 unsigned num_sources = num_sources_from_inst(devinfo, inst);
721 unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
722 uint64_t dst_access_mask[32], src0_access_mask[32], src1_access_mask[32];
723 struct string error_msg = { .str = NULL, .len = 0 };
724
725 if (num_sources == 3)
726 return (struct string){};
727
728 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16)
729 return (struct string){};
730
731 if (inst_is_send(devinfo, inst))
732 return (struct string){};
733
734 memset(dst_access_mask, 0, sizeof(dst_access_mask));
735 memset(src0_access_mask, 0, sizeof(src0_access_mask));
736 memset(src1_access_mask, 0, sizeof(src1_access_mask));
737
738 for (unsigned i = 0; i < num_sources; i++) {
739 unsigned vstride, width, hstride, element_size, subreg;
740
741 /* In Direct Addressing mode, a source cannot span more than 2 adjacent
742 * GRF registers.
743 */
744
745 #define DO_SRC(n) \
746 if (brw_inst_src ## n ## _address_mode(devinfo, inst) != \
747 BRW_ADDRESS_DIRECT) \
748 continue; \
749 \
750 if (brw_inst_src ## n ## _reg_file(devinfo, inst) == \
751 BRW_IMMEDIATE_VALUE) \
752 continue; \
753 \
754 vstride = brw_inst_src ## n ## _vstride(devinfo, inst) ? \
755 (1 << (brw_inst_src ## n ## _vstride(devinfo, inst) - 1)) : 0; \
756 width = 1 << brw_inst_src ## n ## _width(devinfo, inst); \
757 hstride = brw_inst_src ## n ## _hstride(devinfo, inst) ? \
758 (1 << (brw_inst_src ## n ## _hstride(devinfo, inst) - 1)) : 0; \
759 element_size = brw_element_size(devinfo, inst, src ## n); \
760 subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst); \
761 align1_access_mask(src ## n ## _access_mask, \
762 exec_size, element_size, subreg, \
763 vstride, width, hstride)
764
765 if (i == 0) {
766 DO_SRC(0);
767 } else if (i == 1) {
768 DO_SRC(1);
769 }
770 #undef DO_SRC
771
772 unsigned num_vstride = exec_size / width;
773 unsigned num_hstride = width;
774 unsigned vstride_elements = (num_vstride - 1) * vstride;
775 unsigned hstride_elements = (num_hstride - 1) * hstride;
776 unsigned offset = (vstride_elements + hstride_elements) * element_size +
777 subreg;
778 ERROR_IF(offset >= 64,
779 "A source cannot span more than 2 adjacent GRF registers");
780 }
781
782 if (desc->ndst == 0 || dst_is_null(devinfo, inst))
783 return error_msg;
784
785 unsigned stride = 1 << (brw_inst_dst_hstride(devinfo, inst) - 1);
786 unsigned element_size = brw_element_size(devinfo, inst, dst);
787 unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
788 unsigned offset = ((exec_size - 1) * stride * element_size) + subreg;
789 ERROR_IF(offset >= 64,
790 "A destination cannot span more than 2 adjacent GRF registers");
791
792 if (error_msg.str)
793 return error_msg;
794
795 align1_access_mask(dst_access_mask, exec_size, element_size, subreg,
796 exec_size == 1 ? 0 : exec_size * stride,
797 exec_size == 1 ? 1 : exec_size,
798 exec_size == 1 ? 0 : stride);
799
800 unsigned dst_regs = registers_read(dst_access_mask);
801 unsigned src0_regs = registers_read(src0_access_mask);
802 unsigned src1_regs = registers_read(src1_access_mask);
803
804 /* The SNB, IVB, HSW, BDW, and CHV PRMs say:
805 *
806 * When an instruction has a source region spanning two registers and a
807 * destination region contained in one register, the number of elements
808 * must be the same between two sources and one of the following must be
809 * true:
810 *
811 * 1. The destination region is entirely contained in the lower OWord
812 * of a register.
813 * 2. The destination region is entirely contained in the upper OWord
814 * of a register.
815 * 3. The destination elements are evenly split between the two OWords
816 * of a register.
817 */
818 if (devinfo->gen <= 8) {
819 if (dst_regs == 1 && (src0_regs == 2 || src1_regs == 2)) {
820 unsigned upper_oword_writes = 0, lower_oword_writes = 0;
821
822 for (unsigned i = 0; i < exec_size; i++) {
823 if (dst_access_mask[i] > 0x0000FFFF) {
824 upper_oword_writes++;
825 } else {
826 assert(dst_access_mask[i] != 0);
827 lower_oword_writes++;
828 }
829 }
830
831 ERROR_IF(lower_oword_writes != 0 &&
832 upper_oword_writes != 0 &&
833 upper_oword_writes != lower_oword_writes,
834 "Writes must be to only one OWord or "
835 "evenly split between OWords");
836 }
837 }
838
839 /* The IVB and HSW PRMs say:
840 *
841 * When an instruction has a source region that spans two registers and
842 * the destination spans two registers, the destination elements must be
843 * evenly split between the two registers [...]
844 *
845 * The SNB PRM contains similar wording (but written in a much more
846 * confusing manner).
847 *
848 * The BDW PRM says:
849 *
850 * When destination spans two registers, the source may be one or two
851 * registers. The destination elements must be evenly split between the
852 * two registers.
853 *
854 * The SKL PRM says:
855 *
856 * When destination of MATH instruction spans two registers, the
857 * destination elements must be evenly split between the two registers.
858 *
859 * It is not known whether this restriction applies to KBL other Gens after
860 * SKL.
861 */
862 if (devinfo->gen <= 8 ||
863 brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MATH) {
864
865 /* Nothing explicitly states that on Gen < 8 elements must be evenly
866 * split between two destination registers in the two exceptional
867 * source-region-spans-one-register cases, but since Broadwell requires
868 * evenly split writes regardless of source region, we assume that it was
869 * an oversight and require it.
870 */
871 if (dst_regs == 2) {
872 unsigned upper_reg_writes = 0, lower_reg_writes = 0;
873
874 for (unsigned i = 0; i < exec_size; i++) {
875 if (dst_access_mask[i] > 0xFFFFFFFF) {
876 upper_reg_writes++;
877 } else {
878 assert(dst_access_mask[i] != 0);
879 lower_reg_writes++;
880 }
881 }
882
883 ERROR_IF(upper_reg_writes != lower_reg_writes,
884 "Writes must be evenly split between the two "
885 "destination registers");
886 }
887 }
888
889 /* The IVB and HSW PRMs say:
890 *
891 * When an instruction has a source region that spans two registers and
892 * the destination spans two registers, the destination elements must be
893 * evenly split between the two registers and each destination register
894 * must be entirely derived from one source register.
895 *
896 * Note: In such cases, the regioning parameters must ensure that the
897 * offset from the two source registers is the same.
898 *
899 * The SNB PRM contains similar wording (but written in a much more
900 * confusing manner).
901 *
902 * There are effectively three rules stated here:
903 *
904 * For an instruction with a source and a destination spanning two
905 * registers,
906 *
907 * (1) destination elements must be evenly split between the two
908 * registers
909 * (2) all destination elements in a register must be derived
910 * from one source register
911 * (3) the offset (i.e. the starting location in each of the two
912 * registers spanned by a region) must be the same in the two
913 * registers spanned by a region
914 *
915 * It is impossible to violate rule (1) without violating (2) or (3), so we
916 * do not attempt to validate it.
917 */
918 if (devinfo->gen <= 7 && dst_regs == 2) {
919 for (unsigned i = 0; i < num_sources; i++) {
920 #define DO_SRC(n) \
921 if (src ## n ## _regs <= 1) \
922 continue; \
923 \
924 for (unsigned i = 0; i < exec_size; i++) { \
925 if ((dst_access_mask[i] > 0xFFFFFFFF) != \
926 (src ## n ## _access_mask[i] > 0xFFFFFFFF)) { \
927 ERROR("Each destination register must be entirely derived " \
928 "from one source register"); \
929 break; \
930 } \
931 } \
932 \
933 unsigned offset_0 = \
934 brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst); \
935 unsigned offset_1 = offset_0; \
936 \
937 for (unsigned i = 0; i < exec_size; i++) { \
938 if (src ## n ## _access_mask[i] > 0xFFFFFFFF) { \
939 offset_1 = __builtin_ctzll(src ## n ## _access_mask[i]) - 32; \
940 break; \
941 } \
942 } \
943 \
944 ERROR_IF(offset_0 != offset_1, \
945 "The offset from the two source registers " \
946 "must be the same")
947
948 if (i == 0) {
949 DO_SRC(0);
950 } else if (i == 1) {
951 DO_SRC(1);
952 }
953 #undef DO_SRC
954 }
955 }
956
957 /* The IVB and HSW PRMs say:
958 *
959 * When destination spans two registers, the source MUST span two
960 * registers. The exception to the above rule:
961 * 1. When source is scalar, the source registers are not
962 * incremented.
963 * 2. When source is packed integer Word and destination is packed
964 * integer DWord, the source register is not incremented by the
965 * source sub register is incremented.
966 *
967 * The SNB PRM does not contain this rule, but the internal documentation
968 * indicates that it applies to SNB as well. We assume that the rule applies
969 * to Gen <= 5 although their PRMs do not state it.
970 *
971 * While the documentation explicitly says in exception (2) that the
972 * destination must be an integer DWord, the hardware allows at least a
973 * float destination type as well. We emit such instructions from
974 *
975 * fs_visitor::emit_interpolation_setup_gen6
976 * fs_visitor::emit_fragcoord_interpolation
977 *
978 * and have for years with no ill effects.
979 *
980 * Additionally the simulator source code indicates that the real condition
981 * is that the size of the destination type is 4 bytes.
982 */
983 if (devinfo->gen <= 7 && dst_regs == 2) {
984 bool dst_is_packed_dword =
985 is_packed(exec_size * stride, exec_size, stride) &&
986 brw_element_size(devinfo, inst, dst) == 4;
987
988 for (unsigned i = 0; i < num_sources; i++) {
989 #define DO_SRC(n) \
990 unsigned vstride, width, hstride; \
991 vstride = brw_inst_src ## n ## _vstride(devinfo, inst) ? \
992 (1 << (brw_inst_src ## n ## _vstride(devinfo, inst) - 1)) : 0; \
993 width = 1 << brw_inst_src ## n ## _width(devinfo, inst); \
994 hstride = brw_inst_src ## n ## _hstride(devinfo, inst) ? \
995 (1 << (brw_inst_src ## n ## _hstride(devinfo, inst) - 1)) : 0; \
996 bool src ## n ## _is_packed_word = \
997 is_packed(vstride, width, hstride) && \
998 (brw_inst_src ## n ## _reg_type(devinfo, inst) == BRW_HW_REG_TYPE_W || \
999 brw_inst_src ## n ## _reg_type(devinfo, inst) == BRW_HW_REG_TYPE_UW); \
1000 \
1001 ERROR_IF(src ## n ## _regs == 1 && \
1002 !src ## n ## _has_scalar_region(devinfo, inst) && \
1003 !(dst_is_packed_dword && src ## n ## _is_packed_word), \
1004 "When the destination spans two registers, the source must " \
1005 "span two registers\n" ERROR_INDENT "(exceptions for scalar " \
1006 "source and packed-word to packed-dword expansion)")
1007
1008 if (i == 0) {
1009 DO_SRC(0);
1010 } else if (i == 1) {
1011 DO_SRC(1);
1012 }
1013 #undef DO_SRC
1014 }
1015 }
1016
1017 return error_msg;
1018 }
1019
1020 bool
1021 brw_validate_instructions(const struct brw_codegen *p, int start_offset,
1022 struct annotation_info *annotation)
1023 {
1024 const struct gen_device_info *devinfo = p->devinfo;
1025 const void *store = p->store;
1026 bool valid = true;
1027
1028 for (int src_offset = start_offset; src_offset < p->next_insn_offset;
1029 src_offset += sizeof(brw_inst)) {
1030 struct string error_msg = { .str = NULL, .len = 0 };
1031 const brw_inst *inst = store + src_offset;
1032
1033 if (is_unsupported_inst(devinfo, inst)) {
1034 ERROR("Instruction not supported on this Gen");
1035 } else {
1036 CHECK(sources_not_null);
1037 CHECK(send_restrictions);
1038 CHECK(general_restrictions_based_on_operand_types);
1039 CHECK(general_restrictions_on_region_parameters);
1040 CHECK(region_alignment_rules);
1041 }
1042
1043 if (error_msg.str && annotation) {
1044 annotation_insert_error(annotation, src_offset, error_msg.str);
1045 }
1046 valid = valid && error_msg.len == 0;
1047 free(error_msg.str);
1048 }
1049
1050 return valid;
1051 }