intel/compiler: Pass detailed dependency classes to invalidate_analysis()
[mesa.git] / src / intel / compiler / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_fs_live_variables.h"
35 #include "brw_nir.h"
36 #include "brw_vec4_gs_visitor.h"
37 #include "brw_cfg.h"
38 #include "brw_dead_control_flow.h"
39 #include "dev/gen_debug.h"
40 #include "compiler/glsl_types.h"
41 #include "compiler/nir/nir_builder.h"
42 #include "program/prog_parameter.h"
43 #include "util/u_math.h"
44
45 using namespace brw;
46
47 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
48 const fs_inst *inst);
49
50 void
51 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
52 const fs_reg *src, unsigned sources)
53 {
54 memset((void*)this, 0, sizeof(*this));
55
56 this->src = new fs_reg[MAX2(sources, 3)];
57 for (unsigned i = 0; i < sources; i++)
58 this->src[i] = src[i];
59
60 this->opcode = opcode;
61 this->dst = dst;
62 this->sources = sources;
63 this->exec_size = exec_size;
64 this->base_mrf = -1;
65
66 assert(dst.file != IMM && dst.file != UNIFORM);
67
68 assert(this->exec_size != 0);
69
70 this->conditional_mod = BRW_CONDITIONAL_NONE;
71
72 /* This will be the case for almost all instructions. */
73 switch (dst.file) {
74 case VGRF:
75 case ARF:
76 case FIXED_GRF:
77 case MRF:
78 case ATTR:
79 this->size_written = dst.component_size(exec_size);
80 break;
81 case BAD_FILE:
82 this->size_written = 0;
83 break;
84 case IMM:
85 case UNIFORM:
86 unreachable("Invalid destination register file");
87 }
88
89 this->writes_accumulator = false;
90 }
91
92 fs_inst::fs_inst()
93 {
94 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
95 }
96
97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
98 {
99 init(opcode, exec_size, reg_undef, NULL, 0);
100 }
101
102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
103 {
104 init(opcode, exec_size, dst, NULL, 0);
105 }
106
107 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
108 const fs_reg &src0)
109 {
110 const fs_reg src[1] = { src0 };
111 init(opcode, exec_size, dst, src, 1);
112 }
113
114 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
115 const fs_reg &src0, const fs_reg &src1)
116 {
117 const fs_reg src[2] = { src0, src1 };
118 init(opcode, exec_size, dst, src, 2);
119 }
120
121 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
122 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
123 {
124 const fs_reg src[3] = { src0, src1, src2 };
125 init(opcode, exec_size, dst, src, 3);
126 }
127
128 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
129 const fs_reg src[], unsigned sources)
130 {
131 init(opcode, exec_width, dst, src, sources);
132 }
133
134 fs_inst::fs_inst(const fs_inst &that)
135 {
136 memcpy((void*)this, &that, sizeof(that));
137
138 this->src = new fs_reg[MAX2(that.sources, 3)];
139
140 for (unsigned i = 0; i < that.sources; i++)
141 this->src[i] = that.src[i];
142 }
143
144 fs_inst::~fs_inst()
145 {
146 delete[] this->src;
147 }
148
149 void
150 fs_inst::resize_sources(uint8_t num_sources)
151 {
152 if (this->sources != num_sources) {
153 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
154
155 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
156 src[i] = this->src[i];
157
158 delete[] this->src;
159 this->src = src;
160 this->sources = num_sources;
161 }
162 }
163
164 void
165 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
166 const fs_reg &dst,
167 const fs_reg &surf_index,
168 const fs_reg &varying_offset,
169 uint32_t const_offset)
170 {
171 /* We have our constant surface use a pitch of 4 bytes, so our index can
172 * be any component of a vector, and then we load 4 contiguous
173 * components starting from that.
174 *
175 * We break down the const_offset to a portion added to the variable offset
176 * and a portion done using fs_reg::offset, which means that if you have
177 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
178 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
179 * later notice that those loads are all the same and eliminate the
180 * redundant ones.
181 */
182 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
183 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
184
185 /* The pull load message will load a vec4 (16 bytes). If we are loading
186 * a double this means we are only loading 2 elements worth of data.
187 * We also want to use a 32-bit data type for the dst of the load operation
188 * so other parts of the driver don't get confused about the size of the
189 * result.
190 */
191 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
192 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
193 vec4_result, surf_index, vec4_offset);
194 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
195
196 shuffle_from_32bit_read(bld, dst, vec4_result,
197 (const_offset & 0xf) / type_sz(dst.type), 1);
198 }
199
200 /**
201 * A helper for MOV generation for fixing up broken hardware SEND dependency
202 * handling.
203 */
204 void
205 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
206 {
207 /* The caller always wants uncompressed to emit the minimal extra
208 * dependencies, and to avoid having to deal with aligning its regs to 2.
209 */
210 const fs_builder ubld = bld.annotate("send dependency resolve")
211 .half(0);
212
213 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
214 }
215
216 bool
217 fs_inst::is_send_from_grf() const
218 {
219 switch (opcode) {
220 case SHADER_OPCODE_SEND:
221 case SHADER_OPCODE_SHADER_TIME_ADD:
222 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
223 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
224 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
225 case SHADER_OPCODE_URB_WRITE_SIMD8:
226 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
227 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
228 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
229 case SHADER_OPCODE_URB_READ_SIMD8:
230 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
231 case SHADER_OPCODE_INTERLOCK:
232 case SHADER_OPCODE_MEMORY_FENCE:
233 case SHADER_OPCODE_BARRIER:
234 return true;
235 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
236 return src[1].file == VGRF;
237 case FS_OPCODE_FB_WRITE:
238 case FS_OPCODE_FB_READ:
239 return src[0].file == VGRF;
240 default:
241 if (is_tex())
242 return src[0].file == VGRF;
243
244 return false;
245 }
246 }
247
248 bool
249 fs_inst::is_control_source(unsigned arg) const
250 {
251 switch (opcode) {
252 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
253 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
254 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
255 return arg == 0;
256
257 case SHADER_OPCODE_BROADCAST:
258 case SHADER_OPCODE_SHUFFLE:
259 case SHADER_OPCODE_QUAD_SWIZZLE:
260 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
261 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
262 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
263 case SHADER_OPCODE_GET_BUFFER_SIZE:
264 return arg == 1;
265
266 case SHADER_OPCODE_MOV_INDIRECT:
267 case SHADER_OPCODE_CLUSTER_BROADCAST:
268 case SHADER_OPCODE_TEX:
269 case FS_OPCODE_TXB:
270 case SHADER_OPCODE_TXD:
271 case SHADER_OPCODE_TXF:
272 case SHADER_OPCODE_TXF_LZ:
273 case SHADER_OPCODE_TXF_CMS:
274 case SHADER_OPCODE_TXF_CMS_W:
275 case SHADER_OPCODE_TXF_UMS:
276 case SHADER_OPCODE_TXF_MCS:
277 case SHADER_OPCODE_TXL:
278 case SHADER_OPCODE_TXL_LZ:
279 case SHADER_OPCODE_TXS:
280 case SHADER_OPCODE_LOD:
281 case SHADER_OPCODE_TG4:
282 case SHADER_OPCODE_TG4_OFFSET:
283 case SHADER_OPCODE_SAMPLEINFO:
284 return arg == 1 || arg == 2;
285
286 case SHADER_OPCODE_SEND:
287 return arg == 0 || arg == 1;
288
289 default:
290 return false;
291 }
292 }
293
294 bool
295 fs_inst::is_payload(unsigned arg) const
296 {
297 switch (opcode) {
298 case FS_OPCODE_FB_WRITE:
299 case FS_OPCODE_FB_READ:
300 case SHADER_OPCODE_URB_WRITE_SIMD8:
301 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
302 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
303 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
304 case SHADER_OPCODE_URB_READ_SIMD8:
305 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
306 case VEC4_OPCODE_UNTYPED_ATOMIC:
307 case VEC4_OPCODE_UNTYPED_SURFACE_READ:
308 case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
309 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
310 case SHADER_OPCODE_SHADER_TIME_ADD:
311 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
312 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
313 case SHADER_OPCODE_INTERLOCK:
314 case SHADER_OPCODE_MEMORY_FENCE:
315 case SHADER_OPCODE_BARRIER:
316 return arg == 0;
317
318 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
319 return arg == 1;
320
321 case SHADER_OPCODE_SEND:
322 return arg == 2 || arg == 3;
323
324 default:
325 if (is_tex())
326 return arg == 0;
327 else
328 return false;
329 }
330 }
331
332 /**
333 * Returns true if this instruction's sources and destinations cannot
334 * safely be the same register.
335 *
336 * In most cases, a register can be written over safely by the same
337 * instruction that is its last use. For a single instruction, the
338 * sources are dereferenced before writing of the destination starts
339 * (naturally).
340 *
341 * However, there are a few cases where this can be problematic:
342 *
343 * - Virtual opcodes that translate to multiple instructions in the
344 * code generator: if src == dst and one instruction writes the
345 * destination before a later instruction reads the source, then
346 * src will have been clobbered.
347 *
348 * - SIMD16 compressed instructions with certain regioning (see below).
349 *
350 * The register allocator uses this information to set up conflicts between
351 * GRF sources and the destination.
352 */
353 bool
354 fs_inst::has_source_and_destination_hazard() const
355 {
356 switch (opcode) {
357 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
358 /* Multiple partial writes to the destination */
359 return true;
360 case SHADER_OPCODE_SHUFFLE:
361 /* This instruction returns an arbitrary channel from the source and
362 * gets split into smaller instructions in the generator. It's possible
363 * that one of the instructions will read from a channel corresponding
364 * to an earlier instruction.
365 */
366 case SHADER_OPCODE_SEL_EXEC:
367 /* This is implemented as
368 *
369 * mov(16) g4<1>D 0D { align1 WE_all 1H };
370 * mov(16) g4<1>D g5<8,8,1>D { align1 1H }
371 *
372 * Because the source is only read in the second instruction, the first
373 * may stomp all over it.
374 */
375 return true;
376 case SHADER_OPCODE_QUAD_SWIZZLE:
377 switch (src[1].ud) {
378 case BRW_SWIZZLE_XXXX:
379 case BRW_SWIZZLE_YYYY:
380 case BRW_SWIZZLE_ZZZZ:
381 case BRW_SWIZZLE_WWWW:
382 case BRW_SWIZZLE_XXZZ:
383 case BRW_SWIZZLE_YYWW:
384 case BRW_SWIZZLE_XYXY:
385 case BRW_SWIZZLE_ZWZW:
386 /* These can be implemented as a single Align1 region on all
387 * platforms, so there's never a hazard between source and
388 * destination. C.f. fs_generator::generate_quad_swizzle().
389 */
390 return false;
391 default:
392 return !is_uniform(src[0]);
393 }
394 default:
395 /* The SIMD16 compressed instruction
396 *
397 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
398 *
399 * is actually decoded in hardware as:
400 *
401 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
402 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
403 *
404 * Which is safe. However, if we have uniform accesses
405 * happening, we get into trouble:
406 *
407 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
408 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
409 *
410 * Now our destination for the first instruction overwrote the
411 * second instruction's src0, and we get garbage for those 8
412 * pixels. There's a similar issue for the pre-gen6
413 * pixel_x/pixel_y, which are registers of 16-bit values and thus
414 * would get stomped by the first decode as well.
415 */
416 if (exec_size == 16) {
417 for (int i = 0; i < sources; i++) {
418 if (src[i].file == VGRF && (src[i].stride == 0 ||
419 src[i].type == BRW_REGISTER_TYPE_UW ||
420 src[i].type == BRW_REGISTER_TYPE_W ||
421 src[i].type == BRW_REGISTER_TYPE_UB ||
422 src[i].type == BRW_REGISTER_TYPE_B)) {
423 return true;
424 }
425 }
426 }
427 return false;
428 }
429 }
430
431 bool
432 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo) const
433 {
434 if (devinfo->gen == 6 && is_math())
435 return false;
436
437 if (is_send_from_grf())
438 return false;
439
440 /* From GEN:BUG:1604601757:
441 *
442 * "When multiplying a DW and any lower precision integer, source modifier
443 * is not supported."
444 */
445 if (devinfo->gen >= 12 && (opcode == BRW_OPCODE_MUL ||
446 opcode == BRW_OPCODE_MAD)) {
447 const brw_reg_type exec_type = get_exec_type(this);
448 const unsigned min_type_sz = opcode == BRW_OPCODE_MAD ?
449 MIN2(type_sz(src[1].type), type_sz(src[2].type)) :
450 MIN2(type_sz(src[0].type), type_sz(src[1].type));
451
452 if (brw_reg_type_is_integer(exec_type) &&
453 type_sz(exec_type) >= 4 &&
454 type_sz(exec_type) != min_type_sz)
455 return false;
456 }
457
458 if (!backend_instruction::can_do_source_mods())
459 return false;
460
461 return true;
462 }
463
464 bool
465 fs_inst::can_do_cmod()
466 {
467 if (!backend_instruction::can_do_cmod())
468 return false;
469
470 /* The accumulator result appears to get used for the conditional modifier
471 * generation. When negating a UD value, there is a 33rd bit generated for
472 * the sign in the accumulator value, so now you can't check, for example,
473 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
474 */
475 for (unsigned i = 0; i < sources; i++) {
476 if (type_is_unsigned_int(src[i].type) && src[i].negate)
477 return false;
478 }
479
480 return true;
481 }
482
483 bool
484 fs_inst::can_change_types() const
485 {
486 return dst.type == src[0].type &&
487 !src[0].abs && !src[0].negate && !saturate &&
488 (opcode == BRW_OPCODE_MOV ||
489 (opcode == BRW_OPCODE_SEL &&
490 dst.type == src[1].type &&
491 predicate != BRW_PREDICATE_NONE &&
492 !src[1].abs && !src[1].negate));
493 }
494
495 void
496 fs_reg::init()
497 {
498 memset((void*)this, 0, sizeof(*this));
499 type = BRW_REGISTER_TYPE_UD;
500 stride = 1;
501 }
502
503 /** Generic unset register constructor. */
504 fs_reg::fs_reg()
505 {
506 init();
507 this->file = BAD_FILE;
508 }
509
510 fs_reg::fs_reg(struct ::brw_reg reg) :
511 backend_reg(reg)
512 {
513 this->offset = 0;
514 this->stride = 1;
515 if (this->file == IMM &&
516 (this->type != BRW_REGISTER_TYPE_V &&
517 this->type != BRW_REGISTER_TYPE_UV &&
518 this->type != BRW_REGISTER_TYPE_VF)) {
519 this->stride = 0;
520 }
521 }
522
523 bool
524 fs_reg::equals(const fs_reg &r) const
525 {
526 return (this->backend_reg::equals(r) &&
527 stride == r.stride);
528 }
529
530 bool
531 fs_reg::negative_equals(const fs_reg &r) const
532 {
533 return (this->backend_reg::negative_equals(r) &&
534 stride == r.stride);
535 }
536
537 bool
538 fs_reg::is_contiguous() const
539 {
540 switch (file) {
541 case ARF:
542 case FIXED_GRF:
543 return hstride == BRW_HORIZONTAL_STRIDE_1 &&
544 vstride == width + hstride;
545 case MRF:
546 case VGRF:
547 case ATTR:
548 return stride == 1;
549 case UNIFORM:
550 case IMM:
551 case BAD_FILE:
552 return true;
553 }
554
555 unreachable("Invalid register file");
556 }
557
558 unsigned
559 fs_reg::component_size(unsigned width) const
560 {
561 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
562 hstride == 0 ? 0 :
563 1 << (hstride - 1));
564 return MAX2(width * stride, 1) * type_sz(type);
565 }
566
567 /**
568 * Create a MOV to read the timestamp register.
569 */
570 fs_reg
571 fs_visitor::get_timestamp(const fs_builder &bld)
572 {
573 assert(devinfo->gen >= 7);
574
575 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
576 BRW_ARF_TIMESTAMP,
577 0),
578 BRW_REGISTER_TYPE_UD));
579
580 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
581
582 /* We want to read the 3 fields we care about even if it's not enabled in
583 * the dispatch.
584 */
585 bld.group(4, 0).exec_all().MOV(dst, ts);
586
587 return dst;
588 }
589
590 void
591 fs_visitor::emit_shader_time_begin()
592 {
593 /* We want only the low 32 bits of the timestamp. Since it's running
594 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
595 * which is plenty of time for our purposes. It is identical across the
596 * EUs, but since it's tracking GPU core speed it will increment at a
597 * varying rate as render P-states change.
598 */
599 shader_start_time = component(
600 get_timestamp(bld.annotate("shader time start")), 0);
601 }
602
603 void
604 fs_visitor::emit_shader_time_end()
605 {
606 /* Insert our code just before the final SEND with EOT. */
607 exec_node *end = this->instructions.get_tail();
608 assert(end && ((fs_inst *) end)->eot);
609 const fs_builder ibld = bld.annotate("shader time end")
610 .exec_all().at(NULL, end);
611 const fs_reg timestamp = get_timestamp(ibld);
612
613 /* We only use the low 32 bits of the timestamp - see
614 * emit_shader_time_begin()).
615 *
616 * We could also check if render P-states have changed (or anything
617 * else that might disrupt timing) by setting smear to 2 and checking if
618 * that field is != 0.
619 */
620 const fs_reg shader_end_time = component(timestamp, 0);
621
622 /* Check that there weren't any timestamp reset events (assuming these
623 * were the only two timestamp reads that happened).
624 */
625 const fs_reg reset = component(timestamp, 2);
626 set_condmod(BRW_CONDITIONAL_Z,
627 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
628 ibld.IF(BRW_PREDICATE_NORMAL);
629
630 fs_reg start = shader_start_time;
631 start.negate = true;
632 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
633 BRW_REGISTER_TYPE_UD),
634 0);
635 const fs_builder cbld = ibld.group(1, 0);
636 cbld.group(1, 0).ADD(diff, start, shader_end_time);
637
638 /* If there were no instructions between the two timestamp gets, the diff
639 * is 2 cycles. Remove that overhead, so I can forget about that when
640 * trying to determine the time taken for single instructions.
641 */
642 cbld.ADD(diff, diff, brw_imm_ud(-2u));
643 SHADER_TIME_ADD(cbld, 0, diff);
644 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
645 ibld.emit(BRW_OPCODE_ELSE);
646 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
647 ibld.emit(BRW_OPCODE_ENDIF);
648 }
649
650 void
651 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
652 int shader_time_subindex,
653 fs_reg value)
654 {
655 int index = shader_time_index * 3 + shader_time_subindex;
656 struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
657
658 fs_reg payload;
659 if (dispatch_width == 8)
660 payload = vgrf(glsl_type::uvec2_type);
661 else
662 payload = vgrf(glsl_type::uint_type);
663
664 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
665 }
666
667 void
668 fs_visitor::vfail(const char *format, va_list va)
669 {
670 char *msg;
671
672 if (failed)
673 return;
674
675 failed = true;
676
677 msg = ralloc_vasprintf(mem_ctx, format, va);
678 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
679
680 this->fail_msg = msg;
681
682 if (debug_enabled) {
683 fprintf(stderr, "%s", msg);
684 }
685 }
686
687 void
688 fs_visitor::fail(const char *format, ...)
689 {
690 va_list va;
691
692 va_start(va, format);
693 vfail(format, va);
694 va_end(va);
695 }
696
697 /**
698 * Mark this program as impossible to compile with dispatch width greater
699 * than n.
700 *
701 * During the SIMD8 compile (which happens first), we can detect and flag
702 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
703 * SIMD16+ compile altogether.
704 *
705 * During a compile of dispatch width greater than n (if one happens anyway),
706 * this just calls fail().
707 */
708 void
709 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
710 {
711 if (dispatch_width > n) {
712 fail("%s", msg);
713 } else {
714 max_dispatch_width = n;
715 compiler->shader_perf_log(log_data,
716 "Shader dispatch width limited to SIMD%d: %s",
717 n, msg);
718 }
719 }
720
721 /**
722 * Returns true if the instruction has a flag that means it won't
723 * update an entire destination register.
724 *
725 * For example, dead code elimination and live variable analysis want to know
726 * when a write to a variable screens off any preceding values that were in
727 * it.
728 */
729 bool
730 fs_inst::is_partial_write() const
731 {
732 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
733 (this->exec_size * type_sz(this->dst.type)) < 32 ||
734 !this->dst.is_contiguous() ||
735 this->dst.offset % REG_SIZE != 0);
736 }
737
738 unsigned
739 fs_inst::components_read(unsigned i) const
740 {
741 /* Return zero if the source is not present. */
742 if (src[i].file == BAD_FILE)
743 return 0;
744
745 switch (opcode) {
746 case FS_OPCODE_LINTERP:
747 if (i == 0)
748 return 2;
749 else
750 return 1;
751
752 case FS_OPCODE_PIXEL_X:
753 case FS_OPCODE_PIXEL_Y:
754 assert(i == 0);
755 return 2;
756
757 case FS_OPCODE_FB_WRITE_LOGICAL:
758 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
759 /* First/second FB write color. */
760 if (i < 2)
761 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
762 else
763 return 1;
764
765 case SHADER_OPCODE_TEX_LOGICAL:
766 case SHADER_OPCODE_TXD_LOGICAL:
767 case SHADER_OPCODE_TXF_LOGICAL:
768 case SHADER_OPCODE_TXL_LOGICAL:
769 case SHADER_OPCODE_TXS_LOGICAL:
770 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
771 case FS_OPCODE_TXB_LOGICAL:
772 case SHADER_OPCODE_TXF_CMS_LOGICAL:
773 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
774 case SHADER_OPCODE_TXF_UMS_LOGICAL:
775 case SHADER_OPCODE_TXF_MCS_LOGICAL:
776 case SHADER_OPCODE_LOD_LOGICAL:
777 case SHADER_OPCODE_TG4_LOGICAL:
778 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
779 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
780 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
781 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
782 /* Texture coordinates. */
783 if (i == TEX_LOGICAL_SRC_COORDINATE)
784 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
785 /* Texture derivatives. */
786 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
787 opcode == SHADER_OPCODE_TXD_LOGICAL)
788 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
789 /* Texture offset. */
790 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
791 return 2;
792 /* MCS */
793 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
794 return 2;
795 else
796 return 1;
797
798 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
799 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
800 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM);
801 /* Surface coordinates. */
802 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
803 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
804 /* Surface operation source (ignored for reads). */
805 else if (i == SURFACE_LOGICAL_SRC_DATA)
806 return 0;
807 else
808 return 1;
809
810 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
811 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
812 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
813 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
814 /* Surface coordinates. */
815 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
816 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
817 /* Surface operation source. */
818 else if (i == SURFACE_LOGICAL_SRC_DATA)
819 return src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
820 else
821 return 1;
822
823 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
824 assert(src[2].file == IMM);
825 return 1;
826
827 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
828 assert(src[2].file == IMM);
829 return i == 1 ? src[2].ud : 1;
830
831 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
832 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
833 assert(src[2].file == IMM);
834 if (i == 1) {
835 /* Data source */
836 const unsigned op = src[2].ud;
837 switch (op) {
838 case BRW_AOP_INC:
839 case BRW_AOP_DEC:
840 case BRW_AOP_PREDEC:
841 return 0;
842 case BRW_AOP_CMPWR:
843 return 2;
844 default:
845 return 1;
846 }
847 } else {
848 return 1;
849 }
850
851 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
852 assert(src[2].file == IMM);
853 if (i == 1) {
854 /* Data source */
855 const unsigned op = src[2].ud;
856 return op == BRW_AOP_FCMPWR ? 2 : 1;
857 } else {
858 return 1;
859 }
860
861 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
862 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
863 /* Scattered logical opcodes use the following params:
864 * src[0] Surface coordinates
865 * src[1] Surface operation source (ignored for reads)
866 * src[2] Surface
867 * src[3] IMM with always 1 dimension.
868 * src[4] IMM with arg bitsize for scattered read/write 8, 16, 32
869 */
870 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
871 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
872 return i == SURFACE_LOGICAL_SRC_DATA ? 0 : 1;
873
874 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
875 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
876 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
877 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
878 return 1;
879
880 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
881 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
882 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
883 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
884 const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
885 /* Surface coordinates. */
886 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
887 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
888 /* Surface operation source. */
889 else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_CMPWR)
890 return 2;
891 else if (i == SURFACE_LOGICAL_SRC_DATA &&
892 (op == BRW_AOP_INC || op == BRW_AOP_DEC || op == BRW_AOP_PREDEC))
893 return 0;
894 else
895 return 1;
896 }
897 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
898 return (i == 0 ? 2 : 1);
899
900 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL: {
901 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
902 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
903 const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
904 /* Surface coordinates. */
905 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
906 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
907 /* Surface operation source. */
908 else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_FCMPWR)
909 return 2;
910 else
911 return 1;
912 }
913
914 default:
915 return 1;
916 }
917 }
918
919 unsigned
920 fs_inst::size_read(int arg) const
921 {
922 switch (opcode) {
923 case SHADER_OPCODE_SEND:
924 if (arg == 2) {
925 return mlen * REG_SIZE;
926 } else if (arg == 3) {
927 return ex_mlen * REG_SIZE;
928 }
929 break;
930
931 case FS_OPCODE_FB_WRITE:
932 case FS_OPCODE_REP_FB_WRITE:
933 if (arg == 0) {
934 if (base_mrf >= 0)
935 return src[0].file == BAD_FILE ? 0 : 2 * REG_SIZE;
936 else
937 return mlen * REG_SIZE;
938 }
939 break;
940
941 case FS_OPCODE_FB_READ:
942 case SHADER_OPCODE_URB_WRITE_SIMD8:
943 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
944 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
945 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
946 case SHADER_OPCODE_URB_READ_SIMD8:
947 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
948 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
949 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
950 if (arg == 0)
951 return mlen * REG_SIZE;
952 break;
953
954 case FS_OPCODE_SET_SAMPLE_ID:
955 if (arg == 1)
956 return 1;
957 break;
958
959 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
960 /* The payload is actually stored in src1 */
961 if (arg == 1)
962 return mlen * REG_SIZE;
963 break;
964
965 case FS_OPCODE_LINTERP:
966 if (arg == 1)
967 return 16;
968 break;
969
970 case SHADER_OPCODE_LOAD_PAYLOAD:
971 if (arg < this->header_size)
972 return REG_SIZE;
973 break;
974
975 case CS_OPCODE_CS_TERMINATE:
976 case SHADER_OPCODE_BARRIER:
977 return REG_SIZE;
978
979 case SHADER_OPCODE_MOV_INDIRECT:
980 if (arg == 0) {
981 assert(src[2].file == IMM);
982 return src[2].ud;
983 }
984 break;
985
986 default:
987 if (is_tex() && arg == 0 && src[0].file == VGRF)
988 return mlen * REG_SIZE;
989 break;
990 }
991
992 switch (src[arg].file) {
993 case UNIFORM:
994 case IMM:
995 return components_read(arg) * type_sz(src[arg].type);
996 case BAD_FILE:
997 case ARF:
998 case FIXED_GRF:
999 case VGRF:
1000 case ATTR:
1001 return components_read(arg) * src[arg].component_size(exec_size);
1002 case MRF:
1003 unreachable("MRF registers are not allowed as sources");
1004 }
1005 return 0;
1006 }
1007
1008 namespace {
1009 unsigned
1010 predicate_width(brw_predicate predicate)
1011 {
1012 switch (predicate) {
1013 case BRW_PREDICATE_NONE: return 1;
1014 case BRW_PREDICATE_NORMAL: return 1;
1015 case BRW_PREDICATE_ALIGN1_ANY2H: return 2;
1016 case BRW_PREDICATE_ALIGN1_ALL2H: return 2;
1017 case BRW_PREDICATE_ALIGN1_ANY4H: return 4;
1018 case BRW_PREDICATE_ALIGN1_ALL4H: return 4;
1019 case BRW_PREDICATE_ALIGN1_ANY8H: return 8;
1020 case BRW_PREDICATE_ALIGN1_ALL8H: return 8;
1021 case BRW_PREDICATE_ALIGN1_ANY16H: return 16;
1022 case BRW_PREDICATE_ALIGN1_ALL16H: return 16;
1023 case BRW_PREDICATE_ALIGN1_ANY32H: return 32;
1024 case BRW_PREDICATE_ALIGN1_ALL32H: return 32;
1025 default: unreachable("Unsupported predicate");
1026 }
1027 }
1028
1029 /* Return the subset of flag registers that an instruction could
1030 * potentially read or write based on the execution controls and flag
1031 * subregister number of the instruction.
1032 */
1033 unsigned
1034 flag_mask(const fs_inst *inst, unsigned width)
1035 {
1036 assert(util_is_power_of_two_nonzero(width));
1037 const unsigned start = (inst->flag_subreg * 16 + inst->group) &
1038 ~(width - 1);
1039 const unsigned end = start + ALIGN(inst->exec_size, width);
1040 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
1041 }
1042
1043 unsigned
1044 bit_mask(unsigned n)
1045 {
1046 return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
1047 }
1048
1049 unsigned
1050 flag_mask(const fs_reg &r, unsigned sz)
1051 {
1052 if (r.file == ARF) {
1053 const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
1054 const unsigned end = start + sz;
1055 return bit_mask(end) & ~bit_mask(start);
1056 } else {
1057 return 0;
1058 }
1059 }
1060 }
1061
1062 unsigned
1063 fs_inst::flags_read(const gen_device_info *devinfo) const
1064 {
1065 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
1066 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
1067 /* The vertical predication modes combine corresponding bits from
1068 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
1069 */
1070 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
1071 return flag_mask(this, 1) << shift | flag_mask(this, 1);
1072 } else if (predicate) {
1073 return flag_mask(this, predicate_width(predicate));
1074 } else {
1075 unsigned mask = 0;
1076 for (int i = 0; i < sources; i++) {
1077 mask |= flag_mask(src[i], size_read(i));
1078 }
1079 return mask;
1080 }
1081 }
1082
1083 unsigned
1084 fs_inst::flags_written() const
1085 {
1086 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
1087 opcode != BRW_OPCODE_CSEL &&
1088 opcode != BRW_OPCODE_IF &&
1089 opcode != BRW_OPCODE_WHILE)) ||
1090 opcode == FS_OPCODE_FB_WRITE) {
1091 return flag_mask(this, 1);
1092 } else if (opcode == SHADER_OPCODE_FIND_LIVE_CHANNEL ||
1093 opcode == FS_OPCODE_LOAD_LIVE_CHANNELS) {
1094 return flag_mask(this, 32);
1095 } else {
1096 return flag_mask(dst, size_written);
1097 }
1098 }
1099
1100 /**
1101 * Returns how many MRFs an FS opcode will write over.
1102 *
1103 * Note that this is not the 0 or 1 implied writes in an actual gen
1104 * instruction -- the FS opcodes often generate MOVs in addition.
1105 */
1106 unsigned
1107 fs_inst::implied_mrf_writes() const
1108 {
1109 if (mlen == 0)
1110 return 0;
1111
1112 if (base_mrf == -1)
1113 return 0;
1114
1115 switch (opcode) {
1116 case SHADER_OPCODE_RCP:
1117 case SHADER_OPCODE_RSQ:
1118 case SHADER_OPCODE_SQRT:
1119 case SHADER_OPCODE_EXP2:
1120 case SHADER_OPCODE_LOG2:
1121 case SHADER_OPCODE_SIN:
1122 case SHADER_OPCODE_COS:
1123 return 1 * exec_size / 8;
1124 case SHADER_OPCODE_POW:
1125 case SHADER_OPCODE_INT_QUOTIENT:
1126 case SHADER_OPCODE_INT_REMAINDER:
1127 return 2 * exec_size / 8;
1128 case SHADER_OPCODE_TEX:
1129 case FS_OPCODE_TXB:
1130 case SHADER_OPCODE_TXD:
1131 case SHADER_OPCODE_TXF:
1132 case SHADER_OPCODE_TXF_CMS:
1133 case SHADER_OPCODE_TXF_MCS:
1134 case SHADER_OPCODE_TG4:
1135 case SHADER_OPCODE_TG4_OFFSET:
1136 case SHADER_OPCODE_TXL:
1137 case SHADER_OPCODE_TXS:
1138 case SHADER_OPCODE_LOD:
1139 case SHADER_OPCODE_SAMPLEINFO:
1140 return 1;
1141 case FS_OPCODE_FB_WRITE:
1142 case FS_OPCODE_REP_FB_WRITE:
1143 return src[0].file == BAD_FILE ? 0 : 2;
1144 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
1145 case SHADER_OPCODE_GEN4_SCRATCH_READ:
1146 return 1;
1147 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
1148 return mlen;
1149 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
1150 return mlen;
1151 default:
1152 unreachable("not reached");
1153 }
1154 }
1155
1156 fs_reg
1157 fs_visitor::vgrf(const glsl_type *const type)
1158 {
1159 int reg_width = dispatch_width / 8;
1160 return fs_reg(VGRF,
1161 alloc.allocate(glsl_count_dword_slots(type, false) * reg_width),
1162 brw_type_for_base_type(type));
1163 }
1164
1165 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1166 {
1167 init();
1168 this->file = file;
1169 this->nr = nr;
1170 this->type = BRW_REGISTER_TYPE_F;
1171 this->stride = (file == UNIFORM ? 0 : 1);
1172 }
1173
1174 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1175 {
1176 init();
1177 this->file = file;
1178 this->nr = nr;
1179 this->type = type;
1180 this->stride = (file == UNIFORM ? 0 : 1);
1181 }
1182
1183 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1184 * This brings in those uniform definitions
1185 */
1186 void
1187 fs_visitor::import_uniforms(fs_visitor *v)
1188 {
1189 this->push_constant_loc = v->push_constant_loc;
1190 this->pull_constant_loc = v->pull_constant_loc;
1191 this->uniforms = v->uniforms;
1192 this->subgroup_id = v->subgroup_id;
1193 }
1194
1195 void
1196 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1197 {
1198 assert(stage == MESA_SHADER_FRAGMENT);
1199
1200 /* gl_FragCoord.x */
1201 bld.MOV(wpos, this->pixel_x);
1202 wpos = offset(wpos, bld, 1);
1203
1204 /* gl_FragCoord.y */
1205 bld.MOV(wpos, this->pixel_y);
1206 wpos = offset(wpos, bld, 1);
1207
1208 /* gl_FragCoord.z */
1209 if (devinfo->gen >= 6) {
1210 bld.MOV(wpos, fetch_payload_reg(bld, payload.source_depth_reg));
1211 } else {
1212 bld.emit(FS_OPCODE_LINTERP, wpos,
1213 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1214 component(interp_reg(VARYING_SLOT_POS, 2), 0));
1215 }
1216 wpos = offset(wpos, bld, 1);
1217
1218 /* gl_FragCoord.w: Already set up in emit_interpolation */
1219 bld.MOV(wpos, this->wpos_w);
1220 }
1221
1222 enum brw_barycentric_mode
1223 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1224 {
1225 /* Barycentric modes don't make sense for flat inputs. */
1226 assert(mode != INTERP_MODE_FLAT);
1227
1228 unsigned bary;
1229 switch (op) {
1230 case nir_intrinsic_load_barycentric_pixel:
1231 case nir_intrinsic_load_barycentric_at_offset:
1232 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1233 break;
1234 case nir_intrinsic_load_barycentric_centroid:
1235 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1236 break;
1237 case nir_intrinsic_load_barycentric_sample:
1238 case nir_intrinsic_load_barycentric_at_sample:
1239 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1240 break;
1241 default:
1242 unreachable("invalid intrinsic");
1243 }
1244
1245 if (mode == INTERP_MODE_NOPERSPECTIVE)
1246 bary += 3;
1247
1248 return (enum brw_barycentric_mode) bary;
1249 }
1250
1251 /**
1252 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1253 */
1254 static enum brw_barycentric_mode
1255 centroid_to_pixel(enum brw_barycentric_mode bary)
1256 {
1257 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1258 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1259 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1260 }
1261
1262 fs_reg *
1263 fs_visitor::emit_frontfacing_interpolation()
1264 {
1265 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1266
1267 if (devinfo->gen >= 12) {
1268 fs_reg g1 = fs_reg(retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_W));
1269
1270 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_W);
1271 bld.ASR(tmp, g1, brw_imm_d(15));
1272 bld.NOT(*reg, tmp);
1273 } else if (devinfo->gen >= 6) {
1274 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1275 * a boolean result from this (~0/true or 0/false).
1276 *
1277 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1278 * this task in only one instruction:
1279 * - a negation source modifier will flip the bit; and
1280 * - a W -> D type conversion will sign extend the bit into the high
1281 * word of the destination.
1282 *
1283 * An ASR 15 fills the low word of the destination.
1284 */
1285 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1286 g0.negate = true;
1287
1288 bld.ASR(*reg, g0, brw_imm_d(15));
1289 } else {
1290 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1291 * a boolean result from this (1/true or 0/false).
1292 *
1293 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1294 * the negation source modifier to flip it. Unfortunately the SHR
1295 * instruction only operates on UD (or D with an abs source modifier)
1296 * sources without negation.
1297 *
1298 * Instead, use ASR (which will give ~0/true or 0/false).
1299 */
1300 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1301 g1_6.negate = true;
1302
1303 bld.ASR(*reg, g1_6, brw_imm_d(31));
1304 }
1305
1306 return reg;
1307 }
1308
1309 void
1310 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1311 {
1312 assert(stage == MESA_SHADER_FRAGMENT);
1313 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1314 assert(dst.type == BRW_REGISTER_TYPE_F);
1315
1316 if (wm_prog_data->persample_dispatch) {
1317 /* Convert int_sample_pos to floating point */
1318 bld.MOV(dst, int_sample_pos);
1319 /* Scale to the range [0, 1] */
1320 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1321 }
1322 else {
1323 /* From ARB_sample_shading specification:
1324 * "When rendering to a non-multisample buffer, or if multisample
1325 * rasterization is disabled, gl_SamplePosition will always be
1326 * (0.5, 0.5).
1327 */
1328 bld.MOV(dst, brw_imm_f(0.5f));
1329 }
1330 }
1331
1332 fs_reg *
1333 fs_visitor::emit_samplepos_setup()
1334 {
1335 assert(devinfo->gen >= 6);
1336
1337 const fs_builder abld = bld.annotate("compute sample position");
1338 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1339 fs_reg pos = *reg;
1340 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1341 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1342
1343 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1344 * mode will be enabled.
1345 *
1346 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1347 * R31.1:0 Position Offset X/Y for Slot[3:0]
1348 * R31.3:2 Position Offset X/Y for Slot[7:4]
1349 * .....
1350 *
1351 * The X, Y sample positions come in as bytes in thread payload. So, read
1352 * the positions using vstride=16, width=8, hstride=2.
1353 */
1354 const fs_reg sample_pos_reg =
1355 fetch_payload_reg(abld, payload.sample_pos_reg, BRW_REGISTER_TYPE_W);
1356
1357 /* Compute gl_SamplePosition.x */
1358 abld.MOV(int_sample_x, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, 0));
1359 compute_sample_position(offset(pos, abld, 0), int_sample_x);
1360
1361 /* Compute gl_SamplePosition.y */
1362 abld.MOV(int_sample_y, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, 1));
1363 compute_sample_position(offset(pos, abld, 1), int_sample_y);
1364 return reg;
1365 }
1366
1367 fs_reg *
1368 fs_visitor::emit_sampleid_setup()
1369 {
1370 assert(stage == MESA_SHADER_FRAGMENT);
1371 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1372 assert(devinfo->gen >= 6);
1373
1374 const fs_builder abld = bld.annotate("compute sample id");
1375 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uint_type));
1376
1377 if (!key->multisample_fbo) {
1378 /* As per GL_ARB_sample_shading specification:
1379 * "When rendering to a non-multisample buffer, or if multisample
1380 * rasterization is disabled, gl_SampleID will always be zero."
1381 */
1382 abld.MOV(*reg, brw_imm_d(0));
1383 } else if (devinfo->gen >= 8) {
1384 /* Sample ID comes in as 4-bit numbers in g1.0:
1385 *
1386 * 15:12 Slot 3 SampleID (only used in SIMD16)
1387 * 11:8 Slot 2 SampleID (only used in SIMD16)
1388 * 7:4 Slot 1 SampleID
1389 * 3:0 Slot 0 SampleID
1390 *
1391 * Each slot corresponds to four channels, so we want to replicate each
1392 * half-byte value to 4 channels in a row:
1393 *
1394 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1395 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1396 *
1397 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1398 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1399 *
1400 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1401 * channels to read the first byte (7:0), and the second group of 8
1402 * channels to read the second byte (15:8). Then, we shift right by
1403 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1404 * values into place. Finally, we AND with 0xf to keep the low nibble.
1405 *
1406 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1407 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1408 *
1409 * TODO: These payload bits exist on Gen7 too, but they appear to always
1410 * be zero, so this code fails to work. We should find out why.
1411 */
1412 const fs_reg tmp = abld.vgrf(BRW_REGISTER_TYPE_UW);
1413
1414 for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
1415 const fs_builder hbld = abld.group(MIN2(16, dispatch_width), i);
1416 hbld.SHR(offset(tmp, hbld, i),
1417 stride(retype(brw_vec1_grf(1 + i, 0), BRW_REGISTER_TYPE_UB),
1418 1, 8, 0),
1419 brw_imm_v(0x44440000));
1420 }
1421
1422 abld.AND(*reg, tmp, brw_imm_w(0xf));
1423 } else {
1424 const fs_reg t1 = component(abld.vgrf(BRW_REGISTER_TYPE_UD), 0);
1425 const fs_reg t2 = abld.vgrf(BRW_REGISTER_TYPE_UW);
1426
1427 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1428 * 8x multisampling, subspan 0 will represent sample N (where N
1429 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1430 * 7. We can find the value of N by looking at R0.0 bits 7:6
1431 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1432 * (since samples are always delivered in pairs). That is, we
1433 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1434 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1435 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1436 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1437 * populating a temporary variable with the sequence (0, 1, 2, 3),
1438 * and then reading from it using vstride=1, width=4, hstride=0.
1439 * These computations hold good for 4x multisampling as well.
1440 *
1441 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1442 * the first four slots are sample 0 of subspan 0; the next four
1443 * are sample 1 of subspan 0; the third group is sample 0 of
1444 * subspan 1, and finally sample 1 of subspan 1.
1445 */
1446
1447 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1448 * accomodate 16x MSAA.
1449 */
1450 abld.exec_all().group(1, 0)
1451 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
1452 brw_imm_ud(0xc0));
1453 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1454
1455 /* This works for SIMD8-SIMD16. It also works for SIMD32 but only if we
1456 * can assume 4x MSAA. Disallow it on IVB+
1457 *
1458 * FINISHME: One day, we could come up with a way to do this that
1459 * actually works on gen7.
1460 */
1461 if (devinfo->gen >= 7)
1462 limit_dispatch_width(16, "gl_SampleId is unsupported in SIMD32 on gen7");
1463 abld.exec_all().group(8, 0).MOV(t2, brw_imm_v(0x32103210));
1464
1465 /* This special instruction takes care of setting vstride=1,
1466 * width=4, hstride=0 of t2 during an ADD instruction.
1467 */
1468 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1469 }
1470
1471 return reg;
1472 }
1473
1474 fs_reg *
1475 fs_visitor::emit_samplemaskin_setup()
1476 {
1477 assert(stage == MESA_SHADER_FRAGMENT);
1478 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1479 assert(devinfo->gen >= 6);
1480
1481 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1482
1483 fs_reg coverage_mask =
1484 fetch_payload_reg(bld, payload.sample_mask_in_reg, BRW_REGISTER_TYPE_D);
1485
1486 if (wm_prog_data->persample_dispatch) {
1487 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1488 * and a mask representing which sample is being processed by the
1489 * current shader invocation.
1490 *
1491 * From the OES_sample_variables specification:
1492 * "When per-sample shading is active due to the use of a fragment input
1493 * qualified by "sample" or due to the use of the gl_SampleID or
1494 * gl_SamplePosition variables, only the bit for the current sample is
1495 * set in gl_SampleMaskIn."
1496 */
1497 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1498
1499 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1500 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1501
1502 fs_reg one = vgrf(glsl_type::int_type);
1503 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1504 abld.MOV(one, brw_imm_d(1));
1505 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1506 abld.AND(*reg, enabled_mask, coverage_mask);
1507 } else {
1508 /* In per-pixel mode, the coverage mask is sufficient. */
1509 *reg = coverage_mask;
1510 }
1511 return reg;
1512 }
1513
1514 fs_reg
1515 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1516 {
1517 if (!src.abs && !src.negate)
1518 return src;
1519
1520 fs_reg temp = bld.vgrf(src.type);
1521 bld.MOV(temp, src);
1522
1523 return temp;
1524 }
1525
1526 void
1527 fs_visitor::emit_discard_jump()
1528 {
1529 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1530
1531 /* For performance, after a discard, jump to the end of the
1532 * shader if all relevant channels have been discarded.
1533 */
1534 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1535 discard_jump->flag_subreg = sample_mask_flag_subreg(this);
1536
1537 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1538 discard_jump->predicate_inverse = true;
1539 }
1540
1541 void
1542 fs_visitor::emit_gs_thread_end()
1543 {
1544 assert(stage == MESA_SHADER_GEOMETRY);
1545
1546 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1547
1548 if (gs_compile->control_data_header_size_bits > 0) {
1549 emit_gs_control_data_bits(this->final_gs_vertex_count);
1550 }
1551
1552 const fs_builder abld = bld.annotate("thread end");
1553 fs_inst *inst;
1554
1555 if (gs_prog_data->static_vertex_count != -1) {
1556 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1557 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1558 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1559 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1560 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1561 prev->eot = true;
1562
1563 /* Delete now dead instructions. */
1564 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1565 if (dead == prev)
1566 break;
1567 dead->remove();
1568 }
1569 return;
1570 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1571 break;
1572 }
1573 }
1574 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1575 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1576 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1577 inst->mlen = 1;
1578 } else {
1579 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1580 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1581 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1582 sources[1] = this->final_gs_vertex_count;
1583 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1584 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1585 inst->mlen = 2;
1586 }
1587 inst->eot = true;
1588 inst->offset = 0;
1589 }
1590
1591 void
1592 fs_visitor::assign_curb_setup()
1593 {
1594 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1595
1596 unsigned ubo_push_length = 0;
1597 unsigned ubo_push_start[4];
1598 for (int i = 0; i < 4; i++) {
1599 ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1600 ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1601 }
1602
1603 prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1604
1605 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1606 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1607 for (unsigned int i = 0; i < inst->sources; i++) {
1608 if (inst->src[i].file == UNIFORM) {
1609 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1610 int constant_nr;
1611 if (inst->src[i].nr >= UBO_START) {
1612 /* constant_nr is in 32-bit units, the rest are in bytes */
1613 constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1614 inst->src[i].offset / 4;
1615 } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1616 constant_nr = push_constant_loc[uniform_nr];
1617 } else {
1618 /* Section 5.11 of the OpenGL 4.1 spec says:
1619 * "Out-of-bounds reads return undefined values, which include
1620 * values from other variables of the active program or zero."
1621 * Just return the first push constant.
1622 */
1623 constant_nr = 0;
1624 }
1625
1626 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1627 constant_nr / 8,
1628 constant_nr % 8);
1629 brw_reg.abs = inst->src[i].abs;
1630 brw_reg.negate = inst->src[i].negate;
1631
1632 assert(inst->src[i].stride == 0);
1633 inst->src[i] = byte_offset(
1634 retype(brw_reg, inst->src[i].type),
1635 inst->src[i].offset % 4);
1636 }
1637 }
1638 }
1639
1640 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1641 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1642 }
1643
1644 static void
1645 calculate_urb_setup(const struct gen_device_info *devinfo,
1646 const struct brw_wm_prog_key *key,
1647 struct brw_wm_prog_data *prog_data,
1648 const nir_shader *nir)
1649 {
1650 memset(prog_data->urb_setup, -1,
1651 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1652
1653 int urb_next = 0;
1654 /* Figure out where each of the incoming setup attributes lands. */
1655 if (devinfo->gen >= 6) {
1656 if (util_bitcount64(nir->info.inputs_read &
1657 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1658 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1659 * first 16 varying inputs, so we can put them wherever we want.
1660 * Just put them in order.
1661 *
1662 * This is useful because it means that (a) inputs not used by the
1663 * fragment shader won't take up valuable register space, and (b) we
1664 * won't have to recompile the fragment shader if it gets paired with
1665 * a different vertex (or geometry) shader.
1666 */
1667 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1668 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1669 BITFIELD64_BIT(i)) {
1670 prog_data->urb_setup[i] = urb_next++;
1671 }
1672 }
1673 } else {
1674 /* We have enough input varyings that the SF/SBE pipeline stage can't
1675 * arbitrarily rearrange them to suit our whim; we have to put them
1676 * in an order that matches the output of the previous pipeline stage
1677 * (geometry or vertex shader).
1678 */
1679 struct brw_vue_map prev_stage_vue_map;
1680 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1681 key->input_slots_valid,
1682 nir->info.separate_shader);
1683
1684 int first_slot =
1685 brw_compute_first_urb_slot_required(nir->info.inputs_read,
1686 &prev_stage_vue_map);
1687
1688 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1689 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1690 slot++) {
1691 int varying = prev_stage_vue_map.slot_to_varying[slot];
1692 if (varying != BRW_VARYING_SLOT_PAD &&
1693 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1694 BITFIELD64_BIT(varying))) {
1695 prog_data->urb_setup[varying] = slot - first_slot;
1696 }
1697 }
1698 urb_next = prev_stage_vue_map.num_slots - first_slot;
1699 }
1700 } else {
1701 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1702 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1703 /* Point size is packed into the header, not as a general attribute */
1704 if (i == VARYING_SLOT_PSIZ)
1705 continue;
1706
1707 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1708 /* The back color slot is skipped when the front color is
1709 * also written to. In addition, some slots can be
1710 * written in the vertex shader and not read in the
1711 * fragment shader. So the register number must always be
1712 * incremented, mapped or not.
1713 */
1714 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1715 prog_data->urb_setup[i] = urb_next;
1716 urb_next++;
1717 }
1718 }
1719
1720 /*
1721 * It's a FS only attribute, and we did interpolation for this attribute
1722 * in SF thread. So, count it here, too.
1723 *
1724 * See compile_sf_prog() for more info.
1725 */
1726 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1727 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1728 }
1729
1730 prog_data->num_varying_inputs = urb_next;
1731 }
1732
1733 void
1734 fs_visitor::assign_urb_setup()
1735 {
1736 assert(stage == MESA_SHADER_FRAGMENT);
1737 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1738
1739 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1740
1741 /* Offset all the urb_setup[] index by the actual position of the
1742 * setup regs, now that the location of the constants has been chosen.
1743 */
1744 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1745 for (int i = 0; i < inst->sources; i++) {
1746 if (inst->src[i].file == ATTR) {
1747 /* ATTR regs in the FS are in units of logical scalar inputs each
1748 * of which consumes half of a GRF register.
1749 */
1750 assert(inst->src[i].offset < REG_SIZE / 2);
1751 const unsigned grf = urb_start + inst->src[i].nr / 2;
1752 const unsigned offset = (inst->src[i].nr % 2) * (REG_SIZE / 2) +
1753 inst->src[i].offset;
1754 const unsigned width = inst->src[i].stride == 0 ?
1755 1 : MIN2(inst->exec_size, 8);
1756 struct brw_reg reg = stride(
1757 byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1758 offset),
1759 width * inst->src[i].stride,
1760 width, inst->src[i].stride);
1761 reg.abs = inst->src[i].abs;
1762 reg.negate = inst->src[i].negate;
1763 inst->src[i] = reg;
1764 }
1765 }
1766 }
1767
1768 /* Each attribute is 4 setup channels, each of which is half a reg. */
1769 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1770 }
1771
1772 void
1773 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1774 {
1775 for (int i = 0; i < inst->sources; i++) {
1776 if (inst->src[i].file == ATTR) {
1777 int grf = payload.num_regs +
1778 prog_data->curb_read_length +
1779 inst->src[i].nr +
1780 inst->src[i].offset / REG_SIZE;
1781
1782 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1783 *
1784 * VertStride must be used to cross GRF register boundaries. This
1785 * rule implies that elements within a 'Width' cannot cross GRF
1786 * boundaries.
1787 *
1788 * So, for registers that are large enough, we have to split the exec
1789 * size in two and trust the compression state to sort it out.
1790 */
1791 unsigned total_size = inst->exec_size *
1792 inst->src[i].stride *
1793 type_sz(inst->src[i].type);
1794
1795 assert(total_size <= 2 * REG_SIZE);
1796 const unsigned exec_size =
1797 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1798
1799 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1800 struct brw_reg reg =
1801 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1802 inst->src[i].offset % REG_SIZE),
1803 exec_size * inst->src[i].stride,
1804 width, inst->src[i].stride);
1805 reg.abs = inst->src[i].abs;
1806 reg.negate = inst->src[i].negate;
1807
1808 inst->src[i] = reg;
1809 }
1810 }
1811 }
1812
1813 void
1814 fs_visitor::assign_vs_urb_setup()
1815 {
1816 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1817
1818 assert(stage == MESA_SHADER_VERTEX);
1819
1820 /* Each attribute is 4 regs. */
1821 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1822
1823 assert(vs_prog_data->base.urb_read_length <= 15);
1824
1825 /* Rewrite all ATTR file references to the hw grf that they land in. */
1826 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1827 convert_attr_sources_to_hw_regs(inst);
1828 }
1829 }
1830
1831 void
1832 fs_visitor::assign_tcs_urb_setup()
1833 {
1834 assert(stage == MESA_SHADER_TESS_CTRL);
1835
1836 /* Rewrite all ATTR file references to HW_REGs. */
1837 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1838 convert_attr_sources_to_hw_regs(inst);
1839 }
1840 }
1841
1842 void
1843 fs_visitor::assign_tes_urb_setup()
1844 {
1845 assert(stage == MESA_SHADER_TESS_EVAL);
1846
1847 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1848
1849 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1850
1851 /* Rewrite all ATTR file references to HW_REGs. */
1852 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1853 convert_attr_sources_to_hw_regs(inst);
1854 }
1855 }
1856
1857 void
1858 fs_visitor::assign_gs_urb_setup()
1859 {
1860 assert(stage == MESA_SHADER_GEOMETRY);
1861
1862 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1863
1864 first_non_payload_grf +=
1865 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1866
1867 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1868 /* Rewrite all ATTR file references to GRFs. */
1869 convert_attr_sources_to_hw_regs(inst);
1870 }
1871 }
1872
1873
1874 /**
1875 * Split large virtual GRFs into separate components if we can.
1876 *
1877 * This is mostly duplicated with what brw_fs_vector_splitting does,
1878 * but that's really conservative because it's afraid of doing
1879 * splitting that doesn't result in real progress after the rest of
1880 * the optimization phases, which would cause infinite looping in
1881 * optimization. We can do it once here, safely. This also has the
1882 * opportunity to split interpolated values, or maybe even uniforms,
1883 * which we don't have at the IR level.
1884 *
1885 * We want to split, because virtual GRFs are what we register
1886 * allocate and spill (due to contiguousness requirements for some
1887 * instructions), and they're what we naturally generate in the
1888 * codegen process, but most virtual GRFs don't actually need to be
1889 * contiguous sets of GRFs. If we split, we'll end up with reduced
1890 * live intervals and better dead code elimination and coalescing.
1891 */
1892 void
1893 fs_visitor::split_virtual_grfs()
1894 {
1895 /* Compact the register file so we eliminate dead vgrfs. This
1896 * only defines split points for live registers, so if we have
1897 * too large dead registers they will hit assertions later.
1898 */
1899 compact_virtual_grfs();
1900
1901 int num_vars = this->alloc.count;
1902
1903 /* Count the total number of registers */
1904 int reg_count = 0;
1905 int vgrf_to_reg[num_vars];
1906 for (int i = 0; i < num_vars; i++) {
1907 vgrf_to_reg[i] = reg_count;
1908 reg_count += alloc.sizes[i];
1909 }
1910
1911 /* An array of "split points". For each register slot, this indicates
1912 * if this slot can be separated from the previous slot. Every time an
1913 * instruction uses multiple elements of a register (as a source or
1914 * destination), we mark the used slots as inseparable. Then we go
1915 * through and split the registers into the smallest pieces we can.
1916 */
1917 bool *split_points = new bool[reg_count];
1918 memset(split_points, 0, reg_count * sizeof(*split_points));
1919
1920 /* Mark all used registers as fully splittable */
1921 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1922 if (inst->dst.file == VGRF) {
1923 int reg = vgrf_to_reg[inst->dst.nr];
1924 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1925 split_points[reg + j] = true;
1926 }
1927
1928 for (int i = 0; i < inst->sources; i++) {
1929 if (inst->src[i].file == VGRF) {
1930 int reg = vgrf_to_reg[inst->src[i].nr];
1931 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1932 split_points[reg + j] = true;
1933 }
1934 }
1935 }
1936
1937 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1938 /* We fix up undef instructions later */
1939 if (inst->opcode == SHADER_OPCODE_UNDEF) {
1940 /* UNDEF instructions are currently only used to undef entire
1941 * registers. We need this invariant later when we split them.
1942 */
1943 assert(inst->dst.file == VGRF);
1944 assert(inst->dst.offset == 0);
1945 assert(inst->size_written == alloc.sizes[inst->dst.nr] * REG_SIZE);
1946 continue;
1947 }
1948
1949 if (inst->dst.file == VGRF) {
1950 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1951 for (unsigned j = 1; j < regs_written(inst); j++)
1952 split_points[reg + j] = false;
1953 }
1954 for (int i = 0; i < inst->sources; i++) {
1955 if (inst->src[i].file == VGRF) {
1956 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1957 for (unsigned j = 1; j < regs_read(inst, i); j++)
1958 split_points[reg + j] = false;
1959 }
1960 }
1961 }
1962
1963 int *new_virtual_grf = new int[reg_count];
1964 int *new_reg_offset = new int[reg_count];
1965
1966 int reg = 0;
1967 for (int i = 0; i < num_vars; i++) {
1968 /* The first one should always be 0 as a quick sanity check. */
1969 assert(split_points[reg] == false);
1970
1971 /* j = 0 case */
1972 new_reg_offset[reg] = 0;
1973 reg++;
1974 int offset = 1;
1975
1976 /* j > 0 case */
1977 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1978 /* If this is a split point, reset the offset to 0 and allocate a
1979 * new virtual GRF for the previous offset many registers
1980 */
1981 if (split_points[reg]) {
1982 assert(offset <= MAX_VGRF_SIZE);
1983 int grf = alloc.allocate(offset);
1984 for (int k = reg - offset; k < reg; k++)
1985 new_virtual_grf[k] = grf;
1986 offset = 0;
1987 }
1988 new_reg_offset[reg] = offset;
1989 offset++;
1990 reg++;
1991 }
1992
1993 /* The last one gets the original register number */
1994 assert(offset <= MAX_VGRF_SIZE);
1995 alloc.sizes[i] = offset;
1996 for (int k = reg - offset; k < reg; k++)
1997 new_virtual_grf[k] = i;
1998 }
1999 assert(reg == reg_count);
2000
2001 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2002 if (inst->opcode == SHADER_OPCODE_UNDEF) {
2003 const fs_builder ibld(this, block, inst);
2004 assert(inst->size_written % REG_SIZE == 0);
2005 unsigned reg_offset = 0;
2006 while (reg_offset < inst->size_written / REG_SIZE) {
2007 reg = vgrf_to_reg[inst->dst.nr] + reg_offset;
2008 ibld.UNDEF(fs_reg(VGRF, new_virtual_grf[reg], inst->dst.type));
2009 reg_offset += alloc.sizes[new_virtual_grf[reg]];
2010 }
2011 inst->remove(block);
2012 continue;
2013 }
2014
2015 if (inst->dst.file == VGRF) {
2016 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
2017 inst->dst.nr = new_virtual_grf[reg];
2018 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
2019 inst->dst.offset % REG_SIZE;
2020 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
2021 }
2022 for (int i = 0; i < inst->sources; i++) {
2023 if (inst->src[i].file == VGRF) {
2024 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
2025 inst->src[i].nr = new_virtual_grf[reg];
2026 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
2027 inst->src[i].offset % REG_SIZE;
2028 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
2029 }
2030 }
2031 }
2032 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
2033
2034 delete[] split_points;
2035 delete[] new_virtual_grf;
2036 delete[] new_reg_offset;
2037 }
2038
2039 /**
2040 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
2041 *
2042 * During code generation, we create tons of temporary variables, many of
2043 * which get immediately killed and are never used again. Yet, in later
2044 * optimization and analysis passes, such as compute_live_intervals, we need
2045 * to loop over all the virtual GRFs. Compacting them can save a lot of
2046 * overhead.
2047 */
2048 bool
2049 fs_visitor::compact_virtual_grfs()
2050 {
2051 bool progress = false;
2052 int *remap_table = new int[this->alloc.count];
2053 memset(remap_table, -1, this->alloc.count * sizeof(int));
2054
2055 /* Mark which virtual GRFs are used. */
2056 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
2057 if (inst->dst.file == VGRF)
2058 remap_table[inst->dst.nr] = 0;
2059
2060 for (int i = 0; i < inst->sources; i++) {
2061 if (inst->src[i].file == VGRF)
2062 remap_table[inst->src[i].nr] = 0;
2063 }
2064 }
2065
2066 /* Compact the GRF arrays. */
2067 int new_index = 0;
2068 for (unsigned i = 0; i < this->alloc.count; i++) {
2069 if (remap_table[i] == -1) {
2070 /* We just found an unused register. This means that we are
2071 * actually going to compact something.
2072 */
2073 progress = true;
2074 } else {
2075 remap_table[i] = new_index;
2076 alloc.sizes[new_index] = alloc.sizes[i];
2077 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
2078 ++new_index;
2079 }
2080 }
2081
2082 this->alloc.count = new_index;
2083
2084 /* Patch all the instructions to use the newly renumbered registers */
2085 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2086 if (inst->dst.file == VGRF)
2087 inst->dst.nr = remap_table[inst->dst.nr];
2088
2089 for (int i = 0; i < inst->sources; i++) {
2090 if (inst->src[i].file == VGRF)
2091 inst->src[i].nr = remap_table[inst->src[i].nr];
2092 }
2093 }
2094
2095 /* Patch all the references to delta_xy, since they're used in register
2096 * allocation. If they're unused, switch them to BAD_FILE so we don't
2097 * think some random VGRF is delta_xy.
2098 */
2099 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2100 if (delta_xy[i].file == VGRF) {
2101 if (remap_table[delta_xy[i].nr] != -1) {
2102 delta_xy[i].nr = remap_table[delta_xy[i].nr];
2103 } else {
2104 delta_xy[i].file = BAD_FILE;
2105 }
2106 }
2107 }
2108
2109 delete[] remap_table;
2110
2111 return progress;
2112 }
2113
2114 static int
2115 get_subgroup_id_param_index(const brw_stage_prog_data *prog_data)
2116 {
2117 if (prog_data->nr_params == 0)
2118 return -1;
2119
2120 /* The local thread id is always the last parameter in the list */
2121 uint32_t last_param = prog_data->param[prog_data->nr_params - 1];
2122 if (last_param == BRW_PARAM_BUILTIN_SUBGROUP_ID)
2123 return prog_data->nr_params - 1;
2124
2125 return -1;
2126 }
2127
2128 /**
2129 * Struct for handling complex alignments.
2130 *
2131 * A complex alignment is stored as multiplier and an offset. A value is
2132 * considered to be aligned if it is {offset} larger than a multiple of {mul}.
2133 * For instance, with an alignment of {8, 2}, cplx_align_apply would do the
2134 * following:
2135 *
2136 * N | cplx_align_apply({8, 2}, N)
2137 * ----+-----------------------------
2138 * 4 | 6
2139 * 6 | 6
2140 * 8 | 14
2141 * 10 | 14
2142 * 12 | 14
2143 * 14 | 14
2144 * 16 | 22
2145 */
2146 struct cplx_align {
2147 unsigned mul:4;
2148 unsigned offset:4;
2149 };
2150
2151 #define CPLX_ALIGN_MAX_MUL 8
2152
2153 static void
2154 cplx_align_assert_sane(struct cplx_align a)
2155 {
2156 assert(a.mul > 0 && util_is_power_of_two_nonzero(a.mul));
2157 assert(a.offset < a.mul);
2158 }
2159
2160 /**
2161 * Combines two alignments to produce a least multiple of sorts.
2162 *
2163 * The returned alignment is the smallest (in terms of multiplier) such that
2164 * anything aligned to both a and b will be aligned to the new alignment.
2165 * This function will assert-fail if a and b are not compatible, i.e. if the
2166 * offset parameters are such that no common alignment is possible.
2167 */
2168 static struct cplx_align
2169 cplx_align_combine(struct cplx_align a, struct cplx_align b)
2170 {
2171 cplx_align_assert_sane(a);
2172 cplx_align_assert_sane(b);
2173
2174 /* Assert that the alignments agree. */
2175 assert((a.offset & (b.mul - 1)) == (b.offset & (a.mul - 1)));
2176
2177 return a.mul > b.mul ? a : b;
2178 }
2179
2180 /**
2181 * Apply a complex alignment
2182 *
2183 * This function will return the smallest number greater than or equal to
2184 * offset that is aligned to align.
2185 */
2186 static unsigned
2187 cplx_align_apply(struct cplx_align align, unsigned offset)
2188 {
2189 return ALIGN(offset - align.offset, align.mul) + align.offset;
2190 }
2191
2192 #define UNIFORM_SLOT_SIZE 4
2193
2194 struct uniform_slot_info {
2195 /** True if the given uniform slot is live */
2196 unsigned is_live:1;
2197
2198 /** True if this slot and the next slot must remain contiguous */
2199 unsigned contiguous:1;
2200
2201 struct cplx_align align;
2202 };
2203
2204 static void
2205 mark_uniform_slots_read(struct uniform_slot_info *slots,
2206 unsigned num_slots, unsigned alignment)
2207 {
2208 assert(alignment > 0 && util_is_power_of_two_nonzero(alignment));
2209 assert(alignment <= CPLX_ALIGN_MAX_MUL);
2210
2211 /* We can't align a slot to anything less than the slot size */
2212 alignment = MAX2(alignment, UNIFORM_SLOT_SIZE);
2213
2214 struct cplx_align align = {alignment, 0};
2215 cplx_align_assert_sane(align);
2216
2217 for (unsigned i = 0; i < num_slots; i++) {
2218 slots[i].is_live = true;
2219 if (i < num_slots - 1)
2220 slots[i].contiguous = true;
2221
2222 align.offset = (i * UNIFORM_SLOT_SIZE) & (align.mul - 1);
2223 if (slots[i].align.mul == 0) {
2224 slots[i].align = align;
2225 } else {
2226 slots[i].align = cplx_align_combine(slots[i].align, align);
2227 }
2228 }
2229 }
2230
2231 /**
2232 * Assign UNIFORM file registers to either push constants or pull constants.
2233 *
2234 * We allow a fragment shader to have more than the specified minimum
2235 * maximum number of fragment shader uniform components (64). If
2236 * there are too many of these, they'd fill up all of register space.
2237 * So, this will push some of them out to the pull constant buffer and
2238 * update the program to load them.
2239 */
2240 void
2241 fs_visitor::assign_constant_locations()
2242 {
2243 /* Only the first compile gets to decide on locations. */
2244 if (push_constant_loc) {
2245 assert(pull_constant_loc);
2246 return;
2247 }
2248
2249 if (compiler->compact_params) {
2250 struct uniform_slot_info slots[uniforms + 1];
2251 memset(slots, 0, sizeof(slots));
2252
2253 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2254 for (int i = 0 ; i < inst->sources; i++) {
2255 if (inst->src[i].file != UNIFORM)
2256 continue;
2257
2258 /* NIR tightly packs things so the uniform number might not be
2259 * aligned (if we have a double right after a float, for
2260 * instance). This is fine because the process of re-arranging
2261 * them will ensure that things are properly aligned. The offset
2262 * into that uniform, however, must be aligned.
2263 *
2264 * In Vulkan, we have explicit offsets but everything is crammed
2265 * into a single "variable" so inst->src[i].nr will always be 0.
2266 * Everything will be properly aligned relative to that one base.
2267 */
2268 assert(inst->src[i].offset % type_sz(inst->src[i].type) == 0);
2269
2270 unsigned u = inst->src[i].nr +
2271 inst->src[i].offset / UNIFORM_SLOT_SIZE;
2272
2273 if (u >= uniforms)
2274 continue;
2275
2276 unsigned slots_read;
2277 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
2278 slots_read = DIV_ROUND_UP(inst->src[2].ud, UNIFORM_SLOT_SIZE);
2279 } else {
2280 unsigned bytes_read = inst->components_read(i) *
2281 type_sz(inst->src[i].type);
2282 slots_read = DIV_ROUND_UP(bytes_read, UNIFORM_SLOT_SIZE);
2283 }
2284
2285 assert(u + slots_read <= uniforms);
2286 mark_uniform_slots_read(&slots[u], slots_read,
2287 type_sz(inst->src[i].type));
2288 }
2289 }
2290
2291 int subgroup_id_index = get_subgroup_id_param_index(stage_prog_data);
2292
2293 /* Only allow 16 registers (128 uniform components) as push constants.
2294 *
2295 * Just demote the end of the list. We could probably do better
2296 * here, demoting things that are rarely used in the program first.
2297 *
2298 * If changing this value, note the limitation about total_regs in
2299 * brw_curbe.c.
2300 */
2301 unsigned int max_push_components = 16 * 8;
2302 if (subgroup_id_index >= 0)
2303 max_push_components--; /* Save a slot for the thread ID */
2304
2305 /* We push small arrays, but no bigger than 16 floats. This is big
2306 * enough for a vec4 but hopefully not large enough to push out other
2307 * stuff. We should probably use a better heuristic at some point.
2308 */
2309 const unsigned int max_chunk_size = 16;
2310
2311 unsigned int num_push_constants = 0;
2312 unsigned int num_pull_constants = 0;
2313
2314 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2315 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2316
2317 /* Default to -1 meaning no location */
2318 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2319 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2320
2321 int chunk_start = -1;
2322 struct cplx_align align;
2323 for (unsigned u = 0; u < uniforms; u++) {
2324 if (!slots[u].is_live) {
2325 assert(chunk_start == -1);
2326 continue;
2327 }
2328
2329 /* Skip subgroup_id_index to put it in the last push register. */
2330 if (subgroup_id_index == (int)u)
2331 continue;
2332
2333 if (chunk_start == -1) {
2334 chunk_start = u;
2335 align = slots[u].align;
2336 } else {
2337 /* Offset into the chunk */
2338 unsigned chunk_offset = (u - chunk_start) * UNIFORM_SLOT_SIZE;
2339
2340 /* Shift the slot alignment down by the chunk offset so it is
2341 * comparable with the base chunk alignment.
2342 */
2343 struct cplx_align slot_align = slots[u].align;
2344 slot_align.offset =
2345 (slot_align.offset - chunk_offset) & (align.mul - 1);
2346
2347 align = cplx_align_combine(align, slot_align);
2348 }
2349
2350 /* Sanity check the alignment */
2351 cplx_align_assert_sane(align);
2352
2353 if (slots[u].contiguous)
2354 continue;
2355
2356 /* Adjust the alignment to be in terms of slots, not bytes */
2357 assert((align.mul & (UNIFORM_SLOT_SIZE - 1)) == 0);
2358 assert((align.offset & (UNIFORM_SLOT_SIZE - 1)) == 0);
2359 align.mul /= UNIFORM_SLOT_SIZE;
2360 align.offset /= UNIFORM_SLOT_SIZE;
2361
2362 unsigned push_start_align = cplx_align_apply(align, num_push_constants);
2363 unsigned chunk_size = u - chunk_start + 1;
2364 if ((!compiler->supports_pull_constants && u < UBO_START) ||
2365 (chunk_size < max_chunk_size &&
2366 push_start_align + chunk_size <= max_push_components)) {
2367 /* Align up the number of push constants */
2368 num_push_constants = push_start_align;
2369 for (unsigned i = 0; i < chunk_size; i++)
2370 push_constant_loc[chunk_start + i] = num_push_constants++;
2371 } else {
2372 /* We need to pull this one */
2373 num_pull_constants = cplx_align_apply(align, num_pull_constants);
2374 for (unsigned i = 0; i < chunk_size; i++)
2375 pull_constant_loc[chunk_start + i] = num_pull_constants++;
2376 }
2377
2378 /* Reset the chunk and start again */
2379 chunk_start = -1;
2380 }
2381
2382 /* Add the CS local thread ID uniform at the end of the push constants */
2383 if (subgroup_id_index >= 0)
2384 push_constant_loc[subgroup_id_index] = num_push_constants++;
2385
2386 /* As the uniforms are going to be reordered, stash the old array and
2387 * create two new arrays for push/pull params.
2388 */
2389 uint32_t *param = stage_prog_data->param;
2390 stage_prog_data->nr_params = num_push_constants;
2391 if (num_push_constants) {
2392 stage_prog_data->param = rzalloc_array(mem_ctx, uint32_t,
2393 num_push_constants);
2394 } else {
2395 stage_prog_data->param = NULL;
2396 }
2397 assert(stage_prog_data->nr_pull_params == 0);
2398 assert(stage_prog_data->pull_param == NULL);
2399 if (num_pull_constants > 0) {
2400 stage_prog_data->nr_pull_params = num_pull_constants;
2401 stage_prog_data->pull_param = rzalloc_array(mem_ctx, uint32_t,
2402 num_pull_constants);
2403 }
2404
2405 /* Up until now, the param[] array has been indexed by reg + offset
2406 * of UNIFORM registers. Move pull constants into pull_param[] and
2407 * condense param[] to only contain the uniforms we chose to push.
2408 *
2409 * NOTE: Because we are condensing the params[] array, we know that
2410 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2411 * having to make a copy.
2412 */
2413 for (unsigned int i = 0; i < uniforms; i++) {
2414 uint32_t value = param[i];
2415 if (pull_constant_loc[i] != -1) {
2416 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2417 } else if (push_constant_loc[i] != -1) {
2418 stage_prog_data->param[push_constant_loc[i]] = value;
2419 }
2420 }
2421 ralloc_free(param);
2422 } else {
2423 /* If we don't want to compact anything, just set up dummy push/pull
2424 * arrays. All the rest of the compiler cares about are these arrays.
2425 */
2426 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2427 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2428
2429 for (unsigned u = 0; u < uniforms; u++)
2430 push_constant_loc[u] = u;
2431
2432 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2433 }
2434
2435 /* Now that we know how many regular uniforms we'll push, reduce the
2436 * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2437 */
2438 unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2439 for (int i = 0; i < 4; i++) {
2440 struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2441
2442 if (push_length + range->length > 64)
2443 range->length = 64 - push_length;
2444
2445 push_length += range->length;
2446 }
2447 assert(push_length <= 64);
2448 }
2449
2450 bool
2451 fs_visitor::get_pull_locs(const fs_reg &src,
2452 unsigned *out_surf_index,
2453 unsigned *out_pull_index)
2454 {
2455 assert(src.file == UNIFORM);
2456
2457 if (src.nr >= UBO_START) {
2458 const struct brw_ubo_range *range =
2459 &prog_data->ubo_ranges[src.nr - UBO_START];
2460
2461 /* If this access is in our (reduced) range, use the push data. */
2462 if (src.offset / 32 < range->length)
2463 return false;
2464
2465 *out_surf_index = prog_data->binding_table.ubo_start + range->block;
2466 *out_pull_index = (32 * range->start + src.offset) / 4;
2467
2468 prog_data->has_ubo_pull = true;
2469 return true;
2470 }
2471
2472 const unsigned location = src.nr + src.offset / 4;
2473
2474 if (location < uniforms && pull_constant_loc[location] != -1) {
2475 /* A regular uniform push constant */
2476 *out_surf_index = stage_prog_data->binding_table.pull_constants_start;
2477 *out_pull_index = pull_constant_loc[location];
2478
2479 prog_data->has_ubo_pull = true;
2480 return true;
2481 }
2482
2483 return false;
2484 }
2485
2486 /**
2487 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2488 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2489 */
2490 void
2491 fs_visitor::lower_constant_loads()
2492 {
2493 unsigned index, pull_index;
2494
2495 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2496 /* Set up the annotation tracking for new generated instructions. */
2497 const fs_builder ibld(this, block, inst);
2498
2499 for (int i = 0; i < inst->sources; i++) {
2500 if (inst->src[i].file != UNIFORM)
2501 continue;
2502
2503 /* We'll handle this case later */
2504 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2505 continue;
2506
2507 if (!get_pull_locs(inst->src[i], &index, &pull_index))
2508 continue;
2509
2510 assert(inst->src[i].stride == 0);
2511
2512 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2513 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2514 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2515 const unsigned base = pull_index * 4;
2516
2517 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2518 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2519
2520 /* Rewrite the instruction to use the temporary VGRF. */
2521 inst->src[i].file = VGRF;
2522 inst->src[i].nr = dst.nr;
2523 inst->src[i].offset = (base & (block_sz - 1)) +
2524 inst->src[i].offset % 4;
2525 }
2526
2527 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2528 inst->src[0].file == UNIFORM) {
2529
2530 if (!get_pull_locs(inst->src[0], &index, &pull_index))
2531 continue;
2532
2533 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2534 brw_imm_ud(index),
2535 inst->src[1],
2536 pull_index * 4);
2537 inst->remove(block);
2538 }
2539 }
2540 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
2541 }
2542
2543 bool
2544 fs_visitor::opt_algebraic()
2545 {
2546 bool progress = false;
2547
2548 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2549 switch (inst->opcode) {
2550 case BRW_OPCODE_MOV:
2551 if (!devinfo->has_64bit_float &&
2552 !devinfo->has_64bit_int &&
2553 (inst->dst.type == BRW_REGISTER_TYPE_DF ||
2554 inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2555 inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2556 assert(inst->dst.type == inst->src[0].type);
2557 assert(!inst->saturate);
2558 assert(!inst->src[0].abs);
2559 assert(!inst->src[0].negate);
2560 const brw::fs_builder ibld(this, block, inst);
2561
2562 if (inst->src[0].file == IMM) {
2563 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2564 brw_imm_ud(inst->src[0].u64 >> 32));
2565 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2566 brw_imm_ud(inst->src[0].u64));
2567 } else {
2568 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2569 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1));
2570 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2571 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0));
2572 }
2573
2574 inst->remove(block);
2575 progress = true;
2576 }
2577
2578 if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2579 inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2580 inst->dst.is_null() &&
2581 (inst->src[0].abs || inst->src[0].negate)) {
2582 inst->src[0].abs = false;
2583 inst->src[0].negate = false;
2584 progress = true;
2585 break;
2586 }
2587
2588 if (inst->src[0].file != IMM)
2589 break;
2590
2591 if (inst->saturate) {
2592 /* Full mixed-type saturates don't happen. However, we can end up
2593 * with things like:
2594 *
2595 * mov.sat(8) g21<1>DF -1F
2596 *
2597 * Other mixed-size-but-same-base-type cases may also be possible.
2598 */
2599 if (inst->dst.type != inst->src[0].type &&
2600 inst->dst.type != BRW_REGISTER_TYPE_DF &&
2601 inst->src[0].type != BRW_REGISTER_TYPE_F)
2602 assert(!"unimplemented: saturate mixed types");
2603
2604 if (brw_saturate_immediate(inst->src[0].type,
2605 &inst->src[0].as_brw_reg())) {
2606 inst->saturate = false;
2607 progress = true;
2608 }
2609 }
2610 break;
2611
2612 case BRW_OPCODE_MUL:
2613 if (inst->src[1].file != IMM)
2614 continue;
2615
2616 /* a * 1.0 = a */
2617 if (inst->src[1].is_one()) {
2618 inst->opcode = BRW_OPCODE_MOV;
2619 inst->src[1] = reg_undef;
2620 progress = true;
2621 break;
2622 }
2623
2624 /* a * -1.0 = -a */
2625 if (inst->src[1].is_negative_one()) {
2626 inst->opcode = BRW_OPCODE_MOV;
2627 inst->src[0].negate = !inst->src[0].negate;
2628 inst->src[1] = reg_undef;
2629 progress = true;
2630 break;
2631 }
2632
2633 if (inst->src[0].file == IMM) {
2634 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2635 inst->opcode = BRW_OPCODE_MOV;
2636 inst->src[0].f *= inst->src[1].f;
2637 inst->src[1] = reg_undef;
2638 progress = true;
2639 break;
2640 }
2641 break;
2642 case BRW_OPCODE_ADD:
2643 if (inst->src[1].file != IMM)
2644 continue;
2645
2646 if (inst->src[0].file == IMM) {
2647 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2648 inst->opcode = BRW_OPCODE_MOV;
2649 inst->src[0].f += inst->src[1].f;
2650 inst->src[1] = reg_undef;
2651 progress = true;
2652 break;
2653 }
2654 break;
2655 case BRW_OPCODE_OR:
2656 if (inst->src[0].equals(inst->src[1]) ||
2657 inst->src[1].is_zero()) {
2658 /* On Gen8+, the OR instruction can have a source modifier that
2659 * performs logical not on the operand. Cases of 'OR r0, ~r1, 0'
2660 * or 'OR r0, ~r1, ~r1' should become a NOT instead of a MOV.
2661 */
2662 if (inst->src[0].negate) {
2663 inst->opcode = BRW_OPCODE_NOT;
2664 inst->src[0].negate = false;
2665 } else {
2666 inst->opcode = BRW_OPCODE_MOV;
2667 }
2668 inst->src[1] = reg_undef;
2669 progress = true;
2670 break;
2671 }
2672 break;
2673 case BRW_OPCODE_CMP:
2674 if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2675 inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2676 inst->src[1].is_zero() &&
2677 (inst->src[0].abs || inst->src[0].negate)) {
2678 inst->src[0].abs = false;
2679 inst->src[0].negate = false;
2680 progress = true;
2681 break;
2682 }
2683 break;
2684 case BRW_OPCODE_SEL:
2685 if (!devinfo->has_64bit_float &&
2686 !devinfo->has_64bit_int &&
2687 (inst->dst.type == BRW_REGISTER_TYPE_DF ||
2688 inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2689 inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2690 assert(inst->dst.type == inst->src[0].type);
2691 assert(!inst->saturate);
2692 assert(!inst->src[0].abs && !inst->src[0].negate);
2693 assert(!inst->src[1].abs && !inst->src[1].negate);
2694 const brw::fs_builder ibld(this, block, inst);
2695
2696 set_predicate(inst->predicate,
2697 ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2698 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
2699 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0)));
2700 set_predicate(inst->predicate,
2701 ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2702 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1),
2703 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1)));
2704
2705 inst->remove(block);
2706 progress = true;
2707 }
2708 if (inst->src[0].equals(inst->src[1])) {
2709 inst->opcode = BRW_OPCODE_MOV;
2710 inst->src[1] = reg_undef;
2711 inst->predicate = BRW_PREDICATE_NONE;
2712 inst->predicate_inverse = false;
2713 progress = true;
2714 } else if (inst->saturate && inst->src[1].file == IMM) {
2715 switch (inst->conditional_mod) {
2716 case BRW_CONDITIONAL_LE:
2717 case BRW_CONDITIONAL_L:
2718 switch (inst->src[1].type) {
2719 case BRW_REGISTER_TYPE_F:
2720 if (inst->src[1].f >= 1.0f) {
2721 inst->opcode = BRW_OPCODE_MOV;
2722 inst->src[1] = reg_undef;
2723 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2724 progress = true;
2725 }
2726 break;
2727 default:
2728 break;
2729 }
2730 break;
2731 case BRW_CONDITIONAL_GE:
2732 case BRW_CONDITIONAL_G:
2733 switch (inst->src[1].type) {
2734 case BRW_REGISTER_TYPE_F:
2735 if (inst->src[1].f <= 0.0f) {
2736 inst->opcode = BRW_OPCODE_MOV;
2737 inst->src[1] = reg_undef;
2738 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2739 progress = true;
2740 }
2741 break;
2742 default:
2743 break;
2744 }
2745 default:
2746 break;
2747 }
2748 }
2749 break;
2750 case BRW_OPCODE_MAD:
2751 if (inst->src[0].type != BRW_REGISTER_TYPE_F ||
2752 inst->src[1].type != BRW_REGISTER_TYPE_F ||
2753 inst->src[2].type != BRW_REGISTER_TYPE_F)
2754 break;
2755 if (inst->src[1].is_one()) {
2756 inst->opcode = BRW_OPCODE_ADD;
2757 inst->src[1] = inst->src[2];
2758 inst->src[2] = reg_undef;
2759 progress = true;
2760 } else if (inst->src[2].is_one()) {
2761 inst->opcode = BRW_OPCODE_ADD;
2762 inst->src[2] = reg_undef;
2763 progress = true;
2764 }
2765 break;
2766 case SHADER_OPCODE_BROADCAST:
2767 if (is_uniform(inst->src[0])) {
2768 inst->opcode = BRW_OPCODE_MOV;
2769 inst->sources = 1;
2770 inst->force_writemask_all = true;
2771 progress = true;
2772 } else if (inst->src[1].file == IMM) {
2773 inst->opcode = BRW_OPCODE_MOV;
2774 /* It's possible that the selected component will be too large and
2775 * overflow the register. This can happen if someone does a
2776 * readInvocation() from GLSL or SPIR-V and provides an OOB
2777 * invocationIndex. If this happens and we some how manage
2778 * to constant fold it in and get here, then component() may cause
2779 * us to start reading outside of the VGRF which will lead to an
2780 * assert later. Instead, just let it wrap around if it goes over
2781 * exec_size.
2782 */
2783 const unsigned comp = inst->src[1].ud & (inst->exec_size - 1);
2784 inst->src[0] = component(inst->src[0], comp);
2785 inst->sources = 1;
2786 inst->force_writemask_all = true;
2787 progress = true;
2788 }
2789 break;
2790
2791 case SHADER_OPCODE_SHUFFLE:
2792 if (is_uniform(inst->src[0])) {
2793 inst->opcode = BRW_OPCODE_MOV;
2794 inst->sources = 1;
2795 progress = true;
2796 } else if (inst->src[1].file == IMM) {
2797 inst->opcode = BRW_OPCODE_MOV;
2798 inst->src[0] = component(inst->src[0],
2799 inst->src[1].ud);
2800 inst->sources = 1;
2801 progress = true;
2802 }
2803 break;
2804
2805 default:
2806 break;
2807 }
2808
2809 /* Swap if src[0] is immediate. */
2810 if (progress && inst->is_commutative()) {
2811 if (inst->src[0].file == IMM) {
2812 fs_reg tmp = inst->src[1];
2813 inst->src[1] = inst->src[0];
2814 inst->src[0] = tmp;
2815 }
2816 }
2817 }
2818
2819 if (progress)
2820 invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
2821 DEPENDENCY_INSTRUCTION_DETAIL);
2822
2823 return progress;
2824 }
2825
2826 /**
2827 * Optimize sample messages that have constant zero values for the trailing
2828 * texture coordinates. We can just reduce the message length for these
2829 * instructions instead of reserving a register for it. Trailing parameters
2830 * that aren't sent default to zero anyway. This will cause the dead code
2831 * eliminator to remove the MOV instruction that would otherwise be emitted to
2832 * set up the zero value.
2833 */
2834 bool
2835 fs_visitor::opt_zero_samples()
2836 {
2837 /* Gen4 infers the texturing opcode based on the message length so we can't
2838 * change it.
2839 */
2840 if (devinfo->gen < 5)
2841 return false;
2842
2843 bool progress = false;
2844
2845 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2846 if (!inst->is_tex())
2847 continue;
2848
2849 fs_inst *load_payload = (fs_inst *) inst->prev;
2850
2851 if (load_payload->is_head_sentinel() ||
2852 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2853 continue;
2854
2855 /* We don't want to remove the message header or the first parameter.
2856 * Removing the first parameter is not allowed, see the Haswell PRM
2857 * volume 7, page 149:
2858 *
2859 * "Parameter 0 is required except for the sampleinfo message, which
2860 * has no parameter 0"
2861 */
2862 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2863 load_payload->src[(inst->mlen - inst->header_size) /
2864 (inst->exec_size / 8) +
2865 inst->header_size - 1].is_zero()) {
2866 inst->mlen -= inst->exec_size / 8;
2867 progress = true;
2868 }
2869 }
2870
2871 if (progress)
2872 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
2873
2874 return progress;
2875 }
2876
2877 /**
2878 * Optimize sample messages which are followed by the final RT write.
2879 *
2880 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2881 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2882 * final texturing results copied to the framebuffer write payload and modify
2883 * them to write to the framebuffer directly.
2884 */
2885 bool
2886 fs_visitor::opt_sampler_eot()
2887 {
2888 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2889
2890 if (stage != MESA_SHADER_FRAGMENT || dispatch_width > 16)
2891 return false;
2892
2893 if (devinfo->gen != 9 && !devinfo->is_cherryview)
2894 return false;
2895
2896 /* FINISHME: It should be possible to implement this optimization when there
2897 * are multiple drawbuffers.
2898 */
2899 if (key->nr_color_regions != 1)
2900 return false;
2901
2902 /* Requires emitting a bunch of saturating MOV instructions during logical
2903 * send lowering to clamp the color payload, which the sampler unit isn't
2904 * going to do for us.
2905 */
2906 if (key->clamp_fragment_color)
2907 return false;
2908
2909 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2910 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2911 fs_inst *fb_write = (fs_inst *)block->end();
2912 assert(fb_write->eot);
2913 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2914
2915 /* There wasn't one; nothing to do. */
2916 if (unlikely(fb_write->prev->is_head_sentinel()))
2917 return false;
2918
2919 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2920
2921 /* 3D Sampler » Messages » Message Format
2922 *
2923 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2924 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2925 */
2926 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2927 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2928 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2929 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2930 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2931 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2932 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2933 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2934 return false;
2935
2936 /* XXX - This shouldn't be necessary. */
2937 if (tex_inst->prev->is_head_sentinel())
2938 return false;
2939
2940 /* Check that the FB write sources are fully initialized by the single
2941 * texturing instruction.
2942 */
2943 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2944 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2945 if (!fb_write->src[i].equals(tex_inst->dst) ||
2946 fb_write->size_read(i) != tex_inst->size_written)
2947 return false;
2948 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2949 if (fb_write->src[i].file != BAD_FILE)
2950 return false;
2951 }
2952 }
2953
2954 assert(!tex_inst->eot); /* We can't get here twice */
2955 assert((tex_inst->offset & (0xff << 24)) == 0);
2956
2957 const fs_builder ibld(this, block, tex_inst);
2958
2959 tex_inst->offset |= fb_write->target << 24;
2960 tex_inst->eot = true;
2961 tex_inst->dst = ibld.null_reg_ud();
2962 tex_inst->size_written = 0;
2963 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2964
2965 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2966 * flag and submit a header together with the sampler message as required
2967 * by the hardware.
2968 */
2969 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
2970 return true;
2971 }
2972
2973 bool
2974 fs_visitor::opt_register_renaming()
2975 {
2976 bool progress = false;
2977 int depth = 0;
2978
2979 unsigned remap[alloc.count];
2980 memset(remap, ~0u, sizeof(unsigned) * alloc.count);
2981
2982 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2983 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2984 depth++;
2985 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2986 inst->opcode == BRW_OPCODE_WHILE) {
2987 depth--;
2988 }
2989
2990 /* Rewrite instruction sources. */
2991 for (int i = 0; i < inst->sources; i++) {
2992 if (inst->src[i].file == VGRF &&
2993 remap[inst->src[i].nr] != ~0u &&
2994 remap[inst->src[i].nr] != inst->src[i].nr) {
2995 inst->src[i].nr = remap[inst->src[i].nr];
2996 progress = true;
2997 }
2998 }
2999
3000 const unsigned dst = inst->dst.nr;
3001
3002 if (depth == 0 &&
3003 inst->dst.file == VGRF &&
3004 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
3005 !inst->is_partial_write()) {
3006 if (remap[dst] == ~0u) {
3007 remap[dst] = dst;
3008 } else {
3009 remap[dst] = alloc.allocate(regs_written(inst));
3010 inst->dst.nr = remap[dst];
3011 progress = true;
3012 }
3013 } else if (inst->dst.file == VGRF &&
3014 remap[dst] != ~0u &&
3015 remap[dst] != dst) {
3016 inst->dst.nr = remap[dst];
3017 progress = true;
3018 }
3019 }
3020
3021 if (progress) {
3022 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
3023 DEPENDENCY_VARIABLES);
3024
3025 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
3026 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != ~0u) {
3027 delta_xy[i].nr = remap[delta_xy[i].nr];
3028 }
3029 }
3030 }
3031
3032 return progress;
3033 }
3034
3035 /**
3036 * Remove redundant or useless discard jumps.
3037 *
3038 * For example, we can eliminate jumps in the following sequence:
3039 *
3040 * discard-jump (redundant with the next jump)
3041 * discard-jump (useless; jumps to the next instruction)
3042 * placeholder-halt
3043 */
3044 bool
3045 fs_visitor::opt_redundant_discard_jumps()
3046 {
3047 bool progress = false;
3048
3049 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
3050
3051 fs_inst *placeholder_halt = NULL;
3052 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
3053 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
3054 placeholder_halt = inst;
3055 break;
3056 }
3057 }
3058
3059 if (!placeholder_halt)
3060 return false;
3061
3062 /* Delete any HALTs immediately before the placeholder halt. */
3063 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
3064 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
3065 prev = (fs_inst *) placeholder_halt->prev) {
3066 prev->remove(last_bblock);
3067 progress = true;
3068 }
3069
3070 if (progress)
3071 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3072
3073 return progress;
3074 }
3075
3076 /**
3077 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
3078 * from \p r.offset which overlaps the region starting at \p s.offset and
3079 * spanning \p ds bytes.
3080 */
3081 static inline unsigned
3082 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
3083 {
3084 const int rel_offset = reg_offset(s) - reg_offset(r);
3085 const int shift = rel_offset / REG_SIZE;
3086 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
3087 assert(reg_space(r) == reg_space(s) &&
3088 shift >= 0 && shift < int(8 * sizeof(unsigned)));
3089 return ((1 << n) - 1) << shift;
3090 }
3091
3092 bool
3093 fs_visitor::compute_to_mrf()
3094 {
3095 bool progress = false;
3096 int next_ip = 0;
3097
3098 /* No MRFs on Gen >= 7. */
3099 if (devinfo->gen >= 7)
3100 return false;
3101
3102 calculate_live_intervals();
3103
3104 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3105 int ip = next_ip;
3106 next_ip++;
3107
3108 if (inst->opcode != BRW_OPCODE_MOV ||
3109 inst->is_partial_write() ||
3110 inst->dst.file != MRF || inst->src[0].file != VGRF ||
3111 inst->dst.type != inst->src[0].type ||
3112 inst->src[0].abs || inst->src[0].negate ||
3113 !inst->src[0].is_contiguous() ||
3114 inst->src[0].offset % REG_SIZE != 0)
3115 continue;
3116
3117 /* Can't compute-to-MRF this GRF if someone else was going to
3118 * read it later.
3119 */
3120 if (this->virtual_grf_end[inst->src[0].nr] > ip)
3121 continue;
3122
3123 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
3124 * things that computed the value of all GRFs of the source region. The
3125 * regs_left bitset keeps track of the registers we haven't yet found a
3126 * generating instruction for.
3127 */
3128 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
3129
3130 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3131 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3132 inst->src[0], inst->size_read(0))) {
3133 /* Found the last thing to write our reg we want to turn
3134 * into a compute-to-MRF.
3135 */
3136
3137 /* If this one instruction didn't populate all the
3138 * channels, bail. We might be able to rewrite everything
3139 * that writes that reg, but it would require smarter
3140 * tracking.
3141 */
3142 if (scan_inst->is_partial_write())
3143 break;
3144
3145 /* Handling things not fully contained in the source of the copy
3146 * would need us to understand coalescing out more than one MOV at
3147 * a time.
3148 */
3149 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
3150 inst->src[0], inst->size_read(0)))
3151 break;
3152
3153 /* SEND instructions can't have MRF as a destination. */
3154 if (scan_inst->mlen)
3155 break;
3156
3157 if (devinfo->gen == 6) {
3158 /* gen6 math instructions must have the destination be
3159 * GRF, so no compute-to-MRF for them.
3160 */
3161 if (scan_inst->is_math()) {
3162 break;
3163 }
3164 }
3165
3166 /* Clear the bits for any registers this instruction overwrites. */
3167 regs_left &= ~mask_relative_to(
3168 inst->src[0], scan_inst->dst, scan_inst->size_written);
3169 if (!regs_left)
3170 break;
3171 }
3172
3173 /* We don't handle control flow here. Most computation of
3174 * values that end up in MRFs are shortly before the MRF
3175 * write anyway.
3176 */
3177 if (block->start() == scan_inst)
3178 break;
3179
3180 /* You can't read from an MRF, so if someone else reads our
3181 * MRF's source GRF that we wanted to rewrite, that stops us.
3182 */
3183 bool interfered = false;
3184 for (int i = 0; i < scan_inst->sources; i++) {
3185 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
3186 inst->src[0], inst->size_read(0))) {
3187 interfered = true;
3188 }
3189 }
3190 if (interfered)
3191 break;
3192
3193 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3194 inst->dst, inst->size_written)) {
3195 /* If somebody else writes our MRF here, we can't
3196 * compute-to-MRF before that.
3197 */
3198 break;
3199 }
3200
3201 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
3202 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
3203 inst->dst, inst->size_written)) {
3204 /* Found a SEND instruction, which means that there are
3205 * live values in MRFs from base_mrf to base_mrf +
3206 * scan_inst->mlen - 1. Don't go pushing our MRF write up
3207 * above it.
3208 */
3209 break;
3210 }
3211 }
3212
3213 if (regs_left)
3214 continue;
3215
3216 /* Found all generating instructions of our MRF's source value, so it
3217 * should be safe to rewrite them to point to the MRF directly.
3218 */
3219 regs_left = (1 << regs_read(inst, 0)) - 1;
3220
3221 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3222 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3223 inst->src[0], inst->size_read(0))) {
3224 /* Clear the bits for any registers this instruction overwrites. */
3225 regs_left &= ~mask_relative_to(
3226 inst->src[0], scan_inst->dst, scan_inst->size_written);
3227
3228 const unsigned rel_offset = reg_offset(scan_inst->dst) -
3229 reg_offset(inst->src[0]);
3230
3231 if (inst->dst.nr & BRW_MRF_COMPR4) {
3232 /* Apply the same address transformation done by the hardware
3233 * for COMPR4 MRF writes.
3234 */
3235 assert(rel_offset < 2 * REG_SIZE);
3236 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
3237
3238 /* Clear the COMPR4 bit if the generating instruction is not
3239 * compressed.
3240 */
3241 if (scan_inst->size_written < 2 * REG_SIZE)
3242 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
3243
3244 } else {
3245 /* Calculate the MRF number the result of this instruction is
3246 * ultimately written to.
3247 */
3248 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
3249 }
3250
3251 scan_inst->dst.file = MRF;
3252 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
3253 scan_inst->saturate |= inst->saturate;
3254 if (!regs_left)
3255 break;
3256 }
3257 }
3258
3259 assert(!regs_left);
3260 inst->remove(block);
3261 progress = true;
3262 }
3263
3264 if (progress)
3265 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3266
3267 return progress;
3268 }
3269
3270 /**
3271 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
3272 * flow. We could probably do better here with some form of divergence
3273 * analysis.
3274 */
3275 bool
3276 fs_visitor::eliminate_find_live_channel()
3277 {
3278 bool progress = false;
3279 unsigned depth = 0;
3280
3281 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
3282 /* The optimization below assumes that channel zero is live on thread
3283 * dispatch, which may not be the case if the fixed function dispatches
3284 * threads sparsely.
3285 */
3286 return false;
3287 }
3288
3289 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3290 switch (inst->opcode) {
3291 case BRW_OPCODE_IF:
3292 case BRW_OPCODE_DO:
3293 depth++;
3294 break;
3295
3296 case BRW_OPCODE_ENDIF:
3297 case BRW_OPCODE_WHILE:
3298 depth--;
3299 break;
3300
3301 case FS_OPCODE_DISCARD_JUMP:
3302 /* This can potentially make control flow non-uniform until the end
3303 * of the program.
3304 */
3305 return progress;
3306
3307 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
3308 if (depth == 0) {
3309 inst->opcode = BRW_OPCODE_MOV;
3310 inst->src[0] = brw_imm_ud(0u);
3311 inst->sources = 1;
3312 inst->force_writemask_all = true;
3313 progress = true;
3314 }
3315 break;
3316
3317 default:
3318 break;
3319 }
3320 }
3321
3322 if (progress)
3323 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
3324
3325 return progress;
3326 }
3327
3328 /**
3329 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
3330 * instructions to FS_OPCODE_REP_FB_WRITE.
3331 */
3332 void
3333 fs_visitor::emit_repclear_shader()
3334 {
3335 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3336 int base_mrf = 0;
3337 int color_mrf = base_mrf + 2;
3338 fs_inst *mov;
3339
3340 if (uniforms > 0) {
3341 mov = bld.exec_all().group(4, 0)
3342 .MOV(brw_message_reg(color_mrf),
3343 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
3344 } else {
3345 struct brw_reg reg =
3346 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
3347 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
3348 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
3349
3350 mov = bld.exec_all().group(4, 0)
3351 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
3352 }
3353
3354 fs_inst *write = NULL;
3355 if (key->nr_color_regions == 1) {
3356 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3357 write->saturate = key->clamp_fragment_color;
3358 write->base_mrf = color_mrf;
3359 write->target = 0;
3360 write->header_size = 0;
3361 write->mlen = 1;
3362 } else {
3363 assume(key->nr_color_regions > 0);
3364
3365 struct brw_reg header =
3366 retype(brw_message_reg(base_mrf), BRW_REGISTER_TYPE_UD);
3367 bld.exec_all().group(16, 0)
3368 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3369
3370 for (int i = 0; i < key->nr_color_regions; ++i) {
3371 if (i > 0) {
3372 bld.exec_all().group(1, 0)
3373 .MOV(component(header, 2), brw_imm_ud(i));
3374 }
3375
3376 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3377 write->saturate = key->clamp_fragment_color;
3378 write->base_mrf = base_mrf;
3379 write->target = i;
3380 write->header_size = 2;
3381 write->mlen = 3;
3382 }
3383 }
3384 write->eot = true;
3385 write->last_rt = true;
3386
3387 calculate_cfg();
3388
3389 assign_constant_locations();
3390 assign_curb_setup();
3391
3392 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
3393 if (uniforms > 0) {
3394 assert(mov->src[0].file == FIXED_GRF);
3395 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
3396 }
3397
3398 lower_scoreboard();
3399 }
3400
3401 /**
3402 * Walks through basic blocks, looking for repeated MRF writes and
3403 * removing the later ones.
3404 */
3405 bool
3406 fs_visitor::remove_duplicate_mrf_writes()
3407 {
3408 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
3409 bool progress = false;
3410
3411 /* Need to update the MRF tracking for compressed instructions. */
3412 if (dispatch_width >= 16)
3413 return false;
3414
3415 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3416
3417 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3418 if (inst->is_control_flow()) {
3419 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3420 }
3421
3422 if (inst->opcode == BRW_OPCODE_MOV &&
3423 inst->dst.file == MRF) {
3424 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3425 if (prev_inst && prev_inst->opcode == BRW_OPCODE_MOV &&
3426 inst->dst.equals(prev_inst->dst) &&
3427 inst->src[0].equals(prev_inst->src[0]) &&
3428 inst->saturate == prev_inst->saturate &&
3429 inst->predicate == prev_inst->predicate &&
3430 inst->conditional_mod == prev_inst->conditional_mod &&
3431 inst->exec_size == prev_inst->exec_size) {
3432 inst->remove(block);
3433 progress = true;
3434 continue;
3435 }
3436 }
3437
3438 /* Clear out the last-write records for MRFs that were overwritten. */
3439 if (inst->dst.file == MRF) {
3440 last_mrf_move[inst->dst.nr] = NULL;
3441 }
3442
3443 if (inst->mlen > 0 && inst->base_mrf != -1) {
3444 /* Found a SEND instruction, which will include two or fewer
3445 * implied MRF writes. We could do better here.
3446 */
3447 for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
3448 last_mrf_move[inst->base_mrf + i] = NULL;
3449 }
3450 }
3451
3452 /* Clear out any MRF move records whose sources got overwritten. */
3453 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3454 if (last_mrf_move[i] &&
3455 regions_overlap(inst->dst, inst->size_written,
3456 last_mrf_move[i]->src[0],
3457 last_mrf_move[i]->size_read(0))) {
3458 last_mrf_move[i] = NULL;
3459 }
3460 }
3461
3462 if (inst->opcode == BRW_OPCODE_MOV &&
3463 inst->dst.file == MRF &&
3464 inst->src[0].file != ARF &&
3465 !inst->is_partial_write()) {
3466 last_mrf_move[inst->dst.nr] = inst;
3467 }
3468 }
3469
3470 if (progress)
3471 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3472
3473 return progress;
3474 }
3475
3476 /**
3477 * Rounding modes for conversion instructions are included for each
3478 * conversion, but right now it is a state. So once it is set,
3479 * we don't need to call it again for subsequent calls.
3480 *
3481 * This is useful for vector/matrices conversions, as setting the
3482 * mode once is enough for the full vector/matrix
3483 */
3484 bool
3485 fs_visitor::remove_extra_rounding_modes()
3486 {
3487 bool progress = false;
3488 unsigned execution_mode = this->nir->info.float_controls_execution_mode;
3489
3490 brw_rnd_mode base_mode = BRW_RND_MODE_UNSPECIFIED;
3491 if ((FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 |
3492 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32 |
3493 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64) &
3494 execution_mode)
3495 base_mode = BRW_RND_MODE_RTNE;
3496 if ((FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 |
3497 FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 |
3498 FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64) &
3499 execution_mode)
3500 base_mode = BRW_RND_MODE_RTZ;
3501
3502 foreach_block (block, cfg) {
3503 brw_rnd_mode prev_mode = base_mode;
3504
3505 foreach_inst_in_block_safe (fs_inst, inst, block) {
3506 if (inst->opcode == SHADER_OPCODE_RND_MODE) {
3507 assert(inst->src[0].file == BRW_IMMEDIATE_VALUE);
3508 const brw_rnd_mode mode = (brw_rnd_mode) inst->src[0].d;
3509 if (mode == prev_mode) {
3510 inst->remove(block);
3511 progress = true;
3512 } else {
3513 prev_mode = mode;
3514 }
3515 }
3516 }
3517 }
3518
3519 if (progress)
3520 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3521
3522 return progress;
3523 }
3524
3525 static void
3526 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3527 {
3528 /* Clear the flag for registers that actually got read (as expected). */
3529 for (int i = 0; i < inst->sources; i++) {
3530 int grf;
3531 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3532 grf = inst->src[i].nr;
3533 } else {
3534 continue;
3535 }
3536
3537 if (grf >= first_grf &&
3538 grf < first_grf + grf_len) {
3539 deps[grf - first_grf] = false;
3540 if (inst->exec_size == 16)
3541 deps[grf - first_grf + 1] = false;
3542 }
3543 }
3544 }
3545
3546 /**
3547 * Implements this workaround for the original 965:
3548 *
3549 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3550 * check for post destination dependencies on this instruction, software
3551 * must ensure that there is no destination hazard for the case of ‘write
3552 * followed by a posted write’ shown in the following example.
3553 *
3554 * 1. mov r3 0
3555 * 2. send r3.xy <rest of send instruction>
3556 * 3. mov r2 r3
3557 *
3558 * Due to no post-destination dependency check on the ‘send’, the above
3559 * code sequence could have two instructions (1 and 2) in flight at the
3560 * same time that both consider ‘r3’ as the target of their final writes.
3561 */
3562 void
3563 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3564 fs_inst *inst)
3565 {
3566 int write_len = regs_written(inst);
3567 int first_write_grf = inst->dst.nr;
3568 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3569 assert(write_len < (int)sizeof(needs_dep) - 1);
3570
3571 memset(needs_dep, false, sizeof(needs_dep));
3572 memset(needs_dep, true, write_len);
3573
3574 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3575
3576 /* Walk backwards looking for writes to registers we're writing which
3577 * aren't read since being written. If we hit the start of the program,
3578 * we assume that there are no outstanding dependencies on entry to the
3579 * program.
3580 */
3581 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3582 /* If we hit control flow, assume that there *are* outstanding
3583 * dependencies, and force their cleanup before our instruction.
3584 */
3585 if (block->start() == scan_inst && block->num != 0) {
3586 for (int i = 0; i < write_len; i++) {
3587 if (needs_dep[i])
3588 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3589 first_write_grf + i);
3590 }
3591 return;
3592 }
3593
3594 /* We insert our reads as late as possible on the assumption that any
3595 * instruction but a MOV that might have left us an outstanding
3596 * dependency has more latency than a MOV.
3597 */
3598 if (scan_inst->dst.file == VGRF) {
3599 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3600 int reg = scan_inst->dst.nr + i;
3601
3602 if (reg >= first_write_grf &&
3603 reg < first_write_grf + write_len &&
3604 needs_dep[reg - first_write_grf]) {
3605 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3606 needs_dep[reg - first_write_grf] = false;
3607 if (scan_inst->exec_size == 16)
3608 needs_dep[reg - first_write_grf + 1] = false;
3609 }
3610 }
3611 }
3612
3613 /* Clear the flag for registers that actually got read (as expected). */
3614 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3615
3616 /* Continue the loop only if we haven't resolved all the dependencies */
3617 int i;
3618 for (i = 0; i < write_len; i++) {
3619 if (needs_dep[i])
3620 break;
3621 }
3622 if (i == write_len)
3623 return;
3624 }
3625 }
3626
3627 /**
3628 * Implements this workaround for the original 965:
3629 *
3630 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3631 * used as a destination register until after it has been sourced by an
3632 * instruction with a different destination register.
3633 */
3634 void
3635 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3636 {
3637 int write_len = regs_written(inst);
3638 unsigned first_write_grf = inst->dst.nr;
3639 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3640 assert(write_len < (int)sizeof(needs_dep) - 1);
3641
3642 memset(needs_dep, false, sizeof(needs_dep));
3643 memset(needs_dep, true, write_len);
3644 /* Walk forwards looking for writes to registers we're writing which aren't
3645 * read before being written.
3646 */
3647 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3648 /* If we hit control flow, force resolve all remaining dependencies. */
3649 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3650 for (int i = 0; i < write_len; i++) {
3651 if (needs_dep[i])
3652 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3653 first_write_grf + i);
3654 }
3655 return;
3656 }
3657
3658 /* Clear the flag for registers that actually got read (as expected). */
3659 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3660
3661 /* We insert our reads as late as possible since they're reading the
3662 * result of a SEND, which has massive latency.
3663 */
3664 if (scan_inst->dst.file == VGRF &&
3665 scan_inst->dst.nr >= first_write_grf &&
3666 scan_inst->dst.nr < first_write_grf + write_len &&
3667 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3668 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3669 scan_inst->dst.nr);
3670 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3671 }
3672
3673 /* Continue the loop only if we haven't resolved all the dependencies */
3674 int i;
3675 for (i = 0; i < write_len; i++) {
3676 if (needs_dep[i])
3677 break;
3678 }
3679 if (i == write_len)
3680 return;
3681 }
3682 }
3683
3684 void
3685 fs_visitor::insert_gen4_send_dependency_workarounds()
3686 {
3687 if (devinfo->gen != 4 || devinfo->is_g4x)
3688 return;
3689
3690 bool progress = false;
3691
3692 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3693 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3694 insert_gen4_pre_send_dependency_workarounds(block, inst);
3695 insert_gen4_post_send_dependency_workarounds(block, inst);
3696 progress = true;
3697 }
3698 }
3699
3700 if (progress)
3701 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3702 }
3703
3704 /**
3705 * Turns the generic expression-style uniform pull constant load instruction
3706 * into a hardware-specific series of instructions for loading a pull
3707 * constant.
3708 *
3709 * The expression style allows the CSE pass before this to optimize out
3710 * repeated loads from the same offset, and gives the pre-register-allocation
3711 * scheduling full flexibility, while the conversion to native instructions
3712 * allows the post-register-allocation scheduler the best information
3713 * possible.
3714 *
3715 * Note that execution masking for setting up pull constant loads is special:
3716 * the channels that need to be written are unrelated to the current execution
3717 * mask, since a later instruction will use one of the result channels as a
3718 * source operand for all 8 or 16 of its channels.
3719 */
3720 void
3721 fs_visitor::lower_uniform_pull_constant_loads()
3722 {
3723 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3724 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3725 continue;
3726
3727 if (devinfo->gen >= 7) {
3728 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3729 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3730
3731 ubld.group(8, 0).MOV(payload,
3732 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3733 ubld.group(1, 0).MOV(component(payload, 2),
3734 brw_imm_ud(inst->src[1].ud / 16));
3735
3736 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3737 inst->src[1] = payload;
3738 inst->header_size = 1;
3739 inst->mlen = 1;
3740
3741 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
3742 } else {
3743 /* Before register allocation, we didn't tell the scheduler about the
3744 * MRF we use. We know it's safe to use this MRF because nothing
3745 * else does except for register spill/unspill, which generates and
3746 * uses its MRF within a single IR instruction.
3747 */
3748 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3749 inst->mlen = 1;
3750 }
3751 }
3752 }
3753
3754 bool
3755 fs_visitor::lower_load_payload()
3756 {
3757 bool progress = false;
3758
3759 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3760 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3761 continue;
3762
3763 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3764 assert(inst->saturate == false);
3765 fs_reg dst = inst->dst;
3766
3767 /* Get rid of COMPR4. We'll add it back in if we need it */
3768 if (dst.file == MRF)
3769 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3770
3771 const fs_builder ibld(this, block, inst);
3772 const fs_builder ubld = ibld.exec_all();
3773
3774 for (uint8_t i = 0; i < inst->header_size;) {
3775 /* Number of header GRFs to initialize at once with a single MOV
3776 * instruction.
3777 */
3778 const unsigned n =
3779 (i + 1 < inst->header_size && inst->src[i].stride == 1 &&
3780 inst->src[i + 1].equals(byte_offset(inst->src[i], REG_SIZE))) ?
3781 2 : 1;
3782
3783 if (inst->src[i].file != BAD_FILE)
3784 ubld.group(8 * n, 0).MOV(retype(dst, BRW_REGISTER_TYPE_UD),
3785 retype(inst->src[i], BRW_REGISTER_TYPE_UD));
3786
3787 dst = byte_offset(dst, n * REG_SIZE);
3788 i += n;
3789 }
3790
3791 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3792 inst->exec_size > 8) {
3793 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3794 * a straightforward copy. Instead, the result of the
3795 * LOAD_PAYLOAD is treated as interleaved and the first four
3796 * non-header sources are unpacked as:
3797 *
3798 * m + 0: r0
3799 * m + 1: g0
3800 * m + 2: b0
3801 * m + 3: a0
3802 * m + 4: r1
3803 * m + 5: g1
3804 * m + 6: b1
3805 * m + 7: a1
3806 *
3807 * This is used for gen <= 5 fb writes.
3808 */
3809 assert(inst->exec_size == 16);
3810 assert(inst->header_size + 4 <= inst->sources);
3811 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3812 if (inst->src[i].file != BAD_FILE) {
3813 if (devinfo->has_compr4) {
3814 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3815 compr4_dst.nr |= BRW_MRF_COMPR4;
3816 ibld.MOV(compr4_dst, inst->src[i]);
3817 } else {
3818 /* Platform doesn't have COMPR4. We have to fake it */
3819 fs_reg mov_dst = retype(dst, inst->src[i].type);
3820 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3821 mov_dst.nr += 4;
3822 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3823 }
3824 }
3825
3826 dst.nr++;
3827 }
3828
3829 /* The loop above only ever incremented us through the first set
3830 * of 4 registers. However, thanks to the magic of COMPR4, we
3831 * actually wrote to the first 8 registers, so we need to take
3832 * that into account now.
3833 */
3834 dst.nr += 4;
3835
3836 /* The COMPR4 code took care of the first 4 sources. We'll let
3837 * the regular path handle any remaining sources. Yes, we are
3838 * modifying the instruction but we're about to delete it so
3839 * this really doesn't hurt anything.
3840 */
3841 inst->header_size += 4;
3842 }
3843
3844 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3845 if (inst->src[i].file != BAD_FILE) {
3846 dst.type = inst->src[i].type;
3847 ibld.MOV(dst, inst->src[i]);
3848 } else {
3849 dst.type = BRW_REGISTER_TYPE_UD;
3850 }
3851 dst = offset(dst, ibld, 1);
3852 }
3853
3854 inst->remove(block);
3855 progress = true;
3856 }
3857
3858 if (progress)
3859 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3860
3861 return progress;
3862 }
3863
3864 void
3865 fs_visitor::lower_mul_dword_inst(fs_inst *inst, bblock_t *block)
3866 {
3867 const fs_builder ibld(this, block, inst);
3868
3869 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3870 if (inst->src[1].file == IMM &&
3871 (( ud && inst->src[1].ud <= UINT16_MAX) ||
3872 (!ud && inst->src[1].d <= INT16_MAX && inst->src[1].d >= INT16_MIN))) {
3873 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3874 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3875 * src1 are used.
3876 *
3877 * If multiplying by an immediate value that fits in 16-bits, do a
3878 * single MUL instruction with that value in the proper location.
3879 */
3880 if (devinfo->gen < 7) {
3881 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8), inst->dst.type);
3882 ibld.MOV(imm, inst->src[1]);
3883 ibld.MUL(inst->dst, imm, inst->src[0]);
3884 } else {
3885 ibld.MUL(inst->dst, inst->src[0],
3886 ud ? brw_imm_uw(inst->src[1].ud)
3887 : brw_imm_w(inst->src[1].d));
3888 }
3889 } else {
3890 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3891 * do 32-bit integer multiplication in one instruction, but instead
3892 * must do a sequence (which actually calculates a 64-bit result):
3893 *
3894 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3895 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3896 * mov(8) g2<1>D acc0<8,8,1>D
3897 *
3898 * But on Gen > 6, the ability to use second accumulator register
3899 * (acc1) for non-float data types was removed, preventing a simple
3900 * implementation in SIMD16. A 16-channel result can be calculated by
3901 * executing the three instructions twice in SIMD8, once with quarter
3902 * control of 1Q for the first eight channels and again with 2Q for
3903 * the second eight channels.
3904 *
3905 * Which accumulator register is implicitly accessed (by AccWrEnable
3906 * for instance) is determined by the quarter control. Unfortunately
3907 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3908 * implicit accumulator access by an instruction with 2Q will access
3909 * acc1 regardless of whether the data type is usable in acc1.
3910 *
3911 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3912 * integer data types.
3913 *
3914 * Since we only want the low 32-bits of the result, we can do two
3915 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3916 * adjust the high result and add them (like the mach is doing):
3917 *
3918 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3919 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3920 * shl(8) g9<1>D g8<8,8,1>D 16D
3921 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3922 *
3923 * We avoid the shl instruction by realizing that we only want to add
3924 * the low 16-bits of the "high" result to the high 16-bits of the
3925 * "low" result and using proper regioning on the add:
3926 *
3927 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3928 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3929 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3930 *
3931 * Since it does not use the (single) accumulator register, we can
3932 * schedule multi-component multiplications much better.
3933 */
3934
3935 bool needs_mov = false;
3936 fs_reg orig_dst = inst->dst;
3937
3938 /* Get a new VGRF for the "low" 32x16-bit multiplication result if
3939 * reusing the original destination is impossible due to hardware
3940 * restrictions, source/destination overlap, or it being the null
3941 * register.
3942 */
3943 fs_reg low = inst->dst;
3944 if (orig_dst.is_null() || orig_dst.file == MRF ||
3945 regions_overlap(inst->dst, inst->size_written,
3946 inst->src[0], inst->size_read(0)) ||
3947 regions_overlap(inst->dst, inst->size_written,
3948 inst->src[1], inst->size_read(1)) ||
3949 inst->dst.stride >= 4) {
3950 needs_mov = true;
3951 low = fs_reg(VGRF, alloc.allocate(regs_written(inst)),
3952 inst->dst.type);
3953 }
3954
3955 /* Get a new VGRF but keep the same stride as inst->dst */
3956 fs_reg high(VGRF, alloc.allocate(regs_written(inst)), inst->dst.type);
3957 high.stride = inst->dst.stride;
3958 high.offset = inst->dst.offset % REG_SIZE;
3959
3960 if (devinfo->gen >= 7) {
3961 if (inst->src[1].abs)
3962 lower_src_modifiers(this, block, inst, 1);
3963
3964 if (inst->src[1].file == IMM) {
3965 ibld.MUL(low, inst->src[0],
3966 brw_imm_uw(inst->src[1].ud & 0xffff));
3967 ibld.MUL(high, inst->src[0],
3968 brw_imm_uw(inst->src[1].ud >> 16));
3969 } else {
3970 ibld.MUL(low, inst->src[0],
3971 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3972 ibld.MUL(high, inst->src[0],
3973 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3974 }
3975 } else {
3976 if (inst->src[0].abs)
3977 lower_src_modifiers(this, block, inst, 0);
3978
3979 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3980 inst->src[1]);
3981 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3982 inst->src[1]);
3983 }
3984
3985 ibld.ADD(subscript(low, BRW_REGISTER_TYPE_UW, 1),
3986 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3987 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3988
3989 if (needs_mov || inst->conditional_mod)
3990 set_condmod(inst->conditional_mod, ibld.MOV(orig_dst, low));
3991 }
3992 }
3993
3994 void
3995 fs_visitor::lower_mul_qword_inst(fs_inst *inst, bblock_t *block)
3996 {
3997 const fs_builder ibld(this, block, inst);
3998
3999 /* Considering two 64-bit integers ab and cd where each letter ab
4000 * corresponds to 32 bits, we get a 128-bit result WXYZ. We * cd
4001 * only need to provide the YZ part of the result. -------
4002 * BD
4003 * Only BD needs to be 64 bits. For AD and BC we only care + AD
4004 * about the lower 32 bits (since they are part of the upper + BC
4005 * 32 bits of our result). AC is not needed since it starts + AC
4006 * on the 65th bit of the result. -------
4007 * WXYZ
4008 */
4009 unsigned int q_regs = regs_written(inst);
4010 unsigned int d_regs = (q_regs + 1) / 2;
4011
4012 fs_reg bd(VGRF, alloc.allocate(q_regs), BRW_REGISTER_TYPE_UQ);
4013 fs_reg ad(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4014 fs_reg bc(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4015
4016 /* Here we need the full 64 bit result for 32b * 32b. */
4017 if (devinfo->has_integer_dword_mul) {
4018 ibld.MUL(bd, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4019 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4020 } else {
4021 fs_reg bd_high(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4022 fs_reg bd_low(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4023 fs_reg acc = retype(brw_acc_reg(inst->exec_size), BRW_REGISTER_TYPE_UD);
4024
4025 fs_inst *mul = ibld.MUL(acc,
4026 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4027 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
4028 mul->writes_accumulator = true;
4029
4030 ibld.MACH(bd_high, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4031 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4032 ibld.MOV(bd_low, acc);
4033
4034 ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 0), bd_low);
4035 ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 1), bd_high);
4036 }
4037
4038 ibld.MUL(ad, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1),
4039 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4040 ibld.MUL(bc, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4041 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1));
4042
4043 ibld.ADD(ad, ad, bc);
4044 ibld.ADD(subscript(bd, BRW_REGISTER_TYPE_UD, 1),
4045 subscript(bd, BRW_REGISTER_TYPE_UD, 1), ad);
4046
4047 ibld.MOV(inst->dst, bd);
4048 }
4049
4050 void
4051 fs_visitor::lower_mulh_inst(fs_inst *inst, bblock_t *block)
4052 {
4053 const fs_builder ibld(this, block, inst);
4054
4055 /* According to the BDW+ BSpec page for the "Multiply Accumulate
4056 * High" instruction:
4057 *
4058 * "An added preliminary mov is required for source modification on
4059 * src1:
4060 * mov (8) r3.0<1>:d -r3<8;8,1>:d
4061 * mul (8) acc0:d r2.0<8;8,1>:d r3.0<16;8,2>:uw
4062 * mach (8) r5.0<1>:d r2.0<8;8,1>:d r3.0<8;8,1>:d"
4063 */
4064 if (devinfo->gen >= 8 && (inst->src[1].negate || inst->src[1].abs))
4065 lower_src_modifiers(this, block, inst, 1);
4066
4067 /* Should have been lowered to 8-wide. */
4068 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
4069 const fs_reg acc = retype(brw_acc_reg(inst->exec_size), inst->dst.type);
4070 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
4071 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
4072
4073 if (devinfo->gen >= 8) {
4074 /* Until Gen8, integer multiplies read 32-bits from one source,
4075 * and 16-bits from the other, and relying on the MACH instruction
4076 * to generate the high bits of the result.
4077 *
4078 * On Gen8, the multiply instruction does a full 32x32-bit
4079 * multiply, but in order to do a 64-bit multiply we can simulate
4080 * the previous behavior and then use a MACH instruction.
4081 */
4082 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
4083 mul->src[1].type == BRW_REGISTER_TYPE_UD);
4084 mul->src[1].type = BRW_REGISTER_TYPE_UW;
4085 mul->src[1].stride *= 2;
4086
4087 if (mul->src[1].file == IMM) {
4088 mul->src[1] = brw_imm_uw(mul->src[1].ud);
4089 }
4090 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
4091 inst->group > 0) {
4092 /* Among other things the quarter control bits influence which
4093 * accumulator register is used by the hardware for instructions
4094 * that access the accumulator implicitly (e.g. MACH). A
4095 * second-half instruction would normally map to acc1, which
4096 * doesn't exist on Gen7 and up (the hardware does emulate it for
4097 * floating-point instructions *only* by taking advantage of the
4098 * extra precision of acc0 not normally used for floating point
4099 * arithmetic).
4100 *
4101 * HSW and up are careful enough not to try to access an
4102 * accumulator register that doesn't exist, but on earlier Gen7
4103 * hardware we need to make sure that the quarter control bits are
4104 * zero to avoid non-deterministic behaviour and emit an extra MOV
4105 * to get the result masked correctly according to the current
4106 * channel enables.
4107 */
4108 mach->group = 0;
4109 mach->force_writemask_all = true;
4110 mach->dst = ibld.vgrf(inst->dst.type);
4111 ibld.MOV(inst->dst, mach->dst);
4112 }
4113 }
4114
4115 bool
4116 fs_visitor::lower_integer_multiplication()
4117 {
4118 bool progress = false;
4119
4120 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4121 if (inst->opcode == BRW_OPCODE_MUL) {
4122 /* If the instruction is already in a form that does not need lowering,
4123 * return early.
4124 */
4125 if (devinfo->gen >= 7) {
4126 if (type_sz(inst->src[1].type) < 4 && type_sz(inst->src[0].type) <= 4)
4127 continue;
4128 } else {
4129 if (type_sz(inst->src[0].type) < 4 && type_sz(inst->src[1].type) <= 4)
4130 continue;
4131 }
4132
4133 if ((inst->dst.type == BRW_REGISTER_TYPE_Q ||
4134 inst->dst.type == BRW_REGISTER_TYPE_UQ) &&
4135 (inst->src[0].type == BRW_REGISTER_TYPE_Q ||
4136 inst->src[0].type == BRW_REGISTER_TYPE_UQ) &&
4137 (inst->src[1].type == BRW_REGISTER_TYPE_Q ||
4138 inst->src[1].type == BRW_REGISTER_TYPE_UQ)) {
4139 lower_mul_qword_inst(inst, block);
4140 inst->remove(block);
4141 progress = true;
4142 } else if (!inst->dst.is_accumulator() &&
4143 (inst->dst.type == BRW_REGISTER_TYPE_D ||
4144 inst->dst.type == BRW_REGISTER_TYPE_UD) &&
4145 !devinfo->has_integer_dword_mul) {
4146 lower_mul_dword_inst(inst, block);
4147 inst->remove(block);
4148 progress = true;
4149 }
4150 } else if (inst->opcode == SHADER_OPCODE_MULH) {
4151 lower_mulh_inst(inst, block);
4152 inst->remove(block);
4153 progress = true;
4154 }
4155
4156 }
4157
4158 if (progress)
4159 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
4160
4161 return progress;
4162 }
4163
4164 bool
4165 fs_visitor::lower_minmax()
4166 {
4167 assert(devinfo->gen < 6);
4168
4169 bool progress = false;
4170
4171 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4172 const fs_builder ibld(this, block, inst);
4173
4174 if (inst->opcode == BRW_OPCODE_SEL &&
4175 inst->predicate == BRW_PREDICATE_NONE) {
4176 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
4177 * the original SEL.L/GE instruction
4178 */
4179 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
4180 inst->conditional_mod);
4181 inst->predicate = BRW_PREDICATE_NORMAL;
4182 inst->conditional_mod = BRW_CONDITIONAL_NONE;
4183
4184 progress = true;
4185 }
4186 }
4187
4188 if (progress)
4189 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
4190
4191 return progress;
4192 }
4193
4194 bool
4195 fs_visitor::lower_sub_sat()
4196 {
4197 bool progress = false;
4198
4199 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4200 const fs_builder ibld(this, block, inst);
4201
4202 if (inst->opcode == SHADER_OPCODE_USUB_SAT ||
4203 inst->opcode == SHADER_OPCODE_ISUB_SAT) {
4204 /* The fundamental problem is the hardware performs source negation
4205 * at the bit width of the source. If the source is 0x80000000D, the
4206 * negation is 0x80000000D. As a result, subtractSaturate(0,
4207 * 0x80000000) will produce 0x80000000 instead of 0x7fffffff. There
4208 * are at least three ways to resolve this:
4209 *
4210 * 1. Use the accumulator for the negated source. The accumulator is
4211 * 33 bits, so our source 0x80000000 is sign-extended to
4212 * 0x1800000000. The negation of which is 0x080000000. This
4213 * doesn't help for 64-bit integers (which are already bigger than
4214 * 33 bits). There are also only 8 accumulators, so SIMD16 or
4215 * SIMD32 instructions would have to be split into multiple SIMD8
4216 * instructions.
4217 *
4218 * 2. Use slightly different math. For any n-bit value x, we know (x
4219 * >> 1) != -(x >> 1). We can use this fact to only do
4220 * subtractions involving (x >> 1). subtractSaturate(a, b) ==
4221 * subtractSaturate(subtractSaturate(a, (b >> 1)), b - (b >> 1)).
4222 *
4223 * 3. For unsigned sources, it is sufficient to replace the
4224 * subtractSaturate with (a > b) ? a - b : 0.
4225 *
4226 * It may also be possible to use the SUBB instruction. This
4227 * implicitly writes the accumulator, so it could only be used in the
4228 * same situations as #1 above. It is further limited by only
4229 * allowing UD sources.
4230 */
4231 if (inst->exec_size == 8 && inst->src[0].type != BRW_REGISTER_TYPE_Q &&
4232 inst->src[0].type != BRW_REGISTER_TYPE_UQ) {
4233 fs_reg acc(ARF, BRW_ARF_ACCUMULATOR, inst->src[1].type);
4234
4235 ibld.MOV(acc, inst->src[1]);
4236 fs_inst *add = ibld.ADD(inst->dst, acc, inst->src[0]);
4237 add->saturate = true;
4238 add->src[0].negate = true;
4239 } else if (inst->opcode == SHADER_OPCODE_ISUB_SAT) {
4240 /* tmp = src1 >> 1;
4241 * dst = add.sat(add.sat(src0, -tmp), -(src1 - tmp));
4242 */
4243 fs_reg tmp1 = ibld.vgrf(inst->src[0].type);
4244 fs_reg tmp2 = ibld.vgrf(inst->src[0].type);
4245 fs_reg tmp3 = ibld.vgrf(inst->src[0].type);
4246 fs_inst *add;
4247
4248 ibld.SHR(tmp1, inst->src[1], brw_imm_d(1));
4249
4250 add = ibld.ADD(tmp2, inst->src[1], tmp1);
4251 add->src[1].negate = true;
4252
4253 add = ibld.ADD(tmp3, inst->src[0], tmp1);
4254 add->src[1].negate = true;
4255 add->saturate = true;
4256
4257 add = ibld.ADD(inst->dst, tmp3, tmp2);
4258 add->src[1].negate = true;
4259 add->saturate = true;
4260 } else {
4261 /* a > b ? a - b : 0 */
4262 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
4263 BRW_CONDITIONAL_G);
4264
4265 fs_inst *add = ibld.ADD(inst->dst, inst->src[0], inst->src[1]);
4266 add->src[1].negate = !add->src[1].negate;
4267
4268 ibld.SEL(inst->dst, inst->dst, brw_imm_ud(0))
4269 ->predicate = BRW_PREDICATE_NORMAL;
4270 }
4271
4272 inst->remove(block);
4273 progress = true;
4274 }
4275 }
4276
4277 if (progress)
4278 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
4279
4280 return progress;
4281 }
4282
4283 /**
4284 * Get the mask of SIMD channels enabled during dispatch and not yet disabled
4285 * by discard. Due to the layout of the sample mask in the fragment shader
4286 * thread payload, \p bld is required to have a dispatch_width() not greater
4287 * than 16 for fragment shaders.
4288 */
4289 static fs_reg
4290 sample_mask_reg(const fs_builder &bld)
4291 {
4292 const fs_visitor *v = static_cast<const fs_visitor *>(bld.shader);
4293
4294 if (v->stage != MESA_SHADER_FRAGMENT) {
4295 return brw_imm_ud(0xffffffff);
4296 } else if (brw_wm_prog_data(v->stage_prog_data)->uses_kill) {
4297 assert(bld.dispatch_width() <= 16);
4298 return brw_flag_subreg(sample_mask_flag_subreg(v) + bld.group() / 16);
4299 } else {
4300 assert(v->devinfo->gen >= 6 && bld.dispatch_width() <= 16);
4301 return retype(brw_vec1_grf((bld.group() >= 16 ? 2 : 1), 7),
4302 BRW_REGISTER_TYPE_UW);
4303 }
4304 }
4305
4306 static void
4307 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
4308 fs_reg *dst, fs_reg color, unsigned components)
4309 {
4310 if (key->clamp_fragment_color) {
4311 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
4312 assert(color.type == BRW_REGISTER_TYPE_F);
4313
4314 for (unsigned i = 0; i < components; i++)
4315 set_saturate(true,
4316 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
4317
4318 color = tmp;
4319 }
4320
4321 for (unsigned i = 0; i < components; i++)
4322 dst[i] = offset(color, bld, i);
4323 }
4324
4325 uint32_t
4326 brw_fb_write_msg_control(const fs_inst *inst,
4327 const struct brw_wm_prog_data *prog_data)
4328 {
4329 uint32_t mctl;
4330
4331 if (inst->opcode == FS_OPCODE_REP_FB_WRITE) {
4332 assert(inst->group == 0 && inst->exec_size == 16);
4333 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
4334 } else if (prog_data->dual_src_blend) {
4335 assert(inst->exec_size == 8);
4336
4337 if (inst->group % 16 == 0)
4338 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
4339 else if (inst->group % 16 == 8)
4340 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
4341 else
4342 unreachable("Invalid dual-source FB write instruction group");
4343 } else {
4344 assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));
4345
4346 if (inst->exec_size == 16)
4347 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
4348 else if (inst->exec_size == 8)
4349 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
4350 else
4351 unreachable("Invalid FB write execution size");
4352 }
4353
4354 return mctl;
4355 }
4356
4357 static void
4358 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
4359 const struct brw_wm_prog_data *prog_data,
4360 const brw_wm_prog_key *key,
4361 const fs_visitor::thread_payload &payload)
4362 {
4363 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
4364 const gen_device_info *devinfo = bld.shader->devinfo;
4365 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
4366 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
4367 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
4368 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
4369 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
4370 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
4371 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
4372 const unsigned components =
4373 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
4374
4375 assert(inst->target != 0 || src0_alpha.file == BAD_FILE);
4376
4377 /* We can potentially have a message length of up to 15, so we have to set
4378 * base_mrf to either 0 or 1 in order to fit in m0..m15.
4379 */
4380 fs_reg sources[15];
4381 int header_size = 2, payload_header_size;
4382 unsigned length = 0;
4383
4384 if (devinfo->gen < 6) {
4385 /* TODO: Support SIMD32 on gen4-5 */
4386 assert(bld.group() < 16);
4387
4388 /* For gen4-5, we always have a header consisting of g0 and g1. We have
4389 * an implied MOV from g0,g1 to the start of the message. The MOV from
4390 * g0 is handled by the hardware and the MOV from g1 is provided by the
4391 * generator. This is required because, on gen4-5, the generator may
4392 * generate two write messages with different message lengths in order
4393 * to handle AA data properly.
4394 *
4395 * Also, since the pixel mask goes in the g0 portion of the message and
4396 * since render target writes are the last thing in the shader, we write
4397 * the pixel mask directly into g0 and it will get copied as part of the
4398 * implied write.
4399 */
4400 if (prog_data->uses_kill) {
4401 bld.exec_all().group(1, 0)
4402 .MOV(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW),
4403 sample_mask_reg(bld));
4404 }
4405
4406 assert(length == 0);
4407 length = 2;
4408 } else if ((devinfo->gen <= 7 && !devinfo->is_haswell &&
4409 prog_data->uses_kill) ||
4410 (devinfo->gen < 11 &&
4411 (color1.file != BAD_FILE || key->nr_color_regions > 1))) {
4412 /* From the Sandy Bridge PRM, volume 4, page 198:
4413 *
4414 * "Dispatched Pixel Enables. One bit per pixel indicating
4415 * which pixels were originally enabled when the thread was
4416 * dispatched. This field is only required for the end-of-
4417 * thread message and on all dual-source messages."
4418 */
4419 const fs_builder ubld = bld.exec_all().group(8, 0);
4420
4421 fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4422 if (bld.group() < 16) {
4423 /* The header starts off as g0 and g1 for the first half */
4424 ubld.group(16, 0).MOV(header, retype(brw_vec8_grf(0, 0),
4425 BRW_REGISTER_TYPE_UD));
4426 } else {
4427 /* The header starts off as g0 and g2 for the second half */
4428 assert(bld.group() < 32);
4429 const fs_reg header_sources[2] = {
4430 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD),
4431 retype(brw_vec8_grf(2, 0), BRW_REGISTER_TYPE_UD),
4432 };
4433 ubld.LOAD_PAYLOAD(header, header_sources, 2, 0);
4434 }
4435
4436 uint32_t g00_bits = 0;
4437
4438 /* Set "Source0 Alpha Present to RenderTarget" bit in message
4439 * header.
4440 */
4441 if (src0_alpha.file != BAD_FILE)
4442 g00_bits |= 1 << 11;
4443
4444 /* Set computes stencil to render target */
4445 if (prog_data->computed_stencil)
4446 g00_bits |= 1 << 14;
4447
4448 if (g00_bits) {
4449 /* OR extra bits into g0.0 */
4450 ubld.group(1, 0).OR(component(header, 0),
4451 retype(brw_vec1_grf(0, 0),
4452 BRW_REGISTER_TYPE_UD),
4453 brw_imm_ud(g00_bits));
4454 }
4455
4456 /* Set the render target index for choosing BLEND_STATE. */
4457 if (inst->target > 0) {
4458 ubld.group(1, 0).MOV(component(header, 2), brw_imm_ud(inst->target));
4459 }
4460
4461 if (prog_data->uses_kill) {
4462 ubld.group(1, 0).MOV(retype(component(header, 15),
4463 BRW_REGISTER_TYPE_UW),
4464 sample_mask_reg(bld));
4465 }
4466
4467 assert(length == 0);
4468 sources[0] = header;
4469 sources[1] = horiz_offset(header, 8);
4470 length = 2;
4471 }
4472 assert(length == 0 || length == 2);
4473 header_size = length;
4474
4475 if (payload.aa_dest_stencil_reg[0]) {
4476 assert(inst->group < 16);
4477 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
4478 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
4479 .MOV(sources[length],
4480 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg[0], 0)));
4481 length++;
4482 }
4483
4484 if (src0_alpha.file != BAD_FILE) {
4485 for (unsigned i = 0; i < bld.dispatch_width() / 8; i++) {
4486 const fs_builder &ubld = bld.exec_all().group(8, i)
4487 .annotate("FB write src0 alpha");
4488 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_F);
4489 ubld.MOV(tmp, horiz_offset(src0_alpha, i * 8));
4490 setup_color_payload(ubld, key, &sources[length], tmp, 1);
4491 length++;
4492 }
4493 }
4494
4495 if (sample_mask.file != BAD_FILE) {
4496 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
4497 BRW_REGISTER_TYPE_UD);
4498
4499 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
4500 * relevant. Since it's unsigned single words one vgrf is always
4501 * 16-wide, but only the lower or higher 8 channels will be used by the
4502 * hardware when doing a SIMD8 write depending on whether we have
4503 * selected the subspans for the first or second half respectively.
4504 */
4505 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
4506 sample_mask.type = BRW_REGISTER_TYPE_UW;
4507 sample_mask.stride *= 2;
4508
4509 bld.exec_all().annotate("FB write oMask")
4510 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
4511 inst->group % 16),
4512 sample_mask);
4513 length++;
4514 }
4515
4516 payload_header_size = length;
4517
4518 setup_color_payload(bld, key, &sources[length], color0, components);
4519 length += 4;
4520
4521 if (color1.file != BAD_FILE) {
4522 setup_color_payload(bld, key, &sources[length], color1, components);
4523 length += 4;
4524 }
4525
4526 if (src_depth.file != BAD_FILE) {
4527 sources[length] = src_depth;
4528 length++;
4529 }
4530
4531 if (dst_depth.file != BAD_FILE) {
4532 sources[length] = dst_depth;
4533 length++;
4534 }
4535
4536 if (src_stencil.file != BAD_FILE) {
4537 assert(devinfo->gen >= 9);
4538 assert(bld.dispatch_width() == 8);
4539
4540 /* XXX: src_stencil is only available on gen9+. dst_depth is never
4541 * available on gen9+. As such it's impossible to have both enabled at the
4542 * same time and therefore length cannot overrun the array.
4543 */
4544 assert(length < 15);
4545
4546 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4547 bld.exec_all().annotate("FB write OS")
4548 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
4549 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
4550 length++;
4551 }
4552
4553 fs_inst *load;
4554 if (devinfo->gen >= 7) {
4555 /* Send from the GRF */
4556 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
4557 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
4558 payload.nr = bld.shader->alloc.allocate(regs_written(load));
4559 load->dst = payload;
4560
4561 uint32_t msg_ctl = brw_fb_write_msg_control(inst, prog_data);
4562 uint32_t ex_desc = 0;
4563
4564 inst->desc =
4565 (inst->group / 16) << 11 | /* rt slot group */
4566 brw_dp_write_desc(devinfo, inst->target, msg_ctl,
4567 GEN6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE,
4568 inst->last_rt, false);
4569
4570 if (devinfo->gen >= 11) {
4571 /* Set the "Render Target Index" and "Src0 Alpha Present" fields
4572 * in the extended message descriptor, in lieu of using a header.
4573 */
4574 ex_desc = inst->target << 12 | (src0_alpha.file != BAD_FILE) << 15;
4575
4576 if (key->nr_color_regions == 0)
4577 ex_desc |= 1 << 20; /* Null Render Target */
4578 }
4579
4580 inst->opcode = SHADER_OPCODE_SEND;
4581 inst->resize_sources(3);
4582 inst->sfid = GEN6_SFID_DATAPORT_RENDER_CACHE;
4583 inst->src[0] = brw_imm_ud(inst->desc);
4584 inst->src[1] = brw_imm_ud(ex_desc);
4585 inst->src[2] = payload;
4586 inst->mlen = regs_written(load);
4587 inst->ex_mlen = 0;
4588 inst->header_size = header_size;
4589 inst->check_tdr = true;
4590 inst->send_has_side_effects = true;
4591 } else {
4592 /* Send from the MRF */
4593 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
4594 sources, length, payload_header_size);
4595
4596 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
4597 * will do this for us if we just give it a COMPR4 destination.
4598 */
4599 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
4600 load->dst.nr |= BRW_MRF_COMPR4;
4601
4602 if (devinfo->gen < 6) {
4603 /* Set up src[0] for the implied MOV from grf0-1 */
4604 inst->resize_sources(1);
4605 inst->src[0] = brw_vec8_grf(0, 0);
4606 } else {
4607 inst->resize_sources(0);
4608 }
4609 inst->base_mrf = 1;
4610 inst->opcode = FS_OPCODE_FB_WRITE;
4611 inst->mlen = regs_written(load);
4612 inst->header_size = header_size;
4613 }
4614 }
4615
4616 static void
4617 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
4618 {
4619 const fs_builder &ubld = bld.exec_all().group(8, 0);
4620 const unsigned length = 2;
4621 const fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD, length);
4622
4623 if (bld.group() < 16) {
4624 ubld.group(16, 0).MOV(header, retype(brw_vec8_grf(0, 0),
4625 BRW_REGISTER_TYPE_UD));
4626 } else {
4627 assert(bld.group() < 32);
4628 const fs_reg header_sources[] = {
4629 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD),
4630 retype(brw_vec8_grf(2, 0), BRW_REGISTER_TYPE_UD)
4631 };
4632 ubld.LOAD_PAYLOAD(header, header_sources, ARRAY_SIZE(header_sources), 0);
4633 }
4634
4635 inst->resize_sources(1);
4636 inst->src[0] = header;
4637 inst->opcode = FS_OPCODE_FB_READ;
4638 inst->mlen = length;
4639 inst->header_size = length;
4640 }
4641
4642 static void
4643 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
4644 const fs_reg &coordinate,
4645 const fs_reg &shadow_c,
4646 const fs_reg &lod, const fs_reg &lod2,
4647 const fs_reg &surface,
4648 const fs_reg &sampler,
4649 unsigned coord_components,
4650 unsigned grad_components)
4651 {
4652 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
4653 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
4654 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
4655 fs_reg msg_end = msg_begin;
4656
4657 /* g0 header. */
4658 msg_end = offset(msg_end, bld.group(8, 0), 1);
4659
4660 for (unsigned i = 0; i < coord_components; i++)
4661 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
4662 offset(coordinate, bld, i));
4663
4664 msg_end = offset(msg_end, bld, coord_components);
4665
4666 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
4667 * require all three components to be present and zero if they are unused.
4668 */
4669 if (coord_components > 0 &&
4670 (has_lod || shadow_c.file != BAD_FILE ||
4671 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
4672 for (unsigned i = coord_components; i < 3; i++)
4673 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
4674
4675 msg_end = offset(msg_end, bld, 3 - coord_components);
4676 }
4677
4678 if (op == SHADER_OPCODE_TXD) {
4679 /* TXD unsupported in SIMD16 mode. */
4680 assert(bld.dispatch_width() == 8);
4681
4682 /* the slots for u and v are always present, but r is optional */
4683 if (coord_components < 2)
4684 msg_end = offset(msg_end, bld, 2 - coord_components);
4685
4686 /* P = u, v, r
4687 * dPdx = dudx, dvdx, drdx
4688 * dPdy = dudy, dvdy, drdy
4689 *
4690 * 1-arg: Does not exist.
4691 *
4692 * 2-arg: dudx dvdx dudy dvdy
4693 * dPdx.x dPdx.y dPdy.x dPdy.y
4694 * m4 m5 m6 m7
4695 *
4696 * 3-arg: dudx dvdx drdx dudy dvdy drdy
4697 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
4698 * m5 m6 m7 m8 m9 m10
4699 */
4700 for (unsigned i = 0; i < grad_components; i++)
4701 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
4702
4703 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4704
4705 for (unsigned i = 0; i < grad_components; i++)
4706 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
4707
4708 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4709 }
4710
4711 if (has_lod) {
4712 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
4713 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
4714 */
4715 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
4716 bld.dispatch_width() == 16);
4717
4718 const brw_reg_type type =
4719 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
4720 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
4721 bld.MOV(retype(msg_end, type), lod);
4722 msg_end = offset(msg_end, bld, 1);
4723 }
4724
4725 if (shadow_c.file != BAD_FILE) {
4726 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
4727 /* There's no plain shadow compare message, so we use shadow
4728 * compare with a bias of 0.0.
4729 */
4730 bld.MOV(msg_end, brw_imm_f(0.0f));
4731 msg_end = offset(msg_end, bld, 1);
4732 }
4733
4734 bld.MOV(msg_end, shadow_c);
4735 msg_end = offset(msg_end, bld, 1);
4736 }
4737
4738 inst->opcode = op;
4739 inst->src[0] = reg_undef;
4740 inst->src[1] = surface;
4741 inst->src[2] = sampler;
4742 inst->resize_sources(3);
4743 inst->base_mrf = msg_begin.nr;
4744 inst->mlen = msg_end.nr - msg_begin.nr;
4745 inst->header_size = 1;
4746 }
4747
4748 static void
4749 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
4750 const fs_reg &coordinate,
4751 const fs_reg &shadow_c,
4752 const fs_reg &lod, const fs_reg &lod2,
4753 const fs_reg &sample_index,
4754 const fs_reg &surface,
4755 const fs_reg &sampler,
4756 unsigned coord_components,
4757 unsigned grad_components)
4758 {
4759 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
4760 fs_reg msg_coords = message;
4761 unsigned header_size = 0;
4762
4763 if (inst->offset != 0) {
4764 /* The offsets set up by the visitor are in the m1 header, so we can't
4765 * go headerless.
4766 */
4767 header_size = 1;
4768 message.nr--;
4769 }
4770
4771 for (unsigned i = 0; i < coord_components; i++)
4772 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
4773 offset(coordinate, bld, i));
4774
4775 fs_reg msg_end = offset(msg_coords, bld, coord_components);
4776 fs_reg msg_lod = offset(msg_coords, bld, 4);
4777
4778 if (shadow_c.file != BAD_FILE) {
4779 fs_reg msg_shadow = msg_lod;
4780 bld.MOV(msg_shadow, shadow_c);
4781 msg_lod = offset(msg_shadow, bld, 1);
4782 msg_end = msg_lod;
4783 }
4784
4785 switch (op) {
4786 case SHADER_OPCODE_TXL:
4787 case FS_OPCODE_TXB:
4788 bld.MOV(msg_lod, lod);
4789 msg_end = offset(msg_lod, bld, 1);
4790 break;
4791 case SHADER_OPCODE_TXD:
4792 /**
4793 * P = u, v, r
4794 * dPdx = dudx, dvdx, drdx
4795 * dPdy = dudy, dvdy, drdy
4796 *
4797 * Load up these values:
4798 * - dudx dudy dvdx dvdy drdx drdy
4799 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
4800 */
4801 msg_end = msg_lod;
4802 for (unsigned i = 0; i < grad_components; i++) {
4803 bld.MOV(msg_end, offset(lod, bld, i));
4804 msg_end = offset(msg_end, bld, 1);
4805
4806 bld.MOV(msg_end, offset(lod2, bld, i));
4807 msg_end = offset(msg_end, bld, 1);
4808 }
4809 break;
4810 case SHADER_OPCODE_TXS:
4811 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
4812 bld.MOV(msg_lod, lod);
4813 msg_end = offset(msg_lod, bld, 1);
4814 break;
4815 case SHADER_OPCODE_TXF:
4816 msg_lod = offset(msg_coords, bld, 3);
4817 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
4818 msg_end = offset(msg_lod, bld, 1);
4819 break;
4820 case SHADER_OPCODE_TXF_CMS:
4821 msg_lod = offset(msg_coords, bld, 3);
4822 /* lod */
4823 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
4824 /* sample index */
4825 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
4826 msg_end = offset(msg_lod, bld, 2);
4827 break;
4828 default:
4829 break;
4830 }
4831
4832 inst->opcode = op;
4833 inst->src[0] = reg_undef;
4834 inst->src[1] = surface;
4835 inst->src[2] = sampler;
4836 inst->resize_sources(3);
4837 inst->base_mrf = message.nr;
4838 inst->mlen = msg_end.nr - message.nr;
4839 inst->header_size = header_size;
4840
4841 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4842 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4843 }
4844
4845 static bool
4846 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
4847 {
4848 if (devinfo->gen < 8 && !devinfo->is_haswell)
4849 return false;
4850
4851 return sampler.file != IMM || sampler.ud >= 16;
4852 }
4853
4854 static unsigned
4855 sampler_msg_type(const gen_device_info *devinfo,
4856 opcode opcode, bool shadow_compare)
4857 {
4858 assert(devinfo->gen >= 5);
4859 switch (opcode) {
4860 case SHADER_OPCODE_TEX:
4861 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE :
4862 GEN5_SAMPLER_MESSAGE_SAMPLE;
4863 case FS_OPCODE_TXB:
4864 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE :
4865 GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
4866 case SHADER_OPCODE_TXL:
4867 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE :
4868 GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
4869 case SHADER_OPCODE_TXL_LZ:
4870 return shadow_compare ? GEN9_SAMPLER_MESSAGE_SAMPLE_C_LZ :
4871 GEN9_SAMPLER_MESSAGE_SAMPLE_LZ;
4872 case SHADER_OPCODE_TXS:
4873 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
4874 return GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
4875 case SHADER_OPCODE_TXD:
4876 assert(!shadow_compare || devinfo->gen >= 8 || devinfo->is_haswell);
4877 return shadow_compare ? HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE :
4878 GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
4879 case SHADER_OPCODE_TXF:
4880 return GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
4881 case SHADER_OPCODE_TXF_LZ:
4882 assert(devinfo->gen >= 9);
4883 return GEN9_SAMPLER_MESSAGE_SAMPLE_LD_LZ;
4884 case SHADER_OPCODE_TXF_CMS_W:
4885 assert(devinfo->gen >= 9);
4886 return GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
4887 case SHADER_OPCODE_TXF_CMS:
4888 return devinfo->gen >= 7 ? GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS :
4889 GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
4890 case SHADER_OPCODE_TXF_UMS:
4891 assert(devinfo->gen >= 7);
4892 return GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS;
4893 case SHADER_OPCODE_TXF_MCS:
4894 assert(devinfo->gen >= 7);
4895 return GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
4896 case SHADER_OPCODE_LOD:
4897 return GEN5_SAMPLER_MESSAGE_LOD;
4898 case SHADER_OPCODE_TG4:
4899 assert(devinfo->gen >= 7);
4900 return shadow_compare ? GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C :
4901 GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
4902 break;
4903 case SHADER_OPCODE_TG4_OFFSET:
4904 assert(devinfo->gen >= 7);
4905 return shadow_compare ? GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C :
4906 GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
4907 case SHADER_OPCODE_SAMPLEINFO:
4908 return GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
4909 default:
4910 unreachable("not reached");
4911 }
4912 }
4913
4914 static void
4915 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4916 const fs_reg &coordinate,
4917 const fs_reg &shadow_c,
4918 fs_reg lod, const fs_reg &lod2,
4919 const fs_reg &min_lod,
4920 const fs_reg &sample_index,
4921 const fs_reg &mcs,
4922 const fs_reg &surface,
4923 const fs_reg &sampler,
4924 const fs_reg &surface_handle,
4925 const fs_reg &sampler_handle,
4926 const fs_reg &tg4_offset,
4927 unsigned coord_components,
4928 unsigned grad_components)
4929 {
4930 const gen_device_info *devinfo = bld.shader->devinfo;
4931 const brw_stage_prog_data *prog_data = bld.shader->stage_prog_data;
4932 unsigned reg_width = bld.dispatch_width() / 8;
4933 unsigned header_size = 0, length = 0;
4934 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4935 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4936 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4937
4938 /* We must have exactly one of surface/sampler and surface/sampler_handle */
4939 assert((surface.file == BAD_FILE) != (surface_handle.file == BAD_FILE));
4940 assert((sampler.file == BAD_FILE) != (sampler_handle.file == BAD_FILE));
4941
4942 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4943 inst->offset != 0 || inst->eot ||
4944 op == SHADER_OPCODE_SAMPLEINFO ||
4945 sampler_handle.file != BAD_FILE ||
4946 is_high_sampler(devinfo, sampler)) {
4947 /* For general texture offsets (no txf workaround), we need a header to
4948 * put them in.
4949 *
4950 * TG4 needs to place its channel select in the header, for interaction
4951 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4952 * larger sampler numbers we need to offset the Sampler State Pointer in
4953 * the header.
4954 */
4955 fs_reg header = retype(sources[0], BRW_REGISTER_TYPE_UD);
4956 header_size = 1;
4957 length++;
4958
4959 /* If we're requesting fewer than four channels worth of response,
4960 * and we have an explicit header, we need to set up the sampler
4961 * writemask. It's reversed from normal: 1 means "don't write".
4962 */
4963 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4964 assert(regs_written(inst) % reg_width == 0);
4965 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4966 inst->offset |= mask << 12;
4967 }
4968
4969 /* Build the actual header */
4970 const fs_builder ubld = bld.exec_all().group(8, 0);
4971 const fs_builder ubld1 = ubld.group(1, 0);
4972 ubld.MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
4973 if (inst->offset) {
4974 ubld1.MOV(component(header, 2), brw_imm_ud(inst->offset));
4975 } else if (bld.shader->stage != MESA_SHADER_VERTEX &&
4976 bld.shader->stage != MESA_SHADER_FRAGMENT) {
4977 /* The vertex and fragment stages have g0.2 set to 0, so
4978 * header0.2 is 0 when g0 is copied. Other stages may not, so we
4979 * must set it to 0 to avoid setting undesirable bits in the
4980 * message.
4981 */
4982 ubld1.MOV(component(header, 2), brw_imm_ud(0));
4983 }
4984
4985 if (sampler_handle.file != BAD_FILE) {
4986 /* Bindless sampler handles aren't relative to the sampler state
4987 * pointer passed into the shader through SAMPLER_STATE_POINTERS_*.
4988 * Instead, it's an absolute pointer relative to dynamic state base
4989 * address.
4990 *
4991 * Sampler states are 16 bytes each and the pointer we give here has
4992 * to be 32-byte aligned. In order to avoid more indirect messages
4993 * than required, we assume that all bindless sampler states are
4994 * 32-byte aligned. This sacrifices a bit of general state base
4995 * address space but means we can do something more efficient in the
4996 * shader.
4997 */
4998 ubld1.MOV(component(header, 3), sampler_handle);
4999 } else if (is_high_sampler(devinfo, sampler)) {
5000 if (sampler.file == BRW_IMMEDIATE_VALUE) {
5001 assert(sampler.ud >= 16);
5002 const int sampler_state_size = 16; /* 16 bytes */
5003
5004 ubld1.ADD(component(header, 3),
5005 retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
5006 brw_imm_ud(16 * (sampler.ud / 16) * sampler_state_size));
5007 } else {
5008 fs_reg tmp = ubld1.vgrf(BRW_REGISTER_TYPE_UD);
5009 ubld1.AND(tmp, sampler, brw_imm_ud(0x0f0));
5010 ubld1.SHL(tmp, tmp, brw_imm_ud(4));
5011 ubld1.ADD(component(header, 3),
5012 retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
5013 tmp);
5014 }
5015 }
5016 }
5017
5018 if (shadow_c.file != BAD_FILE) {
5019 bld.MOV(sources[length], shadow_c);
5020 length++;
5021 }
5022
5023 bool coordinate_done = false;
5024
5025 /* Set up the LOD info */
5026 switch (op) {
5027 case FS_OPCODE_TXB:
5028 case SHADER_OPCODE_TXL:
5029 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
5030 op = SHADER_OPCODE_TXL_LZ;
5031 break;
5032 }
5033 bld.MOV(sources[length], lod);
5034 length++;
5035 break;
5036 case SHADER_OPCODE_TXD:
5037 /* TXD should have been lowered in SIMD16 mode. */
5038 assert(bld.dispatch_width() == 8);
5039
5040 /* Load dPdx and the coordinate together:
5041 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
5042 */
5043 for (unsigned i = 0; i < coord_components; i++) {
5044 bld.MOV(sources[length++], offset(coordinate, bld, i));
5045
5046 /* For cube map array, the coordinate is (u,v,r,ai) but there are
5047 * only derivatives for (u, v, r).
5048 */
5049 if (i < grad_components) {
5050 bld.MOV(sources[length++], offset(lod, bld, i));
5051 bld.MOV(sources[length++], offset(lod2, bld, i));
5052 }
5053 }
5054
5055 coordinate_done = true;
5056 break;
5057 case SHADER_OPCODE_TXS:
5058 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
5059 length++;
5060 break;
5061 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5062 /* We need an LOD; just use 0 */
5063 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), brw_imm_ud(0));
5064 length++;
5065 break;
5066 case SHADER_OPCODE_TXF:
5067 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
5068 * On Gen9 they are u, v, lod, r
5069 */
5070 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
5071
5072 if (devinfo->gen >= 9) {
5073 if (coord_components >= 2) {
5074 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
5075 offset(coordinate, bld, 1));
5076 } else {
5077 sources[length] = brw_imm_d(0);
5078 }
5079 length++;
5080 }
5081
5082 if (devinfo->gen >= 9 && lod.is_zero()) {
5083 op = SHADER_OPCODE_TXF_LZ;
5084 } else {
5085 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
5086 length++;
5087 }
5088
5089 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
5090 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5091 offset(coordinate, bld, i));
5092
5093 coordinate_done = true;
5094 break;
5095
5096 case SHADER_OPCODE_TXF_CMS:
5097 case SHADER_OPCODE_TXF_CMS_W:
5098 case SHADER_OPCODE_TXF_UMS:
5099 case SHADER_OPCODE_TXF_MCS:
5100 if (op == SHADER_OPCODE_TXF_UMS ||
5101 op == SHADER_OPCODE_TXF_CMS ||
5102 op == SHADER_OPCODE_TXF_CMS_W) {
5103 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
5104 length++;
5105 }
5106
5107 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
5108 /* Data from the multisample control surface. */
5109 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
5110 length++;
5111
5112 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
5113 * the MCS data.
5114 */
5115 if (op == SHADER_OPCODE_TXF_CMS_W) {
5116 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
5117 mcs.file == IMM ?
5118 mcs :
5119 offset(mcs, bld, 1));
5120 length++;
5121 }
5122 }
5123
5124 /* There is no offsetting for this message; just copy in the integer
5125 * texture coordinates.
5126 */
5127 for (unsigned i = 0; i < coord_components; i++)
5128 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5129 offset(coordinate, bld, i));
5130
5131 coordinate_done = true;
5132 break;
5133 case SHADER_OPCODE_TG4_OFFSET:
5134 /* More crazy intermixing */
5135 for (unsigned i = 0; i < 2; i++) /* u, v */
5136 bld.MOV(sources[length++], offset(coordinate, bld, i));
5137
5138 for (unsigned i = 0; i < 2; i++) /* offu, offv */
5139 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5140 offset(tg4_offset, bld, i));
5141
5142 if (coord_components == 3) /* r if present */
5143 bld.MOV(sources[length++], offset(coordinate, bld, 2));
5144
5145 coordinate_done = true;
5146 break;
5147 default:
5148 break;
5149 }
5150
5151 /* Set up the coordinate (except for cases where it was done above) */
5152 if (!coordinate_done) {
5153 for (unsigned i = 0; i < coord_components; i++)
5154 bld.MOV(sources[length++], offset(coordinate, bld, i));
5155 }
5156
5157 if (min_lod.file != BAD_FILE) {
5158 /* Account for all of the missing coordinate sources */
5159 length += 4 - coord_components;
5160 if (op == SHADER_OPCODE_TXD)
5161 length += (3 - grad_components) * 2;
5162
5163 bld.MOV(sources[length++], min_lod);
5164 }
5165
5166 unsigned mlen;
5167 if (reg_width == 2)
5168 mlen = length * reg_width - header_size;
5169 else
5170 mlen = length * reg_width;
5171
5172 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
5173 BRW_REGISTER_TYPE_F);
5174 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
5175
5176 /* Generate the SEND. */
5177 inst->opcode = SHADER_OPCODE_SEND;
5178 inst->mlen = mlen;
5179 inst->header_size = header_size;
5180
5181 const unsigned msg_type =
5182 sampler_msg_type(devinfo, op, inst->shadow_compare);
5183 const unsigned simd_mode =
5184 inst->exec_size <= 8 ? BRW_SAMPLER_SIMD_MODE_SIMD8 :
5185 BRW_SAMPLER_SIMD_MODE_SIMD16;
5186
5187 uint32_t base_binding_table_index;
5188 switch (op) {
5189 case SHADER_OPCODE_TG4:
5190 case SHADER_OPCODE_TG4_OFFSET:
5191 base_binding_table_index = prog_data->binding_table.gather_texture_start;
5192 break;
5193 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5194 base_binding_table_index = prog_data->binding_table.image_start;
5195 break;
5196 default:
5197 base_binding_table_index = prog_data->binding_table.texture_start;
5198 break;
5199 }
5200
5201 inst->sfid = BRW_SFID_SAMPLER;
5202 if (surface.file == IMM &&
5203 (sampler.file == IMM || sampler_handle.file != BAD_FILE)) {
5204 inst->desc = brw_sampler_desc(devinfo,
5205 surface.ud + base_binding_table_index,
5206 sampler.file == IMM ? sampler.ud % 16 : 0,
5207 msg_type,
5208 simd_mode,
5209 0 /* return_format unused on gen7+ */);
5210 inst->src[0] = brw_imm_ud(0);
5211 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5212 } else if (surface_handle.file != BAD_FILE) {
5213 /* Bindless surface */
5214 assert(devinfo->gen >= 9);
5215 inst->desc = brw_sampler_desc(devinfo,
5216 GEN9_BTI_BINDLESS,
5217 sampler.file == IMM ? sampler.ud % 16 : 0,
5218 msg_type,
5219 simd_mode,
5220 0 /* return_format unused on gen7+ */);
5221
5222 /* For bindless samplers, the entire address is included in the message
5223 * header so we can leave the portion in the message descriptor 0.
5224 */
5225 if (sampler_handle.file != BAD_FILE || sampler.file == IMM) {
5226 inst->src[0] = brw_imm_ud(0);
5227 } else {
5228 const fs_builder ubld = bld.group(1, 0).exec_all();
5229 fs_reg desc = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5230 ubld.SHL(desc, sampler, brw_imm_ud(8));
5231 inst->src[0] = desc;
5232 }
5233
5234 /* We assume that the driver provided the handle in the top 20 bits so
5235 * we can use the surface handle directly as the extended descriptor.
5236 */
5237 inst->src[1] = retype(surface_handle, BRW_REGISTER_TYPE_UD);
5238 } else {
5239 /* Immediate portion of the descriptor */
5240 inst->desc = brw_sampler_desc(devinfo,
5241 0, /* surface */
5242 0, /* sampler */
5243 msg_type,
5244 simd_mode,
5245 0 /* return_format unused on gen7+ */);
5246 const fs_builder ubld = bld.group(1, 0).exec_all();
5247 fs_reg desc = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5248 if (surface.equals(sampler)) {
5249 /* This case is common in GL */
5250 ubld.MUL(desc, surface, brw_imm_ud(0x101));
5251 } else {
5252 if (sampler_handle.file != BAD_FILE) {
5253 ubld.MOV(desc, surface);
5254 } else if (sampler.file == IMM) {
5255 ubld.OR(desc, surface, brw_imm_ud(sampler.ud << 8));
5256 } else {
5257 ubld.SHL(desc, sampler, brw_imm_ud(8));
5258 ubld.OR(desc, desc, surface);
5259 }
5260 }
5261 if (base_binding_table_index)
5262 ubld.ADD(desc, desc, brw_imm_ud(base_binding_table_index));
5263 ubld.AND(desc, desc, brw_imm_ud(0xfff));
5264
5265 inst->src[0] = component(desc, 0);
5266 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5267 }
5268
5269 inst->src[2] = src_payload;
5270 inst->resize_sources(3);
5271
5272 if (inst->eot) {
5273 /* EOT sampler messages don't make sense to split because it would
5274 * involve ending half of the thread early.
5275 */
5276 assert(inst->group == 0);
5277 /* We need to use SENDC for EOT sampler messages */
5278 inst->check_tdr = true;
5279 inst->send_has_side_effects = true;
5280 }
5281
5282 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
5283 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
5284 }
5285
5286 static void
5287 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
5288 {
5289 const gen_device_info *devinfo = bld.shader->devinfo;
5290 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
5291 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
5292 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
5293 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
5294 const fs_reg &min_lod = inst->src[TEX_LOGICAL_SRC_MIN_LOD];
5295 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
5296 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
5297 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
5298 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
5299 const fs_reg &surface_handle = inst->src[TEX_LOGICAL_SRC_SURFACE_HANDLE];
5300 const fs_reg &sampler_handle = inst->src[TEX_LOGICAL_SRC_SAMPLER_HANDLE];
5301 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
5302 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
5303 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
5304 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
5305 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
5306
5307 if (devinfo->gen >= 7) {
5308 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
5309 shadow_c, lod, lod2, min_lod,
5310 sample_index,
5311 mcs, surface, sampler,
5312 surface_handle, sampler_handle,
5313 tg4_offset,
5314 coord_components, grad_components);
5315 } else if (devinfo->gen >= 5) {
5316 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
5317 shadow_c, lod, lod2, sample_index,
5318 surface, sampler,
5319 coord_components, grad_components);
5320 } else {
5321 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
5322 shadow_c, lod, lod2,
5323 surface, sampler,
5324 coord_components, grad_components);
5325 }
5326 }
5327
5328 /**
5329 * Predicate the specified instruction on the sample mask.
5330 */
5331 static void
5332 emit_predicate_on_sample_mask(const fs_builder &bld, fs_inst *inst)
5333 {
5334 assert(bld.shader->stage == MESA_SHADER_FRAGMENT &&
5335 bld.group() == inst->group &&
5336 bld.dispatch_width() == inst->exec_size);
5337
5338 const fs_visitor *v = static_cast<const fs_visitor *>(bld.shader);
5339 const fs_reg sample_mask = sample_mask_reg(bld);
5340 const unsigned subreg = sample_mask_flag_subreg(v);
5341
5342 if (brw_wm_prog_data(v->stage_prog_data)->uses_kill) {
5343 assert(sample_mask.file == ARF &&
5344 sample_mask.nr == brw_flag_subreg(subreg).nr &&
5345 sample_mask.subnr == brw_flag_subreg(
5346 subreg + inst->group / 16).subnr);
5347 } else {
5348 bld.group(1, 0).exec_all()
5349 .MOV(brw_flag_subreg(subreg + inst->group / 16), sample_mask);
5350 }
5351
5352 if (inst->predicate) {
5353 assert(inst->predicate == BRW_PREDICATE_NORMAL);
5354 assert(!inst->predicate_inverse);
5355 assert(inst->flag_subreg == 0);
5356 /* Combine the sample mask with the existing predicate by using a
5357 * vertical predication mode.
5358 */
5359 inst->predicate = BRW_PREDICATE_ALIGN1_ALLV;
5360 } else {
5361 inst->flag_subreg = subreg;
5362 inst->predicate = BRW_PREDICATE_NORMAL;
5363 inst->predicate_inverse = false;
5364 }
5365 }
5366
5367 static void
5368 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst)
5369 {
5370 const gen_device_info *devinfo = bld.shader->devinfo;
5371
5372 /* Get the logical send arguments. */
5373 const fs_reg &addr = inst->src[SURFACE_LOGICAL_SRC_ADDRESS];
5374 const fs_reg &src = inst->src[SURFACE_LOGICAL_SRC_DATA];
5375 const fs_reg &surface = inst->src[SURFACE_LOGICAL_SRC_SURFACE];
5376 const fs_reg &surface_handle = inst->src[SURFACE_LOGICAL_SRC_SURFACE_HANDLE];
5377 const UNUSED fs_reg &dims = inst->src[SURFACE_LOGICAL_SRC_IMM_DIMS];
5378 const fs_reg &arg = inst->src[SURFACE_LOGICAL_SRC_IMM_ARG];
5379 assert(arg.file == IMM);
5380
5381 /* We must have exactly one of surface and surface_handle */
5382 assert((surface.file == BAD_FILE) != (surface_handle.file == BAD_FILE));
5383
5384 /* Calculate the total number of components of the payload. */
5385 const unsigned addr_sz = inst->components_read(SURFACE_LOGICAL_SRC_ADDRESS);
5386 const unsigned src_sz = inst->components_read(SURFACE_LOGICAL_SRC_DATA);
5387
5388 const bool is_typed_access =
5389 inst->opcode == SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL ||
5390 inst->opcode == SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL ||
5391 inst->opcode == SHADER_OPCODE_TYPED_ATOMIC_LOGICAL;
5392
5393 const bool is_surface_access = is_typed_access ||
5394 inst->opcode == SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL ||
5395 inst->opcode == SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL ||
5396 inst->opcode == SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL;
5397
5398 const bool is_stateless =
5399 surface.file == IMM && (surface.ud == BRW_BTI_STATELESS ||
5400 surface.ud == GEN8_BTI_STATELESS_NON_COHERENT);
5401
5402 const bool has_side_effects = inst->has_side_effects();
5403 fs_reg sample_mask = has_side_effects ? sample_mask_reg(bld) :
5404 fs_reg(brw_imm_d(0xffff));
5405
5406 /* From the BDW PRM Volume 7, page 147:
5407 *
5408 * "For the Data Cache Data Port*, the header must be present for the
5409 * following message types: [...] Typed read/write/atomics"
5410 *
5411 * Earlier generations have a similar wording. Because of this restriction
5412 * we don't attempt to implement sample masks via predication for such
5413 * messages prior to Gen9, since we have to provide a header anyway. On
5414 * Gen11+ the header has been removed so we can only use predication.
5415 *
5416 * For all stateless A32 messages, we also need a header
5417 */
5418 fs_reg header;
5419 if ((devinfo->gen < 9 && is_typed_access) || is_stateless) {
5420 fs_builder ubld = bld.exec_all().group(8, 0);
5421 header = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5422 ubld.MOV(header, brw_imm_d(0));
5423 if (is_stateless) {
5424 /* Both the typed and scattered byte/dword A32 messages take a buffer
5425 * base address in R0.5:[31:0] (See MH1_A32_PSM for typed messages or
5426 * MH_A32_GO for byte/dword scattered messages in the SKL PRM Vol. 2d
5427 * for more details.) This is conveniently where the HW places the
5428 * scratch surface base address.
5429 *
5430 * From the SKL PRM Vol. 7 "Per-Thread Scratch Space":
5431 *
5432 * "When a thread becomes 'active' it is allocated a portion of
5433 * scratch space, sized according to PerThreadScratchSpace. The
5434 * starting location of each thread’s scratch space allocation,
5435 * ScratchSpaceOffset, is passed in the thread payload in
5436 * R0.5[31:10] and is specified as a 1KB-granular offset from the
5437 * GeneralStateBaseAddress. The computation of ScratchSpaceOffset
5438 * includes the starting address of the stage’s scratch space
5439 * allocation, as programmed by ScratchSpaceBasePointer."
5440 *
5441 * The base address is passed in bits R0.5[31:10] and the bottom 10
5442 * bits of R0.5 are used for other things. Therefore, we have to
5443 * mask off the bottom 10 bits so that we don't get a garbage base
5444 * address.
5445 */
5446 ubld.group(1, 0).AND(component(header, 5),
5447 retype(brw_vec1_grf(0, 5), BRW_REGISTER_TYPE_UD),
5448 brw_imm_ud(0xfffffc00));
5449 }
5450 if (is_surface_access)
5451 ubld.group(1, 0).MOV(component(header, 7), sample_mask);
5452 }
5453 const unsigned header_sz = header.file != BAD_FILE ? 1 : 0;
5454
5455 fs_reg payload, payload2;
5456 unsigned mlen, ex_mlen = 0;
5457 if (devinfo->gen >= 9 &&
5458 (src.file == BAD_FILE || header.file == BAD_FILE)) {
5459 /* We have split sends on gen9 and above */
5460 if (header.file == BAD_FILE) {
5461 payload = bld.move_to_vgrf(addr, addr_sz);
5462 payload2 = bld.move_to_vgrf(src, src_sz);
5463 mlen = addr_sz * (inst->exec_size / 8);
5464 ex_mlen = src_sz * (inst->exec_size / 8);
5465 } else {
5466 assert(src.file == BAD_FILE);
5467 payload = header;
5468 payload2 = bld.move_to_vgrf(addr, addr_sz);
5469 mlen = header_sz;
5470 ex_mlen = addr_sz * (inst->exec_size / 8);
5471 }
5472 } else {
5473 /* Allocate space for the payload. */
5474 const unsigned sz = header_sz + addr_sz + src_sz;
5475 payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
5476 fs_reg *const components = new fs_reg[sz];
5477 unsigned n = 0;
5478
5479 /* Construct the payload. */
5480 if (header.file != BAD_FILE)
5481 components[n++] = header;
5482
5483 for (unsigned i = 0; i < addr_sz; i++)
5484 components[n++] = offset(addr, bld, i);
5485
5486 for (unsigned i = 0; i < src_sz; i++)
5487 components[n++] = offset(src, bld, i);
5488
5489 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
5490 mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
5491
5492 delete[] components;
5493 }
5494
5495 /* Predicate the instruction on the sample mask if no header is
5496 * provided.
5497 */
5498 if ((header.file == BAD_FILE || !is_surface_access) &&
5499 sample_mask.file != BAD_FILE && sample_mask.file != IMM)
5500 emit_predicate_on_sample_mask(bld, inst);
5501
5502 uint32_t sfid;
5503 switch (inst->opcode) {
5504 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5505 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5506 /* Byte scattered opcodes go through the normal data cache */
5507 sfid = GEN7_SFID_DATAPORT_DATA_CACHE;
5508 break;
5509
5510 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
5511 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
5512 sfid = devinfo->gen >= 7 ? GEN7_SFID_DATAPORT_DATA_CACHE :
5513 devinfo->gen >= 6 ? GEN6_SFID_DATAPORT_RENDER_CACHE :
5514 BRW_DATAPORT_READ_TARGET_RENDER_CACHE;
5515 break;
5516
5517 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5518 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5519 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5520 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5521 /* Untyped Surface messages go through the data cache but the SFID value
5522 * changed on Haswell.
5523 */
5524 sfid = (devinfo->gen >= 8 || devinfo->is_haswell ?
5525 HSW_SFID_DATAPORT_DATA_CACHE_1 :
5526 GEN7_SFID_DATAPORT_DATA_CACHE);
5527 break;
5528
5529 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5530 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5531 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5532 /* Typed surface messages go through the render cache on IVB and the
5533 * data cache on HSW+.
5534 */
5535 sfid = (devinfo->gen >= 8 || devinfo->is_haswell ?
5536 HSW_SFID_DATAPORT_DATA_CACHE_1 :
5537 GEN6_SFID_DATAPORT_RENDER_CACHE);
5538 break;
5539
5540 default:
5541 unreachable("Unsupported surface opcode");
5542 }
5543
5544 uint32_t desc;
5545 switch (inst->opcode) {
5546 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5547 desc = brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size,
5548 arg.ud, /* num_channels */
5549 false /* write */);
5550 break;
5551
5552 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5553 desc = brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size,
5554 arg.ud, /* num_channels */
5555 true /* write */);
5556 break;
5557
5558 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5559 desc = brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size,
5560 arg.ud, /* bit_size */
5561 false /* write */);
5562 break;
5563
5564 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5565 desc = brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size,
5566 arg.ud, /* bit_size */
5567 true /* write */);
5568 break;
5569
5570 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
5571 assert(arg.ud == 32); /* bit_size */
5572 desc = brw_dp_dword_scattered_rw_desc(devinfo, inst->exec_size,
5573 false /* write */);
5574 break;
5575
5576 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
5577 assert(arg.ud == 32); /* bit_size */
5578 desc = brw_dp_dword_scattered_rw_desc(devinfo, inst->exec_size,
5579 true /* write */);
5580 break;
5581
5582 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5583 desc = brw_dp_untyped_atomic_desc(devinfo, inst->exec_size,
5584 arg.ud, /* atomic_op */
5585 !inst->dst.is_null());
5586 break;
5587
5588 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5589 desc = brw_dp_untyped_atomic_float_desc(devinfo, inst->exec_size,
5590 arg.ud, /* atomic_op */
5591 !inst->dst.is_null());
5592 break;
5593
5594 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5595 desc = brw_dp_typed_surface_rw_desc(devinfo, inst->exec_size, inst->group,
5596 arg.ud, /* num_channels */
5597 false /* write */);
5598 break;
5599
5600 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5601 desc = brw_dp_typed_surface_rw_desc(devinfo, inst->exec_size, inst->group,
5602 arg.ud, /* num_channels */
5603 true /* write */);
5604 break;
5605
5606 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5607 desc = brw_dp_typed_atomic_desc(devinfo, inst->exec_size, inst->group,
5608 arg.ud, /* atomic_op */
5609 !inst->dst.is_null());
5610 break;
5611
5612 default:
5613 unreachable("Unknown surface logical instruction");
5614 }
5615
5616 /* Update the original instruction. */
5617 inst->opcode = SHADER_OPCODE_SEND;
5618 inst->mlen = mlen;
5619 inst->ex_mlen = ex_mlen;
5620 inst->header_size = header_sz;
5621 inst->send_has_side_effects = has_side_effects;
5622 inst->send_is_volatile = !has_side_effects;
5623
5624 /* Set up SFID and descriptors */
5625 inst->sfid = sfid;
5626 inst->desc = desc;
5627 if (surface.file == IMM) {
5628 inst->desc |= surface.ud & 0xff;
5629 inst->src[0] = brw_imm_ud(0);
5630 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5631 } else if (surface_handle.file != BAD_FILE) {
5632 /* Bindless surface */
5633 assert(devinfo->gen >= 9);
5634 inst->desc |= GEN9_BTI_BINDLESS;
5635 inst->src[0] = brw_imm_ud(0);
5636
5637 /* We assume that the driver provided the handle in the top 20 bits so
5638 * we can use the surface handle directly as the extended descriptor.
5639 */
5640 inst->src[1] = retype(surface_handle, BRW_REGISTER_TYPE_UD);
5641 } else {
5642 const fs_builder ubld = bld.exec_all().group(1, 0);
5643 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5644 ubld.AND(tmp, surface, brw_imm_ud(0xff));
5645 inst->src[0] = component(tmp, 0);
5646 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5647 }
5648
5649 /* Finally, the payload */
5650 inst->src[2] = payload;
5651 inst->src[3] = payload2;
5652
5653 inst->resize_sources(4);
5654 }
5655
5656 static void
5657 lower_a64_logical_send(const fs_builder &bld, fs_inst *inst)
5658 {
5659 const gen_device_info *devinfo = bld.shader->devinfo;
5660
5661 const fs_reg &addr = inst->src[0];
5662 const fs_reg &src = inst->src[1];
5663 const unsigned src_comps = inst->components_read(1);
5664 assert(inst->src[2].file == IMM);
5665 const unsigned arg = inst->src[2].ud;
5666 const bool has_side_effects = inst->has_side_effects();
5667
5668 /* If the surface message has side effects and we're a fragment shader, we
5669 * have to predicate with the sample mask to avoid helper invocations.
5670 */
5671 if (has_side_effects && bld.shader->stage == MESA_SHADER_FRAGMENT)
5672 emit_predicate_on_sample_mask(bld, inst);
5673
5674 fs_reg payload, payload2;
5675 unsigned mlen, ex_mlen = 0;
5676 if (devinfo->gen >= 9) {
5677 /* On Skylake and above, we have SENDS */
5678 mlen = 2 * (inst->exec_size / 8);
5679 ex_mlen = src_comps * type_sz(src.type) * inst->exec_size / REG_SIZE;
5680 payload = retype(bld.move_to_vgrf(addr, 1), BRW_REGISTER_TYPE_UD);
5681 payload2 = retype(bld.move_to_vgrf(src, src_comps),
5682 BRW_REGISTER_TYPE_UD);
5683 } else {
5684 /* Add two because the address is 64-bit */
5685 const unsigned dwords = 2 + src_comps;
5686 mlen = dwords * (inst->exec_size / 8);
5687
5688 fs_reg sources[5];
5689
5690 sources[0] = addr;
5691
5692 for (unsigned i = 0; i < src_comps; i++)
5693 sources[1 + i] = offset(src, bld, i);
5694
5695 payload = bld.vgrf(BRW_REGISTER_TYPE_UD, dwords);
5696 bld.LOAD_PAYLOAD(payload, sources, 1 + src_comps, 0);
5697 }
5698
5699 uint32_t desc;
5700 switch (inst->opcode) {
5701 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
5702 desc = brw_dp_a64_untyped_surface_rw_desc(devinfo, inst->exec_size,
5703 arg, /* num_channels */
5704 false /* write */);
5705 break;
5706
5707 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
5708 desc = brw_dp_a64_untyped_surface_rw_desc(devinfo, inst->exec_size,
5709 arg, /* num_channels */
5710 true /* write */);
5711 break;
5712
5713 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
5714 desc = brw_dp_a64_byte_scattered_rw_desc(devinfo, inst->exec_size,
5715 arg, /* bit_size */
5716 false /* write */);
5717 break;
5718
5719 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
5720 desc = brw_dp_a64_byte_scattered_rw_desc(devinfo, inst->exec_size,
5721 arg, /* bit_size */
5722 true /* write */);
5723 break;
5724
5725 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
5726 desc = brw_dp_a64_untyped_atomic_desc(devinfo, inst->exec_size, 32,
5727 arg, /* atomic_op */
5728 !inst->dst.is_null());
5729 break;
5730
5731 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
5732 desc = brw_dp_a64_untyped_atomic_desc(devinfo, inst->exec_size, 64,
5733 arg, /* atomic_op */
5734 !inst->dst.is_null());
5735 break;
5736
5737
5738 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5739 desc = brw_dp_a64_untyped_atomic_float_desc(devinfo, inst->exec_size,
5740 arg, /* atomic_op */
5741 !inst->dst.is_null());
5742 break;
5743
5744 default:
5745 unreachable("Unknown A64 logical instruction");
5746 }
5747
5748 /* Update the original instruction. */
5749 inst->opcode = SHADER_OPCODE_SEND;
5750 inst->mlen = mlen;
5751 inst->ex_mlen = ex_mlen;
5752 inst->header_size = 0;
5753 inst->send_has_side_effects = has_side_effects;
5754 inst->send_is_volatile = !has_side_effects;
5755
5756 /* Set up SFID and descriptors */
5757 inst->sfid = HSW_SFID_DATAPORT_DATA_CACHE_1;
5758 inst->desc = desc;
5759 inst->resize_sources(4);
5760 inst->src[0] = brw_imm_ud(0); /* desc */
5761 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5762 inst->src[2] = payload;
5763 inst->src[3] = payload2;
5764 }
5765
5766 static void
5767 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
5768 {
5769 const gen_device_info *devinfo = bld.shader->devinfo;
5770
5771 if (devinfo->gen >= 7) {
5772 fs_reg index = inst->src[0];
5773 /* We are switching the instruction from an ALU-like instruction to a
5774 * send-from-grf instruction. Since sends can't handle strides or
5775 * source modifiers, we have to make a copy of the offset source.
5776 */
5777 fs_reg offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
5778 bld.MOV(offset, inst->src[1]);
5779
5780 const unsigned simd_mode =
5781 inst->exec_size <= 8 ? BRW_SAMPLER_SIMD_MODE_SIMD8 :
5782 BRW_SAMPLER_SIMD_MODE_SIMD16;
5783
5784 inst->opcode = SHADER_OPCODE_SEND;
5785 inst->mlen = inst->exec_size / 8;
5786 inst->resize_sources(3);
5787
5788 inst->sfid = BRW_SFID_SAMPLER;
5789 inst->desc = brw_sampler_desc(devinfo, 0, 0,
5790 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
5791 simd_mode, 0);
5792 if (index.file == IMM) {
5793 inst->desc |= index.ud & 0xff;
5794 inst->src[0] = brw_imm_ud(0);
5795 } else {
5796 const fs_builder ubld = bld.exec_all().group(1, 0);
5797 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5798 ubld.AND(tmp, index, brw_imm_ud(0xff));
5799 inst->src[0] = component(tmp, 0);
5800 }
5801 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5802 inst->src[2] = offset; /* payload */
5803 } else {
5804 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
5805 BRW_REGISTER_TYPE_UD);
5806
5807 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
5808
5809 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
5810 inst->resize_sources(1);
5811 inst->base_mrf = payload.nr;
5812 inst->header_size = 1;
5813 inst->mlen = 1 + inst->exec_size / 8;
5814 }
5815 }
5816
5817 static void
5818 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
5819 {
5820 assert(bld.shader->devinfo->gen < 6);
5821
5822 inst->base_mrf = 2;
5823 inst->mlen = inst->sources * inst->exec_size / 8;
5824
5825 if (inst->sources > 1) {
5826 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
5827 * "Message Payload":
5828 *
5829 * "Operand0[7]. For the INT DIV functions, this operand is the
5830 * denominator."
5831 * ...
5832 * "Operand1[7]. For the INT DIV functions, this operand is the
5833 * numerator."
5834 */
5835 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
5836 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
5837 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
5838
5839 inst->resize_sources(1);
5840 inst->src[0] = src0;
5841
5842 assert(inst->exec_size == 8);
5843 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
5844 }
5845 }
5846
5847 bool
5848 fs_visitor::lower_logical_sends()
5849 {
5850 bool progress = false;
5851
5852 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5853 const fs_builder ibld(this, block, inst);
5854
5855 switch (inst->opcode) {
5856 case FS_OPCODE_FB_WRITE_LOGICAL:
5857 assert(stage == MESA_SHADER_FRAGMENT);
5858 lower_fb_write_logical_send(ibld, inst,
5859 brw_wm_prog_data(prog_data),
5860 (const brw_wm_prog_key *)key,
5861 payload);
5862 break;
5863
5864 case FS_OPCODE_FB_READ_LOGICAL:
5865 lower_fb_read_logical_send(ibld, inst);
5866 break;
5867
5868 case SHADER_OPCODE_TEX_LOGICAL:
5869 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
5870 break;
5871
5872 case SHADER_OPCODE_TXD_LOGICAL:
5873 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
5874 break;
5875
5876 case SHADER_OPCODE_TXF_LOGICAL:
5877 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
5878 break;
5879
5880 case SHADER_OPCODE_TXL_LOGICAL:
5881 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
5882 break;
5883
5884 case SHADER_OPCODE_TXS_LOGICAL:
5885 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
5886 break;
5887
5888 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5889 lower_sampler_logical_send(ibld, inst,
5890 SHADER_OPCODE_IMAGE_SIZE_LOGICAL);
5891 break;
5892
5893 case FS_OPCODE_TXB_LOGICAL:
5894 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
5895 break;
5896
5897 case SHADER_OPCODE_TXF_CMS_LOGICAL:
5898 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
5899 break;
5900
5901 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
5902 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
5903 break;
5904
5905 case SHADER_OPCODE_TXF_UMS_LOGICAL:
5906 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
5907 break;
5908
5909 case SHADER_OPCODE_TXF_MCS_LOGICAL:
5910 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
5911 break;
5912
5913 case SHADER_OPCODE_LOD_LOGICAL:
5914 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
5915 break;
5916
5917 case SHADER_OPCODE_TG4_LOGICAL:
5918 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
5919 break;
5920
5921 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
5922 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
5923 break;
5924
5925 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
5926 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
5927 break;
5928
5929 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5930 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5931 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5932 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5933 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
5934 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
5935 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5936 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5937 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5938 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5939 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5940 lower_surface_logical_send(ibld, inst);
5941 break;
5942
5943 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
5944 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
5945 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
5946 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
5947 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
5948 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
5949 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5950 lower_a64_logical_send(ibld, inst);
5951 break;
5952
5953 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
5954 lower_varying_pull_constant_logical_send(ibld, inst);
5955 break;
5956
5957 case SHADER_OPCODE_RCP:
5958 case SHADER_OPCODE_RSQ:
5959 case SHADER_OPCODE_SQRT:
5960 case SHADER_OPCODE_EXP2:
5961 case SHADER_OPCODE_LOG2:
5962 case SHADER_OPCODE_SIN:
5963 case SHADER_OPCODE_COS:
5964 case SHADER_OPCODE_POW:
5965 case SHADER_OPCODE_INT_QUOTIENT:
5966 case SHADER_OPCODE_INT_REMAINDER:
5967 /* The math opcodes are overloaded for the send-like and
5968 * expression-like instructions which seems kind of icky. Gen6+ has
5969 * a native (but rather quirky) MATH instruction so we don't need to
5970 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
5971 * logical instructions (which we can easily recognize because they
5972 * have mlen = 0) into send-like virtual instructions.
5973 */
5974 if (devinfo->gen < 6 && inst->mlen == 0) {
5975 lower_math_logical_send(ibld, inst);
5976 break;
5977
5978 } else {
5979 continue;
5980 }
5981
5982 default:
5983 continue;
5984 }
5985
5986 progress = true;
5987 }
5988
5989 if (progress)
5990 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
5991
5992 return progress;
5993 }
5994
5995 static bool
5996 is_mixed_float_with_fp32_dst(const fs_inst *inst)
5997 {
5998 /* This opcode sometimes uses :W type on the source even if the operand is
5999 * a :HF, because in gen7 there is no support for :HF, and thus it uses :W.
6000 */
6001 if (inst->opcode == BRW_OPCODE_F16TO32)
6002 return true;
6003
6004 if (inst->dst.type != BRW_REGISTER_TYPE_F)
6005 return false;
6006
6007 for (int i = 0; i < inst->sources; i++) {
6008 if (inst->src[i].type == BRW_REGISTER_TYPE_HF)
6009 return true;
6010 }
6011
6012 return false;
6013 }
6014
6015 static bool
6016 is_mixed_float_with_packed_fp16_dst(const fs_inst *inst)
6017 {
6018 /* This opcode sometimes uses :W type on the destination even if the
6019 * destination is a :HF, because in gen7 there is no support for :HF, and
6020 * thus it uses :W.
6021 */
6022 if (inst->opcode == BRW_OPCODE_F32TO16 &&
6023 inst->dst.stride == 1)
6024 return true;
6025
6026 if (inst->dst.type != BRW_REGISTER_TYPE_HF ||
6027 inst->dst.stride != 1)
6028 return false;
6029
6030 for (int i = 0; i < inst->sources; i++) {
6031 if (inst->src[i].type == BRW_REGISTER_TYPE_F)
6032 return true;
6033 }
6034
6035 return false;
6036 }
6037
6038 /**
6039 * Get the closest allowed SIMD width for instruction \p inst accounting for
6040 * some common regioning and execution control restrictions that apply to FPU
6041 * instructions. These restrictions don't necessarily have any relevance to
6042 * instructions not executed by the FPU pipeline like extended math, control
6043 * flow or send message instructions.
6044 *
6045 * For virtual opcodes it's really up to the instruction -- In some cases
6046 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
6047 * instructions) it may simplify virtual instruction lowering if we can
6048 * enforce FPU-like regioning restrictions already on the virtual instruction,
6049 * in other cases (e.g. virtual send-like instructions) this may be
6050 * excessively restrictive.
6051 */
6052 static unsigned
6053 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
6054 const fs_inst *inst)
6055 {
6056 /* Maximum execution size representable in the instruction controls. */
6057 unsigned max_width = MIN2(32, inst->exec_size);
6058
6059 /* According to the PRMs:
6060 * "A. In Direct Addressing mode, a source cannot span more than 2
6061 * adjacent GRF registers.
6062 * B. A destination cannot span more than 2 adjacent GRF registers."
6063 *
6064 * Look for the source or destination with the largest register region
6065 * which is the one that is going to limit the overall execution size of
6066 * the instruction due to this rule.
6067 */
6068 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
6069
6070 for (unsigned i = 0; i < inst->sources; i++)
6071 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
6072
6073 /* Calculate the maximum execution size of the instruction based on the
6074 * factor by which it goes over the hardware limit of 2 GRFs.
6075 */
6076 if (reg_count > 2)
6077 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
6078
6079 /* According to the IVB PRMs:
6080 * "When destination spans two registers, the source MUST span two
6081 * registers. The exception to the above rule:
6082 *
6083 * - When source is scalar, the source registers are not incremented.
6084 * - When source is packed integer Word and destination is packed
6085 * integer DWord, the source register is not incremented but the
6086 * source sub register is incremented."
6087 *
6088 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
6089 * restrictions. The code below intentionally doesn't check whether the
6090 * destination type is integer because empirically the hardware doesn't
6091 * seem to care what the actual type is as long as it's dword-aligned.
6092 */
6093 if (devinfo->gen < 8) {
6094 for (unsigned i = 0; i < inst->sources; i++) {
6095 /* IVB implements DF scalars as <0;2,1> regions. */
6096 const bool is_scalar_exception = is_uniform(inst->src[i]) &&
6097 (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
6098 const bool is_packed_word_exception =
6099 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
6100 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
6101
6102 /* We check size_read(i) against size_written instead of REG_SIZE
6103 * because we want to properly handle SIMD32. In SIMD32, you can end
6104 * up with writes to 4 registers and a source that reads 2 registers
6105 * and we may still need to lower all the way to SIMD8 in that case.
6106 */
6107 if (inst->size_written > REG_SIZE &&
6108 inst->size_read(i) != 0 &&
6109 inst->size_read(i) < inst->size_written &&
6110 !is_scalar_exception && !is_packed_word_exception) {
6111 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
6112 max_width = MIN2(max_width, inst->exec_size / reg_count);
6113 }
6114 }
6115 }
6116
6117 if (devinfo->gen < 6) {
6118 /* From the G45 PRM, Volume 4 Page 361:
6119 *
6120 * "Operand Alignment Rule: With the exceptions listed below, a
6121 * source/destination operand in general should be aligned to even
6122 * 256-bit physical register with a region size equal to two 256-bit
6123 * physical registers."
6124 *
6125 * Normally we enforce this by allocating virtual registers to the
6126 * even-aligned class. But we need to handle payload registers.
6127 */
6128 for (unsigned i = 0; i < inst->sources; i++) {
6129 if (inst->src[i].file == FIXED_GRF && (inst->src[i].nr & 1) &&
6130 inst->size_read(i) > REG_SIZE) {
6131 max_width = MIN2(max_width, 8);
6132 }
6133 }
6134 }
6135
6136 /* From the IVB PRMs:
6137 * "When an instruction is SIMD32, the low 16 bits of the execution mask
6138 * are applied for both halves of the SIMD32 instruction. If different
6139 * execution mask channels are required, split the instruction into two
6140 * SIMD16 instructions."
6141 *
6142 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
6143 * 32-wide control flow support in hardware and will behave similarly.
6144 */
6145 if (devinfo->gen < 8 && !inst->force_writemask_all)
6146 max_width = MIN2(max_width, 16);
6147
6148 /* From the IVB PRMs (applies to HSW too):
6149 * "Instructions with condition modifiers must not use SIMD32."
6150 *
6151 * From the BDW PRMs (applies to later hardware too):
6152 * "Ternary instruction with condition modifiers must not use SIMD32."
6153 */
6154 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
6155 max_width = MIN2(max_width, 16);
6156
6157 /* From the IVB PRMs (applies to other devices that don't have the
6158 * gen_device_info::supports_simd16_3src flag set):
6159 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
6160 * SIMD8 is not allowed for DF operations."
6161 */
6162 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
6163 max_width = MIN2(max_width, inst->exec_size / reg_count);
6164
6165 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
6166 * the 8-bit quarter of the execution mask signals specified in the
6167 * instruction control fields) for the second compressed half of any
6168 * single-precision instruction (for double-precision instructions
6169 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
6170 * the EU will apply the wrong execution controls for the second
6171 * sequential GRF write if the number of channels per GRF is not exactly
6172 * eight in single-precision mode (or four in double-float mode).
6173 *
6174 * In this situation we calculate the maximum size of the split
6175 * instructions so they only ever write to a single register.
6176 */
6177 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
6178 !inst->force_writemask_all) {
6179 const unsigned channels_per_grf = inst->exec_size /
6180 DIV_ROUND_UP(inst->size_written, REG_SIZE);
6181 const unsigned exec_type_size = get_exec_type_size(inst);
6182 assert(exec_type_size);
6183
6184 /* The hardware shifts exactly 8 channels per compressed half of the
6185 * instruction in single-precision mode and exactly 4 in double-precision.
6186 */
6187 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
6188 max_width = MIN2(max_width, channels_per_grf);
6189
6190 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
6191 * because HW applies the same channel enable signals to both halves of
6192 * the compressed instruction which will be just wrong under
6193 * non-uniform control flow.
6194 */
6195 if (devinfo->gen == 7 && !devinfo->is_haswell &&
6196 (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
6197 max_width = MIN2(max_width, 4);
6198 }
6199
6200 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
6201 * Float Operations:
6202 *
6203 * "No SIMD16 in mixed mode when destination is f32. Instruction
6204 * execution size must be no more than 8."
6205 *
6206 * FIXME: the simulator doesn't seem to complain if we don't do this and
6207 * empirical testing with existing CTS tests show that they pass just fine
6208 * without implementing this, however, since our interpretation of the PRM
6209 * is that conversion MOVs between HF and F are still mixed-float
6210 * instructions (and therefore subject to this restriction) we decided to
6211 * split them to be safe. Might be useful to do additional investigation to
6212 * lift the restriction if we can ensure that it is safe though, since these
6213 * conversions are common when half-float types are involved since many
6214 * instructions do not support HF types and conversions from/to F are
6215 * required.
6216 */
6217 if (is_mixed_float_with_fp32_dst(inst))
6218 max_width = MIN2(max_width, 8);
6219
6220 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
6221 * Float Operations:
6222 *
6223 * "No SIMD16 in mixed mode when destination is packed f16 for both
6224 * Align1 and Align16."
6225 */
6226 if (is_mixed_float_with_packed_fp16_dst(inst))
6227 max_width = MIN2(max_width, 8);
6228
6229 /* Only power-of-two execution sizes are representable in the instruction
6230 * control fields.
6231 */
6232 return 1 << _mesa_logbase2(max_width);
6233 }
6234
6235 /**
6236 * Get the maximum allowed SIMD width for instruction \p inst accounting for
6237 * various payload size restrictions that apply to sampler message
6238 * instructions.
6239 *
6240 * This is only intended to provide a maximum theoretical bound for the
6241 * execution size of the message based on the number of argument components
6242 * alone, which in most cases will determine whether the SIMD8 or SIMD16
6243 * variant of the message can be used, though some messages may have
6244 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
6245 * the message length to determine the exact SIMD width and argument count,
6246 * which makes a number of sampler message combinations impossible to
6247 * represent).
6248 */
6249 static unsigned
6250 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
6251 const fs_inst *inst)
6252 {
6253 /* If we have a min_lod parameter on anything other than a simple sample
6254 * message, it will push it over 5 arguments and we have to fall back to
6255 * SIMD8.
6256 */
6257 if (inst->opcode != SHADER_OPCODE_TEX &&
6258 inst->components_read(TEX_LOGICAL_SRC_MIN_LOD))
6259 return 8;
6260
6261 /* Calculate the number of coordinate components that have to be present
6262 * assuming that additional arguments follow the texel coordinates in the
6263 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
6264 * need to pad to four or three components depending on the message,
6265 * pre-ILK we need to pad to at most three components.
6266 */
6267 const unsigned req_coord_components =
6268 (devinfo->gen >= 7 ||
6269 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
6270 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
6271 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
6272 3;
6273
6274 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
6275 * variant of the TXL or TXF message.
6276 */
6277 const bool implicit_lod = devinfo->gen >= 9 &&
6278 (inst->opcode == SHADER_OPCODE_TXL ||
6279 inst->opcode == SHADER_OPCODE_TXF) &&
6280 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
6281
6282 /* Calculate the total number of argument components that need to be passed
6283 * to the sampler unit.
6284 */
6285 const unsigned num_payload_components =
6286 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
6287 req_coord_components) +
6288 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
6289 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
6290 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
6291 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
6292 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
6293 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
6294 inst->components_read(TEX_LOGICAL_SRC_MCS);
6295
6296 /* SIMD16 messages with more than five arguments exceed the maximum message
6297 * size supported by the sampler, regardless of whether a header is
6298 * provided or not.
6299 */
6300 return MIN2(inst->exec_size,
6301 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
6302 }
6303
6304 /**
6305 * Get the closest native SIMD width supported by the hardware for instruction
6306 * \p inst. The instruction will be left untouched by
6307 * fs_visitor::lower_simd_width() if the returned value is equal to the
6308 * original execution size.
6309 */
6310 static unsigned
6311 get_lowered_simd_width(const struct gen_device_info *devinfo,
6312 const fs_inst *inst)
6313 {
6314 switch (inst->opcode) {
6315 case BRW_OPCODE_MOV:
6316 case BRW_OPCODE_SEL:
6317 case BRW_OPCODE_NOT:
6318 case BRW_OPCODE_AND:
6319 case BRW_OPCODE_OR:
6320 case BRW_OPCODE_XOR:
6321 case BRW_OPCODE_SHR:
6322 case BRW_OPCODE_SHL:
6323 case BRW_OPCODE_ASR:
6324 case BRW_OPCODE_ROR:
6325 case BRW_OPCODE_ROL:
6326 case BRW_OPCODE_CMPN:
6327 case BRW_OPCODE_CSEL:
6328 case BRW_OPCODE_F32TO16:
6329 case BRW_OPCODE_F16TO32:
6330 case BRW_OPCODE_BFREV:
6331 case BRW_OPCODE_BFE:
6332 case BRW_OPCODE_ADD:
6333 case BRW_OPCODE_MUL:
6334 case BRW_OPCODE_AVG:
6335 case BRW_OPCODE_FRC:
6336 case BRW_OPCODE_RNDU:
6337 case BRW_OPCODE_RNDD:
6338 case BRW_OPCODE_RNDE:
6339 case BRW_OPCODE_RNDZ:
6340 case BRW_OPCODE_LZD:
6341 case BRW_OPCODE_FBH:
6342 case BRW_OPCODE_FBL:
6343 case BRW_OPCODE_CBIT:
6344 case BRW_OPCODE_SAD2:
6345 case BRW_OPCODE_MAD:
6346 case BRW_OPCODE_LRP:
6347 case FS_OPCODE_PACK:
6348 case SHADER_OPCODE_SEL_EXEC:
6349 case SHADER_OPCODE_CLUSTER_BROADCAST:
6350 return get_fpu_lowered_simd_width(devinfo, inst);
6351
6352 case BRW_OPCODE_CMP: {
6353 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
6354 * when the destination is a GRF the dependency-clear bit on the flag
6355 * register is cleared early.
6356 *
6357 * Suggested workarounds are to disable coissuing CMP instructions
6358 * or to split CMP(16) instructions into two CMP(8) instructions.
6359 *
6360 * We choose to split into CMP(8) instructions since disabling
6361 * coissuing would affect CMP instructions not otherwise affected by
6362 * the errata.
6363 */
6364 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
6365 !inst->dst.is_null() ? 8 : ~0);
6366 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
6367 }
6368 case BRW_OPCODE_BFI1:
6369 case BRW_OPCODE_BFI2:
6370 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
6371 * should
6372 * "Force BFI instructions to be executed always in SIMD8."
6373 */
6374 return MIN2(devinfo->is_haswell ? 8 : ~0u,
6375 get_fpu_lowered_simd_width(devinfo, inst));
6376
6377 case BRW_OPCODE_IF:
6378 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
6379 return inst->exec_size;
6380
6381 case SHADER_OPCODE_RCP:
6382 case SHADER_OPCODE_RSQ:
6383 case SHADER_OPCODE_SQRT:
6384 case SHADER_OPCODE_EXP2:
6385 case SHADER_OPCODE_LOG2:
6386 case SHADER_OPCODE_SIN:
6387 case SHADER_OPCODE_COS: {
6388 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
6389 * Gen6. Extended Math Function is limited to SIMD8 with half-float.
6390 */
6391 if (devinfo->gen == 6 || (devinfo->gen == 4 && !devinfo->is_g4x))
6392 return MIN2(8, inst->exec_size);
6393 if (inst->dst.type == BRW_REGISTER_TYPE_HF)
6394 return MIN2(8, inst->exec_size);
6395 return MIN2(16, inst->exec_size);
6396 }
6397
6398 case SHADER_OPCODE_POW: {
6399 /* SIMD16 is only allowed on Gen7+. Extended Math Function is limited
6400 * to SIMD8 with half-float
6401 */
6402 if (devinfo->gen < 7)
6403 return MIN2(8, inst->exec_size);
6404 if (inst->dst.type == BRW_REGISTER_TYPE_HF)
6405 return MIN2(8, inst->exec_size);
6406 return MIN2(16, inst->exec_size);
6407 }
6408
6409 case SHADER_OPCODE_USUB_SAT:
6410 case SHADER_OPCODE_ISUB_SAT:
6411 return get_fpu_lowered_simd_width(devinfo, inst);
6412
6413 case SHADER_OPCODE_INT_QUOTIENT:
6414 case SHADER_OPCODE_INT_REMAINDER:
6415 /* Integer division is limited to SIMD8 on all generations. */
6416 return MIN2(8, inst->exec_size);
6417
6418 case FS_OPCODE_LINTERP:
6419 case SHADER_OPCODE_GET_BUFFER_SIZE:
6420 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
6421 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
6422 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
6423 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
6424 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
6425 return MIN2(16, inst->exec_size);
6426
6427 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
6428 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
6429 * message used to implement varying pull constant loads, so expand it
6430 * to SIMD16. An alternative with longer message payload length but
6431 * shorter return payload would be to use the SIMD8 sampler message that
6432 * takes (header, u, v, r) as parameters instead of (header, u).
6433 */
6434 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
6435
6436 case FS_OPCODE_DDX_COARSE:
6437 case FS_OPCODE_DDX_FINE:
6438 case FS_OPCODE_DDY_COARSE:
6439 case FS_OPCODE_DDY_FINE:
6440 /* The implementation of this virtual opcode may require emitting
6441 * compressed Align16 instructions, which are severely limited on some
6442 * generations.
6443 *
6444 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
6445 * Region Restrictions):
6446 *
6447 * "In Align16 access mode, SIMD16 is not allowed for DW operations
6448 * and SIMD8 is not allowed for DF operations."
6449 *
6450 * In this context, "DW operations" means "operations acting on 32-bit
6451 * values", so it includes operations on floats.
6452 *
6453 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
6454 * (Instruction Compression -> Rules and Restrictions):
6455 *
6456 * "A compressed instruction must be in Align1 access mode. Align16
6457 * mode instructions cannot be compressed."
6458 *
6459 * Similar text exists in the g45 PRM.
6460 *
6461 * Empirically, compressed align16 instructions using odd register
6462 * numbers don't appear to work on Sandybridge either.
6463 */
6464 return (devinfo->gen == 4 || devinfo->gen == 6 ||
6465 (devinfo->gen == 7 && !devinfo->is_haswell) ?
6466 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
6467
6468 case SHADER_OPCODE_MULH:
6469 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
6470 * is 8-wide on Gen7+.
6471 */
6472 return (devinfo->gen >= 7 ? 8 :
6473 get_fpu_lowered_simd_width(devinfo, inst));
6474
6475 case FS_OPCODE_FB_WRITE_LOGICAL:
6476 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
6477 * here.
6478 */
6479 assert(devinfo->gen != 6 ||
6480 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
6481 inst->exec_size == 8);
6482 /* Dual-source FB writes are unsupported in SIMD16 mode. */
6483 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
6484 8 : MIN2(16, inst->exec_size));
6485
6486 case FS_OPCODE_FB_READ_LOGICAL:
6487 return MIN2(16, inst->exec_size);
6488
6489 case SHADER_OPCODE_TEX_LOGICAL:
6490 case SHADER_OPCODE_TXF_CMS_LOGICAL:
6491 case SHADER_OPCODE_TXF_UMS_LOGICAL:
6492 case SHADER_OPCODE_TXF_MCS_LOGICAL:
6493 case SHADER_OPCODE_LOD_LOGICAL:
6494 case SHADER_OPCODE_TG4_LOGICAL:
6495 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
6496 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
6497 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
6498 return get_sampler_lowered_simd_width(devinfo, inst);
6499
6500 case SHADER_OPCODE_TXD_LOGICAL:
6501 /* TXD is unsupported in SIMD16 mode. */
6502 return 8;
6503
6504 case SHADER_OPCODE_TXL_LOGICAL:
6505 case FS_OPCODE_TXB_LOGICAL:
6506 /* Only one execution size is representable pre-ILK depending on whether
6507 * the shadow reference argument is present.
6508 */
6509 if (devinfo->gen == 4)
6510 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
6511 else
6512 return get_sampler_lowered_simd_width(devinfo, inst);
6513
6514 case SHADER_OPCODE_TXF_LOGICAL:
6515 case SHADER_OPCODE_TXS_LOGICAL:
6516 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
6517 * messages. Use SIMD16 instead.
6518 */
6519 if (devinfo->gen == 4)
6520 return 16;
6521 else
6522 return get_sampler_lowered_simd_width(devinfo, inst);
6523
6524 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
6525 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
6526 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
6527 return 8;
6528
6529 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
6530 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
6531 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
6532 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
6533 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
6534 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
6535 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
6536 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
6537 return MIN2(16, inst->exec_size);
6538
6539 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
6540 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
6541 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
6542 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
6543 return devinfo->gen <= 8 ? 8 : MIN2(16, inst->exec_size);
6544
6545 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
6546 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
6547 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
6548 return 8;
6549
6550 case SHADER_OPCODE_URB_READ_SIMD8:
6551 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
6552 case SHADER_OPCODE_URB_WRITE_SIMD8:
6553 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
6554 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
6555 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
6556 return MIN2(8, inst->exec_size);
6557
6558 case SHADER_OPCODE_QUAD_SWIZZLE: {
6559 const unsigned swiz = inst->src[1].ud;
6560 return (is_uniform(inst->src[0]) ?
6561 get_fpu_lowered_simd_width(devinfo, inst) :
6562 devinfo->gen < 11 && type_sz(inst->src[0].type) == 4 ? 8 :
6563 swiz == BRW_SWIZZLE_XYXY || swiz == BRW_SWIZZLE_ZWZW ? 4 :
6564 get_fpu_lowered_simd_width(devinfo, inst));
6565 }
6566 case SHADER_OPCODE_MOV_INDIRECT: {
6567 /* From IVB and HSW PRMs:
6568 *
6569 * "2.When the destination requires two registers and the sources are
6570 * indirect, the sources must use 1x1 regioning mode.
6571 *
6572 * In case of DF instructions in HSW/IVB, the exec_size is limited by
6573 * the EU decompression logic not handling VxH indirect addressing
6574 * correctly.
6575 */
6576 const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE;
6577 /* Prior to Broadwell, we only have 8 address subregisters. */
6578 return MIN3(devinfo->gen >= 8 ? 16 : 8,
6579 max_size / (inst->dst.stride * type_sz(inst->dst.type)),
6580 inst->exec_size);
6581 }
6582
6583 case SHADER_OPCODE_LOAD_PAYLOAD: {
6584 const unsigned reg_count =
6585 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
6586
6587 if (reg_count > 2) {
6588 /* Only LOAD_PAYLOAD instructions with per-channel destination region
6589 * can be easily lowered (which excludes headers and heterogeneous
6590 * types).
6591 */
6592 assert(!inst->header_size);
6593 for (unsigned i = 0; i < inst->sources; i++)
6594 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
6595 inst->src[i].file == BAD_FILE);
6596
6597 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
6598 } else {
6599 return inst->exec_size;
6600 }
6601 }
6602 default:
6603 return inst->exec_size;
6604 }
6605 }
6606
6607 /**
6608 * Return true if splitting out the group of channels of instruction \p inst
6609 * given by lbld.group() requires allocating a temporary for the i-th source
6610 * of the lowered instruction.
6611 */
6612 static inline bool
6613 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
6614 {
6615 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
6616 (inst->components_read(i) == 1 &&
6617 lbld.dispatch_width() <= inst->exec_size)) ||
6618 (inst->flags_written() &
6619 flag_mask(inst->src[i], type_sz(inst->src[i].type)));
6620 }
6621
6622 /**
6623 * Extract the data that would be consumed by the channel group given by
6624 * lbld.group() from the i-th source region of instruction \p inst and return
6625 * it as result in packed form.
6626 */
6627 static fs_reg
6628 emit_unzip(const fs_builder &lbld, fs_inst *inst, unsigned i)
6629 {
6630 assert(lbld.group() >= inst->group);
6631
6632 /* Specified channel group from the source region. */
6633 const fs_reg src = horiz_offset(inst->src[i], lbld.group() - inst->group);
6634
6635 if (needs_src_copy(lbld, inst, i)) {
6636 /* Builder of the right width to perform the copy avoiding uninitialized
6637 * data if the lowered execution size is greater than the original
6638 * execution size of the instruction.
6639 */
6640 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
6641 inst->exec_size), 0);
6642 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
6643
6644 for (unsigned k = 0; k < inst->components_read(i); ++k)
6645 cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
6646
6647 return tmp;
6648
6649 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
6650 /* The source is invariant for all dispatch_width-wide groups of the
6651 * original region.
6652 */
6653 return inst->src[i];
6654
6655 } else {
6656 /* We can just point the lowered instruction at the right channel group
6657 * from the original region.
6658 */
6659 return src;
6660 }
6661 }
6662
6663 /**
6664 * Return true if splitting out the group of channels of instruction \p inst
6665 * given by lbld.group() requires allocating a temporary for the destination
6666 * of the lowered instruction and copying the data back to the original
6667 * destination region.
6668 */
6669 static inline bool
6670 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
6671 {
6672 /* If the instruction writes more than one component we'll have to shuffle
6673 * the results of multiple lowered instructions in order to make sure that
6674 * they end up arranged correctly in the original destination region.
6675 */
6676 if (inst->size_written > inst->dst.component_size(inst->exec_size))
6677 return true;
6678
6679 /* If the lowered execution size is larger than the original the result of
6680 * the instruction won't fit in the original destination, so we'll have to
6681 * allocate a temporary in any case.
6682 */
6683 if (lbld.dispatch_width() > inst->exec_size)
6684 return true;
6685
6686 for (unsigned i = 0; i < inst->sources; i++) {
6687 /* If we already made a copy of the source for other reasons there won't
6688 * be any overlap with the destination.
6689 */
6690 if (needs_src_copy(lbld, inst, i))
6691 continue;
6692
6693 /* In order to keep the logic simple we emit a copy whenever the
6694 * destination region doesn't exactly match an overlapping source, which
6695 * may point at the source and destination not being aligned group by
6696 * group which could cause one of the lowered instructions to overwrite
6697 * the data read from the same source by other lowered instructions.
6698 */
6699 if (regions_overlap(inst->dst, inst->size_written,
6700 inst->src[i], inst->size_read(i)) &&
6701 !inst->dst.equals(inst->src[i]))
6702 return true;
6703 }
6704
6705 return false;
6706 }
6707
6708 /**
6709 * Insert data from a packed temporary into the channel group given by
6710 * lbld.group() of the destination region of instruction \p inst and return
6711 * the temporary as result. Any copy instructions that are required for
6712 * unzipping the previous value (in the case of partial writes) will be
6713 * inserted using \p lbld_before and any copy instructions required for
6714 * zipping up the destination of \p inst will be inserted using \p lbld_after.
6715 */
6716 static fs_reg
6717 emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after,
6718 fs_inst *inst)
6719 {
6720 assert(lbld_before.dispatch_width() == lbld_after.dispatch_width());
6721 assert(lbld_before.group() == lbld_after.group());
6722 assert(lbld_after.group() >= inst->group);
6723
6724 /* Specified channel group from the destination region. */
6725 const fs_reg dst = horiz_offset(inst->dst, lbld_after.group() - inst->group);
6726 const unsigned dst_size = inst->size_written /
6727 inst->dst.component_size(inst->exec_size);
6728
6729 if (needs_dst_copy(lbld_after, inst)) {
6730 const fs_reg tmp = lbld_after.vgrf(inst->dst.type, dst_size);
6731
6732 if (inst->predicate) {
6733 /* Handle predication by copying the original contents of
6734 * the destination into the temporary before emitting the
6735 * lowered instruction.
6736 */
6737 const fs_builder gbld_before =
6738 lbld_before.group(MIN2(lbld_before.dispatch_width(),
6739 inst->exec_size), 0);
6740 for (unsigned k = 0; k < dst_size; ++k) {
6741 gbld_before.MOV(offset(tmp, lbld_before, k),
6742 offset(dst, inst->exec_size, k));
6743 }
6744 }
6745
6746 const fs_builder gbld_after =
6747 lbld_after.group(MIN2(lbld_after.dispatch_width(),
6748 inst->exec_size), 0);
6749 for (unsigned k = 0; k < dst_size; ++k) {
6750 /* Use a builder of the right width to perform the copy avoiding
6751 * uninitialized data if the lowered execution size is greater than
6752 * the original execution size of the instruction.
6753 */
6754 gbld_after.MOV(offset(dst, inst->exec_size, k),
6755 offset(tmp, lbld_after, k));
6756 }
6757
6758 return tmp;
6759
6760 } else {
6761 /* No need to allocate a temporary for the lowered instruction, just
6762 * take the right group of channels from the original region.
6763 */
6764 return dst;
6765 }
6766 }
6767
6768 bool
6769 fs_visitor::lower_simd_width()
6770 {
6771 bool progress = false;
6772
6773 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
6774 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
6775
6776 if (lower_width != inst->exec_size) {
6777 /* Builder matching the original instruction. We may also need to
6778 * emit an instruction of width larger than the original, set the
6779 * execution size of the builder to the highest of both for now so
6780 * we're sure that both cases can be handled.
6781 */
6782 const unsigned max_width = MAX2(inst->exec_size, lower_width);
6783 const fs_builder ibld = bld.at(block, inst)
6784 .exec_all(inst->force_writemask_all)
6785 .group(max_width, inst->group / max_width);
6786
6787 /* Split the copies in chunks of the execution width of either the
6788 * original or the lowered instruction, whichever is lower.
6789 */
6790 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
6791 const unsigned dst_size = inst->size_written /
6792 inst->dst.component_size(inst->exec_size);
6793
6794 assert(!inst->writes_accumulator && !inst->mlen);
6795
6796 /* Inserting the zip, unzip, and duplicated instructions in all of
6797 * the right spots is somewhat tricky. All of the unzip and any
6798 * instructions from the zip which unzip the destination prior to
6799 * writing need to happen before all of the per-group instructions
6800 * and the zip instructions need to happen after. In order to sort
6801 * this all out, we insert the unzip instructions before \p inst,
6802 * insert the per-group instructions after \p inst (i.e. before
6803 * inst->next), and insert the zip instructions before the
6804 * instruction after \p inst. Since we are inserting instructions
6805 * after \p inst, inst->next is a moving target and we need to save
6806 * it off here so that we insert the zip instructions in the right
6807 * place.
6808 *
6809 * Since we're inserting split instructions after after_inst, the
6810 * instructions will end up in the reverse order that we insert them.
6811 * However, certain render target writes require that the low group
6812 * instructions come before the high group. From the Ivy Bridge PRM
6813 * Vol. 4, Pt. 1, Section 3.9.11:
6814 *
6815 * "If multiple SIMD8 Dual Source messages are delivered by the
6816 * pixel shader thread, each SIMD8_DUALSRC_LO message must be
6817 * issued before the SIMD8_DUALSRC_HI message with the same Slot
6818 * Group Select setting."
6819 *
6820 * And, from Section 3.9.11.1 of the same PRM:
6821 *
6822 * "When SIMD32 or SIMD16 PS threads send render target writes
6823 * with multiple SIMD8 and SIMD16 messages, the following must
6824 * hold:
6825 *
6826 * All the slots (as described above) must have a corresponding
6827 * render target write irrespective of the slot's validity. A slot
6828 * is considered valid when at least one sample is enabled. For
6829 * example, a SIMD16 PS thread must send two SIMD8 render target
6830 * writes to cover all the slots.
6831 *
6832 * PS thread must send SIMD render target write messages with
6833 * increasing slot numbers. For example, SIMD16 thread has
6834 * Slot[15:0] and if two SIMD8 render target writes are used, the
6835 * first SIMD8 render target write must send Slot[7:0] and the
6836 * next one must send Slot[15:8]."
6837 *
6838 * In order to make low group instructions come before high group
6839 * instructions (this is required for some render target writes), we
6840 * split from the highest group to lowest.
6841 */
6842 exec_node *const after_inst = inst->next;
6843 for (int i = n - 1; i >= 0; i--) {
6844 /* Emit a copy of the original instruction with the lowered width.
6845 * If the EOT flag was set throw it away except for the last
6846 * instruction to avoid killing the thread prematurely.
6847 */
6848 fs_inst split_inst = *inst;
6849 split_inst.exec_size = lower_width;
6850 split_inst.eot = inst->eot && i == int(n - 1);
6851
6852 /* Select the correct channel enables for the i-th group, then
6853 * transform the sources and destination and emit the lowered
6854 * instruction.
6855 */
6856 const fs_builder lbld = ibld.group(lower_width, i);
6857
6858 for (unsigned j = 0; j < inst->sources; j++)
6859 split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j);
6860
6861 split_inst.dst = emit_zip(lbld.at(block, inst),
6862 lbld.at(block, after_inst), inst);
6863 split_inst.size_written =
6864 split_inst.dst.component_size(lower_width) * dst_size;
6865
6866 lbld.at(block, inst->next).emit(split_inst);
6867 }
6868
6869 inst->remove(block);
6870 progress = true;
6871 }
6872 }
6873
6874 if (progress)
6875 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
6876
6877 return progress;
6878 }
6879
6880 /**
6881 * Transform barycentric vectors into the interleaved form expected by the PLN
6882 * instruction and returned by the Gen7+ PI shared function.
6883 *
6884 * For channels 0-15 in SIMD16 mode they are expected to be laid out as
6885 * follows in the register file:
6886 *
6887 * rN+0: X[0-7]
6888 * rN+1: Y[0-7]
6889 * rN+2: X[8-15]
6890 * rN+3: Y[8-15]
6891 *
6892 * There is no need to handle SIMD32 here -- This is expected to be run after
6893 * SIMD lowering, since SIMD lowering relies on vectors having the standard
6894 * component layout.
6895 */
6896 bool
6897 fs_visitor::lower_barycentrics()
6898 {
6899 const bool has_interleaved_layout = devinfo->has_pln || devinfo->gen >= 7;
6900 bool progress = false;
6901
6902 if (stage != MESA_SHADER_FRAGMENT || !has_interleaved_layout)
6903 return false;
6904
6905 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
6906 if (inst->exec_size < 16)
6907 continue;
6908
6909 const fs_builder ibld(this, block, inst);
6910 const fs_builder ubld = ibld.exec_all().group(8, 0);
6911
6912 switch (inst->opcode) {
6913 case FS_OPCODE_LINTERP : {
6914 assert(inst->exec_size == 16);
6915 const fs_reg tmp = ibld.vgrf(inst->src[0].type, 2);
6916 fs_reg srcs[4];
6917
6918 for (unsigned i = 0; i < ARRAY_SIZE(srcs); i++)
6919 srcs[i] = horiz_offset(offset(inst->src[0], ibld, i % 2),
6920 8 * (i / 2));
6921
6922 ubld.LOAD_PAYLOAD(tmp, srcs, ARRAY_SIZE(srcs), ARRAY_SIZE(srcs));
6923
6924 inst->src[0] = tmp;
6925 progress = true;
6926 break;
6927 }
6928 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
6929 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
6930 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: {
6931 assert(inst->exec_size == 16);
6932 const fs_reg tmp = ibld.vgrf(inst->dst.type, 2);
6933
6934 for (unsigned i = 0; i < 2; i++) {
6935 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
6936 fs_inst *mov = ibld.at(block, inst->next).group(8, g)
6937 .MOV(horiz_offset(offset(inst->dst, ibld, i),
6938 8 * g),
6939 offset(tmp, ubld, 2 * g + i));
6940 mov->predicate = inst->predicate;
6941 mov->predicate_inverse = inst->predicate_inverse;
6942 mov->flag_subreg = inst->flag_subreg;
6943 }
6944 }
6945
6946 inst->dst = tmp;
6947 progress = true;
6948 break;
6949 }
6950 default:
6951 break;
6952 }
6953 }
6954
6955 if (progress)
6956 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
6957
6958 return progress;
6959 }
6960
6961 void
6962 fs_visitor::dump_instructions()
6963 {
6964 dump_instructions(NULL);
6965 }
6966
6967 void
6968 fs_visitor::dump_instructions(const char *name)
6969 {
6970 FILE *file = stderr;
6971 if (name && geteuid() != 0) {
6972 file = fopen(name, "w");
6973 if (!file)
6974 file = stderr;
6975 }
6976
6977 if (cfg) {
6978 calculate_register_pressure();
6979 int ip = 0, max_pressure = 0;
6980 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
6981 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
6982 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
6983 dump_instruction(inst, file);
6984 ip++;
6985 }
6986 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
6987 } else {
6988 int ip = 0;
6989 foreach_in_list(backend_instruction, inst, &instructions) {
6990 fprintf(file, "%4d: ", ip++);
6991 dump_instruction(inst, file);
6992 }
6993 }
6994
6995 if (file != stderr) {
6996 fclose(file);
6997 }
6998 }
6999
7000 void
7001 fs_visitor::dump_instruction(backend_instruction *be_inst)
7002 {
7003 dump_instruction(be_inst, stderr);
7004 }
7005
7006 void
7007 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
7008 {
7009 fs_inst *inst = (fs_inst *)be_inst;
7010
7011 if (inst->predicate) {
7012 fprintf(file, "(%cf%d.%d) ",
7013 inst->predicate_inverse ? '-' : '+',
7014 inst->flag_subreg / 2,
7015 inst->flag_subreg % 2);
7016 }
7017
7018 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
7019 if (inst->saturate)
7020 fprintf(file, ".sat");
7021 if (inst->conditional_mod) {
7022 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
7023 if (!inst->predicate &&
7024 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
7025 inst->opcode != BRW_OPCODE_CSEL &&
7026 inst->opcode != BRW_OPCODE_IF &&
7027 inst->opcode != BRW_OPCODE_WHILE))) {
7028 fprintf(file, ".f%d.%d", inst->flag_subreg / 2,
7029 inst->flag_subreg % 2);
7030 }
7031 }
7032 fprintf(file, "(%d) ", inst->exec_size);
7033
7034 if (inst->mlen) {
7035 fprintf(file, "(mlen: %d) ", inst->mlen);
7036 }
7037
7038 if (inst->ex_mlen) {
7039 fprintf(file, "(ex_mlen: %d) ", inst->ex_mlen);
7040 }
7041
7042 if (inst->eot) {
7043 fprintf(file, "(EOT) ");
7044 }
7045
7046 switch (inst->dst.file) {
7047 case VGRF:
7048 fprintf(file, "vgrf%d", inst->dst.nr);
7049 break;
7050 case FIXED_GRF:
7051 fprintf(file, "g%d", inst->dst.nr);
7052 break;
7053 case MRF:
7054 fprintf(file, "m%d", inst->dst.nr);
7055 break;
7056 case BAD_FILE:
7057 fprintf(file, "(null)");
7058 break;
7059 case UNIFORM:
7060 fprintf(file, "***u%d***", inst->dst.nr);
7061 break;
7062 case ATTR:
7063 fprintf(file, "***attr%d***", inst->dst.nr);
7064 break;
7065 case ARF:
7066 switch (inst->dst.nr) {
7067 case BRW_ARF_NULL:
7068 fprintf(file, "null");
7069 break;
7070 case BRW_ARF_ADDRESS:
7071 fprintf(file, "a0.%d", inst->dst.subnr);
7072 break;
7073 case BRW_ARF_ACCUMULATOR:
7074 fprintf(file, "acc%d", inst->dst.subnr);
7075 break;
7076 case BRW_ARF_FLAG:
7077 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
7078 break;
7079 default:
7080 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
7081 break;
7082 }
7083 break;
7084 case IMM:
7085 unreachable("not reached");
7086 }
7087
7088 if (inst->dst.offset ||
7089 (inst->dst.file == VGRF &&
7090 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
7091 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
7092 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
7093 inst->dst.offset % reg_size);
7094 }
7095
7096 if (inst->dst.stride != 1)
7097 fprintf(file, "<%u>", inst->dst.stride);
7098 fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));
7099
7100 for (int i = 0; i < inst->sources; i++) {
7101 if (inst->src[i].negate)
7102 fprintf(file, "-");
7103 if (inst->src[i].abs)
7104 fprintf(file, "|");
7105 switch (inst->src[i].file) {
7106 case VGRF:
7107 fprintf(file, "vgrf%d", inst->src[i].nr);
7108 break;
7109 case FIXED_GRF:
7110 fprintf(file, "g%d", inst->src[i].nr);
7111 break;
7112 case MRF:
7113 fprintf(file, "***m%d***", inst->src[i].nr);
7114 break;
7115 case ATTR:
7116 fprintf(file, "attr%d", inst->src[i].nr);
7117 break;
7118 case UNIFORM:
7119 fprintf(file, "u%d", inst->src[i].nr);
7120 break;
7121 case BAD_FILE:
7122 fprintf(file, "(null)");
7123 break;
7124 case IMM:
7125 switch (inst->src[i].type) {
7126 case BRW_REGISTER_TYPE_F:
7127 fprintf(file, "%-gf", inst->src[i].f);
7128 break;
7129 case BRW_REGISTER_TYPE_DF:
7130 fprintf(file, "%fdf", inst->src[i].df);
7131 break;
7132 case BRW_REGISTER_TYPE_W:
7133 case BRW_REGISTER_TYPE_D:
7134 fprintf(file, "%dd", inst->src[i].d);
7135 break;
7136 case BRW_REGISTER_TYPE_UW:
7137 case BRW_REGISTER_TYPE_UD:
7138 fprintf(file, "%uu", inst->src[i].ud);
7139 break;
7140 case BRW_REGISTER_TYPE_Q:
7141 fprintf(file, "%" PRId64 "q", inst->src[i].d64);
7142 break;
7143 case BRW_REGISTER_TYPE_UQ:
7144 fprintf(file, "%" PRIu64 "uq", inst->src[i].u64);
7145 break;
7146 case BRW_REGISTER_TYPE_VF:
7147 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
7148 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
7149 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
7150 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
7151 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
7152 break;
7153 case BRW_REGISTER_TYPE_V:
7154 case BRW_REGISTER_TYPE_UV:
7155 fprintf(file, "%08x%s", inst->src[i].ud,
7156 inst->src[i].type == BRW_REGISTER_TYPE_V ? "V" : "UV");
7157 break;
7158 default:
7159 fprintf(file, "???");
7160 break;
7161 }
7162 break;
7163 case ARF:
7164 switch (inst->src[i].nr) {
7165 case BRW_ARF_NULL:
7166 fprintf(file, "null");
7167 break;
7168 case BRW_ARF_ADDRESS:
7169 fprintf(file, "a0.%d", inst->src[i].subnr);
7170 break;
7171 case BRW_ARF_ACCUMULATOR:
7172 fprintf(file, "acc%d", inst->src[i].subnr);
7173 break;
7174 case BRW_ARF_FLAG:
7175 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
7176 break;
7177 default:
7178 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
7179 break;
7180 }
7181 break;
7182 }
7183
7184 if (inst->src[i].offset ||
7185 (inst->src[i].file == VGRF &&
7186 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
7187 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
7188 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
7189 inst->src[i].offset % reg_size);
7190 }
7191
7192 if (inst->src[i].abs)
7193 fprintf(file, "|");
7194
7195 if (inst->src[i].file != IMM) {
7196 unsigned stride;
7197 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
7198 unsigned hstride = inst->src[i].hstride;
7199 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
7200 } else {
7201 stride = inst->src[i].stride;
7202 }
7203 if (stride != 1)
7204 fprintf(file, "<%u>", stride);
7205
7206 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
7207 }
7208
7209 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
7210 fprintf(file, ", ");
7211 }
7212
7213 fprintf(file, " ");
7214
7215 if (inst->force_writemask_all)
7216 fprintf(file, "NoMask ");
7217
7218 if (inst->exec_size != dispatch_width)
7219 fprintf(file, "group%d ", inst->group);
7220
7221 fprintf(file, "\n");
7222 }
7223
7224 void
7225 fs_visitor::setup_fs_payload_gen6()
7226 {
7227 assert(stage == MESA_SHADER_FRAGMENT);
7228 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
7229 const unsigned payload_width = MIN2(16, dispatch_width);
7230 assert(dispatch_width % payload_width == 0);
7231 assert(devinfo->gen >= 6);
7232
7233 prog_data->uses_src_depth = prog_data->uses_src_w =
7234 (nir->info.system_values_read & (1ull << SYSTEM_VALUE_FRAG_COORD)) != 0;
7235
7236 prog_data->uses_sample_mask =
7237 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
7238
7239 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
7240 *
7241 * "MSDISPMODE_PERSAMPLE is required in order to select
7242 * POSOFFSET_SAMPLE"
7243 *
7244 * So we can only really get sample positions if we are doing real
7245 * per-sample dispatch. If we need gl_SamplePosition and we don't have
7246 * persample dispatch, we hard-code it to 0.5.
7247 */
7248 prog_data->uses_pos_offset = prog_data->persample_dispatch &&
7249 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS);
7250
7251 /* R0: PS thread payload header. */
7252 payload.num_regs++;
7253
7254 for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
7255 /* R1: masks, pixel X/Y coordinates. */
7256 payload.subspan_coord_reg[j] = payload.num_regs++;
7257 }
7258
7259 for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
7260 /* R3-26: barycentric interpolation coordinates. These appear in the
7261 * same order that they appear in the brw_barycentric_mode enum. Each
7262 * set of coordinates occupies 2 registers if dispatch width == 8 and 4
7263 * registers if dispatch width == 16. Coordinates only appear if they
7264 * were enabled using the "Barycentric Interpolation Mode" bits in
7265 * WM_STATE.
7266 */
7267 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
7268 if (prog_data->barycentric_interp_modes & (1 << i)) {
7269 payload.barycentric_coord_reg[i][j] = payload.num_regs;
7270 payload.num_regs += payload_width / 4;
7271 }
7272 }
7273
7274 /* R27-28: interpolated depth if uses source depth */
7275 if (prog_data->uses_src_depth) {
7276 payload.source_depth_reg[j] = payload.num_regs;
7277 payload.num_regs += payload_width / 8;
7278 }
7279
7280 /* R29-30: interpolated W set if GEN6_WM_USES_SOURCE_W. */
7281 if (prog_data->uses_src_w) {
7282 payload.source_w_reg[j] = payload.num_regs;
7283 payload.num_regs += payload_width / 8;
7284 }
7285
7286 /* R31: MSAA position offsets. */
7287 if (prog_data->uses_pos_offset) {
7288 payload.sample_pos_reg[j] = payload.num_regs;
7289 payload.num_regs++;
7290 }
7291
7292 /* R32-33: MSAA input coverage mask */
7293 if (prog_data->uses_sample_mask) {
7294 assert(devinfo->gen >= 7);
7295 payload.sample_mask_in_reg[j] = payload.num_regs;
7296 payload.num_regs += payload_width / 8;
7297 }
7298 }
7299
7300 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
7301 source_depth_to_render_target = true;
7302 }
7303 }
7304
7305 void
7306 fs_visitor::setup_vs_payload()
7307 {
7308 /* R0: thread header, R1: urb handles */
7309 payload.num_regs = 2;
7310 }
7311
7312 void
7313 fs_visitor::setup_gs_payload()
7314 {
7315 assert(stage == MESA_SHADER_GEOMETRY);
7316
7317 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
7318 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
7319
7320 /* R0: thread header, R1: output URB handles */
7321 payload.num_regs = 2;
7322
7323 if (gs_prog_data->include_primitive_id) {
7324 /* R2: Primitive ID 0..7 */
7325 payload.num_regs++;
7326 }
7327
7328 /* Always enable VUE handles so we can safely use pull model if needed.
7329 *
7330 * The push model for a GS uses a ton of register space even for trivial
7331 * scenarios with just a few inputs, so just make things easier and a bit
7332 * safer by always having pull model available.
7333 */
7334 gs_prog_data->base.include_vue_handles = true;
7335
7336 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
7337 payload.num_regs += nir->info.gs.vertices_in;
7338
7339 /* Use a maximum of 24 registers for push-model inputs. */
7340 const unsigned max_push_components = 24;
7341
7342 /* If pushing our inputs would take too many registers, reduce the URB read
7343 * length (which is in HWords, or 8 registers), and resort to pulling.
7344 *
7345 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
7346 * have to multiply by VerticesIn to obtain the total storage requirement.
7347 */
7348 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
7349 max_push_components) {
7350 vue_prog_data->urb_read_length =
7351 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
7352 }
7353 }
7354
7355 void
7356 fs_visitor::setup_cs_payload()
7357 {
7358 assert(devinfo->gen >= 7);
7359 payload.num_regs = 1;
7360 }
7361
7362 void
7363 fs_visitor::calculate_register_pressure()
7364 {
7365 invalidate_analysis(DEPENDENCY_EVERYTHING);
7366 calculate_live_intervals();
7367
7368 unsigned num_instructions = 0;
7369 foreach_block(block, cfg)
7370 num_instructions += block->instructions.length();
7371
7372 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
7373
7374 for (unsigned reg = 0; reg < alloc.count; reg++) {
7375 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
7376 regs_live_at_ip[ip] += alloc.sizes[reg];
7377 }
7378 }
7379
7380 void
7381 fs_visitor::invalidate_analysis(brw::analysis_dependency_class c)
7382 {
7383 backend_shader::invalidate_analysis(c);
7384 }
7385
7386 void
7387 fs_visitor::optimize()
7388 {
7389 /* Start by validating the shader we currently have. */
7390 validate();
7391
7392 /* bld is the common builder object pointing at the end of the program we
7393 * used to translate it into i965 IR. For the optimization and lowering
7394 * passes coming next, any code added after the end of the program without
7395 * having explicitly called fs_builder::at() clearly points at a mistake.
7396 * Ideally optimization passes wouldn't be part of the visitor so they
7397 * wouldn't have access to bld at all, but they do, so just in case some
7398 * pass forgets to ask for a location explicitly set it to NULL here to
7399 * make it trip. The dispatch width is initialized to a bogus value to
7400 * make sure that optimizations set the execution controls explicitly to
7401 * match the code they are manipulating instead of relying on the defaults.
7402 */
7403 bld = fs_builder(this, 64);
7404
7405 assign_constant_locations();
7406 lower_constant_loads();
7407
7408 validate();
7409
7410 split_virtual_grfs();
7411 validate();
7412
7413 #define OPT(pass, args...) ({ \
7414 pass_num++; \
7415 bool this_progress = pass(args); \
7416 \
7417 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
7418 char filename[64]; \
7419 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
7420 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
7421 \
7422 backend_shader::dump_instructions(filename); \
7423 } \
7424 \
7425 validate(); \
7426 \
7427 progress = progress || this_progress; \
7428 this_progress; \
7429 })
7430
7431 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
7432 char filename[64];
7433 snprintf(filename, 64, "%s%d-%s-00-00-start",
7434 stage_abbrev, dispatch_width, nir->info.name);
7435
7436 backend_shader::dump_instructions(filename);
7437 }
7438
7439 bool progress = false;
7440 int iteration = 0;
7441 int pass_num = 0;
7442
7443 /* Before anything else, eliminate dead code. The results of some NIR
7444 * instructions may effectively be calculated twice. Once when the
7445 * instruction is encountered, and again when the user of that result is
7446 * encountered. Wipe those away before algebraic optimizations and
7447 * especially copy propagation can mix things up.
7448 */
7449 OPT(dead_code_eliminate);
7450
7451 OPT(remove_extra_rounding_modes);
7452
7453 do {
7454 progress = false;
7455 pass_num = 0;
7456 iteration++;
7457
7458 OPT(remove_duplicate_mrf_writes);
7459
7460 OPT(opt_algebraic);
7461 OPT(opt_cse);
7462 OPT(opt_copy_propagation);
7463 OPT(opt_predicated_break, this);
7464 OPT(opt_cmod_propagation);
7465 OPT(dead_code_eliminate);
7466 OPT(opt_peephole_sel);
7467 OPT(dead_control_flow_eliminate, this);
7468 OPT(opt_register_renaming);
7469 OPT(opt_saturate_propagation);
7470 OPT(register_coalesce);
7471 OPT(compute_to_mrf);
7472 OPT(eliminate_find_live_channel);
7473
7474 OPT(compact_virtual_grfs);
7475 } while (progress);
7476
7477 progress = false;
7478 pass_num = 0;
7479
7480 if (OPT(lower_pack)) {
7481 OPT(register_coalesce);
7482 OPT(dead_code_eliminate);
7483 }
7484
7485 OPT(lower_simd_width);
7486 OPT(lower_barycentrics);
7487
7488 /* After SIMD lowering just in case we had to unroll the EOT send. */
7489 OPT(opt_sampler_eot);
7490
7491 OPT(lower_logical_sends);
7492
7493 /* After logical SEND lowering. */
7494 OPT(fixup_nomask_control_flow);
7495
7496 if (progress) {
7497 OPT(opt_copy_propagation);
7498 /* Only run after logical send lowering because it's easier to implement
7499 * in terms of physical sends.
7500 */
7501 if (OPT(opt_zero_samples))
7502 OPT(opt_copy_propagation);
7503 /* Run after logical send lowering to give it a chance to CSE the
7504 * LOAD_PAYLOAD instructions created to construct the payloads of
7505 * e.g. texturing messages in cases where it wasn't possible to CSE the
7506 * whole logical instruction.
7507 */
7508 OPT(opt_cse);
7509 OPT(register_coalesce);
7510 OPT(compute_to_mrf);
7511 OPT(dead_code_eliminate);
7512 OPT(remove_duplicate_mrf_writes);
7513 OPT(opt_peephole_sel);
7514 }
7515
7516 OPT(opt_redundant_discard_jumps);
7517
7518 if (OPT(lower_load_payload)) {
7519 split_virtual_grfs();
7520
7521 /* Lower 64 bit MOVs generated by payload lowering. */
7522 if (!devinfo->has_64bit_float && !devinfo->has_64bit_int)
7523 OPT(opt_algebraic);
7524
7525 OPT(register_coalesce);
7526 OPT(lower_simd_width);
7527 OPT(compute_to_mrf);
7528 OPT(dead_code_eliminate);
7529 }
7530
7531 OPT(opt_combine_constants);
7532 OPT(lower_integer_multiplication);
7533 OPT(lower_sub_sat);
7534
7535 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
7536 OPT(opt_cmod_propagation);
7537 OPT(opt_cse);
7538 OPT(opt_copy_propagation);
7539 OPT(dead_code_eliminate);
7540 }
7541
7542 if (OPT(lower_regioning)) {
7543 OPT(opt_copy_propagation);
7544 OPT(dead_code_eliminate);
7545 OPT(lower_simd_width);
7546 }
7547
7548 OPT(fixup_sends_duplicate_payload);
7549
7550 lower_uniform_pull_constant_loads();
7551
7552 validate();
7553 }
7554
7555 /**
7556 * From the Skylake PRM Vol. 2a docs for sends:
7557 *
7558 * "It is required that the second block of GRFs does not overlap with the
7559 * first block."
7560 *
7561 * There are plenty of cases where we may accidentally violate this due to
7562 * having, for instance, both sources be the constant 0. This little pass
7563 * just adds a new vgrf for the second payload and copies it over.
7564 */
7565 bool
7566 fs_visitor::fixup_sends_duplicate_payload()
7567 {
7568 bool progress = false;
7569
7570 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
7571 if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 &&
7572 regions_overlap(inst->src[2], inst->mlen * REG_SIZE,
7573 inst->src[3], inst->ex_mlen * REG_SIZE)) {
7574 fs_reg tmp = fs_reg(VGRF, alloc.allocate(inst->ex_mlen),
7575 BRW_REGISTER_TYPE_UD);
7576 /* Sadly, we've lost all notion of channels and bit sizes at this
7577 * point. Just WE_all it.
7578 */
7579 const fs_builder ibld = bld.at(block, inst).exec_all().group(16, 0);
7580 fs_reg copy_src = retype(inst->src[3], BRW_REGISTER_TYPE_UD);
7581 fs_reg copy_dst = tmp;
7582 for (unsigned i = 0; i < inst->ex_mlen; i += 2) {
7583 if (inst->ex_mlen == i + 1) {
7584 /* Only one register left; do SIMD8 */
7585 ibld.group(8, 0).MOV(copy_dst, copy_src);
7586 } else {
7587 ibld.MOV(copy_dst, copy_src);
7588 }
7589 copy_src = offset(copy_src, ibld, 1);
7590 copy_dst = offset(copy_dst, ibld, 1);
7591 }
7592 inst->src[3] = tmp;
7593 progress = true;
7594 }
7595 }
7596
7597 if (progress)
7598 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
7599
7600 return progress;
7601 }
7602
7603 /**
7604 * Three source instruction must have a GRF/MRF destination register.
7605 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
7606 */
7607 void
7608 fs_visitor::fixup_3src_null_dest()
7609 {
7610 bool progress = false;
7611
7612 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
7613 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
7614 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
7615 inst->dst.type);
7616 progress = true;
7617 }
7618 }
7619
7620 if (progress)
7621 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
7622 DEPENDENCY_VARIABLES);
7623 }
7624
7625 /**
7626 * Find the first instruction in the program that might start a region of
7627 * divergent control flow due to a HALT jump. There is no
7628 * find_halt_control_flow_region_end(), the region of divergence extends until
7629 * the only FS_OPCODE_PLACEHOLDER_HALT in the program.
7630 */
7631 static const fs_inst *
7632 find_halt_control_flow_region_start(const fs_visitor *v)
7633 {
7634 if (brw_wm_prog_data(v->prog_data)->uses_kill) {
7635 foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
7636 if (inst->opcode == FS_OPCODE_DISCARD_JUMP ||
7637 inst->opcode == FS_OPCODE_PLACEHOLDER_HALT)
7638 return inst;
7639 }
7640 }
7641
7642 return NULL;
7643 }
7644
7645 /**
7646 * Work around the Gen12 hardware bug filed as GEN:BUG:1407528679. EU fusion
7647 * can cause a BB to be executed with all channels disabled, which will lead
7648 * to the execution of any NoMask instructions in it, even though any
7649 * execution-masked instructions will be correctly shot down. This may break
7650 * assumptions of some NoMask SEND messages whose descriptor depends on data
7651 * generated by live invocations of the shader.
7652 *
7653 * This avoids the problem by predicating certain instructions on an ANY
7654 * horizontal predicate that makes sure that their execution is omitted when
7655 * all channels of the program are disabled.
7656 */
7657 bool
7658 fs_visitor::fixup_nomask_control_flow()
7659 {
7660 if (devinfo->gen != 12)
7661 return false;
7662
7663 const brw_predicate pred = dispatch_width > 16 ? BRW_PREDICATE_ALIGN1_ANY32H :
7664 dispatch_width > 8 ? BRW_PREDICATE_ALIGN1_ANY16H :
7665 BRW_PREDICATE_ALIGN1_ANY8H;
7666 const fs_inst *halt_start = find_halt_control_flow_region_start(this);
7667 unsigned depth = 0;
7668 bool progress = false;
7669
7670 calculate_live_intervals();
7671
7672 /* Scan the program backwards in order to be able to easily determine
7673 * whether the flag register is live at any point.
7674 */
7675 foreach_block_reverse_safe(block, cfg) {
7676 BITSET_WORD flag_liveout = live_intervals->block_data[block->num]
7677 .flag_liveout[0];
7678 STATIC_ASSERT(ARRAY_SIZE(live_intervals->block_data[0].flag_liveout) == 1);
7679
7680 foreach_inst_in_block_reverse_safe(fs_inst, inst, block) {
7681 if (!inst->predicate && inst->exec_size >= 8)
7682 flag_liveout &= ~inst->flags_written();
7683
7684 switch (inst->opcode) {
7685 case BRW_OPCODE_DO:
7686 case BRW_OPCODE_IF:
7687 /* Note that this doesn't handle FS_OPCODE_DISCARD_JUMP since only
7688 * the first one in the program closes the region of divergent
7689 * control flow due to any HALT instructions -- Instead this is
7690 * handled with the halt_start check below.
7691 */
7692 depth--;
7693 break;
7694
7695 case BRW_OPCODE_WHILE:
7696 case BRW_OPCODE_ENDIF:
7697 case FS_OPCODE_PLACEHOLDER_HALT:
7698 depth++;
7699 break;
7700
7701 default:
7702 /* Note that the vast majority of NoMask SEND instructions in the
7703 * program are harmless while executed in a block with all
7704 * channels disabled, since any instructions with side effects we
7705 * could hit here should be execution-masked.
7706 *
7707 * The main concern is NoMask SEND instructions where the message
7708 * descriptor or header depends on data generated by live
7709 * invocations of the shader (RESINFO and
7710 * FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD with a dynamically
7711 * computed surface index seem to be the only examples right now
7712 * where this could easily lead to GPU hangs). Unfortunately we
7713 * have no straightforward way to detect that currently, so just
7714 * predicate any NoMask SEND instructions we find under control
7715 * flow.
7716 *
7717 * If this proves to have a measurable performance impact it can
7718 * be easily extended with a whitelist of messages we know we can
7719 * safely omit the predication for.
7720 */
7721 if (depth && inst->force_writemask_all &&
7722 is_send(inst) && !inst->predicate) {
7723 /* We need to load the execution mask into the flag register by
7724 * using a builder with channel group matching the whole shader
7725 * (rather than the default which is derived from the original
7726 * instruction), in order to avoid getting a right-shifted
7727 * value.
7728 */
7729 const fs_builder ubld = fs_builder(this, block, inst)
7730 .exec_all().group(dispatch_width, 0);
7731 const fs_reg flag = retype(brw_flag_reg(0, 0),
7732 BRW_REGISTER_TYPE_UD);
7733
7734 /* Due to the lack of flag register allocation we need to save
7735 * and restore the flag register if it's live.
7736 */
7737 const bool save_flag = flag_liveout &
7738 flag_mask(flag, dispatch_width / 8);
7739 const fs_reg tmp = ubld.group(1, 0).vgrf(flag.type);
7740
7741 if (save_flag)
7742 ubld.group(1, 0).MOV(tmp, flag);
7743
7744 ubld.emit(FS_OPCODE_LOAD_LIVE_CHANNELS);
7745
7746 set_predicate(pred, inst);
7747 inst->flag_subreg = 0;
7748
7749 if (save_flag)
7750 ubld.group(1, 0).at(block, inst->next).MOV(flag, tmp);
7751
7752 progress = true;
7753 }
7754 break;
7755 }
7756
7757 if (inst == halt_start)
7758 depth--;
7759
7760 flag_liveout |= inst->flags_read(devinfo);
7761 }
7762 }
7763
7764 if (progress)
7765 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
7766
7767 return progress;
7768 }
7769
7770 void
7771 fs_visitor::allocate_registers(unsigned min_dispatch_width, bool allow_spilling)
7772 {
7773 bool allocated;
7774
7775 static const enum instruction_scheduler_mode pre_modes[] = {
7776 SCHEDULE_PRE,
7777 SCHEDULE_PRE_NON_LIFO,
7778 SCHEDULE_PRE_LIFO,
7779 };
7780
7781 static const char *scheduler_mode_name[] = {
7782 "top-down",
7783 "non-lifo",
7784 "lifo"
7785 };
7786
7787 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
7788
7789 /* Try each scheduling heuristic to see if it can successfully register
7790 * allocate without spilling. They should be ordered by decreasing
7791 * performance but increasing likelihood of allocating.
7792 */
7793 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
7794 schedule_instructions(pre_modes[i]);
7795 this->shader_stats.scheduler_mode = scheduler_mode_name[i];
7796
7797 if (0) {
7798 assign_regs_trivial();
7799 allocated = true;
7800 break;
7801 }
7802
7803 /* We only allow spilling for the last schedule mode and only if the
7804 * allow_spilling parameter and dispatch width work out ok.
7805 */
7806 bool can_spill = allow_spilling &&
7807 (i == ARRAY_SIZE(pre_modes) - 1) &&
7808 dispatch_width == min_dispatch_width;
7809
7810 /* We should only spill registers on the last scheduling. */
7811 assert(!spilled_any_registers);
7812
7813 allocated = assign_regs(can_spill, spill_all);
7814 if (allocated)
7815 break;
7816 }
7817
7818 if (!allocated) {
7819 if (!allow_spilling)
7820 fail("Failure to register allocate and spilling is not allowed.");
7821
7822 /* We assume that any spilling is worse than just dropping back to
7823 * SIMD8. There's probably actually some intermediate point where
7824 * SIMD16 with a couple of spills is still better.
7825 */
7826 if (dispatch_width > min_dispatch_width) {
7827 fail("Failure to register allocate. Reduce number of "
7828 "live scalar values to avoid this.");
7829 }
7830
7831 /* If we failed to allocate, we must have a reason */
7832 assert(failed);
7833 } else if (spilled_any_registers) {
7834 compiler->shader_perf_log(log_data,
7835 "%s shader triggered register spilling. "
7836 "Try reducing the number of live scalar "
7837 "values to improve performance.\n",
7838 stage_name);
7839 }
7840
7841 /* This must come after all optimization and register allocation, since
7842 * it inserts dead code that happens to have side effects, and it does
7843 * so based on the actual physical registers in use.
7844 */
7845 insert_gen4_send_dependency_workarounds();
7846
7847 if (failed)
7848 return;
7849
7850 opt_bank_conflicts();
7851
7852 schedule_instructions(SCHEDULE_POST);
7853
7854 if (last_scratch > 0) {
7855 ASSERTED unsigned max_scratch_size = 2 * 1024 * 1024;
7856
7857 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
7858
7859 if (stage == MESA_SHADER_COMPUTE) {
7860 if (devinfo->is_haswell) {
7861 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
7862 * field documentation, Haswell supports a minimum of 2kB of
7863 * scratch space for compute shaders, unlike every other stage
7864 * and platform.
7865 */
7866 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
7867 } else if (devinfo->gen <= 7) {
7868 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
7869 * field documentation, platforms prior to Haswell measure scratch
7870 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
7871 */
7872 prog_data->total_scratch = ALIGN(last_scratch, 1024);
7873 max_scratch_size = 12 * 1024;
7874 }
7875 }
7876
7877 /* We currently only support up to 2MB of scratch space. If we
7878 * need to support more eventually, the documentation suggests
7879 * that we could allocate a larger buffer, and partition it out
7880 * ourselves. We'd just have to undo the hardware's address
7881 * calculation by subtracting (FFTID * Per Thread Scratch Space)
7882 * and then add FFTID * (Larger Per Thread Scratch Space).
7883 *
7884 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
7885 * Thread Group Tracking > Local Memory/Scratch Space.
7886 */
7887 assert(prog_data->total_scratch < max_scratch_size);
7888 }
7889
7890 lower_scoreboard();
7891 }
7892
7893 bool
7894 fs_visitor::run_vs()
7895 {
7896 assert(stage == MESA_SHADER_VERTEX);
7897
7898 setup_vs_payload();
7899
7900 if (shader_time_index >= 0)
7901 emit_shader_time_begin();
7902
7903 emit_nir_code();
7904
7905 if (failed)
7906 return false;
7907
7908 emit_urb_writes();
7909
7910 if (shader_time_index >= 0)
7911 emit_shader_time_end();
7912
7913 calculate_cfg();
7914
7915 optimize();
7916
7917 assign_curb_setup();
7918 assign_vs_urb_setup();
7919
7920 fixup_3src_null_dest();
7921 allocate_registers(8, true);
7922
7923 return !failed;
7924 }
7925
7926 void
7927 fs_visitor::set_tcs_invocation_id()
7928 {
7929 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
7930 struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
7931
7932 const unsigned instance_id_mask =
7933 devinfo->gen >= 11 ? INTEL_MASK(22, 16) : INTEL_MASK(23, 17);
7934 const unsigned instance_id_shift =
7935 devinfo->gen >= 11 ? 16 : 17;
7936
7937 /* Get instance number from g0.2 bits 22:16 or 23:17 */
7938 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
7939 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
7940 brw_imm_ud(instance_id_mask));
7941
7942 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
7943
7944 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH) {
7945 /* gl_InvocationID is just the thread number */
7946 bld.SHR(invocation_id, t, brw_imm_ud(instance_id_shift));
7947 return;
7948 }
7949
7950 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH);
7951
7952 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
7953 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
7954 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
7955 bld.MOV(channels_ud, channels_uw);
7956
7957 if (tcs_prog_data->instances == 1) {
7958 invocation_id = channels_ud;
7959 } else {
7960 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
7961 bld.SHR(instance_times_8, t, brw_imm_ud(instance_id_shift - 3));
7962 bld.ADD(invocation_id, instance_times_8, channels_ud);
7963 }
7964 }
7965
7966 bool
7967 fs_visitor::run_tcs()
7968 {
7969 assert(stage == MESA_SHADER_TESS_CTRL);
7970
7971 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
7972 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
7973 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
7974
7975 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH ||
7976 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
7977
7978 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
7979 /* r1-r4 contain the ICP handles. */
7980 payload.num_regs = 5;
7981 } else {
7982 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
7983 assert(tcs_key->input_vertices > 0);
7984 /* r1 contains output handles, r2 may contain primitive ID, then the
7985 * ICP handles occupy the next 1-32 registers.
7986 */
7987 payload.num_regs = 2 + tcs_prog_data->include_primitive_id +
7988 tcs_key->input_vertices;
7989 }
7990
7991 if (shader_time_index >= 0)
7992 emit_shader_time_begin();
7993
7994 /* Initialize gl_InvocationID */
7995 set_tcs_invocation_id();
7996
7997 const bool fix_dispatch_mask =
7998 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH &&
7999 (nir->info.tess.tcs_vertices_out % 8) != 0;
8000
8001 /* Fix the disptach mask */
8002 if (fix_dispatch_mask) {
8003 bld.CMP(bld.null_reg_ud(), invocation_id,
8004 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
8005 bld.IF(BRW_PREDICATE_NORMAL);
8006 }
8007
8008 emit_nir_code();
8009
8010 if (fix_dispatch_mask) {
8011 bld.emit(BRW_OPCODE_ENDIF);
8012 }
8013
8014 /* Emit EOT write; set TR DS Cache bit */
8015 fs_reg srcs[3] = {
8016 fs_reg(get_tcs_output_urb_handle()),
8017 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
8018 fs_reg(brw_imm_ud(0)),
8019 };
8020 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
8021 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
8022
8023 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
8024 bld.null_reg_ud(), payload);
8025 inst->mlen = 3;
8026 inst->eot = true;
8027
8028 if (shader_time_index >= 0)
8029 emit_shader_time_end();
8030
8031 if (failed)
8032 return false;
8033
8034 calculate_cfg();
8035
8036 optimize();
8037
8038 assign_curb_setup();
8039 assign_tcs_urb_setup();
8040
8041 fixup_3src_null_dest();
8042 allocate_registers(8, true);
8043
8044 return !failed;
8045 }
8046
8047 bool
8048 fs_visitor::run_tes()
8049 {
8050 assert(stage == MESA_SHADER_TESS_EVAL);
8051
8052 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
8053 payload.num_regs = 5;
8054
8055 if (shader_time_index >= 0)
8056 emit_shader_time_begin();
8057
8058 emit_nir_code();
8059
8060 if (failed)
8061 return false;
8062
8063 emit_urb_writes();
8064
8065 if (shader_time_index >= 0)
8066 emit_shader_time_end();
8067
8068 calculate_cfg();
8069
8070 optimize();
8071
8072 assign_curb_setup();
8073 assign_tes_urb_setup();
8074
8075 fixup_3src_null_dest();
8076 allocate_registers(8, true);
8077
8078 return !failed;
8079 }
8080
8081 bool
8082 fs_visitor::run_gs()
8083 {
8084 assert(stage == MESA_SHADER_GEOMETRY);
8085
8086 setup_gs_payload();
8087
8088 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
8089
8090 if (gs_compile->control_data_header_size_bits > 0) {
8091 /* Create a VGRF to store accumulated control data bits. */
8092 this->control_data_bits = vgrf(glsl_type::uint_type);
8093
8094 /* If we're outputting more than 32 control data bits, then EmitVertex()
8095 * will set control_data_bits to 0 after emitting the first vertex.
8096 * Otherwise, we need to initialize it to 0 here.
8097 */
8098 if (gs_compile->control_data_header_size_bits <= 32) {
8099 const fs_builder abld = bld.annotate("initialize control data bits");
8100 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
8101 }
8102 }
8103
8104 if (shader_time_index >= 0)
8105 emit_shader_time_begin();
8106
8107 emit_nir_code();
8108
8109 emit_gs_thread_end();
8110
8111 if (shader_time_index >= 0)
8112 emit_shader_time_end();
8113
8114 if (failed)
8115 return false;
8116
8117 calculate_cfg();
8118
8119 optimize();
8120
8121 assign_curb_setup();
8122 assign_gs_urb_setup();
8123
8124 fixup_3src_null_dest();
8125 allocate_registers(8, true);
8126
8127 return !failed;
8128 }
8129
8130 /* From the SKL PRM, Volume 16, Workarounds:
8131 *
8132 * 0877 3D Pixel Shader Hang possible when pixel shader dispatched with
8133 * only header phases (R0-R2)
8134 *
8135 * WA: Enable a non-header phase (e.g. push constant) when dispatch would
8136 * have been header only.
8137 *
8138 * Instead of enabling push constants one can alternatively enable one of the
8139 * inputs. Here one simply chooses "layer" which shouldn't impose much
8140 * overhead.
8141 */
8142 static void
8143 gen9_ps_header_only_workaround(struct brw_wm_prog_data *wm_prog_data)
8144 {
8145 if (wm_prog_data->num_varying_inputs)
8146 return;
8147
8148 if (wm_prog_data->base.curb_read_length)
8149 return;
8150
8151 wm_prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;
8152 wm_prog_data->num_varying_inputs = 1;
8153 }
8154
8155 bool
8156 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
8157 {
8158 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
8159 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
8160
8161 assert(stage == MESA_SHADER_FRAGMENT);
8162
8163 if (devinfo->gen >= 6)
8164 setup_fs_payload_gen6();
8165 else
8166 setup_fs_payload_gen4();
8167
8168 if (0) {
8169 emit_dummy_fs();
8170 } else if (do_rep_send) {
8171 assert(dispatch_width == 16);
8172 emit_repclear_shader();
8173 } else {
8174 if (shader_time_index >= 0)
8175 emit_shader_time_begin();
8176
8177 if (nir->info.inputs_read > 0 ||
8178 (nir->info.system_values_read & (1ull << SYSTEM_VALUE_FRAG_COORD)) ||
8179 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
8180 if (devinfo->gen < 6)
8181 emit_interpolation_setup_gen4();
8182 else
8183 emit_interpolation_setup_gen6();
8184 }
8185
8186 /* We handle discards by keeping track of the still-live pixels in f0.1.
8187 * Initialize it with the dispatched pixels.
8188 */
8189 if (wm_prog_data->uses_kill) {
8190 const unsigned lower_width = MIN2(dispatch_width, 16);
8191 for (unsigned i = 0; i < dispatch_width / lower_width; i++) {
8192 const fs_reg dispatch_mask =
8193 devinfo->gen >= 6 ? brw_vec1_grf((i ? 2 : 1), 7) :
8194 brw_vec1_grf(0, 0);
8195 bld.exec_all().group(1, 0)
8196 .MOV(sample_mask_reg(bld.group(lower_width, i)),
8197 retype(dispatch_mask, BRW_REGISTER_TYPE_UW));
8198 }
8199 }
8200
8201 emit_nir_code();
8202
8203 if (failed)
8204 return false;
8205
8206 if (wm_prog_data->uses_kill)
8207 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
8208
8209 if (wm_key->alpha_test_func)
8210 emit_alpha_test();
8211
8212 emit_fb_writes();
8213
8214 if (shader_time_index >= 0)
8215 emit_shader_time_end();
8216
8217 calculate_cfg();
8218
8219 optimize();
8220
8221 assign_curb_setup();
8222
8223 if (devinfo->gen >= 9)
8224 gen9_ps_header_only_workaround(wm_prog_data);
8225
8226 assign_urb_setup();
8227
8228 fixup_3src_null_dest();
8229 allocate_registers(8, allow_spilling);
8230
8231 if (failed)
8232 return false;
8233 }
8234
8235 return !failed;
8236 }
8237
8238 bool
8239 fs_visitor::run_cs(unsigned min_dispatch_width)
8240 {
8241 assert(stage == MESA_SHADER_COMPUTE);
8242 assert(dispatch_width >= min_dispatch_width);
8243
8244 setup_cs_payload();
8245
8246 if (shader_time_index >= 0)
8247 emit_shader_time_begin();
8248
8249 if (devinfo->is_haswell && prog_data->total_shared > 0) {
8250 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
8251 const fs_builder abld = bld.exec_all().group(1, 0);
8252 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
8253 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
8254 }
8255
8256 emit_nir_code();
8257
8258 if (failed)
8259 return false;
8260
8261 emit_cs_terminate();
8262
8263 if (shader_time_index >= 0)
8264 emit_shader_time_end();
8265
8266 calculate_cfg();
8267
8268 optimize();
8269
8270 assign_curb_setup();
8271
8272 fixup_3src_null_dest();
8273 allocate_registers(min_dispatch_width, true);
8274
8275 if (failed)
8276 return false;
8277
8278 return !failed;
8279 }
8280
8281 static bool
8282 is_used_in_not_interp_frag_coord(nir_ssa_def *def)
8283 {
8284 nir_foreach_use(src, def) {
8285 if (src->parent_instr->type != nir_instr_type_intrinsic)
8286 return true;
8287
8288 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(src->parent_instr);
8289 if (intrin->intrinsic != nir_intrinsic_load_frag_coord)
8290 return true;
8291 }
8292
8293 nir_foreach_if_use(src, def)
8294 return true;
8295
8296 return false;
8297 }
8298
8299 /**
8300 * Return a bitfield where bit n is set if barycentric interpolation mode n
8301 * (see enum brw_barycentric_mode) is needed by the fragment shader.
8302 *
8303 * We examine the load_barycentric intrinsics rather than looking at input
8304 * variables so that we catch interpolateAtCentroid() messages too, which
8305 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
8306 */
8307 static unsigned
8308 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
8309 const nir_shader *shader)
8310 {
8311 unsigned barycentric_interp_modes = 0;
8312
8313 nir_foreach_function(f, shader) {
8314 if (!f->impl)
8315 continue;
8316
8317 nir_foreach_block(block, f->impl) {
8318 nir_foreach_instr(instr, block) {
8319 if (instr->type != nir_instr_type_intrinsic)
8320 continue;
8321
8322 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
8323 switch (intrin->intrinsic) {
8324 case nir_intrinsic_load_barycentric_pixel:
8325 case nir_intrinsic_load_barycentric_centroid:
8326 case nir_intrinsic_load_barycentric_sample:
8327 break;
8328 default:
8329 continue;
8330 }
8331
8332 /* Ignore WPOS; it doesn't require interpolation. */
8333 assert(intrin->dest.is_ssa);
8334 if (!is_used_in_not_interp_frag_coord(&intrin->dest.ssa))
8335 continue;
8336
8337 enum glsl_interp_mode interp = (enum glsl_interp_mode)
8338 nir_intrinsic_interp_mode(intrin);
8339 nir_intrinsic_op bary_op = intrin->intrinsic;
8340 enum brw_barycentric_mode bary =
8341 brw_barycentric_mode(interp, bary_op);
8342
8343 barycentric_interp_modes |= 1 << bary;
8344
8345 if (devinfo->needs_unlit_centroid_workaround &&
8346 bary_op == nir_intrinsic_load_barycentric_centroid)
8347 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
8348 }
8349 }
8350 }
8351
8352 return barycentric_interp_modes;
8353 }
8354
8355 static void
8356 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
8357 const nir_shader *shader)
8358 {
8359 prog_data->flat_inputs = 0;
8360
8361 nir_foreach_variable(var, &shader->inputs) {
8362 unsigned slots = glsl_count_attribute_slots(var->type, false);
8363 for (unsigned s = 0; s < slots; s++) {
8364 int input_index = prog_data->urb_setup[var->data.location + s];
8365
8366 if (input_index < 0)
8367 continue;
8368
8369 /* flat shading */
8370 if (var->data.interpolation == INTERP_MODE_FLAT)
8371 prog_data->flat_inputs |= 1 << input_index;
8372 }
8373 }
8374 }
8375
8376 static uint8_t
8377 computed_depth_mode(const nir_shader *shader)
8378 {
8379 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
8380 switch (shader->info.fs.depth_layout) {
8381 case FRAG_DEPTH_LAYOUT_NONE:
8382 case FRAG_DEPTH_LAYOUT_ANY:
8383 return BRW_PSCDEPTH_ON;
8384 case FRAG_DEPTH_LAYOUT_GREATER:
8385 return BRW_PSCDEPTH_ON_GE;
8386 case FRAG_DEPTH_LAYOUT_LESS:
8387 return BRW_PSCDEPTH_ON_LE;
8388 case FRAG_DEPTH_LAYOUT_UNCHANGED:
8389 return BRW_PSCDEPTH_OFF;
8390 }
8391 }
8392 return BRW_PSCDEPTH_OFF;
8393 }
8394
8395 /**
8396 * Move load_interpolated_input with simple (payload-based) barycentric modes
8397 * to the top of the program so we don't emit multiple PLNs for the same input.
8398 *
8399 * This works around CSE not being able to handle non-dominating cases
8400 * such as:
8401 *
8402 * if (...) {
8403 * interpolate input
8404 * } else {
8405 * interpolate the same exact input
8406 * }
8407 *
8408 * This should be replaced by global value numbering someday.
8409 */
8410 static bool
8411 move_interpolation_to_top(nir_shader *nir)
8412 {
8413 bool progress = false;
8414
8415 nir_foreach_function(f, nir) {
8416 if (!f->impl)
8417 continue;
8418
8419 nir_block *top = nir_start_block(f->impl);
8420 exec_node *cursor_node = NULL;
8421
8422 nir_foreach_block(block, f->impl) {
8423 if (block == top)
8424 continue;
8425
8426 nir_foreach_instr_safe(instr, block) {
8427 if (instr->type != nir_instr_type_intrinsic)
8428 continue;
8429
8430 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
8431 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
8432 continue;
8433 nir_intrinsic_instr *bary_intrinsic =
8434 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
8435 nir_intrinsic_op op = bary_intrinsic->intrinsic;
8436
8437 /* Leave interpolateAtSample/Offset() where they are. */
8438 if (op == nir_intrinsic_load_barycentric_at_sample ||
8439 op == nir_intrinsic_load_barycentric_at_offset)
8440 continue;
8441
8442 nir_instr *move[3] = {
8443 &bary_intrinsic->instr,
8444 intrin->src[1].ssa->parent_instr,
8445 instr
8446 };
8447
8448 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
8449 if (move[i]->block != top) {
8450 move[i]->block = top;
8451 exec_node_remove(&move[i]->node);
8452 if (cursor_node) {
8453 exec_node_insert_after(cursor_node, &move[i]->node);
8454 } else {
8455 exec_list_push_head(&top->instr_list, &move[i]->node);
8456 }
8457 cursor_node = &move[i]->node;
8458 progress = true;
8459 }
8460 }
8461 }
8462 }
8463 nir_metadata_preserve(f->impl, (nir_metadata)
8464 ((unsigned) nir_metadata_block_index |
8465 (unsigned) nir_metadata_dominance));
8466 }
8467
8468 return progress;
8469 }
8470
8471 /**
8472 * Demote per-sample barycentric intrinsics to centroid.
8473 *
8474 * Useful when rendering to a non-multisampled buffer.
8475 */
8476 static bool
8477 demote_sample_qualifiers(nir_shader *nir)
8478 {
8479 bool progress = true;
8480
8481 nir_foreach_function(f, nir) {
8482 if (!f->impl)
8483 continue;
8484
8485 nir_builder b;
8486 nir_builder_init(&b, f->impl);
8487
8488 nir_foreach_block(block, f->impl) {
8489 nir_foreach_instr_safe(instr, block) {
8490 if (instr->type != nir_instr_type_intrinsic)
8491 continue;
8492
8493 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
8494 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
8495 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
8496 continue;
8497
8498 b.cursor = nir_before_instr(instr);
8499 nir_ssa_def *centroid =
8500 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
8501 nir_intrinsic_interp_mode(intrin));
8502 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
8503 nir_src_for_ssa(centroid));
8504 nir_instr_remove(instr);
8505 progress = true;
8506 }
8507 }
8508
8509 nir_metadata_preserve(f->impl, (nir_metadata)
8510 ((unsigned) nir_metadata_block_index |
8511 (unsigned) nir_metadata_dominance));
8512 }
8513
8514 return progress;
8515 }
8516
8517 /**
8518 * Pre-gen6, the register file of the EUs was shared between threads,
8519 * and each thread used some subset allocated on a 16-register block
8520 * granularity. The unit states wanted these block counts.
8521 */
8522 static inline int
8523 brw_register_blocks(int reg_count)
8524 {
8525 return ALIGN(reg_count, 16) / 16 - 1;
8526 }
8527
8528 const unsigned *
8529 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
8530 void *mem_ctx,
8531 const struct brw_wm_prog_key *key,
8532 struct brw_wm_prog_data *prog_data,
8533 nir_shader *shader,
8534 int shader_time_index8, int shader_time_index16,
8535 int shader_time_index32, bool allow_spilling,
8536 bool use_rep_send, struct brw_vue_map *vue_map,
8537 struct brw_compile_stats *stats,
8538 char **error_str)
8539 {
8540 const struct gen_device_info *devinfo = compiler->devinfo;
8541
8542 unsigned max_subgroup_size = unlikely(INTEL_DEBUG & DEBUG_DO32) ? 32 : 16;
8543
8544 brw_nir_apply_key(shader, compiler, &key->base, max_subgroup_size, true);
8545 brw_nir_lower_fs_inputs(shader, devinfo, key);
8546 brw_nir_lower_fs_outputs(shader);
8547
8548 if (devinfo->gen < 6)
8549 brw_setup_vue_interpolation(vue_map, shader, prog_data);
8550
8551 /* From the SKL PRM, Volume 7, "Alpha Coverage":
8552 * "If Pixel Shader outputs oMask, AlphaToCoverage is disabled in
8553 * hardware, regardless of the state setting for this feature."
8554 */
8555 if (devinfo->gen > 6 && key->alpha_to_coverage) {
8556 /* Run constant fold optimization in order to get the correct source
8557 * offset to determine render target 0 store instruction in
8558 * emit_alpha_to_coverage pass.
8559 */
8560 NIR_PASS_V(shader, nir_opt_constant_folding);
8561 NIR_PASS_V(shader, brw_nir_lower_alpha_to_coverage);
8562 }
8563
8564 if (!key->multisample_fbo)
8565 NIR_PASS_V(shader, demote_sample_qualifiers);
8566 NIR_PASS_V(shader, move_interpolation_to_top);
8567 brw_postprocess_nir(shader, compiler, true);
8568
8569 /* key->alpha_test_func means simulating alpha testing via discards,
8570 * so the shader definitely kills pixels.
8571 */
8572 prog_data->uses_kill = shader->info.fs.uses_discard ||
8573 key->alpha_test_func;
8574 prog_data->uses_omask = key->multisample_fbo &&
8575 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
8576 prog_data->computed_depth_mode = computed_depth_mode(shader);
8577 prog_data->computed_stencil =
8578 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
8579
8580 prog_data->persample_dispatch =
8581 key->multisample_fbo &&
8582 (key->persample_interp ||
8583 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
8584 SYSTEM_BIT_SAMPLE_POS)) ||
8585 shader->info.fs.uses_sample_qualifier ||
8586 shader->info.outputs_read);
8587
8588 prog_data->has_render_target_reads = shader->info.outputs_read != 0ull;
8589
8590 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
8591 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
8592 prog_data->inner_coverage = shader->info.fs.inner_coverage;
8593
8594 prog_data->barycentric_interp_modes =
8595 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
8596
8597 calculate_urb_setup(devinfo, key, prog_data, shader);
8598 brw_compute_flat_inputs(prog_data, shader);
8599
8600 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL, *simd32_cfg = NULL;
8601
8602 fs_visitor v8(compiler, log_data, mem_ctx, &key->base,
8603 &prog_data->base, shader, 8,
8604 shader_time_index8);
8605 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
8606 if (error_str)
8607 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
8608
8609 return NULL;
8610 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
8611 simd8_cfg = v8.cfg;
8612 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
8613 prog_data->reg_blocks_8 = brw_register_blocks(v8.grf_used);
8614 }
8615
8616 /* Limit dispatch width to simd8 with dual source blending on gen8.
8617 * See: https://gitlab.freedesktop.org/mesa/mesa/issues/1917
8618 */
8619 if (devinfo->gen == 8 && prog_data->dual_src_blend &&
8620 !(INTEL_DEBUG & DEBUG_NO8)) {
8621 assert(!use_rep_send);
8622 v8.limit_dispatch_width(8, "gen8 workaround: "
8623 "using SIMD8 when dual src blending.\n");
8624 }
8625
8626 if (v8.max_dispatch_width >= 16 &&
8627 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
8628 /* Try a SIMD16 compile */
8629 fs_visitor v16(compiler, log_data, mem_ctx, &key->base,
8630 &prog_data->base, shader, 16,
8631 shader_time_index16);
8632 v16.import_uniforms(&v8);
8633 if (!v16.run_fs(allow_spilling, use_rep_send)) {
8634 compiler->shader_perf_log(log_data,
8635 "SIMD16 shader failed to compile: %s",
8636 v16.fail_msg);
8637 } else {
8638 simd16_cfg = v16.cfg;
8639 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
8640 prog_data->reg_blocks_16 = brw_register_blocks(v16.grf_used);
8641 }
8642 }
8643
8644 /* Currently, the compiler only supports SIMD32 on SNB+ */
8645 if (v8.max_dispatch_width >= 32 && !use_rep_send &&
8646 compiler->devinfo->gen >= 6 &&
8647 unlikely(INTEL_DEBUG & DEBUG_DO32)) {
8648 /* Try a SIMD32 compile */
8649 fs_visitor v32(compiler, log_data, mem_ctx, &key->base,
8650 &prog_data->base, shader, 32,
8651 shader_time_index32);
8652 v32.import_uniforms(&v8);
8653 if (!v32.run_fs(allow_spilling, false)) {
8654 compiler->shader_perf_log(log_data,
8655 "SIMD32 shader failed to compile: %s",
8656 v32.fail_msg);
8657 } else {
8658 simd32_cfg = v32.cfg;
8659 prog_data->dispatch_grf_start_reg_32 = v32.payload.num_regs;
8660 prog_data->reg_blocks_32 = brw_register_blocks(v32.grf_used);
8661 }
8662 }
8663
8664 /* When the caller requests a repclear shader, they want SIMD16-only */
8665 if (use_rep_send)
8666 simd8_cfg = NULL;
8667
8668 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
8669 * at the top to select the shader. We've never implemented that.
8670 * Instead, we just give them exactly one shader and we pick the widest one
8671 * available.
8672 */
8673 if (compiler->devinfo->gen < 5) {
8674 if (simd32_cfg || simd16_cfg)
8675 simd8_cfg = NULL;
8676 if (simd32_cfg)
8677 simd16_cfg = NULL;
8678 }
8679
8680 /* If computed depth is enabled SNB only allows SIMD8. */
8681 if (compiler->devinfo->gen == 6 &&
8682 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF)
8683 assert(simd16_cfg == NULL && simd32_cfg == NULL);
8684
8685 if (compiler->devinfo->gen <= 5 && !simd8_cfg) {
8686 /* Iron lake and earlier only have one Dispatch GRF start field. Make
8687 * the data available in the base prog data struct for convenience.
8688 */
8689 if (simd16_cfg) {
8690 prog_data->base.dispatch_grf_start_reg =
8691 prog_data->dispatch_grf_start_reg_16;
8692 } else if (simd32_cfg) {
8693 prog_data->base.dispatch_grf_start_reg =
8694 prog_data->dispatch_grf_start_reg_32;
8695 }
8696 }
8697
8698 if (prog_data->persample_dispatch) {
8699 /* Starting with SandyBridge (where we first get MSAA), the different
8700 * pixel dispatch combinations are grouped into classifications A
8701 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
8702 * generations, the only configurations supporting persample dispatch
8703 * are are this in which only one dispatch width is enabled.
8704 */
8705 if (simd32_cfg || simd16_cfg)
8706 simd8_cfg = NULL;
8707 if (simd32_cfg)
8708 simd16_cfg = NULL;
8709 }
8710
8711 fs_generator g(compiler, log_data, mem_ctx, &prog_data->base,
8712 v8.shader_stats, v8.runtime_check_aads_emit,
8713 MESA_SHADER_FRAGMENT);
8714
8715 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
8716 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
8717 shader->info.label ?
8718 shader->info.label : "unnamed",
8719 shader->info.name));
8720 }
8721
8722 if (simd8_cfg) {
8723 prog_data->dispatch_8 = true;
8724 g.generate_code(simd8_cfg, 8, stats);
8725 stats = stats ? stats + 1 : NULL;
8726 }
8727
8728 if (simd16_cfg) {
8729 prog_data->dispatch_16 = true;
8730 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16, stats);
8731 stats = stats ? stats + 1 : NULL;
8732 }
8733
8734 if (simd32_cfg) {
8735 prog_data->dispatch_32 = true;
8736 prog_data->prog_offset_32 = g.generate_code(simd32_cfg, 32, stats);
8737 stats = stats ? stats + 1 : NULL;
8738 }
8739
8740 return g.get_assembly();
8741 }
8742
8743 fs_reg *
8744 fs_visitor::emit_cs_work_group_id_setup()
8745 {
8746 assert(stage == MESA_SHADER_COMPUTE);
8747
8748 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
8749
8750 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
8751 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
8752 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
8753
8754 bld.MOV(*reg, r0_1);
8755 bld.MOV(offset(*reg, bld, 1), r0_6);
8756 bld.MOV(offset(*reg, bld, 2), r0_7);
8757
8758 return reg;
8759 }
8760
8761 static void
8762 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
8763 {
8764 block->dwords = dwords;
8765 block->regs = DIV_ROUND_UP(dwords, 8);
8766 block->size = block->regs * 32;
8767 }
8768
8769 static void
8770 cs_fill_push_const_info(const struct gen_device_info *devinfo,
8771 struct brw_cs_prog_data *cs_prog_data)
8772 {
8773 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
8774 int subgroup_id_index = get_subgroup_id_param_index(prog_data);
8775 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
8776
8777 /* The thread ID should be stored in the last param dword */
8778 assert(subgroup_id_index == -1 ||
8779 subgroup_id_index == (int)prog_data->nr_params - 1);
8780
8781 unsigned cross_thread_dwords, per_thread_dwords;
8782 if (!cross_thread_supported) {
8783 cross_thread_dwords = 0u;
8784 per_thread_dwords = prog_data->nr_params;
8785 } else if (subgroup_id_index >= 0) {
8786 /* Fill all but the last register with cross-thread payload */
8787 cross_thread_dwords = 8 * (subgroup_id_index / 8);
8788 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
8789 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
8790 } else {
8791 /* Fill all data using cross-thread payload */
8792 cross_thread_dwords = prog_data->nr_params;
8793 per_thread_dwords = 0u;
8794 }
8795
8796 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
8797 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
8798
8799 unsigned total_dwords =
8800 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
8801 cs_prog_data->push.cross_thread.size) / 4;
8802 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
8803
8804 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
8805 cs_prog_data->push.per_thread.size == 0);
8806 assert(cs_prog_data->push.cross_thread.dwords +
8807 cs_prog_data->push.per_thread.dwords ==
8808 prog_data->nr_params);
8809 }
8810
8811 static void
8812 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
8813 {
8814 cs_prog_data->simd_size = size;
8815 unsigned group_size = cs_prog_data->local_size[0] *
8816 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
8817 cs_prog_data->threads = (group_size + size - 1) / size;
8818 }
8819
8820 static nir_shader *
8821 compile_cs_to_nir(const struct brw_compiler *compiler,
8822 void *mem_ctx,
8823 const struct brw_cs_prog_key *key,
8824 const nir_shader *src_shader,
8825 unsigned dispatch_width)
8826 {
8827 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
8828 brw_nir_apply_key(shader, compiler, &key->base, dispatch_width, true);
8829
8830 NIR_PASS_V(shader, brw_nir_lower_cs_intrinsics, dispatch_width);
8831
8832 /* Clean up after the local index and ID calculations. */
8833 NIR_PASS_V(shader, nir_opt_constant_folding);
8834 NIR_PASS_V(shader, nir_opt_dce);
8835
8836 brw_postprocess_nir(shader, compiler, true);
8837
8838 return shader;
8839 }
8840
8841 const unsigned *
8842 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
8843 void *mem_ctx,
8844 const struct brw_cs_prog_key *key,
8845 struct brw_cs_prog_data *prog_data,
8846 const nir_shader *src_shader,
8847 int shader_time_index,
8848 struct brw_compile_stats *stats,
8849 char **error_str)
8850 {
8851 prog_data->base.total_shared = src_shader->info.cs.shared_size;
8852 prog_data->local_size[0] = src_shader->info.cs.local_size[0];
8853 prog_data->local_size[1] = src_shader->info.cs.local_size[1];
8854 prog_data->local_size[2] = src_shader->info.cs.local_size[2];
8855 prog_data->slm_size = src_shader->num_shared;
8856 unsigned local_workgroup_size =
8857 src_shader->info.cs.local_size[0] * src_shader->info.cs.local_size[1] *
8858 src_shader->info.cs.local_size[2];
8859
8860 /* Limit max_threads to 64 for the GPGPU_WALKER command */
8861 const uint32_t max_threads = MIN2(64, compiler->devinfo->max_cs_threads);
8862 unsigned min_dispatch_width =
8863 DIV_ROUND_UP(local_workgroup_size, max_threads);
8864 min_dispatch_width = MAX2(8, min_dispatch_width);
8865 min_dispatch_width = util_next_power_of_two(min_dispatch_width);
8866 assert(min_dispatch_width <= 32);
8867 unsigned max_dispatch_width = 32;
8868
8869 fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL;
8870 fs_visitor *v = NULL;
8871 const char *fail_msg = NULL;
8872
8873 if ((int)key->base.subgroup_size_type >= (int)BRW_SUBGROUP_SIZE_REQUIRE_8) {
8874 /* These enum values are expressly chosen to be equal to the subgroup
8875 * size that they require.
8876 */
8877 const unsigned required_dispatch_width =
8878 (unsigned)key->base.subgroup_size_type;
8879 assert(required_dispatch_width == 8 ||
8880 required_dispatch_width == 16 ||
8881 required_dispatch_width == 32);
8882 if (required_dispatch_width < min_dispatch_width ||
8883 required_dispatch_width > max_dispatch_width) {
8884 fail_msg = "Cannot satisfy explicit subgroup size";
8885 } else {
8886 min_dispatch_width = max_dispatch_width = required_dispatch_width;
8887 }
8888 }
8889
8890 /* Now the main event: Visit the shader IR and generate our CS IR for it.
8891 */
8892 if (!fail_msg && min_dispatch_width <= 8 && max_dispatch_width >= 8) {
8893 nir_shader *nir8 = compile_cs_to_nir(compiler, mem_ctx, key,
8894 src_shader, 8);
8895 v8 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
8896 &prog_data->base,
8897 nir8, 8, shader_time_index);
8898 if (!v8->run_cs(min_dispatch_width)) {
8899 fail_msg = v8->fail_msg;
8900 } else {
8901 /* We should always be able to do SIMD32 for compute shaders */
8902 assert(v8->max_dispatch_width >= 32);
8903
8904 v = v8;
8905 cs_set_simd_size(prog_data, 8);
8906 cs_fill_push_const_info(compiler->devinfo, prog_data);
8907 }
8908 }
8909
8910 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
8911 !fail_msg && min_dispatch_width <= 16 && max_dispatch_width >= 16) {
8912 /* Try a SIMD16 compile */
8913 nir_shader *nir16 = compile_cs_to_nir(compiler, mem_ctx, key,
8914 src_shader, 16);
8915 v16 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
8916 &prog_data->base,
8917 nir16, 16, shader_time_index);
8918 if (v8)
8919 v16->import_uniforms(v8);
8920
8921 if (!v16->run_cs(min_dispatch_width)) {
8922 compiler->shader_perf_log(log_data,
8923 "SIMD16 shader failed to compile: %s",
8924 v16->fail_msg);
8925 if (!v) {
8926 fail_msg =
8927 "Couldn't generate SIMD16 program and not "
8928 "enough threads for SIMD8";
8929 }
8930 } else {
8931 /* We should always be able to do SIMD32 for compute shaders */
8932 assert(v16->max_dispatch_width >= 32);
8933
8934 v = v16;
8935 cs_set_simd_size(prog_data, 16);
8936 cs_fill_push_const_info(compiler->devinfo, prog_data);
8937 }
8938 }
8939
8940 /* We should always be able to do SIMD32 for compute shaders */
8941 assert(!v16 || v16->max_dispatch_width >= 32);
8942
8943 if (!fail_msg && (min_dispatch_width > 16 || (INTEL_DEBUG & DEBUG_DO32)) &&
8944 max_dispatch_width >= 32) {
8945 /* Try a SIMD32 compile */
8946 nir_shader *nir32 = compile_cs_to_nir(compiler, mem_ctx, key,
8947 src_shader, 32);
8948 v32 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
8949 &prog_data->base,
8950 nir32, 32, shader_time_index);
8951 if (v8)
8952 v32->import_uniforms(v8);
8953 else if (v16)
8954 v32->import_uniforms(v16);
8955
8956 if (!v32->run_cs(min_dispatch_width)) {
8957 compiler->shader_perf_log(log_data,
8958 "SIMD32 shader failed to compile: %s",
8959 v32->fail_msg);
8960 if (!v) {
8961 fail_msg =
8962 "Couldn't generate SIMD32 program and not "
8963 "enough threads for SIMD16";
8964 }
8965 } else {
8966 v = v32;
8967 cs_set_simd_size(prog_data, 32);
8968 cs_fill_push_const_info(compiler->devinfo, prog_data);
8969 }
8970 }
8971
8972 const unsigned *ret = NULL;
8973 if (unlikely(v == NULL)) {
8974 assert(fail_msg);
8975 if (error_str)
8976 *error_str = ralloc_strdup(mem_ctx, fail_msg);
8977 } else {
8978 fs_generator g(compiler, log_data, mem_ctx, &prog_data->base,
8979 v->shader_stats, v->runtime_check_aads_emit,
8980 MESA_SHADER_COMPUTE);
8981 if (INTEL_DEBUG & DEBUG_CS) {
8982 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
8983 src_shader->info.label ?
8984 src_shader->info.label : "unnamed",
8985 src_shader->info.name);
8986 g.enable_debug(name);
8987 }
8988
8989 g.generate_code(v->cfg, prog_data->simd_size, stats);
8990
8991 ret = g.get_assembly();
8992 }
8993
8994 delete v8;
8995 delete v16;
8996 delete v32;
8997
8998 return ret;
8999 }
9000
9001 /**
9002 * Test the dispatch mask packing assumptions of
9003 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
9004 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
9005 * executed with an unexpected dispatch mask.
9006 */
9007 static UNUSED void
9008 brw_fs_test_dispatch_packing(const fs_builder &bld)
9009 {
9010 const gl_shader_stage stage = bld.shader->stage;
9011
9012 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
9013 bld.shader->stage_prog_data)) {
9014 const fs_builder ubld = bld.exec_all().group(1, 0);
9015 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
9016 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
9017 brw_dmask_reg());
9018
9019 ubld.ADD(tmp, mask, brw_imm_ud(1));
9020 ubld.AND(tmp, mask, tmp);
9021
9022 /* This will loop forever if the dispatch mask doesn't have the expected
9023 * form '2^n-1', in which case tmp will be non-zero.
9024 */
9025 bld.emit(BRW_OPCODE_DO);
9026 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
9027 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
9028 }
9029 }
9030
9031 unsigned
9032 fs_visitor::workgroup_size() const
9033 {
9034 assert(stage == MESA_SHADER_COMPUTE);
9035 const struct brw_cs_prog_data *cs = brw_cs_prog_data(prog_data);
9036 return cs->local_size[0] * cs->local_size[1] * cs->local_size[2];
9037 }