intel/fs,vec4: Stuff the constant data from NIR in the end of the program
[mesa.git] / src / intel / compiler / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_fs_live_variables.h"
35 #include "brw_nir.h"
36 #include "brw_vec4_gs_visitor.h"
37 #include "brw_cfg.h"
38 #include "brw_dead_control_flow.h"
39 #include "dev/gen_debug.h"
40 #include "compiler/glsl_types.h"
41 #include "compiler/nir/nir_builder.h"
42 #include "program/prog_parameter.h"
43 #include "util/u_math.h"
44
45 using namespace brw;
46
47 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
48 const fs_inst *inst);
49
50 void
51 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
52 const fs_reg *src, unsigned sources)
53 {
54 memset((void*)this, 0, sizeof(*this));
55
56 this->src = new fs_reg[MAX2(sources, 3)];
57 for (unsigned i = 0; i < sources; i++)
58 this->src[i] = src[i];
59
60 this->opcode = opcode;
61 this->dst = dst;
62 this->sources = sources;
63 this->exec_size = exec_size;
64 this->base_mrf = -1;
65
66 assert(dst.file != IMM && dst.file != UNIFORM);
67
68 assert(this->exec_size != 0);
69
70 this->conditional_mod = BRW_CONDITIONAL_NONE;
71
72 /* This will be the case for almost all instructions. */
73 switch (dst.file) {
74 case VGRF:
75 case ARF:
76 case FIXED_GRF:
77 case MRF:
78 case ATTR:
79 this->size_written = dst.component_size(exec_size);
80 break;
81 case BAD_FILE:
82 this->size_written = 0;
83 break;
84 case IMM:
85 case UNIFORM:
86 unreachable("Invalid destination register file");
87 }
88
89 this->writes_accumulator = false;
90 }
91
92 fs_inst::fs_inst()
93 {
94 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
95 }
96
97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
98 {
99 init(opcode, exec_size, reg_undef, NULL, 0);
100 }
101
102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
103 {
104 init(opcode, exec_size, dst, NULL, 0);
105 }
106
107 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
108 const fs_reg &src0)
109 {
110 const fs_reg src[1] = { src0 };
111 init(opcode, exec_size, dst, src, 1);
112 }
113
114 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
115 const fs_reg &src0, const fs_reg &src1)
116 {
117 const fs_reg src[2] = { src0, src1 };
118 init(opcode, exec_size, dst, src, 2);
119 }
120
121 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
122 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
123 {
124 const fs_reg src[3] = { src0, src1, src2 };
125 init(opcode, exec_size, dst, src, 3);
126 }
127
128 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
129 const fs_reg src[], unsigned sources)
130 {
131 init(opcode, exec_width, dst, src, sources);
132 }
133
134 fs_inst::fs_inst(const fs_inst &that)
135 {
136 memcpy((void*)this, &that, sizeof(that));
137
138 this->src = new fs_reg[MAX2(that.sources, 3)];
139
140 for (unsigned i = 0; i < that.sources; i++)
141 this->src[i] = that.src[i];
142 }
143
144 fs_inst::~fs_inst()
145 {
146 delete[] this->src;
147 }
148
149 void
150 fs_inst::resize_sources(uint8_t num_sources)
151 {
152 if (this->sources != num_sources) {
153 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
154
155 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
156 src[i] = this->src[i];
157
158 delete[] this->src;
159 this->src = src;
160 this->sources = num_sources;
161 }
162 }
163
164 void
165 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
166 const fs_reg &dst,
167 const fs_reg &surf_index,
168 const fs_reg &varying_offset,
169 uint32_t const_offset)
170 {
171 /* We have our constant surface use a pitch of 4 bytes, so our index can
172 * be any component of a vector, and then we load 4 contiguous
173 * components starting from that.
174 *
175 * We break down the const_offset to a portion added to the variable offset
176 * and a portion done using fs_reg::offset, which means that if you have
177 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
178 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
179 * later notice that those loads are all the same and eliminate the
180 * redundant ones.
181 */
182 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
183 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
184
185 /* The pull load message will load a vec4 (16 bytes). If we are loading
186 * a double this means we are only loading 2 elements worth of data.
187 * We also want to use a 32-bit data type for the dst of the load operation
188 * so other parts of the driver don't get confused about the size of the
189 * result.
190 */
191 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
192 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
193 vec4_result, surf_index, vec4_offset);
194 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
195
196 shuffle_from_32bit_read(bld, dst, vec4_result,
197 (const_offset & 0xf) / type_sz(dst.type), 1);
198 }
199
200 /**
201 * A helper for MOV generation for fixing up broken hardware SEND dependency
202 * handling.
203 */
204 void
205 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
206 {
207 /* The caller always wants uncompressed to emit the minimal extra
208 * dependencies, and to avoid having to deal with aligning its regs to 2.
209 */
210 const fs_builder ubld = bld.annotate("send dependency resolve")
211 .quarter(0);
212
213 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
214 }
215
216 bool
217 fs_inst::is_send_from_grf() const
218 {
219 switch (opcode) {
220 case SHADER_OPCODE_SEND:
221 case SHADER_OPCODE_SHADER_TIME_ADD:
222 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
223 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
224 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
225 case SHADER_OPCODE_URB_WRITE_SIMD8:
226 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
227 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
228 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
229 case SHADER_OPCODE_URB_READ_SIMD8:
230 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
231 case SHADER_OPCODE_INTERLOCK:
232 case SHADER_OPCODE_MEMORY_FENCE:
233 case SHADER_OPCODE_BARRIER:
234 return true;
235 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
236 return src[1].file == VGRF;
237 case FS_OPCODE_FB_WRITE:
238 case FS_OPCODE_FB_READ:
239 return src[0].file == VGRF;
240 default:
241 if (is_tex())
242 return src[0].file == VGRF;
243
244 return false;
245 }
246 }
247
248 bool
249 fs_inst::is_control_source(unsigned arg) const
250 {
251 switch (opcode) {
252 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
253 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
254 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
255 return arg == 0;
256
257 case SHADER_OPCODE_BROADCAST:
258 case SHADER_OPCODE_SHUFFLE:
259 case SHADER_OPCODE_QUAD_SWIZZLE:
260 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
261 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
262 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
263 case SHADER_OPCODE_GET_BUFFER_SIZE:
264 return arg == 1;
265
266 case SHADER_OPCODE_MOV_INDIRECT:
267 case SHADER_OPCODE_CLUSTER_BROADCAST:
268 case SHADER_OPCODE_TEX:
269 case FS_OPCODE_TXB:
270 case SHADER_OPCODE_TXD:
271 case SHADER_OPCODE_TXF:
272 case SHADER_OPCODE_TXF_LZ:
273 case SHADER_OPCODE_TXF_CMS:
274 case SHADER_OPCODE_TXF_CMS_W:
275 case SHADER_OPCODE_TXF_UMS:
276 case SHADER_OPCODE_TXF_MCS:
277 case SHADER_OPCODE_TXL:
278 case SHADER_OPCODE_TXL_LZ:
279 case SHADER_OPCODE_TXS:
280 case SHADER_OPCODE_LOD:
281 case SHADER_OPCODE_TG4:
282 case SHADER_OPCODE_TG4_OFFSET:
283 case SHADER_OPCODE_SAMPLEINFO:
284 return arg == 1 || arg == 2;
285
286 case SHADER_OPCODE_SEND:
287 return arg == 0 || arg == 1;
288
289 default:
290 return false;
291 }
292 }
293
294 bool
295 fs_inst::is_payload(unsigned arg) const
296 {
297 switch (opcode) {
298 case FS_OPCODE_FB_WRITE:
299 case FS_OPCODE_FB_READ:
300 case SHADER_OPCODE_URB_WRITE_SIMD8:
301 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
302 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
303 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
304 case SHADER_OPCODE_URB_READ_SIMD8:
305 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
306 case VEC4_OPCODE_UNTYPED_ATOMIC:
307 case VEC4_OPCODE_UNTYPED_SURFACE_READ:
308 case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
309 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
310 case SHADER_OPCODE_SHADER_TIME_ADD:
311 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
312 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
313 case SHADER_OPCODE_INTERLOCK:
314 case SHADER_OPCODE_MEMORY_FENCE:
315 case SHADER_OPCODE_BARRIER:
316 return arg == 0;
317
318 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
319 return arg == 1;
320
321 case SHADER_OPCODE_SEND:
322 return arg == 2 || arg == 3;
323
324 default:
325 if (is_tex())
326 return arg == 0;
327 else
328 return false;
329 }
330 }
331
332 /**
333 * Returns true if this instruction's sources and destinations cannot
334 * safely be the same register.
335 *
336 * In most cases, a register can be written over safely by the same
337 * instruction that is its last use. For a single instruction, the
338 * sources are dereferenced before writing of the destination starts
339 * (naturally).
340 *
341 * However, there are a few cases where this can be problematic:
342 *
343 * - Virtual opcodes that translate to multiple instructions in the
344 * code generator: if src == dst and one instruction writes the
345 * destination before a later instruction reads the source, then
346 * src will have been clobbered.
347 *
348 * - SIMD16 compressed instructions with certain regioning (see below).
349 *
350 * The register allocator uses this information to set up conflicts between
351 * GRF sources and the destination.
352 */
353 bool
354 fs_inst::has_source_and_destination_hazard() const
355 {
356 switch (opcode) {
357 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
358 /* Multiple partial writes to the destination */
359 return true;
360 case SHADER_OPCODE_SHUFFLE:
361 /* This instruction returns an arbitrary channel from the source and
362 * gets split into smaller instructions in the generator. It's possible
363 * that one of the instructions will read from a channel corresponding
364 * to an earlier instruction.
365 */
366 case SHADER_OPCODE_SEL_EXEC:
367 /* This is implemented as
368 *
369 * mov(16) g4<1>D 0D { align1 WE_all 1H };
370 * mov(16) g4<1>D g5<8,8,1>D { align1 1H }
371 *
372 * Because the source is only read in the second instruction, the first
373 * may stomp all over it.
374 */
375 return true;
376 case SHADER_OPCODE_QUAD_SWIZZLE:
377 switch (src[1].ud) {
378 case BRW_SWIZZLE_XXXX:
379 case BRW_SWIZZLE_YYYY:
380 case BRW_SWIZZLE_ZZZZ:
381 case BRW_SWIZZLE_WWWW:
382 case BRW_SWIZZLE_XXZZ:
383 case BRW_SWIZZLE_YYWW:
384 case BRW_SWIZZLE_XYXY:
385 case BRW_SWIZZLE_ZWZW:
386 /* These can be implemented as a single Align1 region on all
387 * platforms, so there's never a hazard between source and
388 * destination. C.f. fs_generator::generate_quad_swizzle().
389 */
390 return false;
391 default:
392 return !is_uniform(src[0]);
393 }
394 default:
395 /* The SIMD16 compressed instruction
396 *
397 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
398 *
399 * is actually decoded in hardware as:
400 *
401 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
402 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
403 *
404 * Which is safe. However, if we have uniform accesses
405 * happening, we get into trouble:
406 *
407 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
408 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
409 *
410 * Now our destination for the first instruction overwrote the
411 * second instruction's src0, and we get garbage for those 8
412 * pixels. There's a similar issue for the pre-gen6
413 * pixel_x/pixel_y, which are registers of 16-bit values and thus
414 * would get stomped by the first decode as well.
415 */
416 if (exec_size == 16) {
417 for (int i = 0; i < sources; i++) {
418 if (src[i].file == VGRF && (src[i].stride == 0 ||
419 src[i].type == BRW_REGISTER_TYPE_UW ||
420 src[i].type == BRW_REGISTER_TYPE_W ||
421 src[i].type == BRW_REGISTER_TYPE_UB ||
422 src[i].type == BRW_REGISTER_TYPE_B)) {
423 return true;
424 }
425 }
426 }
427 return false;
428 }
429 }
430
431 bool
432 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo) const
433 {
434 if (devinfo->gen == 6 && is_math())
435 return false;
436
437 if (is_send_from_grf())
438 return false;
439
440 /* From GEN:BUG:1604601757:
441 *
442 * "When multiplying a DW and any lower precision integer, source modifier
443 * is not supported."
444 */
445 if (devinfo->gen >= 12 && (opcode == BRW_OPCODE_MUL ||
446 opcode == BRW_OPCODE_MAD)) {
447 const brw_reg_type exec_type = get_exec_type(this);
448 const unsigned min_type_sz = opcode == BRW_OPCODE_MAD ?
449 MIN2(type_sz(src[1].type), type_sz(src[2].type)) :
450 MIN2(type_sz(src[0].type), type_sz(src[1].type));
451
452 if (brw_reg_type_is_integer(exec_type) &&
453 type_sz(exec_type) >= 4 &&
454 type_sz(exec_type) != min_type_sz)
455 return false;
456 }
457
458 if (!backend_instruction::can_do_source_mods())
459 return false;
460
461 return true;
462 }
463
464 bool
465 fs_inst::can_do_cmod()
466 {
467 if (!backend_instruction::can_do_cmod())
468 return false;
469
470 /* The accumulator result appears to get used for the conditional modifier
471 * generation. When negating a UD value, there is a 33rd bit generated for
472 * the sign in the accumulator value, so now you can't check, for example,
473 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
474 */
475 for (unsigned i = 0; i < sources; i++) {
476 if (type_is_unsigned_int(src[i].type) && src[i].negate)
477 return false;
478 }
479
480 return true;
481 }
482
483 bool
484 fs_inst::can_change_types() const
485 {
486 return dst.type == src[0].type &&
487 !src[0].abs && !src[0].negate && !saturate &&
488 (opcode == BRW_OPCODE_MOV ||
489 (opcode == BRW_OPCODE_SEL &&
490 dst.type == src[1].type &&
491 predicate != BRW_PREDICATE_NONE &&
492 !src[1].abs && !src[1].negate));
493 }
494
495 void
496 fs_reg::init()
497 {
498 memset((void*)this, 0, sizeof(*this));
499 type = BRW_REGISTER_TYPE_UD;
500 stride = 1;
501 }
502
503 /** Generic unset register constructor. */
504 fs_reg::fs_reg()
505 {
506 init();
507 this->file = BAD_FILE;
508 }
509
510 fs_reg::fs_reg(struct ::brw_reg reg) :
511 backend_reg(reg)
512 {
513 this->offset = 0;
514 this->stride = 1;
515 if (this->file == IMM &&
516 (this->type != BRW_REGISTER_TYPE_V &&
517 this->type != BRW_REGISTER_TYPE_UV &&
518 this->type != BRW_REGISTER_TYPE_VF)) {
519 this->stride = 0;
520 }
521 }
522
523 bool
524 fs_reg::equals(const fs_reg &r) const
525 {
526 return (this->backend_reg::equals(r) &&
527 stride == r.stride);
528 }
529
530 bool
531 fs_reg::negative_equals(const fs_reg &r) const
532 {
533 return (this->backend_reg::negative_equals(r) &&
534 stride == r.stride);
535 }
536
537 bool
538 fs_reg::is_contiguous() const
539 {
540 switch (file) {
541 case ARF:
542 case FIXED_GRF:
543 return hstride == BRW_HORIZONTAL_STRIDE_1 &&
544 vstride == width + hstride;
545 case MRF:
546 case VGRF:
547 case ATTR:
548 return stride == 1;
549 case UNIFORM:
550 case IMM:
551 case BAD_FILE:
552 return true;
553 }
554
555 unreachable("Invalid register file");
556 }
557
558 unsigned
559 fs_reg::component_size(unsigned width) const
560 {
561 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
562 hstride == 0 ? 0 :
563 1 << (hstride - 1));
564 return MAX2(width * stride, 1) * type_sz(type);
565 }
566
567 /**
568 * Create a MOV to read the timestamp register.
569 */
570 fs_reg
571 fs_visitor::get_timestamp(const fs_builder &bld)
572 {
573 assert(devinfo->gen >= 7);
574
575 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
576 BRW_ARF_TIMESTAMP,
577 0),
578 BRW_REGISTER_TYPE_UD));
579
580 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
581
582 /* We want to read the 3 fields we care about even if it's not enabled in
583 * the dispatch.
584 */
585 bld.group(4, 0).exec_all().MOV(dst, ts);
586
587 return dst;
588 }
589
590 void
591 fs_visitor::emit_shader_time_begin()
592 {
593 /* We want only the low 32 bits of the timestamp. Since it's running
594 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
595 * which is plenty of time for our purposes. It is identical across the
596 * EUs, but since it's tracking GPU core speed it will increment at a
597 * varying rate as render P-states change.
598 */
599 shader_start_time = component(
600 get_timestamp(bld.annotate("shader time start")), 0);
601 }
602
603 void
604 fs_visitor::emit_shader_time_end()
605 {
606 /* Insert our code just before the final SEND with EOT. */
607 exec_node *end = this->instructions.get_tail();
608 assert(end && ((fs_inst *) end)->eot);
609 const fs_builder ibld = bld.annotate("shader time end")
610 .exec_all().at(NULL, end);
611 const fs_reg timestamp = get_timestamp(ibld);
612
613 /* We only use the low 32 bits of the timestamp - see
614 * emit_shader_time_begin()).
615 *
616 * We could also check if render P-states have changed (or anything
617 * else that might disrupt timing) by setting smear to 2 and checking if
618 * that field is != 0.
619 */
620 const fs_reg shader_end_time = component(timestamp, 0);
621
622 /* Check that there weren't any timestamp reset events (assuming these
623 * were the only two timestamp reads that happened).
624 */
625 const fs_reg reset = component(timestamp, 2);
626 set_condmod(BRW_CONDITIONAL_Z,
627 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
628 ibld.IF(BRW_PREDICATE_NORMAL);
629
630 fs_reg start = shader_start_time;
631 start.negate = true;
632 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
633 BRW_REGISTER_TYPE_UD),
634 0);
635 const fs_builder cbld = ibld.group(1, 0);
636 cbld.group(1, 0).ADD(diff, start, shader_end_time);
637
638 /* If there were no instructions between the two timestamp gets, the diff
639 * is 2 cycles. Remove that overhead, so I can forget about that when
640 * trying to determine the time taken for single instructions.
641 */
642 cbld.ADD(diff, diff, brw_imm_ud(-2u));
643 SHADER_TIME_ADD(cbld, 0, diff);
644 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
645 ibld.emit(BRW_OPCODE_ELSE);
646 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
647 ibld.emit(BRW_OPCODE_ENDIF);
648 }
649
650 void
651 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
652 int shader_time_subindex,
653 fs_reg value)
654 {
655 int index = shader_time_index * 3 + shader_time_subindex;
656 struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
657
658 fs_reg payload;
659 if (dispatch_width == 8)
660 payload = vgrf(glsl_type::uvec2_type);
661 else
662 payload = vgrf(glsl_type::uint_type);
663
664 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
665 }
666
667 void
668 fs_visitor::vfail(const char *format, va_list va)
669 {
670 char *msg;
671
672 if (failed)
673 return;
674
675 failed = true;
676
677 msg = ralloc_vasprintf(mem_ctx, format, va);
678 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
679
680 this->fail_msg = msg;
681
682 if (debug_enabled) {
683 fprintf(stderr, "%s", msg);
684 }
685 }
686
687 void
688 fs_visitor::fail(const char *format, ...)
689 {
690 va_list va;
691
692 va_start(va, format);
693 vfail(format, va);
694 va_end(va);
695 }
696
697 /**
698 * Mark this program as impossible to compile with dispatch width greater
699 * than n.
700 *
701 * During the SIMD8 compile (which happens first), we can detect and flag
702 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
703 * SIMD16+ compile altogether.
704 *
705 * During a compile of dispatch width greater than n (if one happens anyway),
706 * this just calls fail().
707 */
708 void
709 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
710 {
711 if (dispatch_width > n) {
712 fail("%s", msg);
713 } else {
714 max_dispatch_width = n;
715 compiler->shader_perf_log(log_data,
716 "Shader dispatch width limited to SIMD%d: %s",
717 n, msg);
718 }
719 }
720
721 /**
722 * Returns true if the instruction has a flag that means it won't
723 * update an entire destination register.
724 *
725 * For example, dead code elimination and live variable analysis want to know
726 * when a write to a variable screens off any preceding values that were in
727 * it.
728 */
729 bool
730 fs_inst::is_partial_write() const
731 {
732 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
733 (this->exec_size * type_sz(this->dst.type)) < 32 ||
734 !this->dst.is_contiguous() ||
735 this->dst.offset % REG_SIZE != 0);
736 }
737
738 unsigned
739 fs_inst::components_read(unsigned i) const
740 {
741 /* Return zero if the source is not present. */
742 if (src[i].file == BAD_FILE)
743 return 0;
744
745 switch (opcode) {
746 case FS_OPCODE_LINTERP:
747 if (i == 0)
748 return 2;
749 else
750 return 1;
751
752 case FS_OPCODE_PIXEL_X:
753 case FS_OPCODE_PIXEL_Y:
754 assert(i == 0);
755 return 2;
756
757 case FS_OPCODE_FB_WRITE_LOGICAL:
758 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
759 /* First/second FB write color. */
760 if (i < 2)
761 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
762 else
763 return 1;
764
765 case SHADER_OPCODE_TEX_LOGICAL:
766 case SHADER_OPCODE_TXD_LOGICAL:
767 case SHADER_OPCODE_TXF_LOGICAL:
768 case SHADER_OPCODE_TXL_LOGICAL:
769 case SHADER_OPCODE_TXS_LOGICAL:
770 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
771 case FS_OPCODE_TXB_LOGICAL:
772 case SHADER_OPCODE_TXF_CMS_LOGICAL:
773 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
774 case SHADER_OPCODE_TXF_UMS_LOGICAL:
775 case SHADER_OPCODE_TXF_MCS_LOGICAL:
776 case SHADER_OPCODE_LOD_LOGICAL:
777 case SHADER_OPCODE_TG4_LOGICAL:
778 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
779 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
780 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
781 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
782 /* Texture coordinates. */
783 if (i == TEX_LOGICAL_SRC_COORDINATE)
784 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
785 /* Texture derivatives. */
786 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
787 opcode == SHADER_OPCODE_TXD_LOGICAL)
788 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
789 /* Texture offset. */
790 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
791 return 2;
792 /* MCS */
793 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
794 return 2;
795 else
796 return 1;
797
798 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
799 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
800 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM);
801 /* Surface coordinates. */
802 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
803 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
804 /* Surface operation source (ignored for reads). */
805 else if (i == SURFACE_LOGICAL_SRC_DATA)
806 return 0;
807 else
808 return 1;
809
810 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
811 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
812 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
813 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
814 /* Surface coordinates. */
815 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
816 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
817 /* Surface operation source. */
818 else if (i == SURFACE_LOGICAL_SRC_DATA)
819 return src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
820 else
821 return 1;
822
823 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
824 assert(src[2].file == IMM);
825 return 1;
826
827 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
828 assert(src[2].file == IMM);
829 return i == 1 ? src[2].ud : 1;
830
831 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
832 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
833 assert(src[2].file == IMM);
834 if (i == 1) {
835 /* Data source */
836 const unsigned op = src[2].ud;
837 switch (op) {
838 case BRW_AOP_INC:
839 case BRW_AOP_DEC:
840 case BRW_AOP_PREDEC:
841 return 0;
842 case BRW_AOP_CMPWR:
843 return 2;
844 default:
845 return 1;
846 }
847 } else {
848 return 1;
849 }
850
851 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
852 assert(src[2].file == IMM);
853 if (i == 1) {
854 /* Data source */
855 const unsigned op = src[2].ud;
856 return op == BRW_AOP_FCMPWR ? 2 : 1;
857 } else {
858 return 1;
859 }
860
861 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
862 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
863 /* Scattered logical opcodes use the following params:
864 * src[0] Surface coordinates
865 * src[1] Surface operation source (ignored for reads)
866 * src[2] Surface
867 * src[3] IMM with always 1 dimension.
868 * src[4] IMM with arg bitsize for scattered read/write 8, 16, 32
869 */
870 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
871 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
872 return i == SURFACE_LOGICAL_SRC_DATA ? 0 : 1;
873
874 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
875 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
876 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
877 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
878 return 1;
879
880 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
881 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
882 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
883 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
884 const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
885 /* Surface coordinates. */
886 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
887 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
888 /* Surface operation source. */
889 else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_CMPWR)
890 return 2;
891 else if (i == SURFACE_LOGICAL_SRC_DATA &&
892 (op == BRW_AOP_INC || op == BRW_AOP_DEC || op == BRW_AOP_PREDEC))
893 return 0;
894 else
895 return 1;
896 }
897 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
898 return (i == 0 ? 2 : 1);
899
900 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL: {
901 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
902 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
903 const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
904 /* Surface coordinates. */
905 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
906 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
907 /* Surface operation source. */
908 else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_FCMPWR)
909 return 2;
910 else
911 return 1;
912 }
913
914 default:
915 return 1;
916 }
917 }
918
919 unsigned
920 fs_inst::size_read(int arg) const
921 {
922 switch (opcode) {
923 case SHADER_OPCODE_SEND:
924 if (arg == 2) {
925 return mlen * REG_SIZE;
926 } else if (arg == 3) {
927 return ex_mlen * REG_SIZE;
928 }
929 break;
930
931 case FS_OPCODE_FB_WRITE:
932 case FS_OPCODE_REP_FB_WRITE:
933 if (arg == 0) {
934 if (base_mrf >= 0)
935 return src[0].file == BAD_FILE ? 0 : 2 * REG_SIZE;
936 else
937 return mlen * REG_SIZE;
938 }
939 break;
940
941 case FS_OPCODE_FB_READ:
942 case SHADER_OPCODE_URB_WRITE_SIMD8:
943 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
944 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
945 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
946 case SHADER_OPCODE_URB_READ_SIMD8:
947 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
948 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
949 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
950 if (arg == 0)
951 return mlen * REG_SIZE;
952 break;
953
954 case FS_OPCODE_SET_SAMPLE_ID:
955 if (arg == 1)
956 return 1;
957 break;
958
959 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
960 /* The payload is actually stored in src1 */
961 if (arg == 1)
962 return mlen * REG_SIZE;
963 break;
964
965 case FS_OPCODE_LINTERP:
966 if (arg == 1)
967 return 16;
968 break;
969
970 case SHADER_OPCODE_LOAD_PAYLOAD:
971 if (arg < this->header_size)
972 return REG_SIZE;
973 break;
974
975 case CS_OPCODE_CS_TERMINATE:
976 case SHADER_OPCODE_BARRIER:
977 return REG_SIZE;
978
979 case SHADER_OPCODE_MOV_INDIRECT:
980 if (arg == 0) {
981 assert(src[2].file == IMM);
982 return src[2].ud;
983 }
984 break;
985
986 default:
987 if (is_tex() && arg == 0 && src[0].file == VGRF)
988 return mlen * REG_SIZE;
989 break;
990 }
991
992 switch (src[arg].file) {
993 case UNIFORM:
994 case IMM:
995 return components_read(arg) * type_sz(src[arg].type);
996 case BAD_FILE:
997 case ARF:
998 case FIXED_GRF:
999 case VGRF:
1000 case ATTR:
1001 return components_read(arg) * src[arg].component_size(exec_size);
1002 case MRF:
1003 unreachable("MRF registers are not allowed as sources");
1004 }
1005 return 0;
1006 }
1007
1008 namespace {
1009 unsigned
1010 predicate_width(brw_predicate predicate)
1011 {
1012 switch (predicate) {
1013 case BRW_PREDICATE_NONE: return 1;
1014 case BRW_PREDICATE_NORMAL: return 1;
1015 case BRW_PREDICATE_ALIGN1_ANY2H: return 2;
1016 case BRW_PREDICATE_ALIGN1_ALL2H: return 2;
1017 case BRW_PREDICATE_ALIGN1_ANY4H: return 4;
1018 case BRW_PREDICATE_ALIGN1_ALL4H: return 4;
1019 case BRW_PREDICATE_ALIGN1_ANY8H: return 8;
1020 case BRW_PREDICATE_ALIGN1_ALL8H: return 8;
1021 case BRW_PREDICATE_ALIGN1_ANY16H: return 16;
1022 case BRW_PREDICATE_ALIGN1_ALL16H: return 16;
1023 case BRW_PREDICATE_ALIGN1_ANY32H: return 32;
1024 case BRW_PREDICATE_ALIGN1_ALL32H: return 32;
1025 default: unreachable("Unsupported predicate");
1026 }
1027 }
1028
1029 /* Return the subset of flag registers that an instruction could
1030 * potentially read or write based on the execution controls and flag
1031 * subregister number of the instruction.
1032 */
1033 unsigned
1034 flag_mask(const fs_inst *inst, unsigned width)
1035 {
1036 assert(util_is_power_of_two_nonzero(width));
1037 const unsigned start = (inst->flag_subreg * 16 + inst->group) &
1038 ~(width - 1);
1039 const unsigned end = start + ALIGN(inst->exec_size, width);
1040 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
1041 }
1042
1043 unsigned
1044 bit_mask(unsigned n)
1045 {
1046 return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
1047 }
1048
1049 unsigned
1050 flag_mask(const fs_reg &r, unsigned sz)
1051 {
1052 if (r.file == ARF) {
1053 const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
1054 const unsigned end = start + sz;
1055 return bit_mask(end) & ~bit_mask(start);
1056 } else {
1057 return 0;
1058 }
1059 }
1060 }
1061
1062 unsigned
1063 fs_inst::flags_read(const gen_device_info *devinfo) const
1064 {
1065 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
1066 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
1067 /* The vertical predication modes combine corresponding bits from
1068 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
1069 */
1070 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
1071 return flag_mask(this, 1) << shift | flag_mask(this, 1);
1072 } else if (predicate) {
1073 return flag_mask(this, predicate_width(predicate));
1074 } else {
1075 unsigned mask = 0;
1076 for (int i = 0; i < sources; i++) {
1077 mask |= flag_mask(src[i], size_read(i));
1078 }
1079 return mask;
1080 }
1081 }
1082
1083 unsigned
1084 fs_inst::flags_written() const
1085 {
1086 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
1087 opcode != BRW_OPCODE_CSEL &&
1088 opcode != BRW_OPCODE_IF &&
1089 opcode != BRW_OPCODE_WHILE)) ||
1090 opcode == FS_OPCODE_FB_WRITE) {
1091 return flag_mask(this, 1);
1092 } else if (opcode == SHADER_OPCODE_FIND_LIVE_CHANNEL ||
1093 opcode == FS_OPCODE_LOAD_LIVE_CHANNELS) {
1094 return flag_mask(this, 32);
1095 } else {
1096 return flag_mask(dst, size_written);
1097 }
1098 }
1099
1100 /**
1101 * Returns how many MRFs an FS opcode will write over.
1102 *
1103 * Note that this is not the 0 or 1 implied writes in an actual gen
1104 * instruction -- the FS opcodes often generate MOVs in addition.
1105 */
1106 unsigned
1107 fs_inst::implied_mrf_writes() const
1108 {
1109 if (mlen == 0)
1110 return 0;
1111
1112 if (base_mrf == -1)
1113 return 0;
1114
1115 switch (opcode) {
1116 case SHADER_OPCODE_RCP:
1117 case SHADER_OPCODE_RSQ:
1118 case SHADER_OPCODE_SQRT:
1119 case SHADER_OPCODE_EXP2:
1120 case SHADER_OPCODE_LOG2:
1121 case SHADER_OPCODE_SIN:
1122 case SHADER_OPCODE_COS:
1123 return 1 * exec_size / 8;
1124 case SHADER_OPCODE_POW:
1125 case SHADER_OPCODE_INT_QUOTIENT:
1126 case SHADER_OPCODE_INT_REMAINDER:
1127 return 2 * exec_size / 8;
1128 case SHADER_OPCODE_TEX:
1129 case FS_OPCODE_TXB:
1130 case SHADER_OPCODE_TXD:
1131 case SHADER_OPCODE_TXF:
1132 case SHADER_OPCODE_TXF_CMS:
1133 case SHADER_OPCODE_TXF_MCS:
1134 case SHADER_OPCODE_TG4:
1135 case SHADER_OPCODE_TG4_OFFSET:
1136 case SHADER_OPCODE_TXL:
1137 case SHADER_OPCODE_TXS:
1138 case SHADER_OPCODE_LOD:
1139 case SHADER_OPCODE_SAMPLEINFO:
1140 return 1;
1141 case FS_OPCODE_FB_WRITE:
1142 case FS_OPCODE_REP_FB_WRITE:
1143 return src[0].file == BAD_FILE ? 0 : 2;
1144 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
1145 case SHADER_OPCODE_GEN4_SCRATCH_READ:
1146 return 1;
1147 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
1148 return mlen;
1149 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
1150 return mlen;
1151 default:
1152 unreachable("not reached");
1153 }
1154 }
1155
1156 fs_reg
1157 fs_visitor::vgrf(const glsl_type *const type)
1158 {
1159 int reg_width = dispatch_width / 8;
1160 return fs_reg(VGRF,
1161 alloc.allocate(glsl_count_dword_slots(type, false) * reg_width),
1162 brw_type_for_base_type(type));
1163 }
1164
1165 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1166 {
1167 init();
1168 this->file = file;
1169 this->nr = nr;
1170 this->type = BRW_REGISTER_TYPE_F;
1171 this->stride = (file == UNIFORM ? 0 : 1);
1172 }
1173
1174 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1175 {
1176 init();
1177 this->file = file;
1178 this->nr = nr;
1179 this->type = type;
1180 this->stride = (file == UNIFORM ? 0 : 1);
1181 }
1182
1183 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1184 * This brings in those uniform definitions
1185 */
1186 void
1187 fs_visitor::import_uniforms(fs_visitor *v)
1188 {
1189 this->push_constant_loc = v->push_constant_loc;
1190 this->pull_constant_loc = v->pull_constant_loc;
1191 this->uniforms = v->uniforms;
1192 this->subgroup_id = v->subgroup_id;
1193 for (unsigned i = 0; i < ARRAY_SIZE(this->group_size); i++)
1194 this->group_size[i] = v->group_size[i];
1195 }
1196
1197 void
1198 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1199 {
1200 assert(stage == MESA_SHADER_FRAGMENT);
1201
1202 /* gl_FragCoord.x */
1203 bld.MOV(wpos, this->pixel_x);
1204 wpos = offset(wpos, bld, 1);
1205
1206 /* gl_FragCoord.y */
1207 bld.MOV(wpos, this->pixel_y);
1208 wpos = offset(wpos, bld, 1);
1209
1210 /* gl_FragCoord.z */
1211 if (devinfo->gen >= 6) {
1212 bld.MOV(wpos, fetch_payload_reg(bld, payload.source_depth_reg));
1213 } else {
1214 bld.emit(FS_OPCODE_LINTERP, wpos,
1215 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1216 component(interp_reg(VARYING_SLOT_POS, 2), 0));
1217 }
1218 wpos = offset(wpos, bld, 1);
1219
1220 /* gl_FragCoord.w: Already set up in emit_interpolation */
1221 bld.MOV(wpos, this->wpos_w);
1222 }
1223
1224 enum brw_barycentric_mode
1225 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1226 {
1227 /* Barycentric modes don't make sense for flat inputs. */
1228 assert(mode != INTERP_MODE_FLAT);
1229
1230 unsigned bary;
1231 switch (op) {
1232 case nir_intrinsic_load_barycentric_pixel:
1233 case nir_intrinsic_load_barycentric_at_offset:
1234 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1235 break;
1236 case nir_intrinsic_load_barycentric_centroid:
1237 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1238 break;
1239 case nir_intrinsic_load_barycentric_sample:
1240 case nir_intrinsic_load_barycentric_at_sample:
1241 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1242 break;
1243 default:
1244 unreachable("invalid intrinsic");
1245 }
1246
1247 if (mode == INTERP_MODE_NOPERSPECTIVE)
1248 bary += 3;
1249
1250 return (enum brw_barycentric_mode) bary;
1251 }
1252
1253 /**
1254 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1255 */
1256 static enum brw_barycentric_mode
1257 centroid_to_pixel(enum brw_barycentric_mode bary)
1258 {
1259 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1260 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1261 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1262 }
1263
1264 fs_reg *
1265 fs_visitor::emit_frontfacing_interpolation()
1266 {
1267 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1268
1269 if (devinfo->gen >= 12) {
1270 fs_reg g1 = fs_reg(retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_W));
1271
1272 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_W);
1273 bld.ASR(tmp, g1, brw_imm_d(15));
1274 bld.NOT(*reg, tmp);
1275 } else if (devinfo->gen >= 6) {
1276 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1277 * a boolean result from this (~0/true or 0/false).
1278 *
1279 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1280 * this task in only one instruction:
1281 * - a negation source modifier will flip the bit; and
1282 * - a W -> D type conversion will sign extend the bit into the high
1283 * word of the destination.
1284 *
1285 * An ASR 15 fills the low word of the destination.
1286 */
1287 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1288 g0.negate = true;
1289
1290 bld.ASR(*reg, g0, brw_imm_d(15));
1291 } else {
1292 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1293 * a boolean result from this (1/true or 0/false).
1294 *
1295 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1296 * the negation source modifier to flip it. Unfortunately the SHR
1297 * instruction only operates on UD (or D with an abs source modifier)
1298 * sources without negation.
1299 *
1300 * Instead, use ASR (which will give ~0/true or 0/false).
1301 */
1302 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1303 g1_6.negate = true;
1304
1305 bld.ASR(*reg, g1_6, brw_imm_d(31));
1306 }
1307
1308 return reg;
1309 }
1310
1311 void
1312 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1313 {
1314 assert(stage == MESA_SHADER_FRAGMENT);
1315 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1316 assert(dst.type == BRW_REGISTER_TYPE_F);
1317
1318 if (wm_prog_data->persample_dispatch) {
1319 /* Convert int_sample_pos to floating point */
1320 bld.MOV(dst, int_sample_pos);
1321 /* Scale to the range [0, 1] */
1322 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1323 }
1324 else {
1325 /* From ARB_sample_shading specification:
1326 * "When rendering to a non-multisample buffer, or if multisample
1327 * rasterization is disabled, gl_SamplePosition will always be
1328 * (0.5, 0.5).
1329 */
1330 bld.MOV(dst, brw_imm_f(0.5f));
1331 }
1332 }
1333
1334 fs_reg *
1335 fs_visitor::emit_samplepos_setup()
1336 {
1337 assert(devinfo->gen >= 6);
1338
1339 const fs_builder abld = bld.annotate("compute sample position");
1340 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1341 fs_reg pos = *reg;
1342 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1343 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1344
1345 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1346 * mode will be enabled.
1347 *
1348 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1349 * R31.1:0 Position Offset X/Y for Slot[3:0]
1350 * R31.3:2 Position Offset X/Y for Slot[7:4]
1351 * .....
1352 *
1353 * The X, Y sample positions come in as bytes in thread payload. So, read
1354 * the positions using vstride=16, width=8, hstride=2.
1355 */
1356 const fs_reg sample_pos_reg =
1357 fetch_payload_reg(abld, payload.sample_pos_reg, BRW_REGISTER_TYPE_W);
1358
1359 /* Compute gl_SamplePosition.x */
1360 abld.MOV(int_sample_x, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, 0));
1361 compute_sample_position(offset(pos, abld, 0), int_sample_x);
1362
1363 /* Compute gl_SamplePosition.y */
1364 abld.MOV(int_sample_y, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, 1));
1365 compute_sample_position(offset(pos, abld, 1), int_sample_y);
1366 return reg;
1367 }
1368
1369 fs_reg *
1370 fs_visitor::emit_sampleid_setup()
1371 {
1372 assert(stage == MESA_SHADER_FRAGMENT);
1373 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1374 assert(devinfo->gen >= 6);
1375
1376 const fs_builder abld = bld.annotate("compute sample id");
1377 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uint_type));
1378
1379 if (!key->multisample_fbo) {
1380 /* As per GL_ARB_sample_shading specification:
1381 * "When rendering to a non-multisample buffer, or if multisample
1382 * rasterization is disabled, gl_SampleID will always be zero."
1383 */
1384 abld.MOV(*reg, brw_imm_d(0));
1385 } else if (devinfo->gen >= 8) {
1386 /* Sample ID comes in as 4-bit numbers in g1.0:
1387 *
1388 * 15:12 Slot 3 SampleID (only used in SIMD16)
1389 * 11:8 Slot 2 SampleID (only used in SIMD16)
1390 * 7:4 Slot 1 SampleID
1391 * 3:0 Slot 0 SampleID
1392 *
1393 * Each slot corresponds to four channels, so we want to replicate each
1394 * half-byte value to 4 channels in a row:
1395 *
1396 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1397 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1398 *
1399 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1400 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1401 *
1402 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1403 * channels to read the first byte (7:0), and the second group of 8
1404 * channels to read the second byte (15:8). Then, we shift right by
1405 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1406 * values into place. Finally, we AND with 0xf to keep the low nibble.
1407 *
1408 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1409 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1410 *
1411 * TODO: These payload bits exist on Gen7 too, but they appear to always
1412 * be zero, so this code fails to work. We should find out why.
1413 */
1414 const fs_reg tmp = abld.vgrf(BRW_REGISTER_TYPE_UW);
1415
1416 for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
1417 const fs_builder hbld = abld.group(MIN2(16, dispatch_width), i);
1418 hbld.SHR(offset(tmp, hbld, i),
1419 stride(retype(brw_vec1_grf(1 + i, 0), BRW_REGISTER_TYPE_UB),
1420 1, 8, 0),
1421 brw_imm_v(0x44440000));
1422 }
1423
1424 abld.AND(*reg, tmp, brw_imm_w(0xf));
1425 } else {
1426 const fs_reg t1 = component(abld.vgrf(BRW_REGISTER_TYPE_UD), 0);
1427 const fs_reg t2 = abld.vgrf(BRW_REGISTER_TYPE_UW);
1428
1429 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1430 * 8x multisampling, subspan 0 will represent sample N (where N
1431 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1432 * 7. We can find the value of N by looking at R0.0 bits 7:6
1433 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1434 * (since samples are always delivered in pairs). That is, we
1435 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1436 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1437 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1438 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1439 * populating a temporary variable with the sequence (0, 1, 2, 3),
1440 * and then reading from it using vstride=1, width=4, hstride=0.
1441 * These computations hold good for 4x multisampling as well.
1442 *
1443 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1444 * the first four slots are sample 0 of subspan 0; the next four
1445 * are sample 1 of subspan 0; the third group is sample 0 of
1446 * subspan 1, and finally sample 1 of subspan 1.
1447 */
1448
1449 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1450 * accomodate 16x MSAA.
1451 */
1452 abld.exec_all().group(1, 0)
1453 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
1454 brw_imm_ud(0xc0));
1455 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1456
1457 /* This works for SIMD8-SIMD16. It also works for SIMD32 but only if we
1458 * can assume 4x MSAA. Disallow it on IVB+
1459 *
1460 * FINISHME: One day, we could come up with a way to do this that
1461 * actually works on gen7.
1462 */
1463 if (devinfo->gen >= 7)
1464 limit_dispatch_width(16, "gl_SampleId is unsupported in SIMD32 on gen7");
1465 abld.exec_all().group(8, 0).MOV(t2, brw_imm_v(0x32103210));
1466
1467 /* This special instruction takes care of setting vstride=1,
1468 * width=4, hstride=0 of t2 during an ADD instruction.
1469 */
1470 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1471 }
1472
1473 return reg;
1474 }
1475
1476 fs_reg *
1477 fs_visitor::emit_samplemaskin_setup()
1478 {
1479 assert(stage == MESA_SHADER_FRAGMENT);
1480 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1481 assert(devinfo->gen >= 6);
1482
1483 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1484
1485 fs_reg coverage_mask =
1486 fetch_payload_reg(bld, payload.sample_mask_in_reg, BRW_REGISTER_TYPE_D);
1487
1488 if (wm_prog_data->persample_dispatch) {
1489 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1490 * and a mask representing which sample is being processed by the
1491 * current shader invocation.
1492 *
1493 * From the OES_sample_variables specification:
1494 * "When per-sample shading is active due to the use of a fragment input
1495 * qualified by "sample" or due to the use of the gl_SampleID or
1496 * gl_SamplePosition variables, only the bit for the current sample is
1497 * set in gl_SampleMaskIn."
1498 */
1499 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1500
1501 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1502 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1503
1504 fs_reg one = vgrf(glsl_type::int_type);
1505 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1506 abld.MOV(one, brw_imm_d(1));
1507 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1508 abld.AND(*reg, enabled_mask, coverage_mask);
1509 } else {
1510 /* In per-pixel mode, the coverage mask is sufficient. */
1511 *reg = coverage_mask;
1512 }
1513 return reg;
1514 }
1515
1516 fs_reg
1517 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1518 {
1519 if (!src.abs && !src.negate)
1520 return src;
1521
1522 fs_reg temp = bld.vgrf(src.type);
1523 bld.MOV(temp, src);
1524
1525 return temp;
1526 }
1527
1528 void
1529 fs_visitor::emit_discard_jump()
1530 {
1531 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1532
1533 /* For performance, after a discard, jump to the end of the
1534 * shader if all relevant channels have been discarded.
1535 */
1536 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1537 discard_jump->flag_subreg = sample_mask_flag_subreg(this);
1538
1539 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1540 discard_jump->predicate_inverse = true;
1541 }
1542
1543 void
1544 fs_visitor::emit_gs_thread_end()
1545 {
1546 assert(stage == MESA_SHADER_GEOMETRY);
1547
1548 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1549
1550 if (gs_compile->control_data_header_size_bits > 0) {
1551 emit_gs_control_data_bits(this->final_gs_vertex_count);
1552 }
1553
1554 const fs_builder abld = bld.annotate("thread end");
1555 fs_inst *inst;
1556
1557 if (gs_prog_data->static_vertex_count != -1) {
1558 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1559 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1560 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1561 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1562 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1563 prev->eot = true;
1564
1565 /* Delete now dead instructions. */
1566 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1567 if (dead == prev)
1568 break;
1569 dead->remove();
1570 }
1571 return;
1572 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1573 break;
1574 }
1575 }
1576 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1577 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1578 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1579 inst->mlen = 1;
1580 } else {
1581 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1582 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1583 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1584 sources[1] = this->final_gs_vertex_count;
1585 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1586 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1587 inst->mlen = 2;
1588 }
1589 inst->eot = true;
1590 inst->offset = 0;
1591 }
1592
1593 void
1594 fs_visitor::assign_curb_setup()
1595 {
1596 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1597
1598 unsigned ubo_push_length = 0;
1599 unsigned ubo_push_start[4];
1600 for (int i = 0; i < 4; i++) {
1601 ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1602 ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1603 }
1604
1605 prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1606
1607 uint64_t used = 0;
1608
1609 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1610 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1611 for (unsigned int i = 0; i < inst->sources; i++) {
1612 if (inst->src[i].file == UNIFORM) {
1613 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1614 int constant_nr;
1615 if (inst->src[i].nr >= UBO_START) {
1616 /* constant_nr is in 32-bit units, the rest are in bytes */
1617 constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1618 inst->src[i].offset / 4;
1619 } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1620 constant_nr = push_constant_loc[uniform_nr];
1621 } else {
1622 /* Section 5.11 of the OpenGL 4.1 spec says:
1623 * "Out-of-bounds reads return undefined values, which include
1624 * values from other variables of the active program or zero."
1625 * Just return the first push constant.
1626 */
1627 constant_nr = 0;
1628 }
1629
1630 assert(constant_nr / 8 < 64);
1631 used |= BITFIELD64_BIT(constant_nr / 8);
1632
1633 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1634 constant_nr / 8,
1635 constant_nr % 8);
1636 brw_reg.abs = inst->src[i].abs;
1637 brw_reg.negate = inst->src[i].negate;
1638
1639 assert(inst->src[i].stride == 0);
1640 inst->src[i] = byte_offset(
1641 retype(brw_reg, inst->src[i].type),
1642 inst->src[i].offset % 4);
1643 }
1644 }
1645 }
1646
1647 uint64_t want_zero = used & stage_prog_data->zero_push_reg;
1648 if (want_zero) {
1649 assert(!compiler->compact_params);
1650 fs_builder ubld = bld.exec_all().group(8, 0).at(
1651 cfg->first_block(), cfg->first_block()->start());
1652
1653 /* push_reg_mask_param is in 32-bit units */
1654 unsigned mask_param = stage_prog_data->push_reg_mask_param;
1655 struct brw_reg mask = brw_vec1_grf(payload.num_regs + mask_param / 8,
1656 mask_param % 8);
1657
1658 fs_reg b32;
1659 for (unsigned i = 0; i < 64; i++) {
1660 if (i % 16 == 0 && (want_zero & BITFIELD64_RANGE(i, 16))) {
1661 fs_reg shifted = ubld.vgrf(BRW_REGISTER_TYPE_W, 2);
1662 ubld.SHL(horiz_offset(shifted, 8),
1663 byte_offset(retype(mask, BRW_REGISTER_TYPE_W), i / 8),
1664 brw_imm_v(0x01234567));
1665 ubld.SHL(shifted, horiz_offset(shifted, 8), brw_imm_w(8));
1666
1667 fs_builder ubld16 = ubld.group(16, 0);
1668 b32 = ubld16.vgrf(BRW_REGISTER_TYPE_D);
1669 ubld16.group(16, 0).ASR(b32, shifted, brw_imm_w(15));
1670 }
1671
1672 if (want_zero & BITFIELD64_BIT(i)) {
1673 assert(i < prog_data->curb_read_length);
1674 struct brw_reg push_reg =
1675 retype(brw_vec8_grf(payload.num_regs + i, 0),
1676 BRW_REGISTER_TYPE_D);
1677
1678 ubld.AND(push_reg, push_reg, component(b32, i % 16));
1679 }
1680 }
1681
1682 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1683 }
1684
1685 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1686 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1687 }
1688
1689 /*
1690 * Build up an array of indices into the urb_setup array that
1691 * references the active entries of the urb_setup array.
1692 * Used to accelerate walking the active entries of the urb_setup array
1693 * on each upload.
1694 */
1695 void
1696 brw_compute_urb_setup_index(struct brw_wm_prog_data *wm_prog_data)
1697 {
1698 /* Make sure uint8_t is sufficient */
1699 STATIC_ASSERT(VARYING_SLOT_MAX <= 0xff);
1700 uint8_t index = 0;
1701 for (uint8_t attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1702 if (wm_prog_data->urb_setup[attr] >= 0) {
1703 wm_prog_data->urb_setup_attribs[index++] = attr;
1704 }
1705 }
1706 wm_prog_data->urb_setup_attribs_count = index;
1707 }
1708
1709 static void
1710 calculate_urb_setup(const struct gen_device_info *devinfo,
1711 const struct brw_wm_prog_key *key,
1712 struct brw_wm_prog_data *prog_data,
1713 const nir_shader *nir)
1714 {
1715 memset(prog_data->urb_setup, -1,
1716 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1717
1718 int urb_next = 0;
1719 /* Figure out where each of the incoming setup attributes lands. */
1720 if (devinfo->gen >= 6) {
1721 if (util_bitcount64(nir->info.inputs_read &
1722 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1723 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1724 * first 16 varying inputs, so we can put them wherever we want.
1725 * Just put them in order.
1726 *
1727 * This is useful because it means that (a) inputs not used by the
1728 * fragment shader won't take up valuable register space, and (b) we
1729 * won't have to recompile the fragment shader if it gets paired with
1730 * a different vertex (or geometry) shader.
1731 */
1732 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1733 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1734 BITFIELD64_BIT(i)) {
1735 prog_data->urb_setup[i] = urb_next++;
1736 }
1737 }
1738 } else {
1739 /* We have enough input varyings that the SF/SBE pipeline stage can't
1740 * arbitrarily rearrange them to suit our whim; we have to put them
1741 * in an order that matches the output of the previous pipeline stage
1742 * (geometry or vertex shader).
1743 */
1744 struct brw_vue_map prev_stage_vue_map;
1745 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1746 key->input_slots_valid,
1747 nir->info.separate_shader, 1);
1748
1749 int first_slot =
1750 brw_compute_first_urb_slot_required(nir->info.inputs_read,
1751 &prev_stage_vue_map);
1752
1753 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1754 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1755 slot++) {
1756 int varying = prev_stage_vue_map.slot_to_varying[slot];
1757 if (varying != BRW_VARYING_SLOT_PAD &&
1758 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1759 BITFIELD64_BIT(varying))) {
1760 prog_data->urb_setup[varying] = slot - first_slot;
1761 }
1762 }
1763 urb_next = prev_stage_vue_map.num_slots - first_slot;
1764 }
1765 } else {
1766 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1767 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1768 /* Point size is packed into the header, not as a general attribute */
1769 if (i == VARYING_SLOT_PSIZ)
1770 continue;
1771
1772 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1773 /* The back color slot is skipped when the front color is
1774 * also written to. In addition, some slots can be
1775 * written in the vertex shader and not read in the
1776 * fragment shader. So the register number must always be
1777 * incremented, mapped or not.
1778 */
1779 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1780 prog_data->urb_setup[i] = urb_next;
1781 urb_next++;
1782 }
1783 }
1784
1785 /*
1786 * It's a FS only attribute, and we did interpolation for this attribute
1787 * in SF thread. So, count it here, too.
1788 *
1789 * See compile_sf_prog() for more info.
1790 */
1791 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1792 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1793 }
1794
1795 prog_data->num_varying_inputs = urb_next;
1796 prog_data->inputs = nir->info.inputs_read;
1797
1798 brw_compute_urb_setup_index(prog_data);
1799 }
1800
1801 void
1802 fs_visitor::assign_urb_setup()
1803 {
1804 assert(stage == MESA_SHADER_FRAGMENT);
1805 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1806
1807 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1808
1809 /* Offset all the urb_setup[] index by the actual position of the
1810 * setup regs, now that the location of the constants has been chosen.
1811 */
1812 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1813 for (int i = 0; i < inst->sources; i++) {
1814 if (inst->src[i].file == ATTR) {
1815 /* ATTR regs in the FS are in units of logical scalar inputs each
1816 * of which consumes half of a GRF register.
1817 */
1818 assert(inst->src[i].offset < REG_SIZE / 2);
1819 const unsigned grf = urb_start + inst->src[i].nr / 2;
1820 const unsigned offset = (inst->src[i].nr % 2) * (REG_SIZE / 2) +
1821 inst->src[i].offset;
1822 const unsigned width = inst->src[i].stride == 0 ?
1823 1 : MIN2(inst->exec_size, 8);
1824 struct brw_reg reg = stride(
1825 byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1826 offset),
1827 width * inst->src[i].stride,
1828 width, inst->src[i].stride);
1829 reg.abs = inst->src[i].abs;
1830 reg.negate = inst->src[i].negate;
1831 inst->src[i] = reg;
1832 }
1833 }
1834 }
1835
1836 /* Each attribute is 4 setup channels, each of which is half a reg. */
1837 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1838 }
1839
1840 void
1841 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1842 {
1843 for (int i = 0; i < inst->sources; i++) {
1844 if (inst->src[i].file == ATTR) {
1845 int grf = payload.num_regs +
1846 prog_data->curb_read_length +
1847 inst->src[i].nr +
1848 inst->src[i].offset / REG_SIZE;
1849
1850 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1851 *
1852 * VertStride must be used to cross GRF register boundaries. This
1853 * rule implies that elements within a 'Width' cannot cross GRF
1854 * boundaries.
1855 *
1856 * So, for registers that are large enough, we have to split the exec
1857 * size in two and trust the compression state to sort it out.
1858 */
1859 unsigned total_size = inst->exec_size *
1860 inst->src[i].stride *
1861 type_sz(inst->src[i].type);
1862
1863 assert(total_size <= 2 * REG_SIZE);
1864 const unsigned exec_size =
1865 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1866
1867 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1868 struct brw_reg reg =
1869 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1870 inst->src[i].offset % REG_SIZE),
1871 exec_size * inst->src[i].stride,
1872 width, inst->src[i].stride);
1873 reg.abs = inst->src[i].abs;
1874 reg.negate = inst->src[i].negate;
1875
1876 inst->src[i] = reg;
1877 }
1878 }
1879 }
1880
1881 void
1882 fs_visitor::assign_vs_urb_setup()
1883 {
1884 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1885
1886 assert(stage == MESA_SHADER_VERTEX);
1887
1888 /* Each attribute is 4 regs. */
1889 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1890
1891 assert(vs_prog_data->base.urb_read_length <= 15);
1892
1893 /* Rewrite all ATTR file references to the hw grf that they land in. */
1894 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1895 convert_attr_sources_to_hw_regs(inst);
1896 }
1897 }
1898
1899 void
1900 fs_visitor::assign_tcs_urb_setup()
1901 {
1902 assert(stage == MESA_SHADER_TESS_CTRL);
1903
1904 /* Rewrite all ATTR file references to HW_REGs. */
1905 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1906 convert_attr_sources_to_hw_regs(inst);
1907 }
1908 }
1909
1910 void
1911 fs_visitor::assign_tes_urb_setup()
1912 {
1913 assert(stage == MESA_SHADER_TESS_EVAL);
1914
1915 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1916
1917 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1918
1919 /* Rewrite all ATTR file references to HW_REGs. */
1920 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1921 convert_attr_sources_to_hw_regs(inst);
1922 }
1923 }
1924
1925 void
1926 fs_visitor::assign_gs_urb_setup()
1927 {
1928 assert(stage == MESA_SHADER_GEOMETRY);
1929
1930 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1931
1932 first_non_payload_grf +=
1933 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1934
1935 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1936 /* Rewrite all ATTR file references to GRFs. */
1937 convert_attr_sources_to_hw_regs(inst);
1938 }
1939 }
1940
1941
1942 /**
1943 * Split large virtual GRFs into separate components if we can.
1944 *
1945 * This is mostly duplicated with what brw_fs_vector_splitting does,
1946 * but that's really conservative because it's afraid of doing
1947 * splitting that doesn't result in real progress after the rest of
1948 * the optimization phases, which would cause infinite looping in
1949 * optimization. We can do it once here, safely. This also has the
1950 * opportunity to split interpolated values, or maybe even uniforms,
1951 * which we don't have at the IR level.
1952 *
1953 * We want to split, because virtual GRFs are what we register
1954 * allocate and spill (due to contiguousness requirements for some
1955 * instructions), and they're what we naturally generate in the
1956 * codegen process, but most virtual GRFs don't actually need to be
1957 * contiguous sets of GRFs. If we split, we'll end up with reduced
1958 * live intervals and better dead code elimination and coalescing.
1959 */
1960 void
1961 fs_visitor::split_virtual_grfs()
1962 {
1963 /* Compact the register file so we eliminate dead vgrfs. This
1964 * only defines split points for live registers, so if we have
1965 * too large dead registers they will hit assertions later.
1966 */
1967 compact_virtual_grfs();
1968
1969 int num_vars = this->alloc.count;
1970
1971 /* Count the total number of registers */
1972 int reg_count = 0;
1973 int vgrf_to_reg[num_vars];
1974 for (int i = 0; i < num_vars; i++) {
1975 vgrf_to_reg[i] = reg_count;
1976 reg_count += alloc.sizes[i];
1977 }
1978
1979 /* An array of "split points". For each register slot, this indicates
1980 * if this slot can be separated from the previous slot. Every time an
1981 * instruction uses multiple elements of a register (as a source or
1982 * destination), we mark the used slots as inseparable. Then we go
1983 * through and split the registers into the smallest pieces we can.
1984 */
1985 bool *split_points = new bool[reg_count];
1986 memset(split_points, 0, reg_count * sizeof(*split_points));
1987
1988 /* Mark all used registers as fully splittable */
1989 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1990 if (inst->dst.file == VGRF) {
1991 int reg = vgrf_to_reg[inst->dst.nr];
1992 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1993 split_points[reg + j] = true;
1994 }
1995
1996 for (int i = 0; i < inst->sources; i++) {
1997 if (inst->src[i].file == VGRF) {
1998 int reg = vgrf_to_reg[inst->src[i].nr];
1999 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
2000 split_points[reg + j] = true;
2001 }
2002 }
2003 }
2004
2005 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2006 /* We fix up undef instructions later */
2007 if (inst->opcode == SHADER_OPCODE_UNDEF) {
2008 /* UNDEF instructions are currently only used to undef entire
2009 * registers. We need this invariant later when we split them.
2010 */
2011 assert(inst->dst.file == VGRF);
2012 assert(inst->dst.offset == 0);
2013 assert(inst->size_written == alloc.sizes[inst->dst.nr] * REG_SIZE);
2014 continue;
2015 }
2016
2017 if (inst->dst.file == VGRF) {
2018 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
2019 for (unsigned j = 1; j < regs_written(inst); j++)
2020 split_points[reg + j] = false;
2021 }
2022 for (int i = 0; i < inst->sources; i++) {
2023 if (inst->src[i].file == VGRF) {
2024 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
2025 for (unsigned j = 1; j < regs_read(inst, i); j++)
2026 split_points[reg + j] = false;
2027 }
2028 }
2029 }
2030
2031 int *new_virtual_grf = new int[reg_count];
2032 int *new_reg_offset = new int[reg_count];
2033
2034 int reg = 0;
2035 for (int i = 0; i < num_vars; i++) {
2036 /* The first one should always be 0 as a quick sanity check. */
2037 assert(split_points[reg] == false);
2038
2039 /* j = 0 case */
2040 new_reg_offset[reg] = 0;
2041 reg++;
2042 int offset = 1;
2043
2044 /* j > 0 case */
2045 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
2046 /* If this is a split point, reset the offset to 0 and allocate a
2047 * new virtual GRF for the previous offset many registers
2048 */
2049 if (split_points[reg]) {
2050 assert(offset <= MAX_VGRF_SIZE);
2051 int grf = alloc.allocate(offset);
2052 for (int k = reg - offset; k < reg; k++)
2053 new_virtual_grf[k] = grf;
2054 offset = 0;
2055 }
2056 new_reg_offset[reg] = offset;
2057 offset++;
2058 reg++;
2059 }
2060
2061 /* The last one gets the original register number */
2062 assert(offset <= MAX_VGRF_SIZE);
2063 alloc.sizes[i] = offset;
2064 for (int k = reg - offset; k < reg; k++)
2065 new_virtual_grf[k] = i;
2066 }
2067 assert(reg == reg_count);
2068
2069 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2070 if (inst->opcode == SHADER_OPCODE_UNDEF) {
2071 const fs_builder ibld(this, block, inst);
2072 assert(inst->size_written % REG_SIZE == 0);
2073 unsigned reg_offset = 0;
2074 while (reg_offset < inst->size_written / REG_SIZE) {
2075 reg = vgrf_to_reg[inst->dst.nr] + reg_offset;
2076 ibld.UNDEF(fs_reg(VGRF, new_virtual_grf[reg], inst->dst.type));
2077 reg_offset += alloc.sizes[new_virtual_grf[reg]];
2078 }
2079 inst->remove(block);
2080 continue;
2081 }
2082
2083 if (inst->dst.file == VGRF) {
2084 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
2085 inst->dst.nr = new_virtual_grf[reg];
2086 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
2087 inst->dst.offset % REG_SIZE;
2088 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
2089 }
2090 for (int i = 0; i < inst->sources; i++) {
2091 if (inst->src[i].file == VGRF) {
2092 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
2093 inst->src[i].nr = new_virtual_grf[reg];
2094 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
2095 inst->src[i].offset % REG_SIZE;
2096 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
2097 }
2098 }
2099 }
2100 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
2101
2102 delete[] split_points;
2103 delete[] new_virtual_grf;
2104 delete[] new_reg_offset;
2105 }
2106
2107 /**
2108 * Remove unused virtual GRFs and compact the vgrf_* arrays.
2109 *
2110 * During code generation, we create tons of temporary variables, many of
2111 * which get immediately killed and are never used again. Yet, in later
2112 * optimization and analysis passes, such as compute_live_intervals, we need
2113 * to loop over all the virtual GRFs. Compacting them can save a lot of
2114 * overhead.
2115 */
2116 bool
2117 fs_visitor::compact_virtual_grfs()
2118 {
2119 bool progress = false;
2120 int *remap_table = new int[this->alloc.count];
2121 memset(remap_table, -1, this->alloc.count * sizeof(int));
2122
2123 /* Mark which virtual GRFs are used. */
2124 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
2125 if (inst->dst.file == VGRF)
2126 remap_table[inst->dst.nr] = 0;
2127
2128 for (int i = 0; i < inst->sources; i++) {
2129 if (inst->src[i].file == VGRF)
2130 remap_table[inst->src[i].nr] = 0;
2131 }
2132 }
2133
2134 /* Compact the GRF arrays. */
2135 int new_index = 0;
2136 for (unsigned i = 0; i < this->alloc.count; i++) {
2137 if (remap_table[i] == -1) {
2138 /* We just found an unused register. This means that we are
2139 * actually going to compact something.
2140 */
2141 progress = true;
2142 } else {
2143 remap_table[i] = new_index;
2144 alloc.sizes[new_index] = alloc.sizes[i];
2145 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
2146 ++new_index;
2147 }
2148 }
2149
2150 this->alloc.count = new_index;
2151
2152 /* Patch all the instructions to use the newly renumbered registers */
2153 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2154 if (inst->dst.file == VGRF)
2155 inst->dst.nr = remap_table[inst->dst.nr];
2156
2157 for (int i = 0; i < inst->sources; i++) {
2158 if (inst->src[i].file == VGRF)
2159 inst->src[i].nr = remap_table[inst->src[i].nr];
2160 }
2161 }
2162
2163 /* Patch all the references to delta_xy, since they're used in register
2164 * allocation. If they're unused, switch them to BAD_FILE so we don't
2165 * think some random VGRF is delta_xy.
2166 */
2167 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2168 if (delta_xy[i].file == VGRF) {
2169 if (remap_table[delta_xy[i].nr] != -1) {
2170 delta_xy[i].nr = remap_table[delta_xy[i].nr];
2171 } else {
2172 delta_xy[i].file = BAD_FILE;
2173 }
2174 }
2175 }
2176
2177 delete[] remap_table;
2178
2179 return progress;
2180 }
2181
2182 static int
2183 get_subgroup_id_param_index(const brw_stage_prog_data *prog_data)
2184 {
2185 if (prog_data->nr_params == 0)
2186 return -1;
2187
2188 /* The local thread id is always the last parameter in the list */
2189 uint32_t last_param = prog_data->param[prog_data->nr_params - 1];
2190 if (last_param == BRW_PARAM_BUILTIN_SUBGROUP_ID)
2191 return prog_data->nr_params - 1;
2192
2193 return -1;
2194 }
2195
2196 /**
2197 * Struct for handling complex alignments.
2198 *
2199 * A complex alignment is stored as multiplier and an offset. A value is
2200 * considered to be aligned if it is {offset} larger than a multiple of {mul}.
2201 * For instance, with an alignment of {8, 2}, cplx_align_apply would do the
2202 * following:
2203 *
2204 * N | cplx_align_apply({8, 2}, N)
2205 * ----+-----------------------------
2206 * 4 | 6
2207 * 6 | 6
2208 * 8 | 14
2209 * 10 | 14
2210 * 12 | 14
2211 * 14 | 14
2212 * 16 | 22
2213 */
2214 struct cplx_align {
2215 unsigned mul:4;
2216 unsigned offset:4;
2217 };
2218
2219 #define CPLX_ALIGN_MAX_MUL 8
2220
2221 static void
2222 cplx_align_assert_sane(struct cplx_align a)
2223 {
2224 assert(a.mul > 0 && util_is_power_of_two_nonzero(a.mul));
2225 assert(a.offset < a.mul);
2226 }
2227
2228 /**
2229 * Combines two alignments to produce a least multiple of sorts.
2230 *
2231 * The returned alignment is the smallest (in terms of multiplier) such that
2232 * anything aligned to both a and b will be aligned to the new alignment.
2233 * This function will assert-fail if a and b are not compatible, i.e. if the
2234 * offset parameters are such that no common alignment is possible.
2235 */
2236 static struct cplx_align
2237 cplx_align_combine(struct cplx_align a, struct cplx_align b)
2238 {
2239 cplx_align_assert_sane(a);
2240 cplx_align_assert_sane(b);
2241
2242 /* Assert that the alignments agree. */
2243 assert((a.offset & (b.mul - 1)) == (b.offset & (a.mul - 1)));
2244
2245 return a.mul > b.mul ? a : b;
2246 }
2247
2248 /**
2249 * Apply a complex alignment
2250 *
2251 * This function will return the smallest number greater than or equal to
2252 * offset that is aligned to align.
2253 */
2254 static unsigned
2255 cplx_align_apply(struct cplx_align align, unsigned offset)
2256 {
2257 return ALIGN(offset - align.offset, align.mul) + align.offset;
2258 }
2259
2260 #define UNIFORM_SLOT_SIZE 4
2261
2262 struct uniform_slot_info {
2263 /** True if the given uniform slot is live */
2264 unsigned is_live:1;
2265
2266 /** True if this slot and the next slot must remain contiguous */
2267 unsigned contiguous:1;
2268
2269 struct cplx_align align;
2270 };
2271
2272 static void
2273 mark_uniform_slots_read(struct uniform_slot_info *slots,
2274 unsigned num_slots, unsigned alignment)
2275 {
2276 assert(alignment > 0 && util_is_power_of_two_nonzero(alignment));
2277 assert(alignment <= CPLX_ALIGN_MAX_MUL);
2278
2279 /* We can't align a slot to anything less than the slot size */
2280 alignment = MAX2(alignment, UNIFORM_SLOT_SIZE);
2281
2282 struct cplx_align align = {alignment, 0};
2283 cplx_align_assert_sane(align);
2284
2285 for (unsigned i = 0; i < num_slots; i++) {
2286 slots[i].is_live = true;
2287 if (i < num_slots - 1)
2288 slots[i].contiguous = true;
2289
2290 align.offset = (i * UNIFORM_SLOT_SIZE) & (align.mul - 1);
2291 if (slots[i].align.mul == 0) {
2292 slots[i].align = align;
2293 } else {
2294 slots[i].align = cplx_align_combine(slots[i].align, align);
2295 }
2296 }
2297 }
2298
2299 /**
2300 * Assign UNIFORM file registers to either push constants or pull constants.
2301 *
2302 * We allow a fragment shader to have more than the specified minimum
2303 * maximum number of fragment shader uniform components (64). If
2304 * there are too many of these, they'd fill up all of register space.
2305 * So, this will push some of them out to the pull constant buffer and
2306 * update the program to load them.
2307 */
2308 void
2309 fs_visitor::assign_constant_locations()
2310 {
2311 /* Only the first compile gets to decide on locations. */
2312 if (push_constant_loc) {
2313 assert(pull_constant_loc);
2314 return;
2315 }
2316
2317 if (compiler->compact_params) {
2318 struct uniform_slot_info slots[uniforms + 1];
2319 memset(slots, 0, sizeof(slots));
2320
2321 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2322 for (int i = 0 ; i < inst->sources; i++) {
2323 if (inst->src[i].file != UNIFORM)
2324 continue;
2325
2326 /* NIR tightly packs things so the uniform number might not be
2327 * aligned (if we have a double right after a float, for
2328 * instance). This is fine because the process of re-arranging
2329 * them will ensure that things are properly aligned. The offset
2330 * into that uniform, however, must be aligned.
2331 *
2332 * In Vulkan, we have explicit offsets but everything is crammed
2333 * into a single "variable" so inst->src[i].nr will always be 0.
2334 * Everything will be properly aligned relative to that one base.
2335 */
2336 assert(inst->src[i].offset % type_sz(inst->src[i].type) == 0);
2337
2338 unsigned u = inst->src[i].nr +
2339 inst->src[i].offset / UNIFORM_SLOT_SIZE;
2340
2341 if (u >= uniforms)
2342 continue;
2343
2344 unsigned slots_read;
2345 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
2346 slots_read = DIV_ROUND_UP(inst->src[2].ud, UNIFORM_SLOT_SIZE);
2347 } else {
2348 unsigned bytes_read = inst->components_read(i) *
2349 type_sz(inst->src[i].type);
2350 slots_read = DIV_ROUND_UP(bytes_read, UNIFORM_SLOT_SIZE);
2351 }
2352
2353 assert(u + slots_read <= uniforms);
2354 mark_uniform_slots_read(&slots[u], slots_read,
2355 type_sz(inst->src[i].type));
2356 }
2357 }
2358
2359 int subgroup_id_index = get_subgroup_id_param_index(stage_prog_data);
2360
2361 /* Only allow 16 registers (128 uniform components) as push constants.
2362 *
2363 * Just demote the end of the list. We could probably do better
2364 * here, demoting things that are rarely used in the program first.
2365 *
2366 * If changing this value, note the limitation about total_regs in
2367 * brw_curbe.c.
2368 */
2369 unsigned int max_push_components = 16 * 8;
2370 if (subgroup_id_index >= 0)
2371 max_push_components--; /* Save a slot for the thread ID */
2372
2373 /* We push small arrays, but no bigger than 16 floats. This is big
2374 * enough for a vec4 but hopefully not large enough to push out other
2375 * stuff. We should probably use a better heuristic at some point.
2376 */
2377 const unsigned int max_chunk_size = 16;
2378
2379 unsigned int num_push_constants = 0;
2380 unsigned int num_pull_constants = 0;
2381
2382 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2383 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2384
2385 /* Default to -1 meaning no location */
2386 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2387 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2388
2389 int chunk_start = -1;
2390 struct cplx_align align;
2391 for (unsigned u = 0; u < uniforms; u++) {
2392 if (!slots[u].is_live) {
2393 assert(chunk_start == -1);
2394 continue;
2395 }
2396
2397 /* Skip subgroup_id_index to put it in the last push register. */
2398 if (subgroup_id_index == (int)u)
2399 continue;
2400
2401 if (chunk_start == -1) {
2402 chunk_start = u;
2403 align = slots[u].align;
2404 } else {
2405 /* Offset into the chunk */
2406 unsigned chunk_offset = (u - chunk_start) * UNIFORM_SLOT_SIZE;
2407
2408 /* Shift the slot alignment down by the chunk offset so it is
2409 * comparable with the base chunk alignment.
2410 */
2411 struct cplx_align slot_align = slots[u].align;
2412 slot_align.offset =
2413 (slot_align.offset - chunk_offset) & (align.mul - 1);
2414
2415 align = cplx_align_combine(align, slot_align);
2416 }
2417
2418 /* Sanity check the alignment */
2419 cplx_align_assert_sane(align);
2420
2421 if (slots[u].contiguous)
2422 continue;
2423
2424 /* Adjust the alignment to be in terms of slots, not bytes */
2425 assert((align.mul & (UNIFORM_SLOT_SIZE - 1)) == 0);
2426 assert((align.offset & (UNIFORM_SLOT_SIZE - 1)) == 0);
2427 align.mul /= UNIFORM_SLOT_SIZE;
2428 align.offset /= UNIFORM_SLOT_SIZE;
2429
2430 unsigned push_start_align = cplx_align_apply(align, num_push_constants);
2431 unsigned chunk_size = u - chunk_start + 1;
2432 if ((!compiler->supports_pull_constants && u < UBO_START) ||
2433 (chunk_size < max_chunk_size &&
2434 push_start_align + chunk_size <= max_push_components)) {
2435 /* Align up the number of push constants */
2436 num_push_constants = push_start_align;
2437 for (unsigned i = 0; i < chunk_size; i++)
2438 push_constant_loc[chunk_start + i] = num_push_constants++;
2439 } else {
2440 /* We need to pull this one */
2441 num_pull_constants = cplx_align_apply(align, num_pull_constants);
2442 for (unsigned i = 0; i < chunk_size; i++)
2443 pull_constant_loc[chunk_start + i] = num_pull_constants++;
2444 }
2445
2446 /* Reset the chunk and start again */
2447 chunk_start = -1;
2448 }
2449
2450 /* Add the CS local thread ID uniform at the end of the push constants */
2451 if (subgroup_id_index >= 0)
2452 push_constant_loc[subgroup_id_index] = num_push_constants++;
2453
2454 /* As the uniforms are going to be reordered, stash the old array and
2455 * create two new arrays for push/pull params.
2456 */
2457 uint32_t *param = stage_prog_data->param;
2458 stage_prog_data->nr_params = num_push_constants;
2459 if (num_push_constants) {
2460 stage_prog_data->param = rzalloc_array(mem_ctx, uint32_t,
2461 num_push_constants);
2462 } else {
2463 stage_prog_data->param = NULL;
2464 }
2465 assert(stage_prog_data->nr_pull_params == 0);
2466 assert(stage_prog_data->pull_param == NULL);
2467 if (num_pull_constants > 0) {
2468 stage_prog_data->nr_pull_params = num_pull_constants;
2469 stage_prog_data->pull_param = rzalloc_array(mem_ctx, uint32_t,
2470 num_pull_constants);
2471 }
2472
2473 /* Up until now, the param[] array has been indexed by reg + offset
2474 * of UNIFORM registers. Move pull constants into pull_param[] and
2475 * condense param[] to only contain the uniforms we chose to push.
2476 *
2477 * NOTE: Because we are condensing the params[] array, we know that
2478 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2479 * having to make a copy.
2480 */
2481 for (unsigned int i = 0; i < uniforms; i++) {
2482 uint32_t value = param[i];
2483 if (pull_constant_loc[i] != -1) {
2484 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2485 } else if (push_constant_loc[i] != -1) {
2486 stage_prog_data->param[push_constant_loc[i]] = value;
2487 }
2488 }
2489 ralloc_free(param);
2490 } else {
2491 /* If we don't want to compact anything, just set up dummy push/pull
2492 * arrays. All the rest of the compiler cares about are these arrays.
2493 */
2494 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2495 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2496
2497 for (unsigned u = 0; u < uniforms; u++)
2498 push_constant_loc[u] = u;
2499
2500 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2501 }
2502
2503 /* Now that we know how many regular uniforms we'll push, reduce the
2504 * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2505 */
2506 unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2507 for (int i = 0; i < 4; i++) {
2508 struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2509
2510 if (push_length + range->length > 64)
2511 range->length = 64 - push_length;
2512
2513 push_length += range->length;
2514 }
2515 assert(push_length <= 64);
2516 }
2517
2518 bool
2519 fs_visitor::get_pull_locs(const fs_reg &src,
2520 unsigned *out_surf_index,
2521 unsigned *out_pull_index)
2522 {
2523 assert(src.file == UNIFORM);
2524
2525 if (src.nr >= UBO_START) {
2526 const struct brw_ubo_range *range =
2527 &prog_data->ubo_ranges[src.nr - UBO_START];
2528
2529 /* If this access is in our (reduced) range, use the push data. */
2530 if (src.offset / 32 < range->length)
2531 return false;
2532
2533 *out_surf_index = prog_data->binding_table.ubo_start + range->block;
2534 *out_pull_index = (32 * range->start + src.offset) / 4;
2535
2536 prog_data->has_ubo_pull = true;
2537 return true;
2538 }
2539
2540 const unsigned location = src.nr + src.offset / 4;
2541
2542 if (location < uniforms && pull_constant_loc[location] != -1) {
2543 /* A regular uniform push constant */
2544 *out_surf_index = stage_prog_data->binding_table.pull_constants_start;
2545 *out_pull_index = pull_constant_loc[location];
2546
2547 prog_data->has_ubo_pull = true;
2548 return true;
2549 }
2550
2551 return false;
2552 }
2553
2554 /**
2555 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2556 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2557 */
2558 void
2559 fs_visitor::lower_constant_loads()
2560 {
2561 unsigned index, pull_index;
2562
2563 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2564 /* Set up the annotation tracking for new generated instructions. */
2565 const fs_builder ibld(this, block, inst);
2566
2567 for (int i = 0; i < inst->sources; i++) {
2568 if (inst->src[i].file != UNIFORM)
2569 continue;
2570
2571 /* We'll handle this case later */
2572 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2573 continue;
2574
2575 if (!get_pull_locs(inst->src[i], &index, &pull_index))
2576 continue;
2577
2578 assert(inst->src[i].stride == 0);
2579
2580 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2581 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2582 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2583 const unsigned base = pull_index * 4;
2584
2585 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2586 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2587
2588 /* Rewrite the instruction to use the temporary VGRF. */
2589 inst->src[i].file = VGRF;
2590 inst->src[i].nr = dst.nr;
2591 inst->src[i].offset = (base & (block_sz - 1)) +
2592 inst->src[i].offset % 4;
2593 }
2594
2595 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2596 inst->src[0].file == UNIFORM) {
2597
2598 if (!get_pull_locs(inst->src[0], &index, &pull_index))
2599 continue;
2600
2601 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2602 brw_imm_ud(index),
2603 inst->src[1],
2604 pull_index * 4);
2605 inst->remove(block);
2606 }
2607 }
2608 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
2609 }
2610
2611 bool
2612 fs_visitor::opt_algebraic()
2613 {
2614 bool progress = false;
2615
2616 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2617 switch (inst->opcode) {
2618 case BRW_OPCODE_MOV:
2619 if (!devinfo->has_64bit_float &&
2620 !devinfo->has_64bit_int &&
2621 (inst->dst.type == BRW_REGISTER_TYPE_DF ||
2622 inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2623 inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2624 assert(inst->dst.type == inst->src[0].type);
2625 assert(!inst->saturate);
2626 assert(!inst->src[0].abs);
2627 assert(!inst->src[0].negate);
2628 const brw::fs_builder ibld(this, block, inst);
2629
2630 if (inst->src[0].file == IMM) {
2631 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2632 brw_imm_ud(inst->src[0].u64 >> 32));
2633 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2634 brw_imm_ud(inst->src[0].u64));
2635 } else {
2636 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2637 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1));
2638 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2639 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0));
2640 }
2641
2642 inst->remove(block);
2643 progress = true;
2644 }
2645
2646 if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2647 inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2648 inst->dst.is_null() &&
2649 (inst->src[0].abs || inst->src[0].negate)) {
2650 inst->src[0].abs = false;
2651 inst->src[0].negate = false;
2652 progress = true;
2653 break;
2654 }
2655
2656 if (inst->src[0].file != IMM)
2657 break;
2658
2659 if (inst->saturate) {
2660 /* Full mixed-type saturates don't happen. However, we can end up
2661 * with things like:
2662 *
2663 * mov.sat(8) g21<1>DF -1F
2664 *
2665 * Other mixed-size-but-same-base-type cases may also be possible.
2666 */
2667 if (inst->dst.type != inst->src[0].type &&
2668 inst->dst.type != BRW_REGISTER_TYPE_DF &&
2669 inst->src[0].type != BRW_REGISTER_TYPE_F)
2670 assert(!"unimplemented: saturate mixed types");
2671
2672 if (brw_saturate_immediate(inst->src[0].type,
2673 &inst->src[0].as_brw_reg())) {
2674 inst->saturate = false;
2675 progress = true;
2676 }
2677 }
2678 break;
2679
2680 case BRW_OPCODE_MUL:
2681 if (inst->src[1].file != IMM)
2682 continue;
2683
2684 /* a * 1.0 = a */
2685 if (inst->src[1].is_one()) {
2686 inst->opcode = BRW_OPCODE_MOV;
2687 inst->src[1] = reg_undef;
2688 progress = true;
2689 break;
2690 }
2691
2692 /* a * -1.0 = -a */
2693 if (inst->src[1].is_negative_one()) {
2694 inst->opcode = BRW_OPCODE_MOV;
2695 inst->src[0].negate = !inst->src[0].negate;
2696 inst->src[1] = reg_undef;
2697 progress = true;
2698 break;
2699 }
2700
2701 break;
2702 case BRW_OPCODE_ADD:
2703 if (inst->src[1].file != IMM)
2704 continue;
2705
2706 if (brw_reg_type_is_integer(inst->src[1].type) &&
2707 inst->src[1].is_zero()) {
2708 inst->opcode = BRW_OPCODE_MOV;
2709 inst->src[1] = reg_undef;
2710 progress = true;
2711 break;
2712 }
2713
2714 if (inst->src[0].file == IMM) {
2715 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2716 inst->opcode = BRW_OPCODE_MOV;
2717 inst->src[0].f += inst->src[1].f;
2718 inst->src[1] = reg_undef;
2719 progress = true;
2720 break;
2721 }
2722 break;
2723 case BRW_OPCODE_OR:
2724 if (inst->src[0].equals(inst->src[1]) ||
2725 inst->src[1].is_zero()) {
2726 /* On Gen8+, the OR instruction can have a source modifier that
2727 * performs logical not on the operand. Cases of 'OR r0, ~r1, 0'
2728 * or 'OR r0, ~r1, ~r1' should become a NOT instead of a MOV.
2729 */
2730 if (inst->src[0].negate) {
2731 inst->opcode = BRW_OPCODE_NOT;
2732 inst->src[0].negate = false;
2733 } else {
2734 inst->opcode = BRW_OPCODE_MOV;
2735 }
2736 inst->src[1] = reg_undef;
2737 progress = true;
2738 break;
2739 }
2740 break;
2741 case BRW_OPCODE_CMP:
2742 if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2743 inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2744 inst->src[1].is_zero() &&
2745 (inst->src[0].abs || inst->src[0].negate)) {
2746 inst->src[0].abs = false;
2747 inst->src[0].negate = false;
2748 progress = true;
2749 break;
2750 }
2751 break;
2752 case BRW_OPCODE_SEL:
2753 if (!devinfo->has_64bit_float &&
2754 !devinfo->has_64bit_int &&
2755 (inst->dst.type == BRW_REGISTER_TYPE_DF ||
2756 inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2757 inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2758 assert(inst->dst.type == inst->src[0].type);
2759 assert(!inst->saturate);
2760 assert(!inst->src[0].abs && !inst->src[0].negate);
2761 assert(!inst->src[1].abs && !inst->src[1].negate);
2762 const brw::fs_builder ibld(this, block, inst);
2763
2764 set_predicate(inst->predicate,
2765 ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2766 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
2767 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0)));
2768 set_predicate(inst->predicate,
2769 ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2770 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1),
2771 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1)));
2772
2773 inst->remove(block);
2774 progress = true;
2775 }
2776 if (inst->src[0].equals(inst->src[1])) {
2777 inst->opcode = BRW_OPCODE_MOV;
2778 inst->src[1] = reg_undef;
2779 inst->predicate = BRW_PREDICATE_NONE;
2780 inst->predicate_inverse = false;
2781 progress = true;
2782 } else if (inst->saturate && inst->src[1].file == IMM) {
2783 switch (inst->conditional_mod) {
2784 case BRW_CONDITIONAL_LE:
2785 case BRW_CONDITIONAL_L:
2786 switch (inst->src[1].type) {
2787 case BRW_REGISTER_TYPE_F:
2788 if (inst->src[1].f >= 1.0f) {
2789 inst->opcode = BRW_OPCODE_MOV;
2790 inst->src[1] = reg_undef;
2791 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2792 progress = true;
2793 }
2794 break;
2795 default:
2796 break;
2797 }
2798 break;
2799 case BRW_CONDITIONAL_GE:
2800 case BRW_CONDITIONAL_G:
2801 switch (inst->src[1].type) {
2802 case BRW_REGISTER_TYPE_F:
2803 if (inst->src[1].f <= 0.0f) {
2804 inst->opcode = BRW_OPCODE_MOV;
2805 inst->src[1] = reg_undef;
2806 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2807 progress = true;
2808 }
2809 break;
2810 default:
2811 break;
2812 }
2813 default:
2814 break;
2815 }
2816 }
2817 break;
2818 case BRW_OPCODE_MAD:
2819 if (inst->src[0].type != BRW_REGISTER_TYPE_F ||
2820 inst->src[1].type != BRW_REGISTER_TYPE_F ||
2821 inst->src[2].type != BRW_REGISTER_TYPE_F)
2822 break;
2823 if (inst->src[1].is_one()) {
2824 inst->opcode = BRW_OPCODE_ADD;
2825 inst->src[1] = inst->src[2];
2826 inst->src[2] = reg_undef;
2827 progress = true;
2828 } else if (inst->src[2].is_one()) {
2829 inst->opcode = BRW_OPCODE_ADD;
2830 inst->src[2] = reg_undef;
2831 progress = true;
2832 }
2833 break;
2834 case SHADER_OPCODE_BROADCAST:
2835 if (is_uniform(inst->src[0])) {
2836 inst->opcode = BRW_OPCODE_MOV;
2837 inst->sources = 1;
2838 inst->force_writemask_all = true;
2839 progress = true;
2840 } else if (inst->src[1].file == IMM) {
2841 inst->opcode = BRW_OPCODE_MOV;
2842 /* It's possible that the selected component will be too large and
2843 * overflow the register. This can happen if someone does a
2844 * readInvocation() from GLSL or SPIR-V and provides an OOB
2845 * invocationIndex. If this happens and we some how manage
2846 * to constant fold it in and get here, then component() may cause
2847 * us to start reading outside of the VGRF which will lead to an
2848 * assert later. Instead, just let it wrap around if it goes over
2849 * exec_size.
2850 */
2851 const unsigned comp = inst->src[1].ud & (inst->exec_size - 1);
2852 inst->src[0] = component(inst->src[0], comp);
2853 inst->sources = 1;
2854 inst->force_writemask_all = true;
2855 progress = true;
2856 }
2857 break;
2858
2859 case SHADER_OPCODE_SHUFFLE:
2860 if (is_uniform(inst->src[0])) {
2861 inst->opcode = BRW_OPCODE_MOV;
2862 inst->sources = 1;
2863 progress = true;
2864 } else if (inst->src[1].file == IMM) {
2865 inst->opcode = BRW_OPCODE_MOV;
2866 inst->src[0] = component(inst->src[0],
2867 inst->src[1].ud);
2868 inst->sources = 1;
2869 progress = true;
2870 }
2871 break;
2872
2873 default:
2874 break;
2875 }
2876
2877 /* Swap if src[0] is immediate. */
2878 if (progress && inst->is_commutative()) {
2879 if (inst->src[0].file == IMM) {
2880 fs_reg tmp = inst->src[1];
2881 inst->src[1] = inst->src[0];
2882 inst->src[0] = tmp;
2883 }
2884 }
2885 }
2886
2887 if (progress)
2888 invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
2889 DEPENDENCY_INSTRUCTION_DETAIL);
2890
2891 return progress;
2892 }
2893
2894 /**
2895 * Optimize sample messages that have constant zero values for the trailing
2896 * texture coordinates. We can just reduce the message length for these
2897 * instructions instead of reserving a register for it. Trailing parameters
2898 * that aren't sent default to zero anyway. This will cause the dead code
2899 * eliminator to remove the MOV instruction that would otherwise be emitted to
2900 * set up the zero value.
2901 */
2902 bool
2903 fs_visitor::opt_zero_samples()
2904 {
2905 /* Gen4 infers the texturing opcode based on the message length so we can't
2906 * change it.
2907 */
2908 if (devinfo->gen < 5)
2909 return false;
2910
2911 bool progress = false;
2912
2913 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2914 if (!inst->is_tex())
2915 continue;
2916
2917 fs_inst *load_payload = (fs_inst *) inst->prev;
2918
2919 if (load_payload->is_head_sentinel() ||
2920 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2921 continue;
2922
2923 /* We don't want to remove the message header or the first parameter.
2924 * Removing the first parameter is not allowed, see the Haswell PRM
2925 * volume 7, page 149:
2926 *
2927 * "Parameter 0 is required except for the sampleinfo message, which
2928 * has no parameter 0"
2929 */
2930 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2931 load_payload->src[(inst->mlen - inst->header_size) /
2932 (inst->exec_size / 8) +
2933 inst->header_size - 1].is_zero()) {
2934 inst->mlen -= inst->exec_size / 8;
2935 progress = true;
2936 }
2937 }
2938
2939 if (progress)
2940 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
2941
2942 return progress;
2943 }
2944
2945 bool
2946 fs_visitor::opt_register_renaming()
2947 {
2948 bool progress = false;
2949 int depth = 0;
2950
2951 unsigned remap[alloc.count];
2952 memset(remap, ~0u, sizeof(unsigned) * alloc.count);
2953
2954 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2955 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2956 depth++;
2957 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2958 inst->opcode == BRW_OPCODE_WHILE) {
2959 depth--;
2960 }
2961
2962 /* Rewrite instruction sources. */
2963 for (int i = 0; i < inst->sources; i++) {
2964 if (inst->src[i].file == VGRF &&
2965 remap[inst->src[i].nr] != ~0u &&
2966 remap[inst->src[i].nr] != inst->src[i].nr) {
2967 inst->src[i].nr = remap[inst->src[i].nr];
2968 progress = true;
2969 }
2970 }
2971
2972 const unsigned dst = inst->dst.nr;
2973
2974 if (depth == 0 &&
2975 inst->dst.file == VGRF &&
2976 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2977 !inst->is_partial_write()) {
2978 if (remap[dst] == ~0u) {
2979 remap[dst] = dst;
2980 } else {
2981 remap[dst] = alloc.allocate(regs_written(inst));
2982 inst->dst.nr = remap[dst];
2983 progress = true;
2984 }
2985 } else if (inst->dst.file == VGRF &&
2986 remap[dst] != ~0u &&
2987 remap[dst] != dst) {
2988 inst->dst.nr = remap[dst];
2989 progress = true;
2990 }
2991 }
2992
2993 if (progress) {
2994 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
2995 DEPENDENCY_VARIABLES);
2996
2997 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2998 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != ~0u) {
2999 delta_xy[i].nr = remap[delta_xy[i].nr];
3000 }
3001 }
3002 }
3003
3004 return progress;
3005 }
3006
3007 /**
3008 * Remove redundant or useless discard jumps.
3009 *
3010 * For example, we can eliminate jumps in the following sequence:
3011 *
3012 * discard-jump (redundant with the next jump)
3013 * discard-jump (useless; jumps to the next instruction)
3014 * placeholder-halt
3015 */
3016 bool
3017 fs_visitor::opt_redundant_discard_jumps()
3018 {
3019 bool progress = false;
3020
3021 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
3022
3023 fs_inst *placeholder_halt = NULL;
3024 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
3025 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
3026 placeholder_halt = inst;
3027 break;
3028 }
3029 }
3030
3031 if (!placeholder_halt)
3032 return false;
3033
3034 /* Delete any HALTs immediately before the placeholder halt. */
3035 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
3036 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
3037 prev = (fs_inst *) placeholder_halt->prev) {
3038 prev->remove(last_bblock);
3039 progress = true;
3040 }
3041
3042 if (progress)
3043 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3044
3045 return progress;
3046 }
3047
3048 /**
3049 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
3050 * from \p r.offset which overlaps the region starting at \p s.offset and
3051 * spanning \p ds bytes.
3052 */
3053 static inline unsigned
3054 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
3055 {
3056 const int rel_offset = reg_offset(s) - reg_offset(r);
3057 const int shift = rel_offset / REG_SIZE;
3058 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
3059 assert(reg_space(r) == reg_space(s) &&
3060 shift >= 0 && shift < int(8 * sizeof(unsigned)));
3061 return ((1 << n) - 1) << shift;
3062 }
3063
3064 bool
3065 fs_visitor::compute_to_mrf()
3066 {
3067 bool progress = false;
3068 int next_ip = 0;
3069
3070 /* No MRFs on Gen >= 7. */
3071 if (devinfo->gen >= 7)
3072 return false;
3073
3074 const fs_live_variables &live = live_analysis.require();
3075
3076 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3077 int ip = next_ip;
3078 next_ip++;
3079
3080 if (inst->opcode != BRW_OPCODE_MOV ||
3081 inst->is_partial_write() ||
3082 inst->dst.file != MRF || inst->src[0].file != VGRF ||
3083 inst->dst.type != inst->src[0].type ||
3084 inst->src[0].abs || inst->src[0].negate ||
3085 !inst->src[0].is_contiguous() ||
3086 inst->src[0].offset % REG_SIZE != 0)
3087 continue;
3088
3089 /* Can't compute-to-MRF this GRF if someone else was going to
3090 * read it later.
3091 */
3092 if (live.vgrf_end[inst->src[0].nr] > ip)
3093 continue;
3094
3095 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
3096 * things that computed the value of all GRFs of the source region. The
3097 * regs_left bitset keeps track of the registers we haven't yet found a
3098 * generating instruction for.
3099 */
3100 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
3101
3102 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3103 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3104 inst->src[0], inst->size_read(0))) {
3105 /* Found the last thing to write our reg we want to turn
3106 * into a compute-to-MRF.
3107 */
3108
3109 /* If this one instruction didn't populate all the
3110 * channels, bail. We might be able to rewrite everything
3111 * that writes that reg, but it would require smarter
3112 * tracking.
3113 */
3114 if (scan_inst->is_partial_write())
3115 break;
3116
3117 /* Handling things not fully contained in the source of the copy
3118 * would need us to understand coalescing out more than one MOV at
3119 * a time.
3120 */
3121 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
3122 inst->src[0], inst->size_read(0)))
3123 break;
3124
3125 /* SEND instructions can't have MRF as a destination. */
3126 if (scan_inst->mlen)
3127 break;
3128
3129 if (devinfo->gen == 6) {
3130 /* gen6 math instructions must have the destination be
3131 * GRF, so no compute-to-MRF for them.
3132 */
3133 if (scan_inst->is_math()) {
3134 break;
3135 }
3136 }
3137
3138 /* Clear the bits for any registers this instruction overwrites. */
3139 regs_left &= ~mask_relative_to(
3140 inst->src[0], scan_inst->dst, scan_inst->size_written);
3141 if (!regs_left)
3142 break;
3143 }
3144
3145 /* We don't handle control flow here. Most computation of
3146 * values that end up in MRFs are shortly before the MRF
3147 * write anyway.
3148 */
3149 if (block->start() == scan_inst)
3150 break;
3151
3152 /* You can't read from an MRF, so if someone else reads our
3153 * MRF's source GRF that we wanted to rewrite, that stops us.
3154 */
3155 bool interfered = false;
3156 for (int i = 0; i < scan_inst->sources; i++) {
3157 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
3158 inst->src[0], inst->size_read(0))) {
3159 interfered = true;
3160 }
3161 }
3162 if (interfered)
3163 break;
3164
3165 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3166 inst->dst, inst->size_written)) {
3167 /* If somebody else writes our MRF here, we can't
3168 * compute-to-MRF before that.
3169 */
3170 break;
3171 }
3172
3173 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
3174 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
3175 inst->dst, inst->size_written)) {
3176 /* Found a SEND instruction, which means that there are
3177 * live values in MRFs from base_mrf to base_mrf +
3178 * scan_inst->mlen - 1. Don't go pushing our MRF write up
3179 * above it.
3180 */
3181 break;
3182 }
3183 }
3184
3185 if (regs_left)
3186 continue;
3187
3188 /* Found all generating instructions of our MRF's source value, so it
3189 * should be safe to rewrite them to point to the MRF directly.
3190 */
3191 regs_left = (1 << regs_read(inst, 0)) - 1;
3192
3193 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3194 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3195 inst->src[0], inst->size_read(0))) {
3196 /* Clear the bits for any registers this instruction overwrites. */
3197 regs_left &= ~mask_relative_to(
3198 inst->src[0], scan_inst->dst, scan_inst->size_written);
3199
3200 const unsigned rel_offset = reg_offset(scan_inst->dst) -
3201 reg_offset(inst->src[0]);
3202
3203 if (inst->dst.nr & BRW_MRF_COMPR4) {
3204 /* Apply the same address transformation done by the hardware
3205 * for COMPR4 MRF writes.
3206 */
3207 assert(rel_offset < 2 * REG_SIZE);
3208 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
3209
3210 /* Clear the COMPR4 bit if the generating instruction is not
3211 * compressed.
3212 */
3213 if (scan_inst->size_written < 2 * REG_SIZE)
3214 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
3215
3216 } else {
3217 /* Calculate the MRF number the result of this instruction is
3218 * ultimately written to.
3219 */
3220 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
3221 }
3222
3223 scan_inst->dst.file = MRF;
3224 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
3225 scan_inst->saturate |= inst->saturate;
3226 if (!regs_left)
3227 break;
3228 }
3229 }
3230
3231 assert(!regs_left);
3232 inst->remove(block);
3233 progress = true;
3234 }
3235
3236 if (progress)
3237 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3238
3239 return progress;
3240 }
3241
3242 /**
3243 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
3244 * flow. We could probably do better here with some form of divergence
3245 * analysis.
3246 */
3247 bool
3248 fs_visitor::eliminate_find_live_channel()
3249 {
3250 bool progress = false;
3251 unsigned depth = 0;
3252
3253 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
3254 /* The optimization below assumes that channel zero is live on thread
3255 * dispatch, which may not be the case if the fixed function dispatches
3256 * threads sparsely.
3257 */
3258 return false;
3259 }
3260
3261 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3262 switch (inst->opcode) {
3263 case BRW_OPCODE_IF:
3264 case BRW_OPCODE_DO:
3265 depth++;
3266 break;
3267
3268 case BRW_OPCODE_ENDIF:
3269 case BRW_OPCODE_WHILE:
3270 depth--;
3271 break;
3272
3273 case FS_OPCODE_DISCARD_JUMP:
3274 /* This can potentially make control flow non-uniform until the end
3275 * of the program.
3276 */
3277 return progress;
3278
3279 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
3280 if (depth == 0) {
3281 inst->opcode = BRW_OPCODE_MOV;
3282 inst->src[0] = brw_imm_ud(0u);
3283 inst->sources = 1;
3284 inst->force_writemask_all = true;
3285 progress = true;
3286 }
3287 break;
3288
3289 default:
3290 break;
3291 }
3292 }
3293
3294 if (progress)
3295 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
3296
3297 return progress;
3298 }
3299
3300 /**
3301 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
3302 * instructions to FS_OPCODE_REP_FB_WRITE.
3303 */
3304 void
3305 fs_visitor::emit_repclear_shader()
3306 {
3307 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3308 int base_mrf = 0;
3309 int color_mrf = base_mrf + 2;
3310 fs_inst *mov;
3311
3312 if (uniforms > 0) {
3313 mov = bld.exec_all().group(4, 0)
3314 .MOV(brw_message_reg(color_mrf),
3315 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
3316 } else {
3317 struct brw_reg reg =
3318 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
3319 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
3320 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
3321
3322 mov = bld.exec_all().group(4, 0)
3323 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
3324 }
3325
3326 fs_inst *write = NULL;
3327 if (key->nr_color_regions == 1) {
3328 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3329 write->saturate = key->clamp_fragment_color;
3330 write->base_mrf = color_mrf;
3331 write->target = 0;
3332 write->header_size = 0;
3333 write->mlen = 1;
3334 } else {
3335 assume(key->nr_color_regions > 0);
3336
3337 struct brw_reg header =
3338 retype(brw_message_reg(base_mrf), BRW_REGISTER_TYPE_UD);
3339 bld.exec_all().group(16, 0)
3340 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3341
3342 for (int i = 0; i < key->nr_color_regions; ++i) {
3343 if (i > 0) {
3344 bld.exec_all().group(1, 0)
3345 .MOV(component(header, 2), brw_imm_ud(i));
3346 }
3347
3348 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3349 write->saturate = key->clamp_fragment_color;
3350 write->base_mrf = base_mrf;
3351 write->target = i;
3352 write->header_size = 2;
3353 write->mlen = 3;
3354 }
3355 }
3356 write->eot = true;
3357 write->last_rt = true;
3358
3359 calculate_cfg();
3360
3361 assign_constant_locations();
3362 assign_curb_setup();
3363
3364 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
3365 if (uniforms > 0) {
3366 assert(mov->src[0].file == FIXED_GRF);
3367 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
3368 }
3369
3370 lower_scoreboard();
3371 }
3372
3373 /**
3374 * Walks through basic blocks, looking for repeated MRF writes and
3375 * removing the later ones.
3376 */
3377 bool
3378 fs_visitor::remove_duplicate_mrf_writes()
3379 {
3380 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
3381 bool progress = false;
3382
3383 /* Need to update the MRF tracking for compressed instructions. */
3384 if (dispatch_width >= 16)
3385 return false;
3386
3387 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3388
3389 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3390 if (inst->is_control_flow()) {
3391 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3392 }
3393
3394 if (inst->opcode == BRW_OPCODE_MOV &&
3395 inst->dst.file == MRF) {
3396 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3397 if (prev_inst && prev_inst->opcode == BRW_OPCODE_MOV &&
3398 inst->dst.equals(prev_inst->dst) &&
3399 inst->src[0].equals(prev_inst->src[0]) &&
3400 inst->saturate == prev_inst->saturate &&
3401 inst->predicate == prev_inst->predicate &&
3402 inst->conditional_mod == prev_inst->conditional_mod &&
3403 inst->exec_size == prev_inst->exec_size) {
3404 inst->remove(block);
3405 progress = true;
3406 continue;
3407 }
3408 }
3409
3410 /* Clear out the last-write records for MRFs that were overwritten. */
3411 if (inst->dst.file == MRF) {
3412 last_mrf_move[inst->dst.nr] = NULL;
3413 }
3414
3415 if (inst->mlen > 0 && inst->base_mrf != -1) {
3416 /* Found a SEND instruction, which will include two or fewer
3417 * implied MRF writes. We could do better here.
3418 */
3419 for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
3420 last_mrf_move[inst->base_mrf + i] = NULL;
3421 }
3422 }
3423
3424 /* Clear out any MRF move records whose sources got overwritten. */
3425 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3426 if (last_mrf_move[i] &&
3427 regions_overlap(inst->dst, inst->size_written,
3428 last_mrf_move[i]->src[0],
3429 last_mrf_move[i]->size_read(0))) {
3430 last_mrf_move[i] = NULL;
3431 }
3432 }
3433
3434 if (inst->opcode == BRW_OPCODE_MOV &&
3435 inst->dst.file == MRF &&
3436 inst->src[0].file != ARF &&
3437 !inst->is_partial_write()) {
3438 last_mrf_move[inst->dst.nr] = inst;
3439 }
3440 }
3441
3442 if (progress)
3443 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3444
3445 return progress;
3446 }
3447
3448 /**
3449 * Rounding modes for conversion instructions are included for each
3450 * conversion, but right now it is a state. So once it is set,
3451 * we don't need to call it again for subsequent calls.
3452 *
3453 * This is useful for vector/matrices conversions, as setting the
3454 * mode once is enough for the full vector/matrix
3455 */
3456 bool
3457 fs_visitor::remove_extra_rounding_modes()
3458 {
3459 bool progress = false;
3460 unsigned execution_mode = this->nir->info.float_controls_execution_mode;
3461
3462 brw_rnd_mode base_mode = BRW_RND_MODE_UNSPECIFIED;
3463 if ((FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 |
3464 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32 |
3465 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64) &
3466 execution_mode)
3467 base_mode = BRW_RND_MODE_RTNE;
3468 if ((FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 |
3469 FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 |
3470 FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64) &
3471 execution_mode)
3472 base_mode = BRW_RND_MODE_RTZ;
3473
3474 foreach_block (block, cfg) {
3475 brw_rnd_mode prev_mode = base_mode;
3476
3477 foreach_inst_in_block_safe (fs_inst, inst, block) {
3478 if (inst->opcode == SHADER_OPCODE_RND_MODE) {
3479 assert(inst->src[0].file == BRW_IMMEDIATE_VALUE);
3480 const brw_rnd_mode mode = (brw_rnd_mode) inst->src[0].d;
3481 if (mode == prev_mode) {
3482 inst->remove(block);
3483 progress = true;
3484 } else {
3485 prev_mode = mode;
3486 }
3487 }
3488 }
3489 }
3490
3491 if (progress)
3492 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3493
3494 return progress;
3495 }
3496
3497 static void
3498 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3499 {
3500 /* Clear the flag for registers that actually got read (as expected). */
3501 for (int i = 0; i < inst->sources; i++) {
3502 int grf;
3503 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3504 grf = inst->src[i].nr;
3505 } else {
3506 continue;
3507 }
3508
3509 if (grf >= first_grf &&
3510 grf < first_grf + grf_len) {
3511 deps[grf - first_grf] = false;
3512 if (inst->exec_size == 16)
3513 deps[grf - first_grf + 1] = false;
3514 }
3515 }
3516 }
3517
3518 /**
3519 * Implements this workaround for the original 965:
3520 *
3521 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3522 * check for post destination dependencies on this instruction, software
3523 * must ensure that there is no destination hazard for the case of ‘write
3524 * followed by a posted write’ shown in the following example.
3525 *
3526 * 1. mov r3 0
3527 * 2. send r3.xy <rest of send instruction>
3528 * 3. mov r2 r3
3529 *
3530 * Due to no post-destination dependency check on the ‘send’, the above
3531 * code sequence could have two instructions (1 and 2) in flight at the
3532 * same time that both consider ‘r3’ as the target of their final writes.
3533 */
3534 void
3535 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3536 fs_inst *inst)
3537 {
3538 int write_len = regs_written(inst);
3539 int first_write_grf = inst->dst.nr;
3540 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3541 assert(write_len < (int)sizeof(needs_dep) - 1);
3542
3543 memset(needs_dep, false, sizeof(needs_dep));
3544 memset(needs_dep, true, write_len);
3545
3546 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3547
3548 /* Walk backwards looking for writes to registers we're writing which
3549 * aren't read since being written. If we hit the start of the program,
3550 * we assume that there are no outstanding dependencies on entry to the
3551 * program.
3552 */
3553 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3554 /* If we hit control flow, assume that there *are* outstanding
3555 * dependencies, and force their cleanup before our instruction.
3556 */
3557 if (block->start() == scan_inst && block->num != 0) {
3558 for (int i = 0; i < write_len; i++) {
3559 if (needs_dep[i])
3560 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3561 first_write_grf + i);
3562 }
3563 return;
3564 }
3565
3566 /* We insert our reads as late as possible on the assumption that any
3567 * instruction but a MOV that might have left us an outstanding
3568 * dependency has more latency than a MOV.
3569 */
3570 if (scan_inst->dst.file == VGRF) {
3571 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3572 int reg = scan_inst->dst.nr + i;
3573
3574 if (reg >= first_write_grf &&
3575 reg < first_write_grf + write_len &&
3576 needs_dep[reg - first_write_grf]) {
3577 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3578 needs_dep[reg - first_write_grf] = false;
3579 if (scan_inst->exec_size == 16)
3580 needs_dep[reg - first_write_grf + 1] = false;
3581 }
3582 }
3583 }
3584
3585 /* Clear the flag for registers that actually got read (as expected). */
3586 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3587
3588 /* Continue the loop only if we haven't resolved all the dependencies */
3589 int i;
3590 for (i = 0; i < write_len; i++) {
3591 if (needs_dep[i])
3592 break;
3593 }
3594 if (i == write_len)
3595 return;
3596 }
3597 }
3598
3599 /**
3600 * Implements this workaround for the original 965:
3601 *
3602 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3603 * used as a destination register until after it has been sourced by an
3604 * instruction with a different destination register.
3605 */
3606 void
3607 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3608 {
3609 int write_len = regs_written(inst);
3610 unsigned first_write_grf = inst->dst.nr;
3611 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3612 assert(write_len < (int)sizeof(needs_dep) - 1);
3613
3614 memset(needs_dep, false, sizeof(needs_dep));
3615 memset(needs_dep, true, write_len);
3616 /* Walk forwards looking for writes to registers we're writing which aren't
3617 * read before being written.
3618 */
3619 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3620 /* If we hit control flow, force resolve all remaining dependencies. */
3621 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3622 for (int i = 0; i < write_len; i++) {
3623 if (needs_dep[i])
3624 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3625 first_write_grf + i);
3626 }
3627 return;
3628 }
3629
3630 /* Clear the flag for registers that actually got read (as expected). */
3631 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3632
3633 /* We insert our reads as late as possible since they're reading the
3634 * result of a SEND, which has massive latency.
3635 */
3636 if (scan_inst->dst.file == VGRF &&
3637 scan_inst->dst.nr >= first_write_grf &&
3638 scan_inst->dst.nr < first_write_grf + write_len &&
3639 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3640 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3641 scan_inst->dst.nr);
3642 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3643 }
3644
3645 /* Continue the loop only if we haven't resolved all the dependencies */
3646 int i;
3647 for (i = 0; i < write_len; i++) {
3648 if (needs_dep[i])
3649 break;
3650 }
3651 if (i == write_len)
3652 return;
3653 }
3654 }
3655
3656 void
3657 fs_visitor::insert_gen4_send_dependency_workarounds()
3658 {
3659 if (devinfo->gen != 4 || devinfo->is_g4x)
3660 return;
3661
3662 bool progress = false;
3663
3664 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3665 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3666 insert_gen4_pre_send_dependency_workarounds(block, inst);
3667 insert_gen4_post_send_dependency_workarounds(block, inst);
3668 progress = true;
3669 }
3670 }
3671
3672 if (progress)
3673 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3674 }
3675
3676 /**
3677 * Turns the generic expression-style uniform pull constant load instruction
3678 * into a hardware-specific series of instructions for loading a pull
3679 * constant.
3680 *
3681 * The expression style allows the CSE pass before this to optimize out
3682 * repeated loads from the same offset, and gives the pre-register-allocation
3683 * scheduling full flexibility, while the conversion to native instructions
3684 * allows the post-register-allocation scheduler the best information
3685 * possible.
3686 *
3687 * Note that execution masking for setting up pull constant loads is special:
3688 * the channels that need to be written are unrelated to the current execution
3689 * mask, since a later instruction will use one of the result channels as a
3690 * source operand for all 8 or 16 of its channels.
3691 */
3692 void
3693 fs_visitor::lower_uniform_pull_constant_loads()
3694 {
3695 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3696 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3697 continue;
3698
3699 if (devinfo->gen >= 7) {
3700 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3701 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3702
3703 ubld.group(8, 0).MOV(payload,
3704 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3705 ubld.group(1, 0).MOV(component(payload, 2),
3706 brw_imm_ud(inst->src[1].ud / 16));
3707
3708 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3709 inst->src[1] = payload;
3710 inst->header_size = 1;
3711 inst->mlen = 1;
3712
3713 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
3714 } else {
3715 /* Before register allocation, we didn't tell the scheduler about the
3716 * MRF we use. We know it's safe to use this MRF because nothing
3717 * else does except for register spill/unspill, which generates and
3718 * uses its MRF within a single IR instruction.
3719 */
3720 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3721 inst->mlen = 1;
3722 }
3723 }
3724 }
3725
3726 bool
3727 fs_visitor::lower_load_payload()
3728 {
3729 bool progress = false;
3730
3731 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3732 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3733 continue;
3734
3735 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3736 assert(inst->saturate == false);
3737 fs_reg dst = inst->dst;
3738
3739 /* Get rid of COMPR4. We'll add it back in if we need it */
3740 if (dst.file == MRF)
3741 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3742
3743 const fs_builder ibld(this, block, inst);
3744 const fs_builder ubld = ibld.exec_all();
3745
3746 for (uint8_t i = 0; i < inst->header_size;) {
3747 /* Number of header GRFs to initialize at once with a single MOV
3748 * instruction.
3749 */
3750 const unsigned n =
3751 (i + 1 < inst->header_size && inst->src[i].stride == 1 &&
3752 inst->src[i + 1].equals(byte_offset(inst->src[i], REG_SIZE))) ?
3753 2 : 1;
3754
3755 if (inst->src[i].file != BAD_FILE)
3756 ubld.group(8 * n, 0).MOV(retype(dst, BRW_REGISTER_TYPE_UD),
3757 retype(inst->src[i], BRW_REGISTER_TYPE_UD));
3758
3759 dst = byte_offset(dst, n * REG_SIZE);
3760 i += n;
3761 }
3762
3763 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3764 inst->exec_size > 8) {
3765 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3766 * a straightforward copy. Instead, the result of the
3767 * LOAD_PAYLOAD is treated as interleaved and the first four
3768 * non-header sources are unpacked as:
3769 *
3770 * m + 0: r0
3771 * m + 1: g0
3772 * m + 2: b0
3773 * m + 3: a0
3774 * m + 4: r1
3775 * m + 5: g1
3776 * m + 6: b1
3777 * m + 7: a1
3778 *
3779 * This is used for gen <= 5 fb writes.
3780 */
3781 assert(inst->exec_size == 16);
3782 assert(inst->header_size + 4 <= inst->sources);
3783 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3784 if (inst->src[i].file != BAD_FILE) {
3785 if (devinfo->has_compr4) {
3786 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3787 compr4_dst.nr |= BRW_MRF_COMPR4;
3788 ibld.MOV(compr4_dst, inst->src[i]);
3789 } else {
3790 /* Platform doesn't have COMPR4. We have to fake it */
3791 fs_reg mov_dst = retype(dst, inst->src[i].type);
3792 ibld.quarter(0).MOV(mov_dst, quarter(inst->src[i], 0));
3793 mov_dst.nr += 4;
3794 ibld.quarter(1).MOV(mov_dst, quarter(inst->src[i], 1));
3795 }
3796 }
3797
3798 dst.nr++;
3799 }
3800
3801 /* The loop above only ever incremented us through the first set
3802 * of 4 registers. However, thanks to the magic of COMPR4, we
3803 * actually wrote to the first 8 registers, so we need to take
3804 * that into account now.
3805 */
3806 dst.nr += 4;
3807
3808 /* The COMPR4 code took care of the first 4 sources. We'll let
3809 * the regular path handle any remaining sources. Yes, we are
3810 * modifying the instruction but we're about to delete it so
3811 * this really doesn't hurt anything.
3812 */
3813 inst->header_size += 4;
3814 }
3815
3816 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3817 if (inst->src[i].file != BAD_FILE) {
3818 dst.type = inst->src[i].type;
3819 ibld.MOV(dst, inst->src[i]);
3820 } else {
3821 dst.type = BRW_REGISTER_TYPE_UD;
3822 }
3823 dst = offset(dst, ibld, 1);
3824 }
3825
3826 inst->remove(block);
3827 progress = true;
3828 }
3829
3830 if (progress)
3831 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3832
3833 return progress;
3834 }
3835
3836 void
3837 fs_visitor::lower_mul_dword_inst(fs_inst *inst, bblock_t *block)
3838 {
3839 const fs_builder ibld(this, block, inst);
3840
3841 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3842 if (inst->src[1].file == IMM &&
3843 (( ud && inst->src[1].ud <= UINT16_MAX) ||
3844 (!ud && inst->src[1].d <= INT16_MAX && inst->src[1].d >= INT16_MIN))) {
3845 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3846 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3847 * src1 are used.
3848 *
3849 * If multiplying by an immediate value that fits in 16-bits, do a
3850 * single MUL instruction with that value in the proper location.
3851 */
3852 if (devinfo->gen < 7) {
3853 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8), inst->dst.type);
3854 ibld.MOV(imm, inst->src[1]);
3855 ibld.MUL(inst->dst, imm, inst->src[0]);
3856 } else {
3857 ibld.MUL(inst->dst, inst->src[0],
3858 ud ? brw_imm_uw(inst->src[1].ud)
3859 : brw_imm_w(inst->src[1].d));
3860 }
3861 } else {
3862 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3863 * do 32-bit integer multiplication in one instruction, but instead
3864 * must do a sequence (which actually calculates a 64-bit result):
3865 *
3866 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3867 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3868 * mov(8) g2<1>D acc0<8,8,1>D
3869 *
3870 * But on Gen > 6, the ability to use second accumulator register
3871 * (acc1) for non-float data types was removed, preventing a simple
3872 * implementation in SIMD16. A 16-channel result can be calculated by
3873 * executing the three instructions twice in SIMD8, once with quarter
3874 * control of 1Q for the first eight channels and again with 2Q for
3875 * the second eight channels.
3876 *
3877 * Which accumulator register is implicitly accessed (by AccWrEnable
3878 * for instance) is determined by the quarter control. Unfortunately
3879 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3880 * implicit accumulator access by an instruction with 2Q will access
3881 * acc1 regardless of whether the data type is usable in acc1.
3882 *
3883 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3884 * integer data types.
3885 *
3886 * Since we only want the low 32-bits of the result, we can do two
3887 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3888 * adjust the high result and add them (like the mach is doing):
3889 *
3890 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3891 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3892 * shl(8) g9<1>D g8<8,8,1>D 16D
3893 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3894 *
3895 * We avoid the shl instruction by realizing that we only want to add
3896 * the low 16-bits of the "high" result to the high 16-bits of the
3897 * "low" result and using proper regioning on the add:
3898 *
3899 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3900 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3901 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3902 *
3903 * Since it does not use the (single) accumulator register, we can
3904 * schedule multi-component multiplications much better.
3905 */
3906
3907 bool needs_mov = false;
3908 fs_reg orig_dst = inst->dst;
3909
3910 /* Get a new VGRF for the "low" 32x16-bit multiplication result if
3911 * reusing the original destination is impossible due to hardware
3912 * restrictions, source/destination overlap, or it being the null
3913 * register.
3914 */
3915 fs_reg low = inst->dst;
3916 if (orig_dst.is_null() || orig_dst.file == MRF ||
3917 regions_overlap(inst->dst, inst->size_written,
3918 inst->src[0], inst->size_read(0)) ||
3919 regions_overlap(inst->dst, inst->size_written,
3920 inst->src[1], inst->size_read(1)) ||
3921 inst->dst.stride >= 4) {
3922 needs_mov = true;
3923 low = fs_reg(VGRF, alloc.allocate(regs_written(inst)),
3924 inst->dst.type);
3925 }
3926
3927 /* Get a new VGRF but keep the same stride as inst->dst */
3928 fs_reg high(VGRF, alloc.allocate(regs_written(inst)), inst->dst.type);
3929 high.stride = inst->dst.stride;
3930 high.offset = inst->dst.offset % REG_SIZE;
3931
3932 if (devinfo->gen >= 7) {
3933 /* From GEN:BUG:1604601757:
3934 *
3935 * "When multiplying a DW and any lower precision integer, source modifier
3936 * is not supported."
3937 *
3938 * An unsupported negate modifier on src[1] would ordinarily be
3939 * lowered by the subsequent lower_regioning pass. In this case that
3940 * pass would spawn another dword multiply. Instead, lower the
3941 * modifier first.
3942 */
3943 const bool source_mods_unsupported = (devinfo->gen >= 12);
3944
3945 if (inst->src[1].abs || (inst->src[1].negate &&
3946 source_mods_unsupported))
3947 lower_src_modifiers(this, block, inst, 1);
3948
3949 if (inst->src[1].file == IMM) {
3950 ibld.MUL(low, inst->src[0],
3951 brw_imm_uw(inst->src[1].ud & 0xffff));
3952 ibld.MUL(high, inst->src[0],
3953 brw_imm_uw(inst->src[1].ud >> 16));
3954 } else {
3955 ibld.MUL(low, inst->src[0],
3956 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3957 ibld.MUL(high, inst->src[0],
3958 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3959 }
3960 } else {
3961 if (inst->src[0].abs)
3962 lower_src_modifiers(this, block, inst, 0);
3963
3964 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3965 inst->src[1]);
3966 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3967 inst->src[1]);
3968 }
3969
3970 ibld.ADD(subscript(low, BRW_REGISTER_TYPE_UW, 1),
3971 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3972 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3973
3974 if (needs_mov || inst->conditional_mod)
3975 set_condmod(inst->conditional_mod, ibld.MOV(orig_dst, low));
3976 }
3977 }
3978
3979 void
3980 fs_visitor::lower_mul_qword_inst(fs_inst *inst, bblock_t *block)
3981 {
3982 const fs_builder ibld(this, block, inst);
3983
3984 /* Considering two 64-bit integers ab and cd where each letter ab
3985 * corresponds to 32 bits, we get a 128-bit result WXYZ. We * cd
3986 * only need to provide the YZ part of the result. -------
3987 * BD
3988 * Only BD needs to be 64 bits. For AD and BC we only care + AD
3989 * about the lower 32 bits (since they are part of the upper + BC
3990 * 32 bits of our result). AC is not needed since it starts + AC
3991 * on the 65th bit of the result. -------
3992 * WXYZ
3993 */
3994 unsigned int q_regs = regs_written(inst);
3995 unsigned int d_regs = (q_regs + 1) / 2;
3996
3997 fs_reg bd(VGRF, alloc.allocate(q_regs), BRW_REGISTER_TYPE_UQ);
3998 fs_reg ad(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
3999 fs_reg bc(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4000
4001 /* Here we need the full 64 bit result for 32b * 32b. */
4002 if (devinfo->has_integer_dword_mul) {
4003 ibld.MUL(bd, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4004 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4005 } else {
4006 fs_reg bd_high(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4007 fs_reg bd_low(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4008 fs_reg acc = retype(brw_acc_reg(inst->exec_size), BRW_REGISTER_TYPE_UD);
4009
4010 fs_inst *mul = ibld.MUL(acc,
4011 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4012 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
4013 mul->writes_accumulator = true;
4014
4015 ibld.MACH(bd_high, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4016 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4017 ibld.MOV(bd_low, acc);
4018
4019 ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 0), bd_low);
4020 ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 1), bd_high);
4021 }
4022
4023 ibld.MUL(ad, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1),
4024 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4025 ibld.MUL(bc, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4026 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1));
4027
4028 ibld.ADD(ad, ad, bc);
4029 ibld.ADD(subscript(bd, BRW_REGISTER_TYPE_UD, 1),
4030 subscript(bd, BRW_REGISTER_TYPE_UD, 1), ad);
4031
4032 ibld.MOV(inst->dst, bd);
4033 }
4034
4035 void
4036 fs_visitor::lower_mulh_inst(fs_inst *inst, bblock_t *block)
4037 {
4038 const fs_builder ibld(this, block, inst);
4039
4040 /* According to the BDW+ BSpec page for the "Multiply Accumulate
4041 * High" instruction:
4042 *
4043 * "An added preliminary mov is required for source modification on
4044 * src1:
4045 * mov (8) r3.0<1>:d -r3<8;8,1>:d
4046 * mul (8) acc0:d r2.0<8;8,1>:d r3.0<16;8,2>:uw
4047 * mach (8) r5.0<1>:d r2.0<8;8,1>:d r3.0<8;8,1>:d"
4048 */
4049 if (devinfo->gen >= 8 && (inst->src[1].negate || inst->src[1].abs))
4050 lower_src_modifiers(this, block, inst, 1);
4051
4052 /* Should have been lowered to 8-wide. */
4053 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
4054 const fs_reg acc = retype(brw_acc_reg(inst->exec_size), inst->dst.type);
4055 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
4056 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
4057
4058 if (devinfo->gen >= 8) {
4059 /* Until Gen8, integer multiplies read 32-bits from one source,
4060 * and 16-bits from the other, and relying on the MACH instruction
4061 * to generate the high bits of the result.
4062 *
4063 * On Gen8, the multiply instruction does a full 32x32-bit
4064 * multiply, but in order to do a 64-bit multiply we can simulate
4065 * the previous behavior and then use a MACH instruction.
4066 */
4067 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
4068 mul->src[1].type == BRW_REGISTER_TYPE_UD);
4069 mul->src[1].type = BRW_REGISTER_TYPE_UW;
4070 mul->src[1].stride *= 2;
4071
4072 if (mul->src[1].file == IMM) {
4073 mul->src[1] = brw_imm_uw(mul->src[1].ud);
4074 }
4075 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
4076 inst->group > 0) {
4077 /* Among other things the quarter control bits influence which
4078 * accumulator register is used by the hardware for instructions
4079 * that access the accumulator implicitly (e.g. MACH). A
4080 * second-half instruction would normally map to acc1, which
4081 * doesn't exist on Gen7 and up (the hardware does emulate it for
4082 * floating-point instructions *only* by taking advantage of the
4083 * extra precision of acc0 not normally used for floating point
4084 * arithmetic).
4085 *
4086 * HSW and up are careful enough not to try to access an
4087 * accumulator register that doesn't exist, but on earlier Gen7
4088 * hardware we need to make sure that the quarter control bits are
4089 * zero to avoid non-deterministic behaviour and emit an extra MOV
4090 * to get the result masked correctly according to the current
4091 * channel enables.
4092 */
4093 mach->group = 0;
4094 mach->force_writemask_all = true;
4095 mach->dst = ibld.vgrf(inst->dst.type);
4096 ibld.MOV(inst->dst, mach->dst);
4097 }
4098 }
4099
4100 bool
4101 fs_visitor::lower_integer_multiplication()
4102 {
4103 bool progress = false;
4104
4105 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4106 if (inst->opcode == BRW_OPCODE_MUL) {
4107 /* If the instruction is already in a form that does not need lowering,
4108 * return early.
4109 */
4110 if (devinfo->gen >= 7) {
4111 if (type_sz(inst->src[1].type) < 4 && type_sz(inst->src[0].type) <= 4)
4112 continue;
4113 } else {
4114 if (type_sz(inst->src[0].type) < 4 && type_sz(inst->src[1].type) <= 4)
4115 continue;
4116 }
4117
4118 if ((inst->dst.type == BRW_REGISTER_TYPE_Q ||
4119 inst->dst.type == BRW_REGISTER_TYPE_UQ) &&
4120 (inst->src[0].type == BRW_REGISTER_TYPE_Q ||
4121 inst->src[0].type == BRW_REGISTER_TYPE_UQ) &&
4122 (inst->src[1].type == BRW_REGISTER_TYPE_Q ||
4123 inst->src[1].type == BRW_REGISTER_TYPE_UQ)) {
4124 lower_mul_qword_inst(inst, block);
4125 inst->remove(block);
4126 progress = true;
4127 } else if (!inst->dst.is_accumulator() &&
4128 (inst->dst.type == BRW_REGISTER_TYPE_D ||
4129 inst->dst.type == BRW_REGISTER_TYPE_UD) &&
4130 !devinfo->has_integer_dword_mul) {
4131 lower_mul_dword_inst(inst, block);
4132 inst->remove(block);
4133 progress = true;
4134 }
4135 } else if (inst->opcode == SHADER_OPCODE_MULH) {
4136 lower_mulh_inst(inst, block);
4137 inst->remove(block);
4138 progress = true;
4139 }
4140
4141 }
4142
4143 if (progress)
4144 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
4145
4146 return progress;
4147 }
4148
4149 bool
4150 fs_visitor::lower_minmax()
4151 {
4152 assert(devinfo->gen < 6);
4153
4154 bool progress = false;
4155
4156 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4157 const fs_builder ibld(this, block, inst);
4158
4159 if (inst->opcode == BRW_OPCODE_SEL &&
4160 inst->predicate == BRW_PREDICATE_NONE) {
4161 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
4162 * the original SEL.L/GE instruction
4163 */
4164 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
4165 inst->conditional_mod);
4166 inst->predicate = BRW_PREDICATE_NORMAL;
4167 inst->conditional_mod = BRW_CONDITIONAL_NONE;
4168
4169 progress = true;
4170 }
4171 }
4172
4173 if (progress)
4174 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
4175
4176 return progress;
4177 }
4178
4179 bool
4180 fs_visitor::lower_sub_sat()
4181 {
4182 bool progress = false;
4183
4184 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4185 const fs_builder ibld(this, block, inst);
4186
4187 if (inst->opcode == SHADER_OPCODE_USUB_SAT ||
4188 inst->opcode == SHADER_OPCODE_ISUB_SAT) {
4189 /* The fundamental problem is the hardware performs source negation
4190 * at the bit width of the source. If the source is 0x80000000D, the
4191 * negation is 0x80000000D. As a result, subtractSaturate(0,
4192 * 0x80000000) will produce 0x80000000 instead of 0x7fffffff. There
4193 * are at least three ways to resolve this:
4194 *
4195 * 1. Use the accumulator for the negated source. The accumulator is
4196 * 33 bits, so our source 0x80000000 is sign-extended to
4197 * 0x1800000000. The negation of which is 0x080000000. This
4198 * doesn't help for 64-bit integers (which are already bigger than
4199 * 33 bits). There are also only 8 accumulators, so SIMD16 or
4200 * SIMD32 instructions would have to be split into multiple SIMD8
4201 * instructions.
4202 *
4203 * 2. Use slightly different math. For any n-bit value x, we know (x
4204 * >> 1) != -(x >> 1). We can use this fact to only do
4205 * subtractions involving (x >> 1). subtractSaturate(a, b) ==
4206 * subtractSaturate(subtractSaturate(a, (b >> 1)), b - (b >> 1)).
4207 *
4208 * 3. For unsigned sources, it is sufficient to replace the
4209 * subtractSaturate with (a > b) ? a - b : 0.
4210 *
4211 * It may also be possible to use the SUBB instruction. This
4212 * implicitly writes the accumulator, so it could only be used in the
4213 * same situations as #1 above. It is further limited by only
4214 * allowing UD sources.
4215 */
4216 if (inst->exec_size == 8 && inst->src[0].type != BRW_REGISTER_TYPE_Q &&
4217 inst->src[0].type != BRW_REGISTER_TYPE_UQ) {
4218 fs_reg acc(ARF, BRW_ARF_ACCUMULATOR, inst->src[1].type);
4219
4220 ibld.MOV(acc, inst->src[1]);
4221 fs_inst *add = ibld.ADD(inst->dst, acc, inst->src[0]);
4222 add->saturate = true;
4223 add->src[0].negate = true;
4224 } else if (inst->opcode == SHADER_OPCODE_ISUB_SAT) {
4225 /* tmp = src1 >> 1;
4226 * dst = add.sat(add.sat(src0, -tmp), -(src1 - tmp));
4227 */
4228 fs_reg tmp1 = ibld.vgrf(inst->src[0].type);
4229 fs_reg tmp2 = ibld.vgrf(inst->src[0].type);
4230 fs_reg tmp3 = ibld.vgrf(inst->src[0].type);
4231 fs_inst *add;
4232
4233 ibld.SHR(tmp1, inst->src[1], brw_imm_d(1));
4234
4235 add = ibld.ADD(tmp2, inst->src[1], tmp1);
4236 add->src[1].negate = true;
4237
4238 add = ibld.ADD(tmp3, inst->src[0], tmp1);
4239 add->src[1].negate = true;
4240 add->saturate = true;
4241
4242 add = ibld.ADD(inst->dst, tmp3, tmp2);
4243 add->src[1].negate = true;
4244 add->saturate = true;
4245 } else {
4246 /* a > b ? a - b : 0 */
4247 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
4248 BRW_CONDITIONAL_G);
4249
4250 fs_inst *add = ibld.ADD(inst->dst, inst->src[0], inst->src[1]);
4251 add->src[1].negate = !add->src[1].negate;
4252
4253 ibld.SEL(inst->dst, inst->dst, brw_imm_ud(0))
4254 ->predicate = BRW_PREDICATE_NORMAL;
4255 }
4256
4257 inst->remove(block);
4258 progress = true;
4259 }
4260 }
4261
4262 if (progress)
4263 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
4264
4265 return progress;
4266 }
4267
4268 /**
4269 * Get the mask of SIMD channels enabled during dispatch and not yet disabled
4270 * by discard. Due to the layout of the sample mask in the fragment shader
4271 * thread payload, \p bld is required to have a dispatch_width() not greater
4272 * than 16 for fragment shaders.
4273 */
4274 static fs_reg
4275 sample_mask_reg(const fs_builder &bld)
4276 {
4277 const fs_visitor *v = static_cast<const fs_visitor *>(bld.shader);
4278
4279 if (v->stage != MESA_SHADER_FRAGMENT) {
4280 return brw_imm_ud(0xffffffff);
4281 } else if (brw_wm_prog_data(v->stage_prog_data)->uses_kill) {
4282 assert(bld.dispatch_width() <= 16);
4283 return brw_flag_subreg(sample_mask_flag_subreg(v) + bld.group() / 16);
4284 } else {
4285 assert(v->devinfo->gen >= 6 && bld.dispatch_width() <= 16);
4286 return retype(brw_vec1_grf((bld.group() >= 16 ? 2 : 1), 7),
4287 BRW_REGISTER_TYPE_UW);
4288 }
4289 }
4290
4291 static void
4292 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
4293 fs_reg *dst, fs_reg color, unsigned components)
4294 {
4295 if (key->clamp_fragment_color) {
4296 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
4297 assert(color.type == BRW_REGISTER_TYPE_F);
4298
4299 for (unsigned i = 0; i < components; i++)
4300 set_saturate(true,
4301 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
4302
4303 color = tmp;
4304 }
4305
4306 for (unsigned i = 0; i < components; i++)
4307 dst[i] = offset(color, bld, i);
4308 }
4309
4310 uint32_t
4311 brw_fb_write_msg_control(const fs_inst *inst,
4312 const struct brw_wm_prog_data *prog_data)
4313 {
4314 uint32_t mctl;
4315
4316 if (inst->opcode == FS_OPCODE_REP_FB_WRITE) {
4317 assert(inst->group == 0 && inst->exec_size == 16);
4318 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
4319 } else if (prog_data->dual_src_blend) {
4320 assert(inst->exec_size == 8);
4321
4322 if (inst->group % 16 == 0)
4323 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
4324 else if (inst->group % 16 == 8)
4325 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
4326 else
4327 unreachable("Invalid dual-source FB write instruction group");
4328 } else {
4329 assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));
4330
4331 if (inst->exec_size == 16)
4332 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
4333 else if (inst->exec_size == 8)
4334 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
4335 else
4336 unreachable("Invalid FB write execution size");
4337 }
4338
4339 return mctl;
4340 }
4341
4342 static void
4343 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
4344 const struct brw_wm_prog_data *prog_data,
4345 const brw_wm_prog_key *key,
4346 const fs_visitor::thread_payload &payload)
4347 {
4348 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
4349 const gen_device_info *devinfo = bld.shader->devinfo;
4350 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
4351 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
4352 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
4353 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
4354 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
4355 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
4356 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
4357 const unsigned components =
4358 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
4359
4360 assert(inst->target != 0 || src0_alpha.file == BAD_FILE);
4361
4362 /* We can potentially have a message length of up to 15, so we have to set
4363 * base_mrf to either 0 or 1 in order to fit in m0..m15.
4364 */
4365 fs_reg sources[15];
4366 int header_size = 2, payload_header_size;
4367 unsigned length = 0;
4368
4369 if (devinfo->gen < 6) {
4370 /* TODO: Support SIMD32 on gen4-5 */
4371 assert(bld.group() < 16);
4372
4373 /* For gen4-5, we always have a header consisting of g0 and g1. We have
4374 * an implied MOV from g0,g1 to the start of the message. The MOV from
4375 * g0 is handled by the hardware and the MOV from g1 is provided by the
4376 * generator. This is required because, on gen4-5, the generator may
4377 * generate two write messages with different message lengths in order
4378 * to handle AA data properly.
4379 *
4380 * Also, since the pixel mask goes in the g0 portion of the message and
4381 * since render target writes are the last thing in the shader, we write
4382 * the pixel mask directly into g0 and it will get copied as part of the
4383 * implied write.
4384 */
4385 if (prog_data->uses_kill) {
4386 bld.exec_all().group(1, 0)
4387 .MOV(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW),
4388 sample_mask_reg(bld));
4389 }
4390
4391 assert(length == 0);
4392 length = 2;
4393 } else if ((devinfo->gen <= 7 && !devinfo->is_haswell &&
4394 prog_data->uses_kill) ||
4395 (devinfo->gen < 11 &&
4396 (color1.file != BAD_FILE || key->nr_color_regions > 1))) {
4397 /* From the Sandy Bridge PRM, volume 4, page 198:
4398 *
4399 * "Dispatched Pixel Enables. One bit per pixel indicating
4400 * which pixels were originally enabled when the thread was
4401 * dispatched. This field is only required for the end-of-
4402 * thread message and on all dual-source messages."
4403 */
4404 const fs_builder ubld = bld.exec_all().group(8, 0);
4405
4406 fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4407 if (bld.group() < 16) {
4408 /* The header starts off as g0 and g1 for the first half */
4409 ubld.group(16, 0).MOV(header, retype(brw_vec8_grf(0, 0),
4410 BRW_REGISTER_TYPE_UD));
4411 } else {
4412 /* The header starts off as g0 and g2 for the second half */
4413 assert(bld.group() < 32);
4414 const fs_reg header_sources[2] = {
4415 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD),
4416 retype(brw_vec8_grf(2, 0), BRW_REGISTER_TYPE_UD),
4417 };
4418 ubld.LOAD_PAYLOAD(header, header_sources, 2, 0);
4419
4420 /* Gen12 will require additional fix-ups if we ever hit this path. */
4421 assert(devinfo->gen < 12);
4422 }
4423
4424 uint32_t g00_bits = 0;
4425
4426 /* Set "Source0 Alpha Present to RenderTarget" bit in message
4427 * header.
4428 */
4429 if (src0_alpha.file != BAD_FILE)
4430 g00_bits |= 1 << 11;
4431
4432 /* Set computes stencil to render target */
4433 if (prog_data->computed_stencil)
4434 g00_bits |= 1 << 14;
4435
4436 if (g00_bits) {
4437 /* OR extra bits into g0.0 */
4438 ubld.group(1, 0).OR(component(header, 0),
4439 retype(brw_vec1_grf(0, 0),
4440 BRW_REGISTER_TYPE_UD),
4441 brw_imm_ud(g00_bits));
4442 }
4443
4444 /* Set the render target index for choosing BLEND_STATE. */
4445 if (inst->target > 0) {
4446 ubld.group(1, 0).MOV(component(header, 2), brw_imm_ud(inst->target));
4447 }
4448
4449 if (prog_data->uses_kill) {
4450 ubld.group(1, 0).MOV(retype(component(header, 15),
4451 BRW_REGISTER_TYPE_UW),
4452 sample_mask_reg(bld));
4453 }
4454
4455 assert(length == 0);
4456 sources[0] = header;
4457 sources[1] = horiz_offset(header, 8);
4458 length = 2;
4459 }
4460 assert(length == 0 || length == 2);
4461 header_size = length;
4462
4463 if (payload.aa_dest_stencil_reg[0]) {
4464 assert(inst->group < 16);
4465 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
4466 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
4467 .MOV(sources[length],
4468 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg[0], 0)));
4469 length++;
4470 }
4471
4472 if (src0_alpha.file != BAD_FILE) {
4473 for (unsigned i = 0; i < bld.dispatch_width() / 8; i++) {
4474 const fs_builder &ubld = bld.exec_all().group(8, i)
4475 .annotate("FB write src0 alpha");
4476 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_F);
4477 ubld.MOV(tmp, horiz_offset(src0_alpha, i * 8));
4478 setup_color_payload(ubld, key, &sources[length], tmp, 1);
4479 length++;
4480 }
4481 }
4482
4483 if (sample_mask.file != BAD_FILE) {
4484 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
4485 BRW_REGISTER_TYPE_UD);
4486
4487 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
4488 * relevant. Since it's unsigned single words one vgrf is always
4489 * 16-wide, but only the lower or higher 8 channels will be used by the
4490 * hardware when doing a SIMD8 write depending on whether we have
4491 * selected the subspans for the first or second half respectively.
4492 */
4493 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
4494 sample_mask.type = BRW_REGISTER_TYPE_UW;
4495 sample_mask.stride *= 2;
4496
4497 bld.exec_all().annotate("FB write oMask")
4498 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
4499 inst->group % 16),
4500 sample_mask);
4501 length++;
4502 }
4503
4504 payload_header_size = length;
4505
4506 setup_color_payload(bld, key, &sources[length], color0, components);
4507 length += 4;
4508
4509 if (color1.file != BAD_FILE) {
4510 setup_color_payload(bld, key, &sources[length], color1, components);
4511 length += 4;
4512 }
4513
4514 if (src_depth.file != BAD_FILE) {
4515 sources[length] = src_depth;
4516 length++;
4517 }
4518
4519 if (dst_depth.file != BAD_FILE) {
4520 sources[length] = dst_depth;
4521 length++;
4522 }
4523
4524 if (src_stencil.file != BAD_FILE) {
4525 assert(devinfo->gen >= 9);
4526 assert(bld.dispatch_width() == 8);
4527
4528 /* XXX: src_stencil is only available on gen9+. dst_depth is never
4529 * available on gen9+. As such it's impossible to have both enabled at the
4530 * same time and therefore length cannot overrun the array.
4531 */
4532 assert(length < 15);
4533
4534 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4535 bld.exec_all().annotate("FB write OS")
4536 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
4537 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
4538 length++;
4539 }
4540
4541 fs_inst *load;
4542 if (devinfo->gen >= 7) {
4543 /* Send from the GRF */
4544 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
4545 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
4546 payload.nr = bld.shader->alloc.allocate(regs_written(load));
4547 load->dst = payload;
4548
4549 uint32_t msg_ctl = brw_fb_write_msg_control(inst, prog_data);
4550 uint32_t ex_desc = 0;
4551
4552 inst->desc =
4553 (inst->group / 16) << 11 | /* rt slot group */
4554 brw_dp_write_desc(devinfo, inst->target, msg_ctl,
4555 GEN6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE,
4556 inst->last_rt, false);
4557
4558 if (devinfo->gen >= 11) {
4559 /* Set the "Render Target Index" and "Src0 Alpha Present" fields
4560 * in the extended message descriptor, in lieu of using a header.
4561 */
4562 ex_desc = inst->target << 12 | (src0_alpha.file != BAD_FILE) << 15;
4563
4564 if (key->nr_color_regions == 0)
4565 ex_desc |= 1 << 20; /* Null Render Target */
4566 }
4567
4568 inst->opcode = SHADER_OPCODE_SEND;
4569 inst->resize_sources(3);
4570 inst->sfid = GEN6_SFID_DATAPORT_RENDER_CACHE;
4571 inst->src[0] = brw_imm_ud(inst->desc);
4572 inst->src[1] = brw_imm_ud(ex_desc);
4573 inst->src[2] = payload;
4574 inst->mlen = regs_written(load);
4575 inst->ex_mlen = 0;
4576 inst->header_size = header_size;
4577 inst->check_tdr = true;
4578 inst->send_has_side_effects = true;
4579 } else {
4580 /* Send from the MRF */
4581 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
4582 sources, length, payload_header_size);
4583
4584 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
4585 * will do this for us if we just give it a COMPR4 destination.
4586 */
4587 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
4588 load->dst.nr |= BRW_MRF_COMPR4;
4589
4590 if (devinfo->gen < 6) {
4591 /* Set up src[0] for the implied MOV from grf0-1 */
4592 inst->resize_sources(1);
4593 inst->src[0] = brw_vec8_grf(0, 0);
4594 } else {
4595 inst->resize_sources(0);
4596 }
4597 inst->base_mrf = 1;
4598 inst->opcode = FS_OPCODE_FB_WRITE;
4599 inst->mlen = regs_written(load);
4600 inst->header_size = header_size;
4601 }
4602 }
4603
4604 static void
4605 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
4606 {
4607 const gen_device_info *devinfo = bld.shader->devinfo;
4608 const fs_builder &ubld = bld.exec_all().group(8, 0);
4609 const unsigned length = 2;
4610 const fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD, length);
4611
4612 if (bld.group() < 16) {
4613 ubld.group(16, 0).MOV(header, retype(brw_vec8_grf(0, 0),
4614 BRW_REGISTER_TYPE_UD));
4615 } else {
4616 assert(bld.group() < 32);
4617 const fs_reg header_sources[] = {
4618 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD),
4619 retype(brw_vec8_grf(2, 0), BRW_REGISTER_TYPE_UD)
4620 };
4621 ubld.LOAD_PAYLOAD(header, header_sources, ARRAY_SIZE(header_sources), 0);
4622
4623 if (devinfo->gen >= 12) {
4624 /* On Gen12 the Viewport and Render Target Array Index fields (AKA
4625 * Poly 0 Info) are provided in r1.1 instead of r0.0, and the render
4626 * target message header format was updated accordingly -- However
4627 * the updated format only works for the lower 16 channels in a
4628 * SIMD32 thread, since the higher 16 channels want the subspan data
4629 * from r2 instead of r1, so we need to copy over the contents of
4630 * r1.1 in order to fix things up.
4631 */
4632 ubld.group(1, 0).MOV(component(header, 9),
4633 retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_UD));
4634 }
4635 }
4636
4637 inst->resize_sources(1);
4638 inst->src[0] = header;
4639 inst->opcode = FS_OPCODE_FB_READ;
4640 inst->mlen = length;
4641 inst->header_size = length;
4642 }
4643
4644 static void
4645 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
4646 const fs_reg &coordinate,
4647 const fs_reg &shadow_c,
4648 const fs_reg &lod, const fs_reg &lod2,
4649 const fs_reg &surface,
4650 const fs_reg &sampler,
4651 unsigned coord_components,
4652 unsigned grad_components)
4653 {
4654 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
4655 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
4656 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
4657 fs_reg msg_end = msg_begin;
4658
4659 /* g0 header. */
4660 msg_end = offset(msg_end, bld.group(8, 0), 1);
4661
4662 for (unsigned i = 0; i < coord_components; i++)
4663 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
4664 offset(coordinate, bld, i));
4665
4666 msg_end = offset(msg_end, bld, coord_components);
4667
4668 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
4669 * require all three components to be present and zero if they are unused.
4670 */
4671 if (coord_components > 0 &&
4672 (has_lod || shadow_c.file != BAD_FILE ||
4673 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
4674 assert(coord_components <= 3);
4675 for (unsigned i = 0; i < 3 - coord_components; i++)
4676 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
4677
4678 msg_end = offset(msg_end, bld, 3 - coord_components);
4679 }
4680
4681 if (op == SHADER_OPCODE_TXD) {
4682 /* TXD unsupported in SIMD16 mode. */
4683 assert(bld.dispatch_width() == 8);
4684
4685 /* the slots for u and v are always present, but r is optional */
4686 if (coord_components < 2)
4687 msg_end = offset(msg_end, bld, 2 - coord_components);
4688
4689 /* P = u, v, r
4690 * dPdx = dudx, dvdx, drdx
4691 * dPdy = dudy, dvdy, drdy
4692 *
4693 * 1-arg: Does not exist.
4694 *
4695 * 2-arg: dudx dvdx dudy dvdy
4696 * dPdx.x dPdx.y dPdy.x dPdy.y
4697 * m4 m5 m6 m7
4698 *
4699 * 3-arg: dudx dvdx drdx dudy dvdy drdy
4700 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
4701 * m5 m6 m7 m8 m9 m10
4702 */
4703 for (unsigned i = 0; i < grad_components; i++)
4704 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
4705
4706 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4707
4708 for (unsigned i = 0; i < grad_components; i++)
4709 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
4710
4711 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4712 }
4713
4714 if (has_lod) {
4715 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
4716 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
4717 */
4718 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
4719 bld.dispatch_width() == 16);
4720
4721 const brw_reg_type type =
4722 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
4723 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
4724 bld.MOV(retype(msg_end, type), lod);
4725 msg_end = offset(msg_end, bld, 1);
4726 }
4727
4728 if (shadow_c.file != BAD_FILE) {
4729 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
4730 /* There's no plain shadow compare message, so we use shadow
4731 * compare with a bias of 0.0.
4732 */
4733 bld.MOV(msg_end, brw_imm_f(0.0f));
4734 msg_end = offset(msg_end, bld, 1);
4735 }
4736
4737 bld.MOV(msg_end, shadow_c);
4738 msg_end = offset(msg_end, bld, 1);
4739 }
4740
4741 inst->opcode = op;
4742 inst->src[0] = reg_undef;
4743 inst->src[1] = surface;
4744 inst->src[2] = sampler;
4745 inst->resize_sources(3);
4746 inst->base_mrf = msg_begin.nr;
4747 inst->mlen = msg_end.nr - msg_begin.nr;
4748 inst->header_size = 1;
4749 }
4750
4751 static void
4752 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
4753 const fs_reg &coordinate,
4754 const fs_reg &shadow_c,
4755 const fs_reg &lod, const fs_reg &lod2,
4756 const fs_reg &sample_index,
4757 const fs_reg &surface,
4758 const fs_reg &sampler,
4759 unsigned coord_components,
4760 unsigned grad_components)
4761 {
4762 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
4763 fs_reg msg_coords = message;
4764 unsigned header_size = 0;
4765
4766 if (inst->offset != 0) {
4767 /* The offsets set up by the visitor are in the m1 header, so we can't
4768 * go headerless.
4769 */
4770 header_size = 1;
4771 message.nr--;
4772 }
4773
4774 for (unsigned i = 0; i < coord_components; i++)
4775 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
4776 offset(coordinate, bld, i));
4777
4778 fs_reg msg_end = offset(msg_coords, bld, coord_components);
4779 fs_reg msg_lod = offset(msg_coords, bld, 4);
4780
4781 if (shadow_c.file != BAD_FILE) {
4782 fs_reg msg_shadow = msg_lod;
4783 bld.MOV(msg_shadow, shadow_c);
4784 msg_lod = offset(msg_shadow, bld, 1);
4785 msg_end = msg_lod;
4786 }
4787
4788 switch (op) {
4789 case SHADER_OPCODE_TXL:
4790 case FS_OPCODE_TXB:
4791 bld.MOV(msg_lod, lod);
4792 msg_end = offset(msg_lod, bld, 1);
4793 break;
4794 case SHADER_OPCODE_TXD:
4795 /**
4796 * P = u, v, r
4797 * dPdx = dudx, dvdx, drdx
4798 * dPdy = dudy, dvdy, drdy
4799 *
4800 * Load up these values:
4801 * - dudx dudy dvdx dvdy drdx drdy
4802 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
4803 */
4804 msg_end = msg_lod;
4805 for (unsigned i = 0; i < grad_components; i++) {
4806 bld.MOV(msg_end, offset(lod, bld, i));
4807 msg_end = offset(msg_end, bld, 1);
4808
4809 bld.MOV(msg_end, offset(lod2, bld, i));
4810 msg_end = offset(msg_end, bld, 1);
4811 }
4812 break;
4813 case SHADER_OPCODE_TXS:
4814 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
4815 bld.MOV(msg_lod, lod);
4816 msg_end = offset(msg_lod, bld, 1);
4817 break;
4818 case SHADER_OPCODE_TXF:
4819 msg_lod = offset(msg_coords, bld, 3);
4820 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
4821 msg_end = offset(msg_lod, bld, 1);
4822 break;
4823 case SHADER_OPCODE_TXF_CMS:
4824 msg_lod = offset(msg_coords, bld, 3);
4825 /* lod */
4826 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
4827 /* sample index */
4828 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
4829 msg_end = offset(msg_lod, bld, 2);
4830 break;
4831 default:
4832 break;
4833 }
4834
4835 inst->opcode = op;
4836 inst->src[0] = reg_undef;
4837 inst->src[1] = surface;
4838 inst->src[2] = sampler;
4839 inst->resize_sources(3);
4840 inst->base_mrf = message.nr;
4841 inst->mlen = msg_end.nr - message.nr;
4842 inst->header_size = header_size;
4843
4844 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4845 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4846 }
4847
4848 static bool
4849 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
4850 {
4851 if (devinfo->gen < 8 && !devinfo->is_haswell)
4852 return false;
4853
4854 return sampler.file != IMM || sampler.ud >= 16;
4855 }
4856
4857 static unsigned
4858 sampler_msg_type(const gen_device_info *devinfo,
4859 opcode opcode, bool shadow_compare)
4860 {
4861 assert(devinfo->gen >= 5);
4862 switch (opcode) {
4863 case SHADER_OPCODE_TEX:
4864 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE :
4865 GEN5_SAMPLER_MESSAGE_SAMPLE;
4866 case FS_OPCODE_TXB:
4867 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE :
4868 GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
4869 case SHADER_OPCODE_TXL:
4870 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE :
4871 GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
4872 case SHADER_OPCODE_TXL_LZ:
4873 return shadow_compare ? GEN9_SAMPLER_MESSAGE_SAMPLE_C_LZ :
4874 GEN9_SAMPLER_MESSAGE_SAMPLE_LZ;
4875 case SHADER_OPCODE_TXS:
4876 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
4877 return GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
4878 case SHADER_OPCODE_TXD:
4879 assert(!shadow_compare || devinfo->gen >= 8 || devinfo->is_haswell);
4880 return shadow_compare ? HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE :
4881 GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
4882 case SHADER_OPCODE_TXF:
4883 return GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
4884 case SHADER_OPCODE_TXF_LZ:
4885 assert(devinfo->gen >= 9);
4886 return GEN9_SAMPLER_MESSAGE_SAMPLE_LD_LZ;
4887 case SHADER_OPCODE_TXF_CMS_W:
4888 assert(devinfo->gen >= 9);
4889 return GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
4890 case SHADER_OPCODE_TXF_CMS:
4891 return devinfo->gen >= 7 ? GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS :
4892 GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
4893 case SHADER_OPCODE_TXF_UMS:
4894 assert(devinfo->gen >= 7);
4895 return GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS;
4896 case SHADER_OPCODE_TXF_MCS:
4897 assert(devinfo->gen >= 7);
4898 return GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
4899 case SHADER_OPCODE_LOD:
4900 return GEN5_SAMPLER_MESSAGE_LOD;
4901 case SHADER_OPCODE_TG4:
4902 assert(devinfo->gen >= 7);
4903 return shadow_compare ? GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C :
4904 GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
4905 break;
4906 case SHADER_OPCODE_TG4_OFFSET:
4907 assert(devinfo->gen >= 7);
4908 return shadow_compare ? GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C :
4909 GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
4910 case SHADER_OPCODE_SAMPLEINFO:
4911 return GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
4912 default:
4913 unreachable("not reached");
4914 }
4915 }
4916
4917 static void
4918 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4919 const fs_reg &coordinate,
4920 const fs_reg &shadow_c,
4921 fs_reg lod, const fs_reg &lod2,
4922 const fs_reg &min_lod,
4923 const fs_reg &sample_index,
4924 const fs_reg &mcs,
4925 const fs_reg &surface,
4926 const fs_reg &sampler,
4927 const fs_reg &surface_handle,
4928 const fs_reg &sampler_handle,
4929 const fs_reg &tg4_offset,
4930 unsigned coord_components,
4931 unsigned grad_components)
4932 {
4933 const gen_device_info *devinfo = bld.shader->devinfo;
4934 const brw_stage_prog_data *prog_data = bld.shader->stage_prog_data;
4935 unsigned reg_width = bld.dispatch_width() / 8;
4936 unsigned header_size = 0, length = 0;
4937 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4938 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4939 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4940
4941 /* We must have exactly one of surface/sampler and surface/sampler_handle */
4942 assert((surface.file == BAD_FILE) != (surface_handle.file == BAD_FILE));
4943 assert((sampler.file == BAD_FILE) != (sampler_handle.file == BAD_FILE));
4944
4945 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4946 inst->offset != 0 || inst->eot ||
4947 op == SHADER_OPCODE_SAMPLEINFO ||
4948 sampler_handle.file != BAD_FILE ||
4949 is_high_sampler(devinfo, sampler)) {
4950 /* For general texture offsets (no txf workaround), we need a header to
4951 * put them in.
4952 *
4953 * TG4 needs to place its channel select in the header, for interaction
4954 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4955 * larger sampler numbers we need to offset the Sampler State Pointer in
4956 * the header.
4957 */
4958 fs_reg header = retype(sources[0], BRW_REGISTER_TYPE_UD);
4959 header_size = 1;
4960 length++;
4961
4962 /* If we're requesting fewer than four channels worth of response,
4963 * and we have an explicit header, we need to set up the sampler
4964 * writemask. It's reversed from normal: 1 means "don't write".
4965 */
4966 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4967 assert(regs_written(inst) % reg_width == 0);
4968 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4969 inst->offset |= mask << 12;
4970 }
4971
4972 /* Build the actual header */
4973 const fs_builder ubld = bld.exec_all().group(8, 0);
4974 const fs_builder ubld1 = ubld.group(1, 0);
4975 ubld.MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
4976 if (inst->offset) {
4977 ubld1.MOV(component(header, 2), brw_imm_ud(inst->offset));
4978 } else if (bld.shader->stage != MESA_SHADER_VERTEX &&
4979 bld.shader->stage != MESA_SHADER_FRAGMENT) {
4980 /* The vertex and fragment stages have g0.2 set to 0, so
4981 * header0.2 is 0 when g0 is copied. Other stages may not, so we
4982 * must set it to 0 to avoid setting undesirable bits in the
4983 * message.
4984 */
4985 ubld1.MOV(component(header, 2), brw_imm_ud(0));
4986 }
4987
4988 if (sampler_handle.file != BAD_FILE) {
4989 /* Bindless sampler handles aren't relative to the sampler state
4990 * pointer passed into the shader through SAMPLER_STATE_POINTERS_*.
4991 * Instead, it's an absolute pointer relative to dynamic state base
4992 * address.
4993 *
4994 * Sampler states are 16 bytes each and the pointer we give here has
4995 * to be 32-byte aligned. In order to avoid more indirect messages
4996 * than required, we assume that all bindless sampler states are
4997 * 32-byte aligned. This sacrifices a bit of general state base
4998 * address space but means we can do something more efficient in the
4999 * shader.
5000 */
5001 ubld1.MOV(component(header, 3), sampler_handle);
5002 } else if (is_high_sampler(devinfo, sampler)) {
5003 if (sampler.file == BRW_IMMEDIATE_VALUE) {
5004 assert(sampler.ud >= 16);
5005 const int sampler_state_size = 16; /* 16 bytes */
5006
5007 ubld1.ADD(component(header, 3),
5008 retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
5009 brw_imm_ud(16 * (sampler.ud / 16) * sampler_state_size));
5010 } else {
5011 fs_reg tmp = ubld1.vgrf(BRW_REGISTER_TYPE_UD);
5012 ubld1.AND(tmp, sampler, brw_imm_ud(0x0f0));
5013 ubld1.SHL(tmp, tmp, brw_imm_ud(4));
5014 ubld1.ADD(component(header, 3),
5015 retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
5016 tmp);
5017 }
5018 }
5019 }
5020
5021 if (shadow_c.file != BAD_FILE) {
5022 bld.MOV(sources[length], shadow_c);
5023 length++;
5024 }
5025
5026 bool coordinate_done = false;
5027
5028 /* Set up the LOD info */
5029 switch (op) {
5030 case FS_OPCODE_TXB:
5031 case SHADER_OPCODE_TXL:
5032 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
5033 op = SHADER_OPCODE_TXL_LZ;
5034 break;
5035 }
5036 bld.MOV(sources[length], lod);
5037 length++;
5038 break;
5039 case SHADER_OPCODE_TXD:
5040 /* TXD should have been lowered in SIMD16 mode. */
5041 assert(bld.dispatch_width() == 8);
5042
5043 /* Load dPdx and the coordinate together:
5044 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
5045 */
5046 for (unsigned i = 0; i < coord_components; i++) {
5047 bld.MOV(sources[length++], offset(coordinate, bld, i));
5048
5049 /* For cube map array, the coordinate is (u,v,r,ai) but there are
5050 * only derivatives for (u, v, r).
5051 */
5052 if (i < grad_components) {
5053 bld.MOV(sources[length++], offset(lod, bld, i));
5054 bld.MOV(sources[length++], offset(lod2, bld, i));
5055 }
5056 }
5057
5058 coordinate_done = true;
5059 break;
5060 case SHADER_OPCODE_TXS:
5061 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
5062 length++;
5063 break;
5064 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5065 /* We need an LOD; just use 0 */
5066 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), brw_imm_ud(0));
5067 length++;
5068 break;
5069 case SHADER_OPCODE_TXF:
5070 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
5071 * On Gen9 they are u, v, lod, r
5072 */
5073 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
5074
5075 if (devinfo->gen >= 9) {
5076 if (coord_components >= 2) {
5077 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
5078 offset(coordinate, bld, 1));
5079 } else {
5080 sources[length] = brw_imm_d(0);
5081 }
5082 length++;
5083 }
5084
5085 if (devinfo->gen >= 9 && lod.is_zero()) {
5086 op = SHADER_OPCODE_TXF_LZ;
5087 } else {
5088 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
5089 length++;
5090 }
5091
5092 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
5093 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5094 offset(coordinate, bld, i));
5095
5096 coordinate_done = true;
5097 break;
5098
5099 case SHADER_OPCODE_TXF_CMS:
5100 case SHADER_OPCODE_TXF_CMS_W:
5101 case SHADER_OPCODE_TXF_UMS:
5102 case SHADER_OPCODE_TXF_MCS:
5103 if (op == SHADER_OPCODE_TXF_UMS ||
5104 op == SHADER_OPCODE_TXF_CMS ||
5105 op == SHADER_OPCODE_TXF_CMS_W) {
5106 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
5107 length++;
5108 }
5109
5110 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
5111 /* Data from the multisample control surface. */
5112 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
5113 length++;
5114
5115 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
5116 * the MCS data.
5117 */
5118 if (op == SHADER_OPCODE_TXF_CMS_W) {
5119 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
5120 mcs.file == IMM ?
5121 mcs :
5122 offset(mcs, bld, 1));
5123 length++;
5124 }
5125 }
5126
5127 /* There is no offsetting for this message; just copy in the integer
5128 * texture coordinates.
5129 */
5130 for (unsigned i = 0; i < coord_components; i++)
5131 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5132 offset(coordinate, bld, i));
5133
5134 coordinate_done = true;
5135 break;
5136 case SHADER_OPCODE_TG4_OFFSET:
5137 /* More crazy intermixing */
5138 for (unsigned i = 0; i < 2; i++) /* u, v */
5139 bld.MOV(sources[length++], offset(coordinate, bld, i));
5140
5141 for (unsigned i = 0; i < 2; i++) /* offu, offv */
5142 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5143 offset(tg4_offset, bld, i));
5144
5145 if (coord_components == 3) /* r if present */
5146 bld.MOV(sources[length++], offset(coordinate, bld, 2));
5147
5148 coordinate_done = true;
5149 break;
5150 default:
5151 break;
5152 }
5153
5154 /* Set up the coordinate (except for cases where it was done above) */
5155 if (!coordinate_done) {
5156 for (unsigned i = 0; i < coord_components; i++)
5157 bld.MOV(sources[length++], offset(coordinate, bld, i));
5158 }
5159
5160 if (min_lod.file != BAD_FILE) {
5161 /* Account for all of the missing coordinate sources */
5162 length += 4 - coord_components;
5163 if (op == SHADER_OPCODE_TXD)
5164 length += (3 - grad_components) * 2;
5165
5166 bld.MOV(sources[length++], min_lod);
5167 }
5168
5169 unsigned mlen;
5170 if (reg_width == 2)
5171 mlen = length * reg_width - header_size;
5172 else
5173 mlen = length * reg_width;
5174
5175 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
5176 BRW_REGISTER_TYPE_F);
5177 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
5178
5179 /* Generate the SEND. */
5180 inst->opcode = SHADER_OPCODE_SEND;
5181 inst->mlen = mlen;
5182 inst->header_size = header_size;
5183
5184 const unsigned msg_type =
5185 sampler_msg_type(devinfo, op, inst->shadow_compare);
5186 const unsigned simd_mode =
5187 inst->exec_size <= 8 ? BRW_SAMPLER_SIMD_MODE_SIMD8 :
5188 BRW_SAMPLER_SIMD_MODE_SIMD16;
5189
5190 uint32_t base_binding_table_index;
5191 switch (op) {
5192 case SHADER_OPCODE_TG4:
5193 case SHADER_OPCODE_TG4_OFFSET:
5194 base_binding_table_index = prog_data->binding_table.gather_texture_start;
5195 break;
5196 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5197 base_binding_table_index = prog_data->binding_table.image_start;
5198 break;
5199 default:
5200 base_binding_table_index = prog_data->binding_table.texture_start;
5201 break;
5202 }
5203
5204 inst->sfid = BRW_SFID_SAMPLER;
5205 if (surface.file == IMM &&
5206 (sampler.file == IMM || sampler_handle.file != BAD_FILE)) {
5207 inst->desc = brw_sampler_desc(devinfo,
5208 surface.ud + base_binding_table_index,
5209 sampler.file == IMM ? sampler.ud % 16 : 0,
5210 msg_type,
5211 simd_mode,
5212 0 /* return_format unused on gen7+ */);
5213 inst->src[0] = brw_imm_ud(0);
5214 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5215 } else if (surface_handle.file != BAD_FILE) {
5216 /* Bindless surface */
5217 assert(devinfo->gen >= 9);
5218 inst->desc = brw_sampler_desc(devinfo,
5219 GEN9_BTI_BINDLESS,
5220 sampler.file == IMM ? sampler.ud % 16 : 0,
5221 msg_type,
5222 simd_mode,
5223 0 /* return_format unused on gen7+ */);
5224
5225 /* For bindless samplers, the entire address is included in the message
5226 * header so we can leave the portion in the message descriptor 0.
5227 */
5228 if (sampler_handle.file != BAD_FILE || sampler.file == IMM) {
5229 inst->src[0] = brw_imm_ud(0);
5230 } else {
5231 const fs_builder ubld = bld.group(1, 0).exec_all();
5232 fs_reg desc = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5233 ubld.SHL(desc, sampler, brw_imm_ud(8));
5234 inst->src[0] = desc;
5235 }
5236
5237 /* We assume that the driver provided the handle in the top 20 bits so
5238 * we can use the surface handle directly as the extended descriptor.
5239 */
5240 inst->src[1] = retype(surface_handle, BRW_REGISTER_TYPE_UD);
5241 } else {
5242 /* Immediate portion of the descriptor */
5243 inst->desc = brw_sampler_desc(devinfo,
5244 0, /* surface */
5245 0, /* sampler */
5246 msg_type,
5247 simd_mode,
5248 0 /* return_format unused on gen7+ */);
5249 const fs_builder ubld = bld.group(1, 0).exec_all();
5250 fs_reg desc = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5251 if (surface.equals(sampler)) {
5252 /* This case is common in GL */
5253 ubld.MUL(desc, surface, brw_imm_ud(0x101));
5254 } else {
5255 if (sampler_handle.file != BAD_FILE) {
5256 ubld.MOV(desc, surface);
5257 } else if (sampler.file == IMM) {
5258 ubld.OR(desc, surface, brw_imm_ud(sampler.ud << 8));
5259 } else {
5260 ubld.SHL(desc, sampler, brw_imm_ud(8));
5261 ubld.OR(desc, desc, surface);
5262 }
5263 }
5264 if (base_binding_table_index)
5265 ubld.ADD(desc, desc, brw_imm_ud(base_binding_table_index));
5266 ubld.AND(desc, desc, brw_imm_ud(0xfff));
5267
5268 inst->src[0] = component(desc, 0);
5269 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5270 }
5271
5272 inst->src[2] = src_payload;
5273 inst->resize_sources(3);
5274
5275 if (inst->eot) {
5276 /* EOT sampler messages don't make sense to split because it would
5277 * involve ending half of the thread early.
5278 */
5279 assert(inst->group == 0);
5280 /* We need to use SENDC for EOT sampler messages */
5281 inst->check_tdr = true;
5282 inst->send_has_side_effects = true;
5283 }
5284
5285 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
5286 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
5287 }
5288
5289 static void
5290 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
5291 {
5292 const gen_device_info *devinfo = bld.shader->devinfo;
5293 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
5294 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
5295 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
5296 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
5297 const fs_reg &min_lod = inst->src[TEX_LOGICAL_SRC_MIN_LOD];
5298 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
5299 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
5300 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
5301 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
5302 const fs_reg &surface_handle = inst->src[TEX_LOGICAL_SRC_SURFACE_HANDLE];
5303 const fs_reg &sampler_handle = inst->src[TEX_LOGICAL_SRC_SAMPLER_HANDLE];
5304 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
5305 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
5306 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
5307 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
5308 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
5309
5310 if (devinfo->gen >= 7) {
5311 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
5312 shadow_c, lod, lod2, min_lod,
5313 sample_index,
5314 mcs, surface, sampler,
5315 surface_handle, sampler_handle,
5316 tg4_offset,
5317 coord_components, grad_components);
5318 } else if (devinfo->gen >= 5) {
5319 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
5320 shadow_c, lod, lod2, sample_index,
5321 surface, sampler,
5322 coord_components, grad_components);
5323 } else {
5324 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
5325 shadow_c, lod, lod2,
5326 surface, sampler,
5327 coord_components, grad_components);
5328 }
5329 }
5330
5331 /**
5332 * Predicate the specified instruction on the sample mask.
5333 */
5334 static void
5335 emit_predicate_on_sample_mask(const fs_builder &bld, fs_inst *inst)
5336 {
5337 assert(bld.shader->stage == MESA_SHADER_FRAGMENT &&
5338 bld.group() == inst->group &&
5339 bld.dispatch_width() == inst->exec_size);
5340
5341 const fs_visitor *v = static_cast<const fs_visitor *>(bld.shader);
5342 const fs_reg sample_mask = sample_mask_reg(bld);
5343 const unsigned subreg = sample_mask_flag_subreg(v);
5344
5345 if (brw_wm_prog_data(v->stage_prog_data)->uses_kill) {
5346 assert(sample_mask.file == ARF &&
5347 sample_mask.nr == brw_flag_subreg(subreg).nr &&
5348 sample_mask.subnr == brw_flag_subreg(
5349 subreg + inst->group / 16).subnr);
5350 } else {
5351 bld.group(1, 0).exec_all()
5352 .MOV(brw_flag_subreg(subreg + inst->group / 16), sample_mask);
5353 }
5354
5355 if (inst->predicate) {
5356 assert(inst->predicate == BRW_PREDICATE_NORMAL);
5357 assert(!inst->predicate_inverse);
5358 assert(inst->flag_subreg == 0);
5359 /* Combine the sample mask with the existing predicate by using a
5360 * vertical predication mode.
5361 */
5362 inst->predicate = BRW_PREDICATE_ALIGN1_ALLV;
5363 } else {
5364 inst->flag_subreg = subreg;
5365 inst->predicate = BRW_PREDICATE_NORMAL;
5366 inst->predicate_inverse = false;
5367 }
5368 }
5369
5370 static void
5371 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst)
5372 {
5373 const gen_device_info *devinfo = bld.shader->devinfo;
5374
5375 /* Get the logical send arguments. */
5376 const fs_reg &addr = inst->src[SURFACE_LOGICAL_SRC_ADDRESS];
5377 const fs_reg &src = inst->src[SURFACE_LOGICAL_SRC_DATA];
5378 const fs_reg &surface = inst->src[SURFACE_LOGICAL_SRC_SURFACE];
5379 const fs_reg &surface_handle = inst->src[SURFACE_LOGICAL_SRC_SURFACE_HANDLE];
5380 const UNUSED fs_reg &dims = inst->src[SURFACE_LOGICAL_SRC_IMM_DIMS];
5381 const fs_reg &arg = inst->src[SURFACE_LOGICAL_SRC_IMM_ARG];
5382 assert(arg.file == IMM);
5383
5384 /* We must have exactly one of surface and surface_handle */
5385 assert((surface.file == BAD_FILE) != (surface_handle.file == BAD_FILE));
5386
5387 /* Calculate the total number of components of the payload. */
5388 const unsigned addr_sz = inst->components_read(SURFACE_LOGICAL_SRC_ADDRESS);
5389 const unsigned src_sz = inst->components_read(SURFACE_LOGICAL_SRC_DATA);
5390
5391 const bool is_typed_access =
5392 inst->opcode == SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL ||
5393 inst->opcode == SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL ||
5394 inst->opcode == SHADER_OPCODE_TYPED_ATOMIC_LOGICAL;
5395
5396 const bool is_surface_access = is_typed_access ||
5397 inst->opcode == SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL ||
5398 inst->opcode == SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL ||
5399 inst->opcode == SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL;
5400
5401 const bool is_stateless =
5402 surface.file == IMM && (surface.ud == BRW_BTI_STATELESS ||
5403 surface.ud == GEN8_BTI_STATELESS_NON_COHERENT);
5404
5405 const bool has_side_effects = inst->has_side_effects();
5406 fs_reg sample_mask = has_side_effects ? sample_mask_reg(bld) :
5407 fs_reg(brw_imm_d(0xffff));
5408
5409 /* From the BDW PRM Volume 7, page 147:
5410 *
5411 * "For the Data Cache Data Port*, the header must be present for the
5412 * following message types: [...] Typed read/write/atomics"
5413 *
5414 * Earlier generations have a similar wording. Because of this restriction
5415 * we don't attempt to implement sample masks via predication for such
5416 * messages prior to Gen9, since we have to provide a header anyway. On
5417 * Gen11+ the header has been removed so we can only use predication.
5418 *
5419 * For all stateless A32 messages, we also need a header
5420 */
5421 fs_reg header;
5422 if ((devinfo->gen < 9 && is_typed_access) || is_stateless) {
5423 fs_builder ubld = bld.exec_all().group(8, 0);
5424 header = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5425 ubld.MOV(header, brw_imm_d(0));
5426 if (is_stateless) {
5427 /* Both the typed and scattered byte/dword A32 messages take a buffer
5428 * base address in R0.5:[31:0] (See MH1_A32_PSM for typed messages or
5429 * MH_A32_GO for byte/dword scattered messages in the SKL PRM Vol. 2d
5430 * for more details.) This is conveniently where the HW places the
5431 * scratch surface base address.
5432 *
5433 * From the SKL PRM Vol. 7 "Per-Thread Scratch Space":
5434 *
5435 * "When a thread becomes 'active' it is allocated a portion of
5436 * scratch space, sized according to PerThreadScratchSpace. The
5437 * starting location of each thread’s scratch space allocation,
5438 * ScratchSpaceOffset, is passed in the thread payload in
5439 * R0.5[31:10] and is specified as a 1KB-granular offset from the
5440 * GeneralStateBaseAddress. The computation of ScratchSpaceOffset
5441 * includes the starting address of the stage’s scratch space
5442 * allocation, as programmed by ScratchSpaceBasePointer."
5443 *
5444 * The base address is passed in bits R0.5[31:10] and the bottom 10
5445 * bits of R0.5 are used for other things. Therefore, we have to
5446 * mask off the bottom 10 bits so that we don't get a garbage base
5447 * address.
5448 */
5449 ubld.group(1, 0).AND(component(header, 5),
5450 retype(brw_vec1_grf(0, 5), BRW_REGISTER_TYPE_UD),
5451 brw_imm_ud(0xfffffc00));
5452 }
5453 if (is_surface_access)
5454 ubld.group(1, 0).MOV(component(header, 7), sample_mask);
5455 }
5456 const unsigned header_sz = header.file != BAD_FILE ? 1 : 0;
5457
5458 fs_reg payload, payload2;
5459 unsigned mlen, ex_mlen = 0;
5460 if (devinfo->gen >= 9 &&
5461 (src.file == BAD_FILE || header.file == BAD_FILE)) {
5462 /* We have split sends on gen9 and above */
5463 if (header.file == BAD_FILE) {
5464 payload = bld.move_to_vgrf(addr, addr_sz);
5465 payload2 = bld.move_to_vgrf(src, src_sz);
5466 mlen = addr_sz * (inst->exec_size / 8);
5467 ex_mlen = src_sz * (inst->exec_size / 8);
5468 } else {
5469 assert(src.file == BAD_FILE);
5470 payload = header;
5471 payload2 = bld.move_to_vgrf(addr, addr_sz);
5472 mlen = header_sz;
5473 ex_mlen = addr_sz * (inst->exec_size / 8);
5474 }
5475 } else {
5476 /* Allocate space for the payload. */
5477 const unsigned sz = header_sz + addr_sz + src_sz;
5478 payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
5479 fs_reg *const components = new fs_reg[sz];
5480 unsigned n = 0;
5481
5482 /* Construct the payload. */
5483 if (header.file != BAD_FILE)
5484 components[n++] = header;
5485
5486 for (unsigned i = 0; i < addr_sz; i++)
5487 components[n++] = offset(addr, bld, i);
5488
5489 for (unsigned i = 0; i < src_sz; i++)
5490 components[n++] = offset(src, bld, i);
5491
5492 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
5493 mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
5494
5495 delete[] components;
5496 }
5497
5498 /* Predicate the instruction on the sample mask if no header is
5499 * provided.
5500 */
5501 if ((header.file == BAD_FILE || !is_surface_access) &&
5502 sample_mask.file != BAD_FILE && sample_mask.file != IMM)
5503 emit_predicate_on_sample_mask(bld, inst);
5504
5505 uint32_t sfid;
5506 switch (inst->opcode) {
5507 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5508 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5509 /* Byte scattered opcodes go through the normal data cache */
5510 sfid = GEN7_SFID_DATAPORT_DATA_CACHE;
5511 break;
5512
5513 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
5514 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
5515 sfid = devinfo->gen >= 7 ? GEN7_SFID_DATAPORT_DATA_CACHE :
5516 devinfo->gen >= 6 ? GEN6_SFID_DATAPORT_RENDER_CACHE :
5517 BRW_DATAPORT_READ_TARGET_RENDER_CACHE;
5518 break;
5519
5520 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5521 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5522 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5523 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5524 /* Untyped Surface messages go through the data cache but the SFID value
5525 * changed on Haswell.
5526 */
5527 sfid = (devinfo->gen >= 8 || devinfo->is_haswell ?
5528 HSW_SFID_DATAPORT_DATA_CACHE_1 :
5529 GEN7_SFID_DATAPORT_DATA_CACHE);
5530 break;
5531
5532 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5533 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5534 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5535 /* Typed surface messages go through the render cache on IVB and the
5536 * data cache on HSW+.
5537 */
5538 sfid = (devinfo->gen >= 8 || devinfo->is_haswell ?
5539 HSW_SFID_DATAPORT_DATA_CACHE_1 :
5540 GEN6_SFID_DATAPORT_RENDER_CACHE);
5541 break;
5542
5543 default:
5544 unreachable("Unsupported surface opcode");
5545 }
5546
5547 uint32_t desc;
5548 switch (inst->opcode) {
5549 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5550 desc = brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size,
5551 arg.ud, /* num_channels */
5552 false /* write */);
5553 break;
5554
5555 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5556 desc = brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size,
5557 arg.ud, /* num_channels */
5558 true /* write */);
5559 break;
5560
5561 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5562 desc = brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size,
5563 arg.ud, /* bit_size */
5564 false /* write */);
5565 break;
5566
5567 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5568 desc = brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size,
5569 arg.ud, /* bit_size */
5570 true /* write */);
5571 break;
5572
5573 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
5574 assert(arg.ud == 32); /* bit_size */
5575 desc = brw_dp_dword_scattered_rw_desc(devinfo, inst->exec_size,
5576 false /* write */);
5577 break;
5578
5579 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
5580 assert(arg.ud == 32); /* bit_size */
5581 desc = brw_dp_dword_scattered_rw_desc(devinfo, inst->exec_size,
5582 true /* write */);
5583 break;
5584
5585 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5586 desc = brw_dp_untyped_atomic_desc(devinfo, inst->exec_size,
5587 arg.ud, /* atomic_op */
5588 !inst->dst.is_null());
5589 break;
5590
5591 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5592 desc = brw_dp_untyped_atomic_float_desc(devinfo, inst->exec_size,
5593 arg.ud, /* atomic_op */
5594 !inst->dst.is_null());
5595 break;
5596
5597 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5598 desc = brw_dp_typed_surface_rw_desc(devinfo, inst->exec_size, inst->group,
5599 arg.ud, /* num_channels */
5600 false /* write */);
5601 break;
5602
5603 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5604 desc = brw_dp_typed_surface_rw_desc(devinfo, inst->exec_size, inst->group,
5605 arg.ud, /* num_channels */
5606 true /* write */);
5607 break;
5608
5609 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5610 desc = brw_dp_typed_atomic_desc(devinfo, inst->exec_size, inst->group,
5611 arg.ud, /* atomic_op */
5612 !inst->dst.is_null());
5613 break;
5614
5615 default:
5616 unreachable("Unknown surface logical instruction");
5617 }
5618
5619 /* Update the original instruction. */
5620 inst->opcode = SHADER_OPCODE_SEND;
5621 inst->mlen = mlen;
5622 inst->ex_mlen = ex_mlen;
5623 inst->header_size = header_sz;
5624 inst->send_has_side_effects = has_side_effects;
5625 inst->send_is_volatile = !has_side_effects;
5626
5627 /* Set up SFID and descriptors */
5628 inst->sfid = sfid;
5629 inst->desc = desc;
5630 if (surface.file == IMM) {
5631 inst->desc |= surface.ud & 0xff;
5632 inst->src[0] = brw_imm_ud(0);
5633 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5634 } else if (surface_handle.file != BAD_FILE) {
5635 /* Bindless surface */
5636 assert(devinfo->gen >= 9);
5637 inst->desc |= GEN9_BTI_BINDLESS;
5638 inst->src[0] = brw_imm_ud(0);
5639
5640 /* We assume that the driver provided the handle in the top 20 bits so
5641 * we can use the surface handle directly as the extended descriptor.
5642 */
5643 inst->src[1] = retype(surface_handle, BRW_REGISTER_TYPE_UD);
5644 } else {
5645 const fs_builder ubld = bld.exec_all().group(1, 0);
5646 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5647 ubld.AND(tmp, surface, brw_imm_ud(0xff));
5648 inst->src[0] = component(tmp, 0);
5649 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5650 }
5651
5652 /* Finally, the payload */
5653 inst->src[2] = payload;
5654 inst->src[3] = payload2;
5655
5656 inst->resize_sources(4);
5657 }
5658
5659 static void
5660 lower_a64_logical_send(const fs_builder &bld, fs_inst *inst)
5661 {
5662 const gen_device_info *devinfo = bld.shader->devinfo;
5663
5664 const fs_reg &addr = inst->src[0];
5665 const fs_reg &src = inst->src[1];
5666 const unsigned src_comps = inst->components_read(1);
5667 assert(inst->src[2].file == IMM);
5668 const unsigned arg = inst->src[2].ud;
5669 const bool has_side_effects = inst->has_side_effects();
5670
5671 /* If the surface message has side effects and we're a fragment shader, we
5672 * have to predicate with the sample mask to avoid helper invocations.
5673 */
5674 if (has_side_effects && bld.shader->stage == MESA_SHADER_FRAGMENT)
5675 emit_predicate_on_sample_mask(bld, inst);
5676
5677 fs_reg payload, payload2;
5678 unsigned mlen, ex_mlen = 0;
5679 if (devinfo->gen >= 9) {
5680 /* On Skylake and above, we have SENDS */
5681 mlen = 2 * (inst->exec_size / 8);
5682 ex_mlen = src_comps * type_sz(src.type) * inst->exec_size / REG_SIZE;
5683 payload = retype(bld.move_to_vgrf(addr, 1), BRW_REGISTER_TYPE_UD);
5684 payload2 = retype(bld.move_to_vgrf(src, src_comps),
5685 BRW_REGISTER_TYPE_UD);
5686 } else {
5687 /* Add two because the address is 64-bit */
5688 const unsigned dwords = 2 + src_comps;
5689 mlen = dwords * (inst->exec_size / 8);
5690
5691 fs_reg sources[5];
5692
5693 sources[0] = addr;
5694
5695 for (unsigned i = 0; i < src_comps; i++)
5696 sources[1 + i] = offset(src, bld, i);
5697
5698 payload = bld.vgrf(BRW_REGISTER_TYPE_UD, dwords);
5699 bld.LOAD_PAYLOAD(payload, sources, 1 + src_comps, 0);
5700 }
5701
5702 uint32_t desc;
5703 switch (inst->opcode) {
5704 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
5705 desc = brw_dp_a64_untyped_surface_rw_desc(devinfo, inst->exec_size,
5706 arg, /* num_channels */
5707 false /* write */);
5708 break;
5709
5710 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
5711 desc = brw_dp_a64_untyped_surface_rw_desc(devinfo, inst->exec_size,
5712 arg, /* num_channels */
5713 true /* write */);
5714 break;
5715
5716 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
5717 desc = brw_dp_a64_byte_scattered_rw_desc(devinfo, inst->exec_size,
5718 arg, /* bit_size */
5719 false /* write */);
5720 break;
5721
5722 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
5723 desc = brw_dp_a64_byte_scattered_rw_desc(devinfo, inst->exec_size,
5724 arg, /* bit_size */
5725 true /* write */);
5726 break;
5727
5728 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
5729 desc = brw_dp_a64_untyped_atomic_desc(devinfo, inst->exec_size, 32,
5730 arg, /* atomic_op */
5731 !inst->dst.is_null());
5732 break;
5733
5734 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
5735 desc = brw_dp_a64_untyped_atomic_desc(devinfo, inst->exec_size, 64,
5736 arg, /* atomic_op */
5737 !inst->dst.is_null());
5738 break;
5739
5740
5741 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5742 desc = brw_dp_a64_untyped_atomic_float_desc(devinfo, inst->exec_size,
5743 arg, /* atomic_op */
5744 !inst->dst.is_null());
5745 break;
5746
5747 default:
5748 unreachable("Unknown A64 logical instruction");
5749 }
5750
5751 /* Update the original instruction. */
5752 inst->opcode = SHADER_OPCODE_SEND;
5753 inst->mlen = mlen;
5754 inst->ex_mlen = ex_mlen;
5755 inst->header_size = 0;
5756 inst->send_has_side_effects = has_side_effects;
5757 inst->send_is_volatile = !has_side_effects;
5758
5759 /* Set up SFID and descriptors */
5760 inst->sfid = HSW_SFID_DATAPORT_DATA_CACHE_1;
5761 inst->desc = desc;
5762 inst->resize_sources(4);
5763 inst->src[0] = brw_imm_ud(0); /* desc */
5764 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5765 inst->src[2] = payload;
5766 inst->src[3] = payload2;
5767 }
5768
5769 static void
5770 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
5771 {
5772 const gen_device_info *devinfo = bld.shader->devinfo;
5773
5774 if (devinfo->gen >= 7) {
5775 fs_reg index = inst->src[0];
5776 /* We are switching the instruction from an ALU-like instruction to a
5777 * send-from-grf instruction. Since sends can't handle strides or
5778 * source modifiers, we have to make a copy of the offset source.
5779 */
5780 fs_reg offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
5781 bld.MOV(offset, inst->src[1]);
5782
5783 const unsigned simd_mode =
5784 inst->exec_size <= 8 ? BRW_SAMPLER_SIMD_MODE_SIMD8 :
5785 BRW_SAMPLER_SIMD_MODE_SIMD16;
5786
5787 inst->opcode = SHADER_OPCODE_SEND;
5788 inst->mlen = inst->exec_size / 8;
5789 inst->resize_sources(3);
5790
5791 inst->sfid = BRW_SFID_SAMPLER;
5792 inst->desc = brw_sampler_desc(devinfo, 0, 0,
5793 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
5794 simd_mode, 0);
5795 if (index.file == IMM) {
5796 inst->desc |= index.ud & 0xff;
5797 inst->src[0] = brw_imm_ud(0);
5798 } else {
5799 const fs_builder ubld = bld.exec_all().group(1, 0);
5800 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5801 ubld.AND(tmp, index, brw_imm_ud(0xff));
5802 inst->src[0] = component(tmp, 0);
5803 }
5804 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5805 inst->src[2] = offset; /* payload */
5806 } else {
5807 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
5808 BRW_REGISTER_TYPE_UD);
5809
5810 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
5811
5812 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
5813 inst->resize_sources(1);
5814 inst->base_mrf = payload.nr;
5815 inst->header_size = 1;
5816 inst->mlen = 1 + inst->exec_size / 8;
5817 }
5818 }
5819
5820 static void
5821 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
5822 {
5823 assert(bld.shader->devinfo->gen < 6);
5824
5825 inst->base_mrf = 2;
5826 inst->mlen = inst->sources * inst->exec_size / 8;
5827
5828 if (inst->sources > 1) {
5829 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
5830 * "Message Payload":
5831 *
5832 * "Operand0[7]. For the INT DIV functions, this operand is the
5833 * denominator."
5834 * ...
5835 * "Operand1[7]. For the INT DIV functions, this operand is the
5836 * numerator."
5837 */
5838 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
5839 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
5840 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
5841
5842 inst->resize_sources(1);
5843 inst->src[0] = src0;
5844
5845 assert(inst->exec_size == 8);
5846 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
5847 }
5848 }
5849
5850 bool
5851 fs_visitor::lower_logical_sends()
5852 {
5853 bool progress = false;
5854
5855 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5856 const fs_builder ibld(this, block, inst);
5857
5858 switch (inst->opcode) {
5859 case FS_OPCODE_FB_WRITE_LOGICAL:
5860 assert(stage == MESA_SHADER_FRAGMENT);
5861 lower_fb_write_logical_send(ibld, inst,
5862 brw_wm_prog_data(prog_data),
5863 (const brw_wm_prog_key *)key,
5864 payload);
5865 break;
5866
5867 case FS_OPCODE_FB_READ_LOGICAL:
5868 lower_fb_read_logical_send(ibld, inst);
5869 break;
5870
5871 case SHADER_OPCODE_TEX_LOGICAL:
5872 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
5873 break;
5874
5875 case SHADER_OPCODE_TXD_LOGICAL:
5876 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
5877 break;
5878
5879 case SHADER_OPCODE_TXF_LOGICAL:
5880 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
5881 break;
5882
5883 case SHADER_OPCODE_TXL_LOGICAL:
5884 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
5885 break;
5886
5887 case SHADER_OPCODE_TXS_LOGICAL:
5888 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
5889 break;
5890
5891 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5892 lower_sampler_logical_send(ibld, inst,
5893 SHADER_OPCODE_IMAGE_SIZE_LOGICAL);
5894 break;
5895
5896 case FS_OPCODE_TXB_LOGICAL:
5897 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
5898 break;
5899
5900 case SHADER_OPCODE_TXF_CMS_LOGICAL:
5901 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
5902 break;
5903
5904 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
5905 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
5906 break;
5907
5908 case SHADER_OPCODE_TXF_UMS_LOGICAL:
5909 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
5910 break;
5911
5912 case SHADER_OPCODE_TXF_MCS_LOGICAL:
5913 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
5914 break;
5915
5916 case SHADER_OPCODE_LOD_LOGICAL:
5917 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
5918 break;
5919
5920 case SHADER_OPCODE_TG4_LOGICAL:
5921 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
5922 break;
5923
5924 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
5925 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
5926 break;
5927
5928 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
5929 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
5930 break;
5931
5932 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5933 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5934 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5935 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5936 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
5937 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
5938 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5939 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5940 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5941 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5942 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5943 lower_surface_logical_send(ibld, inst);
5944 break;
5945
5946 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
5947 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
5948 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
5949 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
5950 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
5951 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
5952 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5953 lower_a64_logical_send(ibld, inst);
5954 break;
5955
5956 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
5957 lower_varying_pull_constant_logical_send(ibld, inst);
5958 break;
5959
5960 case SHADER_OPCODE_RCP:
5961 case SHADER_OPCODE_RSQ:
5962 case SHADER_OPCODE_SQRT:
5963 case SHADER_OPCODE_EXP2:
5964 case SHADER_OPCODE_LOG2:
5965 case SHADER_OPCODE_SIN:
5966 case SHADER_OPCODE_COS:
5967 case SHADER_OPCODE_POW:
5968 case SHADER_OPCODE_INT_QUOTIENT:
5969 case SHADER_OPCODE_INT_REMAINDER:
5970 /* The math opcodes are overloaded for the send-like and
5971 * expression-like instructions which seems kind of icky. Gen6+ has
5972 * a native (but rather quirky) MATH instruction so we don't need to
5973 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
5974 * logical instructions (which we can easily recognize because they
5975 * have mlen = 0) into send-like virtual instructions.
5976 */
5977 if (devinfo->gen < 6 && inst->mlen == 0) {
5978 lower_math_logical_send(ibld, inst);
5979 break;
5980
5981 } else {
5982 continue;
5983 }
5984
5985 default:
5986 continue;
5987 }
5988
5989 progress = true;
5990 }
5991
5992 if (progress)
5993 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
5994
5995 return progress;
5996 }
5997
5998 static bool
5999 is_mixed_float_with_fp32_dst(const fs_inst *inst)
6000 {
6001 /* This opcode sometimes uses :W type on the source even if the operand is
6002 * a :HF, because in gen7 there is no support for :HF, and thus it uses :W.
6003 */
6004 if (inst->opcode == BRW_OPCODE_F16TO32)
6005 return true;
6006
6007 if (inst->dst.type != BRW_REGISTER_TYPE_F)
6008 return false;
6009
6010 for (int i = 0; i < inst->sources; i++) {
6011 if (inst->src[i].type == BRW_REGISTER_TYPE_HF)
6012 return true;
6013 }
6014
6015 return false;
6016 }
6017
6018 static bool
6019 is_mixed_float_with_packed_fp16_dst(const fs_inst *inst)
6020 {
6021 /* This opcode sometimes uses :W type on the destination even if the
6022 * destination is a :HF, because in gen7 there is no support for :HF, and
6023 * thus it uses :W.
6024 */
6025 if (inst->opcode == BRW_OPCODE_F32TO16 &&
6026 inst->dst.stride == 1)
6027 return true;
6028
6029 if (inst->dst.type != BRW_REGISTER_TYPE_HF ||
6030 inst->dst.stride != 1)
6031 return false;
6032
6033 for (int i = 0; i < inst->sources; i++) {
6034 if (inst->src[i].type == BRW_REGISTER_TYPE_F)
6035 return true;
6036 }
6037
6038 return false;
6039 }
6040
6041 /**
6042 * Get the closest allowed SIMD width for instruction \p inst accounting for
6043 * some common regioning and execution control restrictions that apply to FPU
6044 * instructions. These restrictions don't necessarily have any relevance to
6045 * instructions not executed by the FPU pipeline like extended math, control
6046 * flow or send message instructions.
6047 *
6048 * For virtual opcodes it's really up to the instruction -- In some cases
6049 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
6050 * instructions) it may simplify virtual instruction lowering if we can
6051 * enforce FPU-like regioning restrictions already on the virtual instruction,
6052 * in other cases (e.g. virtual send-like instructions) this may be
6053 * excessively restrictive.
6054 */
6055 static unsigned
6056 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
6057 const fs_inst *inst)
6058 {
6059 /* Maximum execution size representable in the instruction controls. */
6060 unsigned max_width = MIN2(32, inst->exec_size);
6061
6062 /* According to the PRMs:
6063 * "A. In Direct Addressing mode, a source cannot span more than 2
6064 * adjacent GRF registers.
6065 * B. A destination cannot span more than 2 adjacent GRF registers."
6066 *
6067 * Look for the source or destination with the largest register region
6068 * which is the one that is going to limit the overall execution size of
6069 * the instruction due to this rule.
6070 */
6071 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
6072
6073 for (unsigned i = 0; i < inst->sources; i++)
6074 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
6075
6076 /* Calculate the maximum execution size of the instruction based on the
6077 * factor by which it goes over the hardware limit of 2 GRFs.
6078 */
6079 if (reg_count > 2)
6080 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
6081
6082 /* According to the IVB PRMs:
6083 * "When destination spans two registers, the source MUST span two
6084 * registers. The exception to the above rule:
6085 *
6086 * - When source is scalar, the source registers are not incremented.
6087 * - When source is packed integer Word and destination is packed
6088 * integer DWord, the source register is not incremented but the
6089 * source sub register is incremented."
6090 *
6091 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
6092 * restrictions. The code below intentionally doesn't check whether the
6093 * destination type is integer because empirically the hardware doesn't
6094 * seem to care what the actual type is as long as it's dword-aligned.
6095 */
6096 if (devinfo->gen < 8) {
6097 for (unsigned i = 0; i < inst->sources; i++) {
6098 /* IVB implements DF scalars as <0;2,1> regions. */
6099 const bool is_scalar_exception = is_uniform(inst->src[i]) &&
6100 (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
6101 const bool is_packed_word_exception =
6102 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
6103 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
6104
6105 /* We check size_read(i) against size_written instead of REG_SIZE
6106 * because we want to properly handle SIMD32. In SIMD32, you can end
6107 * up with writes to 4 registers and a source that reads 2 registers
6108 * and we may still need to lower all the way to SIMD8 in that case.
6109 */
6110 if (inst->size_written > REG_SIZE &&
6111 inst->size_read(i) != 0 &&
6112 inst->size_read(i) < inst->size_written &&
6113 !is_scalar_exception && !is_packed_word_exception) {
6114 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
6115 max_width = MIN2(max_width, inst->exec_size / reg_count);
6116 }
6117 }
6118 }
6119
6120 if (devinfo->gen < 6) {
6121 /* From the G45 PRM, Volume 4 Page 361:
6122 *
6123 * "Operand Alignment Rule: With the exceptions listed below, a
6124 * source/destination operand in general should be aligned to even
6125 * 256-bit physical register with a region size equal to two 256-bit
6126 * physical registers."
6127 *
6128 * Normally we enforce this by allocating virtual registers to the
6129 * even-aligned class. But we need to handle payload registers.
6130 */
6131 for (unsigned i = 0; i < inst->sources; i++) {
6132 if (inst->src[i].file == FIXED_GRF && (inst->src[i].nr & 1) &&
6133 inst->size_read(i) > REG_SIZE) {
6134 max_width = MIN2(max_width, 8);
6135 }
6136 }
6137 }
6138
6139 /* From the IVB PRMs:
6140 * "When an instruction is SIMD32, the low 16 bits of the execution mask
6141 * are applied for both halves of the SIMD32 instruction. If different
6142 * execution mask channels are required, split the instruction into two
6143 * SIMD16 instructions."
6144 *
6145 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
6146 * 32-wide control flow support in hardware and will behave similarly.
6147 */
6148 if (devinfo->gen < 8 && !inst->force_writemask_all)
6149 max_width = MIN2(max_width, 16);
6150
6151 /* From the IVB PRMs (applies to HSW too):
6152 * "Instructions with condition modifiers must not use SIMD32."
6153 *
6154 * From the BDW PRMs (applies to later hardware too):
6155 * "Ternary instruction with condition modifiers must not use SIMD32."
6156 */
6157 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
6158 max_width = MIN2(max_width, 16);
6159
6160 /* From the IVB PRMs (applies to other devices that don't have the
6161 * gen_device_info::supports_simd16_3src flag set):
6162 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
6163 * SIMD8 is not allowed for DF operations."
6164 */
6165 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
6166 max_width = MIN2(max_width, inst->exec_size / reg_count);
6167
6168 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
6169 * the 8-bit quarter of the execution mask signals specified in the
6170 * instruction control fields) for the second compressed half of any
6171 * single-precision instruction (for double-precision instructions
6172 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
6173 * the EU will apply the wrong execution controls for the second
6174 * sequential GRF write if the number of channels per GRF is not exactly
6175 * eight in single-precision mode (or four in double-float mode).
6176 *
6177 * In this situation we calculate the maximum size of the split
6178 * instructions so they only ever write to a single register.
6179 */
6180 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
6181 !inst->force_writemask_all) {
6182 const unsigned channels_per_grf = inst->exec_size /
6183 DIV_ROUND_UP(inst->size_written, REG_SIZE);
6184 const unsigned exec_type_size = get_exec_type_size(inst);
6185 assert(exec_type_size);
6186
6187 /* The hardware shifts exactly 8 channels per compressed half of the
6188 * instruction in single-precision mode and exactly 4 in double-precision.
6189 */
6190 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
6191 max_width = MIN2(max_width, channels_per_grf);
6192
6193 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
6194 * because HW applies the same channel enable signals to both halves of
6195 * the compressed instruction which will be just wrong under
6196 * non-uniform control flow.
6197 */
6198 if (devinfo->gen == 7 && !devinfo->is_haswell &&
6199 (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
6200 max_width = MIN2(max_width, 4);
6201 }
6202
6203 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
6204 * Float Operations:
6205 *
6206 * "No SIMD16 in mixed mode when destination is f32. Instruction
6207 * execution size must be no more than 8."
6208 *
6209 * FIXME: the simulator doesn't seem to complain if we don't do this and
6210 * empirical testing with existing CTS tests show that they pass just fine
6211 * without implementing this, however, since our interpretation of the PRM
6212 * is that conversion MOVs between HF and F are still mixed-float
6213 * instructions (and therefore subject to this restriction) we decided to
6214 * split them to be safe. Might be useful to do additional investigation to
6215 * lift the restriction if we can ensure that it is safe though, since these
6216 * conversions are common when half-float types are involved since many
6217 * instructions do not support HF types and conversions from/to F are
6218 * required.
6219 */
6220 if (is_mixed_float_with_fp32_dst(inst))
6221 max_width = MIN2(max_width, 8);
6222
6223 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
6224 * Float Operations:
6225 *
6226 * "No SIMD16 in mixed mode when destination is packed f16 for both
6227 * Align1 and Align16."
6228 */
6229 if (is_mixed_float_with_packed_fp16_dst(inst))
6230 max_width = MIN2(max_width, 8);
6231
6232 /* Only power-of-two execution sizes are representable in the instruction
6233 * control fields.
6234 */
6235 return 1 << util_logbase2(max_width);
6236 }
6237
6238 /**
6239 * Get the maximum allowed SIMD width for instruction \p inst accounting for
6240 * various payload size restrictions that apply to sampler message
6241 * instructions.
6242 *
6243 * This is only intended to provide a maximum theoretical bound for the
6244 * execution size of the message based on the number of argument components
6245 * alone, which in most cases will determine whether the SIMD8 or SIMD16
6246 * variant of the message can be used, though some messages may have
6247 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
6248 * the message length to determine the exact SIMD width and argument count,
6249 * which makes a number of sampler message combinations impossible to
6250 * represent).
6251 */
6252 static unsigned
6253 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
6254 const fs_inst *inst)
6255 {
6256 /* If we have a min_lod parameter on anything other than a simple sample
6257 * message, it will push it over 5 arguments and we have to fall back to
6258 * SIMD8.
6259 */
6260 if (inst->opcode != SHADER_OPCODE_TEX &&
6261 inst->components_read(TEX_LOGICAL_SRC_MIN_LOD))
6262 return 8;
6263
6264 /* Calculate the number of coordinate components that have to be present
6265 * assuming that additional arguments follow the texel coordinates in the
6266 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
6267 * need to pad to four or three components depending on the message,
6268 * pre-ILK we need to pad to at most three components.
6269 */
6270 const unsigned req_coord_components =
6271 (devinfo->gen >= 7 ||
6272 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
6273 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
6274 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
6275 3;
6276
6277 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
6278 * variant of the TXL or TXF message.
6279 */
6280 const bool implicit_lod = devinfo->gen >= 9 &&
6281 (inst->opcode == SHADER_OPCODE_TXL ||
6282 inst->opcode == SHADER_OPCODE_TXF) &&
6283 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
6284
6285 /* Calculate the total number of argument components that need to be passed
6286 * to the sampler unit.
6287 */
6288 const unsigned num_payload_components =
6289 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
6290 req_coord_components) +
6291 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
6292 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
6293 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
6294 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
6295 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
6296 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
6297 inst->components_read(TEX_LOGICAL_SRC_MCS);
6298
6299 /* SIMD16 messages with more than five arguments exceed the maximum message
6300 * size supported by the sampler, regardless of whether a header is
6301 * provided or not.
6302 */
6303 return MIN2(inst->exec_size,
6304 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
6305 }
6306
6307 /**
6308 * Get the closest native SIMD width supported by the hardware for instruction
6309 * \p inst. The instruction will be left untouched by
6310 * fs_visitor::lower_simd_width() if the returned value is equal to the
6311 * original execution size.
6312 */
6313 static unsigned
6314 get_lowered_simd_width(const struct gen_device_info *devinfo,
6315 const fs_inst *inst)
6316 {
6317 switch (inst->opcode) {
6318 case BRW_OPCODE_MOV:
6319 case BRW_OPCODE_SEL:
6320 case BRW_OPCODE_NOT:
6321 case BRW_OPCODE_AND:
6322 case BRW_OPCODE_OR:
6323 case BRW_OPCODE_XOR:
6324 case BRW_OPCODE_SHR:
6325 case BRW_OPCODE_SHL:
6326 case BRW_OPCODE_ASR:
6327 case BRW_OPCODE_ROR:
6328 case BRW_OPCODE_ROL:
6329 case BRW_OPCODE_CMPN:
6330 case BRW_OPCODE_CSEL:
6331 case BRW_OPCODE_F32TO16:
6332 case BRW_OPCODE_F16TO32:
6333 case BRW_OPCODE_BFREV:
6334 case BRW_OPCODE_BFE:
6335 case BRW_OPCODE_ADD:
6336 case BRW_OPCODE_MUL:
6337 case BRW_OPCODE_AVG:
6338 case BRW_OPCODE_FRC:
6339 case BRW_OPCODE_RNDU:
6340 case BRW_OPCODE_RNDD:
6341 case BRW_OPCODE_RNDE:
6342 case BRW_OPCODE_RNDZ:
6343 case BRW_OPCODE_LZD:
6344 case BRW_OPCODE_FBH:
6345 case BRW_OPCODE_FBL:
6346 case BRW_OPCODE_CBIT:
6347 case BRW_OPCODE_SAD2:
6348 case BRW_OPCODE_MAD:
6349 case BRW_OPCODE_LRP:
6350 case FS_OPCODE_PACK:
6351 case SHADER_OPCODE_SEL_EXEC:
6352 case SHADER_OPCODE_CLUSTER_BROADCAST:
6353 return get_fpu_lowered_simd_width(devinfo, inst);
6354
6355 case BRW_OPCODE_CMP: {
6356 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
6357 * when the destination is a GRF the dependency-clear bit on the flag
6358 * register is cleared early.
6359 *
6360 * Suggested workarounds are to disable coissuing CMP instructions
6361 * or to split CMP(16) instructions into two CMP(8) instructions.
6362 *
6363 * We choose to split into CMP(8) instructions since disabling
6364 * coissuing would affect CMP instructions not otherwise affected by
6365 * the errata.
6366 */
6367 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
6368 !inst->dst.is_null() ? 8 : ~0);
6369 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
6370 }
6371 case BRW_OPCODE_BFI1:
6372 case BRW_OPCODE_BFI2:
6373 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
6374 * should
6375 * "Force BFI instructions to be executed always in SIMD8."
6376 */
6377 return MIN2(devinfo->is_haswell ? 8 : ~0u,
6378 get_fpu_lowered_simd_width(devinfo, inst));
6379
6380 case BRW_OPCODE_IF:
6381 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
6382 return inst->exec_size;
6383
6384 case SHADER_OPCODE_RCP:
6385 case SHADER_OPCODE_RSQ:
6386 case SHADER_OPCODE_SQRT:
6387 case SHADER_OPCODE_EXP2:
6388 case SHADER_OPCODE_LOG2:
6389 case SHADER_OPCODE_SIN:
6390 case SHADER_OPCODE_COS: {
6391 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
6392 * Gen6. Extended Math Function is limited to SIMD8 with half-float.
6393 */
6394 if (devinfo->gen == 6 || (devinfo->gen == 4 && !devinfo->is_g4x))
6395 return MIN2(8, inst->exec_size);
6396 if (inst->dst.type == BRW_REGISTER_TYPE_HF)
6397 return MIN2(8, inst->exec_size);
6398 return MIN2(16, inst->exec_size);
6399 }
6400
6401 case SHADER_OPCODE_POW: {
6402 /* SIMD16 is only allowed on Gen7+. Extended Math Function is limited
6403 * to SIMD8 with half-float
6404 */
6405 if (devinfo->gen < 7)
6406 return MIN2(8, inst->exec_size);
6407 if (inst->dst.type == BRW_REGISTER_TYPE_HF)
6408 return MIN2(8, inst->exec_size);
6409 return MIN2(16, inst->exec_size);
6410 }
6411
6412 case SHADER_OPCODE_USUB_SAT:
6413 case SHADER_OPCODE_ISUB_SAT:
6414 return get_fpu_lowered_simd_width(devinfo, inst);
6415
6416 case SHADER_OPCODE_INT_QUOTIENT:
6417 case SHADER_OPCODE_INT_REMAINDER:
6418 /* Integer division is limited to SIMD8 on all generations. */
6419 return MIN2(8, inst->exec_size);
6420
6421 case FS_OPCODE_LINTERP:
6422 case SHADER_OPCODE_GET_BUFFER_SIZE:
6423 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
6424 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
6425 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
6426 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
6427 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
6428 return MIN2(16, inst->exec_size);
6429
6430 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
6431 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
6432 * message used to implement varying pull constant loads, so expand it
6433 * to SIMD16. An alternative with longer message payload length but
6434 * shorter return payload would be to use the SIMD8 sampler message that
6435 * takes (header, u, v, r) as parameters instead of (header, u).
6436 */
6437 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
6438
6439 case FS_OPCODE_DDX_COARSE:
6440 case FS_OPCODE_DDX_FINE:
6441 case FS_OPCODE_DDY_COARSE:
6442 case FS_OPCODE_DDY_FINE:
6443 /* The implementation of this virtual opcode may require emitting
6444 * compressed Align16 instructions, which are severely limited on some
6445 * generations.
6446 *
6447 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
6448 * Region Restrictions):
6449 *
6450 * "In Align16 access mode, SIMD16 is not allowed for DW operations
6451 * and SIMD8 is not allowed for DF operations."
6452 *
6453 * In this context, "DW operations" means "operations acting on 32-bit
6454 * values", so it includes operations on floats.
6455 *
6456 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
6457 * (Instruction Compression -> Rules and Restrictions):
6458 *
6459 * "A compressed instruction must be in Align1 access mode. Align16
6460 * mode instructions cannot be compressed."
6461 *
6462 * Similar text exists in the g45 PRM.
6463 *
6464 * Empirically, compressed align16 instructions using odd register
6465 * numbers don't appear to work on Sandybridge either.
6466 */
6467 return (devinfo->gen == 4 || devinfo->gen == 6 ||
6468 (devinfo->gen == 7 && !devinfo->is_haswell) ?
6469 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
6470
6471 case SHADER_OPCODE_MULH:
6472 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
6473 * is 8-wide on Gen7+.
6474 */
6475 return (devinfo->gen >= 7 ? 8 :
6476 get_fpu_lowered_simd_width(devinfo, inst));
6477
6478 case FS_OPCODE_FB_WRITE_LOGICAL:
6479 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
6480 * here.
6481 */
6482 assert(devinfo->gen != 6 ||
6483 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
6484 inst->exec_size == 8);
6485 /* Dual-source FB writes are unsupported in SIMD16 mode. */
6486 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
6487 8 : MIN2(16, inst->exec_size));
6488
6489 case FS_OPCODE_FB_READ_LOGICAL:
6490 return MIN2(16, inst->exec_size);
6491
6492 case SHADER_OPCODE_TEX_LOGICAL:
6493 case SHADER_OPCODE_TXF_CMS_LOGICAL:
6494 case SHADER_OPCODE_TXF_UMS_LOGICAL:
6495 case SHADER_OPCODE_TXF_MCS_LOGICAL:
6496 case SHADER_OPCODE_LOD_LOGICAL:
6497 case SHADER_OPCODE_TG4_LOGICAL:
6498 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
6499 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
6500 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
6501 return get_sampler_lowered_simd_width(devinfo, inst);
6502
6503 case SHADER_OPCODE_TXD_LOGICAL:
6504 /* TXD is unsupported in SIMD16 mode. */
6505 return 8;
6506
6507 case SHADER_OPCODE_TXL_LOGICAL:
6508 case FS_OPCODE_TXB_LOGICAL:
6509 /* Only one execution size is representable pre-ILK depending on whether
6510 * the shadow reference argument is present.
6511 */
6512 if (devinfo->gen == 4)
6513 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
6514 else
6515 return get_sampler_lowered_simd_width(devinfo, inst);
6516
6517 case SHADER_OPCODE_TXF_LOGICAL:
6518 case SHADER_OPCODE_TXS_LOGICAL:
6519 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
6520 * messages. Use SIMD16 instead.
6521 */
6522 if (devinfo->gen == 4)
6523 return 16;
6524 else
6525 return get_sampler_lowered_simd_width(devinfo, inst);
6526
6527 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
6528 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
6529 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
6530 return 8;
6531
6532 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
6533 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
6534 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
6535 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
6536 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
6537 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
6538 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
6539 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
6540 return MIN2(16, inst->exec_size);
6541
6542 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
6543 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
6544 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
6545 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
6546 return devinfo->gen <= 8 ? 8 : MIN2(16, inst->exec_size);
6547
6548 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
6549 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
6550 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
6551 return 8;
6552
6553 case SHADER_OPCODE_URB_READ_SIMD8:
6554 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
6555 case SHADER_OPCODE_URB_WRITE_SIMD8:
6556 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
6557 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
6558 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
6559 return MIN2(8, inst->exec_size);
6560
6561 case SHADER_OPCODE_QUAD_SWIZZLE: {
6562 const unsigned swiz = inst->src[1].ud;
6563 return (is_uniform(inst->src[0]) ?
6564 get_fpu_lowered_simd_width(devinfo, inst) :
6565 devinfo->gen < 11 && type_sz(inst->src[0].type) == 4 ? 8 :
6566 swiz == BRW_SWIZZLE_XYXY || swiz == BRW_SWIZZLE_ZWZW ? 4 :
6567 get_fpu_lowered_simd_width(devinfo, inst));
6568 }
6569 case SHADER_OPCODE_MOV_INDIRECT: {
6570 /* From IVB and HSW PRMs:
6571 *
6572 * "2.When the destination requires two registers and the sources are
6573 * indirect, the sources must use 1x1 regioning mode.
6574 *
6575 * In case of DF instructions in HSW/IVB, the exec_size is limited by
6576 * the EU decompression logic not handling VxH indirect addressing
6577 * correctly.
6578 */
6579 const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE;
6580 /* Prior to Broadwell, we only have 8 address subregisters. */
6581 return MIN3(devinfo->gen >= 8 ? 16 : 8,
6582 max_size / (inst->dst.stride * type_sz(inst->dst.type)),
6583 inst->exec_size);
6584 }
6585
6586 case SHADER_OPCODE_LOAD_PAYLOAD: {
6587 const unsigned reg_count =
6588 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
6589
6590 if (reg_count > 2) {
6591 /* Only LOAD_PAYLOAD instructions with per-channel destination region
6592 * can be easily lowered (which excludes headers and heterogeneous
6593 * types).
6594 */
6595 assert(!inst->header_size);
6596 for (unsigned i = 0; i < inst->sources; i++)
6597 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
6598 inst->src[i].file == BAD_FILE);
6599
6600 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
6601 } else {
6602 return inst->exec_size;
6603 }
6604 }
6605 default:
6606 return inst->exec_size;
6607 }
6608 }
6609
6610 /**
6611 * Return true if splitting out the group of channels of instruction \p inst
6612 * given by lbld.group() requires allocating a temporary for the i-th source
6613 * of the lowered instruction.
6614 */
6615 static inline bool
6616 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
6617 {
6618 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
6619 (inst->components_read(i) == 1 &&
6620 lbld.dispatch_width() <= inst->exec_size)) ||
6621 (inst->flags_written() &
6622 flag_mask(inst->src[i], type_sz(inst->src[i].type)));
6623 }
6624
6625 /**
6626 * Extract the data that would be consumed by the channel group given by
6627 * lbld.group() from the i-th source region of instruction \p inst and return
6628 * it as result in packed form.
6629 */
6630 static fs_reg
6631 emit_unzip(const fs_builder &lbld, fs_inst *inst, unsigned i)
6632 {
6633 assert(lbld.group() >= inst->group);
6634
6635 /* Specified channel group from the source region. */
6636 const fs_reg src = horiz_offset(inst->src[i], lbld.group() - inst->group);
6637
6638 if (needs_src_copy(lbld, inst, i)) {
6639 /* Builder of the right width to perform the copy avoiding uninitialized
6640 * data if the lowered execution size is greater than the original
6641 * execution size of the instruction.
6642 */
6643 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
6644 inst->exec_size), 0);
6645 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
6646
6647 for (unsigned k = 0; k < inst->components_read(i); ++k)
6648 cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
6649
6650 return tmp;
6651
6652 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
6653 /* The source is invariant for all dispatch_width-wide groups of the
6654 * original region.
6655 */
6656 return inst->src[i];
6657
6658 } else {
6659 /* We can just point the lowered instruction at the right channel group
6660 * from the original region.
6661 */
6662 return src;
6663 }
6664 }
6665
6666 /**
6667 * Return true if splitting out the group of channels of instruction \p inst
6668 * given by lbld.group() requires allocating a temporary for the destination
6669 * of the lowered instruction and copying the data back to the original
6670 * destination region.
6671 */
6672 static inline bool
6673 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
6674 {
6675 /* If the instruction writes more than one component we'll have to shuffle
6676 * the results of multiple lowered instructions in order to make sure that
6677 * they end up arranged correctly in the original destination region.
6678 */
6679 if (inst->size_written > inst->dst.component_size(inst->exec_size))
6680 return true;
6681
6682 /* If the lowered execution size is larger than the original the result of
6683 * the instruction won't fit in the original destination, so we'll have to
6684 * allocate a temporary in any case.
6685 */
6686 if (lbld.dispatch_width() > inst->exec_size)
6687 return true;
6688
6689 for (unsigned i = 0; i < inst->sources; i++) {
6690 /* If we already made a copy of the source for other reasons there won't
6691 * be any overlap with the destination.
6692 */
6693 if (needs_src_copy(lbld, inst, i))
6694 continue;
6695
6696 /* In order to keep the logic simple we emit a copy whenever the
6697 * destination region doesn't exactly match an overlapping source, which
6698 * may point at the source and destination not being aligned group by
6699 * group which could cause one of the lowered instructions to overwrite
6700 * the data read from the same source by other lowered instructions.
6701 */
6702 if (regions_overlap(inst->dst, inst->size_written,
6703 inst->src[i], inst->size_read(i)) &&
6704 !inst->dst.equals(inst->src[i]))
6705 return true;
6706 }
6707
6708 return false;
6709 }
6710
6711 /**
6712 * Insert data from a packed temporary into the channel group given by
6713 * lbld.group() of the destination region of instruction \p inst and return
6714 * the temporary as result. Any copy instructions that are required for
6715 * unzipping the previous value (in the case of partial writes) will be
6716 * inserted using \p lbld_before and any copy instructions required for
6717 * zipping up the destination of \p inst will be inserted using \p lbld_after.
6718 */
6719 static fs_reg
6720 emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after,
6721 fs_inst *inst)
6722 {
6723 assert(lbld_before.dispatch_width() == lbld_after.dispatch_width());
6724 assert(lbld_before.group() == lbld_after.group());
6725 assert(lbld_after.group() >= inst->group);
6726
6727 /* Specified channel group from the destination region. */
6728 const fs_reg dst = horiz_offset(inst->dst, lbld_after.group() - inst->group);
6729 const unsigned dst_size = inst->size_written /
6730 inst->dst.component_size(inst->exec_size);
6731
6732 if (needs_dst_copy(lbld_after, inst)) {
6733 const fs_reg tmp = lbld_after.vgrf(inst->dst.type, dst_size);
6734
6735 if (inst->predicate) {
6736 /* Handle predication by copying the original contents of
6737 * the destination into the temporary before emitting the
6738 * lowered instruction.
6739 */
6740 const fs_builder gbld_before =
6741 lbld_before.group(MIN2(lbld_before.dispatch_width(),
6742 inst->exec_size), 0);
6743 for (unsigned k = 0; k < dst_size; ++k) {
6744 gbld_before.MOV(offset(tmp, lbld_before, k),
6745 offset(dst, inst->exec_size, k));
6746 }
6747 }
6748
6749 const fs_builder gbld_after =
6750 lbld_after.group(MIN2(lbld_after.dispatch_width(),
6751 inst->exec_size), 0);
6752 for (unsigned k = 0; k < dst_size; ++k) {
6753 /* Use a builder of the right width to perform the copy avoiding
6754 * uninitialized data if the lowered execution size is greater than
6755 * the original execution size of the instruction.
6756 */
6757 gbld_after.MOV(offset(dst, inst->exec_size, k),
6758 offset(tmp, lbld_after, k));
6759 }
6760
6761 return tmp;
6762
6763 } else {
6764 /* No need to allocate a temporary for the lowered instruction, just
6765 * take the right group of channels from the original region.
6766 */
6767 return dst;
6768 }
6769 }
6770
6771 bool
6772 fs_visitor::lower_simd_width()
6773 {
6774 bool progress = false;
6775
6776 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
6777 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
6778
6779 if (lower_width != inst->exec_size) {
6780 /* Builder matching the original instruction. We may also need to
6781 * emit an instruction of width larger than the original, set the
6782 * execution size of the builder to the highest of both for now so
6783 * we're sure that both cases can be handled.
6784 */
6785 const unsigned max_width = MAX2(inst->exec_size, lower_width);
6786 const fs_builder ibld = bld.at(block, inst)
6787 .exec_all(inst->force_writemask_all)
6788 .group(max_width, inst->group / max_width);
6789
6790 /* Split the copies in chunks of the execution width of either the
6791 * original or the lowered instruction, whichever is lower.
6792 */
6793 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
6794 const unsigned dst_size = inst->size_written /
6795 inst->dst.component_size(inst->exec_size);
6796
6797 assert(!inst->writes_accumulator && !inst->mlen);
6798
6799 /* Inserting the zip, unzip, and duplicated instructions in all of
6800 * the right spots is somewhat tricky. All of the unzip and any
6801 * instructions from the zip which unzip the destination prior to
6802 * writing need to happen before all of the per-group instructions
6803 * and the zip instructions need to happen after. In order to sort
6804 * this all out, we insert the unzip instructions before \p inst,
6805 * insert the per-group instructions after \p inst (i.e. before
6806 * inst->next), and insert the zip instructions before the
6807 * instruction after \p inst. Since we are inserting instructions
6808 * after \p inst, inst->next is a moving target and we need to save
6809 * it off here so that we insert the zip instructions in the right
6810 * place.
6811 *
6812 * Since we're inserting split instructions after after_inst, the
6813 * instructions will end up in the reverse order that we insert them.
6814 * However, certain render target writes require that the low group
6815 * instructions come before the high group. From the Ivy Bridge PRM
6816 * Vol. 4, Pt. 1, Section 3.9.11:
6817 *
6818 * "If multiple SIMD8 Dual Source messages are delivered by the
6819 * pixel shader thread, each SIMD8_DUALSRC_LO message must be
6820 * issued before the SIMD8_DUALSRC_HI message with the same Slot
6821 * Group Select setting."
6822 *
6823 * And, from Section 3.9.11.1 of the same PRM:
6824 *
6825 * "When SIMD32 or SIMD16 PS threads send render target writes
6826 * with multiple SIMD8 and SIMD16 messages, the following must
6827 * hold:
6828 *
6829 * All the slots (as described above) must have a corresponding
6830 * render target write irrespective of the slot's validity. A slot
6831 * is considered valid when at least one sample is enabled. For
6832 * example, a SIMD16 PS thread must send two SIMD8 render target
6833 * writes to cover all the slots.
6834 *
6835 * PS thread must send SIMD render target write messages with
6836 * increasing slot numbers. For example, SIMD16 thread has
6837 * Slot[15:0] and if two SIMD8 render target writes are used, the
6838 * first SIMD8 render target write must send Slot[7:0] and the
6839 * next one must send Slot[15:8]."
6840 *
6841 * In order to make low group instructions come before high group
6842 * instructions (this is required for some render target writes), we
6843 * split from the highest group to lowest.
6844 */
6845 exec_node *const after_inst = inst->next;
6846 for (int i = n - 1; i >= 0; i--) {
6847 /* Emit a copy of the original instruction with the lowered width.
6848 * If the EOT flag was set throw it away except for the last
6849 * instruction to avoid killing the thread prematurely.
6850 */
6851 fs_inst split_inst = *inst;
6852 split_inst.exec_size = lower_width;
6853 split_inst.eot = inst->eot && i == int(n - 1);
6854
6855 /* Select the correct channel enables for the i-th group, then
6856 * transform the sources and destination and emit the lowered
6857 * instruction.
6858 */
6859 const fs_builder lbld = ibld.group(lower_width, i);
6860
6861 for (unsigned j = 0; j < inst->sources; j++)
6862 split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j);
6863
6864 split_inst.dst = emit_zip(lbld.at(block, inst),
6865 lbld.at(block, after_inst), inst);
6866 split_inst.size_written =
6867 split_inst.dst.component_size(lower_width) * dst_size;
6868
6869 lbld.at(block, inst->next).emit(split_inst);
6870 }
6871
6872 inst->remove(block);
6873 progress = true;
6874 }
6875 }
6876
6877 if (progress)
6878 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
6879
6880 return progress;
6881 }
6882
6883 /**
6884 * Transform barycentric vectors into the interleaved form expected by the PLN
6885 * instruction and returned by the Gen7+ PI shared function.
6886 *
6887 * For channels 0-15 in SIMD16 mode they are expected to be laid out as
6888 * follows in the register file:
6889 *
6890 * rN+0: X[0-7]
6891 * rN+1: Y[0-7]
6892 * rN+2: X[8-15]
6893 * rN+3: Y[8-15]
6894 *
6895 * There is no need to handle SIMD32 here -- This is expected to be run after
6896 * SIMD lowering, since SIMD lowering relies on vectors having the standard
6897 * component layout.
6898 */
6899 bool
6900 fs_visitor::lower_barycentrics()
6901 {
6902 const bool has_interleaved_layout = devinfo->has_pln || devinfo->gen >= 7;
6903 bool progress = false;
6904
6905 if (stage != MESA_SHADER_FRAGMENT || !has_interleaved_layout)
6906 return false;
6907
6908 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
6909 if (inst->exec_size < 16)
6910 continue;
6911
6912 const fs_builder ibld(this, block, inst);
6913 const fs_builder ubld = ibld.exec_all().group(8, 0);
6914
6915 switch (inst->opcode) {
6916 case FS_OPCODE_LINTERP : {
6917 assert(inst->exec_size == 16);
6918 const fs_reg tmp = ibld.vgrf(inst->src[0].type, 2);
6919 fs_reg srcs[4];
6920
6921 for (unsigned i = 0; i < ARRAY_SIZE(srcs); i++)
6922 srcs[i] = horiz_offset(offset(inst->src[0], ibld, i % 2),
6923 8 * (i / 2));
6924
6925 ubld.LOAD_PAYLOAD(tmp, srcs, ARRAY_SIZE(srcs), ARRAY_SIZE(srcs));
6926
6927 inst->src[0] = tmp;
6928 progress = true;
6929 break;
6930 }
6931 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
6932 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
6933 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: {
6934 assert(inst->exec_size == 16);
6935 const fs_reg tmp = ibld.vgrf(inst->dst.type, 2);
6936
6937 for (unsigned i = 0; i < 2; i++) {
6938 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
6939 fs_inst *mov = ibld.at(block, inst->next).group(8, g)
6940 .MOV(horiz_offset(offset(inst->dst, ibld, i),
6941 8 * g),
6942 offset(tmp, ubld, 2 * g + i));
6943 mov->predicate = inst->predicate;
6944 mov->predicate_inverse = inst->predicate_inverse;
6945 mov->flag_subreg = inst->flag_subreg;
6946 }
6947 }
6948
6949 inst->dst = tmp;
6950 progress = true;
6951 break;
6952 }
6953 default:
6954 break;
6955 }
6956 }
6957
6958 if (progress)
6959 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
6960
6961 return progress;
6962 }
6963
6964 void
6965 fs_visitor::dump_instructions() const
6966 {
6967 dump_instructions(NULL);
6968 }
6969
6970 void
6971 fs_visitor::dump_instructions(const char *name) const
6972 {
6973 FILE *file = stderr;
6974 if (name && geteuid() != 0) {
6975 file = fopen(name, "w");
6976 if (!file)
6977 file = stderr;
6978 }
6979
6980 if (cfg) {
6981 const register_pressure &rp = regpressure_analysis.require();
6982 unsigned ip = 0, max_pressure = 0;
6983 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
6984 max_pressure = MAX2(max_pressure, rp.regs_live_at_ip[ip]);
6985 fprintf(file, "{%3d} %4d: ", rp.regs_live_at_ip[ip], ip);
6986 dump_instruction(inst, file);
6987 ip++;
6988 }
6989 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
6990 } else {
6991 int ip = 0;
6992 foreach_in_list(backend_instruction, inst, &instructions) {
6993 fprintf(file, "%4d: ", ip++);
6994 dump_instruction(inst, file);
6995 }
6996 }
6997
6998 if (file != stderr) {
6999 fclose(file);
7000 }
7001 }
7002
7003 void
7004 fs_visitor::dump_instruction(const backend_instruction *be_inst) const
7005 {
7006 dump_instruction(be_inst, stderr);
7007 }
7008
7009 void
7010 fs_visitor::dump_instruction(const backend_instruction *be_inst, FILE *file) const
7011 {
7012 const fs_inst *inst = (const fs_inst *)be_inst;
7013
7014 if (inst->predicate) {
7015 fprintf(file, "(%cf%d.%d) ",
7016 inst->predicate_inverse ? '-' : '+',
7017 inst->flag_subreg / 2,
7018 inst->flag_subreg % 2);
7019 }
7020
7021 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
7022 if (inst->saturate)
7023 fprintf(file, ".sat");
7024 if (inst->conditional_mod) {
7025 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
7026 if (!inst->predicate &&
7027 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
7028 inst->opcode != BRW_OPCODE_CSEL &&
7029 inst->opcode != BRW_OPCODE_IF &&
7030 inst->opcode != BRW_OPCODE_WHILE))) {
7031 fprintf(file, ".f%d.%d", inst->flag_subreg / 2,
7032 inst->flag_subreg % 2);
7033 }
7034 }
7035 fprintf(file, "(%d) ", inst->exec_size);
7036
7037 if (inst->mlen) {
7038 fprintf(file, "(mlen: %d) ", inst->mlen);
7039 }
7040
7041 if (inst->ex_mlen) {
7042 fprintf(file, "(ex_mlen: %d) ", inst->ex_mlen);
7043 }
7044
7045 if (inst->eot) {
7046 fprintf(file, "(EOT) ");
7047 }
7048
7049 switch (inst->dst.file) {
7050 case VGRF:
7051 fprintf(file, "vgrf%d", inst->dst.nr);
7052 break;
7053 case FIXED_GRF:
7054 fprintf(file, "g%d", inst->dst.nr);
7055 break;
7056 case MRF:
7057 fprintf(file, "m%d", inst->dst.nr);
7058 break;
7059 case BAD_FILE:
7060 fprintf(file, "(null)");
7061 break;
7062 case UNIFORM:
7063 fprintf(file, "***u%d***", inst->dst.nr);
7064 break;
7065 case ATTR:
7066 fprintf(file, "***attr%d***", inst->dst.nr);
7067 break;
7068 case ARF:
7069 switch (inst->dst.nr) {
7070 case BRW_ARF_NULL:
7071 fprintf(file, "null");
7072 break;
7073 case BRW_ARF_ADDRESS:
7074 fprintf(file, "a0.%d", inst->dst.subnr);
7075 break;
7076 case BRW_ARF_ACCUMULATOR:
7077 fprintf(file, "acc%d", inst->dst.subnr);
7078 break;
7079 case BRW_ARF_FLAG:
7080 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
7081 break;
7082 default:
7083 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
7084 break;
7085 }
7086 break;
7087 case IMM:
7088 unreachable("not reached");
7089 }
7090
7091 if (inst->dst.offset ||
7092 (inst->dst.file == VGRF &&
7093 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
7094 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
7095 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
7096 inst->dst.offset % reg_size);
7097 }
7098
7099 if (inst->dst.stride != 1)
7100 fprintf(file, "<%u>", inst->dst.stride);
7101 fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));
7102
7103 for (int i = 0; i < inst->sources; i++) {
7104 if (inst->src[i].negate)
7105 fprintf(file, "-");
7106 if (inst->src[i].abs)
7107 fprintf(file, "|");
7108 switch (inst->src[i].file) {
7109 case VGRF:
7110 fprintf(file, "vgrf%d", inst->src[i].nr);
7111 break;
7112 case FIXED_GRF:
7113 fprintf(file, "g%d", inst->src[i].nr);
7114 break;
7115 case MRF:
7116 fprintf(file, "***m%d***", inst->src[i].nr);
7117 break;
7118 case ATTR:
7119 fprintf(file, "attr%d", inst->src[i].nr);
7120 break;
7121 case UNIFORM:
7122 fprintf(file, "u%d", inst->src[i].nr);
7123 break;
7124 case BAD_FILE:
7125 fprintf(file, "(null)");
7126 break;
7127 case IMM:
7128 switch (inst->src[i].type) {
7129 case BRW_REGISTER_TYPE_F:
7130 fprintf(file, "%-gf", inst->src[i].f);
7131 break;
7132 case BRW_REGISTER_TYPE_DF:
7133 fprintf(file, "%fdf", inst->src[i].df);
7134 break;
7135 case BRW_REGISTER_TYPE_W:
7136 case BRW_REGISTER_TYPE_D:
7137 fprintf(file, "%dd", inst->src[i].d);
7138 break;
7139 case BRW_REGISTER_TYPE_UW:
7140 case BRW_REGISTER_TYPE_UD:
7141 fprintf(file, "%uu", inst->src[i].ud);
7142 break;
7143 case BRW_REGISTER_TYPE_Q:
7144 fprintf(file, "%" PRId64 "q", inst->src[i].d64);
7145 break;
7146 case BRW_REGISTER_TYPE_UQ:
7147 fprintf(file, "%" PRIu64 "uq", inst->src[i].u64);
7148 break;
7149 case BRW_REGISTER_TYPE_VF:
7150 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
7151 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
7152 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
7153 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
7154 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
7155 break;
7156 case BRW_REGISTER_TYPE_V:
7157 case BRW_REGISTER_TYPE_UV:
7158 fprintf(file, "%08x%s", inst->src[i].ud,
7159 inst->src[i].type == BRW_REGISTER_TYPE_V ? "V" : "UV");
7160 break;
7161 default:
7162 fprintf(file, "???");
7163 break;
7164 }
7165 break;
7166 case ARF:
7167 switch (inst->src[i].nr) {
7168 case BRW_ARF_NULL:
7169 fprintf(file, "null");
7170 break;
7171 case BRW_ARF_ADDRESS:
7172 fprintf(file, "a0.%d", inst->src[i].subnr);
7173 break;
7174 case BRW_ARF_ACCUMULATOR:
7175 fprintf(file, "acc%d", inst->src[i].subnr);
7176 break;
7177 case BRW_ARF_FLAG:
7178 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
7179 break;
7180 default:
7181 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
7182 break;
7183 }
7184 break;
7185 }
7186
7187 if (inst->src[i].offset ||
7188 (inst->src[i].file == VGRF &&
7189 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
7190 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
7191 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
7192 inst->src[i].offset % reg_size);
7193 }
7194
7195 if (inst->src[i].abs)
7196 fprintf(file, "|");
7197
7198 if (inst->src[i].file != IMM) {
7199 unsigned stride;
7200 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
7201 unsigned hstride = inst->src[i].hstride;
7202 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
7203 } else {
7204 stride = inst->src[i].stride;
7205 }
7206 if (stride != 1)
7207 fprintf(file, "<%u>", stride);
7208
7209 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
7210 }
7211
7212 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
7213 fprintf(file, ", ");
7214 }
7215
7216 fprintf(file, " ");
7217
7218 if (inst->force_writemask_all)
7219 fprintf(file, "NoMask ");
7220
7221 if (inst->exec_size != dispatch_width)
7222 fprintf(file, "group%d ", inst->group);
7223
7224 fprintf(file, "\n");
7225 }
7226
7227 void
7228 fs_visitor::setup_fs_payload_gen6()
7229 {
7230 assert(stage == MESA_SHADER_FRAGMENT);
7231 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
7232 const unsigned payload_width = MIN2(16, dispatch_width);
7233 assert(dispatch_width % payload_width == 0);
7234 assert(devinfo->gen >= 6);
7235
7236 /* R0: PS thread payload header. */
7237 payload.num_regs++;
7238
7239 for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
7240 /* R1: masks, pixel X/Y coordinates. */
7241 payload.subspan_coord_reg[j] = payload.num_regs++;
7242 }
7243
7244 for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
7245 /* R3-26: barycentric interpolation coordinates. These appear in the
7246 * same order that they appear in the brw_barycentric_mode enum. Each
7247 * set of coordinates occupies 2 registers if dispatch width == 8 and 4
7248 * registers if dispatch width == 16. Coordinates only appear if they
7249 * were enabled using the "Barycentric Interpolation Mode" bits in
7250 * WM_STATE.
7251 */
7252 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
7253 if (prog_data->barycentric_interp_modes & (1 << i)) {
7254 payload.barycentric_coord_reg[i][j] = payload.num_regs;
7255 payload.num_regs += payload_width / 4;
7256 }
7257 }
7258
7259 /* R27-28: interpolated depth if uses source depth */
7260 if (prog_data->uses_src_depth) {
7261 payload.source_depth_reg[j] = payload.num_regs;
7262 payload.num_regs += payload_width / 8;
7263 }
7264
7265 /* R29-30: interpolated W set if GEN6_WM_USES_SOURCE_W. */
7266 if (prog_data->uses_src_w) {
7267 payload.source_w_reg[j] = payload.num_regs;
7268 payload.num_regs += payload_width / 8;
7269 }
7270
7271 /* R31: MSAA position offsets. */
7272 if (prog_data->uses_pos_offset) {
7273 payload.sample_pos_reg[j] = payload.num_regs;
7274 payload.num_regs++;
7275 }
7276
7277 /* R32-33: MSAA input coverage mask */
7278 if (prog_data->uses_sample_mask) {
7279 assert(devinfo->gen >= 7);
7280 payload.sample_mask_in_reg[j] = payload.num_regs;
7281 payload.num_regs += payload_width / 8;
7282 }
7283 }
7284
7285 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
7286 source_depth_to_render_target = true;
7287 }
7288 }
7289
7290 void
7291 fs_visitor::setup_vs_payload()
7292 {
7293 /* R0: thread header, R1: urb handles */
7294 payload.num_regs = 2;
7295 }
7296
7297 void
7298 fs_visitor::setup_gs_payload()
7299 {
7300 assert(stage == MESA_SHADER_GEOMETRY);
7301
7302 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
7303 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
7304
7305 /* R0: thread header, R1: output URB handles */
7306 payload.num_regs = 2;
7307
7308 if (gs_prog_data->include_primitive_id) {
7309 /* R2: Primitive ID 0..7 */
7310 payload.num_regs++;
7311 }
7312
7313 /* Always enable VUE handles so we can safely use pull model if needed.
7314 *
7315 * The push model for a GS uses a ton of register space even for trivial
7316 * scenarios with just a few inputs, so just make things easier and a bit
7317 * safer by always having pull model available.
7318 */
7319 gs_prog_data->base.include_vue_handles = true;
7320
7321 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
7322 payload.num_regs += nir->info.gs.vertices_in;
7323
7324 /* Use a maximum of 24 registers for push-model inputs. */
7325 const unsigned max_push_components = 24;
7326
7327 /* If pushing our inputs would take too many registers, reduce the URB read
7328 * length (which is in HWords, or 8 registers), and resort to pulling.
7329 *
7330 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
7331 * have to multiply by VerticesIn to obtain the total storage requirement.
7332 */
7333 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
7334 max_push_components) {
7335 vue_prog_data->urb_read_length =
7336 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
7337 }
7338 }
7339
7340 void
7341 fs_visitor::setup_cs_payload()
7342 {
7343 assert(devinfo->gen >= 7);
7344 payload.num_regs = 1;
7345 }
7346
7347 brw::register_pressure::register_pressure(const fs_visitor *v)
7348 {
7349 const fs_live_variables &live = v->live_analysis.require();
7350 const unsigned num_instructions = v->cfg->num_blocks ?
7351 v->cfg->blocks[v->cfg->num_blocks - 1]->end_ip + 1 : 0;
7352
7353 regs_live_at_ip = new unsigned[num_instructions]();
7354
7355 for (unsigned reg = 0; reg < v->alloc.count; reg++) {
7356 for (int ip = live.vgrf_start[reg]; ip <= live.vgrf_end[reg]; ip++)
7357 regs_live_at_ip[ip] += v->alloc.sizes[reg];
7358 }
7359 }
7360
7361 brw::register_pressure::~register_pressure()
7362 {
7363 delete[] regs_live_at_ip;
7364 }
7365
7366 void
7367 fs_visitor::invalidate_analysis(brw::analysis_dependency_class c)
7368 {
7369 backend_shader::invalidate_analysis(c);
7370 live_analysis.invalidate(c);
7371 regpressure_analysis.invalidate(c);
7372 }
7373
7374 void
7375 fs_visitor::optimize()
7376 {
7377 /* Start by validating the shader we currently have. */
7378 validate();
7379
7380 /* bld is the common builder object pointing at the end of the program we
7381 * used to translate it into i965 IR. For the optimization and lowering
7382 * passes coming next, any code added after the end of the program without
7383 * having explicitly called fs_builder::at() clearly points at a mistake.
7384 * Ideally optimization passes wouldn't be part of the visitor so they
7385 * wouldn't have access to bld at all, but they do, so just in case some
7386 * pass forgets to ask for a location explicitly set it to NULL here to
7387 * make it trip. The dispatch width is initialized to a bogus value to
7388 * make sure that optimizations set the execution controls explicitly to
7389 * match the code they are manipulating instead of relying on the defaults.
7390 */
7391 bld = fs_builder(this, 64);
7392
7393 assign_constant_locations();
7394 lower_constant_loads();
7395
7396 validate();
7397
7398 split_virtual_grfs();
7399 validate();
7400
7401 #define OPT(pass, args...) ({ \
7402 pass_num++; \
7403 bool this_progress = pass(args); \
7404 \
7405 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
7406 char filename[64]; \
7407 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
7408 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
7409 \
7410 backend_shader::dump_instructions(filename); \
7411 } \
7412 \
7413 validate(); \
7414 \
7415 progress = progress || this_progress; \
7416 this_progress; \
7417 })
7418
7419 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
7420 char filename[64];
7421 snprintf(filename, 64, "%s%d-%s-00-00-start",
7422 stage_abbrev, dispatch_width, nir->info.name);
7423
7424 backend_shader::dump_instructions(filename);
7425 }
7426
7427 bool progress = false;
7428 int iteration = 0;
7429 int pass_num = 0;
7430
7431 /* Before anything else, eliminate dead code. The results of some NIR
7432 * instructions may effectively be calculated twice. Once when the
7433 * instruction is encountered, and again when the user of that result is
7434 * encountered. Wipe those away before algebraic optimizations and
7435 * especially copy propagation can mix things up.
7436 */
7437 OPT(dead_code_eliminate);
7438
7439 OPT(remove_extra_rounding_modes);
7440
7441 do {
7442 progress = false;
7443 pass_num = 0;
7444 iteration++;
7445
7446 OPT(remove_duplicate_mrf_writes);
7447
7448 OPT(opt_algebraic);
7449 OPT(opt_cse);
7450 OPT(opt_copy_propagation);
7451 OPT(opt_predicated_break, this);
7452 OPT(opt_cmod_propagation);
7453 OPT(dead_code_eliminate);
7454 OPT(opt_peephole_sel);
7455 OPT(dead_control_flow_eliminate, this);
7456 OPT(opt_register_renaming);
7457 OPT(opt_saturate_propagation);
7458 OPT(register_coalesce);
7459 OPT(compute_to_mrf);
7460 OPT(eliminate_find_live_channel);
7461
7462 OPT(compact_virtual_grfs);
7463 } while (progress);
7464
7465 progress = false;
7466 pass_num = 0;
7467
7468 if (OPT(lower_pack)) {
7469 OPT(register_coalesce);
7470 OPT(dead_code_eliminate);
7471 }
7472
7473 OPT(lower_simd_width);
7474 OPT(lower_barycentrics);
7475 OPT(lower_logical_sends);
7476
7477 /* After logical SEND lowering. */
7478 OPT(fixup_nomask_control_flow);
7479
7480 if (progress) {
7481 OPT(opt_copy_propagation);
7482 /* Only run after logical send lowering because it's easier to implement
7483 * in terms of physical sends.
7484 */
7485 if (OPT(opt_zero_samples))
7486 OPT(opt_copy_propagation);
7487 /* Run after logical send lowering to give it a chance to CSE the
7488 * LOAD_PAYLOAD instructions created to construct the payloads of
7489 * e.g. texturing messages in cases where it wasn't possible to CSE the
7490 * whole logical instruction.
7491 */
7492 OPT(opt_cse);
7493 OPT(register_coalesce);
7494 OPT(compute_to_mrf);
7495 OPT(dead_code_eliminate);
7496 OPT(remove_duplicate_mrf_writes);
7497 OPT(opt_peephole_sel);
7498 }
7499
7500 OPT(opt_redundant_discard_jumps);
7501
7502 if (OPT(lower_load_payload)) {
7503 split_virtual_grfs();
7504
7505 /* Lower 64 bit MOVs generated by payload lowering. */
7506 if (!devinfo->has_64bit_float && !devinfo->has_64bit_int)
7507 OPT(opt_algebraic);
7508
7509 OPT(register_coalesce);
7510 OPT(lower_simd_width);
7511 OPT(compute_to_mrf);
7512 OPT(dead_code_eliminate);
7513 }
7514
7515 OPT(opt_combine_constants);
7516 OPT(lower_integer_multiplication);
7517 OPT(lower_sub_sat);
7518
7519 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
7520 OPT(opt_cmod_propagation);
7521 OPT(opt_cse);
7522 OPT(opt_copy_propagation);
7523 OPT(dead_code_eliminate);
7524 }
7525
7526 if (OPT(lower_regioning)) {
7527 OPT(opt_copy_propagation);
7528 OPT(dead_code_eliminate);
7529 OPT(lower_simd_width);
7530 }
7531
7532 OPT(fixup_sends_duplicate_payload);
7533
7534 lower_uniform_pull_constant_loads();
7535
7536 validate();
7537 }
7538
7539 /**
7540 * From the Skylake PRM Vol. 2a docs for sends:
7541 *
7542 * "It is required that the second block of GRFs does not overlap with the
7543 * first block."
7544 *
7545 * There are plenty of cases where we may accidentally violate this due to
7546 * having, for instance, both sources be the constant 0. This little pass
7547 * just adds a new vgrf for the second payload and copies it over.
7548 */
7549 bool
7550 fs_visitor::fixup_sends_duplicate_payload()
7551 {
7552 bool progress = false;
7553
7554 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
7555 if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 &&
7556 regions_overlap(inst->src[2], inst->mlen * REG_SIZE,
7557 inst->src[3], inst->ex_mlen * REG_SIZE)) {
7558 fs_reg tmp = fs_reg(VGRF, alloc.allocate(inst->ex_mlen),
7559 BRW_REGISTER_TYPE_UD);
7560 /* Sadly, we've lost all notion of channels and bit sizes at this
7561 * point. Just WE_all it.
7562 */
7563 const fs_builder ibld = bld.at(block, inst).exec_all().group(16, 0);
7564 fs_reg copy_src = retype(inst->src[3], BRW_REGISTER_TYPE_UD);
7565 fs_reg copy_dst = tmp;
7566 for (unsigned i = 0; i < inst->ex_mlen; i += 2) {
7567 if (inst->ex_mlen == i + 1) {
7568 /* Only one register left; do SIMD8 */
7569 ibld.group(8, 0).MOV(copy_dst, copy_src);
7570 } else {
7571 ibld.MOV(copy_dst, copy_src);
7572 }
7573 copy_src = offset(copy_src, ibld, 1);
7574 copy_dst = offset(copy_dst, ibld, 1);
7575 }
7576 inst->src[3] = tmp;
7577 progress = true;
7578 }
7579 }
7580
7581 if (progress)
7582 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
7583
7584 return progress;
7585 }
7586
7587 /**
7588 * Three source instruction must have a GRF/MRF destination register.
7589 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
7590 */
7591 void
7592 fs_visitor::fixup_3src_null_dest()
7593 {
7594 bool progress = false;
7595
7596 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
7597 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
7598 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
7599 inst->dst.type);
7600 progress = true;
7601 }
7602 }
7603
7604 if (progress)
7605 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
7606 DEPENDENCY_VARIABLES);
7607 }
7608
7609 /**
7610 * Find the first instruction in the program that might start a region of
7611 * divergent control flow due to a HALT jump. There is no
7612 * find_halt_control_flow_region_end(), the region of divergence extends until
7613 * the only FS_OPCODE_PLACEHOLDER_HALT in the program.
7614 */
7615 static const fs_inst *
7616 find_halt_control_flow_region_start(const fs_visitor *v)
7617 {
7618 if (brw_wm_prog_data(v->prog_data)->uses_kill) {
7619 foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
7620 if (inst->opcode == FS_OPCODE_DISCARD_JUMP ||
7621 inst->opcode == FS_OPCODE_PLACEHOLDER_HALT)
7622 return inst;
7623 }
7624 }
7625
7626 return NULL;
7627 }
7628
7629 /**
7630 * Work around the Gen12 hardware bug filed as GEN:BUG:1407528679. EU fusion
7631 * can cause a BB to be executed with all channels disabled, which will lead
7632 * to the execution of any NoMask instructions in it, even though any
7633 * execution-masked instructions will be correctly shot down. This may break
7634 * assumptions of some NoMask SEND messages whose descriptor depends on data
7635 * generated by live invocations of the shader.
7636 *
7637 * This avoids the problem by predicating certain instructions on an ANY
7638 * horizontal predicate that makes sure that their execution is omitted when
7639 * all channels of the program are disabled.
7640 */
7641 bool
7642 fs_visitor::fixup_nomask_control_flow()
7643 {
7644 if (devinfo->gen != 12)
7645 return false;
7646
7647 const brw_predicate pred = dispatch_width > 16 ? BRW_PREDICATE_ALIGN1_ANY32H :
7648 dispatch_width > 8 ? BRW_PREDICATE_ALIGN1_ANY16H :
7649 BRW_PREDICATE_ALIGN1_ANY8H;
7650 const fs_inst *halt_start = find_halt_control_flow_region_start(this);
7651 unsigned depth = 0;
7652 bool progress = false;
7653
7654 const fs_live_variables &live_vars = live_analysis.require();
7655
7656 /* Scan the program backwards in order to be able to easily determine
7657 * whether the flag register is live at any point.
7658 */
7659 foreach_block_reverse_safe(block, cfg) {
7660 BITSET_WORD flag_liveout = live_vars.block_data[block->num]
7661 .flag_liveout[0];
7662 STATIC_ASSERT(ARRAY_SIZE(live_vars.block_data[0].flag_liveout) == 1);
7663
7664 foreach_inst_in_block_reverse_safe(fs_inst, inst, block) {
7665 if (!inst->predicate && inst->exec_size >= 8)
7666 flag_liveout &= ~inst->flags_written();
7667
7668 switch (inst->opcode) {
7669 case BRW_OPCODE_DO:
7670 case BRW_OPCODE_IF:
7671 /* Note that this doesn't handle FS_OPCODE_DISCARD_JUMP since only
7672 * the first one in the program closes the region of divergent
7673 * control flow due to any HALT instructions -- Instead this is
7674 * handled with the halt_start check below.
7675 */
7676 depth--;
7677 break;
7678
7679 case BRW_OPCODE_WHILE:
7680 case BRW_OPCODE_ENDIF:
7681 case FS_OPCODE_PLACEHOLDER_HALT:
7682 depth++;
7683 break;
7684
7685 default:
7686 /* Note that the vast majority of NoMask SEND instructions in the
7687 * program are harmless while executed in a block with all
7688 * channels disabled, since any instructions with side effects we
7689 * could hit here should be execution-masked.
7690 *
7691 * The main concern is NoMask SEND instructions where the message
7692 * descriptor or header depends on data generated by live
7693 * invocations of the shader (RESINFO and
7694 * FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD with a dynamically
7695 * computed surface index seem to be the only examples right now
7696 * where this could easily lead to GPU hangs). Unfortunately we
7697 * have no straightforward way to detect that currently, so just
7698 * predicate any NoMask SEND instructions we find under control
7699 * flow.
7700 *
7701 * If this proves to have a measurable performance impact it can
7702 * be easily extended with a whitelist of messages we know we can
7703 * safely omit the predication for.
7704 */
7705 if (depth && inst->force_writemask_all &&
7706 is_send(inst) && !inst->predicate) {
7707 /* We need to load the execution mask into the flag register by
7708 * using a builder with channel group matching the whole shader
7709 * (rather than the default which is derived from the original
7710 * instruction), in order to avoid getting a right-shifted
7711 * value.
7712 */
7713 const fs_builder ubld = fs_builder(this, block, inst)
7714 .exec_all().group(dispatch_width, 0);
7715 const fs_reg flag = retype(brw_flag_reg(0, 0),
7716 BRW_REGISTER_TYPE_UD);
7717
7718 /* Due to the lack of flag register allocation we need to save
7719 * and restore the flag register if it's live.
7720 */
7721 const bool save_flag = flag_liveout &
7722 flag_mask(flag, dispatch_width / 8);
7723 const fs_reg tmp = ubld.group(1, 0).vgrf(flag.type);
7724
7725 if (save_flag)
7726 ubld.group(1, 0).MOV(tmp, flag);
7727
7728 ubld.emit(FS_OPCODE_LOAD_LIVE_CHANNELS);
7729
7730 set_predicate(pred, inst);
7731 inst->flag_subreg = 0;
7732
7733 if (save_flag)
7734 ubld.group(1, 0).at(block, inst->next).MOV(flag, tmp);
7735
7736 progress = true;
7737 }
7738 break;
7739 }
7740
7741 if (inst == halt_start)
7742 depth--;
7743
7744 flag_liveout |= inst->flags_read(devinfo);
7745 }
7746 }
7747
7748 if (progress)
7749 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
7750
7751 return progress;
7752 }
7753
7754 void
7755 fs_visitor::allocate_registers(bool allow_spilling)
7756 {
7757 bool allocated;
7758
7759 static const enum instruction_scheduler_mode pre_modes[] = {
7760 SCHEDULE_PRE,
7761 SCHEDULE_PRE_NON_LIFO,
7762 SCHEDULE_PRE_LIFO,
7763 };
7764
7765 static const char *scheduler_mode_name[] = {
7766 "top-down",
7767 "non-lifo",
7768 "lifo"
7769 };
7770
7771 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
7772
7773 /* Try each scheduling heuristic to see if it can successfully register
7774 * allocate without spilling. They should be ordered by decreasing
7775 * performance but increasing likelihood of allocating.
7776 */
7777 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
7778 schedule_instructions(pre_modes[i]);
7779 this->shader_stats.scheduler_mode = scheduler_mode_name[i];
7780
7781 if (0) {
7782 assign_regs_trivial();
7783 allocated = true;
7784 break;
7785 }
7786
7787 /* Scheduling may create additional opportunities for CMOD propagation,
7788 * so let's do it again. If CMOD propagation made any progress,
7789 * elminate dead code one more time.
7790 */
7791 bool progress = false;
7792 const int iteration = 99;
7793 int pass_num = 0;
7794
7795 if (OPT(opt_cmod_propagation)) {
7796 /* dead_code_eliminate "undoes" the fixing done by
7797 * fixup_3src_null_dest, so we have to do it again if
7798 * dead_code_eliminiate makes any progress.
7799 */
7800 if (OPT(dead_code_eliminate))
7801 fixup_3src_null_dest();
7802 }
7803
7804 bool can_spill = allow_spilling &&
7805 (i == ARRAY_SIZE(pre_modes) - 1);
7806
7807 /* We should only spill registers on the last scheduling. */
7808 assert(!spilled_any_registers);
7809
7810 allocated = assign_regs(can_spill, spill_all);
7811 if (allocated)
7812 break;
7813 }
7814
7815 if (!allocated) {
7816 fail("Failure to register allocate. Reduce number of "
7817 "live scalar values to avoid this.");
7818 } else if (spilled_any_registers) {
7819 compiler->shader_perf_log(log_data,
7820 "%s shader triggered register spilling. "
7821 "Try reducing the number of live scalar "
7822 "values to improve performance.\n",
7823 stage_name);
7824 }
7825
7826 /* This must come after all optimization and register allocation, since
7827 * it inserts dead code that happens to have side effects, and it does
7828 * so based on the actual physical registers in use.
7829 */
7830 insert_gen4_send_dependency_workarounds();
7831
7832 if (failed)
7833 return;
7834
7835 opt_bank_conflicts();
7836
7837 schedule_instructions(SCHEDULE_POST);
7838
7839 if (last_scratch > 0) {
7840 ASSERTED unsigned max_scratch_size = 2 * 1024 * 1024;
7841
7842 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
7843
7844 if (stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL) {
7845 if (devinfo->is_haswell) {
7846 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
7847 * field documentation, Haswell supports a minimum of 2kB of
7848 * scratch space for compute shaders, unlike every other stage
7849 * and platform.
7850 */
7851 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
7852 } else if (devinfo->gen <= 7) {
7853 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
7854 * field documentation, platforms prior to Haswell measure scratch
7855 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
7856 */
7857 prog_data->total_scratch = ALIGN(last_scratch, 1024);
7858 max_scratch_size = 12 * 1024;
7859 }
7860 }
7861
7862 /* We currently only support up to 2MB of scratch space. If we
7863 * need to support more eventually, the documentation suggests
7864 * that we could allocate a larger buffer, and partition it out
7865 * ourselves. We'd just have to undo the hardware's address
7866 * calculation by subtracting (FFTID * Per Thread Scratch Space)
7867 * and then add FFTID * (Larger Per Thread Scratch Space).
7868 *
7869 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
7870 * Thread Group Tracking > Local Memory/Scratch Space.
7871 */
7872 assert(prog_data->total_scratch < max_scratch_size);
7873 }
7874
7875 lower_scoreboard();
7876 }
7877
7878 bool
7879 fs_visitor::run_vs()
7880 {
7881 assert(stage == MESA_SHADER_VERTEX);
7882
7883 setup_vs_payload();
7884
7885 if (shader_time_index >= 0)
7886 emit_shader_time_begin();
7887
7888 emit_nir_code();
7889
7890 if (failed)
7891 return false;
7892
7893 emit_urb_writes();
7894
7895 if (shader_time_index >= 0)
7896 emit_shader_time_end();
7897
7898 calculate_cfg();
7899
7900 optimize();
7901
7902 assign_curb_setup();
7903 assign_vs_urb_setup();
7904
7905 fixup_3src_null_dest();
7906 allocate_registers(true /* allow_spilling */);
7907
7908 return !failed;
7909 }
7910
7911 void
7912 fs_visitor::set_tcs_invocation_id()
7913 {
7914 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
7915 struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
7916
7917 const unsigned instance_id_mask =
7918 devinfo->gen >= 11 ? INTEL_MASK(22, 16) : INTEL_MASK(23, 17);
7919 const unsigned instance_id_shift =
7920 devinfo->gen >= 11 ? 16 : 17;
7921
7922 /* Get instance number from g0.2 bits 22:16 or 23:17 */
7923 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
7924 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
7925 brw_imm_ud(instance_id_mask));
7926
7927 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
7928
7929 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH) {
7930 /* gl_InvocationID is just the thread number */
7931 bld.SHR(invocation_id, t, brw_imm_ud(instance_id_shift));
7932 return;
7933 }
7934
7935 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH);
7936
7937 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
7938 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
7939 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
7940 bld.MOV(channels_ud, channels_uw);
7941
7942 if (tcs_prog_data->instances == 1) {
7943 invocation_id = channels_ud;
7944 } else {
7945 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
7946 bld.SHR(instance_times_8, t, brw_imm_ud(instance_id_shift - 3));
7947 bld.ADD(invocation_id, instance_times_8, channels_ud);
7948 }
7949 }
7950
7951 bool
7952 fs_visitor::run_tcs()
7953 {
7954 assert(stage == MESA_SHADER_TESS_CTRL);
7955
7956 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
7957 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
7958 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
7959
7960 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH ||
7961 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
7962
7963 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
7964 /* r1-r4 contain the ICP handles. */
7965 payload.num_regs = 5;
7966 } else {
7967 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
7968 assert(tcs_key->input_vertices > 0);
7969 /* r1 contains output handles, r2 may contain primitive ID, then the
7970 * ICP handles occupy the next 1-32 registers.
7971 */
7972 payload.num_regs = 2 + tcs_prog_data->include_primitive_id +
7973 tcs_key->input_vertices;
7974 }
7975
7976 if (shader_time_index >= 0)
7977 emit_shader_time_begin();
7978
7979 /* Initialize gl_InvocationID */
7980 set_tcs_invocation_id();
7981
7982 const bool fix_dispatch_mask =
7983 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH &&
7984 (nir->info.tess.tcs_vertices_out % 8) != 0;
7985
7986 /* Fix the disptach mask */
7987 if (fix_dispatch_mask) {
7988 bld.CMP(bld.null_reg_ud(), invocation_id,
7989 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
7990 bld.IF(BRW_PREDICATE_NORMAL);
7991 }
7992
7993 emit_nir_code();
7994
7995 if (fix_dispatch_mask) {
7996 bld.emit(BRW_OPCODE_ENDIF);
7997 }
7998
7999 /* Emit EOT write; set TR DS Cache bit */
8000 fs_reg srcs[3] = {
8001 fs_reg(get_tcs_output_urb_handle()),
8002 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
8003 fs_reg(brw_imm_ud(0)),
8004 };
8005 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
8006 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
8007
8008 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
8009 bld.null_reg_ud(), payload);
8010 inst->mlen = 3;
8011 inst->eot = true;
8012
8013 if (shader_time_index >= 0)
8014 emit_shader_time_end();
8015
8016 if (failed)
8017 return false;
8018
8019 calculate_cfg();
8020
8021 optimize();
8022
8023 assign_curb_setup();
8024 assign_tcs_urb_setup();
8025
8026 fixup_3src_null_dest();
8027 allocate_registers(true /* allow_spilling */);
8028
8029 return !failed;
8030 }
8031
8032 bool
8033 fs_visitor::run_tes()
8034 {
8035 assert(stage == MESA_SHADER_TESS_EVAL);
8036
8037 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
8038 payload.num_regs = 5;
8039
8040 if (shader_time_index >= 0)
8041 emit_shader_time_begin();
8042
8043 emit_nir_code();
8044
8045 if (failed)
8046 return false;
8047
8048 emit_urb_writes();
8049
8050 if (shader_time_index >= 0)
8051 emit_shader_time_end();
8052
8053 calculate_cfg();
8054
8055 optimize();
8056
8057 assign_curb_setup();
8058 assign_tes_urb_setup();
8059
8060 fixup_3src_null_dest();
8061 allocate_registers(true /* allow_spilling */);
8062
8063 return !failed;
8064 }
8065
8066 bool
8067 fs_visitor::run_gs()
8068 {
8069 assert(stage == MESA_SHADER_GEOMETRY);
8070
8071 setup_gs_payload();
8072
8073 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
8074
8075 if (gs_compile->control_data_header_size_bits > 0) {
8076 /* Create a VGRF to store accumulated control data bits. */
8077 this->control_data_bits = vgrf(glsl_type::uint_type);
8078
8079 /* If we're outputting more than 32 control data bits, then EmitVertex()
8080 * will set control_data_bits to 0 after emitting the first vertex.
8081 * Otherwise, we need to initialize it to 0 here.
8082 */
8083 if (gs_compile->control_data_header_size_bits <= 32) {
8084 const fs_builder abld = bld.annotate("initialize control data bits");
8085 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
8086 }
8087 }
8088
8089 if (shader_time_index >= 0)
8090 emit_shader_time_begin();
8091
8092 emit_nir_code();
8093
8094 emit_gs_thread_end();
8095
8096 if (shader_time_index >= 0)
8097 emit_shader_time_end();
8098
8099 if (failed)
8100 return false;
8101
8102 calculate_cfg();
8103
8104 optimize();
8105
8106 assign_curb_setup();
8107 assign_gs_urb_setup();
8108
8109 fixup_3src_null_dest();
8110 allocate_registers(true /* allow_spilling */);
8111
8112 return !failed;
8113 }
8114
8115 /* From the SKL PRM, Volume 16, Workarounds:
8116 *
8117 * 0877 3D Pixel Shader Hang possible when pixel shader dispatched with
8118 * only header phases (R0-R2)
8119 *
8120 * WA: Enable a non-header phase (e.g. push constant) when dispatch would
8121 * have been header only.
8122 *
8123 * Instead of enabling push constants one can alternatively enable one of the
8124 * inputs. Here one simply chooses "layer" which shouldn't impose much
8125 * overhead.
8126 */
8127 static void
8128 gen9_ps_header_only_workaround(struct brw_wm_prog_data *wm_prog_data)
8129 {
8130 if (wm_prog_data->num_varying_inputs)
8131 return;
8132
8133 if (wm_prog_data->base.curb_read_length)
8134 return;
8135
8136 wm_prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;
8137 wm_prog_data->num_varying_inputs = 1;
8138
8139 brw_compute_urb_setup_index(wm_prog_data);
8140 }
8141
8142 bool
8143 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
8144 {
8145 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
8146 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
8147
8148 assert(stage == MESA_SHADER_FRAGMENT);
8149
8150 if (devinfo->gen >= 6)
8151 setup_fs_payload_gen6();
8152 else
8153 setup_fs_payload_gen4();
8154
8155 if (0) {
8156 emit_dummy_fs();
8157 } else if (do_rep_send) {
8158 assert(dispatch_width == 16);
8159 emit_repclear_shader();
8160 } else {
8161 if (shader_time_index >= 0)
8162 emit_shader_time_begin();
8163
8164 if (nir->info.inputs_read > 0 ||
8165 (nir->info.system_values_read & (1ull << SYSTEM_VALUE_FRAG_COORD)) ||
8166 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
8167 if (devinfo->gen < 6)
8168 emit_interpolation_setup_gen4();
8169 else
8170 emit_interpolation_setup_gen6();
8171 }
8172
8173 /* We handle discards by keeping track of the still-live pixels in f0.1.
8174 * Initialize it with the dispatched pixels.
8175 */
8176 if (wm_prog_data->uses_kill) {
8177 const unsigned lower_width = MIN2(dispatch_width, 16);
8178 for (unsigned i = 0; i < dispatch_width / lower_width; i++) {
8179 const fs_reg dispatch_mask =
8180 devinfo->gen >= 6 ? brw_vec1_grf((i ? 2 : 1), 7) :
8181 brw_vec1_grf(0, 0);
8182 bld.exec_all().group(1, 0)
8183 .MOV(sample_mask_reg(bld.group(lower_width, i)),
8184 retype(dispatch_mask, BRW_REGISTER_TYPE_UW));
8185 }
8186 }
8187
8188 if (nir->info.writes_memory)
8189 wm_prog_data->has_side_effects = true;
8190
8191 emit_nir_code();
8192
8193 if (failed)
8194 return false;
8195
8196 if (wm_prog_data->uses_kill)
8197 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
8198
8199 if (wm_key->alpha_test_func)
8200 emit_alpha_test();
8201
8202 emit_fb_writes();
8203
8204 if (shader_time_index >= 0)
8205 emit_shader_time_end();
8206
8207 calculate_cfg();
8208
8209 optimize();
8210
8211 assign_curb_setup();
8212
8213 if (devinfo->gen >= 9)
8214 gen9_ps_header_only_workaround(wm_prog_data);
8215
8216 assign_urb_setup();
8217
8218 fixup_3src_null_dest();
8219
8220 allocate_registers(allow_spilling);
8221
8222 if (failed)
8223 return false;
8224 }
8225
8226 return !failed;
8227 }
8228
8229 bool
8230 fs_visitor::run_cs(bool allow_spilling)
8231 {
8232 assert(stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL);
8233
8234 setup_cs_payload();
8235
8236 if (shader_time_index >= 0)
8237 emit_shader_time_begin();
8238
8239 if (devinfo->is_haswell && prog_data->total_shared > 0) {
8240 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
8241 const fs_builder abld = bld.exec_all().group(1, 0);
8242 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
8243 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
8244 }
8245
8246 emit_nir_code();
8247
8248 if (failed)
8249 return false;
8250
8251 emit_cs_terminate();
8252
8253 if (shader_time_index >= 0)
8254 emit_shader_time_end();
8255
8256 calculate_cfg();
8257
8258 optimize();
8259
8260 assign_curb_setup();
8261
8262 fixup_3src_null_dest();
8263 allocate_registers(allow_spilling);
8264
8265 if (failed)
8266 return false;
8267
8268 return !failed;
8269 }
8270
8271 static bool
8272 is_used_in_not_interp_frag_coord(nir_ssa_def *def)
8273 {
8274 nir_foreach_use(src, def) {
8275 if (src->parent_instr->type != nir_instr_type_intrinsic)
8276 return true;
8277
8278 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(src->parent_instr);
8279 if (intrin->intrinsic != nir_intrinsic_load_frag_coord)
8280 return true;
8281 }
8282
8283 nir_foreach_if_use(src, def)
8284 return true;
8285
8286 return false;
8287 }
8288
8289 /**
8290 * Return a bitfield where bit n is set if barycentric interpolation mode n
8291 * (see enum brw_barycentric_mode) is needed by the fragment shader.
8292 *
8293 * We examine the load_barycentric intrinsics rather than looking at input
8294 * variables so that we catch interpolateAtCentroid() messages too, which
8295 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
8296 */
8297 static unsigned
8298 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
8299 const nir_shader *shader)
8300 {
8301 unsigned barycentric_interp_modes = 0;
8302
8303 nir_foreach_function(f, shader) {
8304 if (!f->impl)
8305 continue;
8306
8307 nir_foreach_block(block, f->impl) {
8308 nir_foreach_instr(instr, block) {
8309 if (instr->type != nir_instr_type_intrinsic)
8310 continue;
8311
8312 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
8313 switch (intrin->intrinsic) {
8314 case nir_intrinsic_load_barycentric_pixel:
8315 case nir_intrinsic_load_barycentric_centroid:
8316 case nir_intrinsic_load_barycentric_sample:
8317 break;
8318 default:
8319 continue;
8320 }
8321
8322 /* Ignore WPOS; it doesn't require interpolation. */
8323 assert(intrin->dest.is_ssa);
8324 if (!is_used_in_not_interp_frag_coord(&intrin->dest.ssa))
8325 continue;
8326
8327 enum glsl_interp_mode interp = (enum glsl_interp_mode)
8328 nir_intrinsic_interp_mode(intrin);
8329 nir_intrinsic_op bary_op = intrin->intrinsic;
8330 enum brw_barycentric_mode bary =
8331 brw_barycentric_mode(interp, bary_op);
8332
8333 barycentric_interp_modes |= 1 << bary;
8334
8335 if (devinfo->needs_unlit_centroid_workaround &&
8336 bary_op == nir_intrinsic_load_barycentric_centroid)
8337 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
8338 }
8339 }
8340 }
8341
8342 return barycentric_interp_modes;
8343 }
8344
8345 static void
8346 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
8347 const nir_shader *shader)
8348 {
8349 prog_data->flat_inputs = 0;
8350
8351 nir_foreach_shader_in_variable(var, shader) {
8352 unsigned slots = glsl_count_attribute_slots(var->type, false);
8353 for (unsigned s = 0; s < slots; s++) {
8354 int input_index = prog_data->urb_setup[var->data.location + s];
8355
8356 if (input_index < 0)
8357 continue;
8358
8359 /* flat shading */
8360 if (var->data.interpolation == INTERP_MODE_FLAT)
8361 prog_data->flat_inputs |= 1 << input_index;
8362 }
8363 }
8364 }
8365
8366 static uint8_t
8367 computed_depth_mode(const nir_shader *shader)
8368 {
8369 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
8370 switch (shader->info.fs.depth_layout) {
8371 case FRAG_DEPTH_LAYOUT_NONE:
8372 case FRAG_DEPTH_LAYOUT_ANY:
8373 return BRW_PSCDEPTH_ON;
8374 case FRAG_DEPTH_LAYOUT_GREATER:
8375 return BRW_PSCDEPTH_ON_GE;
8376 case FRAG_DEPTH_LAYOUT_LESS:
8377 return BRW_PSCDEPTH_ON_LE;
8378 case FRAG_DEPTH_LAYOUT_UNCHANGED:
8379 return BRW_PSCDEPTH_OFF;
8380 }
8381 }
8382 return BRW_PSCDEPTH_OFF;
8383 }
8384
8385 /**
8386 * Move load_interpolated_input with simple (payload-based) barycentric modes
8387 * to the top of the program so we don't emit multiple PLNs for the same input.
8388 *
8389 * This works around CSE not being able to handle non-dominating cases
8390 * such as:
8391 *
8392 * if (...) {
8393 * interpolate input
8394 * } else {
8395 * interpolate the same exact input
8396 * }
8397 *
8398 * This should be replaced by global value numbering someday.
8399 */
8400 bool
8401 brw_nir_move_interpolation_to_top(nir_shader *nir)
8402 {
8403 bool progress = false;
8404
8405 nir_foreach_function(f, nir) {
8406 if (!f->impl)
8407 continue;
8408
8409 nir_block *top = nir_start_block(f->impl);
8410 exec_node *cursor_node = NULL;
8411
8412 nir_foreach_block(block, f->impl) {
8413 if (block == top)
8414 continue;
8415
8416 nir_foreach_instr_safe(instr, block) {
8417 if (instr->type != nir_instr_type_intrinsic)
8418 continue;
8419
8420 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
8421 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
8422 continue;
8423 nir_intrinsic_instr *bary_intrinsic =
8424 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
8425 nir_intrinsic_op op = bary_intrinsic->intrinsic;
8426
8427 /* Leave interpolateAtSample/Offset() where they are. */
8428 if (op == nir_intrinsic_load_barycentric_at_sample ||
8429 op == nir_intrinsic_load_barycentric_at_offset)
8430 continue;
8431
8432 nir_instr *move[3] = {
8433 &bary_intrinsic->instr,
8434 intrin->src[1].ssa->parent_instr,
8435 instr
8436 };
8437
8438 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
8439 if (move[i]->block != top) {
8440 move[i]->block = top;
8441 exec_node_remove(&move[i]->node);
8442 if (cursor_node) {
8443 exec_node_insert_after(cursor_node, &move[i]->node);
8444 } else {
8445 exec_list_push_head(&top->instr_list, &move[i]->node);
8446 }
8447 cursor_node = &move[i]->node;
8448 progress = true;
8449 }
8450 }
8451 }
8452 }
8453 nir_metadata_preserve(f->impl, nir_metadata_block_index |
8454 nir_metadata_dominance);
8455 }
8456
8457 return progress;
8458 }
8459
8460 /**
8461 * Demote per-sample barycentric intrinsics to centroid.
8462 *
8463 * Useful when rendering to a non-multisampled buffer.
8464 */
8465 bool
8466 brw_nir_demote_sample_qualifiers(nir_shader *nir)
8467 {
8468 bool progress = true;
8469
8470 nir_foreach_function(f, nir) {
8471 if (!f->impl)
8472 continue;
8473
8474 nir_builder b;
8475 nir_builder_init(&b, f->impl);
8476
8477 nir_foreach_block(block, f->impl) {
8478 nir_foreach_instr_safe(instr, block) {
8479 if (instr->type != nir_instr_type_intrinsic)
8480 continue;
8481
8482 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
8483 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
8484 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
8485 continue;
8486
8487 b.cursor = nir_before_instr(instr);
8488 nir_ssa_def *centroid =
8489 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
8490 nir_intrinsic_interp_mode(intrin));
8491 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
8492 nir_src_for_ssa(centroid));
8493 nir_instr_remove(instr);
8494 progress = true;
8495 }
8496 }
8497
8498 nir_metadata_preserve(f->impl, nir_metadata_block_index |
8499 nir_metadata_dominance);
8500 }
8501
8502 return progress;
8503 }
8504
8505 void
8506 brw_nir_populate_wm_prog_data(const nir_shader *shader,
8507 const struct gen_device_info *devinfo,
8508 const struct brw_wm_prog_key *key,
8509 struct brw_wm_prog_data *prog_data)
8510 {
8511 prog_data->uses_src_depth = prog_data->uses_src_w =
8512 shader->info.system_values_read & BITFIELD64_BIT(SYSTEM_VALUE_FRAG_COORD);
8513
8514 /* key->alpha_test_func means simulating alpha testing via discards,
8515 * so the shader definitely kills pixels.
8516 */
8517 prog_data->uses_kill = shader->info.fs.uses_discard ||
8518 key->alpha_test_func;
8519 prog_data->uses_omask = !key->ignore_sample_mask_out &&
8520 (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK));
8521 prog_data->computed_depth_mode = computed_depth_mode(shader);
8522 prog_data->computed_stencil =
8523 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
8524
8525 prog_data->persample_dispatch =
8526 key->multisample_fbo &&
8527 (key->persample_interp ||
8528 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
8529 SYSTEM_BIT_SAMPLE_POS)) ||
8530 shader->info.fs.uses_sample_qualifier ||
8531 shader->info.outputs_read);
8532
8533 if (devinfo->gen >= 6) {
8534 prog_data->uses_sample_mask =
8535 shader->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN;
8536
8537 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
8538 *
8539 * "MSDISPMODE_PERSAMPLE is required in order to select
8540 * POSOFFSET_SAMPLE"
8541 *
8542 * So we can only really get sample positions if we are doing real
8543 * per-sample dispatch. If we need gl_SamplePosition and we don't have
8544 * persample dispatch, we hard-code it to 0.5.
8545 */
8546 prog_data->uses_pos_offset = prog_data->persample_dispatch &&
8547 (shader->info.system_values_read & SYSTEM_BIT_SAMPLE_POS);
8548 }
8549
8550 prog_data->has_render_target_reads = shader->info.outputs_read != 0ull;
8551
8552 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
8553 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
8554 prog_data->inner_coverage = shader->info.fs.inner_coverage;
8555
8556 prog_data->barycentric_interp_modes =
8557 brw_compute_barycentric_interp_modes(devinfo, shader);
8558
8559 calculate_urb_setup(devinfo, key, prog_data, shader);
8560 brw_compute_flat_inputs(prog_data, shader);
8561 }
8562
8563 /**
8564 * Pre-gen6, the register file of the EUs was shared between threads,
8565 * and each thread used some subset allocated on a 16-register block
8566 * granularity. The unit states wanted these block counts.
8567 */
8568 static inline int
8569 brw_register_blocks(int reg_count)
8570 {
8571 return ALIGN(reg_count, 16) / 16 - 1;
8572 }
8573
8574 const unsigned *
8575 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
8576 void *mem_ctx,
8577 const struct brw_wm_prog_key *key,
8578 struct brw_wm_prog_data *prog_data,
8579 nir_shader *shader,
8580 int shader_time_index8, int shader_time_index16,
8581 int shader_time_index32, bool allow_spilling,
8582 bool use_rep_send, struct brw_vue_map *vue_map,
8583 struct brw_compile_stats *stats,
8584 char **error_str)
8585 {
8586 const struct gen_device_info *devinfo = compiler->devinfo;
8587 const unsigned max_subgroup_size = compiler->devinfo->gen >= 6 ? 32 : 16;
8588
8589 brw_nir_apply_key(shader, compiler, &key->base, max_subgroup_size, true);
8590 brw_nir_lower_fs_inputs(shader, devinfo, key);
8591 brw_nir_lower_fs_outputs(shader);
8592
8593 if (devinfo->gen < 6)
8594 brw_setup_vue_interpolation(vue_map, shader, prog_data);
8595
8596 /* From the SKL PRM, Volume 7, "Alpha Coverage":
8597 * "If Pixel Shader outputs oMask, AlphaToCoverage is disabled in
8598 * hardware, regardless of the state setting for this feature."
8599 */
8600 if (devinfo->gen > 6 && key->alpha_to_coverage) {
8601 /* Run constant fold optimization in order to get the correct source
8602 * offset to determine render target 0 store instruction in
8603 * emit_alpha_to_coverage pass.
8604 */
8605 NIR_PASS_V(shader, nir_opt_constant_folding);
8606 NIR_PASS_V(shader, brw_nir_lower_alpha_to_coverage);
8607 }
8608
8609 if (!key->multisample_fbo)
8610 NIR_PASS_V(shader, brw_nir_demote_sample_qualifiers);
8611 NIR_PASS_V(shader, brw_nir_move_interpolation_to_top);
8612 brw_postprocess_nir(shader, compiler, true);
8613
8614 brw_nir_populate_wm_prog_data(shader, compiler->devinfo, key, prog_data);
8615
8616 fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL;
8617 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL, *simd32_cfg = NULL;
8618 float throughput = 0;
8619 bool has_spilled = false;
8620
8621 v8 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
8622 &prog_data->base, shader, 8, shader_time_index8);
8623 if (!v8->run_fs(allow_spilling, false /* do_rep_send */)) {
8624 if (error_str)
8625 *error_str = ralloc_strdup(mem_ctx, v8->fail_msg);
8626
8627 delete v8;
8628 return NULL;
8629 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
8630 simd8_cfg = v8->cfg;
8631 prog_data->base.dispatch_grf_start_reg = v8->payload.num_regs;
8632 prog_data->reg_blocks_8 = brw_register_blocks(v8->grf_used);
8633 const performance &perf = v8->performance_analysis.require();
8634 throughput = MAX2(throughput, perf.throughput);
8635 has_spilled = v8->spilled_any_registers;
8636 allow_spilling = false;
8637 }
8638
8639 /* Limit dispatch width to simd8 with dual source blending on gen8.
8640 * See: https://gitlab.freedesktop.org/mesa/mesa/-/issues/1917
8641 */
8642 if (devinfo->gen == 8 && prog_data->dual_src_blend &&
8643 !(INTEL_DEBUG & DEBUG_NO8)) {
8644 assert(!use_rep_send);
8645 v8->limit_dispatch_width(8, "gen8 workaround: "
8646 "using SIMD8 when dual src blending.\n");
8647 }
8648
8649 if (!has_spilled &&
8650 v8->max_dispatch_width >= 16 &&
8651 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
8652 /* Try a SIMD16 compile */
8653 v16 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
8654 &prog_data->base, shader, 16, shader_time_index16);
8655 v16->import_uniforms(v8);
8656 if (!v16->run_fs(allow_spilling, use_rep_send)) {
8657 compiler->shader_perf_log(log_data,
8658 "SIMD16 shader failed to compile: %s",
8659 v16->fail_msg);
8660 } else {
8661 simd16_cfg = v16->cfg;
8662 prog_data->dispatch_grf_start_reg_16 = v16->payload.num_regs;
8663 prog_data->reg_blocks_16 = brw_register_blocks(v16->grf_used);
8664 const performance &perf = v16->performance_analysis.require();
8665 throughput = MAX2(throughput, perf.throughput);
8666 has_spilled = v16->spilled_any_registers;
8667 allow_spilling = false;
8668 }
8669 }
8670
8671 const bool simd16_failed = v16 && !simd16_cfg;
8672
8673 /* Currently, the compiler only supports SIMD32 on SNB+ */
8674 if (!has_spilled &&
8675 v8->max_dispatch_width >= 32 && !use_rep_send &&
8676 devinfo->gen >= 6 && !simd16_failed &&
8677 !(INTEL_DEBUG & DEBUG_NO32)) {
8678 /* Try a SIMD32 compile */
8679 v32 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
8680 &prog_data->base, shader, 32, shader_time_index32);
8681 v32->import_uniforms(v8);
8682 if (!v32->run_fs(allow_spilling, false)) {
8683 compiler->shader_perf_log(log_data,
8684 "SIMD32 shader failed to compile: %s",
8685 v32->fail_msg);
8686 } else {
8687 const performance &perf = v32->performance_analysis.require();
8688
8689 if (!(INTEL_DEBUG & DEBUG_DO32) && throughput >= perf.throughput) {
8690 compiler->shader_perf_log(log_data, "SIMD32 shader inefficient\n");
8691 } else {
8692 simd32_cfg = v32->cfg;
8693 prog_data->dispatch_grf_start_reg_32 = v32->payload.num_regs;
8694 prog_data->reg_blocks_32 = brw_register_blocks(v32->grf_used);
8695 throughput = MAX2(throughput, perf.throughput);
8696 }
8697 }
8698 }
8699
8700 /* When the caller requests a repclear shader, they want SIMD16-only */
8701 if (use_rep_send)
8702 simd8_cfg = NULL;
8703
8704 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
8705 * at the top to select the shader. We've never implemented that.
8706 * Instead, we just give them exactly one shader and we pick the widest one
8707 * available.
8708 */
8709 if (compiler->devinfo->gen < 5) {
8710 if (simd32_cfg || simd16_cfg)
8711 simd8_cfg = NULL;
8712 if (simd32_cfg)
8713 simd16_cfg = NULL;
8714 }
8715
8716 /* If computed depth is enabled SNB only allows SIMD8. */
8717 if (compiler->devinfo->gen == 6 &&
8718 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF)
8719 assert(simd16_cfg == NULL && simd32_cfg == NULL);
8720
8721 if (compiler->devinfo->gen <= 5 && !simd8_cfg) {
8722 /* Iron lake and earlier only have one Dispatch GRF start field. Make
8723 * the data available in the base prog data struct for convenience.
8724 */
8725 if (simd16_cfg) {
8726 prog_data->base.dispatch_grf_start_reg =
8727 prog_data->dispatch_grf_start_reg_16;
8728 } else if (simd32_cfg) {
8729 prog_data->base.dispatch_grf_start_reg =
8730 prog_data->dispatch_grf_start_reg_32;
8731 }
8732 }
8733
8734 if (prog_data->persample_dispatch) {
8735 /* Starting with SandyBridge (where we first get MSAA), the different
8736 * pixel dispatch combinations are grouped into classifications A
8737 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On most hardware
8738 * generations, the only configurations supporting persample dispatch
8739 * are those in which only one dispatch width is enabled.
8740 *
8741 * The Gen12 hardware spec has a similar dispatch grouping table, but
8742 * the following conflicting restriction applies (from the page on
8743 * "Structure_3DSTATE_PS_BODY"), so we need to keep the SIMD16 shader:
8744 *
8745 * "SIMD32 may only be enabled if SIMD16 or (dual)SIMD8 is also
8746 * enabled."
8747 */
8748 if (simd32_cfg || simd16_cfg)
8749 simd8_cfg = NULL;
8750 if (simd32_cfg && devinfo->gen < 12)
8751 simd16_cfg = NULL;
8752 }
8753
8754 fs_generator g(compiler, log_data, mem_ctx, &prog_data->base,
8755 v8->runtime_check_aads_emit, MESA_SHADER_FRAGMENT);
8756
8757 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
8758 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
8759 shader->info.label ?
8760 shader->info.label : "unnamed",
8761 shader->info.name));
8762 }
8763
8764 if (simd8_cfg) {
8765 prog_data->dispatch_8 = true;
8766 g.generate_code(simd8_cfg, 8, v8->shader_stats,
8767 v8->performance_analysis.require(), stats);
8768 stats = stats ? stats + 1 : NULL;
8769 }
8770
8771 if (simd16_cfg) {
8772 prog_data->dispatch_16 = true;
8773 prog_data->prog_offset_16 = g.generate_code(
8774 simd16_cfg, 16, v16->shader_stats,
8775 v16->performance_analysis.require(), stats);
8776 stats = stats ? stats + 1 : NULL;
8777 }
8778
8779 if (simd32_cfg) {
8780 prog_data->dispatch_32 = true;
8781 prog_data->prog_offset_32 = g.generate_code(
8782 simd32_cfg, 32, v32->shader_stats,
8783 v32->performance_analysis.require(), stats);
8784 stats = stats ? stats + 1 : NULL;
8785 }
8786
8787 g.add_const_data(shader->constant_data, shader->constant_data_size);
8788
8789 delete v8;
8790 delete v16;
8791 delete v32;
8792
8793 return g.get_assembly();
8794 }
8795
8796 fs_reg *
8797 fs_visitor::emit_cs_work_group_id_setup()
8798 {
8799 assert(stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL);
8800
8801 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
8802
8803 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
8804 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
8805 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
8806
8807 bld.MOV(*reg, r0_1);
8808 bld.MOV(offset(*reg, bld, 1), r0_6);
8809 bld.MOV(offset(*reg, bld, 2), r0_7);
8810
8811 return reg;
8812 }
8813
8814 unsigned
8815 brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data,
8816 unsigned threads)
8817 {
8818 assert(cs_prog_data->push.per_thread.size % REG_SIZE == 0);
8819 assert(cs_prog_data->push.cross_thread.size % REG_SIZE == 0);
8820 return cs_prog_data->push.per_thread.size * threads +
8821 cs_prog_data->push.cross_thread.size;
8822 }
8823
8824 static void
8825 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
8826 {
8827 block->dwords = dwords;
8828 block->regs = DIV_ROUND_UP(dwords, 8);
8829 block->size = block->regs * 32;
8830 }
8831
8832 static void
8833 cs_fill_push_const_info(const struct gen_device_info *devinfo,
8834 struct brw_cs_prog_data *cs_prog_data)
8835 {
8836 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
8837 int subgroup_id_index = get_subgroup_id_param_index(prog_data);
8838 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
8839
8840 /* The thread ID should be stored in the last param dword */
8841 assert(subgroup_id_index == -1 ||
8842 subgroup_id_index == (int)prog_data->nr_params - 1);
8843
8844 unsigned cross_thread_dwords, per_thread_dwords;
8845 if (!cross_thread_supported) {
8846 cross_thread_dwords = 0u;
8847 per_thread_dwords = prog_data->nr_params;
8848 } else if (subgroup_id_index >= 0) {
8849 /* Fill all but the last register with cross-thread payload */
8850 cross_thread_dwords = 8 * (subgroup_id_index / 8);
8851 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
8852 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
8853 } else {
8854 /* Fill all data using cross-thread payload */
8855 cross_thread_dwords = prog_data->nr_params;
8856 per_thread_dwords = 0u;
8857 }
8858
8859 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
8860 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
8861
8862 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
8863 cs_prog_data->push.per_thread.size == 0);
8864 assert(cs_prog_data->push.cross_thread.dwords +
8865 cs_prog_data->push.per_thread.dwords ==
8866 prog_data->nr_params);
8867 }
8868
8869 static bool
8870 filter_simd(const nir_instr *instr, const void *_options)
8871 {
8872 if (instr->type != nir_instr_type_intrinsic)
8873 return false;
8874
8875 switch (nir_instr_as_intrinsic(instr)->intrinsic) {
8876 case nir_intrinsic_load_simd_width_intel:
8877 case nir_intrinsic_load_subgroup_id:
8878 return true;
8879
8880 default:
8881 return false;
8882 }
8883 }
8884
8885 static nir_ssa_def *
8886 lower_simd(nir_builder *b, nir_instr *instr, void *options)
8887 {
8888 uintptr_t simd_width = (uintptr_t)options;
8889
8890 switch (nir_instr_as_intrinsic(instr)->intrinsic) {
8891 case nir_intrinsic_load_simd_width_intel:
8892 return nir_imm_int(b, simd_width);
8893
8894 case nir_intrinsic_load_subgroup_id:
8895 /* If the whole workgroup fits in one thread, we can lower subgroup_id
8896 * to a constant zero.
8897 */
8898 if (!b->shader->info.cs.local_size_variable) {
8899 unsigned local_workgroup_size = b->shader->info.cs.local_size[0] *
8900 b->shader->info.cs.local_size[1] *
8901 b->shader->info.cs.local_size[2];
8902 if (local_workgroup_size <= simd_width)
8903 return nir_imm_int(b, 0);
8904 }
8905 return NULL;
8906
8907 default:
8908 return NULL;
8909 }
8910 }
8911
8912 static void
8913 brw_nir_lower_simd(nir_shader *nir, unsigned dispatch_width)
8914 {
8915 nir_shader_lower_instructions(nir, filter_simd, lower_simd,
8916 (void *)(uintptr_t)dispatch_width);
8917 }
8918
8919 static nir_shader *
8920 compile_cs_to_nir(const struct brw_compiler *compiler,
8921 void *mem_ctx,
8922 const struct brw_cs_prog_key *key,
8923 const nir_shader *src_shader,
8924 unsigned dispatch_width)
8925 {
8926 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
8927 brw_nir_apply_key(shader, compiler, &key->base, dispatch_width, true);
8928
8929 NIR_PASS_V(shader, brw_nir_lower_simd, dispatch_width);
8930
8931 /* Clean up after the local index and ID calculations. */
8932 NIR_PASS_V(shader, nir_opt_constant_folding);
8933 NIR_PASS_V(shader, nir_opt_dce);
8934
8935 brw_postprocess_nir(shader, compiler, true);
8936
8937 return shader;
8938 }
8939
8940 const unsigned *
8941 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
8942 void *mem_ctx,
8943 const struct brw_cs_prog_key *key,
8944 struct brw_cs_prog_data *prog_data,
8945 const nir_shader *src_shader,
8946 int shader_time_index,
8947 struct brw_compile_stats *stats,
8948 char **error_str)
8949 {
8950 prog_data->base.total_shared = src_shader->info.cs.shared_size;
8951 prog_data->slm_size = src_shader->shared_size;
8952
8953 /* Generate code for all the possible SIMD variants. */
8954 bool generate_all;
8955
8956 unsigned min_dispatch_width;
8957 unsigned max_dispatch_width;
8958
8959 if (src_shader->info.cs.local_size_variable) {
8960 generate_all = true;
8961 min_dispatch_width = 8;
8962 max_dispatch_width = 32;
8963 } else {
8964 generate_all = false;
8965 prog_data->local_size[0] = src_shader->info.cs.local_size[0];
8966 prog_data->local_size[1] = src_shader->info.cs.local_size[1];
8967 prog_data->local_size[2] = src_shader->info.cs.local_size[2];
8968 unsigned local_workgroup_size = prog_data->local_size[0] *
8969 prog_data->local_size[1] *
8970 prog_data->local_size[2];
8971
8972 /* Limit max_threads to 64 for the GPGPU_WALKER command */
8973 const uint32_t max_threads = MIN2(64, compiler->devinfo->max_cs_threads);
8974 min_dispatch_width = util_next_power_of_two(
8975 MAX2(8, DIV_ROUND_UP(local_workgroup_size, max_threads)));
8976 assert(min_dispatch_width <= 32);
8977 max_dispatch_width = 32;
8978 }
8979
8980 if ((int)key->base.subgroup_size_type >= (int)BRW_SUBGROUP_SIZE_REQUIRE_8) {
8981 /* These enum values are expressly chosen to be equal to the subgroup
8982 * size that they require.
8983 */
8984 const unsigned required_dispatch_width =
8985 (unsigned)key->base.subgroup_size_type;
8986 assert(required_dispatch_width == 8 ||
8987 required_dispatch_width == 16 ||
8988 required_dispatch_width == 32);
8989 if (required_dispatch_width < min_dispatch_width ||
8990 required_dispatch_width > max_dispatch_width) {
8991 if (error_str) {
8992 *error_str = ralloc_strdup(mem_ctx,
8993 "Cannot satisfy explicit subgroup size");
8994 }
8995 return NULL;
8996 }
8997 min_dispatch_width = max_dispatch_width = required_dispatch_width;
8998 }
8999
9000 assert(min_dispatch_width <= max_dispatch_width);
9001
9002 fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL;
9003 fs_visitor *v = NULL;
9004
9005 if (likely(!(INTEL_DEBUG & DEBUG_NO8)) &&
9006 min_dispatch_width <= 8 && max_dispatch_width >= 8) {
9007 nir_shader *nir8 = compile_cs_to_nir(compiler, mem_ctx, key,
9008 src_shader, 8);
9009 v8 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
9010 &prog_data->base,
9011 nir8, 8, shader_time_index);
9012 if (!v8->run_cs(true /* allow_spilling */)) {
9013 if (error_str)
9014 *error_str = ralloc_strdup(mem_ctx, v8->fail_msg);
9015 delete v8;
9016 return NULL;
9017 }
9018
9019 /* We should always be able to do SIMD32 for compute shaders */
9020 assert(v8->max_dispatch_width >= 32);
9021
9022 v = v8;
9023 prog_data->prog_mask |= 1 << 0;
9024 if (v8->spilled_any_registers)
9025 prog_data->prog_spilled |= 1 << 0;
9026 cs_fill_push_const_info(compiler->devinfo, prog_data);
9027 }
9028
9029 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
9030 (generate_all || !prog_data->prog_spilled) &&
9031 min_dispatch_width <= 16 && max_dispatch_width >= 16) {
9032 /* Try a SIMD16 compile */
9033 nir_shader *nir16 = compile_cs_to_nir(compiler, mem_ctx, key,
9034 src_shader, 16);
9035 v16 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
9036 &prog_data->base,
9037 nir16, 16, shader_time_index);
9038 if (v8)
9039 v16->import_uniforms(v8);
9040
9041 const bool allow_spilling = generate_all || v == NULL;
9042 if (!v16->run_cs(allow_spilling)) {
9043 compiler->shader_perf_log(log_data,
9044 "SIMD16 shader failed to compile: %s",
9045 v16->fail_msg);
9046 if (!v) {
9047 assert(v8 == NULL);
9048 if (error_str) {
9049 *error_str = ralloc_asprintf(
9050 mem_ctx, "Not enough threads for SIMD8 and "
9051 "couldn't generate SIMD16: %s", v16->fail_msg);
9052 }
9053 delete v16;
9054 return NULL;
9055 }
9056 } else {
9057 /* We should always be able to do SIMD32 for compute shaders */
9058 assert(v16->max_dispatch_width >= 32);
9059
9060 v = v16;
9061 prog_data->prog_mask |= 1 << 1;
9062 if (v16->spilled_any_registers)
9063 prog_data->prog_spilled |= 1 << 1;
9064 cs_fill_push_const_info(compiler->devinfo, prog_data);
9065 }
9066 }
9067
9068 /* The SIMD32 is only enabled for cases it is needed unless forced.
9069 *
9070 * TODO: Use performance_analysis and drop this boolean.
9071 */
9072 const bool needs_32 = v == NULL ||
9073 (INTEL_DEBUG & DEBUG_DO32) ||
9074 generate_all;
9075
9076 if (likely(!(INTEL_DEBUG & DEBUG_NO32)) &&
9077 (generate_all || !prog_data->prog_spilled) &&
9078 needs_32 &&
9079 min_dispatch_width <= 32 && max_dispatch_width >= 32) {
9080 /* Try a SIMD32 compile */
9081 nir_shader *nir32 = compile_cs_to_nir(compiler, mem_ctx, key,
9082 src_shader, 32);
9083 v32 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
9084 &prog_data->base,
9085 nir32, 32, shader_time_index);
9086 if (v8)
9087 v32->import_uniforms(v8);
9088 else if (v16)
9089 v32->import_uniforms(v16);
9090
9091 const bool allow_spilling = generate_all || v == NULL;
9092 if (!v32->run_cs(allow_spilling)) {
9093 compiler->shader_perf_log(log_data,
9094 "SIMD32 shader failed to compile: %s",
9095 v32->fail_msg);
9096 if (!v) {
9097 assert(v8 == NULL);
9098 assert(v16 == NULL);
9099 if (error_str) {
9100 *error_str = ralloc_asprintf(
9101 mem_ctx, "Not enough threads for SIMD16 and "
9102 "couldn't generate SIMD32: %s", v32->fail_msg);
9103 }
9104 delete v32;
9105 return NULL;
9106 }
9107 } else {
9108 v = v32;
9109 prog_data->prog_mask |= 1 << 2;
9110 if (v32->spilled_any_registers)
9111 prog_data->prog_spilled |= 1 << 2;
9112 cs_fill_push_const_info(compiler->devinfo, prog_data);
9113 }
9114 }
9115
9116 if (unlikely(!v && (INTEL_DEBUG & (DEBUG_NO8 | DEBUG_NO16 | DEBUG_NO32)))) {
9117 if (error_str) {
9118 *error_str =
9119 ralloc_strdup(mem_ctx,
9120 "Cannot satisfy INTEL_DEBUG flags SIMD restrictions");
9121 }
9122 return NULL;
9123 }
9124
9125 assert(v);
9126
9127 const unsigned *ret = NULL;
9128
9129 fs_generator g(compiler, log_data, mem_ctx, &prog_data->base,
9130 v->runtime_check_aads_emit, MESA_SHADER_COMPUTE);
9131 if (INTEL_DEBUG & DEBUG_CS) {
9132 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
9133 src_shader->info.label ?
9134 src_shader->info.label : "unnamed",
9135 src_shader->info.name);
9136 g.enable_debug(name);
9137 }
9138
9139 if (generate_all) {
9140 if (prog_data->prog_mask & (1 << 0)) {
9141 assert(v8);
9142 prog_data->prog_offset[0] =
9143 g.generate_code(v8->cfg, 8, v8->shader_stats,
9144 v8->performance_analysis.require(), stats);
9145 stats = stats ? stats + 1 : NULL;
9146 }
9147
9148 if (prog_data->prog_mask & (1 << 1)) {
9149 assert(v16);
9150 prog_data->prog_offset[1] =
9151 g.generate_code(v16->cfg, 16, v16->shader_stats,
9152 v16->performance_analysis.require(), stats);
9153 stats = stats ? stats + 1 : NULL;
9154 }
9155
9156 if (prog_data->prog_mask & (1 << 2)) {
9157 assert(v32);
9158 prog_data->prog_offset[2] =
9159 g.generate_code(v32->cfg, 32, v32->shader_stats,
9160 v32->performance_analysis.require(), stats);
9161 stats = stats ? stats + 1 : NULL;
9162 }
9163 } else {
9164 /* Only one dispatch width will be valid, and will be at offset 0,
9165 * which is already the default value of prog_offset_* fields.
9166 */
9167 prog_data->prog_mask = 1 << (v->dispatch_width / 16);
9168 g.generate_code(v->cfg, v->dispatch_width, v->shader_stats,
9169 v->performance_analysis.require(), stats);
9170 }
9171
9172 g.add_const_data(src_shader->constant_data, src_shader->constant_data_size);
9173
9174 ret = g.get_assembly();
9175
9176 delete v8;
9177 delete v16;
9178 delete v32;
9179
9180 return ret;
9181 }
9182
9183 unsigned
9184 brw_cs_simd_size_for_group_size(const struct gen_device_info *devinfo,
9185 const struct brw_cs_prog_data *cs_prog_data,
9186 unsigned group_size)
9187 {
9188 const unsigned mask = cs_prog_data->prog_mask;
9189 assert(mask != 0);
9190
9191 static const unsigned simd8 = 1 << 0;
9192 static const unsigned simd16 = 1 << 1;
9193 static const unsigned simd32 = 1 << 2;
9194
9195 if (unlikely(INTEL_DEBUG & DEBUG_DO32) && (mask & simd32))
9196 return 32;
9197
9198 /* Limit max_threads to 64 for the GPGPU_WALKER command */
9199 const uint32_t max_threads = MIN2(64, devinfo->max_cs_threads);
9200
9201 if ((mask & simd8) && group_size <= 8 * max_threads) {
9202 /* Prefer SIMD16 if can do without spilling. Matches logic in
9203 * brw_compile_cs.
9204 */
9205 if ((mask & simd16) && (~cs_prog_data->prog_spilled & simd16))
9206 return 16;
9207 return 8;
9208 }
9209
9210 if ((mask & simd16) && group_size <= 16 * max_threads)
9211 return 16;
9212
9213 assert(mask & simd32);
9214 assert(group_size <= 32 * max_threads);
9215 return 32;
9216 }
9217
9218 /**
9219 * Test the dispatch mask packing assumptions of
9220 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
9221 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
9222 * executed with an unexpected dispatch mask.
9223 */
9224 static UNUSED void
9225 brw_fs_test_dispatch_packing(const fs_builder &bld)
9226 {
9227 const gl_shader_stage stage = bld.shader->stage;
9228
9229 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
9230 bld.shader->stage_prog_data)) {
9231 const fs_builder ubld = bld.exec_all().group(1, 0);
9232 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
9233 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
9234 brw_dmask_reg());
9235
9236 ubld.ADD(tmp, mask, brw_imm_ud(1));
9237 ubld.AND(tmp, mask, tmp);
9238
9239 /* This will loop forever if the dispatch mask doesn't have the expected
9240 * form '2^n-1', in which case tmp will be non-zero.
9241 */
9242 bld.emit(BRW_OPCODE_DO);
9243 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
9244 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
9245 }
9246 }
9247
9248 unsigned
9249 fs_visitor::workgroup_size() const
9250 {
9251 assert(stage == MESA_SHADER_COMPUTE);
9252 const struct brw_cs_prog_data *cs = brw_cs_prog_data(prog_data);
9253 return cs->local_size[0] * cs->local_size[1] * cs->local_size[2];
9254 }