anv: Emit pushed UBO bounds checking code in the back-end compiler
[mesa.git] / src / intel / compiler / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_fs_live_variables.h"
35 #include "brw_nir.h"
36 #include "brw_vec4_gs_visitor.h"
37 #include "brw_cfg.h"
38 #include "brw_dead_control_flow.h"
39 #include "dev/gen_debug.h"
40 #include "compiler/glsl_types.h"
41 #include "compiler/nir/nir_builder.h"
42 #include "program/prog_parameter.h"
43 #include "util/u_math.h"
44
45 using namespace brw;
46
47 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
48 const fs_inst *inst);
49
50 void
51 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
52 const fs_reg *src, unsigned sources)
53 {
54 memset((void*)this, 0, sizeof(*this));
55
56 this->src = new fs_reg[MAX2(sources, 3)];
57 for (unsigned i = 0; i < sources; i++)
58 this->src[i] = src[i];
59
60 this->opcode = opcode;
61 this->dst = dst;
62 this->sources = sources;
63 this->exec_size = exec_size;
64 this->base_mrf = -1;
65
66 assert(dst.file != IMM && dst.file != UNIFORM);
67
68 assert(this->exec_size != 0);
69
70 this->conditional_mod = BRW_CONDITIONAL_NONE;
71
72 /* This will be the case for almost all instructions. */
73 switch (dst.file) {
74 case VGRF:
75 case ARF:
76 case FIXED_GRF:
77 case MRF:
78 case ATTR:
79 this->size_written = dst.component_size(exec_size);
80 break;
81 case BAD_FILE:
82 this->size_written = 0;
83 break;
84 case IMM:
85 case UNIFORM:
86 unreachable("Invalid destination register file");
87 }
88
89 this->writes_accumulator = false;
90 }
91
92 fs_inst::fs_inst()
93 {
94 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
95 }
96
97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
98 {
99 init(opcode, exec_size, reg_undef, NULL, 0);
100 }
101
102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
103 {
104 init(opcode, exec_size, dst, NULL, 0);
105 }
106
107 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
108 const fs_reg &src0)
109 {
110 const fs_reg src[1] = { src0 };
111 init(opcode, exec_size, dst, src, 1);
112 }
113
114 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
115 const fs_reg &src0, const fs_reg &src1)
116 {
117 const fs_reg src[2] = { src0, src1 };
118 init(opcode, exec_size, dst, src, 2);
119 }
120
121 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
122 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
123 {
124 const fs_reg src[3] = { src0, src1, src2 };
125 init(opcode, exec_size, dst, src, 3);
126 }
127
128 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
129 const fs_reg src[], unsigned sources)
130 {
131 init(opcode, exec_width, dst, src, sources);
132 }
133
134 fs_inst::fs_inst(const fs_inst &that)
135 {
136 memcpy((void*)this, &that, sizeof(that));
137
138 this->src = new fs_reg[MAX2(that.sources, 3)];
139
140 for (unsigned i = 0; i < that.sources; i++)
141 this->src[i] = that.src[i];
142 }
143
144 fs_inst::~fs_inst()
145 {
146 delete[] this->src;
147 }
148
149 void
150 fs_inst::resize_sources(uint8_t num_sources)
151 {
152 if (this->sources != num_sources) {
153 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
154
155 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
156 src[i] = this->src[i];
157
158 delete[] this->src;
159 this->src = src;
160 this->sources = num_sources;
161 }
162 }
163
164 void
165 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
166 const fs_reg &dst,
167 const fs_reg &surf_index,
168 const fs_reg &varying_offset,
169 uint32_t const_offset)
170 {
171 /* We have our constant surface use a pitch of 4 bytes, so our index can
172 * be any component of a vector, and then we load 4 contiguous
173 * components starting from that.
174 *
175 * We break down the const_offset to a portion added to the variable offset
176 * and a portion done using fs_reg::offset, which means that if you have
177 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
178 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
179 * later notice that those loads are all the same and eliminate the
180 * redundant ones.
181 */
182 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
183 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
184
185 /* The pull load message will load a vec4 (16 bytes). If we are loading
186 * a double this means we are only loading 2 elements worth of data.
187 * We also want to use a 32-bit data type for the dst of the load operation
188 * so other parts of the driver don't get confused about the size of the
189 * result.
190 */
191 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
192 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
193 vec4_result, surf_index, vec4_offset);
194 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
195
196 shuffle_from_32bit_read(bld, dst, vec4_result,
197 (const_offset & 0xf) / type_sz(dst.type), 1);
198 }
199
200 /**
201 * A helper for MOV generation for fixing up broken hardware SEND dependency
202 * handling.
203 */
204 void
205 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
206 {
207 /* The caller always wants uncompressed to emit the minimal extra
208 * dependencies, and to avoid having to deal with aligning its regs to 2.
209 */
210 const fs_builder ubld = bld.annotate("send dependency resolve")
211 .half(0);
212
213 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
214 }
215
216 bool
217 fs_inst::is_send_from_grf() const
218 {
219 switch (opcode) {
220 case SHADER_OPCODE_SEND:
221 case SHADER_OPCODE_SHADER_TIME_ADD:
222 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
223 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
224 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
225 case SHADER_OPCODE_URB_WRITE_SIMD8:
226 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
227 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
228 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
229 case SHADER_OPCODE_URB_READ_SIMD8:
230 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
231 case SHADER_OPCODE_INTERLOCK:
232 case SHADER_OPCODE_MEMORY_FENCE:
233 case SHADER_OPCODE_BARRIER:
234 return true;
235 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
236 return src[1].file == VGRF;
237 case FS_OPCODE_FB_WRITE:
238 case FS_OPCODE_FB_READ:
239 return src[0].file == VGRF;
240 default:
241 if (is_tex())
242 return src[0].file == VGRF;
243
244 return false;
245 }
246 }
247
248 bool
249 fs_inst::is_control_source(unsigned arg) const
250 {
251 switch (opcode) {
252 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
253 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
254 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
255 return arg == 0;
256
257 case SHADER_OPCODE_BROADCAST:
258 case SHADER_OPCODE_SHUFFLE:
259 case SHADER_OPCODE_QUAD_SWIZZLE:
260 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
261 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
262 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
263 case SHADER_OPCODE_GET_BUFFER_SIZE:
264 return arg == 1;
265
266 case SHADER_OPCODE_MOV_INDIRECT:
267 case SHADER_OPCODE_CLUSTER_BROADCAST:
268 case SHADER_OPCODE_TEX:
269 case FS_OPCODE_TXB:
270 case SHADER_OPCODE_TXD:
271 case SHADER_OPCODE_TXF:
272 case SHADER_OPCODE_TXF_LZ:
273 case SHADER_OPCODE_TXF_CMS:
274 case SHADER_OPCODE_TXF_CMS_W:
275 case SHADER_OPCODE_TXF_UMS:
276 case SHADER_OPCODE_TXF_MCS:
277 case SHADER_OPCODE_TXL:
278 case SHADER_OPCODE_TXL_LZ:
279 case SHADER_OPCODE_TXS:
280 case SHADER_OPCODE_LOD:
281 case SHADER_OPCODE_TG4:
282 case SHADER_OPCODE_TG4_OFFSET:
283 case SHADER_OPCODE_SAMPLEINFO:
284 return arg == 1 || arg == 2;
285
286 case SHADER_OPCODE_SEND:
287 return arg == 0 || arg == 1;
288
289 default:
290 return false;
291 }
292 }
293
294 bool
295 fs_inst::is_payload(unsigned arg) const
296 {
297 switch (opcode) {
298 case FS_OPCODE_FB_WRITE:
299 case FS_OPCODE_FB_READ:
300 case SHADER_OPCODE_URB_WRITE_SIMD8:
301 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
302 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
303 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
304 case SHADER_OPCODE_URB_READ_SIMD8:
305 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
306 case VEC4_OPCODE_UNTYPED_ATOMIC:
307 case VEC4_OPCODE_UNTYPED_SURFACE_READ:
308 case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
309 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
310 case SHADER_OPCODE_SHADER_TIME_ADD:
311 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
312 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
313 case SHADER_OPCODE_INTERLOCK:
314 case SHADER_OPCODE_MEMORY_FENCE:
315 case SHADER_OPCODE_BARRIER:
316 return arg == 0;
317
318 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
319 return arg == 1;
320
321 case SHADER_OPCODE_SEND:
322 return arg == 2 || arg == 3;
323
324 default:
325 if (is_tex())
326 return arg == 0;
327 else
328 return false;
329 }
330 }
331
332 /**
333 * Returns true if this instruction's sources and destinations cannot
334 * safely be the same register.
335 *
336 * In most cases, a register can be written over safely by the same
337 * instruction that is its last use. For a single instruction, the
338 * sources are dereferenced before writing of the destination starts
339 * (naturally).
340 *
341 * However, there are a few cases where this can be problematic:
342 *
343 * - Virtual opcodes that translate to multiple instructions in the
344 * code generator: if src == dst and one instruction writes the
345 * destination before a later instruction reads the source, then
346 * src will have been clobbered.
347 *
348 * - SIMD16 compressed instructions with certain regioning (see below).
349 *
350 * The register allocator uses this information to set up conflicts between
351 * GRF sources and the destination.
352 */
353 bool
354 fs_inst::has_source_and_destination_hazard() const
355 {
356 switch (opcode) {
357 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
358 /* Multiple partial writes to the destination */
359 return true;
360 case SHADER_OPCODE_SHUFFLE:
361 /* This instruction returns an arbitrary channel from the source and
362 * gets split into smaller instructions in the generator. It's possible
363 * that one of the instructions will read from a channel corresponding
364 * to an earlier instruction.
365 */
366 case SHADER_OPCODE_SEL_EXEC:
367 /* This is implemented as
368 *
369 * mov(16) g4<1>D 0D { align1 WE_all 1H };
370 * mov(16) g4<1>D g5<8,8,1>D { align1 1H }
371 *
372 * Because the source is only read in the second instruction, the first
373 * may stomp all over it.
374 */
375 return true;
376 case SHADER_OPCODE_QUAD_SWIZZLE:
377 switch (src[1].ud) {
378 case BRW_SWIZZLE_XXXX:
379 case BRW_SWIZZLE_YYYY:
380 case BRW_SWIZZLE_ZZZZ:
381 case BRW_SWIZZLE_WWWW:
382 case BRW_SWIZZLE_XXZZ:
383 case BRW_SWIZZLE_YYWW:
384 case BRW_SWIZZLE_XYXY:
385 case BRW_SWIZZLE_ZWZW:
386 /* These can be implemented as a single Align1 region on all
387 * platforms, so there's never a hazard between source and
388 * destination. C.f. fs_generator::generate_quad_swizzle().
389 */
390 return false;
391 default:
392 return !is_uniform(src[0]);
393 }
394 default:
395 /* The SIMD16 compressed instruction
396 *
397 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
398 *
399 * is actually decoded in hardware as:
400 *
401 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
402 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
403 *
404 * Which is safe. However, if we have uniform accesses
405 * happening, we get into trouble:
406 *
407 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
408 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
409 *
410 * Now our destination for the first instruction overwrote the
411 * second instruction's src0, and we get garbage for those 8
412 * pixels. There's a similar issue for the pre-gen6
413 * pixel_x/pixel_y, which are registers of 16-bit values and thus
414 * would get stomped by the first decode as well.
415 */
416 if (exec_size == 16) {
417 for (int i = 0; i < sources; i++) {
418 if (src[i].file == VGRF && (src[i].stride == 0 ||
419 src[i].type == BRW_REGISTER_TYPE_UW ||
420 src[i].type == BRW_REGISTER_TYPE_W ||
421 src[i].type == BRW_REGISTER_TYPE_UB ||
422 src[i].type == BRW_REGISTER_TYPE_B)) {
423 return true;
424 }
425 }
426 }
427 return false;
428 }
429 }
430
431 bool
432 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo) const
433 {
434 if (devinfo->gen == 6 && is_math())
435 return false;
436
437 if (is_send_from_grf())
438 return false;
439
440 /* From GEN:BUG:1604601757:
441 *
442 * "When multiplying a DW and any lower precision integer, source modifier
443 * is not supported."
444 */
445 if (devinfo->gen >= 12 && (opcode == BRW_OPCODE_MUL ||
446 opcode == BRW_OPCODE_MAD)) {
447 const brw_reg_type exec_type = get_exec_type(this);
448 const unsigned min_type_sz = opcode == BRW_OPCODE_MAD ?
449 MIN2(type_sz(src[1].type), type_sz(src[2].type)) :
450 MIN2(type_sz(src[0].type), type_sz(src[1].type));
451
452 if (brw_reg_type_is_integer(exec_type) &&
453 type_sz(exec_type) >= 4 &&
454 type_sz(exec_type) != min_type_sz)
455 return false;
456 }
457
458 if (!backend_instruction::can_do_source_mods())
459 return false;
460
461 return true;
462 }
463
464 bool
465 fs_inst::can_do_cmod()
466 {
467 if (!backend_instruction::can_do_cmod())
468 return false;
469
470 /* The accumulator result appears to get used for the conditional modifier
471 * generation. When negating a UD value, there is a 33rd bit generated for
472 * the sign in the accumulator value, so now you can't check, for example,
473 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
474 */
475 for (unsigned i = 0; i < sources; i++) {
476 if (type_is_unsigned_int(src[i].type) && src[i].negate)
477 return false;
478 }
479
480 return true;
481 }
482
483 bool
484 fs_inst::can_change_types() const
485 {
486 return dst.type == src[0].type &&
487 !src[0].abs && !src[0].negate && !saturate &&
488 (opcode == BRW_OPCODE_MOV ||
489 (opcode == BRW_OPCODE_SEL &&
490 dst.type == src[1].type &&
491 predicate != BRW_PREDICATE_NONE &&
492 !src[1].abs && !src[1].negate));
493 }
494
495 void
496 fs_reg::init()
497 {
498 memset((void*)this, 0, sizeof(*this));
499 type = BRW_REGISTER_TYPE_UD;
500 stride = 1;
501 }
502
503 /** Generic unset register constructor. */
504 fs_reg::fs_reg()
505 {
506 init();
507 this->file = BAD_FILE;
508 }
509
510 fs_reg::fs_reg(struct ::brw_reg reg) :
511 backend_reg(reg)
512 {
513 this->offset = 0;
514 this->stride = 1;
515 if (this->file == IMM &&
516 (this->type != BRW_REGISTER_TYPE_V &&
517 this->type != BRW_REGISTER_TYPE_UV &&
518 this->type != BRW_REGISTER_TYPE_VF)) {
519 this->stride = 0;
520 }
521 }
522
523 bool
524 fs_reg::equals(const fs_reg &r) const
525 {
526 return (this->backend_reg::equals(r) &&
527 stride == r.stride);
528 }
529
530 bool
531 fs_reg::negative_equals(const fs_reg &r) const
532 {
533 return (this->backend_reg::negative_equals(r) &&
534 stride == r.stride);
535 }
536
537 bool
538 fs_reg::is_contiguous() const
539 {
540 switch (file) {
541 case ARF:
542 case FIXED_GRF:
543 return hstride == BRW_HORIZONTAL_STRIDE_1 &&
544 vstride == width + hstride;
545 case MRF:
546 case VGRF:
547 case ATTR:
548 return stride == 1;
549 case UNIFORM:
550 case IMM:
551 case BAD_FILE:
552 return true;
553 }
554
555 unreachable("Invalid register file");
556 }
557
558 unsigned
559 fs_reg::component_size(unsigned width) const
560 {
561 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
562 hstride == 0 ? 0 :
563 1 << (hstride - 1));
564 return MAX2(width * stride, 1) * type_sz(type);
565 }
566
567 /**
568 * Create a MOV to read the timestamp register.
569 */
570 fs_reg
571 fs_visitor::get_timestamp(const fs_builder &bld)
572 {
573 assert(devinfo->gen >= 7);
574
575 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
576 BRW_ARF_TIMESTAMP,
577 0),
578 BRW_REGISTER_TYPE_UD));
579
580 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
581
582 /* We want to read the 3 fields we care about even if it's not enabled in
583 * the dispatch.
584 */
585 bld.group(4, 0).exec_all().MOV(dst, ts);
586
587 return dst;
588 }
589
590 void
591 fs_visitor::emit_shader_time_begin()
592 {
593 /* We want only the low 32 bits of the timestamp. Since it's running
594 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
595 * which is plenty of time for our purposes. It is identical across the
596 * EUs, but since it's tracking GPU core speed it will increment at a
597 * varying rate as render P-states change.
598 */
599 shader_start_time = component(
600 get_timestamp(bld.annotate("shader time start")), 0);
601 }
602
603 void
604 fs_visitor::emit_shader_time_end()
605 {
606 /* Insert our code just before the final SEND with EOT. */
607 exec_node *end = this->instructions.get_tail();
608 assert(end && ((fs_inst *) end)->eot);
609 const fs_builder ibld = bld.annotate("shader time end")
610 .exec_all().at(NULL, end);
611 const fs_reg timestamp = get_timestamp(ibld);
612
613 /* We only use the low 32 bits of the timestamp - see
614 * emit_shader_time_begin()).
615 *
616 * We could also check if render P-states have changed (or anything
617 * else that might disrupt timing) by setting smear to 2 and checking if
618 * that field is != 0.
619 */
620 const fs_reg shader_end_time = component(timestamp, 0);
621
622 /* Check that there weren't any timestamp reset events (assuming these
623 * were the only two timestamp reads that happened).
624 */
625 const fs_reg reset = component(timestamp, 2);
626 set_condmod(BRW_CONDITIONAL_Z,
627 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
628 ibld.IF(BRW_PREDICATE_NORMAL);
629
630 fs_reg start = shader_start_time;
631 start.negate = true;
632 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
633 BRW_REGISTER_TYPE_UD),
634 0);
635 const fs_builder cbld = ibld.group(1, 0);
636 cbld.group(1, 0).ADD(diff, start, shader_end_time);
637
638 /* If there were no instructions between the two timestamp gets, the diff
639 * is 2 cycles. Remove that overhead, so I can forget about that when
640 * trying to determine the time taken for single instructions.
641 */
642 cbld.ADD(diff, diff, brw_imm_ud(-2u));
643 SHADER_TIME_ADD(cbld, 0, diff);
644 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
645 ibld.emit(BRW_OPCODE_ELSE);
646 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
647 ibld.emit(BRW_OPCODE_ENDIF);
648 }
649
650 void
651 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
652 int shader_time_subindex,
653 fs_reg value)
654 {
655 int index = shader_time_index * 3 + shader_time_subindex;
656 struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
657
658 fs_reg payload;
659 if (dispatch_width == 8)
660 payload = vgrf(glsl_type::uvec2_type);
661 else
662 payload = vgrf(glsl_type::uint_type);
663
664 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
665 }
666
667 void
668 fs_visitor::vfail(const char *format, va_list va)
669 {
670 char *msg;
671
672 if (failed)
673 return;
674
675 failed = true;
676
677 msg = ralloc_vasprintf(mem_ctx, format, va);
678 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
679
680 this->fail_msg = msg;
681
682 if (debug_enabled) {
683 fprintf(stderr, "%s", msg);
684 }
685 }
686
687 void
688 fs_visitor::fail(const char *format, ...)
689 {
690 va_list va;
691
692 va_start(va, format);
693 vfail(format, va);
694 va_end(va);
695 }
696
697 /**
698 * Mark this program as impossible to compile with dispatch width greater
699 * than n.
700 *
701 * During the SIMD8 compile (which happens first), we can detect and flag
702 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
703 * SIMD16+ compile altogether.
704 *
705 * During a compile of dispatch width greater than n (if one happens anyway),
706 * this just calls fail().
707 */
708 void
709 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
710 {
711 if (dispatch_width > n) {
712 fail("%s", msg);
713 } else {
714 max_dispatch_width = n;
715 compiler->shader_perf_log(log_data,
716 "Shader dispatch width limited to SIMD%d: %s",
717 n, msg);
718 }
719 }
720
721 /**
722 * Returns true if the instruction has a flag that means it won't
723 * update an entire destination register.
724 *
725 * For example, dead code elimination and live variable analysis want to know
726 * when a write to a variable screens off any preceding values that were in
727 * it.
728 */
729 bool
730 fs_inst::is_partial_write() const
731 {
732 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
733 (this->exec_size * type_sz(this->dst.type)) < 32 ||
734 !this->dst.is_contiguous() ||
735 this->dst.offset % REG_SIZE != 0);
736 }
737
738 unsigned
739 fs_inst::components_read(unsigned i) const
740 {
741 /* Return zero if the source is not present. */
742 if (src[i].file == BAD_FILE)
743 return 0;
744
745 switch (opcode) {
746 case FS_OPCODE_LINTERP:
747 if (i == 0)
748 return 2;
749 else
750 return 1;
751
752 case FS_OPCODE_PIXEL_X:
753 case FS_OPCODE_PIXEL_Y:
754 assert(i == 0);
755 return 2;
756
757 case FS_OPCODE_FB_WRITE_LOGICAL:
758 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
759 /* First/second FB write color. */
760 if (i < 2)
761 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
762 else
763 return 1;
764
765 case SHADER_OPCODE_TEX_LOGICAL:
766 case SHADER_OPCODE_TXD_LOGICAL:
767 case SHADER_OPCODE_TXF_LOGICAL:
768 case SHADER_OPCODE_TXL_LOGICAL:
769 case SHADER_OPCODE_TXS_LOGICAL:
770 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
771 case FS_OPCODE_TXB_LOGICAL:
772 case SHADER_OPCODE_TXF_CMS_LOGICAL:
773 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
774 case SHADER_OPCODE_TXF_UMS_LOGICAL:
775 case SHADER_OPCODE_TXF_MCS_LOGICAL:
776 case SHADER_OPCODE_LOD_LOGICAL:
777 case SHADER_OPCODE_TG4_LOGICAL:
778 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
779 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
780 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
781 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
782 /* Texture coordinates. */
783 if (i == TEX_LOGICAL_SRC_COORDINATE)
784 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
785 /* Texture derivatives. */
786 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
787 opcode == SHADER_OPCODE_TXD_LOGICAL)
788 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
789 /* Texture offset. */
790 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
791 return 2;
792 /* MCS */
793 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
794 return 2;
795 else
796 return 1;
797
798 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
799 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
800 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM);
801 /* Surface coordinates. */
802 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
803 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
804 /* Surface operation source (ignored for reads). */
805 else if (i == SURFACE_LOGICAL_SRC_DATA)
806 return 0;
807 else
808 return 1;
809
810 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
811 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
812 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
813 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
814 /* Surface coordinates. */
815 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
816 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
817 /* Surface operation source. */
818 else if (i == SURFACE_LOGICAL_SRC_DATA)
819 return src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
820 else
821 return 1;
822
823 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
824 assert(src[2].file == IMM);
825 return 1;
826
827 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
828 assert(src[2].file == IMM);
829 return i == 1 ? src[2].ud : 1;
830
831 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
832 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
833 assert(src[2].file == IMM);
834 if (i == 1) {
835 /* Data source */
836 const unsigned op = src[2].ud;
837 switch (op) {
838 case BRW_AOP_INC:
839 case BRW_AOP_DEC:
840 case BRW_AOP_PREDEC:
841 return 0;
842 case BRW_AOP_CMPWR:
843 return 2;
844 default:
845 return 1;
846 }
847 } else {
848 return 1;
849 }
850
851 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
852 assert(src[2].file == IMM);
853 if (i == 1) {
854 /* Data source */
855 const unsigned op = src[2].ud;
856 return op == BRW_AOP_FCMPWR ? 2 : 1;
857 } else {
858 return 1;
859 }
860
861 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
862 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
863 /* Scattered logical opcodes use the following params:
864 * src[0] Surface coordinates
865 * src[1] Surface operation source (ignored for reads)
866 * src[2] Surface
867 * src[3] IMM with always 1 dimension.
868 * src[4] IMM with arg bitsize for scattered read/write 8, 16, 32
869 */
870 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
871 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
872 return i == SURFACE_LOGICAL_SRC_DATA ? 0 : 1;
873
874 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
875 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
876 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
877 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
878 return 1;
879
880 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
881 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
882 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
883 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
884 const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
885 /* Surface coordinates. */
886 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
887 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
888 /* Surface operation source. */
889 else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_CMPWR)
890 return 2;
891 else if (i == SURFACE_LOGICAL_SRC_DATA &&
892 (op == BRW_AOP_INC || op == BRW_AOP_DEC || op == BRW_AOP_PREDEC))
893 return 0;
894 else
895 return 1;
896 }
897 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
898 return (i == 0 ? 2 : 1);
899
900 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL: {
901 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
902 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
903 const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
904 /* Surface coordinates. */
905 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
906 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
907 /* Surface operation source. */
908 else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_FCMPWR)
909 return 2;
910 else
911 return 1;
912 }
913
914 default:
915 return 1;
916 }
917 }
918
919 unsigned
920 fs_inst::size_read(int arg) const
921 {
922 switch (opcode) {
923 case SHADER_OPCODE_SEND:
924 if (arg == 2) {
925 return mlen * REG_SIZE;
926 } else if (arg == 3) {
927 return ex_mlen * REG_SIZE;
928 }
929 break;
930
931 case FS_OPCODE_FB_WRITE:
932 case FS_OPCODE_REP_FB_WRITE:
933 if (arg == 0) {
934 if (base_mrf >= 0)
935 return src[0].file == BAD_FILE ? 0 : 2 * REG_SIZE;
936 else
937 return mlen * REG_SIZE;
938 }
939 break;
940
941 case FS_OPCODE_FB_READ:
942 case SHADER_OPCODE_URB_WRITE_SIMD8:
943 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
944 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
945 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
946 case SHADER_OPCODE_URB_READ_SIMD8:
947 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
948 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
949 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
950 if (arg == 0)
951 return mlen * REG_SIZE;
952 break;
953
954 case FS_OPCODE_SET_SAMPLE_ID:
955 if (arg == 1)
956 return 1;
957 break;
958
959 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
960 /* The payload is actually stored in src1 */
961 if (arg == 1)
962 return mlen * REG_SIZE;
963 break;
964
965 case FS_OPCODE_LINTERP:
966 if (arg == 1)
967 return 16;
968 break;
969
970 case SHADER_OPCODE_LOAD_PAYLOAD:
971 if (arg < this->header_size)
972 return REG_SIZE;
973 break;
974
975 case CS_OPCODE_CS_TERMINATE:
976 case SHADER_OPCODE_BARRIER:
977 return REG_SIZE;
978
979 case SHADER_OPCODE_MOV_INDIRECT:
980 if (arg == 0) {
981 assert(src[2].file == IMM);
982 return src[2].ud;
983 }
984 break;
985
986 default:
987 if (is_tex() && arg == 0 && src[0].file == VGRF)
988 return mlen * REG_SIZE;
989 break;
990 }
991
992 switch (src[arg].file) {
993 case UNIFORM:
994 case IMM:
995 return components_read(arg) * type_sz(src[arg].type);
996 case BAD_FILE:
997 case ARF:
998 case FIXED_GRF:
999 case VGRF:
1000 case ATTR:
1001 return components_read(arg) * src[arg].component_size(exec_size);
1002 case MRF:
1003 unreachable("MRF registers are not allowed as sources");
1004 }
1005 return 0;
1006 }
1007
1008 namespace {
1009 unsigned
1010 predicate_width(brw_predicate predicate)
1011 {
1012 switch (predicate) {
1013 case BRW_PREDICATE_NONE: return 1;
1014 case BRW_PREDICATE_NORMAL: return 1;
1015 case BRW_PREDICATE_ALIGN1_ANY2H: return 2;
1016 case BRW_PREDICATE_ALIGN1_ALL2H: return 2;
1017 case BRW_PREDICATE_ALIGN1_ANY4H: return 4;
1018 case BRW_PREDICATE_ALIGN1_ALL4H: return 4;
1019 case BRW_PREDICATE_ALIGN1_ANY8H: return 8;
1020 case BRW_PREDICATE_ALIGN1_ALL8H: return 8;
1021 case BRW_PREDICATE_ALIGN1_ANY16H: return 16;
1022 case BRW_PREDICATE_ALIGN1_ALL16H: return 16;
1023 case BRW_PREDICATE_ALIGN1_ANY32H: return 32;
1024 case BRW_PREDICATE_ALIGN1_ALL32H: return 32;
1025 default: unreachable("Unsupported predicate");
1026 }
1027 }
1028
1029 /* Return the subset of flag registers that an instruction could
1030 * potentially read or write based on the execution controls and flag
1031 * subregister number of the instruction.
1032 */
1033 unsigned
1034 flag_mask(const fs_inst *inst, unsigned width)
1035 {
1036 assert(util_is_power_of_two_nonzero(width));
1037 const unsigned start = (inst->flag_subreg * 16 + inst->group) &
1038 ~(width - 1);
1039 const unsigned end = start + ALIGN(inst->exec_size, width);
1040 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
1041 }
1042
1043 unsigned
1044 bit_mask(unsigned n)
1045 {
1046 return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
1047 }
1048
1049 unsigned
1050 flag_mask(const fs_reg &r, unsigned sz)
1051 {
1052 if (r.file == ARF) {
1053 const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
1054 const unsigned end = start + sz;
1055 return bit_mask(end) & ~bit_mask(start);
1056 } else {
1057 return 0;
1058 }
1059 }
1060 }
1061
1062 unsigned
1063 fs_inst::flags_read(const gen_device_info *devinfo) const
1064 {
1065 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
1066 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
1067 /* The vertical predication modes combine corresponding bits from
1068 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
1069 */
1070 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
1071 return flag_mask(this, 1) << shift | flag_mask(this, 1);
1072 } else if (predicate) {
1073 return flag_mask(this, predicate_width(predicate));
1074 } else {
1075 unsigned mask = 0;
1076 for (int i = 0; i < sources; i++) {
1077 mask |= flag_mask(src[i], size_read(i));
1078 }
1079 return mask;
1080 }
1081 }
1082
1083 unsigned
1084 fs_inst::flags_written() const
1085 {
1086 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
1087 opcode != BRW_OPCODE_CSEL &&
1088 opcode != BRW_OPCODE_IF &&
1089 opcode != BRW_OPCODE_WHILE)) ||
1090 opcode == FS_OPCODE_FB_WRITE) {
1091 return flag_mask(this, 1);
1092 } else if (opcode == SHADER_OPCODE_FIND_LIVE_CHANNEL ||
1093 opcode == FS_OPCODE_LOAD_LIVE_CHANNELS) {
1094 return flag_mask(this, 32);
1095 } else {
1096 return flag_mask(dst, size_written);
1097 }
1098 }
1099
1100 /**
1101 * Returns how many MRFs an FS opcode will write over.
1102 *
1103 * Note that this is not the 0 or 1 implied writes in an actual gen
1104 * instruction -- the FS opcodes often generate MOVs in addition.
1105 */
1106 unsigned
1107 fs_inst::implied_mrf_writes() const
1108 {
1109 if (mlen == 0)
1110 return 0;
1111
1112 if (base_mrf == -1)
1113 return 0;
1114
1115 switch (opcode) {
1116 case SHADER_OPCODE_RCP:
1117 case SHADER_OPCODE_RSQ:
1118 case SHADER_OPCODE_SQRT:
1119 case SHADER_OPCODE_EXP2:
1120 case SHADER_OPCODE_LOG2:
1121 case SHADER_OPCODE_SIN:
1122 case SHADER_OPCODE_COS:
1123 return 1 * exec_size / 8;
1124 case SHADER_OPCODE_POW:
1125 case SHADER_OPCODE_INT_QUOTIENT:
1126 case SHADER_OPCODE_INT_REMAINDER:
1127 return 2 * exec_size / 8;
1128 case SHADER_OPCODE_TEX:
1129 case FS_OPCODE_TXB:
1130 case SHADER_OPCODE_TXD:
1131 case SHADER_OPCODE_TXF:
1132 case SHADER_OPCODE_TXF_CMS:
1133 case SHADER_OPCODE_TXF_MCS:
1134 case SHADER_OPCODE_TG4:
1135 case SHADER_OPCODE_TG4_OFFSET:
1136 case SHADER_OPCODE_TXL:
1137 case SHADER_OPCODE_TXS:
1138 case SHADER_OPCODE_LOD:
1139 case SHADER_OPCODE_SAMPLEINFO:
1140 return 1;
1141 case FS_OPCODE_FB_WRITE:
1142 case FS_OPCODE_REP_FB_WRITE:
1143 return src[0].file == BAD_FILE ? 0 : 2;
1144 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
1145 case SHADER_OPCODE_GEN4_SCRATCH_READ:
1146 return 1;
1147 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
1148 return mlen;
1149 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
1150 return mlen;
1151 default:
1152 unreachable("not reached");
1153 }
1154 }
1155
1156 fs_reg
1157 fs_visitor::vgrf(const glsl_type *const type)
1158 {
1159 int reg_width = dispatch_width / 8;
1160 return fs_reg(VGRF,
1161 alloc.allocate(glsl_count_dword_slots(type, false) * reg_width),
1162 brw_type_for_base_type(type));
1163 }
1164
1165 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1166 {
1167 init();
1168 this->file = file;
1169 this->nr = nr;
1170 this->type = BRW_REGISTER_TYPE_F;
1171 this->stride = (file == UNIFORM ? 0 : 1);
1172 }
1173
1174 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1175 {
1176 init();
1177 this->file = file;
1178 this->nr = nr;
1179 this->type = type;
1180 this->stride = (file == UNIFORM ? 0 : 1);
1181 }
1182
1183 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1184 * This brings in those uniform definitions
1185 */
1186 void
1187 fs_visitor::import_uniforms(fs_visitor *v)
1188 {
1189 this->push_constant_loc = v->push_constant_loc;
1190 this->pull_constant_loc = v->pull_constant_loc;
1191 this->uniforms = v->uniforms;
1192 this->subgroup_id = v->subgroup_id;
1193 for (unsigned i = 0; i < ARRAY_SIZE(this->group_size); i++)
1194 this->group_size[i] = v->group_size[i];
1195 }
1196
1197 void
1198 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1199 {
1200 assert(stage == MESA_SHADER_FRAGMENT);
1201
1202 /* gl_FragCoord.x */
1203 bld.MOV(wpos, this->pixel_x);
1204 wpos = offset(wpos, bld, 1);
1205
1206 /* gl_FragCoord.y */
1207 bld.MOV(wpos, this->pixel_y);
1208 wpos = offset(wpos, bld, 1);
1209
1210 /* gl_FragCoord.z */
1211 if (devinfo->gen >= 6) {
1212 bld.MOV(wpos, fetch_payload_reg(bld, payload.source_depth_reg));
1213 } else {
1214 bld.emit(FS_OPCODE_LINTERP, wpos,
1215 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1216 component(interp_reg(VARYING_SLOT_POS, 2), 0));
1217 }
1218 wpos = offset(wpos, bld, 1);
1219
1220 /* gl_FragCoord.w: Already set up in emit_interpolation */
1221 bld.MOV(wpos, this->wpos_w);
1222 }
1223
1224 enum brw_barycentric_mode
1225 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1226 {
1227 /* Barycentric modes don't make sense for flat inputs. */
1228 assert(mode != INTERP_MODE_FLAT);
1229
1230 unsigned bary;
1231 switch (op) {
1232 case nir_intrinsic_load_barycentric_pixel:
1233 case nir_intrinsic_load_barycentric_at_offset:
1234 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1235 break;
1236 case nir_intrinsic_load_barycentric_centroid:
1237 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1238 break;
1239 case nir_intrinsic_load_barycentric_sample:
1240 case nir_intrinsic_load_barycentric_at_sample:
1241 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1242 break;
1243 default:
1244 unreachable("invalid intrinsic");
1245 }
1246
1247 if (mode == INTERP_MODE_NOPERSPECTIVE)
1248 bary += 3;
1249
1250 return (enum brw_barycentric_mode) bary;
1251 }
1252
1253 /**
1254 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1255 */
1256 static enum brw_barycentric_mode
1257 centroid_to_pixel(enum brw_barycentric_mode bary)
1258 {
1259 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1260 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1261 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1262 }
1263
1264 fs_reg *
1265 fs_visitor::emit_frontfacing_interpolation()
1266 {
1267 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1268
1269 if (devinfo->gen >= 12) {
1270 fs_reg g1 = fs_reg(retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_W));
1271
1272 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_W);
1273 bld.ASR(tmp, g1, brw_imm_d(15));
1274 bld.NOT(*reg, tmp);
1275 } else if (devinfo->gen >= 6) {
1276 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1277 * a boolean result from this (~0/true or 0/false).
1278 *
1279 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1280 * this task in only one instruction:
1281 * - a negation source modifier will flip the bit; and
1282 * - a W -> D type conversion will sign extend the bit into the high
1283 * word of the destination.
1284 *
1285 * An ASR 15 fills the low word of the destination.
1286 */
1287 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1288 g0.negate = true;
1289
1290 bld.ASR(*reg, g0, brw_imm_d(15));
1291 } else {
1292 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1293 * a boolean result from this (1/true or 0/false).
1294 *
1295 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1296 * the negation source modifier to flip it. Unfortunately the SHR
1297 * instruction only operates on UD (or D with an abs source modifier)
1298 * sources without negation.
1299 *
1300 * Instead, use ASR (which will give ~0/true or 0/false).
1301 */
1302 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1303 g1_6.negate = true;
1304
1305 bld.ASR(*reg, g1_6, brw_imm_d(31));
1306 }
1307
1308 return reg;
1309 }
1310
1311 void
1312 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1313 {
1314 assert(stage == MESA_SHADER_FRAGMENT);
1315 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1316 assert(dst.type == BRW_REGISTER_TYPE_F);
1317
1318 if (wm_prog_data->persample_dispatch) {
1319 /* Convert int_sample_pos to floating point */
1320 bld.MOV(dst, int_sample_pos);
1321 /* Scale to the range [0, 1] */
1322 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1323 }
1324 else {
1325 /* From ARB_sample_shading specification:
1326 * "When rendering to a non-multisample buffer, or if multisample
1327 * rasterization is disabled, gl_SamplePosition will always be
1328 * (0.5, 0.5).
1329 */
1330 bld.MOV(dst, brw_imm_f(0.5f));
1331 }
1332 }
1333
1334 fs_reg *
1335 fs_visitor::emit_samplepos_setup()
1336 {
1337 assert(devinfo->gen >= 6);
1338
1339 const fs_builder abld = bld.annotate("compute sample position");
1340 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1341 fs_reg pos = *reg;
1342 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1343 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1344
1345 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1346 * mode will be enabled.
1347 *
1348 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1349 * R31.1:0 Position Offset X/Y for Slot[3:0]
1350 * R31.3:2 Position Offset X/Y for Slot[7:4]
1351 * .....
1352 *
1353 * The X, Y sample positions come in as bytes in thread payload. So, read
1354 * the positions using vstride=16, width=8, hstride=2.
1355 */
1356 const fs_reg sample_pos_reg =
1357 fetch_payload_reg(abld, payload.sample_pos_reg, BRW_REGISTER_TYPE_W);
1358
1359 /* Compute gl_SamplePosition.x */
1360 abld.MOV(int_sample_x, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, 0));
1361 compute_sample_position(offset(pos, abld, 0), int_sample_x);
1362
1363 /* Compute gl_SamplePosition.y */
1364 abld.MOV(int_sample_y, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, 1));
1365 compute_sample_position(offset(pos, abld, 1), int_sample_y);
1366 return reg;
1367 }
1368
1369 fs_reg *
1370 fs_visitor::emit_sampleid_setup()
1371 {
1372 assert(stage == MESA_SHADER_FRAGMENT);
1373 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1374 assert(devinfo->gen >= 6);
1375
1376 const fs_builder abld = bld.annotate("compute sample id");
1377 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uint_type));
1378
1379 if (!key->multisample_fbo) {
1380 /* As per GL_ARB_sample_shading specification:
1381 * "When rendering to a non-multisample buffer, or if multisample
1382 * rasterization is disabled, gl_SampleID will always be zero."
1383 */
1384 abld.MOV(*reg, brw_imm_d(0));
1385 } else if (devinfo->gen >= 8) {
1386 /* Sample ID comes in as 4-bit numbers in g1.0:
1387 *
1388 * 15:12 Slot 3 SampleID (only used in SIMD16)
1389 * 11:8 Slot 2 SampleID (only used in SIMD16)
1390 * 7:4 Slot 1 SampleID
1391 * 3:0 Slot 0 SampleID
1392 *
1393 * Each slot corresponds to four channels, so we want to replicate each
1394 * half-byte value to 4 channels in a row:
1395 *
1396 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1397 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1398 *
1399 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1400 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1401 *
1402 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1403 * channels to read the first byte (7:0), and the second group of 8
1404 * channels to read the second byte (15:8). Then, we shift right by
1405 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1406 * values into place. Finally, we AND with 0xf to keep the low nibble.
1407 *
1408 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1409 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1410 *
1411 * TODO: These payload bits exist on Gen7 too, but they appear to always
1412 * be zero, so this code fails to work. We should find out why.
1413 */
1414 const fs_reg tmp = abld.vgrf(BRW_REGISTER_TYPE_UW);
1415
1416 for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
1417 const fs_builder hbld = abld.group(MIN2(16, dispatch_width), i);
1418 hbld.SHR(offset(tmp, hbld, i),
1419 stride(retype(brw_vec1_grf(1 + i, 0), BRW_REGISTER_TYPE_UB),
1420 1, 8, 0),
1421 brw_imm_v(0x44440000));
1422 }
1423
1424 abld.AND(*reg, tmp, brw_imm_w(0xf));
1425 } else {
1426 const fs_reg t1 = component(abld.vgrf(BRW_REGISTER_TYPE_UD), 0);
1427 const fs_reg t2 = abld.vgrf(BRW_REGISTER_TYPE_UW);
1428
1429 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1430 * 8x multisampling, subspan 0 will represent sample N (where N
1431 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1432 * 7. We can find the value of N by looking at R0.0 bits 7:6
1433 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1434 * (since samples are always delivered in pairs). That is, we
1435 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1436 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1437 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1438 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1439 * populating a temporary variable with the sequence (0, 1, 2, 3),
1440 * and then reading from it using vstride=1, width=4, hstride=0.
1441 * These computations hold good for 4x multisampling as well.
1442 *
1443 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1444 * the first four slots are sample 0 of subspan 0; the next four
1445 * are sample 1 of subspan 0; the third group is sample 0 of
1446 * subspan 1, and finally sample 1 of subspan 1.
1447 */
1448
1449 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1450 * accomodate 16x MSAA.
1451 */
1452 abld.exec_all().group(1, 0)
1453 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
1454 brw_imm_ud(0xc0));
1455 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1456
1457 /* This works for SIMD8-SIMD16. It also works for SIMD32 but only if we
1458 * can assume 4x MSAA. Disallow it on IVB+
1459 *
1460 * FINISHME: One day, we could come up with a way to do this that
1461 * actually works on gen7.
1462 */
1463 if (devinfo->gen >= 7)
1464 limit_dispatch_width(16, "gl_SampleId is unsupported in SIMD32 on gen7");
1465 abld.exec_all().group(8, 0).MOV(t2, brw_imm_v(0x32103210));
1466
1467 /* This special instruction takes care of setting vstride=1,
1468 * width=4, hstride=0 of t2 during an ADD instruction.
1469 */
1470 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1471 }
1472
1473 return reg;
1474 }
1475
1476 fs_reg *
1477 fs_visitor::emit_samplemaskin_setup()
1478 {
1479 assert(stage == MESA_SHADER_FRAGMENT);
1480 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1481 assert(devinfo->gen >= 6);
1482
1483 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1484
1485 fs_reg coverage_mask =
1486 fetch_payload_reg(bld, payload.sample_mask_in_reg, BRW_REGISTER_TYPE_D);
1487
1488 if (wm_prog_data->persample_dispatch) {
1489 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1490 * and a mask representing which sample is being processed by the
1491 * current shader invocation.
1492 *
1493 * From the OES_sample_variables specification:
1494 * "When per-sample shading is active due to the use of a fragment input
1495 * qualified by "sample" or due to the use of the gl_SampleID or
1496 * gl_SamplePosition variables, only the bit for the current sample is
1497 * set in gl_SampleMaskIn."
1498 */
1499 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1500
1501 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1502 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1503
1504 fs_reg one = vgrf(glsl_type::int_type);
1505 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1506 abld.MOV(one, brw_imm_d(1));
1507 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1508 abld.AND(*reg, enabled_mask, coverage_mask);
1509 } else {
1510 /* In per-pixel mode, the coverage mask is sufficient. */
1511 *reg = coverage_mask;
1512 }
1513 return reg;
1514 }
1515
1516 fs_reg
1517 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1518 {
1519 if (!src.abs && !src.negate)
1520 return src;
1521
1522 fs_reg temp = bld.vgrf(src.type);
1523 bld.MOV(temp, src);
1524
1525 return temp;
1526 }
1527
1528 void
1529 fs_visitor::emit_discard_jump()
1530 {
1531 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1532
1533 /* For performance, after a discard, jump to the end of the
1534 * shader if all relevant channels have been discarded.
1535 */
1536 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1537 discard_jump->flag_subreg = sample_mask_flag_subreg(this);
1538
1539 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1540 discard_jump->predicate_inverse = true;
1541 }
1542
1543 void
1544 fs_visitor::emit_gs_thread_end()
1545 {
1546 assert(stage == MESA_SHADER_GEOMETRY);
1547
1548 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1549
1550 if (gs_compile->control_data_header_size_bits > 0) {
1551 emit_gs_control_data_bits(this->final_gs_vertex_count);
1552 }
1553
1554 const fs_builder abld = bld.annotate("thread end");
1555 fs_inst *inst;
1556
1557 if (gs_prog_data->static_vertex_count != -1) {
1558 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1559 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1560 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1561 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1562 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1563 prev->eot = true;
1564
1565 /* Delete now dead instructions. */
1566 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1567 if (dead == prev)
1568 break;
1569 dead->remove();
1570 }
1571 return;
1572 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1573 break;
1574 }
1575 }
1576 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1577 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1578 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1579 inst->mlen = 1;
1580 } else {
1581 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1582 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1583 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1584 sources[1] = this->final_gs_vertex_count;
1585 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1586 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1587 inst->mlen = 2;
1588 }
1589 inst->eot = true;
1590 inst->offset = 0;
1591 }
1592
1593 void
1594 fs_visitor::assign_curb_setup()
1595 {
1596 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1597
1598 unsigned ubo_push_length = 0;
1599 unsigned ubo_push_start[4];
1600 for (int i = 0; i < 4; i++) {
1601 ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1602 ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1603 }
1604
1605 prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1606
1607 uint64_t used = 0;
1608
1609 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1610 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1611 for (unsigned int i = 0; i < inst->sources; i++) {
1612 if (inst->src[i].file == UNIFORM) {
1613 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1614 int constant_nr;
1615 if (inst->src[i].nr >= UBO_START) {
1616 /* constant_nr is in 32-bit units, the rest are in bytes */
1617 constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1618 inst->src[i].offset / 4;
1619 } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1620 constant_nr = push_constant_loc[uniform_nr];
1621 } else {
1622 /* Section 5.11 of the OpenGL 4.1 spec says:
1623 * "Out-of-bounds reads return undefined values, which include
1624 * values from other variables of the active program or zero."
1625 * Just return the first push constant.
1626 */
1627 constant_nr = 0;
1628 }
1629
1630 assert(constant_nr / 8 < 64);
1631 used |= BITFIELD64_BIT(constant_nr / 8);
1632
1633 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1634 constant_nr / 8,
1635 constant_nr % 8);
1636 brw_reg.abs = inst->src[i].abs;
1637 brw_reg.negate = inst->src[i].negate;
1638
1639 assert(inst->src[i].stride == 0);
1640 inst->src[i] = byte_offset(
1641 retype(brw_reg, inst->src[i].type),
1642 inst->src[i].offset % 4);
1643 }
1644 }
1645 }
1646
1647 uint64_t want_zero = used & stage_prog_data->zero_push_reg;
1648 if (want_zero) {
1649 assert(!compiler->compact_params);
1650 fs_builder ubld = bld.exec_all().group(8, 0).at(
1651 cfg->first_block(), cfg->first_block()->start());
1652
1653 /* push_reg_mask_param is in 32-bit units */
1654 unsigned mask_param = stage_prog_data->push_reg_mask_param;
1655 struct brw_reg mask = brw_vec1_grf(payload.num_regs + mask_param / 8,
1656 mask_param % 8);
1657
1658 fs_reg b32;
1659 for (unsigned i = 0; i < 64; i++) {
1660 if (i % 16 == 0 && (want_zero & BITFIELD64_RANGE(i, 16))) {
1661 fs_reg shifted = ubld.vgrf(BRW_REGISTER_TYPE_W, 2);
1662 ubld.SHL(horiz_offset(shifted, 8),
1663 byte_offset(retype(mask, BRW_REGISTER_TYPE_W), i / 8),
1664 brw_imm_v(0x01234567));
1665 ubld.SHL(shifted, horiz_offset(shifted, 8), brw_imm_w(8));
1666
1667 fs_builder ubld16 = ubld.group(16, 0);
1668 b32 = ubld16.vgrf(BRW_REGISTER_TYPE_D);
1669 ubld16.group(16, 0).ASR(b32, shifted, brw_imm_w(15));
1670 }
1671
1672 if (want_zero & BITFIELD64_BIT(i)) {
1673 assert(i < prog_data->curb_read_length);
1674 struct brw_reg push_reg =
1675 retype(brw_vec8_grf(payload.num_regs + i, 0),
1676 BRW_REGISTER_TYPE_D);
1677
1678 ubld.AND(push_reg, push_reg, component(b32, i % 16));
1679 }
1680 }
1681
1682 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1683 }
1684
1685 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1686 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1687 }
1688
1689 /*
1690 * Build up an array of indices into the urb_setup array that
1691 * references the active entries of the urb_setup array.
1692 * Used to accelerate walking the active entries of the urb_setup array
1693 * on each upload.
1694 */
1695 void
1696 brw_compute_urb_setup_index(struct brw_wm_prog_data *wm_prog_data)
1697 {
1698 /* Make sure uint8_t is sufficient */
1699 STATIC_ASSERT(VARYING_SLOT_MAX <= 0xff);
1700 uint8_t index = 0;
1701 for (uint8_t attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1702 if (wm_prog_data->urb_setup[attr] >= 0) {
1703 wm_prog_data->urb_setup_attribs[index++] = attr;
1704 }
1705 }
1706 wm_prog_data->urb_setup_attribs_count = index;
1707 }
1708
1709 static void
1710 calculate_urb_setup(const struct gen_device_info *devinfo,
1711 const struct brw_wm_prog_key *key,
1712 struct brw_wm_prog_data *prog_data,
1713 const nir_shader *nir)
1714 {
1715 memset(prog_data->urb_setup, -1,
1716 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1717
1718 int urb_next = 0;
1719 /* Figure out where each of the incoming setup attributes lands. */
1720 if (devinfo->gen >= 6) {
1721 if (util_bitcount64(nir->info.inputs_read &
1722 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1723 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1724 * first 16 varying inputs, so we can put them wherever we want.
1725 * Just put them in order.
1726 *
1727 * This is useful because it means that (a) inputs not used by the
1728 * fragment shader won't take up valuable register space, and (b) we
1729 * won't have to recompile the fragment shader if it gets paired with
1730 * a different vertex (or geometry) shader.
1731 */
1732 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1733 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1734 BITFIELD64_BIT(i)) {
1735 prog_data->urb_setup[i] = urb_next++;
1736 }
1737 }
1738 } else {
1739 /* We have enough input varyings that the SF/SBE pipeline stage can't
1740 * arbitrarily rearrange them to suit our whim; we have to put them
1741 * in an order that matches the output of the previous pipeline stage
1742 * (geometry or vertex shader).
1743 */
1744 struct brw_vue_map prev_stage_vue_map;
1745 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1746 key->input_slots_valid,
1747 nir->info.separate_shader, 1);
1748
1749 int first_slot =
1750 brw_compute_first_urb_slot_required(nir->info.inputs_read,
1751 &prev_stage_vue_map);
1752
1753 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1754 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1755 slot++) {
1756 int varying = prev_stage_vue_map.slot_to_varying[slot];
1757 if (varying != BRW_VARYING_SLOT_PAD &&
1758 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1759 BITFIELD64_BIT(varying))) {
1760 prog_data->urb_setup[varying] = slot - first_slot;
1761 }
1762 }
1763 urb_next = prev_stage_vue_map.num_slots - first_slot;
1764 }
1765 } else {
1766 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1767 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1768 /* Point size is packed into the header, not as a general attribute */
1769 if (i == VARYING_SLOT_PSIZ)
1770 continue;
1771
1772 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1773 /* The back color slot is skipped when the front color is
1774 * also written to. In addition, some slots can be
1775 * written in the vertex shader and not read in the
1776 * fragment shader. So the register number must always be
1777 * incremented, mapped or not.
1778 */
1779 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1780 prog_data->urb_setup[i] = urb_next;
1781 urb_next++;
1782 }
1783 }
1784
1785 /*
1786 * It's a FS only attribute, and we did interpolation for this attribute
1787 * in SF thread. So, count it here, too.
1788 *
1789 * See compile_sf_prog() for more info.
1790 */
1791 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1792 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1793 }
1794
1795 prog_data->num_varying_inputs = urb_next;
1796 prog_data->inputs = nir->info.inputs_read;
1797
1798 brw_compute_urb_setup_index(prog_data);
1799 }
1800
1801 void
1802 fs_visitor::assign_urb_setup()
1803 {
1804 assert(stage == MESA_SHADER_FRAGMENT);
1805 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1806
1807 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1808
1809 /* Offset all the urb_setup[] index by the actual position of the
1810 * setup regs, now that the location of the constants has been chosen.
1811 */
1812 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1813 for (int i = 0; i < inst->sources; i++) {
1814 if (inst->src[i].file == ATTR) {
1815 /* ATTR regs in the FS are in units of logical scalar inputs each
1816 * of which consumes half of a GRF register.
1817 */
1818 assert(inst->src[i].offset < REG_SIZE / 2);
1819 const unsigned grf = urb_start + inst->src[i].nr / 2;
1820 const unsigned offset = (inst->src[i].nr % 2) * (REG_SIZE / 2) +
1821 inst->src[i].offset;
1822 const unsigned width = inst->src[i].stride == 0 ?
1823 1 : MIN2(inst->exec_size, 8);
1824 struct brw_reg reg = stride(
1825 byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1826 offset),
1827 width * inst->src[i].stride,
1828 width, inst->src[i].stride);
1829 reg.abs = inst->src[i].abs;
1830 reg.negate = inst->src[i].negate;
1831 inst->src[i] = reg;
1832 }
1833 }
1834 }
1835
1836 /* Each attribute is 4 setup channels, each of which is half a reg. */
1837 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1838 }
1839
1840 void
1841 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1842 {
1843 for (int i = 0; i < inst->sources; i++) {
1844 if (inst->src[i].file == ATTR) {
1845 int grf = payload.num_regs +
1846 prog_data->curb_read_length +
1847 inst->src[i].nr +
1848 inst->src[i].offset / REG_SIZE;
1849
1850 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1851 *
1852 * VertStride must be used to cross GRF register boundaries. This
1853 * rule implies that elements within a 'Width' cannot cross GRF
1854 * boundaries.
1855 *
1856 * So, for registers that are large enough, we have to split the exec
1857 * size in two and trust the compression state to sort it out.
1858 */
1859 unsigned total_size = inst->exec_size *
1860 inst->src[i].stride *
1861 type_sz(inst->src[i].type);
1862
1863 assert(total_size <= 2 * REG_SIZE);
1864 const unsigned exec_size =
1865 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1866
1867 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1868 struct brw_reg reg =
1869 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1870 inst->src[i].offset % REG_SIZE),
1871 exec_size * inst->src[i].stride,
1872 width, inst->src[i].stride);
1873 reg.abs = inst->src[i].abs;
1874 reg.negate = inst->src[i].negate;
1875
1876 inst->src[i] = reg;
1877 }
1878 }
1879 }
1880
1881 void
1882 fs_visitor::assign_vs_urb_setup()
1883 {
1884 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1885
1886 assert(stage == MESA_SHADER_VERTEX);
1887
1888 /* Each attribute is 4 regs. */
1889 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1890
1891 assert(vs_prog_data->base.urb_read_length <= 15);
1892
1893 /* Rewrite all ATTR file references to the hw grf that they land in. */
1894 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1895 convert_attr_sources_to_hw_regs(inst);
1896 }
1897 }
1898
1899 void
1900 fs_visitor::assign_tcs_urb_setup()
1901 {
1902 assert(stage == MESA_SHADER_TESS_CTRL);
1903
1904 /* Rewrite all ATTR file references to HW_REGs. */
1905 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1906 convert_attr_sources_to_hw_regs(inst);
1907 }
1908 }
1909
1910 void
1911 fs_visitor::assign_tes_urb_setup()
1912 {
1913 assert(stage == MESA_SHADER_TESS_EVAL);
1914
1915 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1916
1917 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1918
1919 /* Rewrite all ATTR file references to HW_REGs. */
1920 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1921 convert_attr_sources_to_hw_regs(inst);
1922 }
1923 }
1924
1925 void
1926 fs_visitor::assign_gs_urb_setup()
1927 {
1928 assert(stage == MESA_SHADER_GEOMETRY);
1929
1930 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1931
1932 first_non_payload_grf +=
1933 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1934
1935 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1936 /* Rewrite all ATTR file references to GRFs. */
1937 convert_attr_sources_to_hw_regs(inst);
1938 }
1939 }
1940
1941
1942 /**
1943 * Split large virtual GRFs into separate components if we can.
1944 *
1945 * This is mostly duplicated with what brw_fs_vector_splitting does,
1946 * but that's really conservative because it's afraid of doing
1947 * splitting that doesn't result in real progress after the rest of
1948 * the optimization phases, which would cause infinite looping in
1949 * optimization. We can do it once here, safely. This also has the
1950 * opportunity to split interpolated values, or maybe even uniforms,
1951 * which we don't have at the IR level.
1952 *
1953 * We want to split, because virtual GRFs are what we register
1954 * allocate and spill (due to contiguousness requirements for some
1955 * instructions), and they're what we naturally generate in the
1956 * codegen process, but most virtual GRFs don't actually need to be
1957 * contiguous sets of GRFs. If we split, we'll end up with reduced
1958 * live intervals and better dead code elimination and coalescing.
1959 */
1960 void
1961 fs_visitor::split_virtual_grfs()
1962 {
1963 /* Compact the register file so we eliminate dead vgrfs. This
1964 * only defines split points for live registers, so if we have
1965 * too large dead registers they will hit assertions later.
1966 */
1967 compact_virtual_grfs();
1968
1969 int num_vars = this->alloc.count;
1970
1971 /* Count the total number of registers */
1972 int reg_count = 0;
1973 int vgrf_to_reg[num_vars];
1974 for (int i = 0; i < num_vars; i++) {
1975 vgrf_to_reg[i] = reg_count;
1976 reg_count += alloc.sizes[i];
1977 }
1978
1979 /* An array of "split points". For each register slot, this indicates
1980 * if this slot can be separated from the previous slot. Every time an
1981 * instruction uses multiple elements of a register (as a source or
1982 * destination), we mark the used slots as inseparable. Then we go
1983 * through and split the registers into the smallest pieces we can.
1984 */
1985 bool *split_points = new bool[reg_count];
1986 memset(split_points, 0, reg_count * sizeof(*split_points));
1987
1988 /* Mark all used registers as fully splittable */
1989 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1990 if (inst->dst.file == VGRF) {
1991 int reg = vgrf_to_reg[inst->dst.nr];
1992 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1993 split_points[reg + j] = true;
1994 }
1995
1996 for (int i = 0; i < inst->sources; i++) {
1997 if (inst->src[i].file == VGRF) {
1998 int reg = vgrf_to_reg[inst->src[i].nr];
1999 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
2000 split_points[reg + j] = true;
2001 }
2002 }
2003 }
2004
2005 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2006 /* We fix up undef instructions later */
2007 if (inst->opcode == SHADER_OPCODE_UNDEF) {
2008 /* UNDEF instructions are currently only used to undef entire
2009 * registers. We need this invariant later when we split them.
2010 */
2011 assert(inst->dst.file == VGRF);
2012 assert(inst->dst.offset == 0);
2013 assert(inst->size_written == alloc.sizes[inst->dst.nr] * REG_SIZE);
2014 continue;
2015 }
2016
2017 if (inst->dst.file == VGRF) {
2018 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
2019 for (unsigned j = 1; j < regs_written(inst); j++)
2020 split_points[reg + j] = false;
2021 }
2022 for (int i = 0; i < inst->sources; i++) {
2023 if (inst->src[i].file == VGRF) {
2024 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
2025 for (unsigned j = 1; j < regs_read(inst, i); j++)
2026 split_points[reg + j] = false;
2027 }
2028 }
2029 }
2030
2031 int *new_virtual_grf = new int[reg_count];
2032 int *new_reg_offset = new int[reg_count];
2033
2034 int reg = 0;
2035 for (int i = 0; i < num_vars; i++) {
2036 /* The first one should always be 0 as a quick sanity check. */
2037 assert(split_points[reg] == false);
2038
2039 /* j = 0 case */
2040 new_reg_offset[reg] = 0;
2041 reg++;
2042 int offset = 1;
2043
2044 /* j > 0 case */
2045 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
2046 /* If this is a split point, reset the offset to 0 and allocate a
2047 * new virtual GRF for the previous offset many registers
2048 */
2049 if (split_points[reg]) {
2050 assert(offset <= MAX_VGRF_SIZE);
2051 int grf = alloc.allocate(offset);
2052 for (int k = reg - offset; k < reg; k++)
2053 new_virtual_grf[k] = grf;
2054 offset = 0;
2055 }
2056 new_reg_offset[reg] = offset;
2057 offset++;
2058 reg++;
2059 }
2060
2061 /* The last one gets the original register number */
2062 assert(offset <= MAX_VGRF_SIZE);
2063 alloc.sizes[i] = offset;
2064 for (int k = reg - offset; k < reg; k++)
2065 new_virtual_grf[k] = i;
2066 }
2067 assert(reg == reg_count);
2068
2069 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2070 if (inst->opcode == SHADER_OPCODE_UNDEF) {
2071 const fs_builder ibld(this, block, inst);
2072 assert(inst->size_written % REG_SIZE == 0);
2073 unsigned reg_offset = 0;
2074 while (reg_offset < inst->size_written / REG_SIZE) {
2075 reg = vgrf_to_reg[inst->dst.nr] + reg_offset;
2076 ibld.UNDEF(fs_reg(VGRF, new_virtual_grf[reg], inst->dst.type));
2077 reg_offset += alloc.sizes[new_virtual_grf[reg]];
2078 }
2079 inst->remove(block);
2080 continue;
2081 }
2082
2083 if (inst->dst.file == VGRF) {
2084 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
2085 inst->dst.nr = new_virtual_grf[reg];
2086 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
2087 inst->dst.offset % REG_SIZE;
2088 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
2089 }
2090 for (int i = 0; i < inst->sources; i++) {
2091 if (inst->src[i].file == VGRF) {
2092 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
2093 inst->src[i].nr = new_virtual_grf[reg];
2094 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
2095 inst->src[i].offset % REG_SIZE;
2096 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
2097 }
2098 }
2099 }
2100 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
2101
2102 delete[] split_points;
2103 delete[] new_virtual_grf;
2104 delete[] new_reg_offset;
2105 }
2106
2107 /**
2108 * Remove unused virtual GRFs and compact the vgrf_* arrays.
2109 *
2110 * During code generation, we create tons of temporary variables, many of
2111 * which get immediately killed and are never used again. Yet, in later
2112 * optimization and analysis passes, such as compute_live_intervals, we need
2113 * to loop over all the virtual GRFs. Compacting them can save a lot of
2114 * overhead.
2115 */
2116 bool
2117 fs_visitor::compact_virtual_grfs()
2118 {
2119 bool progress = false;
2120 int *remap_table = new int[this->alloc.count];
2121 memset(remap_table, -1, this->alloc.count * sizeof(int));
2122
2123 /* Mark which virtual GRFs are used. */
2124 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
2125 if (inst->dst.file == VGRF)
2126 remap_table[inst->dst.nr] = 0;
2127
2128 for (int i = 0; i < inst->sources; i++) {
2129 if (inst->src[i].file == VGRF)
2130 remap_table[inst->src[i].nr] = 0;
2131 }
2132 }
2133
2134 /* Compact the GRF arrays. */
2135 int new_index = 0;
2136 for (unsigned i = 0; i < this->alloc.count; i++) {
2137 if (remap_table[i] == -1) {
2138 /* We just found an unused register. This means that we are
2139 * actually going to compact something.
2140 */
2141 progress = true;
2142 } else {
2143 remap_table[i] = new_index;
2144 alloc.sizes[new_index] = alloc.sizes[i];
2145 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
2146 ++new_index;
2147 }
2148 }
2149
2150 this->alloc.count = new_index;
2151
2152 /* Patch all the instructions to use the newly renumbered registers */
2153 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2154 if (inst->dst.file == VGRF)
2155 inst->dst.nr = remap_table[inst->dst.nr];
2156
2157 for (int i = 0; i < inst->sources; i++) {
2158 if (inst->src[i].file == VGRF)
2159 inst->src[i].nr = remap_table[inst->src[i].nr];
2160 }
2161 }
2162
2163 /* Patch all the references to delta_xy, since they're used in register
2164 * allocation. If they're unused, switch them to BAD_FILE so we don't
2165 * think some random VGRF is delta_xy.
2166 */
2167 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2168 if (delta_xy[i].file == VGRF) {
2169 if (remap_table[delta_xy[i].nr] != -1) {
2170 delta_xy[i].nr = remap_table[delta_xy[i].nr];
2171 } else {
2172 delta_xy[i].file = BAD_FILE;
2173 }
2174 }
2175 }
2176
2177 delete[] remap_table;
2178
2179 return progress;
2180 }
2181
2182 static int
2183 get_subgroup_id_param_index(const brw_stage_prog_data *prog_data)
2184 {
2185 if (prog_data->nr_params == 0)
2186 return -1;
2187
2188 /* The local thread id is always the last parameter in the list */
2189 uint32_t last_param = prog_data->param[prog_data->nr_params - 1];
2190 if (last_param == BRW_PARAM_BUILTIN_SUBGROUP_ID)
2191 return prog_data->nr_params - 1;
2192
2193 return -1;
2194 }
2195
2196 /**
2197 * Struct for handling complex alignments.
2198 *
2199 * A complex alignment is stored as multiplier and an offset. A value is
2200 * considered to be aligned if it is {offset} larger than a multiple of {mul}.
2201 * For instance, with an alignment of {8, 2}, cplx_align_apply would do the
2202 * following:
2203 *
2204 * N | cplx_align_apply({8, 2}, N)
2205 * ----+-----------------------------
2206 * 4 | 6
2207 * 6 | 6
2208 * 8 | 14
2209 * 10 | 14
2210 * 12 | 14
2211 * 14 | 14
2212 * 16 | 22
2213 */
2214 struct cplx_align {
2215 unsigned mul:4;
2216 unsigned offset:4;
2217 };
2218
2219 #define CPLX_ALIGN_MAX_MUL 8
2220
2221 static void
2222 cplx_align_assert_sane(struct cplx_align a)
2223 {
2224 assert(a.mul > 0 && util_is_power_of_two_nonzero(a.mul));
2225 assert(a.offset < a.mul);
2226 }
2227
2228 /**
2229 * Combines two alignments to produce a least multiple of sorts.
2230 *
2231 * The returned alignment is the smallest (in terms of multiplier) such that
2232 * anything aligned to both a and b will be aligned to the new alignment.
2233 * This function will assert-fail if a and b are not compatible, i.e. if the
2234 * offset parameters are such that no common alignment is possible.
2235 */
2236 static struct cplx_align
2237 cplx_align_combine(struct cplx_align a, struct cplx_align b)
2238 {
2239 cplx_align_assert_sane(a);
2240 cplx_align_assert_sane(b);
2241
2242 /* Assert that the alignments agree. */
2243 assert((a.offset & (b.mul - 1)) == (b.offset & (a.mul - 1)));
2244
2245 return a.mul > b.mul ? a : b;
2246 }
2247
2248 /**
2249 * Apply a complex alignment
2250 *
2251 * This function will return the smallest number greater than or equal to
2252 * offset that is aligned to align.
2253 */
2254 static unsigned
2255 cplx_align_apply(struct cplx_align align, unsigned offset)
2256 {
2257 return ALIGN(offset - align.offset, align.mul) + align.offset;
2258 }
2259
2260 #define UNIFORM_SLOT_SIZE 4
2261
2262 struct uniform_slot_info {
2263 /** True if the given uniform slot is live */
2264 unsigned is_live:1;
2265
2266 /** True if this slot and the next slot must remain contiguous */
2267 unsigned contiguous:1;
2268
2269 struct cplx_align align;
2270 };
2271
2272 static void
2273 mark_uniform_slots_read(struct uniform_slot_info *slots,
2274 unsigned num_slots, unsigned alignment)
2275 {
2276 assert(alignment > 0 && util_is_power_of_two_nonzero(alignment));
2277 assert(alignment <= CPLX_ALIGN_MAX_MUL);
2278
2279 /* We can't align a slot to anything less than the slot size */
2280 alignment = MAX2(alignment, UNIFORM_SLOT_SIZE);
2281
2282 struct cplx_align align = {alignment, 0};
2283 cplx_align_assert_sane(align);
2284
2285 for (unsigned i = 0; i < num_slots; i++) {
2286 slots[i].is_live = true;
2287 if (i < num_slots - 1)
2288 slots[i].contiguous = true;
2289
2290 align.offset = (i * UNIFORM_SLOT_SIZE) & (align.mul - 1);
2291 if (slots[i].align.mul == 0) {
2292 slots[i].align = align;
2293 } else {
2294 slots[i].align = cplx_align_combine(slots[i].align, align);
2295 }
2296 }
2297 }
2298
2299 /**
2300 * Assign UNIFORM file registers to either push constants or pull constants.
2301 *
2302 * We allow a fragment shader to have more than the specified minimum
2303 * maximum number of fragment shader uniform components (64). If
2304 * there are too many of these, they'd fill up all of register space.
2305 * So, this will push some of them out to the pull constant buffer and
2306 * update the program to load them.
2307 */
2308 void
2309 fs_visitor::assign_constant_locations()
2310 {
2311 /* Only the first compile gets to decide on locations. */
2312 if (push_constant_loc) {
2313 assert(pull_constant_loc);
2314 return;
2315 }
2316
2317 if (compiler->compact_params) {
2318 struct uniform_slot_info slots[uniforms + 1];
2319 memset(slots, 0, sizeof(slots));
2320
2321 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2322 for (int i = 0 ; i < inst->sources; i++) {
2323 if (inst->src[i].file != UNIFORM)
2324 continue;
2325
2326 /* NIR tightly packs things so the uniform number might not be
2327 * aligned (if we have a double right after a float, for
2328 * instance). This is fine because the process of re-arranging
2329 * them will ensure that things are properly aligned. The offset
2330 * into that uniform, however, must be aligned.
2331 *
2332 * In Vulkan, we have explicit offsets but everything is crammed
2333 * into a single "variable" so inst->src[i].nr will always be 0.
2334 * Everything will be properly aligned relative to that one base.
2335 */
2336 assert(inst->src[i].offset % type_sz(inst->src[i].type) == 0);
2337
2338 unsigned u = inst->src[i].nr +
2339 inst->src[i].offset / UNIFORM_SLOT_SIZE;
2340
2341 if (u >= uniforms)
2342 continue;
2343
2344 unsigned slots_read;
2345 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
2346 slots_read = DIV_ROUND_UP(inst->src[2].ud, UNIFORM_SLOT_SIZE);
2347 } else {
2348 unsigned bytes_read = inst->components_read(i) *
2349 type_sz(inst->src[i].type);
2350 slots_read = DIV_ROUND_UP(bytes_read, UNIFORM_SLOT_SIZE);
2351 }
2352
2353 assert(u + slots_read <= uniforms);
2354 mark_uniform_slots_read(&slots[u], slots_read,
2355 type_sz(inst->src[i].type));
2356 }
2357 }
2358
2359 int subgroup_id_index = get_subgroup_id_param_index(stage_prog_data);
2360
2361 /* Only allow 16 registers (128 uniform components) as push constants.
2362 *
2363 * Just demote the end of the list. We could probably do better
2364 * here, demoting things that are rarely used in the program first.
2365 *
2366 * If changing this value, note the limitation about total_regs in
2367 * brw_curbe.c.
2368 */
2369 unsigned int max_push_components = 16 * 8;
2370 if (subgroup_id_index >= 0)
2371 max_push_components--; /* Save a slot for the thread ID */
2372
2373 /* We push small arrays, but no bigger than 16 floats. This is big
2374 * enough for a vec4 but hopefully not large enough to push out other
2375 * stuff. We should probably use a better heuristic at some point.
2376 */
2377 const unsigned int max_chunk_size = 16;
2378
2379 unsigned int num_push_constants = 0;
2380 unsigned int num_pull_constants = 0;
2381
2382 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2383 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2384
2385 /* Default to -1 meaning no location */
2386 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2387 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2388
2389 int chunk_start = -1;
2390 struct cplx_align align;
2391 for (unsigned u = 0; u < uniforms; u++) {
2392 if (!slots[u].is_live) {
2393 assert(chunk_start == -1);
2394 continue;
2395 }
2396
2397 /* Skip subgroup_id_index to put it in the last push register. */
2398 if (subgroup_id_index == (int)u)
2399 continue;
2400
2401 if (chunk_start == -1) {
2402 chunk_start = u;
2403 align = slots[u].align;
2404 } else {
2405 /* Offset into the chunk */
2406 unsigned chunk_offset = (u - chunk_start) * UNIFORM_SLOT_SIZE;
2407
2408 /* Shift the slot alignment down by the chunk offset so it is
2409 * comparable with the base chunk alignment.
2410 */
2411 struct cplx_align slot_align = slots[u].align;
2412 slot_align.offset =
2413 (slot_align.offset - chunk_offset) & (align.mul - 1);
2414
2415 align = cplx_align_combine(align, slot_align);
2416 }
2417
2418 /* Sanity check the alignment */
2419 cplx_align_assert_sane(align);
2420
2421 if (slots[u].contiguous)
2422 continue;
2423
2424 /* Adjust the alignment to be in terms of slots, not bytes */
2425 assert((align.mul & (UNIFORM_SLOT_SIZE - 1)) == 0);
2426 assert((align.offset & (UNIFORM_SLOT_SIZE - 1)) == 0);
2427 align.mul /= UNIFORM_SLOT_SIZE;
2428 align.offset /= UNIFORM_SLOT_SIZE;
2429
2430 unsigned push_start_align = cplx_align_apply(align, num_push_constants);
2431 unsigned chunk_size = u - chunk_start + 1;
2432 if ((!compiler->supports_pull_constants && u < UBO_START) ||
2433 (chunk_size < max_chunk_size &&
2434 push_start_align + chunk_size <= max_push_components)) {
2435 /* Align up the number of push constants */
2436 num_push_constants = push_start_align;
2437 for (unsigned i = 0; i < chunk_size; i++)
2438 push_constant_loc[chunk_start + i] = num_push_constants++;
2439 } else {
2440 /* We need to pull this one */
2441 num_pull_constants = cplx_align_apply(align, num_pull_constants);
2442 for (unsigned i = 0; i < chunk_size; i++)
2443 pull_constant_loc[chunk_start + i] = num_pull_constants++;
2444 }
2445
2446 /* Reset the chunk and start again */
2447 chunk_start = -1;
2448 }
2449
2450 /* Add the CS local thread ID uniform at the end of the push constants */
2451 if (subgroup_id_index >= 0)
2452 push_constant_loc[subgroup_id_index] = num_push_constants++;
2453
2454 /* As the uniforms are going to be reordered, stash the old array and
2455 * create two new arrays for push/pull params.
2456 */
2457 uint32_t *param = stage_prog_data->param;
2458 stage_prog_data->nr_params = num_push_constants;
2459 if (num_push_constants) {
2460 stage_prog_data->param = rzalloc_array(mem_ctx, uint32_t,
2461 num_push_constants);
2462 } else {
2463 stage_prog_data->param = NULL;
2464 }
2465 assert(stage_prog_data->nr_pull_params == 0);
2466 assert(stage_prog_data->pull_param == NULL);
2467 if (num_pull_constants > 0) {
2468 stage_prog_data->nr_pull_params = num_pull_constants;
2469 stage_prog_data->pull_param = rzalloc_array(mem_ctx, uint32_t,
2470 num_pull_constants);
2471 }
2472
2473 /* Up until now, the param[] array has been indexed by reg + offset
2474 * of UNIFORM registers. Move pull constants into pull_param[] and
2475 * condense param[] to only contain the uniforms we chose to push.
2476 *
2477 * NOTE: Because we are condensing the params[] array, we know that
2478 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2479 * having to make a copy.
2480 */
2481 for (unsigned int i = 0; i < uniforms; i++) {
2482 uint32_t value = param[i];
2483 if (pull_constant_loc[i] != -1) {
2484 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2485 } else if (push_constant_loc[i] != -1) {
2486 stage_prog_data->param[push_constant_loc[i]] = value;
2487 }
2488 }
2489 ralloc_free(param);
2490 } else {
2491 /* If we don't want to compact anything, just set up dummy push/pull
2492 * arrays. All the rest of the compiler cares about are these arrays.
2493 */
2494 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2495 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2496
2497 for (unsigned u = 0; u < uniforms; u++)
2498 push_constant_loc[u] = u;
2499
2500 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2501 }
2502
2503 /* Now that we know how many regular uniforms we'll push, reduce the
2504 * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2505 */
2506 unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2507 for (int i = 0; i < 4; i++) {
2508 struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2509
2510 if (push_length + range->length > 64)
2511 range->length = 64 - push_length;
2512
2513 push_length += range->length;
2514 }
2515 assert(push_length <= 64);
2516 }
2517
2518 bool
2519 fs_visitor::get_pull_locs(const fs_reg &src,
2520 unsigned *out_surf_index,
2521 unsigned *out_pull_index)
2522 {
2523 assert(src.file == UNIFORM);
2524
2525 if (src.nr >= UBO_START) {
2526 const struct brw_ubo_range *range =
2527 &prog_data->ubo_ranges[src.nr - UBO_START];
2528
2529 /* If this access is in our (reduced) range, use the push data. */
2530 if (src.offset / 32 < range->length)
2531 return false;
2532
2533 *out_surf_index = prog_data->binding_table.ubo_start + range->block;
2534 *out_pull_index = (32 * range->start + src.offset) / 4;
2535
2536 prog_data->has_ubo_pull = true;
2537 return true;
2538 }
2539
2540 const unsigned location = src.nr + src.offset / 4;
2541
2542 if (location < uniforms && pull_constant_loc[location] != -1) {
2543 /* A regular uniform push constant */
2544 *out_surf_index = stage_prog_data->binding_table.pull_constants_start;
2545 *out_pull_index = pull_constant_loc[location];
2546
2547 prog_data->has_ubo_pull = true;
2548 return true;
2549 }
2550
2551 return false;
2552 }
2553
2554 /**
2555 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2556 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2557 */
2558 void
2559 fs_visitor::lower_constant_loads()
2560 {
2561 unsigned index, pull_index;
2562
2563 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2564 /* Set up the annotation tracking for new generated instructions. */
2565 const fs_builder ibld(this, block, inst);
2566
2567 for (int i = 0; i < inst->sources; i++) {
2568 if (inst->src[i].file != UNIFORM)
2569 continue;
2570
2571 /* We'll handle this case later */
2572 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2573 continue;
2574
2575 if (!get_pull_locs(inst->src[i], &index, &pull_index))
2576 continue;
2577
2578 assert(inst->src[i].stride == 0);
2579
2580 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2581 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2582 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2583 const unsigned base = pull_index * 4;
2584
2585 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2586 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2587
2588 /* Rewrite the instruction to use the temporary VGRF. */
2589 inst->src[i].file = VGRF;
2590 inst->src[i].nr = dst.nr;
2591 inst->src[i].offset = (base & (block_sz - 1)) +
2592 inst->src[i].offset % 4;
2593 }
2594
2595 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2596 inst->src[0].file == UNIFORM) {
2597
2598 if (!get_pull_locs(inst->src[0], &index, &pull_index))
2599 continue;
2600
2601 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2602 brw_imm_ud(index),
2603 inst->src[1],
2604 pull_index * 4);
2605 inst->remove(block);
2606 }
2607 }
2608 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
2609 }
2610
2611 bool
2612 fs_visitor::opt_algebraic()
2613 {
2614 bool progress = false;
2615
2616 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2617 switch (inst->opcode) {
2618 case BRW_OPCODE_MOV:
2619 if (!devinfo->has_64bit_float &&
2620 !devinfo->has_64bit_int &&
2621 (inst->dst.type == BRW_REGISTER_TYPE_DF ||
2622 inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2623 inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2624 assert(inst->dst.type == inst->src[0].type);
2625 assert(!inst->saturate);
2626 assert(!inst->src[0].abs);
2627 assert(!inst->src[0].negate);
2628 const brw::fs_builder ibld(this, block, inst);
2629
2630 if (inst->src[0].file == IMM) {
2631 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2632 brw_imm_ud(inst->src[0].u64 >> 32));
2633 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2634 brw_imm_ud(inst->src[0].u64));
2635 } else {
2636 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2637 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1));
2638 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2639 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0));
2640 }
2641
2642 inst->remove(block);
2643 progress = true;
2644 }
2645
2646 if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2647 inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2648 inst->dst.is_null() &&
2649 (inst->src[0].abs || inst->src[0].negate)) {
2650 inst->src[0].abs = false;
2651 inst->src[0].negate = false;
2652 progress = true;
2653 break;
2654 }
2655
2656 if (inst->src[0].file != IMM)
2657 break;
2658
2659 if (inst->saturate) {
2660 /* Full mixed-type saturates don't happen. However, we can end up
2661 * with things like:
2662 *
2663 * mov.sat(8) g21<1>DF -1F
2664 *
2665 * Other mixed-size-but-same-base-type cases may also be possible.
2666 */
2667 if (inst->dst.type != inst->src[0].type &&
2668 inst->dst.type != BRW_REGISTER_TYPE_DF &&
2669 inst->src[0].type != BRW_REGISTER_TYPE_F)
2670 assert(!"unimplemented: saturate mixed types");
2671
2672 if (brw_saturate_immediate(inst->src[0].type,
2673 &inst->src[0].as_brw_reg())) {
2674 inst->saturate = false;
2675 progress = true;
2676 }
2677 }
2678 break;
2679
2680 case BRW_OPCODE_MUL:
2681 if (inst->src[1].file != IMM)
2682 continue;
2683
2684 /* a * 1.0 = a */
2685 if (inst->src[1].is_one()) {
2686 inst->opcode = BRW_OPCODE_MOV;
2687 inst->src[1] = reg_undef;
2688 progress = true;
2689 break;
2690 }
2691
2692 /* a * -1.0 = -a */
2693 if (inst->src[1].is_negative_one()) {
2694 inst->opcode = BRW_OPCODE_MOV;
2695 inst->src[0].negate = !inst->src[0].negate;
2696 inst->src[1] = reg_undef;
2697 progress = true;
2698 break;
2699 }
2700
2701 if (inst->src[0].file == IMM) {
2702 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2703 inst->opcode = BRW_OPCODE_MOV;
2704 inst->src[0].f *= inst->src[1].f;
2705 inst->src[1] = reg_undef;
2706 progress = true;
2707 break;
2708 }
2709 break;
2710 case BRW_OPCODE_ADD:
2711 if (inst->src[1].file != IMM)
2712 continue;
2713
2714 if (inst->src[0].file == IMM) {
2715 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2716 inst->opcode = BRW_OPCODE_MOV;
2717 inst->src[0].f += inst->src[1].f;
2718 inst->src[1] = reg_undef;
2719 progress = true;
2720 break;
2721 }
2722 break;
2723 case BRW_OPCODE_OR:
2724 if (inst->src[0].equals(inst->src[1]) ||
2725 inst->src[1].is_zero()) {
2726 /* On Gen8+, the OR instruction can have a source modifier that
2727 * performs logical not on the operand. Cases of 'OR r0, ~r1, 0'
2728 * or 'OR r0, ~r1, ~r1' should become a NOT instead of a MOV.
2729 */
2730 if (inst->src[0].negate) {
2731 inst->opcode = BRW_OPCODE_NOT;
2732 inst->src[0].negate = false;
2733 } else {
2734 inst->opcode = BRW_OPCODE_MOV;
2735 }
2736 inst->src[1] = reg_undef;
2737 progress = true;
2738 break;
2739 }
2740 break;
2741 case BRW_OPCODE_CMP:
2742 if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2743 inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2744 inst->src[1].is_zero() &&
2745 (inst->src[0].abs || inst->src[0].negate)) {
2746 inst->src[0].abs = false;
2747 inst->src[0].negate = false;
2748 progress = true;
2749 break;
2750 }
2751 break;
2752 case BRW_OPCODE_SEL:
2753 if (!devinfo->has_64bit_float &&
2754 !devinfo->has_64bit_int &&
2755 (inst->dst.type == BRW_REGISTER_TYPE_DF ||
2756 inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2757 inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2758 assert(inst->dst.type == inst->src[0].type);
2759 assert(!inst->saturate);
2760 assert(!inst->src[0].abs && !inst->src[0].negate);
2761 assert(!inst->src[1].abs && !inst->src[1].negate);
2762 const brw::fs_builder ibld(this, block, inst);
2763
2764 set_predicate(inst->predicate,
2765 ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2766 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
2767 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0)));
2768 set_predicate(inst->predicate,
2769 ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2770 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1),
2771 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1)));
2772
2773 inst->remove(block);
2774 progress = true;
2775 }
2776 if (inst->src[0].equals(inst->src[1])) {
2777 inst->opcode = BRW_OPCODE_MOV;
2778 inst->src[1] = reg_undef;
2779 inst->predicate = BRW_PREDICATE_NONE;
2780 inst->predicate_inverse = false;
2781 progress = true;
2782 } else if (inst->saturate && inst->src[1].file == IMM) {
2783 switch (inst->conditional_mod) {
2784 case BRW_CONDITIONAL_LE:
2785 case BRW_CONDITIONAL_L:
2786 switch (inst->src[1].type) {
2787 case BRW_REGISTER_TYPE_F:
2788 if (inst->src[1].f >= 1.0f) {
2789 inst->opcode = BRW_OPCODE_MOV;
2790 inst->src[1] = reg_undef;
2791 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2792 progress = true;
2793 }
2794 break;
2795 default:
2796 break;
2797 }
2798 break;
2799 case BRW_CONDITIONAL_GE:
2800 case BRW_CONDITIONAL_G:
2801 switch (inst->src[1].type) {
2802 case BRW_REGISTER_TYPE_F:
2803 if (inst->src[1].f <= 0.0f) {
2804 inst->opcode = BRW_OPCODE_MOV;
2805 inst->src[1] = reg_undef;
2806 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2807 progress = true;
2808 }
2809 break;
2810 default:
2811 break;
2812 }
2813 default:
2814 break;
2815 }
2816 }
2817 break;
2818 case BRW_OPCODE_MAD:
2819 if (inst->src[0].type != BRW_REGISTER_TYPE_F ||
2820 inst->src[1].type != BRW_REGISTER_TYPE_F ||
2821 inst->src[2].type != BRW_REGISTER_TYPE_F)
2822 break;
2823 if (inst->src[1].is_one()) {
2824 inst->opcode = BRW_OPCODE_ADD;
2825 inst->src[1] = inst->src[2];
2826 inst->src[2] = reg_undef;
2827 progress = true;
2828 } else if (inst->src[2].is_one()) {
2829 inst->opcode = BRW_OPCODE_ADD;
2830 inst->src[2] = reg_undef;
2831 progress = true;
2832 }
2833 break;
2834 case SHADER_OPCODE_BROADCAST:
2835 if (is_uniform(inst->src[0])) {
2836 inst->opcode = BRW_OPCODE_MOV;
2837 inst->sources = 1;
2838 inst->force_writemask_all = true;
2839 progress = true;
2840 } else if (inst->src[1].file == IMM) {
2841 inst->opcode = BRW_OPCODE_MOV;
2842 /* It's possible that the selected component will be too large and
2843 * overflow the register. This can happen if someone does a
2844 * readInvocation() from GLSL or SPIR-V and provides an OOB
2845 * invocationIndex. If this happens and we some how manage
2846 * to constant fold it in and get here, then component() may cause
2847 * us to start reading outside of the VGRF which will lead to an
2848 * assert later. Instead, just let it wrap around if it goes over
2849 * exec_size.
2850 */
2851 const unsigned comp = inst->src[1].ud & (inst->exec_size - 1);
2852 inst->src[0] = component(inst->src[0], comp);
2853 inst->sources = 1;
2854 inst->force_writemask_all = true;
2855 progress = true;
2856 }
2857 break;
2858
2859 case SHADER_OPCODE_SHUFFLE:
2860 if (is_uniform(inst->src[0])) {
2861 inst->opcode = BRW_OPCODE_MOV;
2862 inst->sources = 1;
2863 progress = true;
2864 } else if (inst->src[1].file == IMM) {
2865 inst->opcode = BRW_OPCODE_MOV;
2866 inst->src[0] = component(inst->src[0],
2867 inst->src[1].ud);
2868 inst->sources = 1;
2869 progress = true;
2870 }
2871 break;
2872
2873 default:
2874 break;
2875 }
2876
2877 /* Swap if src[0] is immediate. */
2878 if (progress && inst->is_commutative()) {
2879 if (inst->src[0].file == IMM) {
2880 fs_reg tmp = inst->src[1];
2881 inst->src[1] = inst->src[0];
2882 inst->src[0] = tmp;
2883 }
2884 }
2885 }
2886
2887 if (progress)
2888 invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
2889 DEPENDENCY_INSTRUCTION_DETAIL);
2890
2891 return progress;
2892 }
2893
2894 /**
2895 * Optimize sample messages that have constant zero values for the trailing
2896 * texture coordinates. We can just reduce the message length for these
2897 * instructions instead of reserving a register for it. Trailing parameters
2898 * that aren't sent default to zero anyway. This will cause the dead code
2899 * eliminator to remove the MOV instruction that would otherwise be emitted to
2900 * set up the zero value.
2901 */
2902 bool
2903 fs_visitor::opt_zero_samples()
2904 {
2905 /* Gen4 infers the texturing opcode based on the message length so we can't
2906 * change it.
2907 */
2908 if (devinfo->gen < 5)
2909 return false;
2910
2911 bool progress = false;
2912
2913 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2914 if (!inst->is_tex())
2915 continue;
2916
2917 fs_inst *load_payload = (fs_inst *) inst->prev;
2918
2919 if (load_payload->is_head_sentinel() ||
2920 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2921 continue;
2922
2923 /* We don't want to remove the message header or the first parameter.
2924 * Removing the first parameter is not allowed, see the Haswell PRM
2925 * volume 7, page 149:
2926 *
2927 * "Parameter 0 is required except for the sampleinfo message, which
2928 * has no parameter 0"
2929 */
2930 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2931 load_payload->src[(inst->mlen - inst->header_size) /
2932 (inst->exec_size / 8) +
2933 inst->header_size - 1].is_zero()) {
2934 inst->mlen -= inst->exec_size / 8;
2935 progress = true;
2936 }
2937 }
2938
2939 if (progress)
2940 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
2941
2942 return progress;
2943 }
2944
2945 /**
2946 * Optimize sample messages which are followed by the final RT write.
2947 *
2948 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2949 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2950 * final texturing results copied to the framebuffer write payload and modify
2951 * them to write to the framebuffer directly.
2952 */
2953 bool
2954 fs_visitor::opt_sampler_eot()
2955 {
2956 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2957
2958 if (stage != MESA_SHADER_FRAGMENT || dispatch_width > 16)
2959 return false;
2960
2961 if (devinfo->gen != 9 && !devinfo->is_cherryview)
2962 return false;
2963
2964 /* FINISHME: It should be possible to implement this optimization when there
2965 * are multiple drawbuffers.
2966 */
2967 if (key->nr_color_regions != 1)
2968 return false;
2969
2970 /* Requires emitting a bunch of saturating MOV instructions during logical
2971 * send lowering to clamp the color payload, which the sampler unit isn't
2972 * going to do for us.
2973 */
2974 if (key->clamp_fragment_color)
2975 return false;
2976
2977 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2978 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2979 fs_inst *fb_write = (fs_inst *)block->end();
2980 assert(fb_write->eot);
2981 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2982
2983 /* There wasn't one; nothing to do. */
2984 if (unlikely(fb_write->prev->is_head_sentinel()))
2985 return false;
2986
2987 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2988
2989 /* 3D Sampler » Messages » Message Format
2990 *
2991 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2992 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2993 */
2994 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2995 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2996 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2997 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2998 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2999 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
3000 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
3001 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
3002 return false;
3003
3004 /* XXX - This shouldn't be necessary. */
3005 if (tex_inst->prev->is_head_sentinel())
3006 return false;
3007
3008 /* Check that the FB write sources are fully initialized by the single
3009 * texturing instruction.
3010 */
3011 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
3012 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
3013 if (!fb_write->src[i].equals(tex_inst->dst) ||
3014 fb_write->size_read(i) != tex_inst->size_written)
3015 return false;
3016 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
3017 if (fb_write->src[i].file != BAD_FILE)
3018 return false;
3019 }
3020 }
3021
3022 assert(!tex_inst->eot); /* We can't get here twice */
3023 assert((tex_inst->offset & (0xff << 24)) == 0);
3024
3025 const fs_builder ibld(this, block, tex_inst);
3026
3027 tex_inst->offset |= fb_write->target << 24;
3028 tex_inst->eot = true;
3029 tex_inst->dst = ibld.null_reg_ud();
3030 tex_inst->size_written = 0;
3031 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
3032
3033 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
3034 * flag and submit a header together with the sampler message as required
3035 * by the hardware.
3036 */
3037 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
3038 return true;
3039 }
3040
3041 bool
3042 fs_visitor::opt_register_renaming()
3043 {
3044 bool progress = false;
3045 int depth = 0;
3046
3047 unsigned remap[alloc.count];
3048 memset(remap, ~0u, sizeof(unsigned) * alloc.count);
3049
3050 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3051 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
3052 depth++;
3053 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
3054 inst->opcode == BRW_OPCODE_WHILE) {
3055 depth--;
3056 }
3057
3058 /* Rewrite instruction sources. */
3059 for (int i = 0; i < inst->sources; i++) {
3060 if (inst->src[i].file == VGRF &&
3061 remap[inst->src[i].nr] != ~0u &&
3062 remap[inst->src[i].nr] != inst->src[i].nr) {
3063 inst->src[i].nr = remap[inst->src[i].nr];
3064 progress = true;
3065 }
3066 }
3067
3068 const unsigned dst = inst->dst.nr;
3069
3070 if (depth == 0 &&
3071 inst->dst.file == VGRF &&
3072 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
3073 !inst->is_partial_write()) {
3074 if (remap[dst] == ~0u) {
3075 remap[dst] = dst;
3076 } else {
3077 remap[dst] = alloc.allocate(regs_written(inst));
3078 inst->dst.nr = remap[dst];
3079 progress = true;
3080 }
3081 } else if (inst->dst.file == VGRF &&
3082 remap[dst] != ~0u &&
3083 remap[dst] != dst) {
3084 inst->dst.nr = remap[dst];
3085 progress = true;
3086 }
3087 }
3088
3089 if (progress) {
3090 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
3091 DEPENDENCY_VARIABLES);
3092
3093 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
3094 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != ~0u) {
3095 delta_xy[i].nr = remap[delta_xy[i].nr];
3096 }
3097 }
3098 }
3099
3100 return progress;
3101 }
3102
3103 /**
3104 * Remove redundant or useless discard jumps.
3105 *
3106 * For example, we can eliminate jumps in the following sequence:
3107 *
3108 * discard-jump (redundant with the next jump)
3109 * discard-jump (useless; jumps to the next instruction)
3110 * placeholder-halt
3111 */
3112 bool
3113 fs_visitor::opt_redundant_discard_jumps()
3114 {
3115 bool progress = false;
3116
3117 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
3118
3119 fs_inst *placeholder_halt = NULL;
3120 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
3121 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
3122 placeholder_halt = inst;
3123 break;
3124 }
3125 }
3126
3127 if (!placeholder_halt)
3128 return false;
3129
3130 /* Delete any HALTs immediately before the placeholder halt. */
3131 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
3132 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
3133 prev = (fs_inst *) placeholder_halt->prev) {
3134 prev->remove(last_bblock);
3135 progress = true;
3136 }
3137
3138 if (progress)
3139 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3140
3141 return progress;
3142 }
3143
3144 /**
3145 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
3146 * from \p r.offset which overlaps the region starting at \p s.offset and
3147 * spanning \p ds bytes.
3148 */
3149 static inline unsigned
3150 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
3151 {
3152 const int rel_offset = reg_offset(s) - reg_offset(r);
3153 const int shift = rel_offset / REG_SIZE;
3154 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
3155 assert(reg_space(r) == reg_space(s) &&
3156 shift >= 0 && shift < int(8 * sizeof(unsigned)));
3157 return ((1 << n) - 1) << shift;
3158 }
3159
3160 bool
3161 fs_visitor::compute_to_mrf()
3162 {
3163 bool progress = false;
3164 int next_ip = 0;
3165
3166 /* No MRFs on Gen >= 7. */
3167 if (devinfo->gen >= 7)
3168 return false;
3169
3170 const fs_live_variables &live = live_analysis.require();
3171
3172 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3173 int ip = next_ip;
3174 next_ip++;
3175
3176 if (inst->opcode != BRW_OPCODE_MOV ||
3177 inst->is_partial_write() ||
3178 inst->dst.file != MRF || inst->src[0].file != VGRF ||
3179 inst->dst.type != inst->src[0].type ||
3180 inst->src[0].abs || inst->src[0].negate ||
3181 !inst->src[0].is_contiguous() ||
3182 inst->src[0].offset % REG_SIZE != 0)
3183 continue;
3184
3185 /* Can't compute-to-MRF this GRF if someone else was going to
3186 * read it later.
3187 */
3188 if (live.vgrf_end[inst->src[0].nr] > ip)
3189 continue;
3190
3191 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
3192 * things that computed the value of all GRFs of the source region. The
3193 * regs_left bitset keeps track of the registers we haven't yet found a
3194 * generating instruction for.
3195 */
3196 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
3197
3198 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3199 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3200 inst->src[0], inst->size_read(0))) {
3201 /* Found the last thing to write our reg we want to turn
3202 * into a compute-to-MRF.
3203 */
3204
3205 /* If this one instruction didn't populate all the
3206 * channels, bail. We might be able to rewrite everything
3207 * that writes that reg, but it would require smarter
3208 * tracking.
3209 */
3210 if (scan_inst->is_partial_write())
3211 break;
3212
3213 /* Handling things not fully contained in the source of the copy
3214 * would need us to understand coalescing out more than one MOV at
3215 * a time.
3216 */
3217 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
3218 inst->src[0], inst->size_read(0)))
3219 break;
3220
3221 /* SEND instructions can't have MRF as a destination. */
3222 if (scan_inst->mlen)
3223 break;
3224
3225 if (devinfo->gen == 6) {
3226 /* gen6 math instructions must have the destination be
3227 * GRF, so no compute-to-MRF for them.
3228 */
3229 if (scan_inst->is_math()) {
3230 break;
3231 }
3232 }
3233
3234 /* Clear the bits for any registers this instruction overwrites. */
3235 regs_left &= ~mask_relative_to(
3236 inst->src[0], scan_inst->dst, scan_inst->size_written);
3237 if (!regs_left)
3238 break;
3239 }
3240
3241 /* We don't handle control flow here. Most computation of
3242 * values that end up in MRFs are shortly before the MRF
3243 * write anyway.
3244 */
3245 if (block->start() == scan_inst)
3246 break;
3247
3248 /* You can't read from an MRF, so if someone else reads our
3249 * MRF's source GRF that we wanted to rewrite, that stops us.
3250 */
3251 bool interfered = false;
3252 for (int i = 0; i < scan_inst->sources; i++) {
3253 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
3254 inst->src[0], inst->size_read(0))) {
3255 interfered = true;
3256 }
3257 }
3258 if (interfered)
3259 break;
3260
3261 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3262 inst->dst, inst->size_written)) {
3263 /* If somebody else writes our MRF here, we can't
3264 * compute-to-MRF before that.
3265 */
3266 break;
3267 }
3268
3269 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
3270 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
3271 inst->dst, inst->size_written)) {
3272 /* Found a SEND instruction, which means that there are
3273 * live values in MRFs from base_mrf to base_mrf +
3274 * scan_inst->mlen - 1. Don't go pushing our MRF write up
3275 * above it.
3276 */
3277 break;
3278 }
3279 }
3280
3281 if (regs_left)
3282 continue;
3283
3284 /* Found all generating instructions of our MRF's source value, so it
3285 * should be safe to rewrite them to point to the MRF directly.
3286 */
3287 regs_left = (1 << regs_read(inst, 0)) - 1;
3288
3289 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3290 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3291 inst->src[0], inst->size_read(0))) {
3292 /* Clear the bits for any registers this instruction overwrites. */
3293 regs_left &= ~mask_relative_to(
3294 inst->src[0], scan_inst->dst, scan_inst->size_written);
3295
3296 const unsigned rel_offset = reg_offset(scan_inst->dst) -
3297 reg_offset(inst->src[0]);
3298
3299 if (inst->dst.nr & BRW_MRF_COMPR4) {
3300 /* Apply the same address transformation done by the hardware
3301 * for COMPR4 MRF writes.
3302 */
3303 assert(rel_offset < 2 * REG_SIZE);
3304 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
3305
3306 /* Clear the COMPR4 bit if the generating instruction is not
3307 * compressed.
3308 */
3309 if (scan_inst->size_written < 2 * REG_SIZE)
3310 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
3311
3312 } else {
3313 /* Calculate the MRF number the result of this instruction is
3314 * ultimately written to.
3315 */
3316 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
3317 }
3318
3319 scan_inst->dst.file = MRF;
3320 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
3321 scan_inst->saturate |= inst->saturate;
3322 if (!regs_left)
3323 break;
3324 }
3325 }
3326
3327 assert(!regs_left);
3328 inst->remove(block);
3329 progress = true;
3330 }
3331
3332 if (progress)
3333 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3334
3335 return progress;
3336 }
3337
3338 /**
3339 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
3340 * flow. We could probably do better here with some form of divergence
3341 * analysis.
3342 */
3343 bool
3344 fs_visitor::eliminate_find_live_channel()
3345 {
3346 bool progress = false;
3347 unsigned depth = 0;
3348
3349 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
3350 /* The optimization below assumes that channel zero is live on thread
3351 * dispatch, which may not be the case if the fixed function dispatches
3352 * threads sparsely.
3353 */
3354 return false;
3355 }
3356
3357 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3358 switch (inst->opcode) {
3359 case BRW_OPCODE_IF:
3360 case BRW_OPCODE_DO:
3361 depth++;
3362 break;
3363
3364 case BRW_OPCODE_ENDIF:
3365 case BRW_OPCODE_WHILE:
3366 depth--;
3367 break;
3368
3369 case FS_OPCODE_DISCARD_JUMP:
3370 /* This can potentially make control flow non-uniform until the end
3371 * of the program.
3372 */
3373 return progress;
3374
3375 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
3376 if (depth == 0) {
3377 inst->opcode = BRW_OPCODE_MOV;
3378 inst->src[0] = brw_imm_ud(0u);
3379 inst->sources = 1;
3380 inst->force_writemask_all = true;
3381 progress = true;
3382 }
3383 break;
3384
3385 default:
3386 break;
3387 }
3388 }
3389
3390 if (progress)
3391 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
3392
3393 return progress;
3394 }
3395
3396 /**
3397 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
3398 * instructions to FS_OPCODE_REP_FB_WRITE.
3399 */
3400 void
3401 fs_visitor::emit_repclear_shader()
3402 {
3403 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3404 int base_mrf = 0;
3405 int color_mrf = base_mrf + 2;
3406 fs_inst *mov;
3407
3408 if (uniforms > 0) {
3409 mov = bld.exec_all().group(4, 0)
3410 .MOV(brw_message_reg(color_mrf),
3411 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
3412 } else {
3413 struct brw_reg reg =
3414 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
3415 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
3416 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
3417
3418 mov = bld.exec_all().group(4, 0)
3419 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
3420 }
3421
3422 fs_inst *write = NULL;
3423 if (key->nr_color_regions == 1) {
3424 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3425 write->saturate = key->clamp_fragment_color;
3426 write->base_mrf = color_mrf;
3427 write->target = 0;
3428 write->header_size = 0;
3429 write->mlen = 1;
3430 } else {
3431 assume(key->nr_color_regions > 0);
3432
3433 struct brw_reg header =
3434 retype(brw_message_reg(base_mrf), BRW_REGISTER_TYPE_UD);
3435 bld.exec_all().group(16, 0)
3436 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3437
3438 for (int i = 0; i < key->nr_color_regions; ++i) {
3439 if (i > 0) {
3440 bld.exec_all().group(1, 0)
3441 .MOV(component(header, 2), brw_imm_ud(i));
3442 }
3443
3444 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3445 write->saturate = key->clamp_fragment_color;
3446 write->base_mrf = base_mrf;
3447 write->target = i;
3448 write->header_size = 2;
3449 write->mlen = 3;
3450 }
3451 }
3452 write->eot = true;
3453 write->last_rt = true;
3454
3455 calculate_cfg();
3456
3457 assign_constant_locations();
3458 assign_curb_setup();
3459
3460 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
3461 if (uniforms > 0) {
3462 assert(mov->src[0].file == FIXED_GRF);
3463 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
3464 }
3465
3466 lower_scoreboard();
3467 }
3468
3469 /**
3470 * Walks through basic blocks, looking for repeated MRF writes and
3471 * removing the later ones.
3472 */
3473 bool
3474 fs_visitor::remove_duplicate_mrf_writes()
3475 {
3476 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
3477 bool progress = false;
3478
3479 /* Need to update the MRF tracking for compressed instructions. */
3480 if (dispatch_width >= 16)
3481 return false;
3482
3483 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3484
3485 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3486 if (inst->is_control_flow()) {
3487 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3488 }
3489
3490 if (inst->opcode == BRW_OPCODE_MOV &&
3491 inst->dst.file == MRF) {
3492 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3493 if (prev_inst && prev_inst->opcode == BRW_OPCODE_MOV &&
3494 inst->dst.equals(prev_inst->dst) &&
3495 inst->src[0].equals(prev_inst->src[0]) &&
3496 inst->saturate == prev_inst->saturate &&
3497 inst->predicate == prev_inst->predicate &&
3498 inst->conditional_mod == prev_inst->conditional_mod &&
3499 inst->exec_size == prev_inst->exec_size) {
3500 inst->remove(block);
3501 progress = true;
3502 continue;
3503 }
3504 }
3505
3506 /* Clear out the last-write records for MRFs that were overwritten. */
3507 if (inst->dst.file == MRF) {
3508 last_mrf_move[inst->dst.nr] = NULL;
3509 }
3510
3511 if (inst->mlen > 0 && inst->base_mrf != -1) {
3512 /* Found a SEND instruction, which will include two or fewer
3513 * implied MRF writes. We could do better here.
3514 */
3515 for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
3516 last_mrf_move[inst->base_mrf + i] = NULL;
3517 }
3518 }
3519
3520 /* Clear out any MRF move records whose sources got overwritten. */
3521 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3522 if (last_mrf_move[i] &&
3523 regions_overlap(inst->dst, inst->size_written,
3524 last_mrf_move[i]->src[0],
3525 last_mrf_move[i]->size_read(0))) {
3526 last_mrf_move[i] = NULL;
3527 }
3528 }
3529
3530 if (inst->opcode == BRW_OPCODE_MOV &&
3531 inst->dst.file == MRF &&
3532 inst->src[0].file != ARF &&
3533 !inst->is_partial_write()) {
3534 last_mrf_move[inst->dst.nr] = inst;
3535 }
3536 }
3537
3538 if (progress)
3539 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3540
3541 return progress;
3542 }
3543
3544 /**
3545 * Rounding modes for conversion instructions are included for each
3546 * conversion, but right now it is a state. So once it is set,
3547 * we don't need to call it again for subsequent calls.
3548 *
3549 * This is useful for vector/matrices conversions, as setting the
3550 * mode once is enough for the full vector/matrix
3551 */
3552 bool
3553 fs_visitor::remove_extra_rounding_modes()
3554 {
3555 bool progress = false;
3556 unsigned execution_mode = this->nir->info.float_controls_execution_mode;
3557
3558 brw_rnd_mode base_mode = BRW_RND_MODE_UNSPECIFIED;
3559 if ((FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 |
3560 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32 |
3561 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64) &
3562 execution_mode)
3563 base_mode = BRW_RND_MODE_RTNE;
3564 if ((FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 |
3565 FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 |
3566 FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64) &
3567 execution_mode)
3568 base_mode = BRW_RND_MODE_RTZ;
3569
3570 foreach_block (block, cfg) {
3571 brw_rnd_mode prev_mode = base_mode;
3572
3573 foreach_inst_in_block_safe (fs_inst, inst, block) {
3574 if (inst->opcode == SHADER_OPCODE_RND_MODE) {
3575 assert(inst->src[0].file == BRW_IMMEDIATE_VALUE);
3576 const brw_rnd_mode mode = (brw_rnd_mode) inst->src[0].d;
3577 if (mode == prev_mode) {
3578 inst->remove(block);
3579 progress = true;
3580 } else {
3581 prev_mode = mode;
3582 }
3583 }
3584 }
3585 }
3586
3587 if (progress)
3588 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3589
3590 return progress;
3591 }
3592
3593 static void
3594 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3595 {
3596 /* Clear the flag for registers that actually got read (as expected). */
3597 for (int i = 0; i < inst->sources; i++) {
3598 int grf;
3599 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3600 grf = inst->src[i].nr;
3601 } else {
3602 continue;
3603 }
3604
3605 if (grf >= first_grf &&
3606 grf < first_grf + grf_len) {
3607 deps[grf - first_grf] = false;
3608 if (inst->exec_size == 16)
3609 deps[grf - first_grf + 1] = false;
3610 }
3611 }
3612 }
3613
3614 /**
3615 * Implements this workaround for the original 965:
3616 *
3617 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3618 * check for post destination dependencies on this instruction, software
3619 * must ensure that there is no destination hazard for the case of ‘write
3620 * followed by a posted write’ shown in the following example.
3621 *
3622 * 1. mov r3 0
3623 * 2. send r3.xy <rest of send instruction>
3624 * 3. mov r2 r3
3625 *
3626 * Due to no post-destination dependency check on the ‘send’, the above
3627 * code sequence could have two instructions (1 and 2) in flight at the
3628 * same time that both consider ‘r3’ as the target of their final writes.
3629 */
3630 void
3631 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3632 fs_inst *inst)
3633 {
3634 int write_len = regs_written(inst);
3635 int first_write_grf = inst->dst.nr;
3636 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3637 assert(write_len < (int)sizeof(needs_dep) - 1);
3638
3639 memset(needs_dep, false, sizeof(needs_dep));
3640 memset(needs_dep, true, write_len);
3641
3642 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3643
3644 /* Walk backwards looking for writes to registers we're writing which
3645 * aren't read since being written. If we hit the start of the program,
3646 * we assume that there are no outstanding dependencies on entry to the
3647 * program.
3648 */
3649 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3650 /* If we hit control flow, assume that there *are* outstanding
3651 * dependencies, and force their cleanup before our instruction.
3652 */
3653 if (block->start() == scan_inst && block->num != 0) {
3654 for (int i = 0; i < write_len; i++) {
3655 if (needs_dep[i])
3656 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3657 first_write_grf + i);
3658 }
3659 return;
3660 }
3661
3662 /* We insert our reads as late as possible on the assumption that any
3663 * instruction but a MOV that might have left us an outstanding
3664 * dependency has more latency than a MOV.
3665 */
3666 if (scan_inst->dst.file == VGRF) {
3667 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3668 int reg = scan_inst->dst.nr + i;
3669
3670 if (reg >= first_write_grf &&
3671 reg < first_write_grf + write_len &&
3672 needs_dep[reg - first_write_grf]) {
3673 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3674 needs_dep[reg - first_write_grf] = false;
3675 if (scan_inst->exec_size == 16)
3676 needs_dep[reg - first_write_grf + 1] = false;
3677 }
3678 }
3679 }
3680
3681 /* Clear the flag for registers that actually got read (as expected). */
3682 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3683
3684 /* Continue the loop only if we haven't resolved all the dependencies */
3685 int i;
3686 for (i = 0; i < write_len; i++) {
3687 if (needs_dep[i])
3688 break;
3689 }
3690 if (i == write_len)
3691 return;
3692 }
3693 }
3694
3695 /**
3696 * Implements this workaround for the original 965:
3697 *
3698 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3699 * used as a destination register until after it has been sourced by an
3700 * instruction with a different destination register.
3701 */
3702 void
3703 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3704 {
3705 int write_len = regs_written(inst);
3706 unsigned first_write_grf = inst->dst.nr;
3707 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3708 assert(write_len < (int)sizeof(needs_dep) - 1);
3709
3710 memset(needs_dep, false, sizeof(needs_dep));
3711 memset(needs_dep, true, write_len);
3712 /* Walk forwards looking for writes to registers we're writing which aren't
3713 * read before being written.
3714 */
3715 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3716 /* If we hit control flow, force resolve all remaining dependencies. */
3717 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3718 for (int i = 0; i < write_len; i++) {
3719 if (needs_dep[i])
3720 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3721 first_write_grf + i);
3722 }
3723 return;
3724 }
3725
3726 /* Clear the flag for registers that actually got read (as expected). */
3727 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3728
3729 /* We insert our reads as late as possible since they're reading the
3730 * result of a SEND, which has massive latency.
3731 */
3732 if (scan_inst->dst.file == VGRF &&
3733 scan_inst->dst.nr >= first_write_grf &&
3734 scan_inst->dst.nr < first_write_grf + write_len &&
3735 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3736 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3737 scan_inst->dst.nr);
3738 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3739 }
3740
3741 /* Continue the loop only if we haven't resolved all the dependencies */
3742 int i;
3743 for (i = 0; i < write_len; i++) {
3744 if (needs_dep[i])
3745 break;
3746 }
3747 if (i == write_len)
3748 return;
3749 }
3750 }
3751
3752 void
3753 fs_visitor::insert_gen4_send_dependency_workarounds()
3754 {
3755 if (devinfo->gen != 4 || devinfo->is_g4x)
3756 return;
3757
3758 bool progress = false;
3759
3760 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3761 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3762 insert_gen4_pre_send_dependency_workarounds(block, inst);
3763 insert_gen4_post_send_dependency_workarounds(block, inst);
3764 progress = true;
3765 }
3766 }
3767
3768 if (progress)
3769 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3770 }
3771
3772 /**
3773 * Turns the generic expression-style uniform pull constant load instruction
3774 * into a hardware-specific series of instructions for loading a pull
3775 * constant.
3776 *
3777 * The expression style allows the CSE pass before this to optimize out
3778 * repeated loads from the same offset, and gives the pre-register-allocation
3779 * scheduling full flexibility, while the conversion to native instructions
3780 * allows the post-register-allocation scheduler the best information
3781 * possible.
3782 *
3783 * Note that execution masking for setting up pull constant loads is special:
3784 * the channels that need to be written are unrelated to the current execution
3785 * mask, since a later instruction will use one of the result channels as a
3786 * source operand for all 8 or 16 of its channels.
3787 */
3788 void
3789 fs_visitor::lower_uniform_pull_constant_loads()
3790 {
3791 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3792 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3793 continue;
3794
3795 if (devinfo->gen >= 7) {
3796 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3797 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3798
3799 ubld.group(8, 0).MOV(payload,
3800 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3801 ubld.group(1, 0).MOV(component(payload, 2),
3802 brw_imm_ud(inst->src[1].ud / 16));
3803
3804 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3805 inst->src[1] = payload;
3806 inst->header_size = 1;
3807 inst->mlen = 1;
3808
3809 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
3810 } else {
3811 /* Before register allocation, we didn't tell the scheduler about the
3812 * MRF we use. We know it's safe to use this MRF because nothing
3813 * else does except for register spill/unspill, which generates and
3814 * uses its MRF within a single IR instruction.
3815 */
3816 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3817 inst->mlen = 1;
3818 }
3819 }
3820 }
3821
3822 bool
3823 fs_visitor::lower_load_payload()
3824 {
3825 bool progress = false;
3826
3827 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3828 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3829 continue;
3830
3831 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3832 assert(inst->saturate == false);
3833 fs_reg dst = inst->dst;
3834
3835 /* Get rid of COMPR4. We'll add it back in if we need it */
3836 if (dst.file == MRF)
3837 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3838
3839 const fs_builder ibld(this, block, inst);
3840 const fs_builder ubld = ibld.exec_all();
3841
3842 for (uint8_t i = 0; i < inst->header_size;) {
3843 /* Number of header GRFs to initialize at once with a single MOV
3844 * instruction.
3845 */
3846 const unsigned n =
3847 (i + 1 < inst->header_size && inst->src[i].stride == 1 &&
3848 inst->src[i + 1].equals(byte_offset(inst->src[i], REG_SIZE))) ?
3849 2 : 1;
3850
3851 if (inst->src[i].file != BAD_FILE)
3852 ubld.group(8 * n, 0).MOV(retype(dst, BRW_REGISTER_TYPE_UD),
3853 retype(inst->src[i], BRW_REGISTER_TYPE_UD));
3854
3855 dst = byte_offset(dst, n * REG_SIZE);
3856 i += n;
3857 }
3858
3859 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3860 inst->exec_size > 8) {
3861 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3862 * a straightforward copy. Instead, the result of the
3863 * LOAD_PAYLOAD is treated as interleaved and the first four
3864 * non-header sources are unpacked as:
3865 *
3866 * m + 0: r0
3867 * m + 1: g0
3868 * m + 2: b0
3869 * m + 3: a0
3870 * m + 4: r1
3871 * m + 5: g1
3872 * m + 6: b1
3873 * m + 7: a1
3874 *
3875 * This is used for gen <= 5 fb writes.
3876 */
3877 assert(inst->exec_size == 16);
3878 assert(inst->header_size + 4 <= inst->sources);
3879 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3880 if (inst->src[i].file != BAD_FILE) {
3881 if (devinfo->has_compr4) {
3882 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3883 compr4_dst.nr |= BRW_MRF_COMPR4;
3884 ibld.MOV(compr4_dst, inst->src[i]);
3885 } else {
3886 /* Platform doesn't have COMPR4. We have to fake it */
3887 fs_reg mov_dst = retype(dst, inst->src[i].type);
3888 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3889 mov_dst.nr += 4;
3890 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3891 }
3892 }
3893
3894 dst.nr++;
3895 }
3896
3897 /* The loop above only ever incremented us through the first set
3898 * of 4 registers. However, thanks to the magic of COMPR4, we
3899 * actually wrote to the first 8 registers, so we need to take
3900 * that into account now.
3901 */
3902 dst.nr += 4;
3903
3904 /* The COMPR4 code took care of the first 4 sources. We'll let
3905 * the regular path handle any remaining sources. Yes, we are
3906 * modifying the instruction but we're about to delete it so
3907 * this really doesn't hurt anything.
3908 */
3909 inst->header_size += 4;
3910 }
3911
3912 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3913 if (inst->src[i].file != BAD_FILE) {
3914 dst.type = inst->src[i].type;
3915 ibld.MOV(dst, inst->src[i]);
3916 } else {
3917 dst.type = BRW_REGISTER_TYPE_UD;
3918 }
3919 dst = offset(dst, ibld, 1);
3920 }
3921
3922 inst->remove(block);
3923 progress = true;
3924 }
3925
3926 if (progress)
3927 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3928
3929 return progress;
3930 }
3931
3932 void
3933 fs_visitor::lower_mul_dword_inst(fs_inst *inst, bblock_t *block)
3934 {
3935 const fs_builder ibld(this, block, inst);
3936
3937 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3938 if (inst->src[1].file == IMM &&
3939 (( ud && inst->src[1].ud <= UINT16_MAX) ||
3940 (!ud && inst->src[1].d <= INT16_MAX && inst->src[1].d >= INT16_MIN))) {
3941 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3942 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3943 * src1 are used.
3944 *
3945 * If multiplying by an immediate value that fits in 16-bits, do a
3946 * single MUL instruction with that value in the proper location.
3947 */
3948 if (devinfo->gen < 7) {
3949 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8), inst->dst.type);
3950 ibld.MOV(imm, inst->src[1]);
3951 ibld.MUL(inst->dst, imm, inst->src[0]);
3952 } else {
3953 ibld.MUL(inst->dst, inst->src[0],
3954 ud ? brw_imm_uw(inst->src[1].ud)
3955 : brw_imm_w(inst->src[1].d));
3956 }
3957 } else {
3958 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3959 * do 32-bit integer multiplication in one instruction, but instead
3960 * must do a sequence (which actually calculates a 64-bit result):
3961 *
3962 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3963 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3964 * mov(8) g2<1>D acc0<8,8,1>D
3965 *
3966 * But on Gen > 6, the ability to use second accumulator register
3967 * (acc1) for non-float data types was removed, preventing a simple
3968 * implementation in SIMD16. A 16-channel result can be calculated by
3969 * executing the three instructions twice in SIMD8, once with quarter
3970 * control of 1Q for the first eight channels and again with 2Q for
3971 * the second eight channels.
3972 *
3973 * Which accumulator register is implicitly accessed (by AccWrEnable
3974 * for instance) is determined by the quarter control. Unfortunately
3975 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3976 * implicit accumulator access by an instruction with 2Q will access
3977 * acc1 regardless of whether the data type is usable in acc1.
3978 *
3979 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3980 * integer data types.
3981 *
3982 * Since we only want the low 32-bits of the result, we can do two
3983 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3984 * adjust the high result and add them (like the mach is doing):
3985 *
3986 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3987 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3988 * shl(8) g9<1>D g8<8,8,1>D 16D
3989 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3990 *
3991 * We avoid the shl instruction by realizing that we only want to add
3992 * the low 16-bits of the "high" result to the high 16-bits of the
3993 * "low" result and using proper regioning on the add:
3994 *
3995 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3996 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3997 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3998 *
3999 * Since it does not use the (single) accumulator register, we can
4000 * schedule multi-component multiplications much better.
4001 */
4002
4003 bool needs_mov = false;
4004 fs_reg orig_dst = inst->dst;
4005
4006 /* Get a new VGRF for the "low" 32x16-bit multiplication result if
4007 * reusing the original destination is impossible due to hardware
4008 * restrictions, source/destination overlap, or it being the null
4009 * register.
4010 */
4011 fs_reg low = inst->dst;
4012 if (orig_dst.is_null() || orig_dst.file == MRF ||
4013 regions_overlap(inst->dst, inst->size_written,
4014 inst->src[0], inst->size_read(0)) ||
4015 regions_overlap(inst->dst, inst->size_written,
4016 inst->src[1], inst->size_read(1)) ||
4017 inst->dst.stride >= 4) {
4018 needs_mov = true;
4019 low = fs_reg(VGRF, alloc.allocate(regs_written(inst)),
4020 inst->dst.type);
4021 }
4022
4023 /* Get a new VGRF but keep the same stride as inst->dst */
4024 fs_reg high(VGRF, alloc.allocate(regs_written(inst)), inst->dst.type);
4025 high.stride = inst->dst.stride;
4026 high.offset = inst->dst.offset % REG_SIZE;
4027
4028 if (devinfo->gen >= 7) {
4029 if (inst->src[1].abs)
4030 lower_src_modifiers(this, block, inst, 1);
4031
4032 if (inst->src[1].file == IMM) {
4033 ibld.MUL(low, inst->src[0],
4034 brw_imm_uw(inst->src[1].ud & 0xffff));
4035 ibld.MUL(high, inst->src[0],
4036 brw_imm_uw(inst->src[1].ud >> 16));
4037 } else {
4038 ibld.MUL(low, inst->src[0],
4039 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
4040 ibld.MUL(high, inst->src[0],
4041 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
4042 }
4043 } else {
4044 if (inst->src[0].abs)
4045 lower_src_modifiers(this, block, inst, 0);
4046
4047 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
4048 inst->src[1]);
4049 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
4050 inst->src[1]);
4051 }
4052
4053 ibld.ADD(subscript(low, BRW_REGISTER_TYPE_UW, 1),
4054 subscript(low, BRW_REGISTER_TYPE_UW, 1),
4055 subscript(high, BRW_REGISTER_TYPE_UW, 0));
4056
4057 if (needs_mov || inst->conditional_mod)
4058 set_condmod(inst->conditional_mod, ibld.MOV(orig_dst, low));
4059 }
4060 }
4061
4062 void
4063 fs_visitor::lower_mul_qword_inst(fs_inst *inst, bblock_t *block)
4064 {
4065 const fs_builder ibld(this, block, inst);
4066
4067 /* Considering two 64-bit integers ab and cd where each letter ab
4068 * corresponds to 32 bits, we get a 128-bit result WXYZ. We * cd
4069 * only need to provide the YZ part of the result. -------
4070 * BD
4071 * Only BD needs to be 64 bits. For AD and BC we only care + AD
4072 * about the lower 32 bits (since they are part of the upper + BC
4073 * 32 bits of our result). AC is not needed since it starts + AC
4074 * on the 65th bit of the result. -------
4075 * WXYZ
4076 */
4077 unsigned int q_regs = regs_written(inst);
4078 unsigned int d_regs = (q_regs + 1) / 2;
4079
4080 fs_reg bd(VGRF, alloc.allocate(q_regs), BRW_REGISTER_TYPE_UQ);
4081 fs_reg ad(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4082 fs_reg bc(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4083
4084 /* Here we need the full 64 bit result for 32b * 32b. */
4085 if (devinfo->has_integer_dword_mul) {
4086 ibld.MUL(bd, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4087 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4088 } else {
4089 fs_reg bd_high(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4090 fs_reg bd_low(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4091 fs_reg acc = retype(brw_acc_reg(inst->exec_size), BRW_REGISTER_TYPE_UD);
4092
4093 fs_inst *mul = ibld.MUL(acc,
4094 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4095 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
4096 mul->writes_accumulator = true;
4097
4098 ibld.MACH(bd_high, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4099 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4100 ibld.MOV(bd_low, acc);
4101
4102 ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 0), bd_low);
4103 ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 1), bd_high);
4104 }
4105
4106 ibld.MUL(ad, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1),
4107 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4108 ibld.MUL(bc, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4109 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1));
4110
4111 ibld.ADD(ad, ad, bc);
4112 ibld.ADD(subscript(bd, BRW_REGISTER_TYPE_UD, 1),
4113 subscript(bd, BRW_REGISTER_TYPE_UD, 1), ad);
4114
4115 ibld.MOV(inst->dst, bd);
4116 }
4117
4118 void
4119 fs_visitor::lower_mulh_inst(fs_inst *inst, bblock_t *block)
4120 {
4121 const fs_builder ibld(this, block, inst);
4122
4123 /* According to the BDW+ BSpec page for the "Multiply Accumulate
4124 * High" instruction:
4125 *
4126 * "An added preliminary mov is required for source modification on
4127 * src1:
4128 * mov (8) r3.0<1>:d -r3<8;8,1>:d
4129 * mul (8) acc0:d r2.0<8;8,1>:d r3.0<16;8,2>:uw
4130 * mach (8) r5.0<1>:d r2.0<8;8,1>:d r3.0<8;8,1>:d"
4131 */
4132 if (devinfo->gen >= 8 && (inst->src[1].negate || inst->src[1].abs))
4133 lower_src_modifiers(this, block, inst, 1);
4134
4135 /* Should have been lowered to 8-wide. */
4136 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
4137 const fs_reg acc = retype(brw_acc_reg(inst->exec_size), inst->dst.type);
4138 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
4139 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
4140
4141 if (devinfo->gen >= 8) {
4142 /* Until Gen8, integer multiplies read 32-bits from one source,
4143 * and 16-bits from the other, and relying on the MACH instruction
4144 * to generate the high bits of the result.
4145 *
4146 * On Gen8, the multiply instruction does a full 32x32-bit
4147 * multiply, but in order to do a 64-bit multiply we can simulate
4148 * the previous behavior and then use a MACH instruction.
4149 */
4150 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
4151 mul->src[1].type == BRW_REGISTER_TYPE_UD);
4152 mul->src[1].type = BRW_REGISTER_TYPE_UW;
4153 mul->src[1].stride *= 2;
4154
4155 if (mul->src[1].file == IMM) {
4156 mul->src[1] = brw_imm_uw(mul->src[1].ud);
4157 }
4158 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
4159 inst->group > 0) {
4160 /* Among other things the quarter control bits influence which
4161 * accumulator register is used by the hardware for instructions
4162 * that access the accumulator implicitly (e.g. MACH). A
4163 * second-half instruction would normally map to acc1, which
4164 * doesn't exist on Gen7 and up (the hardware does emulate it for
4165 * floating-point instructions *only* by taking advantage of the
4166 * extra precision of acc0 not normally used for floating point
4167 * arithmetic).
4168 *
4169 * HSW and up are careful enough not to try to access an
4170 * accumulator register that doesn't exist, but on earlier Gen7
4171 * hardware we need to make sure that the quarter control bits are
4172 * zero to avoid non-deterministic behaviour and emit an extra MOV
4173 * to get the result masked correctly according to the current
4174 * channel enables.
4175 */
4176 mach->group = 0;
4177 mach->force_writemask_all = true;
4178 mach->dst = ibld.vgrf(inst->dst.type);
4179 ibld.MOV(inst->dst, mach->dst);
4180 }
4181 }
4182
4183 bool
4184 fs_visitor::lower_integer_multiplication()
4185 {
4186 bool progress = false;
4187
4188 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4189 if (inst->opcode == BRW_OPCODE_MUL) {
4190 /* If the instruction is already in a form that does not need lowering,
4191 * return early.
4192 */
4193 if (devinfo->gen >= 7) {
4194 if (type_sz(inst->src[1].type) < 4 && type_sz(inst->src[0].type) <= 4)
4195 continue;
4196 } else {
4197 if (type_sz(inst->src[0].type) < 4 && type_sz(inst->src[1].type) <= 4)
4198 continue;
4199 }
4200
4201 if ((inst->dst.type == BRW_REGISTER_TYPE_Q ||
4202 inst->dst.type == BRW_REGISTER_TYPE_UQ) &&
4203 (inst->src[0].type == BRW_REGISTER_TYPE_Q ||
4204 inst->src[0].type == BRW_REGISTER_TYPE_UQ) &&
4205 (inst->src[1].type == BRW_REGISTER_TYPE_Q ||
4206 inst->src[1].type == BRW_REGISTER_TYPE_UQ)) {
4207 lower_mul_qword_inst(inst, block);
4208 inst->remove(block);
4209 progress = true;
4210 } else if (!inst->dst.is_accumulator() &&
4211 (inst->dst.type == BRW_REGISTER_TYPE_D ||
4212 inst->dst.type == BRW_REGISTER_TYPE_UD) &&
4213 !devinfo->has_integer_dword_mul) {
4214 lower_mul_dword_inst(inst, block);
4215 inst->remove(block);
4216 progress = true;
4217 }
4218 } else if (inst->opcode == SHADER_OPCODE_MULH) {
4219 lower_mulh_inst(inst, block);
4220 inst->remove(block);
4221 progress = true;
4222 }
4223
4224 }
4225
4226 if (progress)
4227 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
4228
4229 return progress;
4230 }
4231
4232 bool
4233 fs_visitor::lower_minmax()
4234 {
4235 assert(devinfo->gen < 6);
4236
4237 bool progress = false;
4238
4239 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4240 const fs_builder ibld(this, block, inst);
4241
4242 if (inst->opcode == BRW_OPCODE_SEL &&
4243 inst->predicate == BRW_PREDICATE_NONE) {
4244 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
4245 * the original SEL.L/GE instruction
4246 */
4247 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
4248 inst->conditional_mod);
4249 inst->predicate = BRW_PREDICATE_NORMAL;
4250 inst->conditional_mod = BRW_CONDITIONAL_NONE;
4251
4252 progress = true;
4253 }
4254 }
4255
4256 if (progress)
4257 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
4258
4259 return progress;
4260 }
4261
4262 bool
4263 fs_visitor::lower_sub_sat()
4264 {
4265 bool progress = false;
4266
4267 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4268 const fs_builder ibld(this, block, inst);
4269
4270 if (inst->opcode == SHADER_OPCODE_USUB_SAT ||
4271 inst->opcode == SHADER_OPCODE_ISUB_SAT) {
4272 /* The fundamental problem is the hardware performs source negation
4273 * at the bit width of the source. If the source is 0x80000000D, the
4274 * negation is 0x80000000D. As a result, subtractSaturate(0,
4275 * 0x80000000) will produce 0x80000000 instead of 0x7fffffff. There
4276 * are at least three ways to resolve this:
4277 *
4278 * 1. Use the accumulator for the negated source. The accumulator is
4279 * 33 bits, so our source 0x80000000 is sign-extended to
4280 * 0x1800000000. The negation of which is 0x080000000. This
4281 * doesn't help for 64-bit integers (which are already bigger than
4282 * 33 bits). There are also only 8 accumulators, so SIMD16 or
4283 * SIMD32 instructions would have to be split into multiple SIMD8
4284 * instructions.
4285 *
4286 * 2. Use slightly different math. For any n-bit value x, we know (x
4287 * >> 1) != -(x >> 1). We can use this fact to only do
4288 * subtractions involving (x >> 1). subtractSaturate(a, b) ==
4289 * subtractSaturate(subtractSaturate(a, (b >> 1)), b - (b >> 1)).
4290 *
4291 * 3. For unsigned sources, it is sufficient to replace the
4292 * subtractSaturate with (a > b) ? a - b : 0.
4293 *
4294 * It may also be possible to use the SUBB instruction. This
4295 * implicitly writes the accumulator, so it could only be used in the
4296 * same situations as #1 above. It is further limited by only
4297 * allowing UD sources.
4298 */
4299 if (inst->exec_size == 8 && inst->src[0].type != BRW_REGISTER_TYPE_Q &&
4300 inst->src[0].type != BRW_REGISTER_TYPE_UQ) {
4301 fs_reg acc(ARF, BRW_ARF_ACCUMULATOR, inst->src[1].type);
4302
4303 ibld.MOV(acc, inst->src[1]);
4304 fs_inst *add = ibld.ADD(inst->dst, acc, inst->src[0]);
4305 add->saturate = true;
4306 add->src[0].negate = true;
4307 } else if (inst->opcode == SHADER_OPCODE_ISUB_SAT) {
4308 /* tmp = src1 >> 1;
4309 * dst = add.sat(add.sat(src0, -tmp), -(src1 - tmp));
4310 */
4311 fs_reg tmp1 = ibld.vgrf(inst->src[0].type);
4312 fs_reg tmp2 = ibld.vgrf(inst->src[0].type);
4313 fs_reg tmp3 = ibld.vgrf(inst->src[0].type);
4314 fs_inst *add;
4315
4316 ibld.SHR(tmp1, inst->src[1], brw_imm_d(1));
4317
4318 add = ibld.ADD(tmp2, inst->src[1], tmp1);
4319 add->src[1].negate = true;
4320
4321 add = ibld.ADD(tmp3, inst->src[0], tmp1);
4322 add->src[1].negate = true;
4323 add->saturate = true;
4324
4325 add = ibld.ADD(inst->dst, tmp3, tmp2);
4326 add->src[1].negate = true;
4327 add->saturate = true;
4328 } else {
4329 /* a > b ? a - b : 0 */
4330 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
4331 BRW_CONDITIONAL_G);
4332
4333 fs_inst *add = ibld.ADD(inst->dst, inst->src[0], inst->src[1]);
4334 add->src[1].negate = !add->src[1].negate;
4335
4336 ibld.SEL(inst->dst, inst->dst, brw_imm_ud(0))
4337 ->predicate = BRW_PREDICATE_NORMAL;
4338 }
4339
4340 inst->remove(block);
4341 progress = true;
4342 }
4343 }
4344
4345 if (progress)
4346 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
4347
4348 return progress;
4349 }
4350
4351 /**
4352 * Get the mask of SIMD channels enabled during dispatch and not yet disabled
4353 * by discard. Due to the layout of the sample mask in the fragment shader
4354 * thread payload, \p bld is required to have a dispatch_width() not greater
4355 * than 16 for fragment shaders.
4356 */
4357 static fs_reg
4358 sample_mask_reg(const fs_builder &bld)
4359 {
4360 const fs_visitor *v = static_cast<const fs_visitor *>(bld.shader);
4361
4362 if (v->stage != MESA_SHADER_FRAGMENT) {
4363 return brw_imm_ud(0xffffffff);
4364 } else if (brw_wm_prog_data(v->stage_prog_data)->uses_kill) {
4365 assert(bld.dispatch_width() <= 16);
4366 return brw_flag_subreg(sample_mask_flag_subreg(v) + bld.group() / 16);
4367 } else {
4368 assert(v->devinfo->gen >= 6 && bld.dispatch_width() <= 16);
4369 return retype(brw_vec1_grf((bld.group() >= 16 ? 2 : 1), 7),
4370 BRW_REGISTER_TYPE_UW);
4371 }
4372 }
4373
4374 static void
4375 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
4376 fs_reg *dst, fs_reg color, unsigned components)
4377 {
4378 if (key->clamp_fragment_color) {
4379 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
4380 assert(color.type == BRW_REGISTER_TYPE_F);
4381
4382 for (unsigned i = 0; i < components; i++)
4383 set_saturate(true,
4384 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
4385
4386 color = tmp;
4387 }
4388
4389 for (unsigned i = 0; i < components; i++)
4390 dst[i] = offset(color, bld, i);
4391 }
4392
4393 uint32_t
4394 brw_fb_write_msg_control(const fs_inst *inst,
4395 const struct brw_wm_prog_data *prog_data)
4396 {
4397 uint32_t mctl;
4398
4399 if (inst->opcode == FS_OPCODE_REP_FB_WRITE) {
4400 assert(inst->group == 0 && inst->exec_size == 16);
4401 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
4402 } else if (prog_data->dual_src_blend) {
4403 assert(inst->exec_size == 8);
4404
4405 if (inst->group % 16 == 0)
4406 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
4407 else if (inst->group % 16 == 8)
4408 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
4409 else
4410 unreachable("Invalid dual-source FB write instruction group");
4411 } else {
4412 assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));
4413
4414 if (inst->exec_size == 16)
4415 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
4416 else if (inst->exec_size == 8)
4417 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
4418 else
4419 unreachable("Invalid FB write execution size");
4420 }
4421
4422 return mctl;
4423 }
4424
4425 static void
4426 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
4427 const struct brw_wm_prog_data *prog_data,
4428 const brw_wm_prog_key *key,
4429 const fs_visitor::thread_payload &payload)
4430 {
4431 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
4432 const gen_device_info *devinfo = bld.shader->devinfo;
4433 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
4434 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
4435 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
4436 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
4437 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
4438 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
4439 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
4440 const unsigned components =
4441 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
4442
4443 assert(inst->target != 0 || src0_alpha.file == BAD_FILE);
4444
4445 /* We can potentially have a message length of up to 15, so we have to set
4446 * base_mrf to either 0 or 1 in order to fit in m0..m15.
4447 */
4448 fs_reg sources[15];
4449 int header_size = 2, payload_header_size;
4450 unsigned length = 0;
4451
4452 if (devinfo->gen < 6) {
4453 /* TODO: Support SIMD32 on gen4-5 */
4454 assert(bld.group() < 16);
4455
4456 /* For gen4-5, we always have a header consisting of g0 and g1. We have
4457 * an implied MOV from g0,g1 to the start of the message. The MOV from
4458 * g0 is handled by the hardware and the MOV from g1 is provided by the
4459 * generator. This is required because, on gen4-5, the generator may
4460 * generate two write messages with different message lengths in order
4461 * to handle AA data properly.
4462 *
4463 * Also, since the pixel mask goes in the g0 portion of the message and
4464 * since render target writes are the last thing in the shader, we write
4465 * the pixel mask directly into g0 and it will get copied as part of the
4466 * implied write.
4467 */
4468 if (prog_data->uses_kill) {
4469 bld.exec_all().group(1, 0)
4470 .MOV(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW),
4471 sample_mask_reg(bld));
4472 }
4473
4474 assert(length == 0);
4475 length = 2;
4476 } else if ((devinfo->gen <= 7 && !devinfo->is_haswell &&
4477 prog_data->uses_kill) ||
4478 (devinfo->gen < 11 &&
4479 (color1.file != BAD_FILE || key->nr_color_regions > 1))) {
4480 /* From the Sandy Bridge PRM, volume 4, page 198:
4481 *
4482 * "Dispatched Pixel Enables. One bit per pixel indicating
4483 * which pixels were originally enabled when the thread was
4484 * dispatched. This field is only required for the end-of-
4485 * thread message and on all dual-source messages."
4486 */
4487 const fs_builder ubld = bld.exec_all().group(8, 0);
4488
4489 fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4490 if (bld.group() < 16) {
4491 /* The header starts off as g0 and g1 for the first half */
4492 ubld.group(16, 0).MOV(header, retype(brw_vec8_grf(0, 0),
4493 BRW_REGISTER_TYPE_UD));
4494 } else {
4495 /* The header starts off as g0 and g2 for the second half */
4496 assert(bld.group() < 32);
4497 const fs_reg header_sources[2] = {
4498 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD),
4499 retype(brw_vec8_grf(2, 0), BRW_REGISTER_TYPE_UD),
4500 };
4501 ubld.LOAD_PAYLOAD(header, header_sources, 2, 0);
4502 }
4503
4504 uint32_t g00_bits = 0;
4505
4506 /* Set "Source0 Alpha Present to RenderTarget" bit in message
4507 * header.
4508 */
4509 if (src0_alpha.file != BAD_FILE)
4510 g00_bits |= 1 << 11;
4511
4512 /* Set computes stencil to render target */
4513 if (prog_data->computed_stencil)
4514 g00_bits |= 1 << 14;
4515
4516 if (g00_bits) {
4517 /* OR extra bits into g0.0 */
4518 ubld.group(1, 0).OR(component(header, 0),
4519 retype(brw_vec1_grf(0, 0),
4520 BRW_REGISTER_TYPE_UD),
4521 brw_imm_ud(g00_bits));
4522 }
4523
4524 /* Set the render target index for choosing BLEND_STATE. */
4525 if (inst->target > 0) {
4526 ubld.group(1, 0).MOV(component(header, 2), brw_imm_ud(inst->target));
4527 }
4528
4529 if (prog_data->uses_kill) {
4530 ubld.group(1, 0).MOV(retype(component(header, 15),
4531 BRW_REGISTER_TYPE_UW),
4532 sample_mask_reg(bld));
4533 }
4534
4535 assert(length == 0);
4536 sources[0] = header;
4537 sources[1] = horiz_offset(header, 8);
4538 length = 2;
4539 }
4540 assert(length == 0 || length == 2);
4541 header_size = length;
4542
4543 if (payload.aa_dest_stencil_reg[0]) {
4544 assert(inst->group < 16);
4545 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
4546 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
4547 .MOV(sources[length],
4548 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg[0], 0)));
4549 length++;
4550 }
4551
4552 if (src0_alpha.file != BAD_FILE) {
4553 for (unsigned i = 0; i < bld.dispatch_width() / 8; i++) {
4554 const fs_builder &ubld = bld.exec_all().group(8, i)
4555 .annotate("FB write src0 alpha");
4556 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_F);
4557 ubld.MOV(tmp, horiz_offset(src0_alpha, i * 8));
4558 setup_color_payload(ubld, key, &sources[length], tmp, 1);
4559 length++;
4560 }
4561 }
4562
4563 if (sample_mask.file != BAD_FILE) {
4564 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
4565 BRW_REGISTER_TYPE_UD);
4566
4567 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
4568 * relevant. Since it's unsigned single words one vgrf is always
4569 * 16-wide, but only the lower or higher 8 channels will be used by the
4570 * hardware when doing a SIMD8 write depending on whether we have
4571 * selected the subspans for the first or second half respectively.
4572 */
4573 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
4574 sample_mask.type = BRW_REGISTER_TYPE_UW;
4575 sample_mask.stride *= 2;
4576
4577 bld.exec_all().annotate("FB write oMask")
4578 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
4579 inst->group % 16),
4580 sample_mask);
4581 length++;
4582 }
4583
4584 payload_header_size = length;
4585
4586 setup_color_payload(bld, key, &sources[length], color0, components);
4587 length += 4;
4588
4589 if (color1.file != BAD_FILE) {
4590 setup_color_payload(bld, key, &sources[length], color1, components);
4591 length += 4;
4592 }
4593
4594 if (src_depth.file != BAD_FILE) {
4595 sources[length] = src_depth;
4596 length++;
4597 }
4598
4599 if (dst_depth.file != BAD_FILE) {
4600 sources[length] = dst_depth;
4601 length++;
4602 }
4603
4604 if (src_stencil.file != BAD_FILE) {
4605 assert(devinfo->gen >= 9);
4606 assert(bld.dispatch_width() == 8);
4607
4608 /* XXX: src_stencil is only available on gen9+. dst_depth is never
4609 * available on gen9+. As such it's impossible to have both enabled at the
4610 * same time and therefore length cannot overrun the array.
4611 */
4612 assert(length < 15);
4613
4614 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4615 bld.exec_all().annotate("FB write OS")
4616 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
4617 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
4618 length++;
4619 }
4620
4621 fs_inst *load;
4622 if (devinfo->gen >= 7) {
4623 /* Send from the GRF */
4624 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
4625 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
4626 payload.nr = bld.shader->alloc.allocate(regs_written(load));
4627 load->dst = payload;
4628
4629 uint32_t msg_ctl = brw_fb_write_msg_control(inst, prog_data);
4630 uint32_t ex_desc = 0;
4631
4632 inst->desc =
4633 (inst->group / 16) << 11 | /* rt slot group */
4634 brw_dp_write_desc(devinfo, inst->target, msg_ctl,
4635 GEN6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE,
4636 inst->last_rt, false);
4637
4638 if (devinfo->gen >= 11) {
4639 /* Set the "Render Target Index" and "Src0 Alpha Present" fields
4640 * in the extended message descriptor, in lieu of using a header.
4641 */
4642 ex_desc = inst->target << 12 | (src0_alpha.file != BAD_FILE) << 15;
4643
4644 if (key->nr_color_regions == 0)
4645 ex_desc |= 1 << 20; /* Null Render Target */
4646 }
4647
4648 inst->opcode = SHADER_OPCODE_SEND;
4649 inst->resize_sources(3);
4650 inst->sfid = GEN6_SFID_DATAPORT_RENDER_CACHE;
4651 inst->src[0] = brw_imm_ud(inst->desc);
4652 inst->src[1] = brw_imm_ud(ex_desc);
4653 inst->src[2] = payload;
4654 inst->mlen = regs_written(load);
4655 inst->ex_mlen = 0;
4656 inst->header_size = header_size;
4657 inst->check_tdr = true;
4658 inst->send_has_side_effects = true;
4659 } else {
4660 /* Send from the MRF */
4661 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
4662 sources, length, payload_header_size);
4663
4664 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
4665 * will do this for us if we just give it a COMPR4 destination.
4666 */
4667 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
4668 load->dst.nr |= BRW_MRF_COMPR4;
4669
4670 if (devinfo->gen < 6) {
4671 /* Set up src[0] for the implied MOV from grf0-1 */
4672 inst->resize_sources(1);
4673 inst->src[0] = brw_vec8_grf(0, 0);
4674 } else {
4675 inst->resize_sources(0);
4676 }
4677 inst->base_mrf = 1;
4678 inst->opcode = FS_OPCODE_FB_WRITE;
4679 inst->mlen = regs_written(load);
4680 inst->header_size = header_size;
4681 }
4682 }
4683
4684 static void
4685 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
4686 {
4687 const fs_builder &ubld = bld.exec_all().group(8, 0);
4688 const unsigned length = 2;
4689 const fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD, length);
4690
4691 if (bld.group() < 16) {
4692 ubld.group(16, 0).MOV(header, retype(brw_vec8_grf(0, 0),
4693 BRW_REGISTER_TYPE_UD));
4694 } else {
4695 assert(bld.group() < 32);
4696 const fs_reg header_sources[] = {
4697 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD),
4698 retype(brw_vec8_grf(2, 0), BRW_REGISTER_TYPE_UD)
4699 };
4700 ubld.LOAD_PAYLOAD(header, header_sources, ARRAY_SIZE(header_sources), 0);
4701 }
4702
4703 inst->resize_sources(1);
4704 inst->src[0] = header;
4705 inst->opcode = FS_OPCODE_FB_READ;
4706 inst->mlen = length;
4707 inst->header_size = length;
4708 }
4709
4710 static void
4711 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
4712 const fs_reg &coordinate,
4713 const fs_reg &shadow_c,
4714 const fs_reg &lod, const fs_reg &lod2,
4715 const fs_reg &surface,
4716 const fs_reg &sampler,
4717 unsigned coord_components,
4718 unsigned grad_components)
4719 {
4720 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
4721 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
4722 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
4723 fs_reg msg_end = msg_begin;
4724
4725 /* g0 header. */
4726 msg_end = offset(msg_end, bld.group(8, 0), 1);
4727
4728 for (unsigned i = 0; i < coord_components; i++)
4729 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
4730 offset(coordinate, bld, i));
4731
4732 msg_end = offset(msg_end, bld, coord_components);
4733
4734 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
4735 * require all three components to be present and zero if they are unused.
4736 */
4737 if (coord_components > 0 &&
4738 (has_lod || shadow_c.file != BAD_FILE ||
4739 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
4740 for (unsigned i = coord_components; i < 3; i++)
4741 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
4742
4743 msg_end = offset(msg_end, bld, 3 - coord_components);
4744 }
4745
4746 if (op == SHADER_OPCODE_TXD) {
4747 /* TXD unsupported in SIMD16 mode. */
4748 assert(bld.dispatch_width() == 8);
4749
4750 /* the slots for u and v are always present, but r is optional */
4751 if (coord_components < 2)
4752 msg_end = offset(msg_end, bld, 2 - coord_components);
4753
4754 /* P = u, v, r
4755 * dPdx = dudx, dvdx, drdx
4756 * dPdy = dudy, dvdy, drdy
4757 *
4758 * 1-arg: Does not exist.
4759 *
4760 * 2-arg: dudx dvdx dudy dvdy
4761 * dPdx.x dPdx.y dPdy.x dPdy.y
4762 * m4 m5 m6 m7
4763 *
4764 * 3-arg: dudx dvdx drdx dudy dvdy drdy
4765 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
4766 * m5 m6 m7 m8 m9 m10
4767 */
4768 for (unsigned i = 0; i < grad_components; i++)
4769 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
4770
4771 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4772
4773 for (unsigned i = 0; i < grad_components; i++)
4774 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
4775
4776 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4777 }
4778
4779 if (has_lod) {
4780 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
4781 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
4782 */
4783 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
4784 bld.dispatch_width() == 16);
4785
4786 const brw_reg_type type =
4787 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
4788 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
4789 bld.MOV(retype(msg_end, type), lod);
4790 msg_end = offset(msg_end, bld, 1);
4791 }
4792
4793 if (shadow_c.file != BAD_FILE) {
4794 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
4795 /* There's no plain shadow compare message, so we use shadow
4796 * compare with a bias of 0.0.
4797 */
4798 bld.MOV(msg_end, brw_imm_f(0.0f));
4799 msg_end = offset(msg_end, bld, 1);
4800 }
4801
4802 bld.MOV(msg_end, shadow_c);
4803 msg_end = offset(msg_end, bld, 1);
4804 }
4805
4806 inst->opcode = op;
4807 inst->src[0] = reg_undef;
4808 inst->src[1] = surface;
4809 inst->src[2] = sampler;
4810 inst->resize_sources(3);
4811 inst->base_mrf = msg_begin.nr;
4812 inst->mlen = msg_end.nr - msg_begin.nr;
4813 inst->header_size = 1;
4814 }
4815
4816 static void
4817 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
4818 const fs_reg &coordinate,
4819 const fs_reg &shadow_c,
4820 const fs_reg &lod, const fs_reg &lod2,
4821 const fs_reg &sample_index,
4822 const fs_reg &surface,
4823 const fs_reg &sampler,
4824 unsigned coord_components,
4825 unsigned grad_components)
4826 {
4827 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
4828 fs_reg msg_coords = message;
4829 unsigned header_size = 0;
4830
4831 if (inst->offset != 0) {
4832 /* The offsets set up by the visitor are in the m1 header, so we can't
4833 * go headerless.
4834 */
4835 header_size = 1;
4836 message.nr--;
4837 }
4838
4839 for (unsigned i = 0; i < coord_components; i++)
4840 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
4841 offset(coordinate, bld, i));
4842
4843 fs_reg msg_end = offset(msg_coords, bld, coord_components);
4844 fs_reg msg_lod = offset(msg_coords, bld, 4);
4845
4846 if (shadow_c.file != BAD_FILE) {
4847 fs_reg msg_shadow = msg_lod;
4848 bld.MOV(msg_shadow, shadow_c);
4849 msg_lod = offset(msg_shadow, bld, 1);
4850 msg_end = msg_lod;
4851 }
4852
4853 switch (op) {
4854 case SHADER_OPCODE_TXL:
4855 case FS_OPCODE_TXB:
4856 bld.MOV(msg_lod, lod);
4857 msg_end = offset(msg_lod, bld, 1);
4858 break;
4859 case SHADER_OPCODE_TXD:
4860 /**
4861 * P = u, v, r
4862 * dPdx = dudx, dvdx, drdx
4863 * dPdy = dudy, dvdy, drdy
4864 *
4865 * Load up these values:
4866 * - dudx dudy dvdx dvdy drdx drdy
4867 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
4868 */
4869 msg_end = msg_lod;
4870 for (unsigned i = 0; i < grad_components; i++) {
4871 bld.MOV(msg_end, offset(lod, bld, i));
4872 msg_end = offset(msg_end, bld, 1);
4873
4874 bld.MOV(msg_end, offset(lod2, bld, i));
4875 msg_end = offset(msg_end, bld, 1);
4876 }
4877 break;
4878 case SHADER_OPCODE_TXS:
4879 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
4880 bld.MOV(msg_lod, lod);
4881 msg_end = offset(msg_lod, bld, 1);
4882 break;
4883 case SHADER_OPCODE_TXF:
4884 msg_lod = offset(msg_coords, bld, 3);
4885 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
4886 msg_end = offset(msg_lod, bld, 1);
4887 break;
4888 case SHADER_OPCODE_TXF_CMS:
4889 msg_lod = offset(msg_coords, bld, 3);
4890 /* lod */
4891 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
4892 /* sample index */
4893 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
4894 msg_end = offset(msg_lod, bld, 2);
4895 break;
4896 default:
4897 break;
4898 }
4899
4900 inst->opcode = op;
4901 inst->src[0] = reg_undef;
4902 inst->src[1] = surface;
4903 inst->src[2] = sampler;
4904 inst->resize_sources(3);
4905 inst->base_mrf = message.nr;
4906 inst->mlen = msg_end.nr - message.nr;
4907 inst->header_size = header_size;
4908
4909 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4910 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4911 }
4912
4913 static bool
4914 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
4915 {
4916 if (devinfo->gen < 8 && !devinfo->is_haswell)
4917 return false;
4918
4919 return sampler.file != IMM || sampler.ud >= 16;
4920 }
4921
4922 static unsigned
4923 sampler_msg_type(const gen_device_info *devinfo,
4924 opcode opcode, bool shadow_compare)
4925 {
4926 assert(devinfo->gen >= 5);
4927 switch (opcode) {
4928 case SHADER_OPCODE_TEX:
4929 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE :
4930 GEN5_SAMPLER_MESSAGE_SAMPLE;
4931 case FS_OPCODE_TXB:
4932 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE :
4933 GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
4934 case SHADER_OPCODE_TXL:
4935 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE :
4936 GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
4937 case SHADER_OPCODE_TXL_LZ:
4938 return shadow_compare ? GEN9_SAMPLER_MESSAGE_SAMPLE_C_LZ :
4939 GEN9_SAMPLER_MESSAGE_SAMPLE_LZ;
4940 case SHADER_OPCODE_TXS:
4941 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
4942 return GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
4943 case SHADER_OPCODE_TXD:
4944 assert(!shadow_compare || devinfo->gen >= 8 || devinfo->is_haswell);
4945 return shadow_compare ? HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE :
4946 GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
4947 case SHADER_OPCODE_TXF:
4948 return GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
4949 case SHADER_OPCODE_TXF_LZ:
4950 assert(devinfo->gen >= 9);
4951 return GEN9_SAMPLER_MESSAGE_SAMPLE_LD_LZ;
4952 case SHADER_OPCODE_TXF_CMS_W:
4953 assert(devinfo->gen >= 9);
4954 return GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
4955 case SHADER_OPCODE_TXF_CMS:
4956 return devinfo->gen >= 7 ? GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS :
4957 GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
4958 case SHADER_OPCODE_TXF_UMS:
4959 assert(devinfo->gen >= 7);
4960 return GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS;
4961 case SHADER_OPCODE_TXF_MCS:
4962 assert(devinfo->gen >= 7);
4963 return GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
4964 case SHADER_OPCODE_LOD:
4965 return GEN5_SAMPLER_MESSAGE_LOD;
4966 case SHADER_OPCODE_TG4:
4967 assert(devinfo->gen >= 7);
4968 return shadow_compare ? GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C :
4969 GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
4970 break;
4971 case SHADER_OPCODE_TG4_OFFSET:
4972 assert(devinfo->gen >= 7);
4973 return shadow_compare ? GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C :
4974 GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
4975 case SHADER_OPCODE_SAMPLEINFO:
4976 return GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
4977 default:
4978 unreachable("not reached");
4979 }
4980 }
4981
4982 static void
4983 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4984 const fs_reg &coordinate,
4985 const fs_reg &shadow_c,
4986 fs_reg lod, const fs_reg &lod2,
4987 const fs_reg &min_lod,
4988 const fs_reg &sample_index,
4989 const fs_reg &mcs,
4990 const fs_reg &surface,
4991 const fs_reg &sampler,
4992 const fs_reg &surface_handle,
4993 const fs_reg &sampler_handle,
4994 const fs_reg &tg4_offset,
4995 unsigned coord_components,
4996 unsigned grad_components)
4997 {
4998 const gen_device_info *devinfo = bld.shader->devinfo;
4999 const brw_stage_prog_data *prog_data = bld.shader->stage_prog_data;
5000 unsigned reg_width = bld.dispatch_width() / 8;
5001 unsigned header_size = 0, length = 0;
5002 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
5003 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
5004 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
5005
5006 /* We must have exactly one of surface/sampler and surface/sampler_handle */
5007 assert((surface.file == BAD_FILE) != (surface_handle.file == BAD_FILE));
5008 assert((sampler.file == BAD_FILE) != (sampler_handle.file == BAD_FILE));
5009
5010 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
5011 inst->offset != 0 || inst->eot ||
5012 op == SHADER_OPCODE_SAMPLEINFO ||
5013 sampler_handle.file != BAD_FILE ||
5014 is_high_sampler(devinfo, sampler)) {
5015 /* For general texture offsets (no txf workaround), we need a header to
5016 * put them in.
5017 *
5018 * TG4 needs to place its channel select in the header, for interaction
5019 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
5020 * larger sampler numbers we need to offset the Sampler State Pointer in
5021 * the header.
5022 */
5023 fs_reg header = retype(sources[0], BRW_REGISTER_TYPE_UD);
5024 header_size = 1;
5025 length++;
5026
5027 /* If we're requesting fewer than four channels worth of response,
5028 * and we have an explicit header, we need to set up the sampler
5029 * writemask. It's reversed from normal: 1 means "don't write".
5030 */
5031 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
5032 assert(regs_written(inst) % reg_width == 0);
5033 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
5034 inst->offset |= mask << 12;
5035 }
5036
5037 /* Build the actual header */
5038 const fs_builder ubld = bld.exec_all().group(8, 0);
5039 const fs_builder ubld1 = ubld.group(1, 0);
5040 ubld.MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
5041 if (inst->offset) {
5042 ubld1.MOV(component(header, 2), brw_imm_ud(inst->offset));
5043 } else if (bld.shader->stage != MESA_SHADER_VERTEX &&
5044 bld.shader->stage != MESA_SHADER_FRAGMENT) {
5045 /* The vertex and fragment stages have g0.2 set to 0, so
5046 * header0.2 is 0 when g0 is copied. Other stages may not, so we
5047 * must set it to 0 to avoid setting undesirable bits in the
5048 * message.
5049 */
5050 ubld1.MOV(component(header, 2), brw_imm_ud(0));
5051 }
5052
5053 if (sampler_handle.file != BAD_FILE) {
5054 /* Bindless sampler handles aren't relative to the sampler state
5055 * pointer passed into the shader through SAMPLER_STATE_POINTERS_*.
5056 * Instead, it's an absolute pointer relative to dynamic state base
5057 * address.
5058 *
5059 * Sampler states are 16 bytes each and the pointer we give here has
5060 * to be 32-byte aligned. In order to avoid more indirect messages
5061 * than required, we assume that all bindless sampler states are
5062 * 32-byte aligned. This sacrifices a bit of general state base
5063 * address space but means we can do something more efficient in the
5064 * shader.
5065 */
5066 ubld1.MOV(component(header, 3), sampler_handle);
5067 } else if (is_high_sampler(devinfo, sampler)) {
5068 if (sampler.file == BRW_IMMEDIATE_VALUE) {
5069 assert(sampler.ud >= 16);
5070 const int sampler_state_size = 16; /* 16 bytes */
5071
5072 ubld1.ADD(component(header, 3),
5073 retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
5074 brw_imm_ud(16 * (sampler.ud / 16) * sampler_state_size));
5075 } else {
5076 fs_reg tmp = ubld1.vgrf(BRW_REGISTER_TYPE_UD);
5077 ubld1.AND(tmp, sampler, brw_imm_ud(0x0f0));
5078 ubld1.SHL(tmp, tmp, brw_imm_ud(4));
5079 ubld1.ADD(component(header, 3),
5080 retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
5081 tmp);
5082 }
5083 }
5084 }
5085
5086 if (shadow_c.file != BAD_FILE) {
5087 bld.MOV(sources[length], shadow_c);
5088 length++;
5089 }
5090
5091 bool coordinate_done = false;
5092
5093 /* Set up the LOD info */
5094 switch (op) {
5095 case FS_OPCODE_TXB:
5096 case SHADER_OPCODE_TXL:
5097 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
5098 op = SHADER_OPCODE_TXL_LZ;
5099 break;
5100 }
5101 bld.MOV(sources[length], lod);
5102 length++;
5103 break;
5104 case SHADER_OPCODE_TXD:
5105 /* TXD should have been lowered in SIMD16 mode. */
5106 assert(bld.dispatch_width() == 8);
5107
5108 /* Load dPdx and the coordinate together:
5109 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
5110 */
5111 for (unsigned i = 0; i < coord_components; i++) {
5112 bld.MOV(sources[length++], offset(coordinate, bld, i));
5113
5114 /* For cube map array, the coordinate is (u,v,r,ai) but there are
5115 * only derivatives for (u, v, r).
5116 */
5117 if (i < grad_components) {
5118 bld.MOV(sources[length++], offset(lod, bld, i));
5119 bld.MOV(sources[length++], offset(lod2, bld, i));
5120 }
5121 }
5122
5123 coordinate_done = true;
5124 break;
5125 case SHADER_OPCODE_TXS:
5126 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
5127 length++;
5128 break;
5129 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5130 /* We need an LOD; just use 0 */
5131 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), brw_imm_ud(0));
5132 length++;
5133 break;
5134 case SHADER_OPCODE_TXF:
5135 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
5136 * On Gen9 they are u, v, lod, r
5137 */
5138 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
5139
5140 if (devinfo->gen >= 9) {
5141 if (coord_components >= 2) {
5142 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
5143 offset(coordinate, bld, 1));
5144 } else {
5145 sources[length] = brw_imm_d(0);
5146 }
5147 length++;
5148 }
5149
5150 if (devinfo->gen >= 9 && lod.is_zero()) {
5151 op = SHADER_OPCODE_TXF_LZ;
5152 } else {
5153 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
5154 length++;
5155 }
5156
5157 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
5158 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5159 offset(coordinate, bld, i));
5160
5161 coordinate_done = true;
5162 break;
5163
5164 case SHADER_OPCODE_TXF_CMS:
5165 case SHADER_OPCODE_TXF_CMS_W:
5166 case SHADER_OPCODE_TXF_UMS:
5167 case SHADER_OPCODE_TXF_MCS:
5168 if (op == SHADER_OPCODE_TXF_UMS ||
5169 op == SHADER_OPCODE_TXF_CMS ||
5170 op == SHADER_OPCODE_TXF_CMS_W) {
5171 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
5172 length++;
5173 }
5174
5175 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
5176 /* Data from the multisample control surface. */
5177 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
5178 length++;
5179
5180 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
5181 * the MCS data.
5182 */
5183 if (op == SHADER_OPCODE_TXF_CMS_W) {
5184 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
5185 mcs.file == IMM ?
5186 mcs :
5187 offset(mcs, bld, 1));
5188 length++;
5189 }
5190 }
5191
5192 /* There is no offsetting for this message; just copy in the integer
5193 * texture coordinates.
5194 */
5195 for (unsigned i = 0; i < coord_components; i++)
5196 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5197 offset(coordinate, bld, i));
5198
5199 coordinate_done = true;
5200 break;
5201 case SHADER_OPCODE_TG4_OFFSET:
5202 /* More crazy intermixing */
5203 for (unsigned i = 0; i < 2; i++) /* u, v */
5204 bld.MOV(sources[length++], offset(coordinate, bld, i));
5205
5206 for (unsigned i = 0; i < 2; i++) /* offu, offv */
5207 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5208 offset(tg4_offset, bld, i));
5209
5210 if (coord_components == 3) /* r if present */
5211 bld.MOV(sources[length++], offset(coordinate, bld, 2));
5212
5213 coordinate_done = true;
5214 break;
5215 default:
5216 break;
5217 }
5218
5219 /* Set up the coordinate (except for cases where it was done above) */
5220 if (!coordinate_done) {
5221 for (unsigned i = 0; i < coord_components; i++)
5222 bld.MOV(sources[length++], offset(coordinate, bld, i));
5223 }
5224
5225 if (min_lod.file != BAD_FILE) {
5226 /* Account for all of the missing coordinate sources */
5227 length += 4 - coord_components;
5228 if (op == SHADER_OPCODE_TXD)
5229 length += (3 - grad_components) * 2;
5230
5231 bld.MOV(sources[length++], min_lod);
5232 }
5233
5234 unsigned mlen;
5235 if (reg_width == 2)
5236 mlen = length * reg_width - header_size;
5237 else
5238 mlen = length * reg_width;
5239
5240 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
5241 BRW_REGISTER_TYPE_F);
5242 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
5243
5244 /* Generate the SEND. */
5245 inst->opcode = SHADER_OPCODE_SEND;
5246 inst->mlen = mlen;
5247 inst->header_size = header_size;
5248
5249 const unsigned msg_type =
5250 sampler_msg_type(devinfo, op, inst->shadow_compare);
5251 const unsigned simd_mode =
5252 inst->exec_size <= 8 ? BRW_SAMPLER_SIMD_MODE_SIMD8 :
5253 BRW_SAMPLER_SIMD_MODE_SIMD16;
5254
5255 uint32_t base_binding_table_index;
5256 switch (op) {
5257 case SHADER_OPCODE_TG4:
5258 case SHADER_OPCODE_TG4_OFFSET:
5259 base_binding_table_index = prog_data->binding_table.gather_texture_start;
5260 break;
5261 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5262 base_binding_table_index = prog_data->binding_table.image_start;
5263 break;
5264 default:
5265 base_binding_table_index = prog_data->binding_table.texture_start;
5266 break;
5267 }
5268
5269 inst->sfid = BRW_SFID_SAMPLER;
5270 if (surface.file == IMM &&
5271 (sampler.file == IMM || sampler_handle.file != BAD_FILE)) {
5272 inst->desc = brw_sampler_desc(devinfo,
5273 surface.ud + base_binding_table_index,
5274 sampler.file == IMM ? sampler.ud % 16 : 0,
5275 msg_type,
5276 simd_mode,
5277 0 /* return_format unused on gen7+ */);
5278 inst->src[0] = brw_imm_ud(0);
5279 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5280 } else if (surface_handle.file != BAD_FILE) {
5281 /* Bindless surface */
5282 assert(devinfo->gen >= 9);
5283 inst->desc = brw_sampler_desc(devinfo,
5284 GEN9_BTI_BINDLESS,
5285 sampler.file == IMM ? sampler.ud % 16 : 0,
5286 msg_type,
5287 simd_mode,
5288 0 /* return_format unused on gen7+ */);
5289
5290 /* For bindless samplers, the entire address is included in the message
5291 * header so we can leave the portion in the message descriptor 0.
5292 */
5293 if (sampler_handle.file != BAD_FILE || sampler.file == IMM) {
5294 inst->src[0] = brw_imm_ud(0);
5295 } else {
5296 const fs_builder ubld = bld.group(1, 0).exec_all();
5297 fs_reg desc = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5298 ubld.SHL(desc, sampler, brw_imm_ud(8));
5299 inst->src[0] = desc;
5300 }
5301
5302 /* We assume that the driver provided the handle in the top 20 bits so
5303 * we can use the surface handle directly as the extended descriptor.
5304 */
5305 inst->src[1] = retype(surface_handle, BRW_REGISTER_TYPE_UD);
5306 } else {
5307 /* Immediate portion of the descriptor */
5308 inst->desc = brw_sampler_desc(devinfo,
5309 0, /* surface */
5310 0, /* sampler */
5311 msg_type,
5312 simd_mode,
5313 0 /* return_format unused on gen7+ */);
5314 const fs_builder ubld = bld.group(1, 0).exec_all();
5315 fs_reg desc = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5316 if (surface.equals(sampler)) {
5317 /* This case is common in GL */
5318 ubld.MUL(desc, surface, brw_imm_ud(0x101));
5319 } else {
5320 if (sampler_handle.file != BAD_FILE) {
5321 ubld.MOV(desc, surface);
5322 } else if (sampler.file == IMM) {
5323 ubld.OR(desc, surface, brw_imm_ud(sampler.ud << 8));
5324 } else {
5325 ubld.SHL(desc, sampler, brw_imm_ud(8));
5326 ubld.OR(desc, desc, surface);
5327 }
5328 }
5329 if (base_binding_table_index)
5330 ubld.ADD(desc, desc, brw_imm_ud(base_binding_table_index));
5331 ubld.AND(desc, desc, brw_imm_ud(0xfff));
5332
5333 inst->src[0] = component(desc, 0);
5334 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5335 }
5336
5337 inst->src[2] = src_payload;
5338 inst->resize_sources(3);
5339
5340 if (inst->eot) {
5341 /* EOT sampler messages don't make sense to split because it would
5342 * involve ending half of the thread early.
5343 */
5344 assert(inst->group == 0);
5345 /* We need to use SENDC for EOT sampler messages */
5346 inst->check_tdr = true;
5347 inst->send_has_side_effects = true;
5348 }
5349
5350 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
5351 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
5352 }
5353
5354 static void
5355 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
5356 {
5357 const gen_device_info *devinfo = bld.shader->devinfo;
5358 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
5359 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
5360 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
5361 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
5362 const fs_reg &min_lod = inst->src[TEX_LOGICAL_SRC_MIN_LOD];
5363 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
5364 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
5365 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
5366 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
5367 const fs_reg &surface_handle = inst->src[TEX_LOGICAL_SRC_SURFACE_HANDLE];
5368 const fs_reg &sampler_handle = inst->src[TEX_LOGICAL_SRC_SAMPLER_HANDLE];
5369 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
5370 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
5371 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
5372 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
5373 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
5374
5375 if (devinfo->gen >= 7) {
5376 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
5377 shadow_c, lod, lod2, min_lod,
5378 sample_index,
5379 mcs, surface, sampler,
5380 surface_handle, sampler_handle,
5381 tg4_offset,
5382 coord_components, grad_components);
5383 } else if (devinfo->gen >= 5) {
5384 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
5385 shadow_c, lod, lod2, sample_index,
5386 surface, sampler,
5387 coord_components, grad_components);
5388 } else {
5389 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
5390 shadow_c, lod, lod2,
5391 surface, sampler,
5392 coord_components, grad_components);
5393 }
5394 }
5395
5396 /**
5397 * Predicate the specified instruction on the sample mask.
5398 */
5399 static void
5400 emit_predicate_on_sample_mask(const fs_builder &bld, fs_inst *inst)
5401 {
5402 assert(bld.shader->stage == MESA_SHADER_FRAGMENT &&
5403 bld.group() == inst->group &&
5404 bld.dispatch_width() == inst->exec_size);
5405
5406 const fs_visitor *v = static_cast<const fs_visitor *>(bld.shader);
5407 const fs_reg sample_mask = sample_mask_reg(bld);
5408 const unsigned subreg = sample_mask_flag_subreg(v);
5409
5410 if (brw_wm_prog_data(v->stage_prog_data)->uses_kill) {
5411 assert(sample_mask.file == ARF &&
5412 sample_mask.nr == brw_flag_subreg(subreg).nr &&
5413 sample_mask.subnr == brw_flag_subreg(
5414 subreg + inst->group / 16).subnr);
5415 } else {
5416 bld.group(1, 0).exec_all()
5417 .MOV(brw_flag_subreg(subreg + inst->group / 16), sample_mask);
5418 }
5419
5420 if (inst->predicate) {
5421 assert(inst->predicate == BRW_PREDICATE_NORMAL);
5422 assert(!inst->predicate_inverse);
5423 assert(inst->flag_subreg == 0);
5424 /* Combine the sample mask with the existing predicate by using a
5425 * vertical predication mode.
5426 */
5427 inst->predicate = BRW_PREDICATE_ALIGN1_ALLV;
5428 } else {
5429 inst->flag_subreg = subreg;
5430 inst->predicate = BRW_PREDICATE_NORMAL;
5431 inst->predicate_inverse = false;
5432 }
5433 }
5434
5435 static void
5436 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst)
5437 {
5438 const gen_device_info *devinfo = bld.shader->devinfo;
5439
5440 /* Get the logical send arguments. */
5441 const fs_reg &addr = inst->src[SURFACE_LOGICAL_SRC_ADDRESS];
5442 const fs_reg &src = inst->src[SURFACE_LOGICAL_SRC_DATA];
5443 const fs_reg &surface = inst->src[SURFACE_LOGICAL_SRC_SURFACE];
5444 const fs_reg &surface_handle = inst->src[SURFACE_LOGICAL_SRC_SURFACE_HANDLE];
5445 const UNUSED fs_reg &dims = inst->src[SURFACE_LOGICAL_SRC_IMM_DIMS];
5446 const fs_reg &arg = inst->src[SURFACE_LOGICAL_SRC_IMM_ARG];
5447 assert(arg.file == IMM);
5448
5449 /* We must have exactly one of surface and surface_handle */
5450 assert((surface.file == BAD_FILE) != (surface_handle.file == BAD_FILE));
5451
5452 /* Calculate the total number of components of the payload. */
5453 const unsigned addr_sz = inst->components_read(SURFACE_LOGICAL_SRC_ADDRESS);
5454 const unsigned src_sz = inst->components_read(SURFACE_LOGICAL_SRC_DATA);
5455
5456 const bool is_typed_access =
5457 inst->opcode == SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL ||
5458 inst->opcode == SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL ||
5459 inst->opcode == SHADER_OPCODE_TYPED_ATOMIC_LOGICAL;
5460
5461 const bool is_surface_access = is_typed_access ||
5462 inst->opcode == SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL ||
5463 inst->opcode == SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL ||
5464 inst->opcode == SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL;
5465
5466 const bool is_stateless =
5467 surface.file == IMM && (surface.ud == BRW_BTI_STATELESS ||
5468 surface.ud == GEN8_BTI_STATELESS_NON_COHERENT);
5469
5470 const bool has_side_effects = inst->has_side_effects();
5471 fs_reg sample_mask = has_side_effects ? sample_mask_reg(bld) :
5472 fs_reg(brw_imm_d(0xffff));
5473
5474 /* From the BDW PRM Volume 7, page 147:
5475 *
5476 * "For the Data Cache Data Port*, the header must be present for the
5477 * following message types: [...] Typed read/write/atomics"
5478 *
5479 * Earlier generations have a similar wording. Because of this restriction
5480 * we don't attempt to implement sample masks via predication for such
5481 * messages prior to Gen9, since we have to provide a header anyway. On
5482 * Gen11+ the header has been removed so we can only use predication.
5483 *
5484 * For all stateless A32 messages, we also need a header
5485 */
5486 fs_reg header;
5487 if ((devinfo->gen < 9 && is_typed_access) || is_stateless) {
5488 fs_builder ubld = bld.exec_all().group(8, 0);
5489 header = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5490 ubld.MOV(header, brw_imm_d(0));
5491 if (is_stateless) {
5492 /* Both the typed and scattered byte/dword A32 messages take a buffer
5493 * base address in R0.5:[31:0] (See MH1_A32_PSM for typed messages or
5494 * MH_A32_GO for byte/dword scattered messages in the SKL PRM Vol. 2d
5495 * for more details.) This is conveniently where the HW places the
5496 * scratch surface base address.
5497 *
5498 * From the SKL PRM Vol. 7 "Per-Thread Scratch Space":
5499 *
5500 * "When a thread becomes 'active' it is allocated a portion of
5501 * scratch space, sized according to PerThreadScratchSpace. The
5502 * starting location of each thread’s scratch space allocation,
5503 * ScratchSpaceOffset, is passed in the thread payload in
5504 * R0.5[31:10] and is specified as a 1KB-granular offset from the
5505 * GeneralStateBaseAddress. The computation of ScratchSpaceOffset
5506 * includes the starting address of the stage’s scratch space
5507 * allocation, as programmed by ScratchSpaceBasePointer."
5508 *
5509 * The base address is passed in bits R0.5[31:10] and the bottom 10
5510 * bits of R0.5 are used for other things. Therefore, we have to
5511 * mask off the bottom 10 bits so that we don't get a garbage base
5512 * address.
5513 */
5514 ubld.group(1, 0).AND(component(header, 5),
5515 retype(brw_vec1_grf(0, 5), BRW_REGISTER_TYPE_UD),
5516 brw_imm_ud(0xfffffc00));
5517 }
5518 if (is_surface_access)
5519 ubld.group(1, 0).MOV(component(header, 7), sample_mask);
5520 }
5521 const unsigned header_sz = header.file != BAD_FILE ? 1 : 0;
5522
5523 fs_reg payload, payload2;
5524 unsigned mlen, ex_mlen = 0;
5525 if (devinfo->gen >= 9 &&
5526 (src.file == BAD_FILE || header.file == BAD_FILE)) {
5527 /* We have split sends on gen9 and above */
5528 if (header.file == BAD_FILE) {
5529 payload = bld.move_to_vgrf(addr, addr_sz);
5530 payload2 = bld.move_to_vgrf(src, src_sz);
5531 mlen = addr_sz * (inst->exec_size / 8);
5532 ex_mlen = src_sz * (inst->exec_size / 8);
5533 } else {
5534 assert(src.file == BAD_FILE);
5535 payload = header;
5536 payload2 = bld.move_to_vgrf(addr, addr_sz);
5537 mlen = header_sz;
5538 ex_mlen = addr_sz * (inst->exec_size / 8);
5539 }
5540 } else {
5541 /* Allocate space for the payload. */
5542 const unsigned sz = header_sz + addr_sz + src_sz;
5543 payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
5544 fs_reg *const components = new fs_reg[sz];
5545 unsigned n = 0;
5546
5547 /* Construct the payload. */
5548 if (header.file != BAD_FILE)
5549 components[n++] = header;
5550
5551 for (unsigned i = 0; i < addr_sz; i++)
5552 components[n++] = offset(addr, bld, i);
5553
5554 for (unsigned i = 0; i < src_sz; i++)
5555 components[n++] = offset(src, bld, i);
5556
5557 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
5558 mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
5559
5560 delete[] components;
5561 }
5562
5563 /* Predicate the instruction on the sample mask if no header is
5564 * provided.
5565 */
5566 if ((header.file == BAD_FILE || !is_surface_access) &&
5567 sample_mask.file != BAD_FILE && sample_mask.file != IMM)
5568 emit_predicate_on_sample_mask(bld, inst);
5569
5570 uint32_t sfid;
5571 switch (inst->opcode) {
5572 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5573 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5574 /* Byte scattered opcodes go through the normal data cache */
5575 sfid = GEN7_SFID_DATAPORT_DATA_CACHE;
5576 break;
5577
5578 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
5579 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
5580 sfid = devinfo->gen >= 7 ? GEN7_SFID_DATAPORT_DATA_CACHE :
5581 devinfo->gen >= 6 ? GEN6_SFID_DATAPORT_RENDER_CACHE :
5582 BRW_DATAPORT_READ_TARGET_RENDER_CACHE;
5583 break;
5584
5585 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5586 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5587 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5588 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5589 /* Untyped Surface messages go through the data cache but the SFID value
5590 * changed on Haswell.
5591 */
5592 sfid = (devinfo->gen >= 8 || devinfo->is_haswell ?
5593 HSW_SFID_DATAPORT_DATA_CACHE_1 :
5594 GEN7_SFID_DATAPORT_DATA_CACHE);
5595 break;
5596
5597 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5598 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5599 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5600 /* Typed surface messages go through the render cache on IVB and the
5601 * data cache on HSW+.
5602 */
5603 sfid = (devinfo->gen >= 8 || devinfo->is_haswell ?
5604 HSW_SFID_DATAPORT_DATA_CACHE_1 :
5605 GEN6_SFID_DATAPORT_RENDER_CACHE);
5606 break;
5607
5608 default:
5609 unreachable("Unsupported surface opcode");
5610 }
5611
5612 uint32_t desc;
5613 switch (inst->opcode) {
5614 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5615 desc = brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size,
5616 arg.ud, /* num_channels */
5617 false /* write */);
5618 break;
5619
5620 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5621 desc = brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size,
5622 arg.ud, /* num_channels */
5623 true /* write */);
5624 break;
5625
5626 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5627 desc = brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size,
5628 arg.ud, /* bit_size */
5629 false /* write */);
5630 break;
5631
5632 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5633 desc = brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size,
5634 arg.ud, /* bit_size */
5635 true /* write */);
5636 break;
5637
5638 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
5639 assert(arg.ud == 32); /* bit_size */
5640 desc = brw_dp_dword_scattered_rw_desc(devinfo, inst->exec_size,
5641 false /* write */);
5642 break;
5643
5644 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
5645 assert(arg.ud == 32); /* bit_size */
5646 desc = brw_dp_dword_scattered_rw_desc(devinfo, inst->exec_size,
5647 true /* write */);
5648 break;
5649
5650 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5651 desc = brw_dp_untyped_atomic_desc(devinfo, inst->exec_size,
5652 arg.ud, /* atomic_op */
5653 !inst->dst.is_null());
5654 break;
5655
5656 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5657 desc = brw_dp_untyped_atomic_float_desc(devinfo, inst->exec_size,
5658 arg.ud, /* atomic_op */
5659 !inst->dst.is_null());
5660 break;
5661
5662 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5663 desc = brw_dp_typed_surface_rw_desc(devinfo, inst->exec_size, inst->group,
5664 arg.ud, /* num_channels */
5665 false /* write */);
5666 break;
5667
5668 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5669 desc = brw_dp_typed_surface_rw_desc(devinfo, inst->exec_size, inst->group,
5670 arg.ud, /* num_channels */
5671 true /* write */);
5672 break;
5673
5674 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5675 desc = brw_dp_typed_atomic_desc(devinfo, inst->exec_size, inst->group,
5676 arg.ud, /* atomic_op */
5677 !inst->dst.is_null());
5678 break;
5679
5680 default:
5681 unreachable("Unknown surface logical instruction");
5682 }
5683
5684 /* Update the original instruction. */
5685 inst->opcode = SHADER_OPCODE_SEND;
5686 inst->mlen = mlen;
5687 inst->ex_mlen = ex_mlen;
5688 inst->header_size = header_sz;
5689 inst->send_has_side_effects = has_side_effects;
5690 inst->send_is_volatile = !has_side_effects;
5691
5692 /* Set up SFID and descriptors */
5693 inst->sfid = sfid;
5694 inst->desc = desc;
5695 if (surface.file == IMM) {
5696 inst->desc |= surface.ud & 0xff;
5697 inst->src[0] = brw_imm_ud(0);
5698 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5699 } else if (surface_handle.file != BAD_FILE) {
5700 /* Bindless surface */
5701 assert(devinfo->gen >= 9);
5702 inst->desc |= GEN9_BTI_BINDLESS;
5703 inst->src[0] = brw_imm_ud(0);
5704
5705 /* We assume that the driver provided the handle in the top 20 bits so
5706 * we can use the surface handle directly as the extended descriptor.
5707 */
5708 inst->src[1] = retype(surface_handle, BRW_REGISTER_TYPE_UD);
5709 } else {
5710 const fs_builder ubld = bld.exec_all().group(1, 0);
5711 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5712 ubld.AND(tmp, surface, brw_imm_ud(0xff));
5713 inst->src[0] = component(tmp, 0);
5714 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5715 }
5716
5717 /* Finally, the payload */
5718 inst->src[2] = payload;
5719 inst->src[3] = payload2;
5720
5721 inst->resize_sources(4);
5722 }
5723
5724 static void
5725 lower_a64_logical_send(const fs_builder &bld, fs_inst *inst)
5726 {
5727 const gen_device_info *devinfo = bld.shader->devinfo;
5728
5729 const fs_reg &addr = inst->src[0];
5730 const fs_reg &src = inst->src[1];
5731 const unsigned src_comps = inst->components_read(1);
5732 assert(inst->src[2].file == IMM);
5733 const unsigned arg = inst->src[2].ud;
5734 const bool has_side_effects = inst->has_side_effects();
5735
5736 /* If the surface message has side effects and we're a fragment shader, we
5737 * have to predicate with the sample mask to avoid helper invocations.
5738 */
5739 if (has_side_effects && bld.shader->stage == MESA_SHADER_FRAGMENT)
5740 emit_predicate_on_sample_mask(bld, inst);
5741
5742 fs_reg payload, payload2;
5743 unsigned mlen, ex_mlen = 0;
5744 if (devinfo->gen >= 9) {
5745 /* On Skylake and above, we have SENDS */
5746 mlen = 2 * (inst->exec_size / 8);
5747 ex_mlen = src_comps * type_sz(src.type) * inst->exec_size / REG_SIZE;
5748 payload = retype(bld.move_to_vgrf(addr, 1), BRW_REGISTER_TYPE_UD);
5749 payload2 = retype(bld.move_to_vgrf(src, src_comps),
5750 BRW_REGISTER_TYPE_UD);
5751 } else {
5752 /* Add two because the address is 64-bit */
5753 const unsigned dwords = 2 + src_comps;
5754 mlen = dwords * (inst->exec_size / 8);
5755
5756 fs_reg sources[5];
5757
5758 sources[0] = addr;
5759
5760 for (unsigned i = 0; i < src_comps; i++)
5761 sources[1 + i] = offset(src, bld, i);
5762
5763 payload = bld.vgrf(BRW_REGISTER_TYPE_UD, dwords);
5764 bld.LOAD_PAYLOAD(payload, sources, 1 + src_comps, 0);
5765 }
5766
5767 uint32_t desc;
5768 switch (inst->opcode) {
5769 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
5770 desc = brw_dp_a64_untyped_surface_rw_desc(devinfo, inst->exec_size,
5771 arg, /* num_channels */
5772 false /* write */);
5773 break;
5774
5775 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
5776 desc = brw_dp_a64_untyped_surface_rw_desc(devinfo, inst->exec_size,
5777 arg, /* num_channels */
5778 true /* write */);
5779 break;
5780
5781 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
5782 desc = brw_dp_a64_byte_scattered_rw_desc(devinfo, inst->exec_size,
5783 arg, /* bit_size */
5784 false /* write */);
5785 break;
5786
5787 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
5788 desc = brw_dp_a64_byte_scattered_rw_desc(devinfo, inst->exec_size,
5789 arg, /* bit_size */
5790 true /* write */);
5791 break;
5792
5793 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
5794 desc = brw_dp_a64_untyped_atomic_desc(devinfo, inst->exec_size, 32,
5795 arg, /* atomic_op */
5796 !inst->dst.is_null());
5797 break;
5798
5799 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
5800 desc = brw_dp_a64_untyped_atomic_desc(devinfo, inst->exec_size, 64,
5801 arg, /* atomic_op */
5802 !inst->dst.is_null());
5803 break;
5804
5805
5806 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5807 desc = brw_dp_a64_untyped_atomic_float_desc(devinfo, inst->exec_size,
5808 arg, /* atomic_op */
5809 !inst->dst.is_null());
5810 break;
5811
5812 default:
5813 unreachable("Unknown A64 logical instruction");
5814 }
5815
5816 /* Update the original instruction. */
5817 inst->opcode = SHADER_OPCODE_SEND;
5818 inst->mlen = mlen;
5819 inst->ex_mlen = ex_mlen;
5820 inst->header_size = 0;
5821 inst->send_has_side_effects = has_side_effects;
5822 inst->send_is_volatile = !has_side_effects;
5823
5824 /* Set up SFID and descriptors */
5825 inst->sfid = HSW_SFID_DATAPORT_DATA_CACHE_1;
5826 inst->desc = desc;
5827 inst->resize_sources(4);
5828 inst->src[0] = brw_imm_ud(0); /* desc */
5829 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5830 inst->src[2] = payload;
5831 inst->src[3] = payload2;
5832 }
5833
5834 static void
5835 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
5836 {
5837 const gen_device_info *devinfo = bld.shader->devinfo;
5838
5839 if (devinfo->gen >= 7) {
5840 fs_reg index = inst->src[0];
5841 /* We are switching the instruction from an ALU-like instruction to a
5842 * send-from-grf instruction. Since sends can't handle strides or
5843 * source modifiers, we have to make a copy of the offset source.
5844 */
5845 fs_reg offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
5846 bld.MOV(offset, inst->src[1]);
5847
5848 const unsigned simd_mode =
5849 inst->exec_size <= 8 ? BRW_SAMPLER_SIMD_MODE_SIMD8 :
5850 BRW_SAMPLER_SIMD_MODE_SIMD16;
5851
5852 inst->opcode = SHADER_OPCODE_SEND;
5853 inst->mlen = inst->exec_size / 8;
5854 inst->resize_sources(3);
5855
5856 inst->sfid = BRW_SFID_SAMPLER;
5857 inst->desc = brw_sampler_desc(devinfo, 0, 0,
5858 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
5859 simd_mode, 0);
5860 if (index.file == IMM) {
5861 inst->desc |= index.ud & 0xff;
5862 inst->src[0] = brw_imm_ud(0);
5863 } else {
5864 const fs_builder ubld = bld.exec_all().group(1, 0);
5865 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5866 ubld.AND(tmp, index, brw_imm_ud(0xff));
5867 inst->src[0] = component(tmp, 0);
5868 }
5869 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5870 inst->src[2] = offset; /* payload */
5871 } else {
5872 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
5873 BRW_REGISTER_TYPE_UD);
5874
5875 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
5876
5877 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
5878 inst->resize_sources(1);
5879 inst->base_mrf = payload.nr;
5880 inst->header_size = 1;
5881 inst->mlen = 1 + inst->exec_size / 8;
5882 }
5883 }
5884
5885 static void
5886 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
5887 {
5888 assert(bld.shader->devinfo->gen < 6);
5889
5890 inst->base_mrf = 2;
5891 inst->mlen = inst->sources * inst->exec_size / 8;
5892
5893 if (inst->sources > 1) {
5894 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
5895 * "Message Payload":
5896 *
5897 * "Operand0[7]. For the INT DIV functions, this operand is the
5898 * denominator."
5899 * ...
5900 * "Operand1[7]. For the INT DIV functions, this operand is the
5901 * numerator."
5902 */
5903 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
5904 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
5905 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
5906
5907 inst->resize_sources(1);
5908 inst->src[0] = src0;
5909
5910 assert(inst->exec_size == 8);
5911 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
5912 }
5913 }
5914
5915 bool
5916 fs_visitor::lower_logical_sends()
5917 {
5918 bool progress = false;
5919
5920 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5921 const fs_builder ibld(this, block, inst);
5922
5923 switch (inst->opcode) {
5924 case FS_OPCODE_FB_WRITE_LOGICAL:
5925 assert(stage == MESA_SHADER_FRAGMENT);
5926 lower_fb_write_logical_send(ibld, inst,
5927 brw_wm_prog_data(prog_data),
5928 (const brw_wm_prog_key *)key,
5929 payload);
5930 break;
5931
5932 case FS_OPCODE_FB_READ_LOGICAL:
5933 lower_fb_read_logical_send(ibld, inst);
5934 break;
5935
5936 case SHADER_OPCODE_TEX_LOGICAL:
5937 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
5938 break;
5939
5940 case SHADER_OPCODE_TXD_LOGICAL:
5941 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
5942 break;
5943
5944 case SHADER_OPCODE_TXF_LOGICAL:
5945 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
5946 break;
5947
5948 case SHADER_OPCODE_TXL_LOGICAL:
5949 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
5950 break;
5951
5952 case SHADER_OPCODE_TXS_LOGICAL:
5953 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
5954 break;
5955
5956 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5957 lower_sampler_logical_send(ibld, inst,
5958 SHADER_OPCODE_IMAGE_SIZE_LOGICAL);
5959 break;
5960
5961 case FS_OPCODE_TXB_LOGICAL:
5962 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
5963 break;
5964
5965 case SHADER_OPCODE_TXF_CMS_LOGICAL:
5966 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
5967 break;
5968
5969 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
5970 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
5971 break;
5972
5973 case SHADER_OPCODE_TXF_UMS_LOGICAL:
5974 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
5975 break;
5976
5977 case SHADER_OPCODE_TXF_MCS_LOGICAL:
5978 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
5979 break;
5980
5981 case SHADER_OPCODE_LOD_LOGICAL:
5982 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
5983 break;
5984
5985 case SHADER_OPCODE_TG4_LOGICAL:
5986 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
5987 break;
5988
5989 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
5990 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
5991 break;
5992
5993 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
5994 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
5995 break;
5996
5997 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5998 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5999 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
6000 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
6001 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
6002 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
6003 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
6004 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
6005 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
6006 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
6007 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
6008 lower_surface_logical_send(ibld, inst);
6009 break;
6010
6011 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
6012 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
6013 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
6014 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
6015 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
6016 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
6017 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
6018 lower_a64_logical_send(ibld, inst);
6019 break;
6020
6021 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
6022 lower_varying_pull_constant_logical_send(ibld, inst);
6023 break;
6024
6025 case SHADER_OPCODE_RCP:
6026 case SHADER_OPCODE_RSQ:
6027 case SHADER_OPCODE_SQRT:
6028 case SHADER_OPCODE_EXP2:
6029 case SHADER_OPCODE_LOG2:
6030 case SHADER_OPCODE_SIN:
6031 case SHADER_OPCODE_COS:
6032 case SHADER_OPCODE_POW:
6033 case SHADER_OPCODE_INT_QUOTIENT:
6034 case SHADER_OPCODE_INT_REMAINDER:
6035 /* The math opcodes are overloaded for the send-like and
6036 * expression-like instructions which seems kind of icky. Gen6+ has
6037 * a native (but rather quirky) MATH instruction so we don't need to
6038 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
6039 * logical instructions (which we can easily recognize because they
6040 * have mlen = 0) into send-like virtual instructions.
6041 */
6042 if (devinfo->gen < 6 && inst->mlen == 0) {
6043 lower_math_logical_send(ibld, inst);
6044 break;
6045
6046 } else {
6047 continue;
6048 }
6049
6050 default:
6051 continue;
6052 }
6053
6054 progress = true;
6055 }
6056
6057 if (progress)
6058 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
6059
6060 return progress;
6061 }
6062
6063 static bool
6064 is_mixed_float_with_fp32_dst(const fs_inst *inst)
6065 {
6066 /* This opcode sometimes uses :W type on the source even if the operand is
6067 * a :HF, because in gen7 there is no support for :HF, and thus it uses :W.
6068 */
6069 if (inst->opcode == BRW_OPCODE_F16TO32)
6070 return true;
6071
6072 if (inst->dst.type != BRW_REGISTER_TYPE_F)
6073 return false;
6074
6075 for (int i = 0; i < inst->sources; i++) {
6076 if (inst->src[i].type == BRW_REGISTER_TYPE_HF)
6077 return true;
6078 }
6079
6080 return false;
6081 }
6082
6083 static bool
6084 is_mixed_float_with_packed_fp16_dst(const fs_inst *inst)
6085 {
6086 /* This opcode sometimes uses :W type on the destination even if the
6087 * destination is a :HF, because in gen7 there is no support for :HF, and
6088 * thus it uses :W.
6089 */
6090 if (inst->opcode == BRW_OPCODE_F32TO16 &&
6091 inst->dst.stride == 1)
6092 return true;
6093
6094 if (inst->dst.type != BRW_REGISTER_TYPE_HF ||
6095 inst->dst.stride != 1)
6096 return false;
6097
6098 for (int i = 0; i < inst->sources; i++) {
6099 if (inst->src[i].type == BRW_REGISTER_TYPE_F)
6100 return true;
6101 }
6102
6103 return false;
6104 }
6105
6106 /**
6107 * Get the closest allowed SIMD width for instruction \p inst accounting for
6108 * some common regioning and execution control restrictions that apply to FPU
6109 * instructions. These restrictions don't necessarily have any relevance to
6110 * instructions not executed by the FPU pipeline like extended math, control
6111 * flow or send message instructions.
6112 *
6113 * For virtual opcodes it's really up to the instruction -- In some cases
6114 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
6115 * instructions) it may simplify virtual instruction lowering if we can
6116 * enforce FPU-like regioning restrictions already on the virtual instruction,
6117 * in other cases (e.g. virtual send-like instructions) this may be
6118 * excessively restrictive.
6119 */
6120 static unsigned
6121 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
6122 const fs_inst *inst)
6123 {
6124 /* Maximum execution size representable in the instruction controls. */
6125 unsigned max_width = MIN2(32, inst->exec_size);
6126
6127 /* According to the PRMs:
6128 * "A. In Direct Addressing mode, a source cannot span more than 2
6129 * adjacent GRF registers.
6130 * B. A destination cannot span more than 2 adjacent GRF registers."
6131 *
6132 * Look for the source or destination with the largest register region
6133 * which is the one that is going to limit the overall execution size of
6134 * the instruction due to this rule.
6135 */
6136 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
6137
6138 for (unsigned i = 0; i < inst->sources; i++)
6139 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
6140
6141 /* Calculate the maximum execution size of the instruction based on the
6142 * factor by which it goes over the hardware limit of 2 GRFs.
6143 */
6144 if (reg_count > 2)
6145 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
6146
6147 /* According to the IVB PRMs:
6148 * "When destination spans two registers, the source MUST span two
6149 * registers. The exception to the above rule:
6150 *
6151 * - When source is scalar, the source registers are not incremented.
6152 * - When source is packed integer Word and destination is packed
6153 * integer DWord, the source register is not incremented but the
6154 * source sub register is incremented."
6155 *
6156 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
6157 * restrictions. The code below intentionally doesn't check whether the
6158 * destination type is integer because empirically the hardware doesn't
6159 * seem to care what the actual type is as long as it's dword-aligned.
6160 */
6161 if (devinfo->gen < 8) {
6162 for (unsigned i = 0; i < inst->sources; i++) {
6163 /* IVB implements DF scalars as <0;2,1> regions. */
6164 const bool is_scalar_exception = is_uniform(inst->src[i]) &&
6165 (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
6166 const bool is_packed_word_exception =
6167 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
6168 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
6169
6170 /* We check size_read(i) against size_written instead of REG_SIZE
6171 * because we want to properly handle SIMD32. In SIMD32, you can end
6172 * up with writes to 4 registers and a source that reads 2 registers
6173 * and we may still need to lower all the way to SIMD8 in that case.
6174 */
6175 if (inst->size_written > REG_SIZE &&
6176 inst->size_read(i) != 0 &&
6177 inst->size_read(i) < inst->size_written &&
6178 !is_scalar_exception && !is_packed_word_exception) {
6179 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
6180 max_width = MIN2(max_width, inst->exec_size / reg_count);
6181 }
6182 }
6183 }
6184
6185 if (devinfo->gen < 6) {
6186 /* From the G45 PRM, Volume 4 Page 361:
6187 *
6188 * "Operand Alignment Rule: With the exceptions listed below, a
6189 * source/destination operand in general should be aligned to even
6190 * 256-bit physical register with a region size equal to two 256-bit
6191 * physical registers."
6192 *
6193 * Normally we enforce this by allocating virtual registers to the
6194 * even-aligned class. But we need to handle payload registers.
6195 */
6196 for (unsigned i = 0; i < inst->sources; i++) {
6197 if (inst->src[i].file == FIXED_GRF && (inst->src[i].nr & 1) &&
6198 inst->size_read(i) > REG_SIZE) {
6199 max_width = MIN2(max_width, 8);
6200 }
6201 }
6202 }
6203
6204 /* From the IVB PRMs:
6205 * "When an instruction is SIMD32, the low 16 bits of the execution mask
6206 * are applied for both halves of the SIMD32 instruction. If different
6207 * execution mask channels are required, split the instruction into two
6208 * SIMD16 instructions."
6209 *
6210 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
6211 * 32-wide control flow support in hardware and will behave similarly.
6212 */
6213 if (devinfo->gen < 8 && !inst->force_writemask_all)
6214 max_width = MIN2(max_width, 16);
6215
6216 /* From the IVB PRMs (applies to HSW too):
6217 * "Instructions with condition modifiers must not use SIMD32."
6218 *
6219 * From the BDW PRMs (applies to later hardware too):
6220 * "Ternary instruction with condition modifiers must not use SIMD32."
6221 */
6222 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
6223 max_width = MIN2(max_width, 16);
6224
6225 /* From the IVB PRMs (applies to other devices that don't have the
6226 * gen_device_info::supports_simd16_3src flag set):
6227 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
6228 * SIMD8 is not allowed for DF operations."
6229 */
6230 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
6231 max_width = MIN2(max_width, inst->exec_size / reg_count);
6232
6233 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
6234 * the 8-bit quarter of the execution mask signals specified in the
6235 * instruction control fields) for the second compressed half of any
6236 * single-precision instruction (for double-precision instructions
6237 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
6238 * the EU will apply the wrong execution controls for the second
6239 * sequential GRF write if the number of channels per GRF is not exactly
6240 * eight in single-precision mode (or four in double-float mode).
6241 *
6242 * In this situation we calculate the maximum size of the split
6243 * instructions so they only ever write to a single register.
6244 */
6245 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
6246 !inst->force_writemask_all) {
6247 const unsigned channels_per_grf = inst->exec_size /
6248 DIV_ROUND_UP(inst->size_written, REG_SIZE);
6249 const unsigned exec_type_size = get_exec_type_size(inst);
6250 assert(exec_type_size);
6251
6252 /* The hardware shifts exactly 8 channels per compressed half of the
6253 * instruction in single-precision mode and exactly 4 in double-precision.
6254 */
6255 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
6256 max_width = MIN2(max_width, channels_per_grf);
6257
6258 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
6259 * because HW applies the same channel enable signals to both halves of
6260 * the compressed instruction which will be just wrong under
6261 * non-uniform control flow.
6262 */
6263 if (devinfo->gen == 7 && !devinfo->is_haswell &&
6264 (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
6265 max_width = MIN2(max_width, 4);
6266 }
6267
6268 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
6269 * Float Operations:
6270 *
6271 * "No SIMD16 in mixed mode when destination is f32. Instruction
6272 * execution size must be no more than 8."
6273 *
6274 * FIXME: the simulator doesn't seem to complain if we don't do this and
6275 * empirical testing with existing CTS tests show that they pass just fine
6276 * without implementing this, however, since our interpretation of the PRM
6277 * is that conversion MOVs between HF and F are still mixed-float
6278 * instructions (and therefore subject to this restriction) we decided to
6279 * split them to be safe. Might be useful to do additional investigation to
6280 * lift the restriction if we can ensure that it is safe though, since these
6281 * conversions are common when half-float types are involved since many
6282 * instructions do not support HF types and conversions from/to F are
6283 * required.
6284 */
6285 if (is_mixed_float_with_fp32_dst(inst))
6286 max_width = MIN2(max_width, 8);
6287
6288 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
6289 * Float Operations:
6290 *
6291 * "No SIMD16 in mixed mode when destination is packed f16 for both
6292 * Align1 and Align16."
6293 */
6294 if (is_mixed_float_with_packed_fp16_dst(inst))
6295 max_width = MIN2(max_width, 8);
6296
6297 /* Only power-of-two execution sizes are representable in the instruction
6298 * control fields.
6299 */
6300 return 1 << _mesa_logbase2(max_width);
6301 }
6302
6303 /**
6304 * Get the maximum allowed SIMD width for instruction \p inst accounting for
6305 * various payload size restrictions that apply to sampler message
6306 * instructions.
6307 *
6308 * This is only intended to provide a maximum theoretical bound for the
6309 * execution size of the message based on the number of argument components
6310 * alone, which in most cases will determine whether the SIMD8 or SIMD16
6311 * variant of the message can be used, though some messages may have
6312 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
6313 * the message length to determine the exact SIMD width and argument count,
6314 * which makes a number of sampler message combinations impossible to
6315 * represent).
6316 */
6317 static unsigned
6318 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
6319 const fs_inst *inst)
6320 {
6321 /* If we have a min_lod parameter on anything other than a simple sample
6322 * message, it will push it over 5 arguments and we have to fall back to
6323 * SIMD8.
6324 */
6325 if (inst->opcode != SHADER_OPCODE_TEX &&
6326 inst->components_read(TEX_LOGICAL_SRC_MIN_LOD))
6327 return 8;
6328
6329 /* Calculate the number of coordinate components that have to be present
6330 * assuming that additional arguments follow the texel coordinates in the
6331 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
6332 * need to pad to four or three components depending on the message,
6333 * pre-ILK we need to pad to at most three components.
6334 */
6335 const unsigned req_coord_components =
6336 (devinfo->gen >= 7 ||
6337 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
6338 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
6339 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
6340 3;
6341
6342 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
6343 * variant of the TXL or TXF message.
6344 */
6345 const bool implicit_lod = devinfo->gen >= 9 &&
6346 (inst->opcode == SHADER_OPCODE_TXL ||
6347 inst->opcode == SHADER_OPCODE_TXF) &&
6348 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
6349
6350 /* Calculate the total number of argument components that need to be passed
6351 * to the sampler unit.
6352 */
6353 const unsigned num_payload_components =
6354 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
6355 req_coord_components) +
6356 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
6357 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
6358 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
6359 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
6360 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
6361 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
6362 inst->components_read(TEX_LOGICAL_SRC_MCS);
6363
6364 /* SIMD16 messages with more than five arguments exceed the maximum message
6365 * size supported by the sampler, regardless of whether a header is
6366 * provided or not.
6367 */
6368 return MIN2(inst->exec_size,
6369 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
6370 }
6371
6372 /**
6373 * Get the closest native SIMD width supported by the hardware for instruction
6374 * \p inst. The instruction will be left untouched by
6375 * fs_visitor::lower_simd_width() if the returned value is equal to the
6376 * original execution size.
6377 */
6378 static unsigned
6379 get_lowered_simd_width(const struct gen_device_info *devinfo,
6380 const fs_inst *inst)
6381 {
6382 switch (inst->opcode) {
6383 case BRW_OPCODE_MOV:
6384 case BRW_OPCODE_SEL:
6385 case BRW_OPCODE_NOT:
6386 case BRW_OPCODE_AND:
6387 case BRW_OPCODE_OR:
6388 case BRW_OPCODE_XOR:
6389 case BRW_OPCODE_SHR:
6390 case BRW_OPCODE_SHL:
6391 case BRW_OPCODE_ASR:
6392 case BRW_OPCODE_ROR:
6393 case BRW_OPCODE_ROL:
6394 case BRW_OPCODE_CMPN:
6395 case BRW_OPCODE_CSEL:
6396 case BRW_OPCODE_F32TO16:
6397 case BRW_OPCODE_F16TO32:
6398 case BRW_OPCODE_BFREV:
6399 case BRW_OPCODE_BFE:
6400 case BRW_OPCODE_ADD:
6401 case BRW_OPCODE_MUL:
6402 case BRW_OPCODE_AVG:
6403 case BRW_OPCODE_FRC:
6404 case BRW_OPCODE_RNDU:
6405 case BRW_OPCODE_RNDD:
6406 case BRW_OPCODE_RNDE:
6407 case BRW_OPCODE_RNDZ:
6408 case BRW_OPCODE_LZD:
6409 case BRW_OPCODE_FBH:
6410 case BRW_OPCODE_FBL:
6411 case BRW_OPCODE_CBIT:
6412 case BRW_OPCODE_SAD2:
6413 case BRW_OPCODE_MAD:
6414 case BRW_OPCODE_LRP:
6415 case FS_OPCODE_PACK:
6416 case SHADER_OPCODE_SEL_EXEC:
6417 case SHADER_OPCODE_CLUSTER_BROADCAST:
6418 return get_fpu_lowered_simd_width(devinfo, inst);
6419
6420 case BRW_OPCODE_CMP: {
6421 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
6422 * when the destination is a GRF the dependency-clear bit on the flag
6423 * register is cleared early.
6424 *
6425 * Suggested workarounds are to disable coissuing CMP instructions
6426 * or to split CMP(16) instructions into two CMP(8) instructions.
6427 *
6428 * We choose to split into CMP(8) instructions since disabling
6429 * coissuing would affect CMP instructions not otherwise affected by
6430 * the errata.
6431 */
6432 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
6433 !inst->dst.is_null() ? 8 : ~0);
6434 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
6435 }
6436 case BRW_OPCODE_BFI1:
6437 case BRW_OPCODE_BFI2:
6438 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
6439 * should
6440 * "Force BFI instructions to be executed always in SIMD8."
6441 */
6442 return MIN2(devinfo->is_haswell ? 8 : ~0u,
6443 get_fpu_lowered_simd_width(devinfo, inst));
6444
6445 case BRW_OPCODE_IF:
6446 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
6447 return inst->exec_size;
6448
6449 case SHADER_OPCODE_RCP:
6450 case SHADER_OPCODE_RSQ:
6451 case SHADER_OPCODE_SQRT:
6452 case SHADER_OPCODE_EXP2:
6453 case SHADER_OPCODE_LOG2:
6454 case SHADER_OPCODE_SIN:
6455 case SHADER_OPCODE_COS: {
6456 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
6457 * Gen6. Extended Math Function is limited to SIMD8 with half-float.
6458 */
6459 if (devinfo->gen == 6 || (devinfo->gen == 4 && !devinfo->is_g4x))
6460 return MIN2(8, inst->exec_size);
6461 if (inst->dst.type == BRW_REGISTER_TYPE_HF)
6462 return MIN2(8, inst->exec_size);
6463 return MIN2(16, inst->exec_size);
6464 }
6465
6466 case SHADER_OPCODE_POW: {
6467 /* SIMD16 is only allowed on Gen7+. Extended Math Function is limited
6468 * to SIMD8 with half-float
6469 */
6470 if (devinfo->gen < 7)
6471 return MIN2(8, inst->exec_size);
6472 if (inst->dst.type == BRW_REGISTER_TYPE_HF)
6473 return MIN2(8, inst->exec_size);
6474 return MIN2(16, inst->exec_size);
6475 }
6476
6477 case SHADER_OPCODE_USUB_SAT:
6478 case SHADER_OPCODE_ISUB_SAT:
6479 return get_fpu_lowered_simd_width(devinfo, inst);
6480
6481 case SHADER_OPCODE_INT_QUOTIENT:
6482 case SHADER_OPCODE_INT_REMAINDER:
6483 /* Integer division is limited to SIMD8 on all generations. */
6484 return MIN2(8, inst->exec_size);
6485
6486 case FS_OPCODE_LINTERP:
6487 case SHADER_OPCODE_GET_BUFFER_SIZE:
6488 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
6489 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
6490 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
6491 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
6492 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
6493 return MIN2(16, inst->exec_size);
6494
6495 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
6496 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
6497 * message used to implement varying pull constant loads, so expand it
6498 * to SIMD16. An alternative with longer message payload length but
6499 * shorter return payload would be to use the SIMD8 sampler message that
6500 * takes (header, u, v, r) as parameters instead of (header, u).
6501 */
6502 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
6503
6504 case FS_OPCODE_DDX_COARSE:
6505 case FS_OPCODE_DDX_FINE:
6506 case FS_OPCODE_DDY_COARSE:
6507 case FS_OPCODE_DDY_FINE:
6508 /* The implementation of this virtual opcode may require emitting
6509 * compressed Align16 instructions, which are severely limited on some
6510 * generations.
6511 *
6512 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
6513 * Region Restrictions):
6514 *
6515 * "In Align16 access mode, SIMD16 is not allowed for DW operations
6516 * and SIMD8 is not allowed for DF operations."
6517 *
6518 * In this context, "DW operations" means "operations acting on 32-bit
6519 * values", so it includes operations on floats.
6520 *
6521 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
6522 * (Instruction Compression -> Rules and Restrictions):
6523 *
6524 * "A compressed instruction must be in Align1 access mode. Align16
6525 * mode instructions cannot be compressed."
6526 *
6527 * Similar text exists in the g45 PRM.
6528 *
6529 * Empirically, compressed align16 instructions using odd register
6530 * numbers don't appear to work on Sandybridge either.
6531 */
6532 return (devinfo->gen == 4 || devinfo->gen == 6 ||
6533 (devinfo->gen == 7 && !devinfo->is_haswell) ?
6534 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
6535
6536 case SHADER_OPCODE_MULH:
6537 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
6538 * is 8-wide on Gen7+.
6539 */
6540 return (devinfo->gen >= 7 ? 8 :
6541 get_fpu_lowered_simd_width(devinfo, inst));
6542
6543 case FS_OPCODE_FB_WRITE_LOGICAL:
6544 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
6545 * here.
6546 */
6547 assert(devinfo->gen != 6 ||
6548 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
6549 inst->exec_size == 8);
6550 /* Dual-source FB writes are unsupported in SIMD16 mode. */
6551 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
6552 8 : MIN2(16, inst->exec_size));
6553
6554 case FS_OPCODE_FB_READ_LOGICAL:
6555 return MIN2(16, inst->exec_size);
6556
6557 case SHADER_OPCODE_TEX_LOGICAL:
6558 case SHADER_OPCODE_TXF_CMS_LOGICAL:
6559 case SHADER_OPCODE_TXF_UMS_LOGICAL:
6560 case SHADER_OPCODE_TXF_MCS_LOGICAL:
6561 case SHADER_OPCODE_LOD_LOGICAL:
6562 case SHADER_OPCODE_TG4_LOGICAL:
6563 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
6564 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
6565 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
6566 return get_sampler_lowered_simd_width(devinfo, inst);
6567
6568 case SHADER_OPCODE_TXD_LOGICAL:
6569 /* TXD is unsupported in SIMD16 mode. */
6570 return 8;
6571
6572 case SHADER_OPCODE_TXL_LOGICAL:
6573 case FS_OPCODE_TXB_LOGICAL:
6574 /* Only one execution size is representable pre-ILK depending on whether
6575 * the shadow reference argument is present.
6576 */
6577 if (devinfo->gen == 4)
6578 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
6579 else
6580 return get_sampler_lowered_simd_width(devinfo, inst);
6581
6582 case SHADER_OPCODE_TXF_LOGICAL:
6583 case SHADER_OPCODE_TXS_LOGICAL:
6584 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
6585 * messages. Use SIMD16 instead.
6586 */
6587 if (devinfo->gen == 4)
6588 return 16;
6589 else
6590 return get_sampler_lowered_simd_width(devinfo, inst);
6591
6592 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
6593 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
6594 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
6595 return 8;
6596
6597 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
6598 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
6599 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
6600 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
6601 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
6602 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
6603 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
6604 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
6605 return MIN2(16, inst->exec_size);
6606
6607 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
6608 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
6609 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
6610 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
6611 return devinfo->gen <= 8 ? 8 : MIN2(16, inst->exec_size);
6612
6613 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
6614 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
6615 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
6616 return 8;
6617
6618 case SHADER_OPCODE_URB_READ_SIMD8:
6619 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
6620 case SHADER_OPCODE_URB_WRITE_SIMD8:
6621 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
6622 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
6623 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
6624 return MIN2(8, inst->exec_size);
6625
6626 case SHADER_OPCODE_QUAD_SWIZZLE: {
6627 const unsigned swiz = inst->src[1].ud;
6628 return (is_uniform(inst->src[0]) ?
6629 get_fpu_lowered_simd_width(devinfo, inst) :
6630 devinfo->gen < 11 && type_sz(inst->src[0].type) == 4 ? 8 :
6631 swiz == BRW_SWIZZLE_XYXY || swiz == BRW_SWIZZLE_ZWZW ? 4 :
6632 get_fpu_lowered_simd_width(devinfo, inst));
6633 }
6634 case SHADER_OPCODE_MOV_INDIRECT: {
6635 /* From IVB and HSW PRMs:
6636 *
6637 * "2.When the destination requires two registers and the sources are
6638 * indirect, the sources must use 1x1 regioning mode.
6639 *
6640 * In case of DF instructions in HSW/IVB, the exec_size is limited by
6641 * the EU decompression logic not handling VxH indirect addressing
6642 * correctly.
6643 */
6644 const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE;
6645 /* Prior to Broadwell, we only have 8 address subregisters. */
6646 return MIN3(devinfo->gen >= 8 ? 16 : 8,
6647 max_size / (inst->dst.stride * type_sz(inst->dst.type)),
6648 inst->exec_size);
6649 }
6650
6651 case SHADER_OPCODE_LOAD_PAYLOAD: {
6652 const unsigned reg_count =
6653 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
6654
6655 if (reg_count > 2) {
6656 /* Only LOAD_PAYLOAD instructions with per-channel destination region
6657 * can be easily lowered (which excludes headers and heterogeneous
6658 * types).
6659 */
6660 assert(!inst->header_size);
6661 for (unsigned i = 0; i < inst->sources; i++)
6662 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
6663 inst->src[i].file == BAD_FILE);
6664
6665 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
6666 } else {
6667 return inst->exec_size;
6668 }
6669 }
6670 default:
6671 return inst->exec_size;
6672 }
6673 }
6674
6675 /**
6676 * Return true if splitting out the group of channels of instruction \p inst
6677 * given by lbld.group() requires allocating a temporary for the i-th source
6678 * of the lowered instruction.
6679 */
6680 static inline bool
6681 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
6682 {
6683 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
6684 (inst->components_read(i) == 1 &&
6685 lbld.dispatch_width() <= inst->exec_size)) ||
6686 (inst->flags_written() &
6687 flag_mask(inst->src[i], type_sz(inst->src[i].type)));
6688 }
6689
6690 /**
6691 * Extract the data that would be consumed by the channel group given by
6692 * lbld.group() from the i-th source region of instruction \p inst and return
6693 * it as result in packed form.
6694 */
6695 static fs_reg
6696 emit_unzip(const fs_builder &lbld, fs_inst *inst, unsigned i)
6697 {
6698 assert(lbld.group() >= inst->group);
6699
6700 /* Specified channel group from the source region. */
6701 const fs_reg src = horiz_offset(inst->src[i], lbld.group() - inst->group);
6702
6703 if (needs_src_copy(lbld, inst, i)) {
6704 /* Builder of the right width to perform the copy avoiding uninitialized
6705 * data if the lowered execution size is greater than the original
6706 * execution size of the instruction.
6707 */
6708 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
6709 inst->exec_size), 0);
6710 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
6711
6712 for (unsigned k = 0; k < inst->components_read(i); ++k)
6713 cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
6714
6715 return tmp;
6716
6717 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
6718 /* The source is invariant for all dispatch_width-wide groups of the
6719 * original region.
6720 */
6721 return inst->src[i];
6722
6723 } else {
6724 /* We can just point the lowered instruction at the right channel group
6725 * from the original region.
6726 */
6727 return src;
6728 }
6729 }
6730
6731 /**
6732 * Return true if splitting out the group of channels of instruction \p inst
6733 * given by lbld.group() requires allocating a temporary for the destination
6734 * of the lowered instruction and copying the data back to the original
6735 * destination region.
6736 */
6737 static inline bool
6738 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
6739 {
6740 /* If the instruction writes more than one component we'll have to shuffle
6741 * the results of multiple lowered instructions in order to make sure that
6742 * they end up arranged correctly in the original destination region.
6743 */
6744 if (inst->size_written > inst->dst.component_size(inst->exec_size))
6745 return true;
6746
6747 /* If the lowered execution size is larger than the original the result of
6748 * the instruction won't fit in the original destination, so we'll have to
6749 * allocate a temporary in any case.
6750 */
6751 if (lbld.dispatch_width() > inst->exec_size)
6752 return true;
6753
6754 for (unsigned i = 0; i < inst->sources; i++) {
6755 /* If we already made a copy of the source for other reasons there won't
6756 * be any overlap with the destination.
6757 */
6758 if (needs_src_copy(lbld, inst, i))
6759 continue;
6760
6761 /* In order to keep the logic simple we emit a copy whenever the
6762 * destination region doesn't exactly match an overlapping source, which
6763 * may point at the source and destination not being aligned group by
6764 * group which could cause one of the lowered instructions to overwrite
6765 * the data read from the same source by other lowered instructions.
6766 */
6767 if (regions_overlap(inst->dst, inst->size_written,
6768 inst->src[i], inst->size_read(i)) &&
6769 !inst->dst.equals(inst->src[i]))
6770 return true;
6771 }
6772
6773 return false;
6774 }
6775
6776 /**
6777 * Insert data from a packed temporary into the channel group given by
6778 * lbld.group() of the destination region of instruction \p inst and return
6779 * the temporary as result. Any copy instructions that are required for
6780 * unzipping the previous value (in the case of partial writes) will be
6781 * inserted using \p lbld_before and any copy instructions required for
6782 * zipping up the destination of \p inst will be inserted using \p lbld_after.
6783 */
6784 static fs_reg
6785 emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after,
6786 fs_inst *inst)
6787 {
6788 assert(lbld_before.dispatch_width() == lbld_after.dispatch_width());
6789 assert(lbld_before.group() == lbld_after.group());
6790 assert(lbld_after.group() >= inst->group);
6791
6792 /* Specified channel group from the destination region. */
6793 const fs_reg dst = horiz_offset(inst->dst, lbld_after.group() - inst->group);
6794 const unsigned dst_size = inst->size_written /
6795 inst->dst.component_size(inst->exec_size);
6796
6797 if (needs_dst_copy(lbld_after, inst)) {
6798 const fs_reg tmp = lbld_after.vgrf(inst->dst.type, dst_size);
6799
6800 if (inst->predicate) {
6801 /* Handle predication by copying the original contents of
6802 * the destination into the temporary before emitting the
6803 * lowered instruction.
6804 */
6805 const fs_builder gbld_before =
6806 lbld_before.group(MIN2(lbld_before.dispatch_width(),
6807 inst->exec_size), 0);
6808 for (unsigned k = 0; k < dst_size; ++k) {
6809 gbld_before.MOV(offset(tmp, lbld_before, k),
6810 offset(dst, inst->exec_size, k));
6811 }
6812 }
6813
6814 const fs_builder gbld_after =
6815 lbld_after.group(MIN2(lbld_after.dispatch_width(),
6816 inst->exec_size), 0);
6817 for (unsigned k = 0; k < dst_size; ++k) {
6818 /* Use a builder of the right width to perform the copy avoiding
6819 * uninitialized data if the lowered execution size is greater than
6820 * the original execution size of the instruction.
6821 */
6822 gbld_after.MOV(offset(dst, inst->exec_size, k),
6823 offset(tmp, lbld_after, k));
6824 }
6825
6826 return tmp;
6827
6828 } else {
6829 /* No need to allocate a temporary for the lowered instruction, just
6830 * take the right group of channels from the original region.
6831 */
6832 return dst;
6833 }
6834 }
6835
6836 bool
6837 fs_visitor::lower_simd_width()
6838 {
6839 bool progress = false;
6840
6841 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
6842 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
6843
6844 if (lower_width != inst->exec_size) {
6845 /* Builder matching the original instruction. We may also need to
6846 * emit an instruction of width larger than the original, set the
6847 * execution size of the builder to the highest of both for now so
6848 * we're sure that both cases can be handled.
6849 */
6850 const unsigned max_width = MAX2(inst->exec_size, lower_width);
6851 const fs_builder ibld = bld.at(block, inst)
6852 .exec_all(inst->force_writemask_all)
6853 .group(max_width, inst->group / max_width);
6854
6855 /* Split the copies in chunks of the execution width of either the
6856 * original or the lowered instruction, whichever is lower.
6857 */
6858 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
6859 const unsigned dst_size = inst->size_written /
6860 inst->dst.component_size(inst->exec_size);
6861
6862 assert(!inst->writes_accumulator && !inst->mlen);
6863
6864 /* Inserting the zip, unzip, and duplicated instructions in all of
6865 * the right spots is somewhat tricky. All of the unzip and any
6866 * instructions from the zip which unzip the destination prior to
6867 * writing need to happen before all of the per-group instructions
6868 * and the zip instructions need to happen after. In order to sort
6869 * this all out, we insert the unzip instructions before \p inst,
6870 * insert the per-group instructions after \p inst (i.e. before
6871 * inst->next), and insert the zip instructions before the
6872 * instruction after \p inst. Since we are inserting instructions
6873 * after \p inst, inst->next is a moving target and we need to save
6874 * it off here so that we insert the zip instructions in the right
6875 * place.
6876 *
6877 * Since we're inserting split instructions after after_inst, the
6878 * instructions will end up in the reverse order that we insert them.
6879 * However, certain render target writes require that the low group
6880 * instructions come before the high group. From the Ivy Bridge PRM
6881 * Vol. 4, Pt. 1, Section 3.9.11:
6882 *
6883 * "If multiple SIMD8 Dual Source messages are delivered by the
6884 * pixel shader thread, each SIMD8_DUALSRC_LO message must be
6885 * issued before the SIMD8_DUALSRC_HI message with the same Slot
6886 * Group Select setting."
6887 *
6888 * And, from Section 3.9.11.1 of the same PRM:
6889 *
6890 * "When SIMD32 or SIMD16 PS threads send render target writes
6891 * with multiple SIMD8 and SIMD16 messages, the following must
6892 * hold:
6893 *
6894 * All the slots (as described above) must have a corresponding
6895 * render target write irrespective of the slot's validity. A slot
6896 * is considered valid when at least one sample is enabled. For
6897 * example, a SIMD16 PS thread must send two SIMD8 render target
6898 * writes to cover all the slots.
6899 *
6900 * PS thread must send SIMD render target write messages with
6901 * increasing slot numbers. For example, SIMD16 thread has
6902 * Slot[15:0] and if two SIMD8 render target writes are used, the
6903 * first SIMD8 render target write must send Slot[7:0] and the
6904 * next one must send Slot[15:8]."
6905 *
6906 * In order to make low group instructions come before high group
6907 * instructions (this is required for some render target writes), we
6908 * split from the highest group to lowest.
6909 */
6910 exec_node *const after_inst = inst->next;
6911 for (int i = n - 1; i >= 0; i--) {
6912 /* Emit a copy of the original instruction with the lowered width.
6913 * If the EOT flag was set throw it away except for the last
6914 * instruction to avoid killing the thread prematurely.
6915 */
6916 fs_inst split_inst = *inst;
6917 split_inst.exec_size = lower_width;
6918 split_inst.eot = inst->eot && i == int(n - 1);
6919
6920 /* Select the correct channel enables for the i-th group, then
6921 * transform the sources and destination and emit the lowered
6922 * instruction.
6923 */
6924 const fs_builder lbld = ibld.group(lower_width, i);
6925
6926 for (unsigned j = 0; j < inst->sources; j++)
6927 split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j);
6928
6929 split_inst.dst = emit_zip(lbld.at(block, inst),
6930 lbld.at(block, after_inst), inst);
6931 split_inst.size_written =
6932 split_inst.dst.component_size(lower_width) * dst_size;
6933
6934 lbld.at(block, inst->next).emit(split_inst);
6935 }
6936
6937 inst->remove(block);
6938 progress = true;
6939 }
6940 }
6941
6942 if (progress)
6943 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
6944
6945 return progress;
6946 }
6947
6948 /**
6949 * Transform barycentric vectors into the interleaved form expected by the PLN
6950 * instruction and returned by the Gen7+ PI shared function.
6951 *
6952 * For channels 0-15 in SIMD16 mode they are expected to be laid out as
6953 * follows in the register file:
6954 *
6955 * rN+0: X[0-7]
6956 * rN+1: Y[0-7]
6957 * rN+2: X[8-15]
6958 * rN+3: Y[8-15]
6959 *
6960 * There is no need to handle SIMD32 here -- This is expected to be run after
6961 * SIMD lowering, since SIMD lowering relies on vectors having the standard
6962 * component layout.
6963 */
6964 bool
6965 fs_visitor::lower_barycentrics()
6966 {
6967 const bool has_interleaved_layout = devinfo->has_pln || devinfo->gen >= 7;
6968 bool progress = false;
6969
6970 if (stage != MESA_SHADER_FRAGMENT || !has_interleaved_layout)
6971 return false;
6972
6973 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
6974 if (inst->exec_size < 16)
6975 continue;
6976
6977 const fs_builder ibld(this, block, inst);
6978 const fs_builder ubld = ibld.exec_all().group(8, 0);
6979
6980 switch (inst->opcode) {
6981 case FS_OPCODE_LINTERP : {
6982 assert(inst->exec_size == 16);
6983 const fs_reg tmp = ibld.vgrf(inst->src[0].type, 2);
6984 fs_reg srcs[4];
6985
6986 for (unsigned i = 0; i < ARRAY_SIZE(srcs); i++)
6987 srcs[i] = horiz_offset(offset(inst->src[0], ibld, i % 2),
6988 8 * (i / 2));
6989
6990 ubld.LOAD_PAYLOAD(tmp, srcs, ARRAY_SIZE(srcs), ARRAY_SIZE(srcs));
6991
6992 inst->src[0] = tmp;
6993 progress = true;
6994 break;
6995 }
6996 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
6997 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
6998 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: {
6999 assert(inst->exec_size == 16);
7000 const fs_reg tmp = ibld.vgrf(inst->dst.type, 2);
7001
7002 for (unsigned i = 0; i < 2; i++) {
7003 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
7004 fs_inst *mov = ibld.at(block, inst->next).group(8, g)
7005 .MOV(horiz_offset(offset(inst->dst, ibld, i),
7006 8 * g),
7007 offset(tmp, ubld, 2 * g + i));
7008 mov->predicate = inst->predicate;
7009 mov->predicate_inverse = inst->predicate_inverse;
7010 mov->flag_subreg = inst->flag_subreg;
7011 }
7012 }
7013
7014 inst->dst = tmp;
7015 progress = true;
7016 break;
7017 }
7018 default:
7019 break;
7020 }
7021 }
7022
7023 if (progress)
7024 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
7025
7026 return progress;
7027 }
7028
7029 void
7030 fs_visitor::dump_instructions() const
7031 {
7032 dump_instructions(NULL);
7033 }
7034
7035 void
7036 fs_visitor::dump_instructions(const char *name) const
7037 {
7038 FILE *file = stderr;
7039 if (name && geteuid() != 0) {
7040 file = fopen(name, "w");
7041 if (!file)
7042 file = stderr;
7043 }
7044
7045 if (cfg) {
7046 const register_pressure &rp = regpressure_analysis.require();
7047 unsigned ip = 0, max_pressure = 0;
7048 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
7049 max_pressure = MAX2(max_pressure, rp.regs_live_at_ip[ip]);
7050 fprintf(file, "{%3d} %4d: ", rp.regs_live_at_ip[ip], ip);
7051 dump_instruction(inst, file);
7052 ip++;
7053 }
7054 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
7055 } else {
7056 int ip = 0;
7057 foreach_in_list(backend_instruction, inst, &instructions) {
7058 fprintf(file, "%4d: ", ip++);
7059 dump_instruction(inst, file);
7060 }
7061 }
7062
7063 if (file != stderr) {
7064 fclose(file);
7065 }
7066 }
7067
7068 void
7069 fs_visitor::dump_instruction(const backend_instruction *be_inst) const
7070 {
7071 dump_instruction(be_inst, stderr);
7072 }
7073
7074 void
7075 fs_visitor::dump_instruction(const backend_instruction *be_inst, FILE *file) const
7076 {
7077 const fs_inst *inst = (const fs_inst *)be_inst;
7078
7079 if (inst->predicate) {
7080 fprintf(file, "(%cf%d.%d) ",
7081 inst->predicate_inverse ? '-' : '+',
7082 inst->flag_subreg / 2,
7083 inst->flag_subreg % 2);
7084 }
7085
7086 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
7087 if (inst->saturate)
7088 fprintf(file, ".sat");
7089 if (inst->conditional_mod) {
7090 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
7091 if (!inst->predicate &&
7092 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
7093 inst->opcode != BRW_OPCODE_CSEL &&
7094 inst->opcode != BRW_OPCODE_IF &&
7095 inst->opcode != BRW_OPCODE_WHILE))) {
7096 fprintf(file, ".f%d.%d", inst->flag_subreg / 2,
7097 inst->flag_subreg % 2);
7098 }
7099 }
7100 fprintf(file, "(%d) ", inst->exec_size);
7101
7102 if (inst->mlen) {
7103 fprintf(file, "(mlen: %d) ", inst->mlen);
7104 }
7105
7106 if (inst->ex_mlen) {
7107 fprintf(file, "(ex_mlen: %d) ", inst->ex_mlen);
7108 }
7109
7110 if (inst->eot) {
7111 fprintf(file, "(EOT) ");
7112 }
7113
7114 switch (inst->dst.file) {
7115 case VGRF:
7116 fprintf(file, "vgrf%d", inst->dst.nr);
7117 break;
7118 case FIXED_GRF:
7119 fprintf(file, "g%d", inst->dst.nr);
7120 break;
7121 case MRF:
7122 fprintf(file, "m%d", inst->dst.nr);
7123 break;
7124 case BAD_FILE:
7125 fprintf(file, "(null)");
7126 break;
7127 case UNIFORM:
7128 fprintf(file, "***u%d***", inst->dst.nr);
7129 break;
7130 case ATTR:
7131 fprintf(file, "***attr%d***", inst->dst.nr);
7132 break;
7133 case ARF:
7134 switch (inst->dst.nr) {
7135 case BRW_ARF_NULL:
7136 fprintf(file, "null");
7137 break;
7138 case BRW_ARF_ADDRESS:
7139 fprintf(file, "a0.%d", inst->dst.subnr);
7140 break;
7141 case BRW_ARF_ACCUMULATOR:
7142 fprintf(file, "acc%d", inst->dst.subnr);
7143 break;
7144 case BRW_ARF_FLAG:
7145 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
7146 break;
7147 default:
7148 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
7149 break;
7150 }
7151 break;
7152 case IMM:
7153 unreachable("not reached");
7154 }
7155
7156 if (inst->dst.offset ||
7157 (inst->dst.file == VGRF &&
7158 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
7159 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
7160 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
7161 inst->dst.offset % reg_size);
7162 }
7163
7164 if (inst->dst.stride != 1)
7165 fprintf(file, "<%u>", inst->dst.stride);
7166 fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));
7167
7168 for (int i = 0; i < inst->sources; i++) {
7169 if (inst->src[i].negate)
7170 fprintf(file, "-");
7171 if (inst->src[i].abs)
7172 fprintf(file, "|");
7173 switch (inst->src[i].file) {
7174 case VGRF:
7175 fprintf(file, "vgrf%d", inst->src[i].nr);
7176 break;
7177 case FIXED_GRF:
7178 fprintf(file, "g%d", inst->src[i].nr);
7179 break;
7180 case MRF:
7181 fprintf(file, "***m%d***", inst->src[i].nr);
7182 break;
7183 case ATTR:
7184 fprintf(file, "attr%d", inst->src[i].nr);
7185 break;
7186 case UNIFORM:
7187 fprintf(file, "u%d", inst->src[i].nr);
7188 break;
7189 case BAD_FILE:
7190 fprintf(file, "(null)");
7191 break;
7192 case IMM:
7193 switch (inst->src[i].type) {
7194 case BRW_REGISTER_TYPE_F:
7195 fprintf(file, "%-gf", inst->src[i].f);
7196 break;
7197 case BRW_REGISTER_TYPE_DF:
7198 fprintf(file, "%fdf", inst->src[i].df);
7199 break;
7200 case BRW_REGISTER_TYPE_W:
7201 case BRW_REGISTER_TYPE_D:
7202 fprintf(file, "%dd", inst->src[i].d);
7203 break;
7204 case BRW_REGISTER_TYPE_UW:
7205 case BRW_REGISTER_TYPE_UD:
7206 fprintf(file, "%uu", inst->src[i].ud);
7207 break;
7208 case BRW_REGISTER_TYPE_Q:
7209 fprintf(file, "%" PRId64 "q", inst->src[i].d64);
7210 break;
7211 case BRW_REGISTER_TYPE_UQ:
7212 fprintf(file, "%" PRIu64 "uq", inst->src[i].u64);
7213 break;
7214 case BRW_REGISTER_TYPE_VF:
7215 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
7216 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
7217 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
7218 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
7219 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
7220 break;
7221 case BRW_REGISTER_TYPE_V:
7222 case BRW_REGISTER_TYPE_UV:
7223 fprintf(file, "%08x%s", inst->src[i].ud,
7224 inst->src[i].type == BRW_REGISTER_TYPE_V ? "V" : "UV");
7225 break;
7226 default:
7227 fprintf(file, "???");
7228 break;
7229 }
7230 break;
7231 case ARF:
7232 switch (inst->src[i].nr) {
7233 case BRW_ARF_NULL:
7234 fprintf(file, "null");
7235 break;
7236 case BRW_ARF_ADDRESS:
7237 fprintf(file, "a0.%d", inst->src[i].subnr);
7238 break;
7239 case BRW_ARF_ACCUMULATOR:
7240 fprintf(file, "acc%d", inst->src[i].subnr);
7241 break;
7242 case BRW_ARF_FLAG:
7243 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
7244 break;
7245 default:
7246 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
7247 break;
7248 }
7249 break;
7250 }
7251
7252 if (inst->src[i].offset ||
7253 (inst->src[i].file == VGRF &&
7254 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
7255 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
7256 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
7257 inst->src[i].offset % reg_size);
7258 }
7259
7260 if (inst->src[i].abs)
7261 fprintf(file, "|");
7262
7263 if (inst->src[i].file != IMM) {
7264 unsigned stride;
7265 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
7266 unsigned hstride = inst->src[i].hstride;
7267 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
7268 } else {
7269 stride = inst->src[i].stride;
7270 }
7271 if (stride != 1)
7272 fprintf(file, "<%u>", stride);
7273
7274 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
7275 }
7276
7277 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
7278 fprintf(file, ", ");
7279 }
7280
7281 fprintf(file, " ");
7282
7283 if (inst->force_writemask_all)
7284 fprintf(file, "NoMask ");
7285
7286 if (inst->exec_size != dispatch_width)
7287 fprintf(file, "group%d ", inst->group);
7288
7289 fprintf(file, "\n");
7290 }
7291
7292 void
7293 fs_visitor::setup_fs_payload_gen6()
7294 {
7295 assert(stage == MESA_SHADER_FRAGMENT);
7296 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
7297 const unsigned payload_width = MIN2(16, dispatch_width);
7298 assert(dispatch_width % payload_width == 0);
7299 assert(devinfo->gen >= 6);
7300
7301 prog_data->uses_src_depth = prog_data->uses_src_w =
7302 (nir->info.system_values_read & (1ull << SYSTEM_VALUE_FRAG_COORD)) != 0;
7303
7304 prog_data->uses_sample_mask =
7305 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
7306
7307 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
7308 *
7309 * "MSDISPMODE_PERSAMPLE is required in order to select
7310 * POSOFFSET_SAMPLE"
7311 *
7312 * So we can only really get sample positions if we are doing real
7313 * per-sample dispatch. If we need gl_SamplePosition and we don't have
7314 * persample dispatch, we hard-code it to 0.5.
7315 */
7316 prog_data->uses_pos_offset = prog_data->persample_dispatch &&
7317 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS);
7318
7319 /* R0: PS thread payload header. */
7320 payload.num_regs++;
7321
7322 for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
7323 /* R1: masks, pixel X/Y coordinates. */
7324 payload.subspan_coord_reg[j] = payload.num_regs++;
7325 }
7326
7327 for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
7328 /* R3-26: barycentric interpolation coordinates. These appear in the
7329 * same order that they appear in the brw_barycentric_mode enum. Each
7330 * set of coordinates occupies 2 registers if dispatch width == 8 and 4
7331 * registers if dispatch width == 16. Coordinates only appear if they
7332 * were enabled using the "Barycentric Interpolation Mode" bits in
7333 * WM_STATE.
7334 */
7335 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
7336 if (prog_data->barycentric_interp_modes & (1 << i)) {
7337 payload.barycentric_coord_reg[i][j] = payload.num_regs;
7338 payload.num_regs += payload_width / 4;
7339 }
7340 }
7341
7342 /* R27-28: interpolated depth if uses source depth */
7343 if (prog_data->uses_src_depth) {
7344 payload.source_depth_reg[j] = payload.num_regs;
7345 payload.num_regs += payload_width / 8;
7346 }
7347
7348 /* R29-30: interpolated W set if GEN6_WM_USES_SOURCE_W. */
7349 if (prog_data->uses_src_w) {
7350 payload.source_w_reg[j] = payload.num_regs;
7351 payload.num_regs += payload_width / 8;
7352 }
7353
7354 /* R31: MSAA position offsets. */
7355 if (prog_data->uses_pos_offset) {
7356 payload.sample_pos_reg[j] = payload.num_regs;
7357 payload.num_regs++;
7358 }
7359
7360 /* R32-33: MSAA input coverage mask */
7361 if (prog_data->uses_sample_mask) {
7362 assert(devinfo->gen >= 7);
7363 payload.sample_mask_in_reg[j] = payload.num_regs;
7364 payload.num_regs += payload_width / 8;
7365 }
7366 }
7367
7368 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
7369 source_depth_to_render_target = true;
7370 }
7371 }
7372
7373 void
7374 fs_visitor::setup_vs_payload()
7375 {
7376 /* R0: thread header, R1: urb handles */
7377 payload.num_regs = 2;
7378 }
7379
7380 void
7381 fs_visitor::setup_gs_payload()
7382 {
7383 assert(stage == MESA_SHADER_GEOMETRY);
7384
7385 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
7386 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
7387
7388 /* R0: thread header, R1: output URB handles */
7389 payload.num_regs = 2;
7390
7391 if (gs_prog_data->include_primitive_id) {
7392 /* R2: Primitive ID 0..7 */
7393 payload.num_regs++;
7394 }
7395
7396 /* Always enable VUE handles so we can safely use pull model if needed.
7397 *
7398 * The push model for a GS uses a ton of register space even for trivial
7399 * scenarios with just a few inputs, so just make things easier and a bit
7400 * safer by always having pull model available.
7401 */
7402 gs_prog_data->base.include_vue_handles = true;
7403
7404 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
7405 payload.num_regs += nir->info.gs.vertices_in;
7406
7407 /* Use a maximum of 24 registers for push-model inputs. */
7408 const unsigned max_push_components = 24;
7409
7410 /* If pushing our inputs would take too many registers, reduce the URB read
7411 * length (which is in HWords, or 8 registers), and resort to pulling.
7412 *
7413 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
7414 * have to multiply by VerticesIn to obtain the total storage requirement.
7415 */
7416 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
7417 max_push_components) {
7418 vue_prog_data->urb_read_length =
7419 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
7420 }
7421 }
7422
7423 void
7424 fs_visitor::setup_cs_payload()
7425 {
7426 assert(devinfo->gen >= 7);
7427 payload.num_regs = 1;
7428 }
7429
7430 brw::register_pressure::register_pressure(const fs_visitor *v)
7431 {
7432 const fs_live_variables &live = v->live_analysis.require();
7433 const unsigned num_instructions = v->cfg->num_blocks ?
7434 v->cfg->blocks[v->cfg->num_blocks - 1]->end_ip + 1 : 0;
7435
7436 regs_live_at_ip = new unsigned[num_instructions]();
7437
7438 for (unsigned reg = 0; reg < v->alloc.count; reg++) {
7439 for (int ip = live.vgrf_start[reg]; ip <= live.vgrf_end[reg]; ip++)
7440 regs_live_at_ip[ip] += v->alloc.sizes[reg];
7441 }
7442 }
7443
7444 brw::register_pressure::~register_pressure()
7445 {
7446 delete[] regs_live_at_ip;
7447 }
7448
7449 void
7450 fs_visitor::invalidate_analysis(brw::analysis_dependency_class c)
7451 {
7452 backend_shader::invalidate_analysis(c);
7453 live_analysis.invalidate(c);
7454 regpressure_analysis.invalidate(c);
7455 }
7456
7457 void
7458 fs_visitor::optimize()
7459 {
7460 /* Start by validating the shader we currently have. */
7461 validate();
7462
7463 /* bld is the common builder object pointing at the end of the program we
7464 * used to translate it into i965 IR. For the optimization and lowering
7465 * passes coming next, any code added after the end of the program without
7466 * having explicitly called fs_builder::at() clearly points at a mistake.
7467 * Ideally optimization passes wouldn't be part of the visitor so they
7468 * wouldn't have access to bld at all, but they do, so just in case some
7469 * pass forgets to ask for a location explicitly set it to NULL here to
7470 * make it trip. The dispatch width is initialized to a bogus value to
7471 * make sure that optimizations set the execution controls explicitly to
7472 * match the code they are manipulating instead of relying on the defaults.
7473 */
7474 bld = fs_builder(this, 64);
7475
7476 assign_constant_locations();
7477 lower_constant_loads();
7478
7479 validate();
7480
7481 split_virtual_grfs();
7482 validate();
7483
7484 #define OPT(pass, args...) ({ \
7485 pass_num++; \
7486 bool this_progress = pass(args); \
7487 \
7488 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
7489 char filename[64]; \
7490 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
7491 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
7492 \
7493 backend_shader::dump_instructions(filename); \
7494 } \
7495 \
7496 validate(); \
7497 \
7498 progress = progress || this_progress; \
7499 this_progress; \
7500 })
7501
7502 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
7503 char filename[64];
7504 snprintf(filename, 64, "%s%d-%s-00-00-start",
7505 stage_abbrev, dispatch_width, nir->info.name);
7506
7507 backend_shader::dump_instructions(filename);
7508 }
7509
7510 bool progress = false;
7511 int iteration = 0;
7512 int pass_num = 0;
7513
7514 /* Before anything else, eliminate dead code. The results of some NIR
7515 * instructions may effectively be calculated twice. Once when the
7516 * instruction is encountered, and again when the user of that result is
7517 * encountered. Wipe those away before algebraic optimizations and
7518 * especially copy propagation can mix things up.
7519 */
7520 OPT(dead_code_eliminate);
7521
7522 OPT(remove_extra_rounding_modes);
7523
7524 do {
7525 progress = false;
7526 pass_num = 0;
7527 iteration++;
7528
7529 OPT(remove_duplicate_mrf_writes);
7530
7531 OPT(opt_algebraic);
7532 OPT(opt_cse);
7533 OPT(opt_copy_propagation);
7534 OPT(opt_predicated_break, this);
7535 OPT(opt_cmod_propagation);
7536 OPT(dead_code_eliminate);
7537 OPT(opt_peephole_sel);
7538 OPT(dead_control_flow_eliminate, this);
7539 OPT(opt_register_renaming);
7540 OPT(opt_saturate_propagation);
7541 OPT(register_coalesce);
7542 OPT(compute_to_mrf);
7543 OPT(eliminate_find_live_channel);
7544
7545 OPT(compact_virtual_grfs);
7546 } while (progress);
7547
7548 progress = false;
7549 pass_num = 0;
7550
7551 if (OPT(lower_pack)) {
7552 OPT(register_coalesce);
7553 OPT(dead_code_eliminate);
7554 }
7555
7556 OPT(lower_simd_width);
7557 OPT(lower_barycentrics);
7558
7559 /* After SIMD lowering just in case we had to unroll the EOT send. */
7560 OPT(opt_sampler_eot);
7561
7562 OPT(lower_logical_sends);
7563
7564 /* After logical SEND lowering. */
7565 OPT(fixup_nomask_control_flow);
7566
7567 if (progress) {
7568 OPT(opt_copy_propagation);
7569 /* Only run after logical send lowering because it's easier to implement
7570 * in terms of physical sends.
7571 */
7572 if (OPT(opt_zero_samples))
7573 OPT(opt_copy_propagation);
7574 /* Run after logical send lowering to give it a chance to CSE the
7575 * LOAD_PAYLOAD instructions created to construct the payloads of
7576 * e.g. texturing messages in cases where it wasn't possible to CSE the
7577 * whole logical instruction.
7578 */
7579 OPT(opt_cse);
7580 OPT(register_coalesce);
7581 OPT(compute_to_mrf);
7582 OPT(dead_code_eliminate);
7583 OPT(remove_duplicate_mrf_writes);
7584 OPT(opt_peephole_sel);
7585 }
7586
7587 OPT(opt_redundant_discard_jumps);
7588
7589 if (OPT(lower_load_payload)) {
7590 split_virtual_grfs();
7591
7592 /* Lower 64 bit MOVs generated by payload lowering. */
7593 if (!devinfo->has_64bit_float && !devinfo->has_64bit_int)
7594 OPT(opt_algebraic);
7595
7596 OPT(register_coalesce);
7597 OPT(lower_simd_width);
7598 OPT(compute_to_mrf);
7599 OPT(dead_code_eliminate);
7600 }
7601
7602 OPT(opt_combine_constants);
7603 OPT(lower_integer_multiplication);
7604 OPT(lower_sub_sat);
7605
7606 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
7607 OPT(opt_cmod_propagation);
7608 OPT(opt_cse);
7609 OPT(opt_copy_propagation);
7610 OPT(dead_code_eliminate);
7611 }
7612
7613 if (OPT(lower_regioning)) {
7614 OPT(opt_copy_propagation);
7615 OPT(dead_code_eliminate);
7616 OPT(lower_simd_width);
7617 }
7618
7619 OPT(fixup_sends_duplicate_payload);
7620
7621 lower_uniform_pull_constant_loads();
7622
7623 validate();
7624 }
7625
7626 /**
7627 * From the Skylake PRM Vol. 2a docs for sends:
7628 *
7629 * "It is required that the second block of GRFs does not overlap with the
7630 * first block."
7631 *
7632 * There are plenty of cases where we may accidentally violate this due to
7633 * having, for instance, both sources be the constant 0. This little pass
7634 * just adds a new vgrf for the second payload and copies it over.
7635 */
7636 bool
7637 fs_visitor::fixup_sends_duplicate_payload()
7638 {
7639 bool progress = false;
7640
7641 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
7642 if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 &&
7643 regions_overlap(inst->src[2], inst->mlen * REG_SIZE,
7644 inst->src[3], inst->ex_mlen * REG_SIZE)) {
7645 fs_reg tmp = fs_reg(VGRF, alloc.allocate(inst->ex_mlen),
7646 BRW_REGISTER_TYPE_UD);
7647 /* Sadly, we've lost all notion of channels and bit sizes at this
7648 * point. Just WE_all it.
7649 */
7650 const fs_builder ibld = bld.at(block, inst).exec_all().group(16, 0);
7651 fs_reg copy_src = retype(inst->src[3], BRW_REGISTER_TYPE_UD);
7652 fs_reg copy_dst = tmp;
7653 for (unsigned i = 0; i < inst->ex_mlen; i += 2) {
7654 if (inst->ex_mlen == i + 1) {
7655 /* Only one register left; do SIMD8 */
7656 ibld.group(8, 0).MOV(copy_dst, copy_src);
7657 } else {
7658 ibld.MOV(copy_dst, copy_src);
7659 }
7660 copy_src = offset(copy_src, ibld, 1);
7661 copy_dst = offset(copy_dst, ibld, 1);
7662 }
7663 inst->src[3] = tmp;
7664 progress = true;
7665 }
7666 }
7667
7668 if (progress)
7669 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
7670
7671 return progress;
7672 }
7673
7674 /**
7675 * Three source instruction must have a GRF/MRF destination register.
7676 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
7677 */
7678 void
7679 fs_visitor::fixup_3src_null_dest()
7680 {
7681 bool progress = false;
7682
7683 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
7684 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
7685 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
7686 inst->dst.type);
7687 progress = true;
7688 }
7689 }
7690
7691 if (progress)
7692 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
7693 DEPENDENCY_VARIABLES);
7694 }
7695
7696 /**
7697 * Find the first instruction in the program that might start a region of
7698 * divergent control flow due to a HALT jump. There is no
7699 * find_halt_control_flow_region_end(), the region of divergence extends until
7700 * the only FS_OPCODE_PLACEHOLDER_HALT in the program.
7701 */
7702 static const fs_inst *
7703 find_halt_control_flow_region_start(const fs_visitor *v)
7704 {
7705 if (brw_wm_prog_data(v->prog_data)->uses_kill) {
7706 foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
7707 if (inst->opcode == FS_OPCODE_DISCARD_JUMP ||
7708 inst->opcode == FS_OPCODE_PLACEHOLDER_HALT)
7709 return inst;
7710 }
7711 }
7712
7713 return NULL;
7714 }
7715
7716 /**
7717 * Work around the Gen12 hardware bug filed as GEN:BUG:1407528679. EU fusion
7718 * can cause a BB to be executed with all channels disabled, which will lead
7719 * to the execution of any NoMask instructions in it, even though any
7720 * execution-masked instructions will be correctly shot down. This may break
7721 * assumptions of some NoMask SEND messages whose descriptor depends on data
7722 * generated by live invocations of the shader.
7723 *
7724 * This avoids the problem by predicating certain instructions on an ANY
7725 * horizontal predicate that makes sure that their execution is omitted when
7726 * all channels of the program are disabled.
7727 */
7728 bool
7729 fs_visitor::fixup_nomask_control_flow()
7730 {
7731 if (devinfo->gen != 12)
7732 return false;
7733
7734 const brw_predicate pred = dispatch_width > 16 ? BRW_PREDICATE_ALIGN1_ANY32H :
7735 dispatch_width > 8 ? BRW_PREDICATE_ALIGN1_ANY16H :
7736 BRW_PREDICATE_ALIGN1_ANY8H;
7737 const fs_inst *halt_start = find_halt_control_flow_region_start(this);
7738 unsigned depth = 0;
7739 bool progress = false;
7740
7741 const fs_live_variables &live_vars = live_analysis.require();
7742
7743 /* Scan the program backwards in order to be able to easily determine
7744 * whether the flag register is live at any point.
7745 */
7746 foreach_block_reverse_safe(block, cfg) {
7747 BITSET_WORD flag_liveout = live_vars.block_data[block->num]
7748 .flag_liveout[0];
7749 STATIC_ASSERT(ARRAY_SIZE(live_vars.block_data[0].flag_liveout) == 1);
7750
7751 foreach_inst_in_block_reverse_safe(fs_inst, inst, block) {
7752 if (!inst->predicate && inst->exec_size >= 8)
7753 flag_liveout &= ~inst->flags_written();
7754
7755 switch (inst->opcode) {
7756 case BRW_OPCODE_DO:
7757 case BRW_OPCODE_IF:
7758 /* Note that this doesn't handle FS_OPCODE_DISCARD_JUMP since only
7759 * the first one in the program closes the region of divergent
7760 * control flow due to any HALT instructions -- Instead this is
7761 * handled with the halt_start check below.
7762 */
7763 depth--;
7764 break;
7765
7766 case BRW_OPCODE_WHILE:
7767 case BRW_OPCODE_ENDIF:
7768 case FS_OPCODE_PLACEHOLDER_HALT:
7769 depth++;
7770 break;
7771
7772 default:
7773 /* Note that the vast majority of NoMask SEND instructions in the
7774 * program are harmless while executed in a block with all
7775 * channels disabled, since any instructions with side effects we
7776 * could hit here should be execution-masked.
7777 *
7778 * The main concern is NoMask SEND instructions where the message
7779 * descriptor or header depends on data generated by live
7780 * invocations of the shader (RESINFO and
7781 * FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD with a dynamically
7782 * computed surface index seem to be the only examples right now
7783 * where this could easily lead to GPU hangs). Unfortunately we
7784 * have no straightforward way to detect that currently, so just
7785 * predicate any NoMask SEND instructions we find under control
7786 * flow.
7787 *
7788 * If this proves to have a measurable performance impact it can
7789 * be easily extended with a whitelist of messages we know we can
7790 * safely omit the predication for.
7791 */
7792 if (depth && inst->force_writemask_all &&
7793 is_send(inst) && !inst->predicate) {
7794 /* We need to load the execution mask into the flag register by
7795 * using a builder with channel group matching the whole shader
7796 * (rather than the default which is derived from the original
7797 * instruction), in order to avoid getting a right-shifted
7798 * value.
7799 */
7800 const fs_builder ubld = fs_builder(this, block, inst)
7801 .exec_all().group(dispatch_width, 0);
7802 const fs_reg flag = retype(brw_flag_reg(0, 0),
7803 BRW_REGISTER_TYPE_UD);
7804
7805 /* Due to the lack of flag register allocation we need to save
7806 * and restore the flag register if it's live.
7807 */
7808 const bool save_flag = flag_liveout &
7809 flag_mask(flag, dispatch_width / 8);
7810 const fs_reg tmp = ubld.group(1, 0).vgrf(flag.type);
7811
7812 if (save_flag)
7813 ubld.group(1, 0).MOV(tmp, flag);
7814
7815 ubld.emit(FS_OPCODE_LOAD_LIVE_CHANNELS);
7816
7817 set_predicate(pred, inst);
7818 inst->flag_subreg = 0;
7819
7820 if (save_flag)
7821 ubld.group(1, 0).at(block, inst->next).MOV(flag, tmp);
7822
7823 progress = true;
7824 }
7825 break;
7826 }
7827
7828 if (inst == halt_start)
7829 depth--;
7830
7831 flag_liveout |= inst->flags_read(devinfo);
7832 }
7833 }
7834
7835 if (progress)
7836 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
7837
7838 return progress;
7839 }
7840
7841 void
7842 fs_visitor::allocate_registers(unsigned min_dispatch_width, bool allow_spilling)
7843 {
7844 bool allocated;
7845
7846 static const enum instruction_scheduler_mode pre_modes[] = {
7847 SCHEDULE_PRE,
7848 SCHEDULE_PRE_NON_LIFO,
7849 SCHEDULE_PRE_LIFO,
7850 };
7851
7852 static const char *scheduler_mode_name[] = {
7853 "top-down",
7854 "non-lifo",
7855 "lifo"
7856 };
7857
7858 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
7859
7860 /* Try each scheduling heuristic to see if it can successfully register
7861 * allocate without spilling. They should be ordered by decreasing
7862 * performance but increasing likelihood of allocating.
7863 */
7864 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
7865 schedule_instructions(pre_modes[i]);
7866 this->shader_stats.scheduler_mode = scheduler_mode_name[i];
7867
7868 if (0) {
7869 assign_regs_trivial();
7870 allocated = true;
7871 break;
7872 }
7873
7874 /* Scheduling may create additional opportunities for CMOD propagation,
7875 * so let's do it again. If CMOD propagation made any progress,
7876 * elminate dead code one more time.
7877 */
7878 bool progress = false;
7879 const int iteration = 99;
7880 int pass_num = 0;
7881
7882 if (OPT(opt_cmod_propagation)) {
7883 /* dead_code_eliminate "undoes" the fixing done by
7884 * fixup_3src_null_dest, so we have to do it again if
7885 * dead_code_eliminiate makes any progress.
7886 */
7887 if (OPT(dead_code_eliminate))
7888 fixup_3src_null_dest();
7889 }
7890
7891
7892 /* We only allow spilling for the last schedule mode and only if the
7893 * allow_spilling parameter and dispatch width work out ok.
7894 */
7895 bool can_spill = allow_spilling &&
7896 (i == ARRAY_SIZE(pre_modes) - 1) &&
7897 dispatch_width == min_dispatch_width;
7898
7899 /* We should only spill registers on the last scheduling. */
7900 assert(!spilled_any_registers);
7901
7902 allocated = assign_regs(can_spill, spill_all);
7903 if (allocated)
7904 break;
7905 }
7906
7907 if (!allocated) {
7908 if (!allow_spilling)
7909 fail("Failure to register allocate and spilling is not allowed.");
7910
7911 /* We assume that any spilling is worse than just dropping back to
7912 * SIMD8. There's probably actually some intermediate point where
7913 * SIMD16 with a couple of spills is still better.
7914 */
7915 if (dispatch_width > min_dispatch_width) {
7916 fail("Failure to register allocate. Reduce number of "
7917 "live scalar values to avoid this.");
7918 }
7919
7920 /* If we failed to allocate, we must have a reason */
7921 assert(failed);
7922 } else if (spilled_any_registers) {
7923 compiler->shader_perf_log(log_data,
7924 "%s shader triggered register spilling. "
7925 "Try reducing the number of live scalar "
7926 "values to improve performance.\n",
7927 stage_name);
7928 }
7929
7930 /* This must come after all optimization and register allocation, since
7931 * it inserts dead code that happens to have side effects, and it does
7932 * so based on the actual physical registers in use.
7933 */
7934 insert_gen4_send_dependency_workarounds();
7935
7936 if (failed)
7937 return;
7938
7939 opt_bank_conflicts();
7940
7941 schedule_instructions(SCHEDULE_POST);
7942
7943 if (last_scratch > 0) {
7944 ASSERTED unsigned max_scratch_size = 2 * 1024 * 1024;
7945
7946 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
7947
7948 if (stage == MESA_SHADER_COMPUTE) {
7949 if (devinfo->is_haswell) {
7950 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
7951 * field documentation, Haswell supports a minimum of 2kB of
7952 * scratch space for compute shaders, unlike every other stage
7953 * and platform.
7954 */
7955 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
7956 } else if (devinfo->gen <= 7) {
7957 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
7958 * field documentation, platforms prior to Haswell measure scratch
7959 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
7960 */
7961 prog_data->total_scratch = ALIGN(last_scratch, 1024);
7962 max_scratch_size = 12 * 1024;
7963 }
7964 }
7965
7966 /* We currently only support up to 2MB of scratch space. If we
7967 * need to support more eventually, the documentation suggests
7968 * that we could allocate a larger buffer, and partition it out
7969 * ourselves. We'd just have to undo the hardware's address
7970 * calculation by subtracting (FFTID * Per Thread Scratch Space)
7971 * and then add FFTID * (Larger Per Thread Scratch Space).
7972 *
7973 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
7974 * Thread Group Tracking > Local Memory/Scratch Space.
7975 */
7976 assert(prog_data->total_scratch < max_scratch_size);
7977 }
7978
7979 lower_scoreboard();
7980 }
7981
7982 bool
7983 fs_visitor::run_vs()
7984 {
7985 assert(stage == MESA_SHADER_VERTEX);
7986
7987 setup_vs_payload();
7988
7989 if (shader_time_index >= 0)
7990 emit_shader_time_begin();
7991
7992 emit_nir_code();
7993
7994 if (failed)
7995 return false;
7996
7997 emit_urb_writes();
7998
7999 if (shader_time_index >= 0)
8000 emit_shader_time_end();
8001
8002 calculate_cfg();
8003
8004 optimize();
8005
8006 assign_curb_setup();
8007 assign_vs_urb_setup();
8008
8009 fixup_3src_null_dest();
8010 allocate_registers(8, true);
8011
8012 return !failed;
8013 }
8014
8015 void
8016 fs_visitor::set_tcs_invocation_id()
8017 {
8018 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
8019 struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
8020
8021 const unsigned instance_id_mask =
8022 devinfo->gen >= 11 ? INTEL_MASK(22, 16) : INTEL_MASK(23, 17);
8023 const unsigned instance_id_shift =
8024 devinfo->gen >= 11 ? 16 : 17;
8025
8026 /* Get instance number from g0.2 bits 22:16 or 23:17 */
8027 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
8028 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
8029 brw_imm_ud(instance_id_mask));
8030
8031 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
8032
8033 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH) {
8034 /* gl_InvocationID is just the thread number */
8035 bld.SHR(invocation_id, t, brw_imm_ud(instance_id_shift));
8036 return;
8037 }
8038
8039 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH);
8040
8041 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
8042 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
8043 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
8044 bld.MOV(channels_ud, channels_uw);
8045
8046 if (tcs_prog_data->instances == 1) {
8047 invocation_id = channels_ud;
8048 } else {
8049 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
8050 bld.SHR(instance_times_8, t, brw_imm_ud(instance_id_shift - 3));
8051 bld.ADD(invocation_id, instance_times_8, channels_ud);
8052 }
8053 }
8054
8055 bool
8056 fs_visitor::run_tcs()
8057 {
8058 assert(stage == MESA_SHADER_TESS_CTRL);
8059
8060 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
8061 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
8062 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
8063
8064 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH ||
8065 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
8066
8067 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
8068 /* r1-r4 contain the ICP handles. */
8069 payload.num_regs = 5;
8070 } else {
8071 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
8072 assert(tcs_key->input_vertices > 0);
8073 /* r1 contains output handles, r2 may contain primitive ID, then the
8074 * ICP handles occupy the next 1-32 registers.
8075 */
8076 payload.num_regs = 2 + tcs_prog_data->include_primitive_id +
8077 tcs_key->input_vertices;
8078 }
8079
8080 if (shader_time_index >= 0)
8081 emit_shader_time_begin();
8082
8083 /* Initialize gl_InvocationID */
8084 set_tcs_invocation_id();
8085
8086 const bool fix_dispatch_mask =
8087 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH &&
8088 (nir->info.tess.tcs_vertices_out % 8) != 0;
8089
8090 /* Fix the disptach mask */
8091 if (fix_dispatch_mask) {
8092 bld.CMP(bld.null_reg_ud(), invocation_id,
8093 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
8094 bld.IF(BRW_PREDICATE_NORMAL);
8095 }
8096
8097 emit_nir_code();
8098
8099 if (fix_dispatch_mask) {
8100 bld.emit(BRW_OPCODE_ENDIF);
8101 }
8102
8103 /* Emit EOT write; set TR DS Cache bit */
8104 fs_reg srcs[3] = {
8105 fs_reg(get_tcs_output_urb_handle()),
8106 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
8107 fs_reg(brw_imm_ud(0)),
8108 };
8109 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
8110 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
8111
8112 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
8113 bld.null_reg_ud(), payload);
8114 inst->mlen = 3;
8115 inst->eot = true;
8116
8117 if (shader_time_index >= 0)
8118 emit_shader_time_end();
8119
8120 if (failed)
8121 return false;
8122
8123 calculate_cfg();
8124
8125 optimize();
8126
8127 assign_curb_setup();
8128 assign_tcs_urb_setup();
8129
8130 fixup_3src_null_dest();
8131 allocate_registers(8, true);
8132
8133 return !failed;
8134 }
8135
8136 bool
8137 fs_visitor::run_tes()
8138 {
8139 assert(stage == MESA_SHADER_TESS_EVAL);
8140
8141 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
8142 payload.num_regs = 5;
8143
8144 if (shader_time_index >= 0)
8145 emit_shader_time_begin();
8146
8147 emit_nir_code();
8148
8149 if (failed)
8150 return false;
8151
8152 emit_urb_writes();
8153
8154 if (shader_time_index >= 0)
8155 emit_shader_time_end();
8156
8157 calculate_cfg();
8158
8159 optimize();
8160
8161 assign_curb_setup();
8162 assign_tes_urb_setup();
8163
8164 fixup_3src_null_dest();
8165 allocate_registers(8, true);
8166
8167 return !failed;
8168 }
8169
8170 bool
8171 fs_visitor::run_gs()
8172 {
8173 assert(stage == MESA_SHADER_GEOMETRY);
8174
8175 setup_gs_payload();
8176
8177 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
8178
8179 if (gs_compile->control_data_header_size_bits > 0) {
8180 /* Create a VGRF to store accumulated control data bits. */
8181 this->control_data_bits = vgrf(glsl_type::uint_type);
8182
8183 /* If we're outputting more than 32 control data bits, then EmitVertex()
8184 * will set control_data_bits to 0 after emitting the first vertex.
8185 * Otherwise, we need to initialize it to 0 here.
8186 */
8187 if (gs_compile->control_data_header_size_bits <= 32) {
8188 const fs_builder abld = bld.annotate("initialize control data bits");
8189 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
8190 }
8191 }
8192
8193 if (shader_time_index >= 0)
8194 emit_shader_time_begin();
8195
8196 emit_nir_code();
8197
8198 emit_gs_thread_end();
8199
8200 if (shader_time_index >= 0)
8201 emit_shader_time_end();
8202
8203 if (failed)
8204 return false;
8205
8206 calculate_cfg();
8207
8208 optimize();
8209
8210 assign_curb_setup();
8211 assign_gs_urb_setup();
8212
8213 fixup_3src_null_dest();
8214 allocate_registers(8, true);
8215
8216 return !failed;
8217 }
8218
8219 /* From the SKL PRM, Volume 16, Workarounds:
8220 *
8221 * 0877 3D Pixel Shader Hang possible when pixel shader dispatched with
8222 * only header phases (R0-R2)
8223 *
8224 * WA: Enable a non-header phase (e.g. push constant) when dispatch would
8225 * have been header only.
8226 *
8227 * Instead of enabling push constants one can alternatively enable one of the
8228 * inputs. Here one simply chooses "layer" which shouldn't impose much
8229 * overhead.
8230 */
8231 static void
8232 gen9_ps_header_only_workaround(struct brw_wm_prog_data *wm_prog_data)
8233 {
8234 if (wm_prog_data->num_varying_inputs)
8235 return;
8236
8237 if (wm_prog_data->base.curb_read_length)
8238 return;
8239
8240 wm_prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;
8241 wm_prog_data->num_varying_inputs = 1;
8242
8243 brw_compute_urb_setup_index(wm_prog_data);
8244 }
8245
8246 bool
8247 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
8248 {
8249 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
8250 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
8251
8252 assert(stage == MESA_SHADER_FRAGMENT);
8253
8254 if (devinfo->gen >= 6)
8255 setup_fs_payload_gen6();
8256 else
8257 setup_fs_payload_gen4();
8258
8259 if (0) {
8260 emit_dummy_fs();
8261 } else if (do_rep_send) {
8262 assert(dispatch_width == 16);
8263 emit_repclear_shader();
8264 } else {
8265 if (shader_time_index >= 0)
8266 emit_shader_time_begin();
8267
8268 if (nir->info.inputs_read > 0 ||
8269 (nir->info.system_values_read & (1ull << SYSTEM_VALUE_FRAG_COORD)) ||
8270 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
8271 if (devinfo->gen < 6)
8272 emit_interpolation_setup_gen4();
8273 else
8274 emit_interpolation_setup_gen6();
8275 }
8276
8277 /* We handle discards by keeping track of the still-live pixels in f0.1.
8278 * Initialize it with the dispatched pixels.
8279 */
8280 if (wm_prog_data->uses_kill) {
8281 const unsigned lower_width = MIN2(dispatch_width, 16);
8282 for (unsigned i = 0; i < dispatch_width / lower_width; i++) {
8283 const fs_reg dispatch_mask =
8284 devinfo->gen >= 6 ? brw_vec1_grf((i ? 2 : 1), 7) :
8285 brw_vec1_grf(0, 0);
8286 bld.exec_all().group(1, 0)
8287 .MOV(sample_mask_reg(bld.group(lower_width, i)),
8288 retype(dispatch_mask, BRW_REGISTER_TYPE_UW));
8289 }
8290 }
8291
8292 emit_nir_code();
8293
8294 if (failed)
8295 return false;
8296
8297 if (wm_prog_data->uses_kill)
8298 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
8299
8300 if (wm_key->alpha_test_func)
8301 emit_alpha_test();
8302
8303 emit_fb_writes();
8304
8305 if (shader_time_index >= 0)
8306 emit_shader_time_end();
8307
8308 calculate_cfg();
8309
8310 optimize();
8311
8312 assign_curb_setup();
8313
8314 if (devinfo->gen >= 9)
8315 gen9_ps_header_only_workaround(wm_prog_data);
8316
8317 assign_urb_setup();
8318
8319 fixup_3src_null_dest();
8320 allocate_registers(8, allow_spilling);
8321
8322 if (failed)
8323 return false;
8324 }
8325
8326 return !failed;
8327 }
8328
8329 bool
8330 fs_visitor::run_cs(unsigned min_dispatch_width)
8331 {
8332 assert(stage == MESA_SHADER_COMPUTE);
8333 assert(dispatch_width >= min_dispatch_width);
8334
8335 setup_cs_payload();
8336
8337 if (shader_time_index >= 0)
8338 emit_shader_time_begin();
8339
8340 if (devinfo->is_haswell && prog_data->total_shared > 0) {
8341 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
8342 const fs_builder abld = bld.exec_all().group(1, 0);
8343 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
8344 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
8345 }
8346
8347 emit_nir_code();
8348
8349 if (failed)
8350 return false;
8351
8352 emit_cs_terminate();
8353
8354 if (shader_time_index >= 0)
8355 emit_shader_time_end();
8356
8357 calculate_cfg();
8358
8359 optimize();
8360
8361 assign_curb_setup();
8362
8363 fixup_3src_null_dest();
8364 allocate_registers(min_dispatch_width, true);
8365
8366 if (failed)
8367 return false;
8368
8369 return !failed;
8370 }
8371
8372 static bool
8373 is_used_in_not_interp_frag_coord(nir_ssa_def *def)
8374 {
8375 nir_foreach_use(src, def) {
8376 if (src->parent_instr->type != nir_instr_type_intrinsic)
8377 return true;
8378
8379 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(src->parent_instr);
8380 if (intrin->intrinsic != nir_intrinsic_load_frag_coord)
8381 return true;
8382 }
8383
8384 nir_foreach_if_use(src, def)
8385 return true;
8386
8387 return false;
8388 }
8389
8390 /**
8391 * Return a bitfield where bit n is set if barycentric interpolation mode n
8392 * (see enum brw_barycentric_mode) is needed by the fragment shader.
8393 *
8394 * We examine the load_barycentric intrinsics rather than looking at input
8395 * variables so that we catch interpolateAtCentroid() messages too, which
8396 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
8397 */
8398 static unsigned
8399 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
8400 const nir_shader *shader)
8401 {
8402 unsigned barycentric_interp_modes = 0;
8403
8404 nir_foreach_function(f, shader) {
8405 if (!f->impl)
8406 continue;
8407
8408 nir_foreach_block(block, f->impl) {
8409 nir_foreach_instr(instr, block) {
8410 if (instr->type != nir_instr_type_intrinsic)
8411 continue;
8412
8413 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
8414 switch (intrin->intrinsic) {
8415 case nir_intrinsic_load_barycentric_pixel:
8416 case nir_intrinsic_load_barycentric_centroid:
8417 case nir_intrinsic_load_barycentric_sample:
8418 break;
8419 default:
8420 continue;
8421 }
8422
8423 /* Ignore WPOS; it doesn't require interpolation. */
8424 assert(intrin->dest.is_ssa);
8425 if (!is_used_in_not_interp_frag_coord(&intrin->dest.ssa))
8426 continue;
8427
8428 enum glsl_interp_mode interp = (enum glsl_interp_mode)
8429 nir_intrinsic_interp_mode(intrin);
8430 nir_intrinsic_op bary_op = intrin->intrinsic;
8431 enum brw_barycentric_mode bary =
8432 brw_barycentric_mode(interp, bary_op);
8433
8434 barycentric_interp_modes |= 1 << bary;
8435
8436 if (devinfo->needs_unlit_centroid_workaround &&
8437 bary_op == nir_intrinsic_load_barycentric_centroid)
8438 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
8439 }
8440 }
8441 }
8442
8443 return barycentric_interp_modes;
8444 }
8445
8446 static void
8447 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
8448 const nir_shader *shader)
8449 {
8450 prog_data->flat_inputs = 0;
8451
8452 nir_foreach_variable(var, &shader->inputs) {
8453 unsigned slots = glsl_count_attribute_slots(var->type, false);
8454 for (unsigned s = 0; s < slots; s++) {
8455 int input_index = prog_data->urb_setup[var->data.location + s];
8456
8457 if (input_index < 0)
8458 continue;
8459
8460 /* flat shading */
8461 if (var->data.interpolation == INTERP_MODE_FLAT)
8462 prog_data->flat_inputs |= 1 << input_index;
8463 }
8464 }
8465 }
8466
8467 static uint8_t
8468 computed_depth_mode(const nir_shader *shader)
8469 {
8470 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
8471 switch (shader->info.fs.depth_layout) {
8472 case FRAG_DEPTH_LAYOUT_NONE:
8473 case FRAG_DEPTH_LAYOUT_ANY:
8474 return BRW_PSCDEPTH_ON;
8475 case FRAG_DEPTH_LAYOUT_GREATER:
8476 return BRW_PSCDEPTH_ON_GE;
8477 case FRAG_DEPTH_LAYOUT_LESS:
8478 return BRW_PSCDEPTH_ON_LE;
8479 case FRAG_DEPTH_LAYOUT_UNCHANGED:
8480 return BRW_PSCDEPTH_OFF;
8481 }
8482 }
8483 return BRW_PSCDEPTH_OFF;
8484 }
8485
8486 /**
8487 * Move load_interpolated_input with simple (payload-based) barycentric modes
8488 * to the top of the program so we don't emit multiple PLNs for the same input.
8489 *
8490 * This works around CSE not being able to handle non-dominating cases
8491 * such as:
8492 *
8493 * if (...) {
8494 * interpolate input
8495 * } else {
8496 * interpolate the same exact input
8497 * }
8498 *
8499 * This should be replaced by global value numbering someday.
8500 */
8501 static bool
8502 move_interpolation_to_top(nir_shader *nir)
8503 {
8504 bool progress = false;
8505
8506 nir_foreach_function(f, nir) {
8507 if (!f->impl)
8508 continue;
8509
8510 nir_block *top = nir_start_block(f->impl);
8511 exec_node *cursor_node = NULL;
8512
8513 nir_foreach_block(block, f->impl) {
8514 if (block == top)
8515 continue;
8516
8517 nir_foreach_instr_safe(instr, block) {
8518 if (instr->type != nir_instr_type_intrinsic)
8519 continue;
8520
8521 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
8522 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
8523 continue;
8524 nir_intrinsic_instr *bary_intrinsic =
8525 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
8526 nir_intrinsic_op op = bary_intrinsic->intrinsic;
8527
8528 /* Leave interpolateAtSample/Offset() where they are. */
8529 if (op == nir_intrinsic_load_barycentric_at_sample ||
8530 op == nir_intrinsic_load_barycentric_at_offset)
8531 continue;
8532
8533 nir_instr *move[3] = {
8534 &bary_intrinsic->instr,
8535 intrin->src[1].ssa->parent_instr,
8536 instr
8537 };
8538
8539 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
8540 if (move[i]->block != top) {
8541 move[i]->block = top;
8542 exec_node_remove(&move[i]->node);
8543 if (cursor_node) {
8544 exec_node_insert_after(cursor_node, &move[i]->node);
8545 } else {
8546 exec_list_push_head(&top->instr_list, &move[i]->node);
8547 }
8548 cursor_node = &move[i]->node;
8549 progress = true;
8550 }
8551 }
8552 }
8553 }
8554 nir_metadata_preserve(f->impl, (nir_metadata)
8555 ((unsigned) nir_metadata_block_index |
8556 (unsigned) nir_metadata_dominance));
8557 }
8558
8559 return progress;
8560 }
8561
8562 /**
8563 * Demote per-sample barycentric intrinsics to centroid.
8564 *
8565 * Useful when rendering to a non-multisampled buffer.
8566 */
8567 static bool
8568 demote_sample_qualifiers(nir_shader *nir)
8569 {
8570 bool progress = true;
8571
8572 nir_foreach_function(f, nir) {
8573 if (!f->impl)
8574 continue;
8575
8576 nir_builder b;
8577 nir_builder_init(&b, f->impl);
8578
8579 nir_foreach_block(block, f->impl) {
8580 nir_foreach_instr_safe(instr, block) {
8581 if (instr->type != nir_instr_type_intrinsic)
8582 continue;
8583
8584 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
8585 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
8586 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
8587 continue;
8588
8589 b.cursor = nir_before_instr(instr);
8590 nir_ssa_def *centroid =
8591 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
8592 nir_intrinsic_interp_mode(intrin));
8593 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
8594 nir_src_for_ssa(centroid));
8595 nir_instr_remove(instr);
8596 progress = true;
8597 }
8598 }
8599
8600 nir_metadata_preserve(f->impl, (nir_metadata)
8601 ((unsigned) nir_metadata_block_index |
8602 (unsigned) nir_metadata_dominance));
8603 }
8604
8605 return progress;
8606 }
8607
8608 /**
8609 * Pre-gen6, the register file of the EUs was shared between threads,
8610 * and each thread used some subset allocated on a 16-register block
8611 * granularity. The unit states wanted these block counts.
8612 */
8613 static inline int
8614 brw_register_blocks(int reg_count)
8615 {
8616 return ALIGN(reg_count, 16) / 16 - 1;
8617 }
8618
8619 const unsigned *
8620 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
8621 void *mem_ctx,
8622 const struct brw_wm_prog_key *key,
8623 struct brw_wm_prog_data *prog_data,
8624 nir_shader *shader,
8625 int shader_time_index8, int shader_time_index16,
8626 int shader_time_index32, bool allow_spilling,
8627 bool use_rep_send, struct brw_vue_map *vue_map,
8628 struct brw_compile_stats *stats,
8629 char **error_str)
8630 {
8631 const struct gen_device_info *devinfo = compiler->devinfo;
8632
8633 unsigned max_subgroup_size = unlikely(INTEL_DEBUG & DEBUG_DO32) ? 32 : 16;
8634
8635 brw_nir_apply_key(shader, compiler, &key->base, max_subgroup_size, true);
8636 brw_nir_lower_fs_inputs(shader, devinfo, key);
8637 brw_nir_lower_fs_outputs(shader);
8638
8639 if (devinfo->gen < 6)
8640 brw_setup_vue_interpolation(vue_map, shader, prog_data);
8641
8642 /* From the SKL PRM, Volume 7, "Alpha Coverage":
8643 * "If Pixel Shader outputs oMask, AlphaToCoverage is disabled in
8644 * hardware, regardless of the state setting for this feature."
8645 */
8646 if (devinfo->gen > 6 && key->alpha_to_coverage) {
8647 /* Run constant fold optimization in order to get the correct source
8648 * offset to determine render target 0 store instruction in
8649 * emit_alpha_to_coverage pass.
8650 */
8651 NIR_PASS_V(shader, nir_opt_constant_folding);
8652 NIR_PASS_V(shader, brw_nir_lower_alpha_to_coverage);
8653 }
8654
8655 if (!key->multisample_fbo)
8656 NIR_PASS_V(shader, demote_sample_qualifiers);
8657 NIR_PASS_V(shader, move_interpolation_to_top);
8658 brw_postprocess_nir(shader, compiler, true);
8659
8660 /* key->alpha_test_func means simulating alpha testing via discards,
8661 * so the shader definitely kills pixels.
8662 */
8663 prog_data->uses_kill = shader->info.fs.uses_discard ||
8664 key->alpha_test_func;
8665 prog_data->uses_omask = key->multisample_fbo &&
8666 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
8667 prog_data->computed_depth_mode = computed_depth_mode(shader);
8668 prog_data->computed_stencil =
8669 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
8670
8671 prog_data->persample_dispatch =
8672 key->multisample_fbo &&
8673 (key->persample_interp ||
8674 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
8675 SYSTEM_BIT_SAMPLE_POS)) ||
8676 shader->info.fs.uses_sample_qualifier ||
8677 shader->info.outputs_read);
8678
8679 prog_data->has_render_target_reads = shader->info.outputs_read != 0ull;
8680
8681 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
8682 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
8683 prog_data->inner_coverage = shader->info.fs.inner_coverage;
8684
8685 prog_data->barycentric_interp_modes =
8686 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
8687
8688 calculate_urb_setup(devinfo, key, prog_data, shader);
8689 brw_compute_flat_inputs(prog_data, shader);
8690
8691 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL, *simd32_cfg = NULL;
8692 struct shader_stats v8_shader_stats, v16_shader_stats, v32_shader_stats;
8693
8694 fs_visitor v8(compiler, log_data, mem_ctx, &key->base,
8695 &prog_data->base, shader, 8,
8696 shader_time_index8);
8697 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
8698 if (error_str)
8699 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
8700
8701 return NULL;
8702 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
8703 simd8_cfg = v8.cfg;
8704 v8_shader_stats = v8.shader_stats;
8705 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
8706 prog_data->reg_blocks_8 = brw_register_blocks(v8.grf_used);
8707 }
8708
8709 /* Limit dispatch width to simd8 with dual source blending on gen8.
8710 * See: https://gitlab.freedesktop.org/mesa/mesa/issues/1917
8711 */
8712 if (devinfo->gen == 8 && prog_data->dual_src_blend &&
8713 !(INTEL_DEBUG & DEBUG_NO8)) {
8714 assert(!use_rep_send);
8715 v8.limit_dispatch_width(8, "gen8 workaround: "
8716 "using SIMD8 when dual src blending.\n");
8717 }
8718
8719 if (v8.max_dispatch_width >= 16 &&
8720 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
8721 /* Try a SIMD16 compile */
8722 fs_visitor v16(compiler, log_data, mem_ctx, &key->base,
8723 &prog_data->base, shader, 16,
8724 shader_time_index16);
8725 v16.import_uniforms(&v8);
8726 if (!v16.run_fs(allow_spilling, use_rep_send)) {
8727 compiler->shader_perf_log(log_data,
8728 "SIMD16 shader failed to compile: %s",
8729 v16.fail_msg);
8730 } else {
8731 simd16_cfg = v16.cfg;
8732 v16_shader_stats = v16.shader_stats;
8733 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
8734 prog_data->reg_blocks_16 = brw_register_blocks(v16.grf_used);
8735 }
8736 }
8737
8738 /* Currently, the compiler only supports SIMD32 on SNB+ */
8739 if (v8.max_dispatch_width >= 32 && !use_rep_send &&
8740 compiler->devinfo->gen >= 6 &&
8741 unlikely(INTEL_DEBUG & DEBUG_DO32)) {
8742 /* Try a SIMD32 compile */
8743 fs_visitor v32(compiler, log_data, mem_ctx, &key->base,
8744 &prog_data->base, shader, 32,
8745 shader_time_index32);
8746 v32.import_uniforms(&v8);
8747 if (!v32.run_fs(allow_spilling, false)) {
8748 compiler->shader_perf_log(log_data,
8749 "SIMD32 shader failed to compile: %s",
8750 v32.fail_msg);
8751 } else {
8752 simd32_cfg = v32.cfg;
8753 v32_shader_stats = v32.shader_stats;
8754 prog_data->dispatch_grf_start_reg_32 = v32.payload.num_regs;
8755 prog_data->reg_blocks_32 = brw_register_blocks(v32.grf_used);
8756 }
8757 }
8758
8759 /* When the caller requests a repclear shader, they want SIMD16-only */
8760 if (use_rep_send)
8761 simd8_cfg = NULL;
8762
8763 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
8764 * at the top to select the shader. We've never implemented that.
8765 * Instead, we just give them exactly one shader and we pick the widest one
8766 * available.
8767 */
8768 if (compiler->devinfo->gen < 5) {
8769 if (simd32_cfg || simd16_cfg)
8770 simd8_cfg = NULL;
8771 if (simd32_cfg)
8772 simd16_cfg = NULL;
8773 }
8774
8775 /* If computed depth is enabled SNB only allows SIMD8. */
8776 if (compiler->devinfo->gen == 6 &&
8777 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF)
8778 assert(simd16_cfg == NULL && simd32_cfg == NULL);
8779
8780 if (compiler->devinfo->gen <= 5 && !simd8_cfg) {
8781 /* Iron lake and earlier only have one Dispatch GRF start field. Make
8782 * the data available in the base prog data struct for convenience.
8783 */
8784 if (simd16_cfg) {
8785 prog_data->base.dispatch_grf_start_reg =
8786 prog_data->dispatch_grf_start_reg_16;
8787 } else if (simd32_cfg) {
8788 prog_data->base.dispatch_grf_start_reg =
8789 prog_data->dispatch_grf_start_reg_32;
8790 }
8791 }
8792
8793 if (prog_data->persample_dispatch) {
8794 /* Starting with SandyBridge (where we first get MSAA), the different
8795 * pixel dispatch combinations are grouped into classifications A
8796 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
8797 * generations, the only configurations supporting persample dispatch
8798 * are are this in which only one dispatch width is enabled.
8799 */
8800 if (simd32_cfg || simd16_cfg)
8801 simd8_cfg = NULL;
8802 if (simd32_cfg)
8803 simd16_cfg = NULL;
8804 }
8805
8806 fs_generator g(compiler, log_data, mem_ctx, &prog_data->base,
8807 v8.runtime_check_aads_emit, MESA_SHADER_FRAGMENT);
8808
8809 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
8810 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
8811 shader->info.label ?
8812 shader->info.label : "unnamed",
8813 shader->info.name));
8814 }
8815
8816 if (simd8_cfg) {
8817 prog_data->dispatch_8 = true;
8818 g.generate_code(simd8_cfg, 8, v8_shader_stats, stats);
8819 stats = stats ? stats + 1 : NULL;
8820 }
8821
8822 if (simd16_cfg) {
8823 prog_data->dispatch_16 = true;
8824 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16, v16_shader_stats, stats);
8825 stats = stats ? stats + 1 : NULL;
8826 }
8827
8828 if (simd32_cfg) {
8829 prog_data->dispatch_32 = true;
8830 prog_data->prog_offset_32 = g.generate_code(simd32_cfg, 32, v32_shader_stats, stats);
8831 stats = stats ? stats + 1 : NULL;
8832 }
8833
8834 return g.get_assembly();
8835 }
8836
8837 fs_reg *
8838 fs_visitor::emit_cs_work_group_id_setup()
8839 {
8840 assert(stage == MESA_SHADER_COMPUTE);
8841
8842 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
8843
8844 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
8845 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
8846 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
8847
8848 bld.MOV(*reg, r0_1);
8849 bld.MOV(offset(*reg, bld, 1), r0_6);
8850 bld.MOV(offset(*reg, bld, 2), r0_7);
8851
8852 return reg;
8853 }
8854
8855 unsigned
8856 brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data,
8857 unsigned threads)
8858 {
8859 assert(cs_prog_data->push.per_thread.size % REG_SIZE == 0);
8860 assert(cs_prog_data->push.cross_thread.size % REG_SIZE == 0);
8861 return cs_prog_data->push.per_thread.size * threads +
8862 cs_prog_data->push.cross_thread.size;
8863 }
8864
8865 static void
8866 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
8867 {
8868 block->dwords = dwords;
8869 block->regs = DIV_ROUND_UP(dwords, 8);
8870 block->size = block->regs * 32;
8871 }
8872
8873 static void
8874 cs_fill_push_const_info(const struct gen_device_info *devinfo,
8875 struct brw_cs_prog_data *cs_prog_data)
8876 {
8877 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
8878 int subgroup_id_index = get_subgroup_id_param_index(prog_data);
8879 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
8880
8881 /* The thread ID should be stored in the last param dword */
8882 assert(subgroup_id_index == -1 ||
8883 subgroup_id_index == (int)prog_data->nr_params - 1);
8884
8885 unsigned cross_thread_dwords, per_thread_dwords;
8886 if (!cross_thread_supported) {
8887 cross_thread_dwords = 0u;
8888 per_thread_dwords = prog_data->nr_params;
8889 } else if (subgroup_id_index >= 0) {
8890 /* Fill all but the last register with cross-thread payload */
8891 cross_thread_dwords = 8 * (subgroup_id_index / 8);
8892 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
8893 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
8894 } else {
8895 /* Fill all data using cross-thread payload */
8896 cross_thread_dwords = prog_data->nr_params;
8897 per_thread_dwords = 0u;
8898 }
8899
8900 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
8901 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
8902
8903 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
8904 cs_prog_data->push.per_thread.size == 0);
8905 assert(cs_prog_data->push.cross_thread.dwords +
8906 cs_prog_data->push.per_thread.dwords ==
8907 prog_data->nr_params);
8908 }
8909
8910 static nir_shader *
8911 compile_cs_to_nir(const struct brw_compiler *compiler,
8912 void *mem_ctx,
8913 const struct brw_cs_prog_key *key,
8914 const nir_shader *src_shader,
8915 unsigned dispatch_width)
8916 {
8917 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
8918 brw_nir_apply_key(shader, compiler, &key->base, dispatch_width, true);
8919
8920 NIR_PASS_V(shader, brw_nir_lower_cs_intrinsics, dispatch_width);
8921
8922 /* Clean up after the local index and ID calculations. */
8923 NIR_PASS_V(shader, nir_opt_constant_folding);
8924 NIR_PASS_V(shader, nir_opt_dce);
8925
8926 brw_postprocess_nir(shader, compiler, true);
8927
8928 return shader;
8929 }
8930
8931 const unsigned *
8932 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
8933 void *mem_ctx,
8934 const struct brw_cs_prog_key *key,
8935 struct brw_cs_prog_data *prog_data,
8936 const nir_shader *src_shader,
8937 int shader_time_index,
8938 struct brw_compile_stats *stats,
8939 char **error_str)
8940 {
8941 prog_data->base.total_shared = src_shader->info.cs.shared_size;
8942 prog_data->slm_size = src_shader->num_shared;
8943
8944 unsigned local_workgroup_size;
8945 if (prog_data->uses_variable_group_size) {
8946 prog_data->max_variable_local_size =
8947 src_shader->info.cs.max_variable_local_size;
8948 local_workgroup_size = src_shader->info.cs.max_variable_local_size;
8949 } else {
8950 prog_data->local_size[0] = src_shader->info.cs.local_size[0];
8951 prog_data->local_size[1] = src_shader->info.cs.local_size[1];
8952 prog_data->local_size[2] = src_shader->info.cs.local_size[2];
8953 local_workgroup_size = src_shader->info.cs.local_size[0] *
8954 src_shader->info.cs.local_size[1] * src_shader->info.cs.local_size[2];
8955 }
8956
8957 /* Limit max_threads to 64 for the GPGPU_WALKER command */
8958 const uint32_t max_threads = MIN2(64, compiler->devinfo->max_cs_threads);
8959 unsigned min_dispatch_width =
8960 DIV_ROUND_UP(local_workgroup_size, max_threads);
8961 min_dispatch_width = MAX2(8, min_dispatch_width);
8962 min_dispatch_width = util_next_power_of_two(min_dispatch_width);
8963 assert(min_dispatch_width <= 32);
8964 unsigned max_dispatch_width = 32;
8965
8966 fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL;
8967 fs_visitor *v = NULL;
8968 const char *fail_msg = NULL;
8969
8970 if ((int)key->base.subgroup_size_type >= (int)BRW_SUBGROUP_SIZE_REQUIRE_8) {
8971 /* These enum values are expressly chosen to be equal to the subgroup
8972 * size that they require.
8973 */
8974 const unsigned required_dispatch_width =
8975 (unsigned)key->base.subgroup_size_type;
8976 assert(required_dispatch_width == 8 ||
8977 required_dispatch_width == 16 ||
8978 required_dispatch_width == 32);
8979 if (required_dispatch_width < min_dispatch_width ||
8980 required_dispatch_width > max_dispatch_width) {
8981 fail_msg = "Cannot satisfy explicit subgroup size";
8982 } else {
8983 min_dispatch_width = max_dispatch_width = required_dispatch_width;
8984 }
8985 }
8986
8987 /* Now the main event: Visit the shader IR and generate our CS IR for it.
8988 */
8989 if (!fail_msg && min_dispatch_width <= 8 && max_dispatch_width >= 8) {
8990 nir_shader *nir8 = compile_cs_to_nir(compiler, mem_ctx, key,
8991 src_shader, 8);
8992 v8 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
8993 &prog_data->base,
8994 nir8, 8, shader_time_index);
8995 if (!v8->run_cs(min_dispatch_width)) {
8996 fail_msg = v8->fail_msg;
8997 } else {
8998 /* We should always be able to do SIMD32 for compute shaders */
8999 assert(v8->max_dispatch_width >= 32);
9000
9001 v = v8;
9002 prog_data->simd_size = 8;
9003 cs_fill_push_const_info(compiler->devinfo, prog_data);
9004 }
9005 }
9006
9007 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
9008 !fail_msg && min_dispatch_width <= 16 && max_dispatch_width >= 16) {
9009 /* Try a SIMD16 compile */
9010 nir_shader *nir16 = compile_cs_to_nir(compiler, mem_ctx, key,
9011 src_shader, 16);
9012 v16 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
9013 &prog_data->base,
9014 nir16, 16, shader_time_index);
9015 if (v8)
9016 v16->import_uniforms(v8);
9017
9018 if (!v16->run_cs(min_dispatch_width)) {
9019 compiler->shader_perf_log(log_data,
9020 "SIMD16 shader failed to compile: %s",
9021 v16->fail_msg);
9022 if (!v) {
9023 fail_msg =
9024 "Couldn't generate SIMD16 program and not "
9025 "enough threads for SIMD8";
9026 }
9027 } else {
9028 /* We should always be able to do SIMD32 for compute shaders */
9029 assert(v16->max_dispatch_width >= 32);
9030
9031 v = v16;
9032 prog_data->simd_size = 16;
9033 cs_fill_push_const_info(compiler->devinfo, prog_data);
9034 }
9035 }
9036
9037 /* We should always be able to do SIMD32 for compute shaders */
9038 assert(!v16 || v16->max_dispatch_width >= 32);
9039
9040 if (!fail_msg && (min_dispatch_width > 16 || (INTEL_DEBUG & DEBUG_DO32)) &&
9041 max_dispatch_width >= 32) {
9042 /* Try a SIMD32 compile */
9043 nir_shader *nir32 = compile_cs_to_nir(compiler, mem_ctx, key,
9044 src_shader, 32);
9045 v32 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
9046 &prog_data->base,
9047 nir32, 32, shader_time_index);
9048 if (v8)
9049 v32->import_uniforms(v8);
9050 else if (v16)
9051 v32->import_uniforms(v16);
9052
9053 if (!v32->run_cs(min_dispatch_width)) {
9054 compiler->shader_perf_log(log_data,
9055 "SIMD32 shader failed to compile: %s",
9056 v32->fail_msg);
9057 if (!v) {
9058 fail_msg =
9059 "Couldn't generate SIMD32 program and not "
9060 "enough threads for SIMD16";
9061 }
9062 } else {
9063 v = v32;
9064 prog_data->simd_size = 32;
9065 cs_fill_push_const_info(compiler->devinfo, prog_data);
9066 }
9067 }
9068
9069 const unsigned *ret = NULL;
9070 if (unlikely(v == NULL)) {
9071 assert(fail_msg);
9072 if (error_str)
9073 *error_str = ralloc_strdup(mem_ctx, fail_msg);
9074 } else {
9075 fs_generator g(compiler, log_data, mem_ctx, &prog_data->base,
9076 v->runtime_check_aads_emit, MESA_SHADER_COMPUTE);
9077 if (INTEL_DEBUG & DEBUG_CS) {
9078 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
9079 src_shader->info.label ?
9080 src_shader->info.label : "unnamed",
9081 src_shader->info.name);
9082 g.enable_debug(name);
9083 }
9084
9085 g.generate_code(v->cfg, prog_data->simd_size, v->shader_stats, stats);
9086
9087 ret = g.get_assembly();
9088 }
9089
9090 delete v8;
9091 delete v16;
9092 delete v32;
9093
9094 return ret;
9095 }
9096
9097 /**
9098 * Test the dispatch mask packing assumptions of
9099 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
9100 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
9101 * executed with an unexpected dispatch mask.
9102 */
9103 static UNUSED void
9104 brw_fs_test_dispatch_packing(const fs_builder &bld)
9105 {
9106 const gl_shader_stage stage = bld.shader->stage;
9107
9108 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
9109 bld.shader->stage_prog_data)) {
9110 const fs_builder ubld = bld.exec_all().group(1, 0);
9111 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
9112 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
9113 brw_dmask_reg());
9114
9115 ubld.ADD(tmp, mask, brw_imm_ud(1));
9116 ubld.AND(tmp, mask, tmp);
9117
9118 /* This will loop forever if the dispatch mask doesn't have the expected
9119 * form '2^n-1', in which case tmp will be non-zero.
9120 */
9121 bld.emit(BRW_OPCODE_DO);
9122 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
9123 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
9124 }
9125 }
9126
9127 unsigned
9128 fs_visitor::workgroup_size() const
9129 {
9130 assert(stage == MESA_SHADER_COMPUTE);
9131 const struct brw_cs_prog_data *cs = brw_cs_prog_data(prog_data);
9132 return cs->local_size[0] * cs->local_size[1] * cs->local_size[2];
9133 }