intel/compiler: Set "Null Render Target" ex_desc bit on Gen11
[mesa.git] / src / intel / compiler / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_nir.h"
35 #include "brw_vec4_gs_visitor.h"
36 #include "brw_cfg.h"
37 #include "brw_dead_control_flow.h"
38 #include "dev/gen_debug.h"
39 #include "compiler/glsl_types.h"
40 #include "compiler/nir/nir_builder.h"
41 #include "program/prog_parameter.h"
42 #include "util/u_math.h"
43
44 using namespace brw;
45
46 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
47 const fs_inst *inst);
48
49 void
50 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
51 const fs_reg *src, unsigned sources)
52 {
53 memset((void*)this, 0, sizeof(*this));
54
55 this->src = new fs_reg[MAX2(sources, 3)];
56 for (unsigned i = 0; i < sources; i++)
57 this->src[i] = src[i];
58
59 this->opcode = opcode;
60 this->dst = dst;
61 this->sources = sources;
62 this->exec_size = exec_size;
63 this->base_mrf = -1;
64
65 assert(dst.file != IMM && dst.file != UNIFORM);
66
67 assert(this->exec_size != 0);
68
69 this->conditional_mod = BRW_CONDITIONAL_NONE;
70
71 /* This will be the case for almost all instructions. */
72 switch (dst.file) {
73 case VGRF:
74 case ARF:
75 case FIXED_GRF:
76 case MRF:
77 case ATTR:
78 this->size_written = dst.component_size(exec_size);
79 break;
80 case BAD_FILE:
81 this->size_written = 0;
82 break;
83 case IMM:
84 case UNIFORM:
85 unreachable("Invalid destination register file");
86 }
87
88 this->writes_accumulator = false;
89 }
90
91 fs_inst::fs_inst()
92 {
93 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
94 }
95
96 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
97 {
98 init(opcode, exec_size, reg_undef, NULL, 0);
99 }
100
101 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
102 {
103 init(opcode, exec_size, dst, NULL, 0);
104 }
105
106 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
107 const fs_reg &src0)
108 {
109 const fs_reg src[1] = { src0 };
110 init(opcode, exec_size, dst, src, 1);
111 }
112
113 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
114 const fs_reg &src0, const fs_reg &src1)
115 {
116 const fs_reg src[2] = { src0, src1 };
117 init(opcode, exec_size, dst, src, 2);
118 }
119
120 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
121 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
122 {
123 const fs_reg src[3] = { src0, src1, src2 };
124 init(opcode, exec_size, dst, src, 3);
125 }
126
127 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
128 const fs_reg src[], unsigned sources)
129 {
130 init(opcode, exec_width, dst, src, sources);
131 }
132
133 fs_inst::fs_inst(const fs_inst &that)
134 {
135 memcpy((void*)this, &that, sizeof(that));
136
137 this->src = new fs_reg[MAX2(that.sources, 3)];
138
139 for (unsigned i = 0; i < that.sources; i++)
140 this->src[i] = that.src[i];
141 }
142
143 fs_inst::~fs_inst()
144 {
145 delete[] this->src;
146 }
147
148 void
149 fs_inst::resize_sources(uint8_t num_sources)
150 {
151 if (this->sources != num_sources) {
152 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
153
154 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
155 src[i] = this->src[i];
156
157 delete[] this->src;
158 this->src = src;
159 this->sources = num_sources;
160 }
161 }
162
163 void
164 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
165 const fs_reg &dst,
166 const fs_reg &surf_index,
167 const fs_reg &varying_offset,
168 uint32_t const_offset)
169 {
170 /* We have our constant surface use a pitch of 4 bytes, so our index can
171 * be any component of a vector, and then we load 4 contiguous
172 * components starting from that.
173 *
174 * We break down the const_offset to a portion added to the variable offset
175 * and a portion done using fs_reg::offset, which means that if you have
176 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
177 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
178 * later notice that those loads are all the same and eliminate the
179 * redundant ones.
180 */
181 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
182 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
183
184 /* The pull load message will load a vec4 (16 bytes). If we are loading
185 * a double this means we are only loading 2 elements worth of data.
186 * We also want to use a 32-bit data type for the dst of the load operation
187 * so other parts of the driver don't get confused about the size of the
188 * result.
189 */
190 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
191 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
192 vec4_result, surf_index, vec4_offset);
193 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
194
195 shuffle_from_32bit_read(bld, dst, vec4_result,
196 (const_offset & 0xf) / type_sz(dst.type), 1);
197 }
198
199 /**
200 * A helper for MOV generation for fixing up broken hardware SEND dependency
201 * handling.
202 */
203 void
204 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
205 {
206 /* The caller always wants uncompressed to emit the minimal extra
207 * dependencies, and to avoid having to deal with aligning its regs to 2.
208 */
209 const fs_builder ubld = bld.annotate("send dependency resolve")
210 .half(0);
211
212 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
213 }
214
215 bool
216 fs_inst::is_send_from_grf() const
217 {
218 switch (opcode) {
219 case SHADER_OPCODE_SEND:
220 case SHADER_OPCODE_SHADER_TIME_ADD:
221 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
222 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
223 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
224 case SHADER_OPCODE_URB_WRITE_SIMD8:
225 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
226 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
227 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
228 case SHADER_OPCODE_URB_READ_SIMD8:
229 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
230 return true;
231 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
232 return src[1].file == VGRF;
233 case FS_OPCODE_FB_WRITE:
234 case FS_OPCODE_FB_READ:
235 return src[0].file == VGRF;
236 default:
237 if (is_tex())
238 return src[0].file == VGRF;
239
240 return false;
241 }
242 }
243
244 bool
245 fs_inst::is_control_source(unsigned arg) const
246 {
247 switch (opcode) {
248 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
249 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
250 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
251 return arg == 0;
252
253 case SHADER_OPCODE_BROADCAST:
254 case SHADER_OPCODE_SHUFFLE:
255 case SHADER_OPCODE_QUAD_SWIZZLE:
256 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
257 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
258 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
259 case SHADER_OPCODE_GET_BUFFER_SIZE:
260 return arg == 1;
261
262 case SHADER_OPCODE_MOV_INDIRECT:
263 case SHADER_OPCODE_CLUSTER_BROADCAST:
264 case SHADER_OPCODE_TEX:
265 case FS_OPCODE_TXB:
266 case SHADER_OPCODE_TXD:
267 case SHADER_OPCODE_TXF:
268 case SHADER_OPCODE_TXF_LZ:
269 case SHADER_OPCODE_TXF_CMS:
270 case SHADER_OPCODE_TXF_CMS_W:
271 case SHADER_OPCODE_TXF_UMS:
272 case SHADER_OPCODE_TXF_MCS:
273 case SHADER_OPCODE_TXL:
274 case SHADER_OPCODE_TXL_LZ:
275 case SHADER_OPCODE_TXS:
276 case SHADER_OPCODE_LOD:
277 case SHADER_OPCODE_TG4:
278 case SHADER_OPCODE_TG4_OFFSET:
279 case SHADER_OPCODE_SAMPLEINFO:
280 return arg == 1 || arg == 2;
281
282 case SHADER_OPCODE_SEND:
283 return arg == 0 || arg == 1;
284
285 default:
286 return false;
287 }
288 }
289
290 /**
291 * Returns true if this instruction's sources and destinations cannot
292 * safely be the same register.
293 *
294 * In most cases, a register can be written over safely by the same
295 * instruction that is its last use. For a single instruction, the
296 * sources are dereferenced before writing of the destination starts
297 * (naturally).
298 *
299 * However, there are a few cases where this can be problematic:
300 *
301 * - Virtual opcodes that translate to multiple instructions in the
302 * code generator: if src == dst and one instruction writes the
303 * destination before a later instruction reads the source, then
304 * src will have been clobbered.
305 *
306 * - SIMD16 compressed instructions with certain regioning (see below).
307 *
308 * The register allocator uses this information to set up conflicts between
309 * GRF sources and the destination.
310 */
311 bool
312 fs_inst::has_source_and_destination_hazard() const
313 {
314 switch (opcode) {
315 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
316 /* Multiple partial writes to the destination */
317 return true;
318 case SHADER_OPCODE_SHUFFLE:
319 /* This instruction returns an arbitrary channel from the source and
320 * gets split into smaller instructions in the generator. It's possible
321 * that one of the instructions will read from a channel corresponding
322 * to an earlier instruction.
323 */
324 case SHADER_OPCODE_SEL_EXEC:
325 /* This is implemented as
326 *
327 * mov(16) g4<1>D 0D { align1 WE_all 1H };
328 * mov(16) g4<1>D g5<8,8,1>D { align1 1H }
329 *
330 * Because the source is only read in the second instruction, the first
331 * may stomp all over it.
332 */
333 return true;
334 case SHADER_OPCODE_QUAD_SWIZZLE:
335 switch (src[1].ud) {
336 case BRW_SWIZZLE_XXXX:
337 case BRW_SWIZZLE_YYYY:
338 case BRW_SWIZZLE_ZZZZ:
339 case BRW_SWIZZLE_WWWW:
340 case BRW_SWIZZLE_XXZZ:
341 case BRW_SWIZZLE_YYWW:
342 case BRW_SWIZZLE_XYXY:
343 case BRW_SWIZZLE_ZWZW:
344 /* These can be implemented as a single Align1 region on all
345 * platforms, so there's never a hazard between source and
346 * destination. C.f. fs_generator::generate_quad_swizzle().
347 */
348 return false;
349 default:
350 return !is_uniform(src[0]);
351 }
352 default:
353 /* The SIMD16 compressed instruction
354 *
355 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
356 *
357 * is actually decoded in hardware as:
358 *
359 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
360 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
361 *
362 * Which is safe. However, if we have uniform accesses
363 * happening, we get into trouble:
364 *
365 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
366 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
367 *
368 * Now our destination for the first instruction overwrote the
369 * second instruction's src0, and we get garbage for those 8
370 * pixels. There's a similar issue for the pre-gen6
371 * pixel_x/pixel_y, which are registers of 16-bit values and thus
372 * would get stomped by the first decode as well.
373 */
374 if (exec_size == 16) {
375 for (int i = 0; i < sources; i++) {
376 if (src[i].file == VGRF && (src[i].stride == 0 ||
377 src[i].type == BRW_REGISTER_TYPE_UW ||
378 src[i].type == BRW_REGISTER_TYPE_W ||
379 src[i].type == BRW_REGISTER_TYPE_UB ||
380 src[i].type == BRW_REGISTER_TYPE_B)) {
381 return true;
382 }
383 }
384 }
385 return false;
386 }
387 }
388
389 bool
390 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
391 {
392 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
393 return false;
394
395 fs_reg reg = this->src[0];
396 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
397 return false;
398
399 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
400 return false;
401
402 for (int i = 0; i < this->sources; i++) {
403 reg.type = this->src[i].type;
404 if (!this->src[i].equals(reg))
405 return false;
406
407 if (i < this->header_size) {
408 reg.offset += REG_SIZE;
409 } else {
410 reg = horiz_offset(reg, this->exec_size);
411 }
412 }
413
414 return true;
415 }
416
417 bool
418 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo) const
419 {
420 if (devinfo->gen == 6 && is_math())
421 return false;
422
423 if (is_send_from_grf())
424 return false;
425
426 if (!backend_instruction::can_do_source_mods())
427 return false;
428
429 return true;
430 }
431
432 bool
433 fs_inst::can_do_cmod()
434 {
435 if (!backend_instruction::can_do_cmod())
436 return false;
437
438 /* The accumulator result appears to get used for the conditional modifier
439 * generation. When negating a UD value, there is a 33rd bit generated for
440 * the sign in the accumulator value, so now you can't check, for example,
441 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
442 */
443 for (unsigned i = 0; i < sources; i++) {
444 if (type_is_unsigned_int(src[i].type) && src[i].negate)
445 return false;
446 }
447
448 return true;
449 }
450
451 bool
452 fs_inst::can_change_types() const
453 {
454 return dst.type == src[0].type &&
455 !src[0].abs && !src[0].negate && !saturate &&
456 (opcode == BRW_OPCODE_MOV ||
457 (opcode == BRW_OPCODE_SEL &&
458 dst.type == src[1].type &&
459 predicate != BRW_PREDICATE_NONE &&
460 !src[1].abs && !src[1].negate));
461 }
462
463 void
464 fs_reg::init()
465 {
466 memset((void*)this, 0, sizeof(*this));
467 type = BRW_REGISTER_TYPE_UD;
468 stride = 1;
469 }
470
471 /** Generic unset register constructor. */
472 fs_reg::fs_reg()
473 {
474 init();
475 this->file = BAD_FILE;
476 }
477
478 fs_reg::fs_reg(struct ::brw_reg reg) :
479 backend_reg(reg)
480 {
481 this->offset = 0;
482 this->stride = 1;
483 if (this->file == IMM &&
484 (this->type != BRW_REGISTER_TYPE_V &&
485 this->type != BRW_REGISTER_TYPE_UV &&
486 this->type != BRW_REGISTER_TYPE_VF)) {
487 this->stride = 0;
488 }
489 }
490
491 bool
492 fs_reg::equals(const fs_reg &r) const
493 {
494 return (this->backend_reg::equals(r) &&
495 stride == r.stride);
496 }
497
498 bool
499 fs_reg::negative_equals(const fs_reg &r) const
500 {
501 return (this->backend_reg::negative_equals(r) &&
502 stride == r.stride);
503 }
504
505 bool
506 fs_reg::is_contiguous() const
507 {
508 return stride == 1;
509 }
510
511 unsigned
512 fs_reg::component_size(unsigned width) const
513 {
514 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
515 hstride == 0 ? 0 :
516 1 << (hstride - 1));
517 return MAX2(width * stride, 1) * type_sz(type);
518 }
519
520 extern "C" int
521 type_size_scalar(const struct glsl_type *type, bool bindless)
522 {
523 unsigned int size, i;
524
525 switch (type->base_type) {
526 case GLSL_TYPE_UINT:
527 case GLSL_TYPE_INT:
528 case GLSL_TYPE_FLOAT:
529 case GLSL_TYPE_BOOL:
530 return type->components();
531 case GLSL_TYPE_UINT16:
532 case GLSL_TYPE_INT16:
533 case GLSL_TYPE_FLOAT16:
534 return DIV_ROUND_UP(type->components(), 2);
535 case GLSL_TYPE_UINT8:
536 case GLSL_TYPE_INT8:
537 return DIV_ROUND_UP(type->components(), 4);
538 case GLSL_TYPE_DOUBLE:
539 case GLSL_TYPE_UINT64:
540 case GLSL_TYPE_INT64:
541 return type->components() * 2;
542 case GLSL_TYPE_ARRAY:
543 return type_size_scalar(type->fields.array, bindless) * type->length;
544 case GLSL_TYPE_STRUCT:
545 case GLSL_TYPE_INTERFACE:
546 size = 0;
547 for (i = 0; i < type->length; i++) {
548 size += type_size_scalar(type->fields.structure[i].type, bindless);
549 }
550 return size;
551 case GLSL_TYPE_SAMPLER:
552 case GLSL_TYPE_IMAGE:
553 if (bindless)
554 return type->components() * 2;
555 case GLSL_TYPE_ATOMIC_UINT:
556 /* Samplers, atomics, and images take up no register space, since
557 * they're baked in at link time.
558 */
559 return 0;
560 case GLSL_TYPE_SUBROUTINE:
561 return 1;
562 case GLSL_TYPE_VOID:
563 case GLSL_TYPE_ERROR:
564 case GLSL_TYPE_FUNCTION:
565 unreachable("not reached");
566 }
567
568 return 0;
569 }
570
571 /**
572 * Create a MOV to read the timestamp register.
573 *
574 * The caller is responsible for emitting the MOV. The return value is
575 * the destination of the MOV, with extra parameters set.
576 */
577 fs_reg
578 fs_visitor::get_timestamp(const fs_builder &bld)
579 {
580 assert(devinfo->gen >= 7);
581
582 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
583 BRW_ARF_TIMESTAMP,
584 0),
585 BRW_REGISTER_TYPE_UD));
586
587 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
588
589 /* We want to read the 3 fields we care about even if it's not enabled in
590 * the dispatch.
591 */
592 bld.group(4, 0).exec_all().MOV(dst, ts);
593
594 return dst;
595 }
596
597 void
598 fs_visitor::emit_shader_time_begin()
599 {
600 /* We want only the low 32 bits of the timestamp. Since it's running
601 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
602 * which is plenty of time for our purposes. It is identical across the
603 * EUs, but since it's tracking GPU core speed it will increment at a
604 * varying rate as render P-states change.
605 */
606 shader_start_time = component(
607 get_timestamp(bld.annotate("shader time start")), 0);
608 }
609
610 void
611 fs_visitor::emit_shader_time_end()
612 {
613 /* Insert our code just before the final SEND with EOT. */
614 exec_node *end = this->instructions.get_tail();
615 assert(end && ((fs_inst *) end)->eot);
616 const fs_builder ibld = bld.annotate("shader time end")
617 .exec_all().at(NULL, end);
618 const fs_reg timestamp = get_timestamp(ibld);
619
620 /* We only use the low 32 bits of the timestamp - see
621 * emit_shader_time_begin()).
622 *
623 * We could also check if render P-states have changed (or anything
624 * else that might disrupt timing) by setting smear to 2 and checking if
625 * that field is != 0.
626 */
627 const fs_reg shader_end_time = component(timestamp, 0);
628
629 /* Check that there weren't any timestamp reset events (assuming these
630 * were the only two timestamp reads that happened).
631 */
632 const fs_reg reset = component(timestamp, 2);
633 set_condmod(BRW_CONDITIONAL_Z,
634 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
635 ibld.IF(BRW_PREDICATE_NORMAL);
636
637 fs_reg start = shader_start_time;
638 start.negate = true;
639 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
640 BRW_REGISTER_TYPE_UD),
641 0);
642 const fs_builder cbld = ibld.group(1, 0);
643 cbld.group(1, 0).ADD(diff, start, shader_end_time);
644
645 /* If there were no instructions between the two timestamp gets, the diff
646 * is 2 cycles. Remove that overhead, so I can forget about that when
647 * trying to determine the time taken for single instructions.
648 */
649 cbld.ADD(diff, diff, brw_imm_ud(-2u));
650 SHADER_TIME_ADD(cbld, 0, diff);
651 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
652 ibld.emit(BRW_OPCODE_ELSE);
653 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
654 ibld.emit(BRW_OPCODE_ENDIF);
655 }
656
657 void
658 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
659 int shader_time_subindex,
660 fs_reg value)
661 {
662 int index = shader_time_index * 3 + shader_time_subindex;
663 struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
664
665 fs_reg payload;
666 if (dispatch_width == 8)
667 payload = vgrf(glsl_type::uvec2_type);
668 else
669 payload = vgrf(glsl_type::uint_type);
670
671 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
672 }
673
674 void
675 fs_visitor::vfail(const char *format, va_list va)
676 {
677 char *msg;
678
679 if (failed)
680 return;
681
682 failed = true;
683
684 msg = ralloc_vasprintf(mem_ctx, format, va);
685 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
686
687 this->fail_msg = msg;
688
689 if (debug_enabled) {
690 fprintf(stderr, "%s", msg);
691 }
692 }
693
694 void
695 fs_visitor::fail(const char *format, ...)
696 {
697 va_list va;
698
699 va_start(va, format);
700 vfail(format, va);
701 va_end(va);
702 }
703
704 /**
705 * Mark this program as impossible to compile with dispatch width greater
706 * than n.
707 *
708 * During the SIMD8 compile (which happens first), we can detect and flag
709 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
710 * SIMD16+ compile altogether.
711 *
712 * During a compile of dispatch width greater than n (if one happens anyway),
713 * this just calls fail().
714 */
715 void
716 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
717 {
718 if (dispatch_width > n) {
719 fail("%s", msg);
720 } else {
721 max_dispatch_width = n;
722 compiler->shader_perf_log(log_data,
723 "Shader dispatch width limited to SIMD%d: %s",
724 n, msg);
725 }
726 }
727
728 /**
729 * Returns true if the instruction has a flag that means it won't
730 * update an entire destination register.
731 *
732 * For example, dead code elimination and live variable analysis want to know
733 * when a write to a variable screens off any preceding values that were in
734 * it.
735 */
736 bool
737 fs_inst::is_partial_write() const
738 {
739 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
740 (this->exec_size * type_sz(this->dst.type)) < 32 ||
741 !this->dst.is_contiguous() ||
742 this->dst.offset % REG_SIZE != 0);
743 }
744
745 unsigned
746 fs_inst::components_read(unsigned i) const
747 {
748 /* Return zero if the source is not present. */
749 if (src[i].file == BAD_FILE)
750 return 0;
751
752 switch (opcode) {
753 case FS_OPCODE_LINTERP:
754 if (i == 0)
755 return 2;
756 else
757 return 1;
758
759 case FS_OPCODE_PIXEL_X:
760 case FS_OPCODE_PIXEL_Y:
761 assert(i == 0);
762 return 2;
763
764 case FS_OPCODE_FB_WRITE_LOGICAL:
765 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
766 /* First/second FB write color. */
767 if (i < 2)
768 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
769 else
770 return 1;
771
772 case SHADER_OPCODE_TEX_LOGICAL:
773 case SHADER_OPCODE_TXD_LOGICAL:
774 case SHADER_OPCODE_TXF_LOGICAL:
775 case SHADER_OPCODE_TXL_LOGICAL:
776 case SHADER_OPCODE_TXS_LOGICAL:
777 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
778 case FS_OPCODE_TXB_LOGICAL:
779 case SHADER_OPCODE_TXF_CMS_LOGICAL:
780 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
781 case SHADER_OPCODE_TXF_UMS_LOGICAL:
782 case SHADER_OPCODE_TXF_MCS_LOGICAL:
783 case SHADER_OPCODE_LOD_LOGICAL:
784 case SHADER_OPCODE_TG4_LOGICAL:
785 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
786 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
787 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
788 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
789 /* Texture coordinates. */
790 if (i == TEX_LOGICAL_SRC_COORDINATE)
791 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
792 /* Texture derivatives. */
793 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
794 opcode == SHADER_OPCODE_TXD_LOGICAL)
795 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
796 /* Texture offset. */
797 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
798 return 2;
799 /* MCS */
800 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
801 return 2;
802 else
803 return 1;
804
805 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
806 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
807 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM);
808 /* Surface coordinates. */
809 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
810 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
811 /* Surface operation source (ignored for reads). */
812 else if (i == SURFACE_LOGICAL_SRC_DATA)
813 return 0;
814 else
815 return 1;
816
817 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
818 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
819 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
820 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
821 /* Surface coordinates. */
822 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
823 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
824 /* Surface operation source. */
825 else if (i == SURFACE_LOGICAL_SRC_DATA)
826 return src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
827 else
828 return 1;
829
830 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
831 assert(src[2].file == IMM);
832 return 1;
833
834 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
835 assert(src[2].file == IMM);
836 return i == 1 ? src[2].ud : 1;
837
838 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
839 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
840 assert(src[2].file == IMM);
841 if (i == 1) {
842 /* Data source */
843 const unsigned op = src[2].ud;
844 switch (op) {
845 case BRW_AOP_INC:
846 case BRW_AOP_DEC:
847 case BRW_AOP_PREDEC:
848 return 0;
849 case BRW_AOP_CMPWR:
850 return 2;
851 default:
852 return 1;
853 }
854 } else {
855 return 1;
856 }
857
858 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
859 assert(src[2].file == IMM);
860 if (i == 1) {
861 /* Data source */
862 const unsigned op = src[2].ud;
863 return op == BRW_AOP_FCMPWR ? 2 : 1;
864 } else {
865 return 1;
866 }
867
868 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
869 /* Scattered logical opcodes use the following params:
870 * src[0] Surface coordinates
871 * src[1] Surface operation source (ignored for reads)
872 * src[2] Surface
873 * src[3] IMM with always 1 dimension.
874 * src[4] IMM with arg bitsize for scattered read/write 8, 16, 32
875 */
876 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
877 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
878 return i == SURFACE_LOGICAL_SRC_DATA ? 0 : 1;
879
880 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
881 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
882 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
883 return 1;
884
885 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
886 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
887 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
888 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
889 const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
890 /* Surface coordinates. */
891 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
892 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
893 /* Surface operation source. */
894 else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_CMPWR)
895 return 2;
896 else if (i == SURFACE_LOGICAL_SRC_DATA &&
897 (op == BRW_AOP_INC || op == BRW_AOP_DEC || op == BRW_AOP_PREDEC))
898 return 0;
899 else
900 return 1;
901 }
902 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
903 return (i == 0 ? 2 : 1);
904
905 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL: {
906 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
907 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
908 const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
909 /* Surface coordinates. */
910 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
911 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
912 /* Surface operation source. */
913 else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_FCMPWR)
914 return 2;
915 else
916 return 1;
917 }
918
919 default:
920 return 1;
921 }
922 }
923
924 unsigned
925 fs_inst::size_read(int arg) const
926 {
927 switch (opcode) {
928 case SHADER_OPCODE_SEND:
929 if (arg == 2) {
930 return mlen * REG_SIZE;
931 } else if (arg == 3) {
932 return ex_mlen * REG_SIZE;
933 }
934 break;
935
936 case FS_OPCODE_FB_WRITE:
937 case FS_OPCODE_REP_FB_WRITE:
938 if (arg == 0) {
939 if (base_mrf >= 0)
940 return src[0].file == BAD_FILE ? 0 : 2 * REG_SIZE;
941 else
942 return mlen * REG_SIZE;
943 }
944 break;
945
946 case FS_OPCODE_FB_READ:
947 case SHADER_OPCODE_URB_WRITE_SIMD8:
948 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
949 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
950 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
951 case SHADER_OPCODE_URB_READ_SIMD8:
952 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
953 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
954 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
955 if (arg == 0)
956 return mlen * REG_SIZE;
957 break;
958
959 case FS_OPCODE_SET_SAMPLE_ID:
960 if (arg == 1)
961 return 1;
962 break;
963
964 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
965 /* The payload is actually stored in src1 */
966 if (arg == 1)
967 return mlen * REG_SIZE;
968 break;
969
970 case FS_OPCODE_LINTERP:
971 if (arg == 1)
972 return 16;
973 break;
974
975 case SHADER_OPCODE_LOAD_PAYLOAD:
976 if (arg < this->header_size)
977 return REG_SIZE;
978 break;
979
980 case CS_OPCODE_CS_TERMINATE:
981 case SHADER_OPCODE_BARRIER:
982 return REG_SIZE;
983
984 case SHADER_OPCODE_MOV_INDIRECT:
985 if (arg == 0) {
986 assert(src[2].file == IMM);
987 return src[2].ud;
988 }
989 break;
990
991 default:
992 if (is_tex() && arg == 0 && src[0].file == VGRF)
993 return mlen * REG_SIZE;
994 break;
995 }
996
997 switch (src[arg].file) {
998 case UNIFORM:
999 case IMM:
1000 return components_read(arg) * type_sz(src[arg].type);
1001 case BAD_FILE:
1002 case ARF:
1003 case FIXED_GRF:
1004 case VGRF:
1005 case ATTR:
1006 return components_read(arg) * src[arg].component_size(exec_size);
1007 case MRF:
1008 unreachable("MRF registers are not allowed as sources");
1009 }
1010 return 0;
1011 }
1012
1013 namespace {
1014 /* Return the subset of flag registers that an instruction could
1015 * potentially read or write based on the execution controls and flag
1016 * subregister number of the instruction.
1017 */
1018 unsigned
1019 flag_mask(const fs_inst *inst)
1020 {
1021 const unsigned start = inst->flag_subreg * 16 + inst->group;
1022 const unsigned end = start + inst->exec_size;
1023 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
1024 }
1025
1026 unsigned
1027 bit_mask(unsigned n)
1028 {
1029 return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
1030 }
1031
1032 unsigned
1033 flag_mask(const fs_reg &r, unsigned sz)
1034 {
1035 if (r.file == ARF) {
1036 const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
1037 const unsigned end = start + sz;
1038 return bit_mask(end) & ~bit_mask(start);
1039 } else {
1040 return 0;
1041 }
1042 }
1043 }
1044
1045 unsigned
1046 fs_inst::flags_read(const gen_device_info *devinfo) const
1047 {
1048 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
1049 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
1050 /* The vertical predication modes combine corresponding bits from
1051 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
1052 */
1053 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
1054 return flag_mask(this) << shift | flag_mask(this);
1055 } else if (predicate) {
1056 return flag_mask(this);
1057 } else {
1058 unsigned mask = 0;
1059 for (int i = 0; i < sources; i++) {
1060 mask |= flag_mask(src[i], size_read(i));
1061 }
1062 return mask;
1063 }
1064 }
1065
1066 unsigned
1067 fs_inst::flags_written() const
1068 {
1069 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
1070 opcode != BRW_OPCODE_CSEL &&
1071 opcode != BRW_OPCODE_IF &&
1072 opcode != BRW_OPCODE_WHILE)) ||
1073 opcode == SHADER_OPCODE_FIND_LIVE_CHANNEL ||
1074 opcode == FS_OPCODE_FB_WRITE) {
1075 return flag_mask(this);
1076 } else {
1077 return flag_mask(dst, size_written);
1078 }
1079 }
1080
1081 /**
1082 * Returns how many MRFs an FS opcode will write over.
1083 *
1084 * Note that this is not the 0 or 1 implied writes in an actual gen
1085 * instruction -- the FS opcodes often generate MOVs in addition.
1086 */
1087 int
1088 fs_visitor::implied_mrf_writes(fs_inst *inst) const
1089 {
1090 if (inst->mlen == 0)
1091 return 0;
1092
1093 if (inst->base_mrf == -1)
1094 return 0;
1095
1096 switch (inst->opcode) {
1097 case SHADER_OPCODE_RCP:
1098 case SHADER_OPCODE_RSQ:
1099 case SHADER_OPCODE_SQRT:
1100 case SHADER_OPCODE_EXP2:
1101 case SHADER_OPCODE_LOG2:
1102 case SHADER_OPCODE_SIN:
1103 case SHADER_OPCODE_COS:
1104 return 1 * dispatch_width / 8;
1105 case SHADER_OPCODE_POW:
1106 case SHADER_OPCODE_INT_QUOTIENT:
1107 case SHADER_OPCODE_INT_REMAINDER:
1108 return 2 * dispatch_width / 8;
1109 case SHADER_OPCODE_TEX:
1110 case FS_OPCODE_TXB:
1111 case SHADER_OPCODE_TXD:
1112 case SHADER_OPCODE_TXF:
1113 case SHADER_OPCODE_TXF_CMS:
1114 case SHADER_OPCODE_TXF_MCS:
1115 case SHADER_OPCODE_TG4:
1116 case SHADER_OPCODE_TG4_OFFSET:
1117 case SHADER_OPCODE_TXL:
1118 case SHADER_OPCODE_TXS:
1119 case SHADER_OPCODE_LOD:
1120 case SHADER_OPCODE_SAMPLEINFO:
1121 return 1;
1122 case FS_OPCODE_FB_WRITE:
1123 case FS_OPCODE_REP_FB_WRITE:
1124 return inst->src[0].file == BAD_FILE ? 0 : 2;
1125 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
1126 case SHADER_OPCODE_GEN4_SCRATCH_READ:
1127 return 1;
1128 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
1129 return inst->mlen;
1130 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
1131 return inst->mlen;
1132 default:
1133 unreachable("not reached");
1134 }
1135 }
1136
1137 fs_reg
1138 fs_visitor::vgrf(const glsl_type *const type)
1139 {
1140 int reg_width = dispatch_width / 8;
1141 return fs_reg(VGRF,
1142 alloc.allocate(type_size_scalar(type, false) * reg_width),
1143 brw_type_for_base_type(type));
1144 }
1145
1146 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1147 {
1148 init();
1149 this->file = file;
1150 this->nr = nr;
1151 this->type = BRW_REGISTER_TYPE_F;
1152 this->stride = (file == UNIFORM ? 0 : 1);
1153 }
1154
1155 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1156 {
1157 init();
1158 this->file = file;
1159 this->nr = nr;
1160 this->type = type;
1161 this->stride = (file == UNIFORM ? 0 : 1);
1162 }
1163
1164 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1165 * This brings in those uniform definitions
1166 */
1167 void
1168 fs_visitor::import_uniforms(fs_visitor *v)
1169 {
1170 this->push_constant_loc = v->push_constant_loc;
1171 this->pull_constant_loc = v->pull_constant_loc;
1172 this->uniforms = v->uniforms;
1173 this->subgroup_id = v->subgroup_id;
1174 }
1175
1176 void
1177 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1178 {
1179 assert(stage == MESA_SHADER_FRAGMENT);
1180
1181 /* gl_FragCoord.x */
1182 bld.MOV(wpos, this->pixel_x);
1183 wpos = offset(wpos, bld, 1);
1184
1185 /* gl_FragCoord.y */
1186 bld.MOV(wpos, this->pixel_y);
1187 wpos = offset(wpos, bld, 1);
1188
1189 /* gl_FragCoord.z */
1190 if (devinfo->gen >= 6) {
1191 bld.MOV(wpos, fetch_payload_reg(bld, payload.source_depth_reg));
1192 } else {
1193 bld.emit(FS_OPCODE_LINTERP, wpos,
1194 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1195 component(interp_reg(VARYING_SLOT_POS, 2), 0));
1196 }
1197 wpos = offset(wpos, bld, 1);
1198
1199 /* gl_FragCoord.w: Already set up in emit_interpolation */
1200 bld.MOV(wpos, this->wpos_w);
1201 }
1202
1203 enum brw_barycentric_mode
1204 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1205 {
1206 /* Barycentric modes don't make sense for flat inputs. */
1207 assert(mode != INTERP_MODE_FLAT);
1208
1209 unsigned bary;
1210 switch (op) {
1211 case nir_intrinsic_load_barycentric_pixel:
1212 case nir_intrinsic_load_barycentric_at_offset:
1213 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1214 break;
1215 case nir_intrinsic_load_barycentric_centroid:
1216 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1217 break;
1218 case nir_intrinsic_load_barycentric_sample:
1219 case nir_intrinsic_load_barycentric_at_sample:
1220 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1221 break;
1222 default:
1223 unreachable("invalid intrinsic");
1224 }
1225
1226 if (mode == INTERP_MODE_NOPERSPECTIVE)
1227 bary += 3;
1228
1229 return (enum brw_barycentric_mode) bary;
1230 }
1231
1232 /**
1233 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1234 */
1235 static enum brw_barycentric_mode
1236 centroid_to_pixel(enum brw_barycentric_mode bary)
1237 {
1238 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1239 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1240 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1241 }
1242
1243 fs_reg *
1244 fs_visitor::emit_frontfacing_interpolation()
1245 {
1246 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1247
1248 if (devinfo->gen >= 6) {
1249 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1250 * a boolean result from this (~0/true or 0/false).
1251 *
1252 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1253 * this task in only one instruction:
1254 * - a negation source modifier will flip the bit; and
1255 * - a W -> D type conversion will sign extend the bit into the high
1256 * word of the destination.
1257 *
1258 * An ASR 15 fills the low word of the destination.
1259 */
1260 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1261 g0.negate = true;
1262
1263 bld.ASR(*reg, g0, brw_imm_d(15));
1264 } else {
1265 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1266 * a boolean result from this (1/true or 0/false).
1267 *
1268 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1269 * the negation source modifier to flip it. Unfortunately the SHR
1270 * instruction only operates on UD (or D with an abs source modifier)
1271 * sources without negation.
1272 *
1273 * Instead, use ASR (which will give ~0/true or 0/false).
1274 */
1275 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1276 g1_6.negate = true;
1277
1278 bld.ASR(*reg, g1_6, brw_imm_d(31));
1279 }
1280
1281 return reg;
1282 }
1283
1284 void
1285 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1286 {
1287 assert(stage == MESA_SHADER_FRAGMENT);
1288 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1289 assert(dst.type == BRW_REGISTER_TYPE_F);
1290
1291 if (wm_prog_data->persample_dispatch) {
1292 /* Convert int_sample_pos to floating point */
1293 bld.MOV(dst, int_sample_pos);
1294 /* Scale to the range [0, 1] */
1295 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1296 }
1297 else {
1298 /* From ARB_sample_shading specification:
1299 * "When rendering to a non-multisample buffer, or if multisample
1300 * rasterization is disabled, gl_SamplePosition will always be
1301 * (0.5, 0.5).
1302 */
1303 bld.MOV(dst, brw_imm_f(0.5f));
1304 }
1305 }
1306
1307 fs_reg *
1308 fs_visitor::emit_samplepos_setup()
1309 {
1310 assert(devinfo->gen >= 6);
1311
1312 const fs_builder abld = bld.annotate("compute sample position");
1313 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1314 fs_reg pos = *reg;
1315 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1316 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1317
1318 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1319 * mode will be enabled.
1320 *
1321 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1322 * R31.1:0 Position Offset X/Y for Slot[3:0]
1323 * R31.3:2 Position Offset X/Y for Slot[7:4]
1324 * .....
1325 *
1326 * The X, Y sample positions come in as bytes in thread payload. So, read
1327 * the positions using vstride=16, width=8, hstride=2.
1328 */
1329 const fs_reg sample_pos_reg =
1330 fetch_payload_reg(abld, payload.sample_pos_reg, BRW_REGISTER_TYPE_W);
1331
1332 /* Compute gl_SamplePosition.x */
1333 abld.MOV(int_sample_x, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, 0));
1334 compute_sample_position(offset(pos, abld, 0), int_sample_x);
1335
1336 /* Compute gl_SamplePosition.y */
1337 abld.MOV(int_sample_y, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, 1));
1338 compute_sample_position(offset(pos, abld, 1), int_sample_y);
1339 return reg;
1340 }
1341
1342 fs_reg *
1343 fs_visitor::emit_sampleid_setup()
1344 {
1345 assert(stage == MESA_SHADER_FRAGMENT);
1346 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1347 assert(devinfo->gen >= 6);
1348
1349 const fs_builder abld = bld.annotate("compute sample id");
1350 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uint_type));
1351
1352 if (!key->multisample_fbo) {
1353 /* As per GL_ARB_sample_shading specification:
1354 * "When rendering to a non-multisample buffer, or if multisample
1355 * rasterization is disabled, gl_SampleID will always be zero."
1356 */
1357 abld.MOV(*reg, brw_imm_d(0));
1358 } else if (devinfo->gen >= 8) {
1359 /* Sample ID comes in as 4-bit numbers in g1.0:
1360 *
1361 * 15:12 Slot 3 SampleID (only used in SIMD16)
1362 * 11:8 Slot 2 SampleID (only used in SIMD16)
1363 * 7:4 Slot 1 SampleID
1364 * 3:0 Slot 0 SampleID
1365 *
1366 * Each slot corresponds to four channels, so we want to replicate each
1367 * half-byte value to 4 channels in a row:
1368 *
1369 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1370 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1371 *
1372 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1373 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1374 *
1375 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1376 * channels to read the first byte (7:0), and the second group of 8
1377 * channels to read the second byte (15:8). Then, we shift right by
1378 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1379 * values into place. Finally, we AND with 0xf to keep the low nibble.
1380 *
1381 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1382 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1383 *
1384 * TODO: These payload bits exist on Gen7 too, but they appear to always
1385 * be zero, so this code fails to work. We should find out why.
1386 */
1387 const fs_reg tmp = abld.vgrf(BRW_REGISTER_TYPE_UW);
1388
1389 for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
1390 const fs_builder hbld = abld.group(MIN2(16, dispatch_width), i);
1391 hbld.SHR(offset(tmp, hbld, i),
1392 stride(retype(brw_vec1_grf(1 + i, 0), BRW_REGISTER_TYPE_UB),
1393 1, 8, 0),
1394 brw_imm_v(0x44440000));
1395 }
1396
1397 abld.AND(*reg, tmp, brw_imm_w(0xf));
1398 } else {
1399 const fs_reg t1 = component(abld.vgrf(BRW_REGISTER_TYPE_UD), 0);
1400 const fs_reg t2 = abld.vgrf(BRW_REGISTER_TYPE_UW);
1401
1402 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1403 * 8x multisampling, subspan 0 will represent sample N (where N
1404 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1405 * 7. We can find the value of N by looking at R0.0 bits 7:6
1406 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1407 * (since samples are always delivered in pairs). That is, we
1408 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1409 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1410 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1411 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1412 * populating a temporary variable with the sequence (0, 1, 2, 3),
1413 * and then reading from it using vstride=1, width=4, hstride=0.
1414 * These computations hold good for 4x multisampling as well.
1415 *
1416 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1417 * the first four slots are sample 0 of subspan 0; the next four
1418 * are sample 1 of subspan 0; the third group is sample 0 of
1419 * subspan 1, and finally sample 1 of subspan 1.
1420 */
1421
1422 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1423 * accomodate 16x MSAA.
1424 */
1425 abld.exec_all().group(1, 0)
1426 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
1427 brw_imm_ud(0xc0));
1428 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1429
1430 /* This works for SIMD8-SIMD16. It also works for SIMD32 but only if we
1431 * can assume 4x MSAA. Disallow it on IVB+
1432 *
1433 * FINISHME: One day, we could come up with a way to do this that
1434 * actually works on gen7.
1435 */
1436 if (devinfo->gen >= 7)
1437 limit_dispatch_width(16, "gl_SampleId is unsupported in SIMD32 on gen7");
1438 abld.exec_all().group(8, 0).MOV(t2, brw_imm_v(0x32103210));
1439
1440 /* This special instruction takes care of setting vstride=1,
1441 * width=4, hstride=0 of t2 during an ADD instruction.
1442 */
1443 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1444 }
1445
1446 return reg;
1447 }
1448
1449 fs_reg *
1450 fs_visitor::emit_samplemaskin_setup()
1451 {
1452 assert(stage == MESA_SHADER_FRAGMENT);
1453 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1454 assert(devinfo->gen >= 6);
1455
1456 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1457
1458 fs_reg coverage_mask =
1459 fetch_payload_reg(bld, payload.sample_mask_in_reg, BRW_REGISTER_TYPE_D);
1460
1461 if (wm_prog_data->persample_dispatch) {
1462 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1463 * and a mask representing which sample is being processed by the
1464 * current shader invocation.
1465 *
1466 * From the OES_sample_variables specification:
1467 * "When per-sample shading is active due to the use of a fragment input
1468 * qualified by "sample" or due to the use of the gl_SampleID or
1469 * gl_SamplePosition variables, only the bit for the current sample is
1470 * set in gl_SampleMaskIn."
1471 */
1472 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1473
1474 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1475 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1476
1477 fs_reg one = vgrf(glsl_type::int_type);
1478 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1479 abld.MOV(one, brw_imm_d(1));
1480 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1481 abld.AND(*reg, enabled_mask, coverage_mask);
1482 } else {
1483 /* In per-pixel mode, the coverage mask is sufficient. */
1484 *reg = coverage_mask;
1485 }
1486 return reg;
1487 }
1488
1489 fs_reg
1490 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1491 {
1492 if (!src.abs && !src.negate)
1493 return src;
1494
1495 fs_reg temp = bld.vgrf(src.type);
1496 bld.MOV(temp, src);
1497
1498 return temp;
1499 }
1500
1501 void
1502 fs_visitor::emit_discard_jump()
1503 {
1504 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1505
1506 /* For performance, after a discard, jump to the end of the
1507 * shader if all relevant channels have been discarded.
1508 */
1509 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1510 discard_jump->flag_subreg = 1;
1511
1512 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1513 discard_jump->predicate_inverse = true;
1514 }
1515
1516 void
1517 fs_visitor::emit_gs_thread_end()
1518 {
1519 assert(stage == MESA_SHADER_GEOMETRY);
1520
1521 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1522
1523 if (gs_compile->control_data_header_size_bits > 0) {
1524 emit_gs_control_data_bits(this->final_gs_vertex_count);
1525 }
1526
1527 const fs_builder abld = bld.annotate("thread end");
1528 fs_inst *inst;
1529
1530 if (gs_prog_data->static_vertex_count != -1) {
1531 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1532 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1533 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1534 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1535 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1536 prev->eot = true;
1537
1538 /* Delete now dead instructions. */
1539 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1540 if (dead == prev)
1541 break;
1542 dead->remove();
1543 }
1544 return;
1545 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1546 break;
1547 }
1548 }
1549 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1550 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1551 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1552 inst->mlen = 1;
1553 } else {
1554 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1555 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1556 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1557 sources[1] = this->final_gs_vertex_count;
1558 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1559 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1560 inst->mlen = 2;
1561 }
1562 inst->eot = true;
1563 inst->offset = 0;
1564 }
1565
1566 void
1567 fs_visitor::assign_curb_setup()
1568 {
1569 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1570
1571 unsigned ubo_push_length = 0;
1572 unsigned ubo_push_start[4];
1573 for (int i = 0; i < 4; i++) {
1574 ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1575 ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1576 }
1577
1578 prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1579
1580 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1581 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1582 for (unsigned int i = 0; i < inst->sources; i++) {
1583 if (inst->src[i].file == UNIFORM) {
1584 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1585 int constant_nr;
1586 if (inst->src[i].nr >= UBO_START) {
1587 /* constant_nr is in 32-bit units, the rest are in bytes */
1588 constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1589 inst->src[i].offset / 4;
1590 } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1591 constant_nr = push_constant_loc[uniform_nr];
1592 } else {
1593 /* Section 5.11 of the OpenGL 4.1 spec says:
1594 * "Out-of-bounds reads return undefined values, which include
1595 * values from other variables of the active program or zero."
1596 * Just return the first push constant.
1597 */
1598 constant_nr = 0;
1599 }
1600
1601 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1602 constant_nr / 8,
1603 constant_nr % 8);
1604 brw_reg.abs = inst->src[i].abs;
1605 brw_reg.negate = inst->src[i].negate;
1606
1607 assert(inst->src[i].stride == 0);
1608 inst->src[i] = byte_offset(
1609 retype(brw_reg, inst->src[i].type),
1610 inst->src[i].offset % 4);
1611 }
1612 }
1613 }
1614
1615 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1616 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1617 }
1618
1619 static void
1620 calculate_urb_setup(const struct gen_device_info *devinfo,
1621 const struct brw_wm_prog_key *key,
1622 struct brw_wm_prog_data *prog_data,
1623 const nir_shader *nir)
1624 {
1625 memset(prog_data->urb_setup, -1,
1626 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1627
1628 int urb_next = 0;
1629 /* Figure out where each of the incoming setup attributes lands. */
1630 if (devinfo->gen >= 6) {
1631 if (util_bitcount64(nir->info.inputs_read &
1632 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1633 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1634 * first 16 varying inputs, so we can put them wherever we want.
1635 * Just put them in order.
1636 *
1637 * This is useful because it means that (a) inputs not used by the
1638 * fragment shader won't take up valuable register space, and (b) we
1639 * won't have to recompile the fragment shader if it gets paired with
1640 * a different vertex (or geometry) shader.
1641 */
1642 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1643 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1644 BITFIELD64_BIT(i)) {
1645 prog_data->urb_setup[i] = urb_next++;
1646 }
1647 }
1648 } else {
1649 /* We have enough input varyings that the SF/SBE pipeline stage can't
1650 * arbitrarily rearrange them to suit our whim; we have to put them
1651 * in an order that matches the output of the previous pipeline stage
1652 * (geometry or vertex shader).
1653 */
1654 struct brw_vue_map prev_stage_vue_map;
1655 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1656 key->input_slots_valid,
1657 nir->info.separate_shader);
1658
1659 int first_slot =
1660 brw_compute_first_urb_slot_required(nir->info.inputs_read,
1661 &prev_stage_vue_map);
1662
1663 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1664 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1665 slot++) {
1666 int varying = prev_stage_vue_map.slot_to_varying[slot];
1667 if (varying != BRW_VARYING_SLOT_PAD &&
1668 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1669 BITFIELD64_BIT(varying))) {
1670 prog_data->urb_setup[varying] = slot - first_slot;
1671 }
1672 }
1673 urb_next = prev_stage_vue_map.num_slots - first_slot;
1674 }
1675 } else {
1676 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1677 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1678 /* Point size is packed into the header, not as a general attribute */
1679 if (i == VARYING_SLOT_PSIZ)
1680 continue;
1681
1682 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1683 /* The back color slot is skipped when the front color is
1684 * also written to. In addition, some slots can be
1685 * written in the vertex shader and not read in the
1686 * fragment shader. So the register number must always be
1687 * incremented, mapped or not.
1688 */
1689 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1690 prog_data->urb_setup[i] = urb_next;
1691 urb_next++;
1692 }
1693 }
1694
1695 /*
1696 * It's a FS only attribute, and we did interpolation for this attribute
1697 * in SF thread. So, count it here, too.
1698 *
1699 * See compile_sf_prog() for more info.
1700 */
1701 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1702 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1703 }
1704
1705 prog_data->num_varying_inputs = urb_next;
1706 }
1707
1708 void
1709 fs_visitor::assign_urb_setup()
1710 {
1711 assert(stage == MESA_SHADER_FRAGMENT);
1712 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1713
1714 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1715
1716 /* Offset all the urb_setup[] index by the actual position of the
1717 * setup regs, now that the location of the constants has been chosen.
1718 */
1719 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1720 for (int i = 0; i < inst->sources; i++) {
1721 if (inst->src[i].file == ATTR) {
1722 /* ATTR regs in the FS are in units of logical scalar inputs each
1723 * of which consumes half of a GRF register.
1724 */
1725 assert(inst->src[i].offset < REG_SIZE / 2);
1726 const unsigned grf = urb_start + inst->src[i].nr / 2;
1727 const unsigned offset = (inst->src[i].nr % 2) * (REG_SIZE / 2) +
1728 inst->src[i].offset;
1729 const unsigned width = inst->src[i].stride == 0 ?
1730 1 : MIN2(inst->exec_size, 8);
1731 struct brw_reg reg = stride(
1732 byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1733 offset),
1734 width * inst->src[i].stride,
1735 width, inst->src[i].stride);
1736 reg.abs = inst->src[i].abs;
1737 reg.negate = inst->src[i].negate;
1738 inst->src[i] = reg;
1739 }
1740 }
1741 }
1742
1743 /* Each attribute is 4 setup channels, each of which is half a reg. */
1744 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1745 }
1746
1747 void
1748 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1749 {
1750 for (int i = 0; i < inst->sources; i++) {
1751 if (inst->src[i].file == ATTR) {
1752 int grf = payload.num_regs +
1753 prog_data->curb_read_length +
1754 inst->src[i].nr +
1755 inst->src[i].offset / REG_SIZE;
1756
1757 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1758 *
1759 * VertStride must be used to cross GRF register boundaries. This
1760 * rule implies that elements within a 'Width' cannot cross GRF
1761 * boundaries.
1762 *
1763 * So, for registers that are large enough, we have to split the exec
1764 * size in two and trust the compression state to sort it out.
1765 */
1766 unsigned total_size = inst->exec_size *
1767 inst->src[i].stride *
1768 type_sz(inst->src[i].type);
1769
1770 assert(total_size <= 2 * REG_SIZE);
1771 const unsigned exec_size =
1772 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1773
1774 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1775 struct brw_reg reg =
1776 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1777 inst->src[i].offset % REG_SIZE),
1778 exec_size * inst->src[i].stride,
1779 width, inst->src[i].stride);
1780 reg.abs = inst->src[i].abs;
1781 reg.negate = inst->src[i].negate;
1782
1783 inst->src[i] = reg;
1784 }
1785 }
1786 }
1787
1788 void
1789 fs_visitor::assign_vs_urb_setup()
1790 {
1791 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1792
1793 assert(stage == MESA_SHADER_VERTEX);
1794
1795 /* Each attribute is 4 regs. */
1796 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1797
1798 assert(vs_prog_data->base.urb_read_length <= 15);
1799
1800 /* Rewrite all ATTR file references to the hw grf that they land in. */
1801 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1802 convert_attr_sources_to_hw_regs(inst);
1803 }
1804 }
1805
1806 void
1807 fs_visitor::assign_tcs_urb_setup()
1808 {
1809 assert(stage == MESA_SHADER_TESS_CTRL);
1810
1811 /* Rewrite all ATTR file references to HW_REGs. */
1812 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1813 convert_attr_sources_to_hw_regs(inst);
1814 }
1815 }
1816
1817 void
1818 fs_visitor::assign_tes_urb_setup()
1819 {
1820 assert(stage == MESA_SHADER_TESS_EVAL);
1821
1822 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1823
1824 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1825
1826 /* Rewrite all ATTR file references to HW_REGs. */
1827 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1828 convert_attr_sources_to_hw_regs(inst);
1829 }
1830 }
1831
1832 void
1833 fs_visitor::assign_gs_urb_setup()
1834 {
1835 assert(stage == MESA_SHADER_GEOMETRY);
1836
1837 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1838
1839 first_non_payload_grf +=
1840 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1841
1842 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1843 /* Rewrite all ATTR file references to GRFs. */
1844 convert_attr_sources_to_hw_regs(inst);
1845 }
1846 }
1847
1848
1849 /**
1850 * Split large virtual GRFs into separate components if we can.
1851 *
1852 * This is mostly duplicated with what brw_fs_vector_splitting does,
1853 * but that's really conservative because it's afraid of doing
1854 * splitting that doesn't result in real progress after the rest of
1855 * the optimization phases, which would cause infinite looping in
1856 * optimization. We can do it once here, safely. This also has the
1857 * opportunity to split interpolated values, or maybe even uniforms,
1858 * which we don't have at the IR level.
1859 *
1860 * We want to split, because virtual GRFs are what we register
1861 * allocate and spill (due to contiguousness requirements for some
1862 * instructions), and they're what we naturally generate in the
1863 * codegen process, but most virtual GRFs don't actually need to be
1864 * contiguous sets of GRFs. If we split, we'll end up with reduced
1865 * live intervals and better dead code elimination and coalescing.
1866 */
1867 void
1868 fs_visitor::split_virtual_grfs()
1869 {
1870 /* Compact the register file so we eliminate dead vgrfs. This
1871 * only defines split points for live registers, so if we have
1872 * too large dead registers they will hit assertions later.
1873 */
1874 compact_virtual_grfs();
1875
1876 int num_vars = this->alloc.count;
1877
1878 /* Count the total number of registers */
1879 int reg_count = 0;
1880 int vgrf_to_reg[num_vars];
1881 for (int i = 0; i < num_vars; i++) {
1882 vgrf_to_reg[i] = reg_count;
1883 reg_count += alloc.sizes[i];
1884 }
1885
1886 /* An array of "split points". For each register slot, this indicates
1887 * if this slot can be separated from the previous slot. Every time an
1888 * instruction uses multiple elements of a register (as a source or
1889 * destination), we mark the used slots as inseparable. Then we go
1890 * through and split the registers into the smallest pieces we can.
1891 */
1892 bool *split_points = new bool[reg_count];
1893 memset(split_points, 0, reg_count * sizeof(*split_points));
1894
1895 /* Mark all used registers as fully splittable */
1896 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1897 if (inst->dst.file == VGRF) {
1898 int reg = vgrf_to_reg[inst->dst.nr];
1899 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1900 split_points[reg + j] = true;
1901 }
1902
1903 for (int i = 0; i < inst->sources; i++) {
1904 if (inst->src[i].file == VGRF) {
1905 int reg = vgrf_to_reg[inst->src[i].nr];
1906 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1907 split_points[reg + j] = true;
1908 }
1909 }
1910 }
1911
1912 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1913 /* We fix up undef instructions later */
1914 if (inst->opcode == SHADER_OPCODE_UNDEF) {
1915 /* UNDEF instructions are currently only used to undef entire
1916 * registers. We need this invariant later when we split them.
1917 */
1918 assert(inst->dst.file == VGRF);
1919 assert(inst->dst.offset == 0);
1920 assert(inst->size_written == alloc.sizes[inst->dst.nr] * REG_SIZE);
1921 continue;
1922 }
1923
1924 if (inst->dst.file == VGRF) {
1925 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1926 for (unsigned j = 1; j < regs_written(inst); j++)
1927 split_points[reg + j] = false;
1928 }
1929 for (int i = 0; i < inst->sources; i++) {
1930 if (inst->src[i].file == VGRF) {
1931 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1932 for (unsigned j = 1; j < regs_read(inst, i); j++)
1933 split_points[reg + j] = false;
1934 }
1935 }
1936 }
1937
1938 int *new_virtual_grf = new int[reg_count];
1939 int *new_reg_offset = new int[reg_count];
1940
1941 int reg = 0;
1942 for (int i = 0; i < num_vars; i++) {
1943 /* The first one should always be 0 as a quick sanity check. */
1944 assert(split_points[reg] == false);
1945
1946 /* j = 0 case */
1947 new_reg_offset[reg] = 0;
1948 reg++;
1949 int offset = 1;
1950
1951 /* j > 0 case */
1952 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1953 /* If this is a split point, reset the offset to 0 and allocate a
1954 * new virtual GRF for the previous offset many registers
1955 */
1956 if (split_points[reg]) {
1957 assert(offset <= MAX_VGRF_SIZE);
1958 int grf = alloc.allocate(offset);
1959 for (int k = reg - offset; k < reg; k++)
1960 new_virtual_grf[k] = grf;
1961 offset = 0;
1962 }
1963 new_reg_offset[reg] = offset;
1964 offset++;
1965 reg++;
1966 }
1967
1968 /* The last one gets the original register number */
1969 assert(offset <= MAX_VGRF_SIZE);
1970 alloc.sizes[i] = offset;
1971 for (int k = reg - offset; k < reg; k++)
1972 new_virtual_grf[k] = i;
1973 }
1974 assert(reg == reg_count);
1975
1976 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1977 if (inst->opcode == SHADER_OPCODE_UNDEF) {
1978 const fs_builder ibld(this, block, inst);
1979 assert(inst->size_written % REG_SIZE == 0);
1980 unsigned reg_offset = 0;
1981 while (reg_offset < inst->size_written / REG_SIZE) {
1982 reg = vgrf_to_reg[inst->dst.nr] + reg_offset;
1983 ibld.UNDEF(fs_reg(VGRF, new_virtual_grf[reg], inst->dst.type));
1984 reg_offset += alloc.sizes[new_virtual_grf[reg]];
1985 }
1986 inst->remove(block);
1987 continue;
1988 }
1989
1990 if (inst->dst.file == VGRF) {
1991 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1992 inst->dst.nr = new_virtual_grf[reg];
1993 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1994 inst->dst.offset % REG_SIZE;
1995 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1996 }
1997 for (int i = 0; i < inst->sources; i++) {
1998 if (inst->src[i].file == VGRF) {
1999 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
2000 inst->src[i].nr = new_virtual_grf[reg];
2001 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
2002 inst->src[i].offset % REG_SIZE;
2003 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
2004 }
2005 }
2006 }
2007 invalidate_live_intervals();
2008
2009 delete[] split_points;
2010 delete[] new_virtual_grf;
2011 delete[] new_reg_offset;
2012 }
2013
2014 /**
2015 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
2016 *
2017 * During code generation, we create tons of temporary variables, many of
2018 * which get immediately killed and are never used again. Yet, in later
2019 * optimization and analysis passes, such as compute_live_intervals, we need
2020 * to loop over all the virtual GRFs. Compacting them can save a lot of
2021 * overhead.
2022 */
2023 bool
2024 fs_visitor::compact_virtual_grfs()
2025 {
2026 bool progress = false;
2027 int *remap_table = new int[this->alloc.count];
2028 memset(remap_table, -1, this->alloc.count * sizeof(int));
2029
2030 /* Mark which virtual GRFs are used. */
2031 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
2032 if (inst->dst.file == VGRF)
2033 remap_table[inst->dst.nr] = 0;
2034
2035 for (int i = 0; i < inst->sources; i++) {
2036 if (inst->src[i].file == VGRF)
2037 remap_table[inst->src[i].nr] = 0;
2038 }
2039 }
2040
2041 /* Compact the GRF arrays. */
2042 int new_index = 0;
2043 for (unsigned i = 0; i < this->alloc.count; i++) {
2044 if (remap_table[i] == -1) {
2045 /* We just found an unused register. This means that we are
2046 * actually going to compact something.
2047 */
2048 progress = true;
2049 } else {
2050 remap_table[i] = new_index;
2051 alloc.sizes[new_index] = alloc.sizes[i];
2052 invalidate_live_intervals();
2053 ++new_index;
2054 }
2055 }
2056
2057 this->alloc.count = new_index;
2058
2059 /* Patch all the instructions to use the newly renumbered registers */
2060 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2061 if (inst->dst.file == VGRF)
2062 inst->dst.nr = remap_table[inst->dst.nr];
2063
2064 for (int i = 0; i < inst->sources; i++) {
2065 if (inst->src[i].file == VGRF)
2066 inst->src[i].nr = remap_table[inst->src[i].nr];
2067 }
2068 }
2069
2070 /* Patch all the references to delta_xy, since they're used in register
2071 * allocation. If they're unused, switch them to BAD_FILE so we don't
2072 * think some random VGRF is delta_xy.
2073 */
2074 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2075 if (delta_xy[i].file == VGRF) {
2076 if (remap_table[delta_xy[i].nr] != -1) {
2077 delta_xy[i].nr = remap_table[delta_xy[i].nr];
2078 } else {
2079 delta_xy[i].file = BAD_FILE;
2080 }
2081 }
2082 }
2083
2084 delete[] remap_table;
2085
2086 return progress;
2087 }
2088
2089 static int
2090 get_subgroup_id_param_index(const brw_stage_prog_data *prog_data)
2091 {
2092 if (prog_data->nr_params == 0)
2093 return -1;
2094
2095 /* The local thread id is always the last parameter in the list */
2096 uint32_t last_param = prog_data->param[prog_data->nr_params - 1];
2097 if (last_param == BRW_PARAM_BUILTIN_SUBGROUP_ID)
2098 return prog_data->nr_params - 1;
2099
2100 return -1;
2101 }
2102
2103 /**
2104 * Struct for handling complex alignments.
2105 *
2106 * A complex alignment is stored as multiplier and an offset. A value is
2107 * considered to be aligned if it is {offset} larger than a multiple of {mul}.
2108 * For instance, with an alignment of {8, 2}, cplx_align_apply would do the
2109 * following:
2110 *
2111 * N | cplx_align_apply({8, 2}, N)
2112 * ----+-----------------------------
2113 * 4 | 6
2114 * 6 | 6
2115 * 8 | 14
2116 * 10 | 14
2117 * 12 | 14
2118 * 14 | 14
2119 * 16 | 22
2120 */
2121 struct cplx_align {
2122 unsigned mul:4;
2123 unsigned offset:4;
2124 };
2125
2126 #define CPLX_ALIGN_MAX_MUL 8
2127
2128 static void
2129 cplx_align_assert_sane(struct cplx_align a)
2130 {
2131 assert(a.mul > 0 && util_is_power_of_two_nonzero(a.mul));
2132 assert(a.offset < a.mul);
2133 }
2134
2135 /**
2136 * Combines two alignments to produce a least multiple of sorts.
2137 *
2138 * The returned alignment is the smallest (in terms of multiplier) such that
2139 * anything aligned to both a and b will be aligned to the new alignment.
2140 * This function will assert-fail if a and b are not compatible, i.e. if the
2141 * offset parameters are such that no common alignment is possible.
2142 */
2143 static struct cplx_align
2144 cplx_align_combine(struct cplx_align a, struct cplx_align b)
2145 {
2146 cplx_align_assert_sane(a);
2147 cplx_align_assert_sane(b);
2148
2149 /* Assert that the alignments agree. */
2150 assert((a.offset & (b.mul - 1)) == (b.offset & (a.mul - 1)));
2151
2152 return a.mul > b.mul ? a : b;
2153 }
2154
2155 /**
2156 * Apply a complex alignment
2157 *
2158 * This function will return the smallest number greater than or equal to
2159 * offset that is aligned to align.
2160 */
2161 static unsigned
2162 cplx_align_apply(struct cplx_align align, unsigned offset)
2163 {
2164 return ALIGN(offset - align.offset, align.mul) + align.offset;
2165 }
2166
2167 #define UNIFORM_SLOT_SIZE 4
2168
2169 struct uniform_slot_info {
2170 /** True if the given uniform slot is live */
2171 unsigned is_live:1;
2172
2173 /** True if this slot and the next slot must remain contiguous */
2174 unsigned contiguous:1;
2175
2176 struct cplx_align align;
2177 };
2178
2179 static void
2180 mark_uniform_slots_read(struct uniform_slot_info *slots,
2181 unsigned num_slots, unsigned alignment)
2182 {
2183 assert(alignment > 0 && util_is_power_of_two_nonzero(alignment));
2184 assert(alignment <= CPLX_ALIGN_MAX_MUL);
2185
2186 /* We can't align a slot to anything less than the slot size */
2187 alignment = MAX2(alignment, UNIFORM_SLOT_SIZE);
2188
2189 struct cplx_align align = {alignment, 0};
2190 cplx_align_assert_sane(align);
2191
2192 for (unsigned i = 0; i < num_slots; i++) {
2193 slots[i].is_live = true;
2194 if (i < num_slots - 1)
2195 slots[i].contiguous = true;
2196
2197 align.offset = (i * UNIFORM_SLOT_SIZE) & (align.mul - 1);
2198 if (slots[i].align.mul == 0) {
2199 slots[i].align = align;
2200 } else {
2201 slots[i].align = cplx_align_combine(slots[i].align, align);
2202 }
2203 }
2204 }
2205
2206 /**
2207 * Assign UNIFORM file registers to either push constants or pull constants.
2208 *
2209 * We allow a fragment shader to have more than the specified minimum
2210 * maximum number of fragment shader uniform components (64). If
2211 * there are too many of these, they'd fill up all of register space.
2212 * So, this will push some of them out to the pull constant buffer and
2213 * update the program to load them.
2214 */
2215 void
2216 fs_visitor::assign_constant_locations()
2217 {
2218 /* Only the first compile gets to decide on locations. */
2219 if (push_constant_loc) {
2220 assert(pull_constant_loc);
2221 return;
2222 }
2223
2224 struct uniform_slot_info slots[uniforms];
2225 memset(slots, 0, sizeof(slots));
2226
2227 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2228 for (int i = 0 ; i < inst->sources; i++) {
2229 if (inst->src[i].file != UNIFORM)
2230 continue;
2231
2232 /* NIR tightly packs things so the uniform number might not be
2233 * aligned (if we have a double right after a float, for instance).
2234 * This is fine because the process of re-arranging them will ensure
2235 * that things are properly aligned. The offset into that uniform,
2236 * however, must be aligned.
2237 *
2238 * In Vulkan, we have explicit offsets but everything is crammed
2239 * into a single "variable" so inst->src[i].nr will always be 0.
2240 * Everything will be properly aligned relative to that one base.
2241 */
2242 assert(inst->src[i].offset % type_sz(inst->src[i].type) == 0);
2243
2244 unsigned u = inst->src[i].nr +
2245 inst->src[i].offset / UNIFORM_SLOT_SIZE;
2246
2247 if (u >= uniforms)
2248 continue;
2249
2250 unsigned slots_read;
2251 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
2252 slots_read = DIV_ROUND_UP(inst->src[2].ud, UNIFORM_SLOT_SIZE);
2253 } else {
2254 unsigned bytes_read = inst->components_read(i) *
2255 type_sz(inst->src[i].type);
2256 slots_read = DIV_ROUND_UP(bytes_read, UNIFORM_SLOT_SIZE);
2257 }
2258
2259 assert(u + slots_read <= uniforms);
2260 mark_uniform_slots_read(&slots[u], slots_read,
2261 type_sz(inst->src[i].type));
2262 }
2263 }
2264
2265 int subgroup_id_index = get_subgroup_id_param_index(stage_prog_data);
2266
2267 /* Only allow 16 registers (128 uniform components) as push constants.
2268 *
2269 * Just demote the end of the list. We could probably do better
2270 * here, demoting things that are rarely used in the program first.
2271 *
2272 * If changing this value, note the limitation about total_regs in
2273 * brw_curbe.c.
2274 */
2275 unsigned int max_push_components = 16 * 8;
2276 if (subgroup_id_index >= 0)
2277 max_push_components--; /* Save a slot for the thread ID */
2278
2279 /* We push small arrays, but no bigger than 16 floats. This is big enough
2280 * for a vec4 but hopefully not large enough to push out other stuff. We
2281 * should probably use a better heuristic at some point.
2282 */
2283 const unsigned int max_chunk_size = 16;
2284
2285 unsigned int num_push_constants = 0;
2286 unsigned int num_pull_constants = 0;
2287
2288 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2289 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2290
2291 /* Default to -1 meaning no location */
2292 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2293 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2294
2295 int chunk_start = -1;
2296 struct cplx_align align;
2297 for (unsigned u = 0; u < uniforms; u++) {
2298 if (!slots[u].is_live) {
2299 assert(chunk_start == -1);
2300 continue;
2301 }
2302
2303 /* Skip subgroup_id_index to put it in the last push register. */
2304 if (subgroup_id_index == (int)u)
2305 continue;
2306
2307 if (chunk_start == -1) {
2308 chunk_start = u;
2309 align = slots[u].align;
2310 } else {
2311 /* Offset into the chunk */
2312 unsigned chunk_offset = (u - chunk_start) * UNIFORM_SLOT_SIZE;
2313
2314 /* Shift the slot alignment down by the chunk offset so it is
2315 * comparable with the base chunk alignment.
2316 */
2317 struct cplx_align slot_align = slots[u].align;
2318 slot_align.offset =
2319 (slot_align.offset - chunk_offset) & (align.mul - 1);
2320
2321 align = cplx_align_combine(align, slot_align);
2322 }
2323
2324 /* Sanity check the alignment */
2325 cplx_align_assert_sane(align);
2326
2327 if (slots[u].contiguous)
2328 continue;
2329
2330 /* Adjust the alignment to be in terms of slots, not bytes */
2331 assert((align.mul & (UNIFORM_SLOT_SIZE - 1)) == 0);
2332 assert((align.offset & (UNIFORM_SLOT_SIZE - 1)) == 0);
2333 align.mul /= UNIFORM_SLOT_SIZE;
2334 align.offset /= UNIFORM_SLOT_SIZE;
2335
2336 unsigned push_start_align = cplx_align_apply(align, num_push_constants);
2337 unsigned chunk_size = u - chunk_start + 1;
2338 if ((!compiler->supports_pull_constants && u < UBO_START) ||
2339 (chunk_size < max_chunk_size &&
2340 push_start_align + chunk_size <= max_push_components)) {
2341 /* Align up the number of push constants */
2342 num_push_constants = push_start_align;
2343 for (unsigned i = 0; i < chunk_size; i++)
2344 push_constant_loc[chunk_start + i] = num_push_constants++;
2345 } else {
2346 /* We need to pull this one */
2347 num_pull_constants = cplx_align_apply(align, num_pull_constants);
2348 for (unsigned i = 0; i < chunk_size; i++)
2349 pull_constant_loc[chunk_start + i] = num_pull_constants++;
2350 }
2351
2352 /* Reset the chunk and start again */
2353 chunk_start = -1;
2354 }
2355
2356 /* Add the CS local thread ID uniform at the end of the push constants */
2357 if (subgroup_id_index >= 0)
2358 push_constant_loc[subgroup_id_index] = num_push_constants++;
2359
2360 /* As the uniforms are going to be reordered, stash the old array and
2361 * create two new arrays for push/pull params.
2362 */
2363 uint32_t *param = stage_prog_data->param;
2364 stage_prog_data->nr_params = num_push_constants;
2365 if (num_push_constants) {
2366 stage_prog_data->param = rzalloc_array(mem_ctx, uint32_t,
2367 num_push_constants);
2368 } else {
2369 stage_prog_data->param = NULL;
2370 }
2371 assert(stage_prog_data->nr_pull_params == 0);
2372 assert(stage_prog_data->pull_param == NULL);
2373 if (num_pull_constants > 0) {
2374 stage_prog_data->nr_pull_params = num_pull_constants;
2375 stage_prog_data->pull_param = rzalloc_array(mem_ctx, uint32_t,
2376 num_pull_constants);
2377 }
2378
2379 /* Now that we know how many regular uniforms we'll push, reduce the
2380 * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2381 */
2382 unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2383 for (int i = 0; i < 4; i++) {
2384 struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2385
2386 if (push_length + range->length > 64)
2387 range->length = 64 - push_length;
2388
2389 push_length += range->length;
2390 }
2391 assert(push_length <= 64);
2392
2393 /* Up until now, the param[] array has been indexed by reg + offset
2394 * of UNIFORM registers. Move pull constants into pull_param[] and
2395 * condense param[] to only contain the uniforms we chose to push.
2396 *
2397 * NOTE: Because we are condensing the params[] array, we know that
2398 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2399 * having to make a copy.
2400 */
2401 for (unsigned int i = 0; i < uniforms; i++) {
2402 uint32_t value = param[i];
2403 if (pull_constant_loc[i] != -1) {
2404 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2405 } else if (push_constant_loc[i] != -1) {
2406 stage_prog_data->param[push_constant_loc[i]] = value;
2407 }
2408 }
2409 ralloc_free(param);
2410 }
2411
2412 bool
2413 fs_visitor::get_pull_locs(const fs_reg &src,
2414 unsigned *out_surf_index,
2415 unsigned *out_pull_index)
2416 {
2417 assert(src.file == UNIFORM);
2418
2419 if (src.nr >= UBO_START) {
2420 const struct brw_ubo_range *range =
2421 &prog_data->ubo_ranges[src.nr - UBO_START];
2422
2423 /* If this access is in our (reduced) range, use the push data. */
2424 if (src.offset / 32 < range->length)
2425 return false;
2426
2427 *out_surf_index = prog_data->binding_table.ubo_start + range->block;
2428 *out_pull_index = (32 * range->start + src.offset) / 4;
2429 return true;
2430 }
2431
2432 const unsigned location = src.nr + src.offset / 4;
2433
2434 if (location < uniforms && pull_constant_loc[location] != -1) {
2435 /* A regular uniform push constant */
2436 *out_surf_index = stage_prog_data->binding_table.pull_constants_start;
2437 *out_pull_index = pull_constant_loc[location];
2438 return true;
2439 }
2440
2441 return false;
2442 }
2443
2444 /**
2445 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2446 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2447 */
2448 void
2449 fs_visitor::lower_constant_loads()
2450 {
2451 unsigned index, pull_index;
2452
2453 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2454 /* Set up the annotation tracking for new generated instructions. */
2455 const fs_builder ibld(this, block, inst);
2456
2457 for (int i = 0; i < inst->sources; i++) {
2458 if (inst->src[i].file != UNIFORM)
2459 continue;
2460
2461 /* We'll handle this case later */
2462 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2463 continue;
2464
2465 if (!get_pull_locs(inst->src[i], &index, &pull_index))
2466 continue;
2467
2468 assert(inst->src[i].stride == 0);
2469
2470 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2471 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2472 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2473 const unsigned base = pull_index * 4;
2474
2475 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2476 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2477
2478 /* Rewrite the instruction to use the temporary VGRF. */
2479 inst->src[i].file = VGRF;
2480 inst->src[i].nr = dst.nr;
2481 inst->src[i].offset = (base & (block_sz - 1)) +
2482 inst->src[i].offset % 4;
2483 }
2484
2485 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2486 inst->src[0].file == UNIFORM) {
2487
2488 if (!get_pull_locs(inst->src[0], &index, &pull_index))
2489 continue;
2490
2491 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2492 brw_imm_ud(index),
2493 inst->src[1],
2494 pull_index * 4);
2495 inst->remove(block);
2496 }
2497 }
2498 invalidate_live_intervals();
2499 }
2500
2501 bool
2502 fs_visitor::opt_algebraic()
2503 {
2504 bool progress = false;
2505
2506 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2507 switch (inst->opcode) {
2508 case BRW_OPCODE_MOV:
2509 if (!devinfo->has_64bit_types &&
2510 (inst->dst.type == BRW_REGISTER_TYPE_DF ||
2511 inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2512 inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2513 assert(inst->dst.type == inst->src[0].type);
2514 assert(!inst->saturate);
2515 assert(!inst->src[0].abs);
2516 assert(!inst->src[0].negate);
2517 const brw::fs_builder ibld(this, block, inst);
2518
2519 if (inst->src[0].file == IMM) {
2520 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2521 brw_imm_ud(inst->src[0].u64 >> 32));
2522 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2523 brw_imm_ud(inst->src[0].u64));
2524 } else {
2525 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2526 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1));
2527 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2528 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0));
2529 }
2530
2531 inst->remove(block);
2532 progress = true;
2533 }
2534
2535 if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2536 inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2537 inst->dst.is_null() &&
2538 (inst->src[0].abs || inst->src[0].negate)) {
2539 inst->src[0].abs = false;
2540 inst->src[0].negate = false;
2541 progress = true;
2542 break;
2543 }
2544
2545 if (inst->src[0].file != IMM)
2546 break;
2547
2548 if (inst->saturate) {
2549 /* Full mixed-type saturates don't happen. However, we can end up
2550 * with things like:
2551 *
2552 * mov.sat(8) g21<1>DF -1F
2553 *
2554 * Other mixed-size-but-same-base-type cases may also be possible.
2555 */
2556 if (inst->dst.type != inst->src[0].type &&
2557 inst->dst.type != BRW_REGISTER_TYPE_DF &&
2558 inst->src[0].type != BRW_REGISTER_TYPE_F)
2559 assert(!"unimplemented: saturate mixed types");
2560
2561 if (brw_saturate_immediate(inst->src[0].type,
2562 &inst->src[0].as_brw_reg())) {
2563 inst->saturate = false;
2564 progress = true;
2565 }
2566 }
2567 break;
2568
2569 case BRW_OPCODE_MUL:
2570 if (inst->src[1].file != IMM)
2571 continue;
2572
2573 /* a * 1.0 = a */
2574 if (inst->src[1].is_one()) {
2575 inst->opcode = BRW_OPCODE_MOV;
2576 inst->src[1] = reg_undef;
2577 progress = true;
2578 break;
2579 }
2580
2581 /* a * -1.0 = -a */
2582 if (inst->src[1].is_negative_one()) {
2583 inst->opcode = BRW_OPCODE_MOV;
2584 inst->src[0].negate = !inst->src[0].negate;
2585 inst->src[1] = reg_undef;
2586 progress = true;
2587 break;
2588 }
2589
2590 if (inst->src[0].file == IMM) {
2591 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2592 inst->opcode = BRW_OPCODE_MOV;
2593 inst->src[0].f *= inst->src[1].f;
2594 inst->src[1] = reg_undef;
2595 progress = true;
2596 break;
2597 }
2598 break;
2599 case BRW_OPCODE_ADD:
2600 if (inst->src[1].file != IMM)
2601 continue;
2602
2603 if (inst->src[0].file == IMM) {
2604 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2605 inst->opcode = BRW_OPCODE_MOV;
2606 inst->src[0].f += inst->src[1].f;
2607 inst->src[1] = reg_undef;
2608 progress = true;
2609 break;
2610 }
2611 break;
2612 case BRW_OPCODE_OR:
2613 if (inst->src[0].equals(inst->src[1]) ||
2614 inst->src[1].is_zero()) {
2615 /* On Gen8+, the OR instruction can have a source modifier that
2616 * performs logical not on the operand. Cases of 'OR r0, ~r1, 0'
2617 * or 'OR r0, ~r1, ~r1' should become a NOT instead of a MOV.
2618 */
2619 if (inst->src[0].negate) {
2620 inst->opcode = BRW_OPCODE_NOT;
2621 inst->src[0].negate = false;
2622 } else {
2623 inst->opcode = BRW_OPCODE_MOV;
2624 }
2625 inst->src[1] = reg_undef;
2626 progress = true;
2627 break;
2628 }
2629 break;
2630 case BRW_OPCODE_CMP:
2631 if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2632 inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2633 inst->src[1].is_zero() &&
2634 (inst->src[0].abs || inst->src[0].negate)) {
2635 inst->src[0].abs = false;
2636 inst->src[0].negate = false;
2637 progress = true;
2638 break;
2639 }
2640 break;
2641 case BRW_OPCODE_SEL:
2642 if (!devinfo->has_64bit_types &&
2643 (inst->dst.type == BRW_REGISTER_TYPE_DF ||
2644 inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2645 inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2646 assert(inst->dst.type == inst->src[0].type);
2647 assert(!inst->saturate);
2648 assert(!inst->src[0].abs && !inst->src[0].negate);
2649 assert(!inst->src[1].abs && !inst->src[1].negate);
2650 const brw::fs_builder ibld(this, block, inst);
2651
2652 set_predicate(inst->predicate,
2653 ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2654 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
2655 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0)));
2656 set_predicate(inst->predicate,
2657 ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2658 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1),
2659 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1)));
2660
2661 inst->remove(block);
2662 progress = true;
2663 }
2664 if (inst->src[0].equals(inst->src[1])) {
2665 inst->opcode = BRW_OPCODE_MOV;
2666 inst->src[1] = reg_undef;
2667 inst->predicate = BRW_PREDICATE_NONE;
2668 inst->predicate_inverse = false;
2669 progress = true;
2670 } else if (inst->saturate && inst->src[1].file == IMM) {
2671 switch (inst->conditional_mod) {
2672 case BRW_CONDITIONAL_LE:
2673 case BRW_CONDITIONAL_L:
2674 switch (inst->src[1].type) {
2675 case BRW_REGISTER_TYPE_F:
2676 if (inst->src[1].f >= 1.0f) {
2677 inst->opcode = BRW_OPCODE_MOV;
2678 inst->src[1] = reg_undef;
2679 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2680 progress = true;
2681 }
2682 break;
2683 default:
2684 break;
2685 }
2686 break;
2687 case BRW_CONDITIONAL_GE:
2688 case BRW_CONDITIONAL_G:
2689 switch (inst->src[1].type) {
2690 case BRW_REGISTER_TYPE_F:
2691 if (inst->src[1].f <= 0.0f) {
2692 inst->opcode = BRW_OPCODE_MOV;
2693 inst->src[1] = reg_undef;
2694 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2695 progress = true;
2696 }
2697 break;
2698 default:
2699 break;
2700 }
2701 default:
2702 break;
2703 }
2704 }
2705 break;
2706 case BRW_OPCODE_MAD:
2707 if (inst->src[0].type != BRW_REGISTER_TYPE_F ||
2708 inst->src[1].type != BRW_REGISTER_TYPE_F ||
2709 inst->src[2].type != BRW_REGISTER_TYPE_F)
2710 break;
2711 if (inst->src[1].is_one()) {
2712 inst->opcode = BRW_OPCODE_ADD;
2713 inst->src[1] = inst->src[2];
2714 inst->src[2] = reg_undef;
2715 progress = true;
2716 } else if (inst->src[2].is_one()) {
2717 inst->opcode = BRW_OPCODE_ADD;
2718 inst->src[2] = reg_undef;
2719 progress = true;
2720 }
2721 break;
2722 case SHADER_OPCODE_BROADCAST:
2723 if (is_uniform(inst->src[0])) {
2724 inst->opcode = BRW_OPCODE_MOV;
2725 inst->sources = 1;
2726 inst->force_writemask_all = true;
2727 progress = true;
2728 } else if (inst->src[1].file == IMM) {
2729 inst->opcode = BRW_OPCODE_MOV;
2730 /* It's possible that the selected component will be too large and
2731 * overflow the register. This can happen if someone does a
2732 * readInvocation() from GLSL or SPIR-V and provides an OOB
2733 * invocationIndex. If this happens and we some how manage
2734 * to constant fold it in and get here, then component() may cause
2735 * us to start reading outside of the VGRF which will lead to an
2736 * assert later. Instead, just let it wrap around if it goes over
2737 * exec_size.
2738 */
2739 const unsigned comp = inst->src[1].ud & (inst->exec_size - 1);
2740 inst->src[0] = component(inst->src[0], comp);
2741 inst->sources = 1;
2742 inst->force_writemask_all = true;
2743 progress = true;
2744 }
2745 break;
2746
2747 case SHADER_OPCODE_SHUFFLE:
2748 if (is_uniform(inst->src[0])) {
2749 inst->opcode = BRW_OPCODE_MOV;
2750 inst->sources = 1;
2751 progress = true;
2752 } else if (inst->src[1].file == IMM) {
2753 inst->opcode = BRW_OPCODE_MOV;
2754 inst->src[0] = component(inst->src[0],
2755 inst->src[1].ud);
2756 inst->sources = 1;
2757 progress = true;
2758 }
2759 break;
2760
2761 default:
2762 break;
2763 }
2764
2765 /* Swap if src[0] is immediate. */
2766 if (progress && inst->is_commutative()) {
2767 if (inst->src[0].file == IMM) {
2768 fs_reg tmp = inst->src[1];
2769 inst->src[1] = inst->src[0];
2770 inst->src[0] = tmp;
2771 }
2772 }
2773 }
2774 return progress;
2775 }
2776
2777 /**
2778 * Optimize sample messages that have constant zero values for the trailing
2779 * texture coordinates. We can just reduce the message length for these
2780 * instructions instead of reserving a register for it. Trailing parameters
2781 * that aren't sent default to zero anyway. This will cause the dead code
2782 * eliminator to remove the MOV instruction that would otherwise be emitted to
2783 * set up the zero value.
2784 */
2785 bool
2786 fs_visitor::opt_zero_samples()
2787 {
2788 /* Gen4 infers the texturing opcode based on the message length so we can't
2789 * change it.
2790 */
2791 if (devinfo->gen < 5)
2792 return false;
2793
2794 bool progress = false;
2795
2796 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2797 if (!inst->is_tex())
2798 continue;
2799
2800 fs_inst *load_payload = (fs_inst *) inst->prev;
2801
2802 if (load_payload->is_head_sentinel() ||
2803 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2804 continue;
2805
2806 /* We don't want to remove the message header or the first parameter.
2807 * Removing the first parameter is not allowed, see the Haswell PRM
2808 * volume 7, page 149:
2809 *
2810 * "Parameter 0 is required except for the sampleinfo message, which
2811 * has no parameter 0"
2812 */
2813 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2814 load_payload->src[(inst->mlen - inst->header_size) /
2815 (inst->exec_size / 8) +
2816 inst->header_size - 1].is_zero()) {
2817 inst->mlen -= inst->exec_size / 8;
2818 progress = true;
2819 }
2820 }
2821
2822 if (progress)
2823 invalidate_live_intervals();
2824
2825 return progress;
2826 }
2827
2828 /**
2829 * Optimize sample messages which are followed by the final RT write.
2830 *
2831 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2832 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2833 * final texturing results copied to the framebuffer write payload and modify
2834 * them to write to the framebuffer directly.
2835 */
2836 bool
2837 fs_visitor::opt_sampler_eot()
2838 {
2839 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2840
2841 if (stage != MESA_SHADER_FRAGMENT || dispatch_width > 16)
2842 return false;
2843
2844 if (devinfo->gen != 9 && !devinfo->is_cherryview)
2845 return false;
2846
2847 /* FINISHME: It should be possible to implement this optimization when there
2848 * are multiple drawbuffers.
2849 */
2850 if (key->nr_color_regions != 1)
2851 return false;
2852
2853 /* Requires emitting a bunch of saturating MOV instructions during logical
2854 * send lowering to clamp the color payload, which the sampler unit isn't
2855 * going to do for us.
2856 */
2857 if (key->clamp_fragment_color)
2858 return false;
2859
2860 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2861 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2862 fs_inst *fb_write = (fs_inst *)block->end();
2863 assert(fb_write->eot);
2864 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2865
2866 /* There wasn't one; nothing to do. */
2867 if (unlikely(fb_write->prev->is_head_sentinel()))
2868 return false;
2869
2870 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2871
2872 /* 3D Sampler » Messages » Message Format
2873 *
2874 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2875 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2876 */
2877 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2878 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2879 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2880 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2881 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2882 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2883 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2884 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2885 return false;
2886
2887 /* XXX - This shouldn't be necessary. */
2888 if (tex_inst->prev->is_head_sentinel())
2889 return false;
2890
2891 /* Check that the FB write sources are fully initialized by the single
2892 * texturing instruction.
2893 */
2894 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2895 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2896 if (!fb_write->src[i].equals(tex_inst->dst) ||
2897 fb_write->size_read(i) != tex_inst->size_written)
2898 return false;
2899 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2900 if (fb_write->src[i].file != BAD_FILE)
2901 return false;
2902 }
2903 }
2904
2905 assert(!tex_inst->eot); /* We can't get here twice */
2906 assert((tex_inst->offset & (0xff << 24)) == 0);
2907
2908 const fs_builder ibld(this, block, tex_inst);
2909
2910 tex_inst->offset |= fb_write->target << 24;
2911 tex_inst->eot = true;
2912 tex_inst->dst = ibld.null_reg_ud();
2913 tex_inst->size_written = 0;
2914 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2915
2916 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2917 * flag and submit a header together with the sampler message as required
2918 * by the hardware.
2919 */
2920 invalidate_live_intervals();
2921 return true;
2922 }
2923
2924 bool
2925 fs_visitor::opt_register_renaming()
2926 {
2927 bool progress = false;
2928 int depth = 0;
2929
2930 unsigned remap[alloc.count];
2931 memset(remap, ~0u, sizeof(unsigned) * alloc.count);
2932
2933 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2934 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2935 depth++;
2936 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2937 inst->opcode == BRW_OPCODE_WHILE) {
2938 depth--;
2939 }
2940
2941 /* Rewrite instruction sources. */
2942 for (int i = 0; i < inst->sources; i++) {
2943 if (inst->src[i].file == VGRF &&
2944 remap[inst->src[i].nr] != ~0u &&
2945 remap[inst->src[i].nr] != inst->src[i].nr) {
2946 inst->src[i].nr = remap[inst->src[i].nr];
2947 progress = true;
2948 }
2949 }
2950
2951 const unsigned dst = inst->dst.nr;
2952
2953 if (depth == 0 &&
2954 inst->dst.file == VGRF &&
2955 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2956 !inst->is_partial_write()) {
2957 if (remap[dst] == ~0u) {
2958 remap[dst] = dst;
2959 } else {
2960 remap[dst] = alloc.allocate(regs_written(inst));
2961 inst->dst.nr = remap[dst];
2962 progress = true;
2963 }
2964 } else if (inst->dst.file == VGRF &&
2965 remap[dst] != ~0u &&
2966 remap[dst] != dst) {
2967 inst->dst.nr = remap[dst];
2968 progress = true;
2969 }
2970 }
2971
2972 if (progress) {
2973 invalidate_live_intervals();
2974
2975 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2976 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != ~0u) {
2977 delta_xy[i].nr = remap[delta_xy[i].nr];
2978 }
2979 }
2980 }
2981
2982 return progress;
2983 }
2984
2985 /**
2986 * Remove redundant or useless discard jumps.
2987 *
2988 * For example, we can eliminate jumps in the following sequence:
2989 *
2990 * discard-jump (redundant with the next jump)
2991 * discard-jump (useless; jumps to the next instruction)
2992 * placeholder-halt
2993 */
2994 bool
2995 fs_visitor::opt_redundant_discard_jumps()
2996 {
2997 bool progress = false;
2998
2999 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
3000
3001 fs_inst *placeholder_halt = NULL;
3002 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
3003 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
3004 placeholder_halt = inst;
3005 break;
3006 }
3007 }
3008
3009 if (!placeholder_halt)
3010 return false;
3011
3012 /* Delete any HALTs immediately before the placeholder halt. */
3013 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
3014 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
3015 prev = (fs_inst *) placeholder_halt->prev) {
3016 prev->remove(last_bblock);
3017 progress = true;
3018 }
3019
3020 if (progress)
3021 invalidate_live_intervals();
3022
3023 return progress;
3024 }
3025
3026 /**
3027 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
3028 * from \p r.offset which overlaps the region starting at \p s.offset and
3029 * spanning \p ds bytes.
3030 */
3031 static inline unsigned
3032 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
3033 {
3034 const int rel_offset = reg_offset(s) - reg_offset(r);
3035 const int shift = rel_offset / REG_SIZE;
3036 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
3037 assert(reg_space(r) == reg_space(s) &&
3038 shift >= 0 && shift < int(8 * sizeof(unsigned)));
3039 return ((1 << n) - 1) << shift;
3040 }
3041
3042 bool
3043 fs_visitor::opt_peephole_csel()
3044 {
3045 if (devinfo->gen < 8)
3046 return false;
3047
3048 bool progress = false;
3049
3050 foreach_block_reverse(block, cfg) {
3051 int ip = block->end_ip + 1;
3052
3053 foreach_inst_in_block_reverse_safe(fs_inst, inst, block) {
3054 ip--;
3055
3056 if (inst->opcode != BRW_OPCODE_SEL ||
3057 inst->predicate != BRW_PREDICATE_NORMAL ||
3058 (inst->dst.type != BRW_REGISTER_TYPE_F &&
3059 inst->dst.type != BRW_REGISTER_TYPE_D &&
3060 inst->dst.type != BRW_REGISTER_TYPE_UD))
3061 continue;
3062
3063 /* Because it is a 3-src instruction, CSEL cannot have an immediate
3064 * value as a source, but we can sometimes handle zero.
3065 */
3066 if ((inst->src[0].file != VGRF && inst->src[0].file != ATTR &&
3067 inst->src[0].file != UNIFORM) ||
3068 (inst->src[1].file != VGRF && inst->src[1].file != ATTR &&
3069 inst->src[1].file != UNIFORM && !inst->src[1].is_zero()))
3070 continue;
3071
3072 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3073 if (!scan_inst->flags_written())
3074 continue;
3075
3076 if ((scan_inst->opcode != BRW_OPCODE_CMP &&
3077 scan_inst->opcode != BRW_OPCODE_MOV) ||
3078 scan_inst->predicate != BRW_PREDICATE_NONE ||
3079 (scan_inst->src[0].file != VGRF &&
3080 scan_inst->src[0].file != ATTR &&
3081 scan_inst->src[0].file != UNIFORM) ||
3082 scan_inst->src[0].type != BRW_REGISTER_TYPE_F)
3083 break;
3084
3085 if (scan_inst->opcode == BRW_OPCODE_CMP && !scan_inst->src[1].is_zero())
3086 break;
3087
3088 const brw::fs_builder ibld(this, block, inst);
3089
3090 const enum brw_conditional_mod cond =
3091 inst->predicate_inverse
3092 ? brw_negate_cmod(scan_inst->conditional_mod)
3093 : scan_inst->conditional_mod;
3094
3095 fs_inst *csel_inst = NULL;
3096
3097 if (inst->src[1].file != IMM) {
3098 csel_inst = ibld.CSEL(inst->dst,
3099 inst->src[0],
3100 inst->src[1],
3101 scan_inst->src[0],
3102 cond);
3103 } else if (cond == BRW_CONDITIONAL_NZ) {
3104 /* Consider the sequence
3105 *
3106 * cmp.nz.f0 null<1>F g3<8,8,1>F 0F
3107 * (+f0) sel g124<1>UD g2<8,8,1>UD 0x00000000UD
3108 *
3109 * The sel will pick the immediate value 0 if r0 is ±0.0.
3110 * Therefore, this sequence is equivalent:
3111 *
3112 * cmp.nz.f0 null<1>F g3<8,8,1>F 0F
3113 * (+f0) sel g124<1>F g2<8,8,1>F (abs)g3<8,8,1>F
3114 *
3115 * The abs is ensures that the result is 0UD when g3 is -0.0F.
3116 * By normal cmp-sel merging, this is also equivalent:
3117 *
3118 * csel.nz g124<1>F g2<4,4,1>F (abs)g3<4,4,1>F g3<4,4,1>F
3119 */
3120 csel_inst = ibld.CSEL(inst->dst,
3121 inst->src[0],
3122 scan_inst->src[0],
3123 scan_inst->src[0],
3124 cond);
3125
3126 csel_inst->src[1].abs = true;
3127 }
3128
3129 if (csel_inst != NULL) {
3130 progress = true;
3131 csel_inst->saturate = inst->saturate;
3132 inst->remove(block);
3133 }
3134
3135 break;
3136 }
3137 }
3138 }
3139
3140 return progress;
3141 }
3142
3143 bool
3144 fs_visitor::compute_to_mrf()
3145 {
3146 bool progress = false;
3147 int next_ip = 0;
3148
3149 /* No MRFs on Gen >= 7. */
3150 if (devinfo->gen >= 7)
3151 return false;
3152
3153 calculate_live_intervals();
3154
3155 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3156 int ip = next_ip;
3157 next_ip++;
3158
3159 if (inst->opcode != BRW_OPCODE_MOV ||
3160 inst->is_partial_write() ||
3161 inst->dst.file != MRF || inst->src[0].file != VGRF ||
3162 inst->dst.type != inst->src[0].type ||
3163 inst->src[0].abs || inst->src[0].negate ||
3164 !inst->src[0].is_contiguous() ||
3165 inst->src[0].offset % REG_SIZE != 0)
3166 continue;
3167
3168 /* Can't compute-to-MRF this GRF if someone else was going to
3169 * read it later.
3170 */
3171 if (this->virtual_grf_end[inst->src[0].nr] > ip)
3172 continue;
3173
3174 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
3175 * things that computed the value of all GRFs of the source region. The
3176 * regs_left bitset keeps track of the registers we haven't yet found a
3177 * generating instruction for.
3178 */
3179 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
3180
3181 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3182 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3183 inst->src[0], inst->size_read(0))) {
3184 /* Found the last thing to write our reg we want to turn
3185 * into a compute-to-MRF.
3186 */
3187
3188 /* If this one instruction didn't populate all the
3189 * channels, bail. We might be able to rewrite everything
3190 * that writes that reg, but it would require smarter
3191 * tracking.
3192 */
3193 if (scan_inst->is_partial_write())
3194 break;
3195
3196 /* Handling things not fully contained in the source of the copy
3197 * would need us to understand coalescing out more than one MOV at
3198 * a time.
3199 */
3200 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
3201 inst->src[0], inst->size_read(0)))
3202 break;
3203
3204 /* SEND instructions can't have MRF as a destination. */
3205 if (scan_inst->mlen)
3206 break;
3207
3208 if (devinfo->gen == 6) {
3209 /* gen6 math instructions must have the destination be
3210 * GRF, so no compute-to-MRF for them.
3211 */
3212 if (scan_inst->is_math()) {
3213 break;
3214 }
3215 }
3216
3217 /* Clear the bits for any registers this instruction overwrites. */
3218 regs_left &= ~mask_relative_to(
3219 inst->src[0], scan_inst->dst, scan_inst->size_written);
3220 if (!regs_left)
3221 break;
3222 }
3223
3224 /* We don't handle control flow here. Most computation of
3225 * values that end up in MRFs are shortly before the MRF
3226 * write anyway.
3227 */
3228 if (block->start() == scan_inst)
3229 break;
3230
3231 /* You can't read from an MRF, so if someone else reads our
3232 * MRF's source GRF that we wanted to rewrite, that stops us.
3233 */
3234 bool interfered = false;
3235 for (int i = 0; i < scan_inst->sources; i++) {
3236 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
3237 inst->src[0], inst->size_read(0))) {
3238 interfered = true;
3239 }
3240 }
3241 if (interfered)
3242 break;
3243
3244 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3245 inst->dst, inst->size_written)) {
3246 /* If somebody else writes our MRF here, we can't
3247 * compute-to-MRF before that.
3248 */
3249 break;
3250 }
3251
3252 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
3253 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
3254 inst->dst, inst->size_written)) {
3255 /* Found a SEND instruction, which means that there are
3256 * live values in MRFs from base_mrf to base_mrf +
3257 * scan_inst->mlen - 1. Don't go pushing our MRF write up
3258 * above it.
3259 */
3260 break;
3261 }
3262 }
3263
3264 if (regs_left)
3265 continue;
3266
3267 /* Found all generating instructions of our MRF's source value, so it
3268 * should be safe to rewrite them to point to the MRF directly.
3269 */
3270 regs_left = (1 << regs_read(inst, 0)) - 1;
3271
3272 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3273 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3274 inst->src[0], inst->size_read(0))) {
3275 /* Clear the bits for any registers this instruction overwrites. */
3276 regs_left &= ~mask_relative_to(
3277 inst->src[0], scan_inst->dst, scan_inst->size_written);
3278
3279 const unsigned rel_offset = reg_offset(scan_inst->dst) -
3280 reg_offset(inst->src[0]);
3281
3282 if (inst->dst.nr & BRW_MRF_COMPR4) {
3283 /* Apply the same address transformation done by the hardware
3284 * for COMPR4 MRF writes.
3285 */
3286 assert(rel_offset < 2 * REG_SIZE);
3287 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
3288
3289 /* Clear the COMPR4 bit if the generating instruction is not
3290 * compressed.
3291 */
3292 if (scan_inst->size_written < 2 * REG_SIZE)
3293 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
3294
3295 } else {
3296 /* Calculate the MRF number the result of this instruction is
3297 * ultimately written to.
3298 */
3299 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
3300 }
3301
3302 scan_inst->dst.file = MRF;
3303 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
3304 scan_inst->saturate |= inst->saturate;
3305 if (!regs_left)
3306 break;
3307 }
3308 }
3309
3310 assert(!regs_left);
3311 inst->remove(block);
3312 progress = true;
3313 }
3314
3315 if (progress)
3316 invalidate_live_intervals();
3317
3318 return progress;
3319 }
3320
3321 /**
3322 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
3323 * flow. We could probably do better here with some form of divergence
3324 * analysis.
3325 */
3326 bool
3327 fs_visitor::eliminate_find_live_channel()
3328 {
3329 bool progress = false;
3330 unsigned depth = 0;
3331
3332 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
3333 /* The optimization below assumes that channel zero is live on thread
3334 * dispatch, which may not be the case if the fixed function dispatches
3335 * threads sparsely.
3336 */
3337 return false;
3338 }
3339
3340 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3341 switch (inst->opcode) {
3342 case BRW_OPCODE_IF:
3343 case BRW_OPCODE_DO:
3344 depth++;
3345 break;
3346
3347 case BRW_OPCODE_ENDIF:
3348 case BRW_OPCODE_WHILE:
3349 depth--;
3350 break;
3351
3352 case FS_OPCODE_DISCARD_JUMP:
3353 /* This can potentially make control flow non-uniform until the end
3354 * of the program.
3355 */
3356 return progress;
3357
3358 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
3359 if (depth == 0) {
3360 inst->opcode = BRW_OPCODE_MOV;
3361 inst->src[0] = brw_imm_ud(0u);
3362 inst->sources = 1;
3363 inst->force_writemask_all = true;
3364 progress = true;
3365 }
3366 break;
3367
3368 default:
3369 break;
3370 }
3371 }
3372
3373 return progress;
3374 }
3375
3376 /**
3377 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
3378 * instructions to FS_OPCODE_REP_FB_WRITE.
3379 */
3380 void
3381 fs_visitor::emit_repclear_shader()
3382 {
3383 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3384 int base_mrf = 0;
3385 int color_mrf = base_mrf + 2;
3386 fs_inst *mov;
3387
3388 if (uniforms > 0) {
3389 mov = bld.exec_all().group(4, 0)
3390 .MOV(brw_message_reg(color_mrf),
3391 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
3392 } else {
3393 struct brw_reg reg =
3394 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
3395 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
3396 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
3397
3398 mov = bld.exec_all().group(4, 0)
3399 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
3400 }
3401
3402 fs_inst *write = NULL;
3403 if (key->nr_color_regions == 1) {
3404 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3405 write->saturate = key->clamp_fragment_color;
3406 write->base_mrf = color_mrf;
3407 write->target = 0;
3408 write->header_size = 0;
3409 write->mlen = 1;
3410 } else {
3411 assume(key->nr_color_regions > 0);
3412
3413 struct brw_reg header =
3414 retype(brw_message_reg(base_mrf), BRW_REGISTER_TYPE_UD);
3415 bld.exec_all().group(16, 0)
3416 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3417
3418 for (int i = 0; i < key->nr_color_regions; ++i) {
3419 if (i > 0) {
3420 bld.exec_all().group(1, 0)
3421 .MOV(component(header, 2), brw_imm_ud(i));
3422 }
3423
3424 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3425 write->saturate = key->clamp_fragment_color;
3426 write->base_mrf = base_mrf;
3427 write->target = i;
3428 write->header_size = 2;
3429 write->mlen = 3;
3430 }
3431 }
3432 write->eot = true;
3433 write->last_rt = true;
3434
3435 calculate_cfg();
3436
3437 assign_constant_locations();
3438 assign_curb_setup();
3439
3440 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
3441 if (uniforms > 0) {
3442 assert(mov->src[0].file == FIXED_GRF);
3443 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
3444 }
3445 }
3446
3447 /**
3448 * Walks through basic blocks, looking for repeated MRF writes and
3449 * removing the later ones.
3450 */
3451 bool
3452 fs_visitor::remove_duplicate_mrf_writes()
3453 {
3454 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
3455 bool progress = false;
3456
3457 /* Need to update the MRF tracking for compressed instructions. */
3458 if (dispatch_width >= 16)
3459 return false;
3460
3461 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3462
3463 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3464 if (inst->is_control_flow()) {
3465 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3466 }
3467
3468 if (inst->opcode == BRW_OPCODE_MOV &&
3469 inst->dst.file == MRF) {
3470 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3471 if (prev_inst && prev_inst->opcode == BRW_OPCODE_MOV &&
3472 inst->dst.equals(prev_inst->dst) &&
3473 inst->src[0].equals(prev_inst->src[0]) &&
3474 inst->saturate == prev_inst->saturate &&
3475 inst->predicate == prev_inst->predicate &&
3476 inst->conditional_mod == prev_inst->conditional_mod &&
3477 inst->exec_size == prev_inst->exec_size) {
3478 inst->remove(block);
3479 progress = true;
3480 continue;
3481 }
3482 }
3483
3484 /* Clear out the last-write records for MRFs that were overwritten. */
3485 if (inst->dst.file == MRF) {
3486 last_mrf_move[inst->dst.nr] = NULL;
3487 }
3488
3489 if (inst->mlen > 0 && inst->base_mrf != -1) {
3490 /* Found a SEND instruction, which will include two or fewer
3491 * implied MRF writes. We could do better here.
3492 */
3493 for (int i = 0; i < implied_mrf_writes(inst); i++) {
3494 last_mrf_move[inst->base_mrf + i] = NULL;
3495 }
3496 }
3497
3498 /* Clear out any MRF move records whose sources got overwritten. */
3499 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3500 if (last_mrf_move[i] &&
3501 regions_overlap(inst->dst, inst->size_written,
3502 last_mrf_move[i]->src[0],
3503 last_mrf_move[i]->size_read(0))) {
3504 last_mrf_move[i] = NULL;
3505 }
3506 }
3507
3508 if (inst->opcode == BRW_OPCODE_MOV &&
3509 inst->dst.file == MRF &&
3510 inst->src[0].file != ARF &&
3511 !inst->is_partial_write()) {
3512 last_mrf_move[inst->dst.nr] = inst;
3513 }
3514 }
3515
3516 if (progress)
3517 invalidate_live_intervals();
3518
3519 return progress;
3520 }
3521
3522 /**
3523 * Rounding modes for conversion instructions are included for each
3524 * conversion, but right now it is a state. So once it is set,
3525 * we don't need to call it again for subsequent calls.
3526 *
3527 * This is useful for vector/matrices conversions, as setting the
3528 * mode once is enough for the full vector/matrix
3529 */
3530 bool
3531 fs_visitor::remove_extra_rounding_modes()
3532 {
3533 bool progress = false;
3534 unsigned execution_mode = this->nir->info.float_controls_execution_mode;
3535
3536 brw_rnd_mode base_mode = BRW_RND_MODE_UNSPECIFIED;
3537 if ((FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 |
3538 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32 |
3539 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64) &
3540 execution_mode)
3541 base_mode = BRW_RND_MODE_RTNE;
3542 if ((FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 |
3543 FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 |
3544 FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64) &
3545 execution_mode)
3546 base_mode = BRW_RND_MODE_RTZ;
3547
3548 foreach_block (block, cfg) {
3549 brw_rnd_mode prev_mode = base_mode;
3550
3551 foreach_inst_in_block_safe (fs_inst, inst, block) {
3552 if (inst->opcode == SHADER_OPCODE_RND_MODE) {
3553 assert(inst->src[0].file == BRW_IMMEDIATE_VALUE);
3554 const brw_rnd_mode mode = (brw_rnd_mode) inst->src[0].d;
3555 if (mode == prev_mode) {
3556 inst->remove(block);
3557 progress = true;
3558 } else {
3559 prev_mode = mode;
3560 }
3561 }
3562 }
3563 }
3564
3565 if (progress)
3566 invalidate_live_intervals();
3567
3568 return progress;
3569 }
3570
3571 static void
3572 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3573 {
3574 /* Clear the flag for registers that actually got read (as expected). */
3575 for (int i = 0; i < inst->sources; i++) {
3576 int grf;
3577 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3578 grf = inst->src[i].nr;
3579 } else {
3580 continue;
3581 }
3582
3583 if (grf >= first_grf &&
3584 grf < first_grf + grf_len) {
3585 deps[grf - first_grf] = false;
3586 if (inst->exec_size == 16)
3587 deps[grf - first_grf + 1] = false;
3588 }
3589 }
3590 }
3591
3592 /**
3593 * Implements this workaround for the original 965:
3594 *
3595 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3596 * check for post destination dependencies on this instruction, software
3597 * must ensure that there is no destination hazard for the case of ‘write
3598 * followed by a posted write’ shown in the following example.
3599 *
3600 * 1. mov r3 0
3601 * 2. send r3.xy <rest of send instruction>
3602 * 3. mov r2 r3
3603 *
3604 * Due to no post-destination dependency check on the ‘send’, the above
3605 * code sequence could have two instructions (1 and 2) in flight at the
3606 * same time that both consider ‘r3’ as the target of their final writes.
3607 */
3608 void
3609 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3610 fs_inst *inst)
3611 {
3612 int write_len = regs_written(inst);
3613 int first_write_grf = inst->dst.nr;
3614 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3615 assert(write_len < (int)sizeof(needs_dep) - 1);
3616
3617 memset(needs_dep, false, sizeof(needs_dep));
3618 memset(needs_dep, true, write_len);
3619
3620 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3621
3622 /* Walk backwards looking for writes to registers we're writing which
3623 * aren't read since being written. If we hit the start of the program,
3624 * we assume that there are no outstanding dependencies on entry to the
3625 * program.
3626 */
3627 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3628 /* If we hit control flow, assume that there *are* outstanding
3629 * dependencies, and force their cleanup before our instruction.
3630 */
3631 if (block->start() == scan_inst && block->num != 0) {
3632 for (int i = 0; i < write_len; i++) {
3633 if (needs_dep[i])
3634 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3635 first_write_grf + i);
3636 }
3637 return;
3638 }
3639
3640 /* We insert our reads as late as possible on the assumption that any
3641 * instruction but a MOV that might have left us an outstanding
3642 * dependency has more latency than a MOV.
3643 */
3644 if (scan_inst->dst.file == VGRF) {
3645 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3646 int reg = scan_inst->dst.nr + i;
3647
3648 if (reg >= first_write_grf &&
3649 reg < first_write_grf + write_len &&
3650 needs_dep[reg - first_write_grf]) {
3651 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3652 needs_dep[reg - first_write_grf] = false;
3653 if (scan_inst->exec_size == 16)
3654 needs_dep[reg - first_write_grf + 1] = false;
3655 }
3656 }
3657 }
3658
3659 /* Clear the flag for registers that actually got read (as expected). */
3660 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3661
3662 /* Continue the loop only if we haven't resolved all the dependencies */
3663 int i;
3664 for (i = 0; i < write_len; i++) {
3665 if (needs_dep[i])
3666 break;
3667 }
3668 if (i == write_len)
3669 return;
3670 }
3671 }
3672
3673 /**
3674 * Implements this workaround for the original 965:
3675 *
3676 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3677 * used as a destination register until after it has been sourced by an
3678 * instruction with a different destination register.
3679 */
3680 void
3681 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3682 {
3683 int write_len = regs_written(inst);
3684 unsigned first_write_grf = inst->dst.nr;
3685 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3686 assert(write_len < (int)sizeof(needs_dep) - 1);
3687
3688 memset(needs_dep, false, sizeof(needs_dep));
3689 memset(needs_dep, true, write_len);
3690 /* Walk forwards looking for writes to registers we're writing which aren't
3691 * read before being written.
3692 */
3693 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3694 /* If we hit control flow, force resolve all remaining dependencies. */
3695 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3696 for (int i = 0; i < write_len; i++) {
3697 if (needs_dep[i])
3698 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3699 first_write_grf + i);
3700 }
3701 return;
3702 }
3703
3704 /* Clear the flag for registers that actually got read (as expected). */
3705 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3706
3707 /* We insert our reads as late as possible since they're reading the
3708 * result of a SEND, which has massive latency.
3709 */
3710 if (scan_inst->dst.file == VGRF &&
3711 scan_inst->dst.nr >= first_write_grf &&
3712 scan_inst->dst.nr < first_write_grf + write_len &&
3713 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3714 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3715 scan_inst->dst.nr);
3716 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3717 }
3718
3719 /* Continue the loop only if we haven't resolved all the dependencies */
3720 int i;
3721 for (i = 0; i < write_len; i++) {
3722 if (needs_dep[i])
3723 break;
3724 }
3725 if (i == write_len)
3726 return;
3727 }
3728 }
3729
3730 void
3731 fs_visitor::insert_gen4_send_dependency_workarounds()
3732 {
3733 if (devinfo->gen != 4 || devinfo->is_g4x)
3734 return;
3735
3736 bool progress = false;
3737
3738 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3739 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3740 insert_gen4_pre_send_dependency_workarounds(block, inst);
3741 insert_gen4_post_send_dependency_workarounds(block, inst);
3742 progress = true;
3743 }
3744 }
3745
3746 if (progress)
3747 invalidate_live_intervals();
3748 }
3749
3750 /**
3751 * Turns the generic expression-style uniform pull constant load instruction
3752 * into a hardware-specific series of instructions for loading a pull
3753 * constant.
3754 *
3755 * The expression style allows the CSE pass before this to optimize out
3756 * repeated loads from the same offset, and gives the pre-register-allocation
3757 * scheduling full flexibility, while the conversion to native instructions
3758 * allows the post-register-allocation scheduler the best information
3759 * possible.
3760 *
3761 * Note that execution masking for setting up pull constant loads is special:
3762 * the channels that need to be written are unrelated to the current execution
3763 * mask, since a later instruction will use one of the result channels as a
3764 * source operand for all 8 or 16 of its channels.
3765 */
3766 void
3767 fs_visitor::lower_uniform_pull_constant_loads()
3768 {
3769 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3770 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3771 continue;
3772
3773 if (devinfo->gen >= 7) {
3774 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3775 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3776
3777 ubld.group(8, 0).MOV(payload,
3778 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3779 ubld.group(1, 0).MOV(component(payload, 2),
3780 brw_imm_ud(inst->src[1].ud / 16));
3781
3782 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3783 inst->src[1] = payload;
3784 inst->header_size = 1;
3785 inst->mlen = 1;
3786
3787 invalidate_live_intervals();
3788 } else {
3789 /* Before register allocation, we didn't tell the scheduler about the
3790 * MRF we use. We know it's safe to use this MRF because nothing
3791 * else does except for register spill/unspill, which generates and
3792 * uses its MRF within a single IR instruction.
3793 */
3794 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3795 inst->mlen = 1;
3796 }
3797 }
3798 }
3799
3800 bool
3801 fs_visitor::lower_load_payload()
3802 {
3803 bool progress = false;
3804
3805 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3806 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3807 continue;
3808
3809 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3810 assert(inst->saturate == false);
3811 fs_reg dst = inst->dst;
3812
3813 /* Get rid of COMPR4. We'll add it back in if we need it */
3814 if (dst.file == MRF)
3815 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3816
3817 const fs_builder ibld(this, block, inst);
3818 const fs_builder hbld = ibld.exec_all().group(8, 0);
3819
3820 for (uint8_t i = 0; i < inst->header_size; i++) {
3821 if (inst->src[i].file != BAD_FILE) {
3822 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3823 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3824 hbld.MOV(mov_dst, mov_src);
3825 }
3826 dst = offset(dst, hbld, 1);
3827 }
3828
3829 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3830 inst->exec_size > 8) {
3831 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3832 * a straightforward copy. Instead, the result of the
3833 * LOAD_PAYLOAD is treated as interleaved and the first four
3834 * non-header sources are unpacked as:
3835 *
3836 * m + 0: r0
3837 * m + 1: g0
3838 * m + 2: b0
3839 * m + 3: a0
3840 * m + 4: r1
3841 * m + 5: g1
3842 * m + 6: b1
3843 * m + 7: a1
3844 *
3845 * This is used for gen <= 5 fb writes.
3846 */
3847 assert(inst->exec_size == 16);
3848 assert(inst->header_size + 4 <= inst->sources);
3849 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3850 if (inst->src[i].file != BAD_FILE) {
3851 if (devinfo->has_compr4) {
3852 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3853 compr4_dst.nr |= BRW_MRF_COMPR4;
3854 ibld.MOV(compr4_dst, inst->src[i]);
3855 } else {
3856 /* Platform doesn't have COMPR4. We have to fake it */
3857 fs_reg mov_dst = retype(dst, inst->src[i].type);
3858 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3859 mov_dst.nr += 4;
3860 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3861 }
3862 }
3863
3864 dst.nr++;
3865 }
3866
3867 /* The loop above only ever incremented us through the first set
3868 * of 4 registers. However, thanks to the magic of COMPR4, we
3869 * actually wrote to the first 8 registers, so we need to take
3870 * that into account now.
3871 */
3872 dst.nr += 4;
3873
3874 /* The COMPR4 code took care of the first 4 sources. We'll let
3875 * the regular path handle any remaining sources. Yes, we are
3876 * modifying the instruction but we're about to delete it so
3877 * this really doesn't hurt anything.
3878 */
3879 inst->header_size += 4;
3880 }
3881
3882 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3883 if (inst->src[i].file != BAD_FILE) {
3884 dst.type = inst->src[i].type;
3885 ibld.MOV(dst, inst->src[i]);
3886 } else {
3887 dst.type = BRW_REGISTER_TYPE_UD;
3888 }
3889 dst = offset(dst, ibld, 1);
3890 }
3891
3892 inst->remove(block);
3893 progress = true;
3894 }
3895
3896 if (progress)
3897 invalidate_live_intervals();
3898
3899 return progress;
3900 }
3901
3902 void
3903 fs_visitor::lower_mul_dword_inst(fs_inst *inst, bblock_t *block)
3904 {
3905 const fs_builder ibld(this, block, inst);
3906
3907 if (inst->src[1].file == IMM && inst->src[1].ud < (1 << 16)) {
3908 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3909 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3910 * src1 are used.
3911 *
3912 * If multiplying by an immediate value that fits in 16-bits, do a
3913 * single MUL instruction with that value in the proper location.
3914 */
3915 if (devinfo->gen < 7) {
3916 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8), inst->dst.type);
3917 ibld.MOV(imm, inst->src[1]);
3918 ibld.MUL(inst->dst, imm, inst->src[0]);
3919 } else {
3920 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3921 ibld.MUL(inst->dst, inst->src[0],
3922 ud ? brw_imm_uw(inst->src[1].ud)
3923 : brw_imm_w(inst->src[1].d));
3924 }
3925 } else {
3926 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3927 * do 32-bit integer multiplication in one instruction, but instead
3928 * must do a sequence (which actually calculates a 64-bit result):
3929 *
3930 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3931 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3932 * mov(8) g2<1>D acc0<8,8,1>D
3933 *
3934 * But on Gen > 6, the ability to use second accumulator register
3935 * (acc1) for non-float data types was removed, preventing a simple
3936 * implementation in SIMD16. A 16-channel result can be calculated by
3937 * executing the three instructions twice in SIMD8, once with quarter
3938 * control of 1Q for the first eight channels and again with 2Q for
3939 * the second eight channels.
3940 *
3941 * Which accumulator register is implicitly accessed (by AccWrEnable
3942 * for instance) is determined by the quarter control. Unfortunately
3943 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3944 * implicit accumulator access by an instruction with 2Q will access
3945 * acc1 regardless of whether the data type is usable in acc1.
3946 *
3947 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3948 * integer data types.
3949 *
3950 * Since we only want the low 32-bits of the result, we can do two
3951 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3952 * adjust the high result and add them (like the mach is doing):
3953 *
3954 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3955 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3956 * shl(8) g9<1>D g8<8,8,1>D 16D
3957 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3958 *
3959 * We avoid the shl instruction by realizing that we only want to add
3960 * the low 16-bits of the "high" result to the high 16-bits of the
3961 * "low" result and using proper regioning on the add:
3962 *
3963 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3964 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3965 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3966 *
3967 * Since it does not use the (single) accumulator register, we can
3968 * schedule multi-component multiplications much better.
3969 */
3970
3971 bool needs_mov = false;
3972 fs_reg orig_dst = inst->dst;
3973
3974 /* Get a new VGRF for the "low" 32x16-bit multiplication result if
3975 * reusing the original destination is impossible due to hardware
3976 * restrictions, source/destination overlap, or it being the null
3977 * register.
3978 */
3979 fs_reg low = inst->dst;
3980 if (orig_dst.is_null() || orig_dst.file == MRF ||
3981 regions_overlap(inst->dst, inst->size_written,
3982 inst->src[0], inst->size_read(0)) ||
3983 regions_overlap(inst->dst, inst->size_written,
3984 inst->src[1], inst->size_read(1)) ||
3985 inst->dst.stride >= 4) {
3986 needs_mov = true;
3987 low = fs_reg(VGRF, alloc.allocate(regs_written(inst)),
3988 inst->dst.type);
3989 }
3990
3991 /* Get a new VGRF but keep the same stride as inst->dst */
3992 fs_reg high(VGRF, alloc.allocate(regs_written(inst)), inst->dst.type);
3993 high.stride = inst->dst.stride;
3994 high.offset = inst->dst.offset % REG_SIZE;
3995
3996 if (devinfo->gen >= 7) {
3997 if (inst->src[1].abs)
3998 lower_src_modifiers(this, block, inst, 1);
3999
4000 if (inst->src[1].file == IMM) {
4001 ibld.MUL(low, inst->src[0],
4002 brw_imm_uw(inst->src[1].ud & 0xffff));
4003 ibld.MUL(high, inst->src[0],
4004 brw_imm_uw(inst->src[1].ud >> 16));
4005 } else {
4006 ibld.MUL(low, inst->src[0],
4007 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
4008 ibld.MUL(high, inst->src[0],
4009 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
4010 }
4011 } else {
4012 if (inst->src[0].abs)
4013 lower_src_modifiers(this, block, inst, 0);
4014
4015 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
4016 inst->src[1]);
4017 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
4018 inst->src[1]);
4019 }
4020
4021 ibld.ADD(subscript(low, BRW_REGISTER_TYPE_UW, 1),
4022 subscript(low, BRW_REGISTER_TYPE_UW, 1),
4023 subscript(high, BRW_REGISTER_TYPE_UW, 0));
4024
4025 if (needs_mov || inst->conditional_mod)
4026 set_condmod(inst->conditional_mod, ibld.MOV(orig_dst, low));
4027 }
4028 }
4029
4030 void
4031 fs_visitor::lower_mul_qword_inst(fs_inst *inst, bblock_t *block)
4032 {
4033 const fs_builder ibld(this, block, inst);
4034
4035 /* Considering two 64-bit integers ab and cd where each letter ab
4036 * corresponds to 32 bits, we get a 128-bit result WXYZ. We * cd
4037 * only need to provide the YZ part of the result. -------
4038 * BD
4039 * Only BD needs to be 64 bits. For AD and BC we only care + AD
4040 * about the lower 32 bits (since they are part of the upper + BC
4041 * 32 bits of our result). AC is not needed since it starts + AC
4042 * on the 65th bit of the result. -------
4043 * WXYZ
4044 */
4045 unsigned int q_regs = regs_written(inst);
4046 unsigned int d_regs = (q_regs + 1) / 2;
4047
4048 fs_reg bd(VGRF, alloc.allocate(q_regs), BRW_REGISTER_TYPE_UQ);
4049 fs_reg ad(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4050 fs_reg bc(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4051
4052 /* Here we need the full 64 bit result for 32b * 32b. */
4053 if (devinfo->has_integer_dword_mul) {
4054 ibld.MUL(bd, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4055 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4056 } else {
4057 fs_reg bd_high(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4058 fs_reg bd_low(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4059 fs_reg acc = retype(brw_acc_reg(inst->exec_size), BRW_REGISTER_TYPE_UD);
4060
4061 fs_inst *mul = ibld.MUL(acc,
4062 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4063 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
4064 mul->writes_accumulator = true;
4065
4066 ibld.MACH(bd_high, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4067 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4068 ibld.MOV(bd_low, acc);
4069
4070 ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 0), bd_low);
4071 ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 1), bd_high);
4072 }
4073
4074 ibld.MUL(ad, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1),
4075 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4076 ibld.MUL(bc, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4077 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1));
4078
4079 ibld.ADD(ad, ad, bc);
4080 ibld.ADD(subscript(bd, BRW_REGISTER_TYPE_UD, 1),
4081 subscript(bd, BRW_REGISTER_TYPE_UD, 1), ad);
4082
4083 ibld.MOV(inst->dst, bd);
4084 }
4085
4086 void
4087 fs_visitor::lower_mulh_inst(fs_inst *inst, bblock_t *block)
4088 {
4089 const fs_builder ibld(this, block, inst);
4090
4091 /* According to the BDW+ BSpec page for the "Multiply Accumulate
4092 * High" instruction:
4093 *
4094 * "An added preliminary mov is required for source modification on
4095 * src1:
4096 * mov (8) r3.0<1>:d -r3<8;8,1>:d
4097 * mul (8) acc0:d r2.0<8;8,1>:d r3.0<16;8,2>:uw
4098 * mach (8) r5.0<1>:d r2.0<8;8,1>:d r3.0<8;8,1>:d"
4099 */
4100 if (devinfo->gen >= 8 && (inst->src[1].negate || inst->src[1].abs))
4101 lower_src_modifiers(this, block, inst, 1);
4102
4103 /* Should have been lowered to 8-wide. */
4104 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
4105 const fs_reg acc = retype(brw_acc_reg(inst->exec_size), inst->dst.type);
4106 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
4107 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
4108
4109 if (devinfo->gen >= 8) {
4110 /* Until Gen8, integer multiplies read 32-bits from one source,
4111 * and 16-bits from the other, and relying on the MACH instruction
4112 * to generate the high bits of the result.
4113 *
4114 * On Gen8, the multiply instruction does a full 32x32-bit
4115 * multiply, but in order to do a 64-bit multiply we can simulate
4116 * the previous behavior and then use a MACH instruction.
4117 */
4118 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
4119 mul->src[1].type == BRW_REGISTER_TYPE_UD);
4120 mul->src[1].type = BRW_REGISTER_TYPE_UW;
4121 mul->src[1].stride *= 2;
4122
4123 if (mul->src[1].file == IMM) {
4124 mul->src[1] = brw_imm_uw(mul->src[1].ud);
4125 }
4126 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
4127 inst->group > 0) {
4128 /* Among other things the quarter control bits influence which
4129 * accumulator register is used by the hardware for instructions
4130 * that access the accumulator implicitly (e.g. MACH). A
4131 * second-half instruction would normally map to acc1, which
4132 * doesn't exist on Gen7 and up (the hardware does emulate it for
4133 * floating-point instructions *only* by taking advantage of the
4134 * extra precision of acc0 not normally used for floating point
4135 * arithmetic).
4136 *
4137 * HSW and up are careful enough not to try to access an
4138 * accumulator register that doesn't exist, but on earlier Gen7
4139 * hardware we need to make sure that the quarter control bits are
4140 * zero to avoid non-deterministic behaviour and emit an extra MOV
4141 * to get the result masked correctly according to the current
4142 * channel enables.
4143 */
4144 mach->group = 0;
4145 mach->force_writemask_all = true;
4146 mach->dst = ibld.vgrf(inst->dst.type);
4147 ibld.MOV(inst->dst, mach->dst);
4148 }
4149 }
4150
4151 bool
4152 fs_visitor::lower_integer_multiplication()
4153 {
4154 bool progress = false;
4155
4156 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4157 if (inst->opcode == BRW_OPCODE_MUL) {
4158 if ((inst->dst.type == BRW_REGISTER_TYPE_Q ||
4159 inst->dst.type == BRW_REGISTER_TYPE_UQ) &&
4160 (inst->src[0].type == BRW_REGISTER_TYPE_Q ||
4161 inst->src[0].type == BRW_REGISTER_TYPE_UQ) &&
4162 (inst->src[1].type == BRW_REGISTER_TYPE_Q ||
4163 inst->src[1].type == BRW_REGISTER_TYPE_UQ)) {
4164 lower_mul_qword_inst(inst, block);
4165 inst->remove(block);
4166 progress = true;
4167 } else if (!inst->dst.is_accumulator() &&
4168 (inst->dst.type == BRW_REGISTER_TYPE_D ||
4169 inst->dst.type == BRW_REGISTER_TYPE_UD) &&
4170 !devinfo->has_integer_dword_mul) {
4171 lower_mul_dword_inst(inst, block);
4172 inst->remove(block);
4173 progress = true;
4174 }
4175 } else if (inst->opcode == SHADER_OPCODE_MULH) {
4176 lower_mulh_inst(inst, block);
4177 inst->remove(block);
4178 progress = true;
4179 }
4180
4181 }
4182
4183 if (progress)
4184 invalidate_live_intervals();
4185
4186 return progress;
4187 }
4188
4189 bool
4190 fs_visitor::lower_minmax()
4191 {
4192 assert(devinfo->gen < 6);
4193
4194 bool progress = false;
4195
4196 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4197 const fs_builder ibld(this, block, inst);
4198
4199 if (inst->opcode == BRW_OPCODE_SEL &&
4200 inst->predicate == BRW_PREDICATE_NONE) {
4201 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
4202 * the original SEL.L/GE instruction
4203 */
4204 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
4205 inst->conditional_mod);
4206 inst->predicate = BRW_PREDICATE_NORMAL;
4207 inst->conditional_mod = BRW_CONDITIONAL_NONE;
4208
4209 progress = true;
4210 }
4211 }
4212
4213 if (progress)
4214 invalidate_live_intervals();
4215
4216 return progress;
4217 }
4218
4219 static void
4220 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
4221 fs_reg *dst, fs_reg color, unsigned components)
4222 {
4223 if (key->clamp_fragment_color) {
4224 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
4225 assert(color.type == BRW_REGISTER_TYPE_F);
4226
4227 for (unsigned i = 0; i < components; i++)
4228 set_saturate(true,
4229 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
4230
4231 color = tmp;
4232 }
4233
4234 for (unsigned i = 0; i < components; i++)
4235 dst[i] = offset(color, bld, i);
4236 }
4237
4238 uint32_t
4239 brw_fb_write_msg_control(const fs_inst *inst,
4240 const struct brw_wm_prog_data *prog_data)
4241 {
4242 uint32_t mctl;
4243
4244 if (inst->opcode == FS_OPCODE_REP_FB_WRITE) {
4245 assert(inst->group == 0 && inst->exec_size == 16);
4246 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
4247 } else if (prog_data->dual_src_blend) {
4248 assert(inst->exec_size == 8);
4249
4250 if (inst->group % 16 == 0)
4251 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
4252 else if (inst->group % 16 == 8)
4253 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
4254 else
4255 unreachable("Invalid dual-source FB write instruction group");
4256 } else {
4257 assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));
4258
4259 if (inst->exec_size == 16)
4260 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
4261 else if (inst->exec_size == 8)
4262 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
4263 else
4264 unreachable("Invalid FB write execution size");
4265 }
4266
4267 return mctl;
4268 }
4269
4270 static void
4271 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
4272 const struct brw_wm_prog_data *prog_data,
4273 const brw_wm_prog_key *key,
4274 const fs_visitor::thread_payload &payload)
4275 {
4276 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
4277 const gen_device_info *devinfo = bld.shader->devinfo;
4278 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
4279 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
4280 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
4281 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
4282 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
4283 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
4284 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
4285 const unsigned components =
4286 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
4287
4288 /* We can potentially have a message length of up to 15, so we have to set
4289 * base_mrf to either 0 or 1 in order to fit in m0..m15.
4290 */
4291 fs_reg sources[15];
4292 int header_size = 2, payload_header_size;
4293 unsigned length = 0;
4294
4295 if (devinfo->gen < 6) {
4296 /* TODO: Support SIMD32 on gen4-5 */
4297 assert(bld.group() < 16);
4298
4299 /* For gen4-5, we always have a header consisting of g0 and g1. We have
4300 * an implied MOV from g0,g1 to the start of the message. The MOV from
4301 * g0 is handled by the hardware and the MOV from g1 is provided by the
4302 * generator. This is required because, on gen4-5, the generator may
4303 * generate two write messages with different message lengths in order
4304 * to handle AA data properly.
4305 *
4306 * Also, since the pixel mask goes in the g0 portion of the message and
4307 * since render target writes are the last thing in the shader, we write
4308 * the pixel mask directly into g0 and it will get copied as part of the
4309 * implied write.
4310 */
4311 if (prog_data->uses_kill) {
4312 bld.exec_all().group(1, 0)
4313 .MOV(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW),
4314 brw_flag_reg(0, 1));
4315 }
4316
4317 assert(length == 0);
4318 length = 2;
4319 } else if ((devinfo->gen <= 7 && !devinfo->is_haswell &&
4320 prog_data->uses_kill) ||
4321 (devinfo->gen < 11 &&
4322 (color1.file != BAD_FILE || key->nr_color_regions > 1))) {
4323 /* From the Sandy Bridge PRM, volume 4, page 198:
4324 *
4325 * "Dispatched Pixel Enables. One bit per pixel indicating
4326 * which pixels were originally enabled when the thread was
4327 * dispatched. This field is only required for the end-of-
4328 * thread message and on all dual-source messages."
4329 */
4330 const fs_builder ubld = bld.exec_all().group(8, 0);
4331
4332 fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4333 if (bld.group() < 16) {
4334 /* The header starts off as g0 and g1 for the first half */
4335 ubld.group(16, 0).MOV(header, retype(brw_vec8_grf(0, 0),
4336 BRW_REGISTER_TYPE_UD));
4337 } else {
4338 /* The header starts off as g0 and g2 for the second half */
4339 assert(bld.group() < 32);
4340 const fs_reg header_sources[2] = {
4341 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD),
4342 retype(brw_vec8_grf(2, 0), BRW_REGISTER_TYPE_UD),
4343 };
4344 ubld.LOAD_PAYLOAD(header, header_sources, 2, 0);
4345 }
4346
4347 uint32_t g00_bits = 0;
4348
4349 /* Set "Source0 Alpha Present to RenderTarget" bit in message
4350 * header.
4351 */
4352 if (inst->target > 0 && prog_data->replicate_alpha)
4353 g00_bits |= 1 << 11;
4354
4355 /* Set computes stencil to render target */
4356 if (prog_data->computed_stencil)
4357 g00_bits |= 1 << 14;
4358
4359 if (g00_bits) {
4360 /* OR extra bits into g0.0 */
4361 ubld.group(1, 0).OR(component(header, 0),
4362 retype(brw_vec1_grf(0, 0),
4363 BRW_REGISTER_TYPE_UD),
4364 brw_imm_ud(g00_bits));
4365 }
4366
4367 /* Set the render target index for choosing BLEND_STATE. */
4368 if (inst->target > 0) {
4369 ubld.group(1, 0).MOV(component(header, 2), brw_imm_ud(inst->target));
4370 }
4371
4372 if (prog_data->uses_kill) {
4373 assert(bld.group() < 16);
4374 ubld.group(1, 0).MOV(retype(component(header, 15),
4375 BRW_REGISTER_TYPE_UW),
4376 brw_flag_reg(0, 1));
4377 }
4378
4379 assert(length == 0);
4380 sources[0] = header;
4381 sources[1] = horiz_offset(header, 8);
4382 length = 2;
4383 }
4384 assert(length == 0 || length == 2);
4385 header_size = length;
4386
4387 if (payload.aa_dest_stencil_reg[0]) {
4388 assert(inst->group < 16);
4389 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
4390 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
4391 .MOV(sources[length],
4392 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg[0], 0)));
4393 length++;
4394 }
4395
4396 bool src0_alpha_present = false;
4397
4398 if (src0_alpha.file != BAD_FILE) {
4399 for (unsigned i = 0; i < bld.dispatch_width() / 8; i++) {
4400 const fs_builder &ubld = bld.exec_all().group(8, i)
4401 .annotate("FB write src0 alpha");
4402 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_F);
4403 ubld.MOV(tmp, horiz_offset(src0_alpha, i * 8));
4404 setup_color_payload(ubld, key, &sources[length], tmp, 1);
4405 length++;
4406 }
4407 src0_alpha_present = true;
4408 } else if (prog_data->replicate_alpha && inst->target != 0) {
4409 /* Handle the case when fragment shader doesn't write to draw buffer
4410 * zero. No need to call setup_color_payload() for src0_alpha because
4411 * alpha value will be undefined.
4412 */
4413 length += bld.dispatch_width() / 8;
4414 src0_alpha_present = true;
4415 }
4416
4417 if (sample_mask.file != BAD_FILE) {
4418 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
4419 BRW_REGISTER_TYPE_UD);
4420
4421 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
4422 * relevant. Since it's unsigned single words one vgrf is always
4423 * 16-wide, but only the lower or higher 8 channels will be used by the
4424 * hardware when doing a SIMD8 write depending on whether we have
4425 * selected the subspans for the first or second half respectively.
4426 */
4427 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
4428 sample_mask.type = BRW_REGISTER_TYPE_UW;
4429 sample_mask.stride *= 2;
4430
4431 bld.exec_all().annotate("FB write oMask")
4432 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
4433 inst->group % 16),
4434 sample_mask);
4435 length++;
4436 }
4437
4438 payload_header_size = length;
4439
4440 setup_color_payload(bld, key, &sources[length], color0, components);
4441 length += 4;
4442
4443 if (color1.file != BAD_FILE) {
4444 setup_color_payload(bld, key, &sources[length], color1, components);
4445 length += 4;
4446 }
4447
4448 if (src_depth.file != BAD_FILE) {
4449 sources[length] = src_depth;
4450 length++;
4451 }
4452
4453 if (dst_depth.file != BAD_FILE) {
4454 sources[length] = dst_depth;
4455 length++;
4456 }
4457
4458 if (src_stencil.file != BAD_FILE) {
4459 assert(devinfo->gen >= 9);
4460 assert(bld.dispatch_width() == 8);
4461
4462 /* XXX: src_stencil is only available on gen9+. dst_depth is never
4463 * available on gen9+. As such it's impossible to have both enabled at the
4464 * same time and therefore length cannot overrun the array.
4465 */
4466 assert(length < 15);
4467
4468 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4469 bld.exec_all().annotate("FB write OS")
4470 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
4471 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
4472 length++;
4473 }
4474
4475 fs_inst *load;
4476 if (devinfo->gen >= 7) {
4477 /* Send from the GRF */
4478 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
4479 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
4480 payload.nr = bld.shader->alloc.allocate(regs_written(load));
4481 load->dst = payload;
4482
4483 uint32_t msg_ctl = brw_fb_write_msg_control(inst, prog_data);
4484 uint32_t ex_desc = 0;
4485
4486 inst->desc =
4487 (inst->group / 16) << 11 | /* rt slot group */
4488 brw_dp_write_desc(devinfo, inst->target, msg_ctl,
4489 GEN6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE,
4490 inst->last_rt, false);
4491
4492 if (devinfo->gen >= 11) {
4493 /* Set the "Render Target Index" and "Src0 Alpha Present" fields
4494 * in the extended message descriptor, in lieu of using a header.
4495 */
4496 ex_desc = inst->target << 12 | src0_alpha_present << 15;
4497
4498 if (key->nr_color_regions == 0)
4499 ex_desc |= 1 << 20; /* Null Render Target */
4500 }
4501
4502 inst->opcode = SHADER_OPCODE_SEND;
4503 inst->resize_sources(3);
4504 inst->sfid = GEN6_SFID_DATAPORT_RENDER_CACHE;
4505 inst->src[0] = brw_imm_ud(inst->desc);
4506 inst->src[1] = brw_imm_ud(ex_desc);
4507 inst->src[2] = payload;
4508 inst->mlen = regs_written(load);
4509 inst->ex_mlen = 0;
4510 inst->header_size = header_size;
4511 inst->check_tdr = true;
4512 inst->send_has_side_effects = true;
4513 } else {
4514 /* Send from the MRF */
4515 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
4516 sources, length, payload_header_size);
4517
4518 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
4519 * will do this for us if we just give it a COMPR4 destination.
4520 */
4521 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
4522 load->dst.nr |= BRW_MRF_COMPR4;
4523
4524 if (devinfo->gen < 6) {
4525 /* Set up src[0] for the implied MOV from grf0-1 */
4526 inst->resize_sources(1);
4527 inst->src[0] = brw_vec8_grf(0, 0);
4528 } else {
4529 inst->resize_sources(0);
4530 }
4531 inst->base_mrf = 1;
4532 inst->opcode = FS_OPCODE_FB_WRITE;
4533 inst->mlen = regs_written(load);
4534 inst->header_size = header_size;
4535 }
4536 }
4537
4538 static void
4539 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
4540 {
4541 const fs_builder &ubld = bld.exec_all().group(8, 0);
4542 const unsigned length = 2;
4543 const fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD, length);
4544
4545 if (bld.group() < 16) {
4546 ubld.group(16, 0).MOV(header, retype(brw_vec8_grf(0, 0),
4547 BRW_REGISTER_TYPE_UD));
4548 } else {
4549 assert(bld.group() < 32);
4550 const fs_reg header_sources[] = {
4551 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD),
4552 retype(brw_vec8_grf(2, 0), BRW_REGISTER_TYPE_UD)
4553 };
4554 ubld.LOAD_PAYLOAD(header, header_sources, ARRAY_SIZE(header_sources), 0);
4555 }
4556
4557 inst->resize_sources(1);
4558 inst->src[0] = header;
4559 inst->opcode = FS_OPCODE_FB_READ;
4560 inst->mlen = length;
4561 inst->header_size = length;
4562 }
4563
4564 static void
4565 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
4566 const fs_reg &coordinate,
4567 const fs_reg &shadow_c,
4568 const fs_reg &lod, const fs_reg &lod2,
4569 const fs_reg &surface,
4570 const fs_reg &sampler,
4571 unsigned coord_components,
4572 unsigned grad_components)
4573 {
4574 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
4575 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
4576 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
4577 fs_reg msg_end = msg_begin;
4578
4579 /* g0 header. */
4580 msg_end = offset(msg_end, bld.group(8, 0), 1);
4581
4582 for (unsigned i = 0; i < coord_components; i++)
4583 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
4584 offset(coordinate, bld, i));
4585
4586 msg_end = offset(msg_end, bld, coord_components);
4587
4588 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
4589 * require all three components to be present and zero if they are unused.
4590 */
4591 if (coord_components > 0 &&
4592 (has_lod || shadow_c.file != BAD_FILE ||
4593 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
4594 for (unsigned i = coord_components; i < 3; i++)
4595 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
4596
4597 msg_end = offset(msg_end, bld, 3 - coord_components);
4598 }
4599
4600 if (op == SHADER_OPCODE_TXD) {
4601 /* TXD unsupported in SIMD16 mode. */
4602 assert(bld.dispatch_width() == 8);
4603
4604 /* the slots for u and v are always present, but r is optional */
4605 if (coord_components < 2)
4606 msg_end = offset(msg_end, bld, 2 - coord_components);
4607
4608 /* P = u, v, r
4609 * dPdx = dudx, dvdx, drdx
4610 * dPdy = dudy, dvdy, drdy
4611 *
4612 * 1-arg: Does not exist.
4613 *
4614 * 2-arg: dudx dvdx dudy dvdy
4615 * dPdx.x dPdx.y dPdy.x dPdy.y
4616 * m4 m5 m6 m7
4617 *
4618 * 3-arg: dudx dvdx drdx dudy dvdy drdy
4619 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
4620 * m5 m6 m7 m8 m9 m10
4621 */
4622 for (unsigned i = 0; i < grad_components; i++)
4623 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
4624
4625 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4626
4627 for (unsigned i = 0; i < grad_components; i++)
4628 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
4629
4630 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4631 }
4632
4633 if (has_lod) {
4634 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
4635 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
4636 */
4637 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
4638 bld.dispatch_width() == 16);
4639
4640 const brw_reg_type type =
4641 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
4642 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
4643 bld.MOV(retype(msg_end, type), lod);
4644 msg_end = offset(msg_end, bld, 1);
4645 }
4646
4647 if (shadow_c.file != BAD_FILE) {
4648 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
4649 /* There's no plain shadow compare message, so we use shadow
4650 * compare with a bias of 0.0.
4651 */
4652 bld.MOV(msg_end, brw_imm_f(0.0f));
4653 msg_end = offset(msg_end, bld, 1);
4654 }
4655
4656 bld.MOV(msg_end, shadow_c);
4657 msg_end = offset(msg_end, bld, 1);
4658 }
4659
4660 inst->opcode = op;
4661 inst->src[0] = reg_undef;
4662 inst->src[1] = surface;
4663 inst->src[2] = sampler;
4664 inst->resize_sources(3);
4665 inst->base_mrf = msg_begin.nr;
4666 inst->mlen = msg_end.nr - msg_begin.nr;
4667 inst->header_size = 1;
4668 }
4669
4670 static void
4671 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
4672 const fs_reg &coordinate,
4673 const fs_reg &shadow_c,
4674 const fs_reg &lod, const fs_reg &lod2,
4675 const fs_reg &sample_index,
4676 const fs_reg &surface,
4677 const fs_reg &sampler,
4678 unsigned coord_components,
4679 unsigned grad_components)
4680 {
4681 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
4682 fs_reg msg_coords = message;
4683 unsigned header_size = 0;
4684
4685 if (inst->offset != 0) {
4686 /* The offsets set up by the visitor are in the m1 header, so we can't
4687 * go headerless.
4688 */
4689 header_size = 1;
4690 message.nr--;
4691 }
4692
4693 for (unsigned i = 0; i < coord_components; i++)
4694 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
4695 offset(coordinate, bld, i));
4696
4697 fs_reg msg_end = offset(msg_coords, bld, coord_components);
4698 fs_reg msg_lod = offset(msg_coords, bld, 4);
4699
4700 if (shadow_c.file != BAD_FILE) {
4701 fs_reg msg_shadow = msg_lod;
4702 bld.MOV(msg_shadow, shadow_c);
4703 msg_lod = offset(msg_shadow, bld, 1);
4704 msg_end = msg_lod;
4705 }
4706
4707 switch (op) {
4708 case SHADER_OPCODE_TXL:
4709 case FS_OPCODE_TXB:
4710 bld.MOV(msg_lod, lod);
4711 msg_end = offset(msg_lod, bld, 1);
4712 break;
4713 case SHADER_OPCODE_TXD:
4714 /**
4715 * P = u, v, r
4716 * dPdx = dudx, dvdx, drdx
4717 * dPdy = dudy, dvdy, drdy
4718 *
4719 * Load up these values:
4720 * - dudx dudy dvdx dvdy drdx drdy
4721 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
4722 */
4723 msg_end = msg_lod;
4724 for (unsigned i = 0; i < grad_components; i++) {
4725 bld.MOV(msg_end, offset(lod, bld, i));
4726 msg_end = offset(msg_end, bld, 1);
4727
4728 bld.MOV(msg_end, offset(lod2, bld, i));
4729 msg_end = offset(msg_end, bld, 1);
4730 }
4731 break;
4732 case SHADER_OPCODE_TXS:
4733 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
4734 bld.MOV(msg_lod, lod);
4735 msg_end = offset(msg_lod, bld, 1);
4736 break;
4737 case SHADER_OPCODE_TXF:
4738 msg_lod = offset(msg_coords, bld, 3);
4739 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
4740 msg_end = offset(msg_lod, bld, 1);
4741 break;
4742 case SHADER_OPCODE_TXF_CMS:
4743 msg_lod = offset(msg_coords, bld, 3);
4744 /* lod */
4745 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
4746 /* sample index */
4747 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
4748 msg_end = offset(msg_lod, bld, 2);
4749 break;
4750 default:
4751 break;
4752 }
4753
4754 inst->opcode = op;
4755 inst->src[0] = reg_undef;
4756 inst->src[1] = surface;
4757 inst->src[2] = sampler;
4758 inst->resize_sources(3);
4759 inst->base_mrf = message.nr;
4760 inst->mlen = msg_end.nr - message.nr;
4761 inst->header_size = header_size;
4762
4763 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4764 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4765 }
4766
4767 static bool
4768 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
4769 {
4770 if (devinfo->gen < 8 && !devinfo->is_haswell)
4771 return false;
4772
4773 return sampler.file != IMM || sampler.ud >= 16;
4774 }
4775
4776 static unsigned
4777 sampler_msg_type(const gen_device_info *devinfo,
4778 opcode opcode, bool shadow_compare)
4779 {
4780 assert(devinfo->gen >= 5);
4781 switch (opcode) {
4782 case SHADER_OPCODE_TEX:
4783 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE :
4784 GEN5_SAMPLER_MESSAGE_SAMPLE;
4785 case FS_OPCODE_TXB:
4786 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE :
4787 GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
4788 case SHADER_OPCODE_TXL:
4789 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE :
4790 GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
4791 case SHADER_OPCODE_TXL_LZ:
4792 return shadow_compare ? GEN9_SAMPLER_MESSAGE_SAMPLE_C_LZ :
4793 GEN9_SAMPLER_MESSAGE_SAMPLE_LZ;
4794 case SHADER_OPCODE_TXS:
4795 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
4796 return GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
4797 case SHADER_OPCODE_TXD:
4798 assert(!shadow_compare || devinfo->gen >= 8 || devinfo->is_haswell);
4799 return shadow_compare ? HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE :
4800 GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
4801 case SHADER_OPCODE_TXF:
4802 return GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
4803 case SHADER_OPCODE_TXF_LZ:
4804 assert(devinfo->gen >= 9);
4805 return GEN9_SAMPLER_MESSAGE_SAMPLE_LD_LZ;
4806 case SHADER_OPCODE_TXF_CMS_W:
4807 assert(devinfo->gen >= 9);
4808 return GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
4809 case SHADER_OPCODE_TXF_CMS:
4810 return devinfo->gen >= 7 ? GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS :
4811 GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
4812 case SHADER_OPCODE_TXF_UMS:
4813 assert(devinfo->gen >= 7);
4814 return GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS;
4815 case SHADER_OPCODE_TXF_MCS:
4816 assert(devinfo->gen >= 7);
4817 return GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
4818 case SHADER_OPCODE_LOD:
4819 return GEN5_SAMPLER_MESSAGE_LOD;
4820 case SHADER_OPCODE_TG4:
4821 assert(devinfo->gen >= 7);
4822 return shadow_compare ? GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C :
4823 GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
4824 break;
4825 case SHADER_OPCODE_TG4_OFFSET:
4826 assert(devinfo->gen >= 7);
4827 return shadow_compare ? GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C :
4828 GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
4829 case SHADER_OPCODE_SAMPLEINFO:
4830 return GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
4831 default:
4832 unreachable("not reached");
4833 }
4834 }
4835
4836 static void
4837 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4838 const fs_reg &coordinate,
4839 const fs_reg &shadow_c,
4840 fs_reg lod, const fs_reg &lod2,
4841 const fs_reg &min_lod,
4842 const fs_reg &sample_index,
4843 const fs_reg &mcs,
4844 const fs_reg &surface,
4845 const fs_reg &sampler,
4846 const fs_reg &surface_handle,
4847 const fs_reg &sampler_handle,
4848 const fs_reg &tg4_offset,
4849 unsigned coord_components,
4850 unsigned grad_components)
4851 {
4852 const gen_device_info *devinfo = bld.shader->devinfo;
4853 const brw_stage_prog_data *prog_data = bld.shader->stage_prog_data;
4854 unsigned reg_width = bld.dispatch_width() / 8;
4855 unsigned header_size = 0, length = 0;
4856 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4857 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4858 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4859
4860 /* We must have exactly one of surface/sampler and surface/sampler_handle */
4861 assert((surface.file == BAD_FILE) != (surface_handle.file == BAD_FILE));
4862 assert((sampler.file == BAD_FILE) != (sampler_handle.file == BAD_FILE));
4863
4864 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4865 inst->offset != 0 || inst->eot ||
4866 op == SHADER_OPCODE_SAMPLEINFO ||
4867 sampler_handle.file != BAD_FILE ||
4868 is_high_sampler(devinfo, sampler)) {
4869 /* For general texture offsets (no txf workaround), we need a header to
4870 * put them in.
4871 *
4872 * TG4 needs to place its channel select in the header, for interaction
4873 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4874 * larger sampler numbers we need to offset the Sampler State Pointer in
4875 * the header.
4876 */
4877 fs_reg header = retype(sources[0], BRW_REGISTER_TYPE_UD);
4878 header_size = 1;
4879 length++;
4880
4881 /* If we're requesting fewer than four channels worth of response,
4882 * and we have an explicit header, we need to set up the sampler
4883 * writemask. It's reversed from normal: 1 means "don't write".
4884 */
4885 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4886 assert(regs_written(inst) % reg_width == 0);
4887 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4888 inst->offset |= mask << 12;
4889 }
4890
4891 /* Build the actual header */
4892 const fs_builder ubld = bld.exec_all().group(8, 0);
4893 const fs_builder ubld1 = ubld.group(1, 0);
4894 ubld.MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
4895 if (inst->offset) {
4896 ubld1.MOV(component(header, 2), brw_imm_ud(inst->offset));
4897 } else if (bld.shader->stage != MESA_SHADER_VERTEX &&
4898 bld.shader->stage != MESA_SHADER_FRAGMENT) {
4899 /* The vertex and fragment stages have g0.2 set to 0, so
4900 * header0.2 is 0 when g0 is copied. Other stages may not, so we
4901 * must set it to 0 to avoid setting undesirable bits in the
4902 * message.
4903 */
4904 ubld1.MOV(component(header, 2), brw_imm_ud(0));
4905 }
4906
4907 if (sampler_handle.file != BAD_FILE) {
4908 /* Bindless sampler handles aren't relative to the sampler state
4909 * pointer passed into the shader through SAMPLER_STATE_POINTERS_*.
4910 * Instead, it's an absolute pointer relative to dynamic state base
4911 * address.
4912 *
4913 * Sampler states are 16 bytes each and the pointer we give here has
4914 * to be 32-byte aligned. In order to avoid more indirect messages
4915 * than required, we assume that all bindless sampler states are
4916 * 32-byte aligned. This sacrifices a bit of general state base
4917 * address space but means we can do something more efficient in the
4918 * shader.
4919 */
4920 ubld1.MOV(component(header, 3), sampler_handle);
4921 } else if (is_high_sampler(devinfo, sampler)) {
4922 if (sampler.file == BRW_IMMEDIATE_VALUE) {
4923 assert(sampler.ud >= 16);
4924 const int sampler_state_size = 16; /* 16 bytes */
4925
4926 ubld1.ADD(component(header, 3),
4927 retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
4928 brw_imm_ud(16 * (sampler.ud / 16) * sampler_state_size));
4929 } else {
4930 fs_reg tmp = ubld1.vgrf(BRW_REGISTER_TYPE_UD);
4931 ubld1.AND(tmp, sampler, brw_imm_ud(0x0f0));
4932 ubld1.SHL(tmp, tmp, brw_imm_ud(4));
4933 ubld1.ADD(component(header, 3),
4934 retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
4935 tmp);
4936 }
4937 }
4938 }
4939
4940 if (shadow_c.file != BAD_FILE) {
4941 bld.MOV(sources[length], shadow_c);
4942 length++;
4943 }
4944
4945 bool coordinate_done = false;
4946
4947 /* Set up the LOD info */
4948 switch (op) {
4949 case FS_OPCODE_TXB:
4950 case SHADER_OPCODE_TXL:
4951 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4952 op = SHADER_OPCODE_TXL_LZ;
4953 break;
4954 }
4955 bld.MOV(sources[length], lod);
4956 length++;
4957 break;
4958 case SHADER_OPCODE_TXD:
4959 /* TXD should have been lowered in SIMD16 mode. */
4960 assert(bld.dispatch_width() == 8);
4961
4962 /* Load dPdx and the coordinate together:
4963 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4964 */
4965 for (unsigned i = 0; i < coord_components; i++) {
4966 bld.MOV(sources[length++], offset(coordinate, bld, i));
4967
4968 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4969 * only derivatives for (u, v, r).
4970 */
4971 if (i < grad_components) {
4972 bld.MOV(sources[length++], offset(lod, bld, i));
4973 bld.MOV(sources[length++], offset(lod2, bld, i));
4974 }
4975 }
4976
4977 coordinate_done = true;
4978 break;
4979 case SHADER_OPCODE_TXS:
4980 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4981 length++;
4982 break;
4983 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
4984 /* We need an LOD; just use 0 */
4985 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), brw_imm_ud(0));
4986 length++;
4987 break;
4988 case SHADER_OPCODE_TXF:
4989 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4990 * On Gen9 they are u, v, lod, r
4991 */
4992 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4993
4994 if (devinfo->gen >= 9) {
4995 if (coord_components >= 2) {
4996 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4997 offset(coordinate, bld, 1));
4998 } else {
4999 sources[length] = brw_imm_d(0);
5000 }
5001 length++;
5002 }
5003
5004 if (devinfo->gen >= 9 && lod.is_zero()) {
5005 op = SHADER_OPCODE_TXF_LZ;
5006 } else {
5007 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
5008 length++;
5009 }
5010
5011 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
5012 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5013 offset(coordinate, bld, i));
5014
5015 coordinate_done = true;
5016 break;
5017
5018 case SHADER_OPCODE_TXF_CMS:
5019 case SHADER_OPCODE_TXF_CMS_W:
5020 case SHADER_OPCODE_TXF_UMS:
5021 case SHADER_OPCODE_TXF_MCS:
5022 if (op == SHADER_OPCODE_TXF_UMS ||
5023 op == SHADER_OPCODE_TXF_CMS ||
5024 op == SHADER_OPCODE_TXF_CMS_W) {
5025 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
5026 length++;
5027 }
5028
5029 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
5030 /* Data from the multisample control surface. */
5031 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
5032 length++;
5033
5034 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
5035 * the MCS data.
5036 */
5037 if (op == SHADER_OPCODE_TXF_CMS_W) {
5038 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
5039 mcs.file == IMM ?
5040 mcs :
5041 offset(mcs, bld, 1));
5042 length++;
5043 }
5044 }
5045
5046 /* There is no offsetting for this message; just copy in the integer
5047 * texture coordinates.
5048 */
5049 for (unsigned i = 0; i < coord_components; i++)
5050 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5051 offset(coordinate, bld, i));
5052
5053 coordinate_done = true;
5054 break;
5055 case SHADER_OPCODE_TG4_OFFSET:
5056 /* More crazy intermixing */
5057 for (unsigned i = 0; i < 2; i++) /* u, v */
5058 bld.MOV(sources[length++], offset(coordinate, bld, i));
5059
5060 for (unsigned i = 0; i < 2; i++) /* offu, offv */
5061 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5062 offset(tg4_offset, bld, i));
5063
5064 if (coord_components == 3) /* r if present */
5065 bld.MOV(sources[length++], offset(coordinate, bld, 2));
5066
5067 coordinate_done = true;
5068 break;
5069 default:
5070 break;
5071 }
5072
5073 /* Set up the coordinate (except for cases where it was done above) */
5074 if (!coordinate_done) {
5075 for (unsigned i = 0; i < coord_components; i++)
5076 bld.MOV(sources[length++], offset(coordinate, bld, i));
5077 }
5078
5079 if (min_lod.file != BAD_FILE) {
5080 /* Account for all of the missing coordinate sources */
5081 length += 4 - coord_components;
5082 if (op == SHADER_OPCODE_TXD)
5083 length += (3 - grad_components) * 2;
5084
5085 bld.MOV(sources[length++], min_lod);
5086 }
5087
5088 unsigned mlen;
5089 if (reg_width == 2)
5090 mlen = length * reg_width - header_size;
5091 else
5092 mlen = length * reg_width;
5093
5094 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
5095 BRW_REGISTER_TYPE_F);
5096 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
5097
5098 /* Generate the SEND. */
5099 inst->opcode = SHADER_OPCODE_SEND;
5100 inst->mlen = mlen;
5101 inst->header_size = header_size;
5102
5103 const unsigned msg_type =
5104 sampler_msg_type(devinfo, op, inst->shadow_compare);
5105 const unsigned simd_mode =
5106 inst->exec_size <= 8 ? BRW_SAMPLER_SIMD_MODE_SIMD8 :
5107 BRW_SAMPLER_SIMD_MODE_SIMD16;
5108
5109 uint32_t base_binding_table_index;
5110 switch (op) {
5111 case SHADER_OPCODE_TG4:
5112 case SHADER_OPCODE_TG4_OFFSET:
5113 base_binding_table_index = prog_data->binding_table.gather_texture_start;
5114 break;
5115 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5116 base_binding_table_index = prog_data->binding_table.image_start;
5117 break;
5118 default:
5119 base_binding_table_index = prog_data->binding_table.texture_start;
5120 break;
5121 }
5122
5123 inst->sfid = BRW_SFID_SAMPLER;
5124 if (surface.file == IMM &&
5125 (sampler.file == IMM || sampler_handle.file != BAD_FILE)) {
5126 inst->desc = brw_sampler_desc(devinfo,
5127 surface.ud + base_binding_table_index,
5128 sampler.file == IMM ? sampler.ud % 16 : 0,
5129 msg_type,
5130 simd_mode,
5131 0 /* return_format unused on gen7+ */);
5132 inst->src[0] = brw_imm_ud(0);
5133 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5134 } else if (surface_handle.file != BAD_FILE) {
5135 /* Bindless surface */
5136 assert(devinfo->gen >= 9);
5137 inst->desc = brw_sampler_desc(devinfo,
5138 GEN9_BTI_BINDLESS,
5139 sampler.file == IMM ? sampler.ud % 16 : 0,
5140 msg_type,
5141 simd_mode,
5142 0 /* return_format unused on gen7+ */);
5143
5144 /* For bindless samplers, the entire address is included in the message
5145 * header so we can leave the portion in the message descriptor 0.
5146 */
5147 if (sampler_handle.file != BAD_FILE || sampler.file == IMM) {
5148 inst->src[0] = brw_imm_ud(0);
5149 } else {
5150 const fs_builder ubld = bld.group(1, 0).exec_all();
5151 fs_reg desc = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5152 ubld.SHL(desc, sampler, brw_imm_ud(8));
5153 inst->src[0] = desc;
5154 }
5155
5156 /* We assume that the driver provided the handle in the top 20 bits so
5157 * we can use the surface handle directly as the extended descriptor.
5158 */
5159 inst->src[1] = retype(surface_handle, BRW_REGISTER_TYPE_UD);
5160 } else {
5161 /* Immediate portion of the descriptor */
5162 inst->desc = brw_sampler_desc(devinfo,
5163 0, /* surface */
5164 0, /* sampler */
5165 msg_type,
5166 simd_mode,
5167 0 /* return_format unused on gen7+ */);
5168 const fs_builder ubld = bld.group(1, 0).exec_all();
5169 fs_reg desc = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5170 if (surface.equals(sampler)) {
5171 /* This case is common in GL */
5172 ubld.MUL(desc, surface, brw_imm_ud(0x101));
5173 } else {
5174 if (sampler_handle.file != BAD_FILE) {
5175 ubld.MOV(desc, surface);
5176 } else if (sampler.file == IMM) {
5177 ubld.OR(desc, surface, brw_imm_ud(sampler.ud << 8));
5178 } else {
5179 ubld.SHL(desc, sampler, brw_imm_ud(8));
5180 ubld.OR(desc, desc, surface);
5181 }
5182 }
5183 if (base_binding_table_index)
5184 ubld.ADD(desc, desc, brw_imm_ud(base_binding_table_index));
5185 ubld.AND(desc, desc, brw_imm_ud(0xfff));
5186
5187 inst->src[0] = component(desc, 0);
5188 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5189 }
5190
5191 inst->src[2] = src_payload;
5192 inst->resize_sources(3);
5193
5194 if (inst->eot) {
5195 /* EOT sampler messages don't make sense to split because it would
5196 * involve ending half of the thread early.
5197 */
5198 assert(inst->group == 0);
5199 /* We need to use SENDC for EOT sampler messages */
5200 inst->check_tdr = true;
5201 inst->send_has_side_effects = true;
5202 }
5203
5204 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
5205 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
5206 }
5207
5208 static void
5209 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
5210 {
5211 const gen_device_info *devinfo = bld.shader->devinfo;
5212 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
5213 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
5214 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
5215 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
5216 const fs_reg &min_lod = inst->src[TEX_LOGICAL_SRC_MIN_LOD];
5217 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
5218 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
5219 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
5220 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
5221 const fs_reg &surface_handle = inst->src[TEX_LOGICAL_SRC_SURFACE_HANDLE];
5222 const fs_reg &sampler_handle = inst->src[TEX_LOGICAL_SRC_SAMPLER_HANDLE];
5223 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
5224 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
5225 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
5226 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
5227 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
5228
5229 if (devinfo->gen >= 7) {
5230 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
5231 shadow_c, lod, lod2, min_lod,
5232 sample_index,
5233 mcs, surface, sampler,
5234 surface_handle, sampler_handle,
5235 tg4_offset,
5236 coord_components, grad_components);
5237 } else if (devinfo->gen >= 5) {
5238 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
5239 shadow_c, lod, lod2, sample_index,
5240 surface, sampler,
5241 coord_components, grad_components);
5242 } else {
5243 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
5244 shadow_c, lod, lod2,
5245 surface, sampler,
5246 coord_components, grad_components);
5247 }
5248 }
5249
5250 /**
5251 * Initialize the header present in some typed and untyped surface
5252 * messages.
5253 */
5254 static fs_reg
5255 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
5256 {
5257 fs_builder ubld = bld.exec_all().group(8, 0);
5258 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5259 ubld.MOV(dst, brw_imm_d(0));
5260 ubld.group(1, 0).MOV(component(dst, 7), sample_mask);
5261 return dst;
5262 }
5263
5264 static void
5265 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst)
5266 {
5267 const gen_device_info *devinfo = bld.shader->devinfo;
5268
5269 /* Get the logical send arguments. */
5270 const fs_reg &addr = inst->src[SURFACE_LOGICAL_SRC_ADDRESS];
5271 const fs_reg &src = inst->src[SURFACE_LOGICAL_SRC_DATA];
5272 const fs_reg &surface = inst->src[SURFACE_LOGICAL_SRC_SURFACE];
5273 const fs_reg &surface_handle = inst->src[SURFACE_LOGICAL_SRC_SURFACE_HANDLE];
5274 const UNUSED fs_reg &dims = inst->src[SURFACE_LOGICAL_SRC_IMM_DIMS];
5275 const fs_reg &arg = inst->src[SURFACE_LOGICAL_SRC_IMM_ARG];
5276 assert(arg.file == IMM);
5277
5278 /* We must have exactly one of surface and surface_handle */
5279 assert((surface.file == BAD_FILE) != (surface_handle.file == BAD_FILE));
5280
5281 /* Calculate the total number of components of the payload. */
5282 const unsigned addr_sz = inst->components_read(SURFACE_LOGICAL_SRC_ADDRESS);
5283 const unsigned src_sz = inst->components_read(SURFACE_LOGICAL_SRC_DATA);
5284
5285 const bool is_typed_access =
5286 inst->opcode == SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL ||
5287 inst->opcode == SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL ||
5288 inst->opcode == SHADER_OPCODE_TYPED_ATOMIC_LOGICAL;
5289
5290 /* From the BDW PRM Volume 7, page 147:
5291 *
5292 * "For the Data Cache Data Port*, the header must be present for the
5293 * following message types: [...] Typed read/write/atomics"
5294 *
5295 * Earlier generations have a similar wording. Because of this restriction
5296 * we don't attempt to implement sample masks via predication for such
5297 * messages prior to Gen9, since we have to provide a header anyway. On
5298 * Gen11+ the header has been removed so we can only use predication.
5299 */
5300 const unsigned header_sz = devinfo->gen < 9 && is_typed_access ? 1 : 0;
5301
5302 const bool has_side_effects = inst->has_side_effects();
5303 fs_reg sample_mask = has_side_effects ? bld.sample_mask_reg() :
5304 fs_reg(brw_imm_d(0xffff));
5305
5306 fs_reg payload, payload2;
5307 unsigned mlen, ex_mlen = 0;
5308 if (devinfo->gen >= 9) {
5309 /* We have split sends on gen9 and above */
5310 assert(header_sz == 0);
5311 payload = bld.move_to_vgrf(addr, addr_sz);
5312 payload2 = bld.move_to_vgrf(src, src_sz);
5313 mlen = addr_sz * (inst->exec_size / 8);
5314 ex_mlen = src_sz * (inst->exec_size / 8);
5315 } else {
5316 /* Allocate space for the payload. */
5317 const unsigned sz = header_sz + addr_sz + src_sz;
5318 payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
5319 fs_reg *const components = new fs_reg[sz];
5320 unsigned n = 0;
5321
5322 /* Construct the payload. */
5323 if (header_sz)
5324 components[n++] = emit_surface_header(bld, sample_mask);
5325
5326 for (unsigned i = 0; i < addr_sz; i++)
5327 components[n++] = offset(addr, bld, i);
5328
5329 for (unsigned i = 0; i < src_sz; i++)
5330 components[n++] = offset(src, bld, i);
5331
5332 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
5333 mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
5334
5335 delete[] components;
5336 }
5337
5338 /* Predicate the instruction on the sample mask if no header is
5339 * provided.
5340 */
5341 if (!header_sz && sample_mask.file != BAD_FILE &&
5342 sample_mask.file != IMM) {
5343 const fs_builder ubld = bld.group(1, 0).exec_all();
5344 if (inst->predicate) {
5345 assert(inst->predicate == BRW_PREDICATE_NORMAL);
5346 assert(!inst->predicate_inverse);
5347 assert(inst->flag_subreg < 2);
5348 /* Combine the sample mask with the existing predicate by using a
5349 * vertical predication mode.
5350 */
5351 inst->predicate = BRW_PREDICATE_ALIGN1_ALLV;
5352 ubld.MOV(retype(brw_flag_subreg(inst->flag_subreg + 2),
5353 sample_mask.type),
5354 sample_mask);
5355 } else {
5356 inst->flag_subreg = 2;
5357 inst->predicate = BRW_PREDICATE_NORMAL;
5358 inst->predicate_inverse = false;
5359 ubld.MOV(retype(brw_flag_subreg(inst->flag_subreg), sample_mask.type),
5360 sample_mask);
5361 }
5362 }
5363
5364 uint32_t sfid;
5365 switch (inst->opcode) {
5366 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5367 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5368 /* Byte scattered opcodes go through the normal data cache */
5369 sfid = GEN7_SFID_DATAPORT_DATA_CACHE;
5370 break;
5371
5372 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5373 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5374 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5375 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5376 /* Untyped Surface messages go through the data cache but the SFID value
5377 * changed on Haswell.
5378 */
5379 sfid = (devinfo->gen >= 8 || devinfo->is_haswell ?
5380 HSW_SFID_DATAPORT_DATA_CACHE_1 :
5381 GEN7_SFID_DATAPORT_DATA_CACHE);
5382 break;
5383
5384 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5385 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5386 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5387 /* Typed surface messages go through the render cache on IVB and the
5388 * data cache on HSW+.
5389 */
5390 sfid = (devinfo->gen >= 8 || devinfo->is_haswell ?
5391 HSW_SFID_DATAPORT_DATA_CACHE_1 :
5392 GEN6_SFID_DATAPORT_RENDER_CACHE);
5393 break;
5394
5395 default:
5396 unreachable("Unsupported surface opcode");
5397 }
5398
5399 uint32_t desc;
5400 switch (inst->opcode) {
5401 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5402 desc = brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size,
5403 arg.ud, /* num_channels */
5404 false /* write */);
5405 break;
5406
5407 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5408 desc = brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size,
5409 arg.ud, /* num_channels */
5410 true /* write */);
5411 break;
5412
5413 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5414 desc = brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size,
5415 arg.ud, /* bit_size */
5416 false /* write */);
5417 break;
5418
5419 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5420 desc = brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size,
5421 arg.ud, /* bit_size */
5422 true /* write */);
5423 break;
5424
5425 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5426 desc = brw_dp_untyped_atomic_desc(devinfo, inst->exec_size,
5427 arg.ud, /* atomic_op */
5428 !inst->dst.is_null());
5429 break;
5430
5431 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5432 desc = brw_dp_untyped_atomic_float_desc(devinfo, inst->exec_size,
5433 arg.ud, /* atomic_op */
5434 !inst->dst.is_null());
5435 break;
5436
5437 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5438 desc = brw_dp_typed_surface_rw_desc(devinfo, inst->exec_size, inst->group,
5439 arg.ud, /* num_channels */
5440 false /* write */);
5441 break;
5442
5443 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5444 desc = brw_dp_typed_surface_rw_desc(devinfo, inst->exec_size, inst->group,
5445 arg.ud, /* num_channels */
5446 true /* write */);
5447 break;
5448
5449 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5450 desc = brw_dp_typed_atomic_desc(devinfo, inst->exec_size, inst->group,
5451 arg.ud, /* atomic_op */
5452 !inst->dst.is_null());
5453 break;
5454
5455 default:
5456 unreachable("Unknown surface logical instruction");
5457 }
5458
5459 /* Update the original instruction. */
5460 inst->opcode = SHADER_OPCODE_SEND;
5461 inst->mlen = mlen;
5462 inst->ex_mlen = ex_mlen;
5463 inst->header_size = header_sz;
5464 inst->send_has_side_effects = has_side_effects;
5465 inst->send_is_volatile = !has_side_effects;
5466
5467 /* Set up SFID and descriptors */
5468 inst->sfid = sfid;
5469 inst->desc = desc;
5470 if (surface.file == IMM) {
5471 inst->desc |= surface.ud & 0xff;
5472 inst->src[0] = brw_imm_ud(0);
5473 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5474 } else if (surface_handle.file != BAD_FILE) {
5475 /* Bindless surface */
5476 assert(devinfo->gen >= 9);
5477 inst->desc |= GEN9_BTI_BINDLESS;
5478 inst->src[0] = brw_imm_ud(0);
5479
5480 /* We assume that the driver provided the handle in the top 20 bits so
5481 * we can use the surface handle directly as the extended descriptor.
5482 */
5483 inst->src[1] = retype(surface_handle, BRW_REGISTER_TYPE_UD);
5484 } else {
5485 const fs_builder ubld = bld.exec_all().group(1, 0);
5486 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5487 ubld.AND(tmp, surface, brw_imm_ud(0xff));
5488 inst->src[0] = component(tmp, 0);
5489 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5490 }
5491
5492 /* Finally, the payload */
5493 inst->src[2] = payload;
5494 inst->src[3] = payload2;
5495
5496 inst->resize_sources(4);
5497 }
5498
5499 static void
5500 lower_a64_logical_send(const fs_builder &bld, fs_inst *inst)
5501 {
5502 const gen_device_info *devinfo = bld.shader->devinfo;
5503
5504 const fs_reg &addr = inst->src[0];
5505 const fs_reg &src = inst->src[1];
5506 const unsigned src_comps = inst->components_read(1);
5507 assert(inst->src[2].file == IMM);
5508 const unsigned arg = inst->src[2].ud;
5509 const bool has_side_effects = inst->has_side_effects();
5510
5511 /* If the surface message has side effects and we're a fragment shader, we
5512 * have to predicate with the sample mask to avoid helper invocations.
5513 */
5514 if (has_side_effects && bld.shader->stage == MESA_SHADER_FRAGMENT) {
5515 inst->flag_subreg = 2;
5516 inst->predicate = BRW_PREDICATE_NORMAL;
5517 inst->predicate_inverse = false;
5518
5519 fs_reg sample_mask = bld.sample_mask_reg();
5520 const fs_builder ubld = bld.group(1, 0).exec_all();
5521 ubld.MOV(retype(brw_flag_subreg(inst->flag_subreg), sample_mask.type),
5522 sample_mask);
5523 }
5524
5525 fs_reg payload, payload2;
5526 unsigned mlen, ex_mlen = 0;
5527 if (devinfo->gen >= 9) {
5528 /* On Skylake and above, we have SENDS */
5529 mlen = 2 * (inst->exec_size / 8);
5530 ex_mlen = src_comps * type_sz(src.type) * inst->exec_size / REG_SIZE;
5531 payload = retype(bld.move_to_vgrf(addr, 1), BRW_REGISTER_TYPE_UD);
5532 payload2 = retype(bld.move_to_vgrf(src, src_comps),
5533 BRW_REGISTER_TYPE_UD);
5534 } else {
5535 /* Add two because the address is 64-bit */
5536 const unsigned dwords = 2 + src_comps;
5537 mlen = dwords * (inst->exec_size / 8);
5538
5539 fs_reg sources[5];
5540
5541 sources[0] = addr;
5542
5543 for (unsigned i = 0; i < src_comps; i++)
5544 sources[1 + i] = offset(src, bld, i);
5545
5546 payload = bld.vgrf(BRW_REGISTER_TYPE_UD, dwords);
5547 bld.LOAD_PAYLOAD(payload, sources, 1 + src_comps, 0);
5548 }
5549
5550 uint32_t desc;
5551 switch (inst->opcode) {
5552 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
5553 desc = brw_dp_a64_untyped_surface_rw_desc(devinfo, inst->exec_size,
5554 arg, /* num_channels */
5555 false /* write */);
5556 break;
5557
5558 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
5559 desc = brw_dp_a64_untyped_surface_rw_desc(devinfo, inst->exec_size,
5560 arg, /* num_channels */
5561 true /* write */);
5562 break;
5563
5564 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
5565 desc = brw_dp_a64_byte_scattered_rw_desc(devinfo, inst->exec_size,
5566 arg, /* bit_size */
5567 false /* write */);
5568 break;
5569
5570 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
5571 desc = brw_dp_a64_byte_scattered_rw_desc(devinfo, inst->exec_size,
5572 arg, /* bit_size */
5573 true /* write */);
5574 break;
5575
5576 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
5577 desc = brw_dp_a64_untyped_atomic_desc(devinfo, inst->exec_size, 32,
5578 arg, /* atomic_op */
5579 !inst->dst.is_null());
5580 break;
5581
5582 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
5583 desc = brw_dp_a64_untyped_atomic_desc(devinfo, inst->exec_size, 64,
5584 arg, /* atomic_op */
5585 !inst->dst.is_null());
5586 break;
5587
5588
5589 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5590 desc = brw_dp_a64_untyped_atomic_float_desc(devinfo, inst->exec_size,
5591 arg, /* atomic_op */
5592 !inst->dst.is_null());
5593 break;
5594
5595 default:
5596 unreachable("Unknown A64 logical instruction");
5597 }
5598
5599 /* Update the original instruction. */
5600 inst->opcode = SHADER_OPCODE_SEND;
5601 inst->mlen = mlen;
5602 inst->ex_mlen = ex_mlen;
5603 inst->header_size = 0;
5604 inst->send_has_side_effects = has_side_effects;
5605 inst->send_is_volatile = !has_side_effects;
5606
5607 /* Set up SFID and descriptors */
5608 inst->sfid = HSW_SFID_DATAPORT_DATA_CACHE_1;
5609 inst->desc = desc;
5610 inst->resize_sources(4);
5611 inst->src[0] = brw_imm_ud(0); /* desc */
5612 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5613 inst->src[2] = payload;
5614 inst->src[3] = payload2;
5615 }
5616
5617 static void
5618 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
5619 {
5620 const gen_device_info *devinfo = bld.shader->devinfo;
5621
5622 if (devinfo->gen >= 7) {
5623 fs_reg index = inst->src[0];
5624 /* We are switching the instruction from an ALU-like instruction to a
5625 * send-from-grf instruction. Since sends can't handle strides or
5626 * source modifiers, we have to make a copy of the offset source.
5627 */
5628 fs_reg offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
5629 bld.MOV(offset, inst->src[1]);
5630
5631 const unsigned simd_mode =
5632 inst->exec_size <= 8 ? BRW_SAMPLER_SIMD_MODE_SIMD8 :
5633 BRW_SAMPLER_SIMD_MODE_SIMD16;
5634
5635 inst->opcode = SHADER_OPCODE_SEND;
5636 inst->mlen = inst->exec_size / 8;
5637 inst->resize_sources(3);
5638
5639 inst->sfid = BRW_SFID_SAMPLER;
5640 inst->desc = brw_sampler_desc(devinfo, 0, 0,
5641 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
5642 simd_mode, 0);
5643 if (index.file == IMM) {
5644 inst->desc |= index.ud & 0xff;
5645 inst->src[0] = brw_imm_ud(0);
5646 } else {
5647 const fs_builder ubld = bld.exec_all().group(1, 0);
5648 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5649 ubld.AND(tmp, index, brw_imm_ud(0xff));
5650 inst->src[0] = component(tmp, 0);
5651 }
5652 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5653 inst->src[2] = offset; /* payload */
5654 } else {
5655 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
5656 BRW_REGISTER_TYPE_UD);
5657
5658 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
5659
5660 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
5661 inst->resize_sources(1);
5662 inst->base_mrf = payload.nr;
5663 inst->header_size = 1;
5664 inst->mlen = 1 + inst->exec_size / 8;
5665 }
5666 }
5667
5668 static void
5669 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
5670 {
5671 assert(bld.shader->devinfo->gen < 6);
5672
5673 inst->base_mrf = 2;
5674 inst->mlen = inst->sources * inst->exec_size / 8;
5675
5676 if (inst->sources > 1) {
5677 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
5678 * "Message Payload":
5679 *
5680 * "Operand0[7]. For the INT DIV functions, this operand is the
5681 * denominator."
5682 * ...
5683 * "Operand1[7]. For the INT DIV functions, this operand is the
5684 * numerator."
5685 */
5686 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
5687 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
5688 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
5689
5690 inst->resize_sources(1);
5691 inst->src[0] = src0;
5692
5693 assert(inst->exec_size == 8);
5694 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
5695 }
5696 }
5697
5698 bool
5699 fs_visitor::lower_logical_sends()
5700 {
5701 bool progress = false;
5702
5703 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5704 const fs_builder ibld(this, block, inst);
5705
5706 switch (inst->opcode) {
5707 case FS_OPCODE_FB_WRITE_LOGICAL:
5708 assert(stage == MESA_SHADER_FRAGMENT);
5709 lower_fb_write_logical_send(ibld, inst,
5710 brw_wm_prog_data(prog_data),
5711 (const brw_wm_prog_key *)key,
5712 payload);
5713 break;
5714
5715 case FS_OPCODE_FB_READ_LOGICAL:
5716 lower_fb_read_logical_send(ibld, inst);
5717 break;
5718
5719 case SHADER_OPCODE_TEX_LOGICAL:
5720 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
5721 break;
5722
5723 case SHADER_OPCODE_TXD_LOGICAL:
5724 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
5725 break;
5726
5727 case SHADER_OPCODE_TXF_LOGICAL:
5728 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
5729 break;
5730
5731 case SHADER_OPCODE_TXL_LOGICAL:
5732 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
5733 break;
5734
5735 case SHADER_OPCODE_TXS_LOGICAL:
5736 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
5737 break;
5738
5739 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5740 lower_sampler_logical_send(ibld, inst,
5741 SHADER_OPCODE_IMAGE_SIZE_LOGICAL);
5742 break;
5743
5744 case FS_OPCODE_TXB_LOGICAL:
5745 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
5746 break;
5747
5748 case SHADER_OPCODE_TXF_CMS_LOGICAL:
5749 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
5750 break;
5751
5752 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
5753 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
5754 break;
5755
5756 case SHADER_OPCODE_TXF_UMS_LOGICAL:
5757 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
5758 break;
5759
5760 case SHADER_OPCODE_TXF_MCS_LOGICAL:
5761 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
5762 break;
5763
5764 case SHADER_OPCODE_LOD_LOGICAL:
5765 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
5766 break;
5767
5768 case SHADER_OPCODE_TG4_LOGICAL:
5769 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
5770 break;
5771
5772 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
5773 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
5774 break;
5775
5776 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
5777 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
5778 break;
5779
5780 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5781 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5782 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5783 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5784 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5785 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5786 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5787 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5788 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5789 lower_surface_logical_send(ibld, inst);
5790 break;
5791
5792 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
5793 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
5794 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
5795 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
5796 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
5797 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
5798 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5799 lower_a64_logical_send(ibld, inst);
5800 break;
5801
5802 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
5803 lower_varying_pull_constant_logical_send(ibld, inst);
5804 break;
5805
5806 case SHADER_OPCODE_RCP:
5807 case SHADER_OPCODE_RSQ:
5808 case SHADER_OPCODE_SQRT:
5809 case SHADER_OPCODE_EXP2:
5810 case SHADER_OPCODE_LOG2:
5811 case SHADER_OPCODE_SIN:
5812 case SHADER_OPCODE_COS:
5813 case SHADER_OPCODE_POW:
5814 case SHADER_OPCODE_INT_QUOTIENT:
5815 case SHADER_OPCODE_INT_REMAINDER:
5816 /* The math opcodes are overloaded for the send-like and
5817 * expression-like instructions which seems kind of icky. Gen6+ has
5818 * a native (but rather quirky) MATH instruction so we don't need to
5819 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
5820 * logical instructions (which we can easily recognize because they
5821 * have mlen = 0) into send-like virtual instructions.
5822 */
5823 if (devinfo->gen < 6 && inst->mlen == 0) {
5824 lower_math_logical_send(ibld, inst);
5825 break;
5826
5827 } else {
5828 continue;
5829 }
5830
5831 default:
5832 continue;
5833 }
5834
5835 progress = true;
5836 }
5837
5838 if (progress)
5839 invalidate_live_intervals();
5840
5841 return progress;
5842 }
5843
5844 static bool
5845 is_mixed_float_with_fp32_dst(const fs_inst *inst)
5846 {
5847 /* This opcode sometimes uses :W type on the source even if the operand is
5848 * a :HF, because in gen7 there is no support for :HF, and thus it uses :W.
5849 */
5850 if (inst->opcode == BRW_OPCODE_F16TO32)
5851 return true;
5852
5853 if (inst->dst.type != BRW_REGISTER_TYPE_F)
5854 return false;
5855
5856 for (int i = 0; i < inst->sources; i++) {
5857 if (inst->src[i].type == BRW_REGISTER_TYPE_HF)
5858 return true;
5859 }
5860
5861 return false;
5862 }
5863
5864 static bool
5865 is_mixed_float_with_packed_fp16_dst(const fs_inst *inst)
5866 {
5867 /* This opcode sometimes uses :W type on the destination even if the
5868 * destination is a :HF, because in gen7 there is no support for :HF, and
5869 * thus it uses :W.
5870 */
5871 if (inst->opcode == BRW_OPCODE_F32TO16 &&
5872 inst->dst.stride == 1)
5873 return true;
5874
5875 if (inst->dst.type != BRW_REGISTER_TYPE_HF ||
5876 inst->dst.stride != 1)
5877 return false;
5878
5879 for (int i = 0; i < inst->sources; i++) {
5880 if (inst->src[i].type == BRW_REGISTER_TYPE_F)
5881 return true;
5882 }
5883
5884 return false;
5885 }
5886
5887 /**
5888 * Get the closest allowed SIMD width for instruction \p inst accounting for
5889 * some common regioning and execution control restrictions that apply to FPU
5890 * instructions. These restrictions don't necessarily have any relevance to
5891 * instructions not executed by the FPU pipeline like extended math, control
5892 * flow or send message instructions.
5893 *
5894 * For virtual opcodes it's really up to the instruction -- In some cases
5895 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
5896 * instructions) it may simplify virtual instruction lowering if we can
5897 * enforce FPU-like regioning restrictions already on the virtual instruction,
5898 * in other cases (e.g. virtual send-like instructions) this may be
5899 * excessively restrictive.
5900 */
5901 static unsigned
5902 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
5903 const fs_inst *inst)
5904 {
5905 /* Maximum execution size representable in the instruction controls. */
5906 unsigned max_width = MIN2(32, inst->exec_size);
5907
5908 /* According to the PRMs:
5909 * "A. In Direct Addressing mode, a source cannot span more than 2
5910 * adjacent GRF registers.
5911 * B. A destination cannot span more than 2 adjacent GRF registers."
5912 *
5913 * Look for the source or destination with the largest register region
5914 * which is the one that is going to limit the overall execution size of
5915 * the instruction due to this rule.
5916 */
5917 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
5918
5919 for (unsigned i = 0; i < inst->sources; i++)
5920 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
5921
5922 /* Calculate the maximum execution size of the instruction based on the
5923 * factor by which it goes over the hardware limit of 2 GRFs.
5924 */
5925 if (reg_count > 2)
5926 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
5927
5928 /* According to the IVB PRMs:
5929 * "When destination spans two registers, the source MUST span two
5930 * registers. The exception to the above rule:
5931 *
5932 * - When source is scalar, the source registers are not incremented.
5933 * - When source is packed integer Word and destination is packed
5934 * integer DWord, the source register is not incremented but the
5935 * source sub register is incremented."
5936 *
5937 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
5938 * restrictions. The code below intentionally doesn't check whether the
5939 * destination type is integer because empirically the hardware doesn't
5940 * seem to care what the actual type is as long as it's dword-aligned.
5941 */
5942 if (devinfo->gen < 8) {
5943 for (unsigned i = 0; i < inst->sources; i++) {
5944 /* IVB implements DF scalars as <0;2,1> regions. */
5945 const bool is_scalar_exception = is_uniform(inst->src[i]) &&
5946 (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
5947 const bool is_packed_word_exception =
5948 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
5949 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
5950
5951 /* We check size_read(i) against size_written instead of REG_SIZE
5952 * because we want to properly handle SIMD32. In SIMD32, you can end
5953 * up with writes to 4 registers and a source that reads 2 registers
5954 * and we may still need to lower all the way to SIMD8 in that case.
5955 */
5956 if (inst->size_written > REG_SIZE &&
5957 inst->size_read(i) != 0 &&
5958 inst->size_read(i) < inst->size_written &&
5959 !is_scalar_exception && !is_packed_word_exception) {
5960 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
5961 max_width = MIN2(max_width, inst->exec_size / reg_count);
5962 }
5963 }
5964 }
5965
5966 if (devinfo->gen < 6) {
5967 /* From the G45 PRM, Volume 4 Page 361:
5968 *
5969 * "Operand Alignment Rule: With the exceptions listed below, a
5970 * source/destination operand in general should be aligned to even
5971 * 256-bit physical register with a region size equal to two 256-bit
5972 * physical registers."
5973 *
5974 * Normally we enforce this by allocating virtual registers to the
5975 * even-aligned class. But we need to handle payload registers.
5976 */
5977 for (unsigned i = 0; i < inst->sources; i++) {
5978 if (inst->src[i].file == FIXED_GRF && (inst->src[i].nr & 1) &&
5979 inst->size_read(i) > REG_SIZE) {
5980 max_width = MIN2(max_width, 8);
5981 }
5982 }
5983 }
5984
5985 /* From the IVB PRMs:
5986 * "When an instruction is SIMD32, the low 16 bits of the execution mask
5987 * are applied for both halves of the SIMD32 instruction. If different
5988 * execution mask channels are required, split the instruction into two
5989 * SIMD16 instructions."
5990 *
5991 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
5992 * 32-wide control flow support in hardware and will behave similarly.
5993 */
5994 if (devinfo->gen < 8 && !inst->force_writemask_all)
5995 max_width = MIN2(max_width, 16);
5996
5997 /* From the IVB PRMs (applies to HSW too):
5998 * "Instructions with condition modifiers must not use SIMD32."
5999 *
6000 * From the BDW PRMs (applies to later hardware too):
6001 * "Ternary instruction with condition modifiers must not use SIMD32."
6002 */
6003 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
6004 max_width = MIN2(max_width, 16);
6005
6006 /* From the IVB PRMs (applies to other devices that don't have the
6007 * gen_device_info::supports_simd16_3src flag set):
6008 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
6009 * SIMD8 is not allowed for DF operations."
6010 */
6011 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
6012 max_width = MIN2(max_width, inst->exec_size / reg_count);
6013
6014 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
6015 * the 8-bit quarter of the execution mask signals specified in the
6016 * instruction control fields) for the second compressed half of any
6017 * single-precision instruction (for double-precision instructions
6018 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
6019 * the EU will apply the wrong execution controls for the second
6020 * sequential GRF write if the number of channels per GRF is not exactly
6021 * eight in single-precision mode (or four in double-float mode).
6022 *
6023 * In this situation we calculate the maximum size of the split
6024 * instructions so they only ever write to a single register.
6025 */
6026 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
6027 !inst->force_writemask_all) {
6028 const unsigned channels_per_grf = inst->exec_size /
6029 DIV_ROUND_UP(inst->size_written, REG_SIZE);
6030 const unsigned exec_type_size = get_exec_type_size(inst);
6031 assert(exec_type_size);
6032
6033 /* The hardware shifts exactly 8 channels per compressed half of the
6034 * instruction in single-precision mode and exactly 4 in double-precision.
6035 */
6036 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
6037 max_width = MIN2(max_width, channels_per_grf);
6038
6039 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
6040 * because HW applies the same channel enable signals to both halves of
6041 * the compressed instruction which will be just wrong under
6042 * non-uniform control flow.
6043 */
6044 if (devinfo->gen == 7 && !devinfo->is_haswell &&
6045 (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
6046 max_width = MIN2(max_width, 4);
6047 }
6048
6049 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
6050 * Float Operations:
6051 *
6052 * "No SIMD16 in mixed mode when destination is f32. Instruction
6053 * execution size must be no more than 8."
6054 *
6055 * FIXME: the simulator doesn't seem to complain if we don't do this and
6056 * empirical testing with existing CTS tests show that they pass just fine
6057 * without implementing this, however, since our interpretation of the PRM
6058 * is that conversion MOVs between HF and F are still mixed-float
6059 * instructions (and therefore subject to this restriction) we decided to
6060 * split them to be safe. Might be useful to do additional investigation to
6061 * lift the restriction if we can ensure that it is safe though, since these
6062 * conversions are common when half-float types are involved since many
6063 * instructions do not support HF types and conversions from/to F are
6064 * required.
6065 */
6066 if (is_mixed_float_with_fp32_dst(inst))
6067 max_width = MIN2(max_width, 8);
6068
6069 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
6070 * Float Operations:
6071 *
6072 * "No SIMD16 in mixed mode when destination is packed f16 for both
6073 * Align1 and Align16."
6074 */
6075 if (is_mixed_float_with_packed_fp16_dst(inst))
6076 max_width = MIN2(max_width, 8);
6077
6078 /* Only power-of-two execution sizes are representable in the instruction
6079 * control fields.
6080 */
6081 return 1 << _mesa_logbase2(max_width);
6082 }
6083
6084 /**
6085 * Get the maximum allowed SIMD width for instruction \p inst accounting for
6086 * various payload size restrictions that apply to sampler message
6087 * instructions.
6088 *
6089 * This is only intended to provide a maximum theoretical bound for the
6090 * execution size of the message based on the number of argument components
6091 * alone, which in most cases will determine whether the SIMD8 or SIMD16
6092 * variant of the message can be used, though some messages may have
6093 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
6094 * the message length to determine the exact SIMD width and argument count,
6095 * which makes a number of sampler message combinations impossible to
6096 * represent).
6097 */
6098 static unsigned
6099 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
6100 const fs_inst *inst)
6101 {
6102 /* If we have a min_lod parameter on anything other than a simple sample
6103 * message, it will push it over 5 arguments and we have to fall back to
6104 * SIMD8.
6105 */
6106 if (inst->opcode != SHADER_OPCODE_TEX &&
6107 inst->components_read(TEX_LOGICAL_SRC_MIN_LOD))
6108 return 8;
6109
6110 /* Calculate the number of coordinate components that have to be present
6111 * assuming that additional arguments follow the texel coordinates in the
6112 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
6113 * need to pad to four or three components depending on the message,
6114 * pre-ILK we need to pad to at most three components.
6115 */
6116 const unsigned req_coord_components =
6117 (devinfo->gen >= 7 ||
6118 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
6119 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
6120 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
6121 3;
6122
6123 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
6124 * variant of the TXL or TXF message.
6125 */
6126 const bool implicit_lod = devinfo->gen >= 9 &&
6127 (inst->opcode == SHADER_OPCODE_TXL ||
6128 inst->opcode == SHADER_OPCODE_TXF) &&
6129 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
6130
6131 /* Calculate the total number of argument components that need to be passed
6132 * to the sampler unit.
6133 */
6134 const unsigned num_payload_components =
6135 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
6136 req_coord_components) +
6137 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
6138 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
6139 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
6140 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
6141 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
6142 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
6143 inst->components_read(TEX_LOGICAL_SRC_MCS);
6144
6145 /* SIMD16 messages with more than five arguments exceed the maximum message
6146 * size supported by the sampler, regardless of whether a header is
6147 * provided or not.
6148 */
6149 return MIN2(inst->exec_size,
6150 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
6151 }
6152
6153 /**
6154 * Get the closest native SIMD width supported by the hardware for instruction
6155 * \p inst. The instruction will be left untouched by
6156 * fs_visitor::lower_simd_width() if the returned value is equal to the
6157 * original execution size.
6158 */
6159 static unsigned
6160 get_lowered_simd_width(const struct gen_device_info *devinfo,
6161 const fs_inst *inst)
6162 {
6163 switch (inst->opcode) {
6164 case BRW_OPCODE_MOV:
6165 case BRW_OPCODE_SEL:
6166 case BRW_OPCODE_NOT:
6167 case BRW_OPCODE_AND:
6168 case BRW_OPCODE_OR:
6169 case BRW_OPCODE_XOR:
6170 case BRW_OPCODE_SHR:
6171 case BRW_OPCODE_SHL:
6172 case BRW_OPCODE_ASR:
6173 case BRW_OPCODE_CMPN:
6174 case BRW_OPCODE_CSEL:
6175 case BRW_OPCODE_F32TO16:
6176 case BRW_OPCODE_F16TO32:
6177 case BRW_OPCODE_BFREV:
6178 case BRW_OPCODE_BFE:
6179 case BRW_OPCODE_ADD:
6180 case BRW_OPCODE_MUL:
6181 case BRW_OPCODE_AVG:
6182 case BRW_OPCODE_FRC:
6183 case BRW_OPCODE_RNDU:
6184 case BRW_OPCODE_RNDD:
6185 case BRW_OPCODE_RNDE:
6186 case BRW_OPCODE_RNDZ:
6187 case BRW_OPCODE_LZD:
6188 case BRW_OPCODE_FBH:
6189 case BRW_OPCODE_FBL:
6190 case BRW_OPCODE_CBIT:
6191 case BRW_OPCODE_SAD2:
6192 case BRW_OPCODE_MAD:
6193 case BRW_OPCODE_LRP:
6194 case FS_OPCODE_PACK:
6195 case SHADER_OPCODE_SEL_EXEC:
6196 case SHADER_OPCODE_CLUSTER_BROADCAST:
6197 return get_fpu_lowered_simd_width(devinfo, inst);
6198
6199 case BRW_OPCODE_CMP: {
6200 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
6201 * when the destination is a GRF the dependency-clear bit on the flag
6202 * register is cleared early.
6203 *
6204 * Suggested workarounds are to disable coissuing CMP instructions
6205 * or to split CMP(16) instructions into two CMP(8) instructions.
6206 *
6207 * We choose to split into CMP(8) instructions since disabling
6208 * coissuing would affect CMP instructions not otherwise affected by
6209 * the errata.
6210 */
6211 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
6212 !inst->dst.is_null() ? 8 : ~0);
6213 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
6214 }
6215 case BRW_OPCODE_BFI1:
6216 case BRW_OPCODE_BFI2:
6217 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
6218 * should
6219 * "Force BFI instructions to be executed always in SIMD8."
6220 */
6221 return MIN2(devinfo->is_haswell ? 8 : ~0u,
6222 get_fpu_lowered_simd_width(devinfo, inst));
6223
6224 case BRW_OPCODE_IF:
6225 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
6226 return inst->exec_size;
6227
6228 case SHADER_OPCODE_RCP:
6229 case SHADER_OPCODE_RSQ:
6230 case SHADER_OPCODE_SQRT:
6231 case SHADER_OPCODE_EXP2:
6232 case SHADER_OPCODE_LOG2:
6233 case SHADER_OPCODE_SIN:
6234 case SHADER_OPCODE_COS: {
6235 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
6236 * Gen6. Extended Math Function is limited to SIMD8 with half-float.
6237 */
6238 if (devinfo->gen == 6 || (devinfo->gen == 4 && !devinfo->is_g4x))
6239 return MIN2(8, inst->exec_size);
6240 if (inst->dst.type == BRW_REGISTER_TYPE_HF)
6241 return MIN2(8, inst->exec_size);
6242 return MIN2(16, inst->exec_size);
6243 }
6244
6245 case SHADER_OPCODE_POW: {
6246 /* SIMD16 is only allowed on Gen7+. Extended Math Function is limited
6247 * to SIMD8 with half-float
6248 */
6249 if (devinfo->gen < 7)
6250 return MIN2(8, inst->exec_size);
6251 if (inst->dst.type == BRW_REGISTER_TYPE_HF)
6252 return MIN2(8, inst->exec_size);
6253 return MIN2(16, inst->exec_size);
6254 }
6255
6256 case SHADER_OPCODE_INT_QUOTIENT:
6257 case SHADER_OPCODE_INT_REMAINDER:
6258 /* Integer division is limited to SIMD8 on all generations. */
6259 return MIN2(8, inst->exec_size);
6260
6261 case FS_OPCODE_LINTERP:
6262 case SHADER_OPCODE_GET_BUFFER_SIZE:
6263 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
6264 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
6265 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
6266 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
6267 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
6268 return MIN2(16, inst->exec_size);
6269
6270 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
6271 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
6272 * message used to implement varying pull constant loads, so expand it
6273 * to SIMD16. An alternative with longer message payload length but
6274 * shorter return payload would be to use the SIMD8 sampler message that
6275 * takes (header, u, v, r) as parameters instead of (header, u).
6276 */
6277 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
6278
6279 case FS_OPCODE_DDX_COARSE:
6280 case FS_OPCODE_DDX_FINE:
6281 case FS_OPCODE_DDY_COARSE:
6282 case FS_OPCODE_DDY_FINE:
6283 /* The implementation of this virtual opcode may require emitting
6284 * compressed Align16 instructions, which are severely limited on some
6285 * generations.
6286 *
6287 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
6288 * Region Restrictions):
6289 *
6290 * "In Align16 access mode, SIMD16 is not allowed for DW operations
6291 * and SIMD8 is not allowed for DF operations."
6292 *
6293 * In this context, "DW operations" means "operations acting on 32-bit
6294 * values", so it includes operations on floats.
6295 *
6296 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
6297 * (Instruction Compression -> Rules and Restrictions):
6298 *
6299 * "A compressed instruction must be in Align1 access mode. Align16
6300 * mode instructions cannot be compressed."
6301 *
6302 * Similar text exists in the g45 PRM.
6303 *
6304 * Empirically, compressed align16 instructions using odd register
6305 * numbers don't appear to work on Sandybridge either.
6306 */
6307 return (devinfo->gen == 4 || devinfo->gen == 6 ||
6308 (devinfo->gen == 7 && !devinfo->is_haswell) ?
6309 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
6310
6311 case SHADER_OPCODE_MULH:
6312 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
6313 * is 8-wide on Gen7+.
6314 */
6315 return (devinfo->gen >= 7 ? 8 :
6316 get_fpu_lowered_simd_width(devinfo, inst));
6317
6318 case FS_OPCODE_FB_WRITE_LOGICAL:
6319 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
6320 * here.
6321 */
6322 assert(devinfo->gen != 6 ||
6323 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
6324 inst->exec_size == 8);
6325 /* Dual-source FB writes are unsupported in SIMD16 mode. */
6326 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
6327 8 : MIN2(16, inst->exec_size));
6328
6329 case FS_OPCODE_FB_READ_LOGICAL:
6330 return MIN2(16, inst->exec_size);
6331
6332 case SHADER_OPCODE_TEX_LOGICAL:
6333 case SHADER_OPCODE_TXF_CMS_LOGICAL:
6334 case SHADER_OPCODE_TXF_UMS_LOGICAL:
6335 case SHADER_OPCODE_TXF_MCS_LOGICAL:
6336 case SHADER_OPCODE_LOD_LOGICAL:
6337 case SHADER_OPCODE_TG4_LOGICAL:
6338 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
6339 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
6340 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
6341 return get_sampler_lowered_simd_width(devinfo, inst);
6342
6343 case SHADER_OPCODE_TXD_LOGICAL:
6344 /* TXD is unsupported in SIMD16 mode. */
6345 return 8;
6346
6347 case SHADER_OPCODE_TXL_LOGICAL:
6348 case FS_OPCODE_TXB_LOGICAL:
6349 /* Only one execution size is representable pre-ILK depending on whether
6350 * the shadow reference argument is present.
6351 */
6352 if (devinfo->gen == 4)
6353 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
6354 else
6355 return get_sampler_lowered_simd_width(devinfo, inst);
6356
6357 case SHADER_OPCODE_TXF_LOGICAL:
6358 case SHADER_OPCODE_TXS_LOGICAL:
6359 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
6360 * messages. Use SIMD16 instead.
6361 */
6362 if (devinfo->gen == 4)
6363 return 16;
6364 else
6365 return get_sampler_lowered_simd_width(devinfo, inst);
6366
6367 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
6368 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
6369 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
6370 return 8;
6371
6372 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
6373 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
6374 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
6375 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
6376 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
6377 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
6378 return MIN2(16, inst->exec_size);
6379
6380 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
6381 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
6382 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
6383 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
6384 return devinfo->gen <= 8 ? 8 : MIN2(16, inst->exec_size);
6385
6386 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
6387 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
6388 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
6389 return 8;
6390
6391 case SHADER_OPCODE_URB_READ_SIMD8:
6392 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
6393 case SHADER_OPCODE_URB_WRITE_SIMD8:
6394 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
6395 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
6396 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
6397 return MIN2(8, inst->exec_size);
6398
6399 case SHADER_OPCODE_QUAD_SWIZZLE: {
6400 const unsigned swiz = inst->src[1].ud;
6401 return (is_uniform(inst->src[0]) ?
6402 get_fpu_lowered_simd_width(devinfo, inst) :
6403 devinfo->gen < 11 && type_sz(inst->src[0].type) == 4 ? 8 :
6404 swiz == BRW_SWIZZLE_XYXY || swiz == BRW_SWIZZLE_ZWZW ? 4 :
6405 get_fpu_lowered_simd_width(devinfo, inst));
6406 }
6407 case SHADER_OPCODE_MOV_INDIRECT: {
6408 /* From IVB and HSW PRMs:
6409 *
6410 * "2.When the destination requires two registers and the sources are
6411 * indirect, the sources must use 1x1 regioning mode.
6412 *
6413 * In case of DF instructions in HSW/IVB, the exec_size is limited by
6414 * the EU decompression logic not handling VxH indirect addressing
6415 * correctly.
6416 */
6417 const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE;
6418 /* Prior to Broadwell, we only have 8 address subregisters. */
6419 return MIN3(devinfo->gen >= 8 ? 16 : 8,
6420 max_size / (inst->dst.stride * type_sz(inst->dst.type)),
6421 inst->exec_size);
6422 }
6423
6424 case SHADER_OPCODE_LOAD_PAYLOAD: {
6425 const unsigned reg_count =
6426 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
6427
6428 if (reg_count > 2) {
6429 /* Only LOAD_PAYLOAD instructions with per-channel destination region
6430 * can be easily lowered (which excludes headers and heterogeneous
6431 * types).
6432 */
6433 assert(!inst->header_size);
6434 for (unsigned i = 0; i < inst->sources; i++)
6435 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
6436 inst->src[i].file == BAD_FILE);
6437
6438 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
6439 } else {
6440 return inst->exec_size;
6441 }
6442 }
6443 default:
6444 return inst->exec_size;
6445 }
6446 }
6447
6448 /**
6449 * Return true if splitting out the group of channels of instruction \p inst
6450 * given by lbld.group() requires allocating a temporary for the i-th source
6451 * of the lowered instruction.
6452 */
6453 static inline bool
6454 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
6455 {
6456 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
6457 (inst->components_read(i) == 1 &&
6458 lbld.dispatch_width() <= inst->exec_size)) ||
6459 (inst->flags_written() &
6460 flag_mask(inst->src[i], type_sz(inst->src[i].type)));
6461 }
6462
6463 /**
6464 * Extract the data that would be consumed by the channel group given by
6465 * lbld.group() from the i-th source region of instruction \p inst and return
6466 * it as result in packed form.
6467 */
6468 static fs_reg
6469 emit_unzip(const fs_builder &lbld, fs_inst *inst, unsigned i)
6470 {
6471 assert(lbld.group() >= inst->group);
6472
6473 /* Specified channel group from the source region. */
6474 const fs_reg src = horiz_offset(inst->src[i], lbld.group() - inst->group);
6475
6476 if (needs_src_copy(lbld, inst, i)) {
6477 /* Builder of the right width to perform the copy avoiding uninitialized
6478 * data if the lowered execution size is greater than the original
6479 * execution size of the instruction.
6480 */
6481 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
6482 inst->exec_size), 0);
6483 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
6484
6485 for (unsigned k = 0; k < inst->components_read(i); ++k)
6486 cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
6487
6488 return tmp;
6489
6490 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
6491 /* The source is invariant for all dispatch_width-wide groups of the
6492 * original region.
6493 */
6494 return inst->src[i];
6495
6496 } else {
6497 /* We can just point the lowered instruction at the right channel group
6498 * from the original region.
6499 */
6500 return src;
6501 }
6502 }
6503
6504 /**
6505 * Return true if splitting out the group of channels of instruction \p inst
6506 * given by lbld.group() requires allocating a temporary for the destination
6507 * of the lowered instruction and copying the data back to the original
6508 * destination region.
6509 */
6510 static inline bool
6511 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
6512 {
6513 /* If the instruction writes more than one component we'll have to shuffle
6514 * the results of multiple lowered instructions in order to make sure that
6515 * they end up arranged correctly in the original destination region.
6516 */
6517 if (inst->size_written > inst->dst.component_size(inst->exec_size))
6518 return true;
6519
6520 /* If the lowered execution size is larger than the original the result of
6521 * the instruction won't fit in the original destination, so we'll have to
6522 * allocate a temporary in any case.
6523 */
6524 if (lbld.dispatch_width() > inst->exec_size)
6525 return true;
6526
6527 for (unsigned i = 0; i < inst->sources; i++) {
6528 /* If we already made a copy of the source for other reasons there won't
6529 * be any overlap with the destination.
6530 */
6531 if (needs_src_copy(lbld, inst, i))
6532 continue;
6533
6534 /* In order to keep the logic simple we emit a copy whenever the
6535 * destination region doesn't exactly match an overlapping source, which
6536 * may point at the source and destination not being aligned group by
6537 * group which could cause one of the lowered instructions to overwrite
6538 * the data read from the same source by other lowered instructions.
6539 */
6540 if (regions_overlap(inst->dst, inst->size_written,
6541 inst->src[i], inst->size_read(i)) &&
6542 !inst->dst.equals(inst->src[i]))
6543 return true;
6544 }
6545
6546 return false;
6547 }
6548
6549 /**
6550 * Insert data from a packed temporary into the channel group given by
6551 * lbld.group() of the destination region of instruction \p inst and return
6552 * the temporary as result. Any copy instructions that are required for
6553 * unzipping the previous value (in the case of partial writes) will be
6554 * inserted using \p lbld_before and any copy instructions required for
6555 * zipping up the destination of \p inst will be inserted using \p lbld_after.
6556 */
6557 static fs_reg
6558 emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after,
6559 fs_inst *inst)
6560 {
6561 assert(lbld_before.dispatch_width() == lbld_after.dispatch_width());
6562 assert(lbld_before.group() == lbld_after.group());
6563 assert(lbld_after.group() >= inst->group);
6564
6565 /* Specified channel group from the destination region. */
6566 const fs_reg dst = horiz_offset(inst->dst, lbld_after.group() - inst->group);
6567 const unsigned dst_size = inst->size_written /
6568 inst->dst.component_size(inst->exec_size);
6569
6570 if (needs_dst_copy(lbld_after, inst)) {
6571 const fs_reg tmp = lbld_after.vgrf(inst->dst.type, dst_size);
6572
6573 if (inst->predicate) {
6574 /* Handle predication by copying the original contents of
6575 * the destination into the temporary before emitting the
6576 * lowered instruction.
6577 */
6578 const fs_builder gbld_before =
6579 lbld_before.group(MIN2(lbld_before.dispatch_width(),
6580 inst->exec_size), 0);
6581 for (unsigned k = 0; k < dst_size; ++k) {
6582 gbld_before.MOV(offset(tmp, lbld_before, k),
6583 offset(dst, inst->exec_size, k));
6584 }
6585 }
6586
6587 const fs_builder gbld_after =
6588 lbld_after.group(MIN2(lbld_after.dispatch_width(),
6589 inst->exec_size), 0);
6590 for (unsigned k = 0; k < dst_size; ++k) {
6591 /* Use a builder of the right width to perform the copy avoiding
6592 * uninitialized data if the lowered execution size is greater than
6593 * the original execution size of the instruction.
6594 */
6595 gbld_after.MOV(offset(dst, inst->exec_size, k),
6596 offset(tmp, lbld_after, k));
6597 }
6598
6599 return tmp;
6600
6601 } else {
6602 /* No need to allocate a temporary for the lowered instruction, just
6603 * take the right group of channels from the original region.
6604 */
6605 return dst;
6606 }
6607 }
6608
6609 bool
6610 fs_visitor::lower_simd_width()
6611 {
6612 bool progress = false;
6613
6614 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
6615 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
6616
6617 if (lower_width != inst->exec_size) {
6618 /* Builder matching the original instruction. We may also need to
6619 * emit an instruction of width larger than the original, set the
6620 * execution size of the builder to the highest of both for now so
6621 * we're sure that both cases can be handled.
6622 */
6623 const unsigned max_width = MAX2(inst->exec_size, lower_width);
6624 const fs_builder ibld = bld.at(block, inst)
6625 .exec_all(inst->force_writemask_all)
6626 .group(max_width, inst->group / max_width);
6627
6628 /* Split the copies in chunks of the execution width of either the
6629 * original or the lowered instruction, whichever is lower.
6630 */
6631 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
6632 const unsigned dst_size = inst->size_written /
6633 inst->dst.component_size(inst->exec_size);
6634
6635 assert(!inst->writes_accumulator && !inst->mlen);
6636
6637 /* Inserting the zip, unzip, and duplicated instructions in all of
6638 * the right spots is somewhat tricky. All of the unzip and any
6639 * instructions from the zip which unzip the destination prior to
6640 * writing need to happen before all of the per-group instructions
6641 * and the zip instructions need to happen after. In order to sort
6642 * this all out, we insert the unzip instructions before \p inst,
6643 * insert the per-group instructions after \p inst (i.e. before
6644 * inst->next), and insert the zip instructions before the
6645 * instruction after \p inst. Since we are inserting instructions
6646 * after \p inst, inst->next is a moving target and we need to save
6647 * it off here so that we insert the zip instructions in the right
6648 * place.
6649 *
6650 * Since we're inserting split instructions after after_inst, the
6651 * instructions will end up in the reverse order that we insert them.
6652 * However, certain render target writes require that the low group
6653 * instructions come before the high group. From the Ivy Bridge PRM
6654 * Vol. 4, Pt. 1, Section 3.9.11:
6655 *
6656 * "If multiple SIMD8 Dual Source messages are delivered by the
6657 * pixel shader thread, each SIMD8_DUALSRC_LO message must be
6658 * issued before the SIMD8_DUALSRC_HI message with the same Slot
6659 * Group Select setting."
6660 *
6661 * And, from Section 3.9.11.1 of the same PRM:
6662 *
6663 * "When SIMD32 or SIMD16 PS threads send render target writes
6664 * with multiple SIMD8 and SIMD16 messages, the following must
6665 * hold:
6666 *
6667 * All the slots (as described above) must have a corresponding
6668 * render target write irrespective of the slot's validity. A slot
6669 * is considered valid when at least one sample is enabled. For
6670 * example, a SIMD16 PS thread must send two SIMD8 render target
6671 * writes to cover all the slots.
6672 *
6673 * PS thread must send SIMD render target write messages with
6674 * increasing slot numbers. For example, SIMD16 thread has
6675 * Slot[15:0] and if two SIMD8 render target writes are used, the
6676 * first SIMD8 render target write must send Slot[7:0] and the
6677 * next one must send Slot[15:8]."
6678 *
6679 * In order to make low group instructions come before high group
6680 * instructions (this is required for some render target writes), we
6681 * split from the highest group to lowest.
6682 */
6683 exec_node *const after_inst = inst->next;
6684 for (int i = n - 1; i >= 0; i--) {
6685 /* Emit a copy of the original instruction with the lowered width.
6686 * If the EOT flag was set throw it away except for the last
6687 * instruction to avoid killing the thread prematurely.
6688 */
6689 fs_inst split_inst = *inst;
6690 split_inst.exec_size = lower_width;
6691 split_inst.eot = inst->eot && i == int(n - 1);
6692
6693 /* Select the correct channel enables for the i-th group, then
6694 * transform the sources and destination and emit the lowered
6695 * instruction.
6696 */
6697 const fs_builder lbld = ibld.group(lower_width, i);
6698
6699 for (unsigned j = 0; j < inst->sources; j++)
6700 split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j);
6701
6702 split_inst.dst = emit_zip(lbld.at(block, inst),
6703 lbld.at(block, after_inst), inst);
6704 split_inst.size_written =
6705 split_inst.dst.component_size(lower_width) * dst_size;
6706
6707 lbld.at(block, inst->next).emit(split_inst);
6708 }
6709
6710 inst->remove(block);
6711 progress = true;
6712 }
6713 }
6714
6715 if (progress)
6716 invalidate_live_intervals();
6717
6718 return progress;
6719 }
6720
6721 void
6722 fs_visitor::dump_instructions()
6723 {
6724 dump_instructions(NULL);
6725 }
6726
6727 void
6728 fs_visitor::dump_instructions(const char *name)
6729 {
6730 FILE *file = stderr;
6731 if (name && geteuid() != 0) {
6732 file = fopen(name, "w");
6733 if (!file)
6734 file = stderr;
6735 }
6736
6737 if (cfg) {
6738 calculate_register_pressure();
6739 int ip = 0, max_pressure = 0;
6740 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
6741 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
6742 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
6743 dump_instruction(inst, file);
6744 ip++;
6745 }
6746 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
6747 } else {
6748 int ip = 0;
6749 foreach_in_list(backend_instruction, inst, &instructions) {
6750 fprintf(file, "%4d: ", ip++);
6751 dump_instruction(inst, file);
6752 }
6753 }
6754
6755 if (file != stderr) {
6756 fclose(file);
6757 }
6758 }
6759
6760 void
6761 fs_visitor::dump_instruction(backend_instruction *be_inst)
6762 {
6763 dump_instruction(be_inst, stderr);
6764 }
6765
6766 void
6767 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
6768 {
6769 fs_inst *inst = (fs_inst *)be_inst;
6770
6771 if (inst->predicate) {
6772 fprintf(file, "(%cf%d.%d) ",
6773 inst->predicate_inverse ? '-' : '+',
6774 inst->flag_subreg / 2,
6775 inst->flag_subreg % 2);
6776 }
6777
6778 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
6779 if (inst->saturate)
6780 fprintf(file, ".sat");
6781 if (inst->conditional_mod) {
6782 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
6783 if (!inst->predicate &&
6784 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
6785 inst->opcode != BRW_OPCODE_CSEL &&
6786 inst->opcode != BRW_OPCODE_IF &&
6787 inst->opcode != BRW_OPCODE_WHILE))) {
6788 fprintf(file, ".f%d.%d", inst->flag_subreg / 2,
6789 inst->flag_subreg % 2);
6790 }
6791 }
6792 fprintf(file, "(%d) ", inst->exec_size);
6793
6794 if (inst->mlen) {
6795 fprintf(file, "(mlen: %d) ", inst->mlen);
6796 }
6797
6798 if (inst->ex_mlen) {
6799 fprintf(file, "(ex_mlen: %d) ", inst->ex_mlen);
6800 }
6801
6802 if (inst->eot) {
6803 fprintf(file, "(EOT) ");
6804 }
6805
6806 switch (inst->dst.file) {
6807 case VGRF:
6808 fprintf(file, "vgrf%d", inst->dst.nr);
6809 break;
6810 case FIXED_GRF:
6811 fprintf(file, "g%d", inst->dst.nr);
6812 break;
6813 case MRF:
6814 fprintf(file, "m%d", inst->dst.nr);
6815 break;
6816 case BAD_FILE:
6817 fprintf(file, "(null)");
6818 break;
6819 case UNIFORM:
6820 fprintf(file, "***u%d***", inst->dst.nr);
6821 break;
6822 case ATTR:
6823 fprintf(file, "***attr%d***", inst->dst.nr);
6824 break;
6825 case ARF:
6826 switch (inst->dst.nr) {
6827 case BRW_ARF_NULL:
6828 fprintf(file, "null");
6829 break;
6830 case BRW_ARF_ADDRESS:
6831 fprintf(file, "a0.%d", inst->dst.subnr);
6832 break;
6833 case BRW_ARF_ACCUMULATOR:
6834 fprintf(file, "acc%d", inst->dst.subnr);
6835 break;
6836 case BRW_ARF_FLAG:
6837 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
6838 break;
6839 default:
6840 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
6841 break;
6842 }
6843 break;
6844 case IMM:
6845 unreachable("not reached");
6846 }
6847
6848 if (inst->dst.offset ||
6849 (inst->dst.file == VGRF &&
6850 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
6851 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
6852 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
6853 inst->dst.offset % reg_size);
6854 }
6855
6856 if (inst->dst.stride != 1)
6857 fprintf(file, "<%u>", inst->dst.stride);
6858 fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));
6859
6860 for (int i = 0; i < inst->sources; i++) {
6861 if (inst->src[i].negate)
6862 fprintf(file, "-");
6863 if (inst->src[i].abs)
6864 fprintf(file, "|");
6865 switch (inst->src[i].file) {
6866 case VGRF:
6867 fprintf(file, "vgrf%d", inst->src[i].nr);
6868 break;
6869 case FIXED_GRF:
6870 fprintf(file, "g%d", inst->src[i].nr);
6871 break;
6872 case MRF:
6873 fprintf(file, "***m%d***", inst->src[i].nr);
6874 break;
6875 case ATTR:
6876 fprintf(file, "attr%d", inst->src[i].nr);
6877 break;
6878 case UNIFORM:
6879 fprintf(file, "u%d", inst->src[i].nr);
6880 break;
6881 case BAD_FILE:
6882 fprintf(file, "(null)");
6883 break;
6884 case IMM:
6885 switch (inst->src[i].type) {
6886 case BRW_REGISTER_TYPE_F:
6887 fprintf(file, "%-gf", inst->src[i].f);
6888 break;
6889 case BRW_REGISTER_TYPE_DF:
6890 fprintf(file, "%fdf", inst->src[i].df);
6891 break;
6892 case BRW_REGISTER_TYPE_W:
6893 case BRW_REGISTER_TYPE_D:
6894 fprintf(file, "%dd", inst->src[i].d);
6895 break;
6896 case BRW_REGISTER_TYPE_UW:
6897 case BRW_REGISTER_TYPE_UD:
6898 fprintf(file, "%uu", inst->src[i].ud);
6899 break;
6900 case BRW_REGISTER_TYPE_Q:
6901 fprintf(file, "%" PRId64 "q", inst->src[i].d64);
6902 break;
6903 case BRW_REGISTER_TYPE_UQ:
6904 fprintf(file, "%" PRIu64 "uq", inst->src[i].u64);
6905 break;
6906 case BRW_REGISTER_TYPE_VF:
6907 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
6908 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
6909 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
6910 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
6911 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
6912 break;
6913 case BRW_REGISTER_TYPE_V:
6914 case BRW_REGISTER_TYPE_UV:
6915 fprintf(file, "%08x%s", inst->src[i].ud,
6916 inst->src[i].type == BRW_REGISTER_TYPE_V ? "V" : "UV");
6917 break;
6918 default:
6919 fprintf(file, "???");
6920 break;
6921 }
6922 break;
6923 case ARF:
6924 switch (inst->src[i].nr) {
6925 case BRW_ARF_NULL:
6926 fprintf(file, "null");
6927 break;
6928 case BRW_ARF_ADDRESS:
6929 fprintf(file, "a0.%d", inst->src[i].subnr);
6930 break;
6931 case BRW_ARF_ACCUMULATOR:
6932 fprintf(file, "acc%d", inst->src[i].subnr);
6933 break;
6934 case BRW_ARF_FLAG:
6935 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
6936 break;
6937 default:
6938 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
6939 break;
6940 }
6941 break;
6942 }
6943
6944 if (inst->src[i].offset ||
6945 (inst->src[i].file == VGRF &&
6946 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
6947 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
6948 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
6949 inst->src[i].offset % reg_size);
6950 }
6951
6952 if (inst->src[i].abs)
6953 fprintf(file, "|");
6954
6955 if (inst->src[i].file != IMM) {
6956 unsigned stride;
6957 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
6958 unsigned hstride = inst->src[i].hstride;
6959 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
6960 } else {
6961 stride = inst->src[i].stride;
6962 }
6963 if (stride != 1)
6964 fprintf(file, "<%u>", stride);
6965
6966 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
6967 }
6968
6969 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
6970 fprintf(file, ", ");
6971 }
6972
6973 fprintf(file, " ");
6974
6975 if (inst->force_writemask_all)
6976 fprintf(file, "NoMask ");
6977
6978 if (inst->exec_size != dispatch_width)
6979 fprintf(file, "group%d ", inst->group);
6980
6981 fprintf(file, "\n");
6982 }
6983
6984 void
6985 fs_visitor::setup_fs_payload_gen6()
6986 {
6987 assert(stage == MESA_SHADER_FRAGMENT);
6988 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
6989 const unsigned payload_width = MIN2(16, dispatch_width);
6990 assert(dispatch_width % payload_width == 0);
6991 assert(devinfo->gen >= 6);
6992
6993 prog_data->uses_src_depth = prog_data->uses_src_w =
6994 (nir->info.system_values_read & (1ull << SYSTEM_VALUE_FRAG_COORD)) != 0;
6995
6996 prog_data->uses_sample_mask =
6997 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
6998
6999 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
7000 *
7001 * "MSDISPMODE_PERSAMPLE is required in order to select
7002 * POSOFFSET_SAMPLE"
7003 *
7004 * So we can only really get sample positions if we are doing real
7005 * per-sample dispatch. If we need gl_SamplePosition and we don't have
7006 * persample dispatch, we hard-code it to 0.5.
7007 */
7008 prog_data->uses_pos_offset = prog_data->persample_dispatch &&
7009 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS);
7010
7011 /* R0: PS thread payload header. */
7012 payload.num_regs++;
7013
7014 for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
7015 /* R1: masks, pixel X/Y coordinates. */
7016 payload.subspan_coord_reg[j] = payload.num_regs++;
7017 }
7018
7019 for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
7020 /* R3-26: barycentric interpolation coordinates. These appear in the
7021 * same order that they appear in the brw_barycentric_mode enum. Each
7022 * set of coordinates occupies 2 registers if dispatch width == 8 and 4
7023 * registers if dispatch width == 16. Coordinates only appear if they
7024 * were enabled using the "Barycentric Interpolation Mode" bits in
7025 * WM_STATE.
7026 */
7027 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
7028 if (prog_data->barycentric_interp_modes & (1 << i)) {
7029 payload.barycentric_coord_reg[i][j] = payload.num_regs;
7030 payload.num_regs += payload_width / 4;
7031 }
7032 }
7033
7034 /* R27-28: interpolated depth if uses source depth */
7035 if (prog_data->uses_src_depth) {
7036 payload.source_depth_reg[j] = payload.num_regs;
7037 payload.num_regs += payload_width / 8;
7038 }
7039
7040 /* R29-30: interpolated W set if GEN6_WM_USES_SOURCE_W. */
7041 if (prog_data->uses_src_w) {
7042 payload.source_w_reg[j] = payload.num_regs;
7043 payload.num_regs += payload_width / 8;
7044 }
7045
7046 /* R31: MSAA position offsets. */
7047 if (prog_data->uses_pos_offset) {
7048 payload.sample_pos_reg[j] = payload.num_regs;
7049 payload.num_regs++;
7050 }
7051
7052 /* R32-33: MSAA input coverage mask */
7053 if (prog_data->uses_sample_mask) {
7054 assert(devinfo->gen >= 7);
7055 payload.sample_mask_in_reg[j] = payload.num_regs;
7056 payload.num_regs += payload_width / 8;
7057 }
7058 }
7059
7060 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
7061 source_depth_to_render_target = true;
7062 }
7063 }
7064
7065 void
7066 fs_visitor::setup_vs_payload()
7067 {
7068 /* R0: thread header, R1: urb handles */
7069 payload.num_regs = 2;
7070 }
7071
7072 void
7073 fs_visitor::setup_gs_payload()
7074 {
7075 assert(stage == MESA_SHADER_GEOMETRY);
7076
7077 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
7078 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
7079
7080 /* R0: thread header, R1: output URB handles */
7081 payload.num_regs = 2;
7082
7083 if (gs_prog_data->include_primitive_id) {
7084 /* R2: Primitive ID 0..7 */
7085 payload.num_regs++;
7086 }
7087
7088 /* Always enable VUE handles so we can safely use pull model if needed.
7089 *
7090 * The push model for a GS uses a ton of register space even for trivial
7091 * scenarios with just a few inputs, so just make things easier and a bit
7092 * safer by always having pull model available.
7093 */
7094 gs_prog_data->base.include_vue_handles = true;
7095
7096 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
7097 payload.num_regs += nir->info.gs.vertices_in;
7098
7099 /* Use a maximum of 24 registers for push-model inputs. */
7100 const unsigned max_push_components = 24;
7101
7102 /* If pushing our inputs would take too many registers, reduce the URB read
7103 * length (which is in HWords, or 8 registers), and resort to pulling.
7104 *
7105 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
7106 * have to multiply by VerticesIn to obtain the total storage requirement.
7107 */
7108 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
7109 max_push_components) {
7110 vue_prog_data->urb_read_length =
7111 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
7112 }
7113 }
7114
7115 void
7116 fs_visitor::setup_cs_payload()
7117 {
7118 assert(devinfo->gen >= 7);
7119 payload.num_regs = 1;
7120 }
7121
7122 void
7123 fs_visitor::calculate_register_pressure()
7124 {
7125 invalidate_live_intervals();
7126 calculate_live_intervals();
7127
7128 unsigned num_instructions = 0;
7129 foreach_block(block, cfg)
7130 num_instructions += block->instructions.length();
7131
7132 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
7133
7134 for (unsigned reg = 0; reg < alloc.count; reg++) {
7135 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
7136 regs_live_at_ip[ip] += alloc.sizes[reg];
7137 }
7138 }
7139
7140 void
7141 fs_visitor::optimize()
7142 {
7143 /* Start by validating the shader we currently have. */
7144 validate();
7145
7146 /* bld is the common builder object pointing at the end of the program we
7147 * used to translate it into i965 IR. For the optimization and lowering
7148 * passes coming next, any code added after the end of the program without
7149 * having explicitly called fs_builder::at() clearly points at a mistake.
7150 * Ideally optimization passes wouldn't be part of the visitor so they
7151 * wouldn't have access to bld at all, but they do, so just in case some
7152 * pass forgets to ask for a location explicitly set it to NULL here to
7153 * make it trip. The dispatch width is initialized to a bogus value to
7154 * make sure that optimizations set the execution controls explicitly to
7155 * match the code they are manipulating instead of relying on the defaults.
7156 */
7157 bld = fs_builder(this, 64);
7158
7159 assign_constant_locations();
7160 lower_constant_loads();
7161
7162 validate();
7163
7164 split_virtual_grfs();
7165 validate();
7166
7167 #define OPT(pass, args...) ({ \
7168 pass_num++; \
7169 bool this_progress = pass(args); \
7170 \
7171 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
7172 char filename[64]; \
7173 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
7174 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
7175 \
7176 backend_shader::dump_instructions(filename); \
7177 } \
7178 \
7179 validate(); \
7180 \
7181 progress = progress || this_progress; \
7182 this_progress; \
7183 })
7184
7185 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
7186 char filename[64];
7187 snprintf(filename, 64, "%s%d-%s-00-00-start",
7188 stage_abbrev, dispatch_width, nir->info.name);
7189
7190 backend_shader::dump_instructions(filename);
7191 }
7192
7193 bool progress = false;
7194 int iteration = 0;
7195 int pass_num = 0;
7196
7197 /* Before anything else, eliminate dead code. The results of some NIR
7198 * instructions may effectively be calculated twice. Once when the
7199 * instruction is encountered, and again when the user of that result is
7200 * encountered. Wipe those away before algebraic optimizations and
7201 * especially copy propagation can mix things up.
7202 */
7203 OPT(dead_code_eliminate);
7204
7205 OPT(remove_extra_rounding_modes);
7206
7207 do {
7208 progress = false;
7209 pass_num = 0;
7210 iteration++;
7211
7212 OPT(remove_duplicate_mrf_writes);
7213
7214 OPT(opt_algebraic);
7215 OPT(opt_cse);
7216 OPT(opt_copy_propagation);
7217 OPT(opt_predicated_break, this);
7218 OPT(opt_cmod_propagation);
7219 OPT(dead_code_eliminate);
7220 OPT(opt_peephole_sel);
7221 OPT(dead_control_flow_eliminate, this);
7222 OPT(opt_register_renaming);
7223 OPT(opt_saturate_propagation);
7224 OPT(register_coalesce);
7225 OPT(compute_to_mrf);
7226 OPT(eliminate_find_live_channel);
7227
7228 OPT(compact_virtual_grfs);
7229 } while (progress);
7230
7231 /* Do this after cmod propagation has had every possible opportunity to
7232 * propagate results into SEL instructions.
7233 */
7234 if (OPT(opt_peephole_csel))
7235 OPT(dead_code_eliminate);
7236
7237 progress = false;
7238 pass_num = 0;
7239
7240 if (OPT(lower_pack)) {
7241 OPT(register_coalesce);
7242 OPT(dead_code_eliminate);
7243 }
7244
7245 OPT(lower_simd_width);
7246
7247 /* After SIMD lowering just in case we had to unroll the EOT send. */
7248 OPT(opt_sampler_eot);
7249
7250 OPT(lower_logical_sends);
7251
7252 if (progress) {
7253 OPT(opt_copy_propagation);
7254 /* Only run after logical send lowering because it's easier to implement
7255 * in terms of physical sends.
7256 */
7257 if (OPT(opt_zero_samples))
7258 OPT(opt_copy_propagation);
7259 /* Run after logical send lowering to give it a chance to CSE the
7260 * LOAD_PAYLOAD instructions created to construct the payloads of
7261 * e.g. texturing messages in cases where it wasn't possible to CSE the
7262 * whole logical instruction.
7263 */
7264 OPT(opt_cse);
7265 OPT(register_coalesce);
7266 OPT(compute_to_mrf);
7267 OPT(dead_code_eliminate);
7268 OPT(remove_duplicate_mrf_writes);
7269 OPT(opt_peephole_sel);
7270 }
7271
7272 OPT(opt_redundant_discard_jumps);
7273
7274 if (OPT(lower_load_payload)) {
7275 split_virtual_grfs();
7276 OPT(register_coalesce);
7277 OPT(lower_simd_width);
7278 OPT(compute_to_mrf);
7279 OPT(dead_code_eliminate);
7280 }
7281
7282 OPT(opt_combine_constants);
7283 OPT(lower_integer_multiplication);
7284
7285 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
7286 OPT(opt_cmod_propagation);
7287 OPT(opt_cse);
7288 OPT(opt_copy_propagation);
7289 OPT(dead_code_eliminate);
7290 }
7291
7292 if (OPT(lower_regioning)) {
7293 OPT(opt_copy_propagation);
7294 OPT(dead_code_eliminate);
7295 OPT(lower_simd_width);
7296 }
7297
7298 OPT(fixup_sends_duplicate_payload);
7299
7300 lower_uniform_pull_constant_loads();
7301
7302 validate();
7303 }
7304
7305 /**
7306 * From the Skylake PRM Vol. 2a docs for sends:
7307 *
7308 * "It is required that the second block of GRFs does not overlap with the
7309 * first block."
7310 *
7311 * There are plenty of cases where we may accidentally violate this due to
7312 * having, for instance, both sources be the constant 0. This little pass
7313 * just adds a new vgrf for the second payload and copies it over.
7314 */
7315 bool
7316 fs_visitor::fixup_sends_duplicate_payload()
7317 {
7318 bool progress = false;
7319
7320 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
7321 if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 &&
7322 regions_overlap(inst->src[2], inst->mlen * REG_SIZE,
7323 inst->src[3], inst->ex_mlen * REG_SIZE)) {
7324 fs_reg tmp = fs_reg(VGRF, alloc.allocate(inst->ex_mlen),
7325 BRW_REGISTER_TYPE_UD);
7326 /* Sadly, we've lost all notion of channels and bit sizes at this
7327 * point. Just WE_all it.
7328 */
7329 const fs_builder ibld = bld.at(block, inst).exec_all().group(16, 0);
7330 fs_reg copy_src = retype(inst->src[3], BRW_REGISTER_TYPE_UD);
7331 fs_reg copy_dst = tmp;
7332 for (unsigned i = 0; i < inst->ex_mlen; i += 2) {
7333 if (inst->ex_mlen == i + 1) {
7334 /* Only one register left; do SIMD8 */
7335 ibld.group(8, 0).MOV(copy_dst, copy_src);
7336 } else {
7337 ibld.MOV(copy_dst, copy_src);
7338 }
7339 copy_src = offset(copy_src, ibld, 1);
7340 copy_dst = offset(copy_dst, ibld, 1);
7341 }
7342 inst->src[3] = tmp;
7343 progress = true;
7344 }
7345 }
7346
7347 if (progress)
7348 invalidate_live_intervals();
7349
7350 return progress;
7351 }
7352
7353 /**
7354 * Three source instruction must have a GRF/MRF destination register.
7355 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
7356 */
7357 void
7358 fs_visitor::fixup_3src_null_dest()
7359 {
7360 bool progress = false;
7361
7362 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
7363 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
7364 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
7365 inst->dst.type);
7366 progress = true;
7367 }
7368 }
7369
7370 if (progress)
7371 invalidate_live_intervals();
7372 }
7373
7374 void
7375 fs_visitor::allocate_registers(unsigned min_dispatch_width, bool allow_spilling)
7376 {
7377 bool allocated;
7378
7379 static const enum instruction_scheduler_mode pre_modes[] = {
7380 SCHEDULE_PRE,
7381 SCHEDULE_PRE_NON_LIFO,
7382 SCHEDULE_PRE_LIFO,
7383 };
7384
7385 static const char *scheduler_mode_name[] = {
7386 "top-down",
7387 "non-lifo",
7388 "lifo"
7389 };
7390
7391 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
7392
7393 /* Try each scheduling heuristic to see if it can successfully register
7394 * allocate without spilling. They should be ordered by decreasing
7395 * performance but increasing likelihood of allocating.
7396 */
7397 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
7398 schedule_instructions(pre_modes[i]);
7399 this->shader_stats.scheduler_mode = scheduler_mode_name[i];
7400
7401 if (0) {
7402 assign_regs_trivial();
7403 allocated = true;
7404 break;
7405 }
7406
7407 /* We only allow spilling for the last schedule mode and only if the
7408 * allow_spilling parameter and dispatch width work out ok.
7409 */
7410 bool can_spill = allow_spilling &&
7411 (i == ARRAY_SIZE(pre_modes) - 1) &&
7412 dispatch_width == min_dispatch_width;
7413
7414 /* We should only spill registers on the last scheduling. */
7415 assert(!spilled_any_registers);
7416
7417 allocated = assign_regs(can_spill, spill_all);
7418 if (allocated)
7419 break;
7420 }
7421
7422 if (!allocated) {
7423 if (!allow_spilling)
7424 fail("Failure to register allocate and spilling is not allowed.");
7425
7426 /* We assume that any spilling is worse than just dropping back to
7427 * SIMD8. There's probably actually some intermediate point where
7428 * SIMD16 with a couple of spills is still better.
7429 */
7430 if (dispatch_width > min_dispatch_width) {
7431 fail("Failure to register allocate. Reduce number of "
7432 "live scalar values to avoid this.");
7433 }
7434
7435 /* If we failed to allocate, we must have a reason */
7436 assert(failed);
7437 } else if (spilled_any_registers) {
7438 compiler->shader_perf_log(log_data,
7439 "%s shader triggered register spilling. "
7440 "Try reducing the number of live scalar "
7441 "values to improve performance.\n",
7442 stage_name);
7443 }
7444
7445 /* This must come after all optimization and register allocation, since
7446 * it inserts dead code that happens to have side effects, and it does
7447 * so based on the actual physical registers in use.
7448 */
7449 insert_gen4_send_dependency_workarounds();
7450
7451 if (failed)
7452 return;
7453
7454 opt_bank_conflicts();
7455
7456 schedule_instructions(SCHEDULE_POST);
7457
7458 if (last_scratch > 0) {
7459 ASSERTED unsigned max_scratch_size = 2 * 1024 * 1024;
7460
7461 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
7462
7463 if (stage == MESA_SHADER_COMPUTE) {
7464 if (devinfo->is_haswell) {
7465 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
7466 * field documentation, Haswell supports a minimum of 2kB of
7467 * scratch space for compute shaders, unlike every other stage
7468 * and platform.
7469 */
7470 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
7471 } else if (devinfo->gen <= 7) {
7472 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
7473 * field documentation, platforms prior to Haswell measure scratch
7474 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
7475 */
7476 prog_data->total_scratch = ALIGN(last_scratch, 1024);
7477 max_scratch_size = 12 * 1024;
7478 }
7479 }
7480
7481 /* We currently only support up to 2MB of scratch space. If we
7482 * need to support more eventually, the documentation suggests
7483 * that we could allocate a larger buffer, and partition it out
7484 * ourselves. We'd just have to undo the hardware's address
7485 * calculation by subtracting (FFTID * Per Thread Scratch Space)
7486 * and then add FFTID * (Larger Per Thread Scratch Space).
7487 *
7488 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
7489 * Thread Group Tracking > Local Memory/Scratch Space.
7490 */
7491 assert(prog_data->total_scratch < max_scratch_size);
7492 }
7493 }
7494
7495 bool
7496 fs_visitor::run_vs()
7497 {
7498 assert(stage == MESA_SHADER_VERTEX);
7499
7500 setup_vs_payload();
7501
7502 if (shader_time_index >= 0)
7503 emit_shader_time_begin();
7504
7505 emit_nir_code();
7506
7507 if (failed)
7508 return false;
7509
7510 emit_urb_writes();
7511
7512 if (shader_time_index >= 0)
7513 emit_shader_time_end();
7514
7515 calculate_cfg();
7516
7517 optimize();
7518
7519 assign_curb_setup();
7520 assign_vs_urb_setup();
7521
7522 fixup_3src_null_dest();
7523 allocate_registers(8, true);
7524
7525 return !failed;
7526 }
7527
7528 void
7529 fs_visitor::set_tcs_invocation_id()
7530 {
7531 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
7532 struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
7533
7534 const unsigned instance_id_mask =
7535 devinfo->gen >= 11 ? INTEL_MASK(22, 16) : INTEL_MASK(23, 17);
7536 const unsigned instance_id_shift =
7537 devinfo->gen >= 11 ? 16 : 17;
7538
7539 /* Get instance number from g0.2 bits 22:16 or 23:17 */
7540 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
7541 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
7542 brw_imm_ud(instance_id_mask));
7543
7544 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
7545
7546 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH) {
7547 /* gl_InvocationID is just the thread number */
7548 bld.SHR(invocation_id, t, brw_imm_ud(instance_id_shift));
7549 return;
7550 }
7551
7552 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH);
7553
7554 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
7555 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
7556 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
7557 bld.MOV(channels_ud, channels_uw);
7558
7559 if (tcs_prog_data->instances == 1) {
7560 invocation_id = channels_ud;
7561 } else {
7562 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
7563 bld.SHR(instance_times_8, t, brw_imm_ud(instance_id_shift - 3));
7564 bld.ADD(invocation_id, instance_times_8, channels_ud);
7565 }
7566 }
7567
7568 bool
7569 fs_visitor::run_tcs()
7570 {
7571 assert(stage == MESA_SHADER_TESS_CTRL);
7572
7573 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
7574 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
7575 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
7576
7577 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH ||
7578 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
7579
7580 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
7581 /* r1-r4 contain the ICP handles. */
7582 payload.num_regs = 5;
7583 } else {
7584 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
7585 assert(tcs_key->input_vertices > 0);
7586 /* r1 contains output handles, r2 may contain primitive ID, then the
7587 * ICP handles occupy the next 1-32 registers.
7588 */
7589 payload.num_regs = 2 + tcs_prog_data->include_primitive_id +
7590 tcs_key->input_vertices;
7591 }
7592
7593 if (shader_time_index >= 0)
7594 emit_shader_time_begin();
7595
7596 /* Initialize gl_InvocationID */
7597 set_tcs_invocation_id();
7598
7599 const bool fix_dispatch_mask =
7600 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH &&
7601 (nir->info.tess.tcs_vertices_out % 8) != 0;
7602
7603 /* Fix the disptach mask */
7604 if (fix_dispatch_mask) {
7605 bld.CMP(bld.null_reg_ud(), invocation_id,
7606 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
7607 bld.IF(BRW_PREDICATE_NORMAL);
7608 }
7609
7610 emit_nir_code();
7611
7612 if (fix_dispatch_mask) {
7613 bld.emit(BRW_OPCODE_ENDIF);
7614 }
7615
7616 /* Emit EOT write; set TR DS Cache bit */
7617 fs_reg srcs[3] = {
7618 fs_reg(get_tcs_output_urb_handle()),
7619 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
7620 fs_reg(brw_imm_ud(0)),
7621 };
7622 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
7623 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
7624
7625 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
7626 bld.null_reg_ud(), payload);
7627 inst->mlen = 3;
7628 inst->eot = true;
7629
7630 if (shader_time_index >= 0)
7631 emit_shader_time_end();
7632
7633 if (failed)
7634 return false;
7635
7636 calculate_cfg();
7637
7638 optimize();
7639
7640 assign_curb_setup();
7641 assign_tcs_urb_setup();
7642
7643 fixup_3src_null_dest();
7644 allocate_registers(8, true);
7645
7646 return !failed;
7647 }
7648
7649 bool
7650 fs_visitor::run_tes()
7651 {
7652 assert(stage == MESA_SHADER_TESS_EVAL);
7653
7654 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
7655 payload.num_regs = 5;
7656
7657 if (shader_time_index >= 0)
7658 emit_shader_time_begin();
7659
7660 emit_nir_code();
7661
7662 if (failed)
7663 return false;
7664
7665 emit_urb_writes();
7666
7667 if (shader_time_index >= 0)
7668 emit_shader_time_end();
7669
7670 calculate_cfg();
7671
7672 optimize();
7673
7674 assign_curb_setup();
7675 assign_tes_urb_setup();
7676
7677 fixup_3src_null_dest();
7678 allocate_registers(8, true);
7679
7680 return !failed;
7681 }
7682
7683 bool
7684 fs_visitor::run_gs()
7685 {
7686 assert(stage == MESA_SHADER_GEOMETRY);
7687
7688 setup_gs_payload();
7689
7690 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
7691
7692 if (gs_compile->control_data_header_size_bits > 0) {
7693 /* Create a VGRF to store accumulated control data bits. */
7694 this->control_data_bits = vgrf(glsl_type::uint_type);
7695
7696 /* If we're outputting more than 32 control data bits, then EmitVertex()
7697 * will set control_data_bits to 0 after emitting the first vertex.
7698 * Otherwise, we need to initialize it to 0 here.
7699 */
7700 if (gs_compile->control_data_header_size_bits <= 32) {
7701 const fs_builder abld = bld.annotate("initialize control data bits");
7702 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
7703 }
7704 }
7705
7706 if (shader_time_index >= 0)
7707 emit_shader_time_begin();
7708
7709 emit_nir_code();
7710
7711 emit_gs_thread_end();
7712
7713 if (shader_time_index >= 0)
7714 emit_shader_time_end();
7715
7716 if (failed)
7717 return false;
7718
7719 calculate_cfg();
7720
7721 optimize();
7722
7723 assign_curb_setup();
7724 assign_gs_urb_setup();
7725
7726 fixup_3src_null_dest();
7727 allocate_registers(8, true);
7728
7729 return !failed;
7730 }
7731
7732 /* From the SKL PRM, Volume 16, Workarounds:
7733 *
7734 * 0877 3D Pixel Shader Hang possible when pixel shader dispatched with
7735 * only header phases (R0-R2)
7736 *
7737 * WA: Enable a non-header phase (e.g. push constant) when dispatch would
7738 * have been header only.
7739 *
7740 * Instead of enabling push constants one can alternatively enable one of the
7741 * inputs. Here one simply chooses "layer" which shouldn't impose much
7742 * overhead.
7743 */
7744 static void
7745 gen9_ps_header_only_workaround(struct brw_wm_prog_data *wm_prog_data)
7746 {
7747 if (wm_prog_data->num_varying_inputs)
7748 return;
7749
7750 if (wm_prog_data->base.curb_read_length)
7751 return;
7752
7753 wm_prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;
7754 wm_prog_data->num_varying_inputs = 1;
7755 }
7756
7757 bool
7758 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
7759 {
7760 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
7761 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
7762
7763 assert(stage == MESA_SHADER_FRAGMENT);
7764
7765 if (devinfo->gen >= 6)
7766 setup_fs_payload_gen6();
7767 else
7768 setup_fs_payload_gen4();
7769
7770 if (0) {
7771 emit_dummy_fs();
7772 } else if (do_rep_send) {
7773 assert(dispatch_width == 16);
7774 emit_repclear_shader();
7775 } else {
7776 if (shader_time_index >= 0)
7777 emit_shader_time_begin();
7778
7779 if (nir->info.inputs_read > 0 ||
7780 (nir->info.system_values_read & (1ull << SYSTEM_VALUE_FRAG_COORD)) ||
7781 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
7782 if (devinfo->gen < 6)
7783 emit_interpolation_setup_gen4();
7784 else
7785 emit_interpolation_setup_gen6();
7786 }
7787
7788 /* We handle discards by keeping track of the still-live pixels in f0.1.
7789 * Initialize it with the dispatched pixels.
7790 */
7791 if (wm_prog_data->uses_kill) {
7792 const fs_reg dispatch_mask =
7793 devinfo->gen >= 6 ? brw_vec1_grf(1, 7) : brw_vec1_grf(0, 0);
7794 bld.exec_all().group(1, 0)
7795 .MOV(retype(brw_flag_reg(0, 1), BRW_REGISTER_TYPE_UW),
7796 retype(dispatch_mask, BRW_REGISTER_TYPE_UW));
7797 }
7798
7799 emit_nir_code();
7800
7801 if (failed)
7802 return false;
7803
7804 if (wm_prog_data->uses_kill)
7805 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
7806
7807 if (wm_key->alpha_test_func)
7808 emit_alpha_test();
7809
7810 emit_fb_writes();
7811
7812 if (shader_time_index >= 0)
7813 emit_shader_time_end();
7814
7815 calculate_cfg();
7816
7817 optimize();
7818
7819 assign_curb_setup();
7820
7821 if (devinfo->gen >= 9)
7822 gen9_ps_header_only_workaround(wm_prog_data);
7823
7824 assign_urb_setup();
7825
7826 fixup_3src_null_dest();
7827 allocate_registers(8, allow_spilling);
7828
7829 if (failed)
7830 return false;
7831 }
7832
7833 return !failed;
7834 }
7835
7836 bool
7837 fs_visitor::run_cs(unsigned min_dispatch_width)
7838 {
7839 assert(stage == MESA_SHADER_COMPUTE);
7840 assert(dispatch_width >= min_dispatch_width);
7841
7842 setup_cs_payload();
7843
7844 if (shader_time_index >= 0)
7845 emit_shader_time_begin();
7846
7847 if (devinfo->is_haswell && prog_data->total_shared > 0) {
7848 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
7849 const fs_builder abld = bld.exec_all().group(1, 0);
7850 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
7851 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
7852 }
7853
7854 emit_nir_code();
7855
7856 if (failed)
7857 return false;
7858
7859 emit_cs_terminate();
7860
7861 if (shader_time_index >= 0)
7862 emit_shader_time_end();
7863
7864 calculate_cfg();
7865
7866 optimize();
7867
7868 assign_curb_setup();
7869
7870 fixup_3src_null_dest();
7871 allocate_registers(min_dispatch_width, true);
7872
7873 if (failed)
7874 return false;
7875
7876 return !failed;
7877 }
7878
7879 static bool
7880 is_used_in_not_interp_frag_coord(nir_ssa_def *def)
7881 {
7882 nir_foreach_use(src, def) {
7883 if (src->parent_instr->type != nir_instr_type_intrinsic)
7884 return true;
7885
7886 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(src->parent_instr);
7887 if (intrin->intrinsic != nir_intrinsic_load_frag_coord)
7888 return true;
7889 }
7890
7891 nir_foreach_if_use(src, def)
7892 return true;
7893
7894 return false;
7895 }
7896
7897 /**
7898 * Return a bitfield where bit n is set if barycentric interpolation mode n
7899 * (see enum brw_barycentric_mode) is needed by the fragment shader.
7900 *
7901 * We examine the load_barycentric intrinsics rather than looking at input
7902 * variables so that we catch interpolateAtCentroid() messages too, which
7903 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
7904 */
7905 static unsigned
7906 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
7907 const nir_shader *shader)
7908 {
7909 unsigned barycentric_interp_modes = 0;
7910
7911 nir_foreach_function(f, shader) {
7912 if (!f->impl)
7913 continue;
7914
7915 nir_foreach_block(block, f->impl) {
7916 nir_foreach_instr(instr, block) {
7917 if (instr->type != nir_instr_type_intrinsic)
7918 continue;
7919
7920 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
7921 switch (intrin->intrinsic) {
7922 case nir_intrinsic_load_barycentric_pixel:
7923 case nir_intrinsic_load_barycentric_centroid:
7924 case nir_intrinsic_load_barycentric_sample:
7925 break;
7926 default:
7927 continue;
7928 }
7929
7930 /* Ignore WPOS; it doesn't require interpolation. */
7931 assert(intrin->dest.is_ssa);
7932 if (!is_used_in_not_interp_frag_coord(&intrin->dest.ssa))
7933 continue;
7934
7935 enum glsl_interp_mode interp = (enum glsl_interp_mode)
7936 nir_intrinsic_interp_mode(intrin);
7937 nir_intrinsic_op bary_op = intrin->intrinsic;
7938 enum brw_barycentric_mode bary =
7939 brw_barycentric_mode(interp, bary_op);
7940
7941 barycentric_interp_modes |= 1 << bary;
7942
7943 if (devinfo->needs_unlit_centroid_workaround &&
7944 bary_op == nir_intrinsic_load_barycentric_centroid)
7945 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
7946 }
7947 }
7948 }
7949
7950 return barycentric_interp_modes;
7951 }
7952
7953 static void
7954 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
7955 const nir_shader *shader)
7956 {
7957 prog_data->flat_inputs = 0;
7958
7959 nir_foreach_variable(var, &shader->inputs) {
7960 unsigned slots = glsl_count_attribute_slots(var->type, false);
7961 for (unsigned s = 0; s < slots; s++) {
7962 int input_index = prog_data->urb_setup[var->data.location + s];
7963
7964 if (input_index < 0)
7965 continue;
7966
7967 /* flat shading */
7968 if (var->data.interpolation == INTERP_MODE_FLAT)
7969 prog_data->flat_inputs |= 1 << input_index;
7970 }
7971 }
7972 }
7973
7974 static uint8_t
7975 computed_depth_mode(const nir_shader *shader)
7976 {
7977 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
7978 switch (shader->info.fs.depth_layout) {
7979 case FRAG_DEPTH_LAYOUT_NONE:
7980 case FRAG_DEPTH_LAYOUT_ANY:
7981 return BRW_PSCDEPTH_ON;
7982 case FRAG_DEPTH_LAYOUT_GREATER:
7983 return BRW_PSCDEPTH_ON_GE;
7984 case FRAG_DEPTH_LAYOUT_LESS:
7985 return BRW_PSCDEPTH_ON_LE;
7986 case FRAG_DEPTH_LAYOUT_UNCHANGED:
7987 return BRW_PSCDEPTH_OFF;
7988 }
7989 }
7990 return BRW_PSCDEPTH_OFF;
7991 }
7992
7993 /**
7994 * Move load_interpolated_input with simple (payload-based) barycentric modes
7995 * to the top of the program so we don't emit multiple PLNs for the same input.
7996 *
7997 * This works around CSE not being able to handle non-dominating cases
7998 * such as:
7999 *
8000 * if (...) {
8001 * interpolate input
8002 * } else {
8003 * interpolate the same exact input
8004 * }
8005 *
8006 * This should be replaced by global value numbering someday.
8007 */
8008 static bool
8009 move_interpolation_to_top(nir_shader *nir)
8010 {
8011 bool progress = false;
8012
8013 nir_foreach_function(f, nir) {
8014 if (!f->impl)
8015 continue;
8016
8017 nir_block *top = nir_start_block(f->impl);
8018 exec_node *cursor_node = NULL;
8019
8020 nir_foreach_block(block, f->impl) {
8021 if (block == top)
8022 continue;
8023
8024 nir_foreach_instr_safe(instr, block) {
8025 if (instr->type != nir_instr_type_intrinsic)
8026 continue;
8027
8028 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
8029 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
8030 continue;
8031 nir_intrinsic_instr *bary_intrinsic =
8032 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
8033 nir_intrinsic_op op = bary_intrinsic->intrinsic;
8034
8035 /* Leave interpolateAtSample/Offset() where they are. */
8036 if (op == nir_intrinsic_load_barycentric_at_sample ||
8037 op == nir_intrinsic_load_barycentric_at_offset)
8038 continue;
8039
8040 nir_instr *move[3] = {
8041 &bary_intrinsic->instr,
8042 intrin->src[1].ssa->parent_instr,
8043 instr
8044 };
8045
8046 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
8047 if (move[i]->block != top) {
8048 move[i]->block = top;
8049 exec_node_remove(&move[i]->node);
8050 if (cursor_node) {
8051 exec_node_insert_after(cursor_node, &move[i]->node);
8052 } else {
8053 exec_list_push_head(&top->instr_list, &move[i]->node);
8054 }
8055 cursor_node = &move[i]->node;
8056 progress = true;
8057 }
8058 }
8059 }
8060 }
8061 nir_metadata_preserve(f->impl, (nir_metadata)
8062 ((unsigned) nir_metadata_block_index |
8063 (unsigned) nir_metadata_dominance));
8064 }
8065
8066 return progress;
8067 }
8068
8069 /**
8070 * Demote per-sample barycentric intrinsics to centroid.
8071 *
8072 * Useful when rendering to a non-multisampled buffer.
8073 */
8074 static bool
8075 demote_sample_qualifiers(nir_shader *nir)
8076 {
8077 bool progress = true;
8078
8079 nir_foreach_function(f, nir) {
8080 if (!f->impl)
8081 continue;
8082
8083 nir_builder b;
8084 nir_builder_init(&b, f->impl);
8085
8086 nir_foreach_block(block, f->impl) {
8087 nir_foreach_instr_safe(instr, block) {
8088 if (instr->type != nir_instr_type_intrinsic)
8089 continue;
8090
8091 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
8092 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
8093 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
8094 continue;
8095
8096 b.cursor = nir_before_instr(instr);
8097 nir_ssa_def *centroid =
8098 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
8099 nir_intrinsic_interp_mode(intrin));
8100 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
8101 nir_src_for_ssa(centroid));
8102 nir_instr_remove(instr);
8103 progress = true;
8104 }
8105 }
8106
8107 nir_metadata_preserve(f->impl, (nir_metadata)
8108 ((unsigned) nir_metadata_block_index |
8109 (unsigned) nir_metadata_dominance));
8110 }
8111
8112 return progress;
8113 }
8114
8115 /**
8116 * Pre-gen6, the register file of the EUs was shared between threads,
8117 * and each thread used some subset allocated on a 16-register block
8118 * granularity. The unit states wanted these block counts.
8119 */
8120 static inline int
8121 brw_register_blocks(int reg_count)
8122 {
8123 return ALIGN(reg_count, 16) / 16 - 1;
8124 }
8125
8126 const unsigned *
8127 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
8128 void *mem_ctx,
8129 const struct brw_wm_prog_key *key,
8130 struct brw_wm_prog_data *prog_data,
8131 nir_shader *shader,
8132 int shader_time_index8, int shader_time_index16,
8133 int shader_time_index32, bool allow_spilling,
8134 bool use_rep_send, struct brw_vue_map *vue_map,
8135 struct brw_compile_stats *stats,
8136 char **error_str)
8137 {
8138 const struct gen_device_info *devinfo = compiler->devinfo;
8139
8140 unsigned max_subgroup_size = unlikely(INTEL_DEBUG & DEBUG_DO32) ? 32 : 16;
8141
8142 brw_nir_apply_key(shader, compiler, &key->base, max_subgroup_size, true);
8143 brw_nir_lower_fs_inputs(shader, devinfo, key);
8144 brw_nir_lower_fs_outputs(shader);
8145
8146 if (devinfo->gen < 6)
8147 brw_setup_vue_interpolation(vue_map, shader, prog_data);
8148
8149 if (!key->multisample_fbo)
8150 NIR_PASS_V(shader, demote_sample_qualifiers);
8151 NIR_PASS_V(shader, move_interpolation_to_top);
8152 brw_postprocess_nir(shader, compiler, true);
8153
8154 /* key->alpha_test_func means simulating alpha testing via discards,
8155 * so the shader definitely kills pixels.
8156 */
8157 prog_data->uses_kill = shader->info.fs.uses_discard ||
8158 key->alpha_test_func;
8159 prog_data->uses_omask = key->multisample_fbo &&
8160 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
8161 prog_data->computed_depth_mode = computed_depth_mode(shader);
8162 prog_data->computed_stencil =
8163 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
8164
8165 prog_data->persample_dispatch =
8166 key->multisample_fbo &&
8167 (key->persample_interp ||
8168 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
8169 SYSTEM_BIT_SAMPLE_POS)) ||
8170 shader->info.fs.uses_sample_qualifier ||
8171 shader->info.outputs_read);
8172
8173 prog_data->has_render_target_reads = shader->info.outputs_read != 0ull;
8174
8175 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
8176 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
8177 prog_data->inner_coverage = shader->info.fs.inner_coverage;
8178
8179 prog_data->barycentric_interp_modes =
8180 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
8181
8182 calculate_urb_setup(devinfo, key, prog_data, shader);
8183 brw_compute_flat_inputs(prog_data, shader);
8184
8185 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL, *simd32_cfg = NULL;
8186
8187 fs_visitor v8(compiler, log_data, mem_ctx, &key->base,
8188 &prog_data->base, shader, 8,
8189 shader_time_index8);
8190 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
8191 if (error_str)
8192 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
8193
8194 return NULL;
8195 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
8196 simd8_cfg = v8.cfg;
8197 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
8198 prog_data->reg_blocks_8 = brw_register_blocks(v8.grf_used);
8199 }
8200
8201 if (v8.max_dispatch_width >= 16 &&
8202 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
8203 /* Try a SIMD16 compile */
8204 fs_visitor v16(compiler, log_data, mem_ctx, &key->base,
8205 &prog_data->base, shader, 16,
8206 shader_time_index16);
8207 v16.import_uniforms(&v8);
8208 if (!v16.run_fs(allow_spilling, use_rep_send)) {
8209 compiler->shader_perf_log(log_data,
8210 "SIMD16 shader failed to compile: %s",
8211 v16.fail_msg);
8212 } else {
8213 simd16_cfg = v16.cfg;
8214 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
8215 prog_data->reg_blocks_16 = brw_register_blocks(v16.grf_used);
8216 }
8217 }
8218
8219 /* Currently, the compiler only supports SIMD32 on SNB+ */
8220 if (v8.max_dispatch_width >= 32 && !use_rep_send &&
8221 compiler->devinfo->gen >= 6 &&
8222 unlikely(INTEL_DEBUG & DEBUG_DO32)) {
8223 /* Try a SIMD32 compile */
8224 fs_visitor v32(compiler, log_data, mem_ctx, &key->base,
8225 &prog_data->base, shader, 32,
8226 shader_time_index32);
8227 v32.import_uniforms(&v8);
8228 if (!v32.run_fs(allow_spilling, false)) {
8229 compiler->shader_perf_log(log_data,
8230 "SIMD32 shader failed to compile: %s",
8231 v32.fail_msg);
8232 } else {
8233 simd32_cfg = v32.cfg;
8234 prog_data->dispatch_grf_start_reg_32 = v32.payload.num_regs;
8235 prog_data->reg_blocks_32 = brw_register_blocks(v32.grf_used);
8236 }
8237 }
8238
8239 /* When the caller requests a repclear shader, they want SIMD16-only */
8240 if (use_rep_send)
8241 simd8_cfg = NULL;
8242
8243 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
8244 * at the top to select the shader. We've never implemented that.
8245 * Instead, we just give them exactly one shader and we pick the widest one
8246 * available.
8247 */
8248 if (compiler->devinfo->gen < 5) {
8249 if (simd32_cfg || simd16_cfg)
8250 simd8_cfg = NULL;
8251 if (simd32_cfg)
8252 simd16_cfg = NULL;
8253 }
8254
8255 /* If computed depth is enabled SNB only allows SIMD8. */
8256 if (compiler->devinfo->gen == 6 &&
8257 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF)
8258 assert(simd16_cfg == NULL && simd32_cfg == NULL);
8259
8260 if (compiler->devinfo->gen <= 5 && !simd8_cfg) {
8261 /* Iron lake and earlier only have one Dispatch GRF start field. Make
8262 * the data available in the base prog data struct for convenience.
8263 */
8264 if (simd16_cfg) {
8265 prog_data->base.dispatch_grf_start_reg =
8266 prog_data->dispatch_grf_start_reg_16;
8267 } else if (simd32_cfg) {
8268 prog_data->base.dispatch_grf_start_reg =
8269 prog_data->dispatch_grf_start_reg_32;
8270 }
8271 }
8272
8273 if (prog_data->persample_dispatch) {
8274 /* Starting with SandyBridge (where we first get MSAA), the different
8275 * pixel dispatch combinations are grouped into classifications A
8276 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
8277 * generations, the only configurations supporting persample dispatch
8278 * are are this in which only one dispatch width is enabled.
8279 */
8280 if (simd32_cfg || simd16_cfg)
8281 simd8_cfg = NULL;
8282 if (simd32_cfg)
8283 simd16_cfg = NULL;
8284 }
8285
8286 fs_generator g(compiler, log_data, mem_ctx, &prog_data->base,
8287 v8.shader_stats, v8.runtime_check_aads_emit,
8288 MESA_SHADER_FRAGMENT);
8289
8290 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
8291 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
8292 shader->info.label ?
8293 shader->info.label : "unnamed",
8294 shader->info.name));
8295 }
8296
8297 if (simd8_cfg) {
8298 prog_data->dispatch_8 = true;
8299 g.generate_code(simd8_cfg, 8, stats);
8300 stats = stats ? stats + 1 : NULL;
8301 }
8302
8303 if (simd16_cfg) {
8304 prog_data->dispatch_16 = true;
8305 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16, stats);
8306 stats = stats ? stats + 1 : NULL;
8307 }
8308
8309 if (simd32_cfg) {
8310 prog_data->dispatch_32 = true;
8311 prog_data->prog_offset_32 = g.generate_code(simd32_cfg, 32, stats);
8312 stats = stats ? stats + 1 : NULL;
8313 }
8314
8315 return g.get_assembly();
8316 }
8317
8318 fs_reg *
8319 fs_visitor::emit_cs_work_group_id_setup()
8320 {
8321 assert(stage == MESA_SHADER_COMPUTE);
8322
8323 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
8324
8325 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
8326 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
8327 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
8328
8329 bld.MOV(*reg, r0_1);
8330 bld.MOV(offset(*reg, bld, 1), r0_6);
8331 bld.MOV(offset(*reg, bld, 2), r0_7);
8332
8333 return reg;
8334 }
8335
8336 static void
8337 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
8338 {
8339 block->dwords = dwords;
8340 block->regs = DIV_ROUND_UP(dwords, 8);
8341 block->size = block->regs * 32;
8342 }
8343
8344 static void
8345 cs_fill_push_const_info(const struct gen_device_info *devinfo,
8346 struct brw_cs_prog_data *cs_prog_data)
8347 {
8348 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
8349 int subgroup_id_index = get_subgroup_id_param_index(prog_data);
8350 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
8351
8352 /* The thread ID should be stored in the last param dword */
8353 assert(subgroup_id_index == -1 ||
8354 subgroup_id_index == (int)prog_data->nr_params - 1);
8355
8356 unsigned cross_thread_dwords, per_thread_dwords;
8357 if (!cross_thread_supported) {
8358 cross_thread_dwords = 0u;
8359 per_thread_dwords = prog_data->nr_params;
8360 } else if (subgroup_id_index >= 0) {
8361 /* Fill all but the last register with cross-thread payload */
8362 cross_thread_dwords = 8 * (subgroup_id_index / 8);
8363 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
8364 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
8365 } else {
8366 /* Fill all data using cross-thread payload */
8367 cross_thread_dwords = prog_data->nr_params;
8368 per_thread_dwords = 0u;
8369 }
8370
8371 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
8372 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
8373
8374 unsigned total_dwords =
8375 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
8376 cs_prog_data->push.cross_thread.size) / 4;
8377 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
8378
8379 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
8380 cs_prog_data->push.per_thread.size == 0);
8381 assert(cs_prog_data->push.cross_thread.dwords +
8382 cs_prog_data->push.per_thread.dwords ==
8383 prog_data->nr_params);
8384 }
8385
8386 static void
8387 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
8388 {
8389 cs_prog_data->simd_size = size;
8390 unsigned group_size = cs_prog_data->local_size[0] *
8391 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
8392 cs_prog_data->threads = (group_size + size - 1) / size;
8393 }
8394
8395 static nir_shader *
8396 compile_cs_to_nir(const struct brw_compiler *compiler,
8397 void *mem_ctx,
8398 const struct brw_cs_prog_key *key,
8399 const nir_shader *src_shader,
8400 unsigned dispatch_width)
8401 {
8402 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
8403 brw_nir_apply_key(shader, compiler, &key->base, dispatch_width, true);
8404
8405 NIR_PASS_V(shader, brw_nir_lower_cs_intrinsics, dispatch_width);
8406
8407 /* Clean up after the local index and ID calculations. */
8408 NIR_PASS_V(shader, nir_opt_constant_folding);
8409 NIR_PASS_V(shader, nir_opt_dce);
8410
8411 brw_postprocess_nir(shader, compiler, true);
8412
8413 return shader;
8414 }
8415
8416 const unsigned *
8417 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
8418 void *mem_ctx,
8419 const struct brw_cs_prog_key *key,
8420 struct brw_cs_prog_data *prog_data,
8421 const nir_shader *src_shader,
8422 int shader_time_index,
8423 struct brw_compile_stats *stats,
8424 char **error_str)
8425 {
8426 prog_data->base.total_shared = src_shader->info.cs.shared_size;
8427 prog_data->local_size[0] = src_shader->info.cs.local_size[0];
8428 prog_data->local_size[1] = src_shader->info.cs.local_size[1];
8429 prog_data->local_size[2] = src_shader->info.cs.local_size[2];
8430 prog_data->slm_size = src_shader->num_shared;
8431 unsigned local_workgroup_size =
8432 src_shader->info.cs.local_size[0] * src_shader->info.cs.local_size[1] *
8433 src_shader->info.cs.local_size[2];
8434
8435 unsigned min_dispatch_width =
8436 DIV_ROUND_UP(local_workgroup_size, compiler->devinfo->max_cs_threads);
8437 min_dispatch_width = MAX2(8, min_dispatch_width);
8438 min_dispatch_width = util_next_power_of_two(min_dispatch_width);
8439 assert(min_dispatch_width <= 32);
8440 unsigned max_dispatch_width = 32;
8441
8442 fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL;
8443 fs_visitor *v = NULL;
8444 const char *fail_msg = NULL;
8445
8446 if ((int)key->base.subgroup_size_type >= (int)BRW_SUBGROUP_SIZE_REQUIRE_8) {
8447 /* These enum values are expressly chosen to be equal to the subgroup
8448 * size that they require.
8449 */
8450 const unsigned required_dispatch_width =
8451 (unsigned)key->base.subgroup_size_type;
8452 assert(required_dispatch_width == 8 ||
8453 required_dispatch_width == 16 ||
8454 required_dispatch_width == 32);
8455 if (required_dispatch_width < min_dispatch_width ||
8456 required_dispatch_width > max_dispatch_width) {
8457 fail_msg = "Cannot satisfy explicit subgroup size";
8458 } else {
8459 min_dispatch_width = max_dispatch_width = required_dispatch_width;
8460 }
8461 }
8462
8463 /* Now the main event: Visit the shader IR and generate our CS IR for it.
8464 */
8465 if (!fail_msg && min_dispatch_width <= 8 && max_dispatch_width >= 8) {
8466 nir_shader *nir8 = compile_cs_to_nir(compiler, mem_ctx, key,
8467 src_shader, 8);
8468 v8 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
8469 &prog_data->base,
8470 nir8, 8, shader_time_index);
8471 if (!v8->run_cs(min_dispatch_width)) {
8472 fail_msg = v8->fail_msg;
8473 } else {
8474 /* We should always be able to do SIMD32 for compute shaders */
8475 assert(v8->max_dispatch_width >= 32);
8476
8477 v = v8;
8478 cs_set_simd_size(prog_data, 8);
8479 cs_fill_push_const_info(compiler->devinfo, prog_data);
8480 }
8481 }
8482
8483 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
8484 !fail_msg && min_dispatch_width <= 16 && max_dispatch_width >= 16) {
8485 /* Try a SIMD16 compile */
8486 nir_shader *nir16 = compile_cs_to_nir(compiler, mem_ctx, key,
8487 src_shader, 16);
8488 v16 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
8489 &prog_data->base,
8490 nir16, 16, shader_time_index);
8491 if (v8)
8492 v16->import_uniforms(v8);
8493
8494 if (!v16->run_cs(min_dispatch_width)) {
8495 compiler->shader_perf_log(log_data,
8496 "SIMD16 shader failed to compile: %s",
8497 v16->fail_msg);
8498 if (!v) {
8499 fail_msg =
8500 "Couldn't generate SIMD16 program and not "
8501 "enough threads for SIMD8";
8502 }
8503 } else {
8504 /* We should always be able to do SIMD32 for compute shaders */
8505 assert(v16->max_dispatch_width >= 32);
8506
8507 v = v16;
8508 cs_set_simd_size(prog_data, 16);
8509 cs_fill_push_const_info(compiler->devinfo, prog_data);
8510 }
8511 }
8512
8513 /* We should always be able to do SIMD32 for compute shaders */
8514 assert(!v16 || v16->max_dispatch_width >= 32);
8515
8516 if (!fail_msg && (min_dispatch_width > 16 || (INTEL_DEBUG & DEBUG_DO32)) &&
8517 max_dispatch_width >= 32) {
8518 /* Try a SIMD32 compile */
8519 nir_shader *nir32 = compile_cs_to_nir(compiler, mem_ctx, key,
8520 src_shader, 32);
8521 v32 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
8522 &prog_data->base,
8523 nir32, 32, shader_time_index);
8524 if (v8)
8525 v32->import_uniforms(v8);
8526 else if (v16)
8527 v32->import_uniforms(v16);
8528
8529 if (!v32->run_cs(min_dispatch_width)) {
8530 compiler->shader_perf_log(log_data,
8531 "SIMD32 shader failed to compile: %s",
8532 v32->fail_msg);
8533 if (!v) {
8534 fail_msg =
8535 "Couldn't generate SIMD32 program and not "
8536 "enough threads for SIMD16";
8537 }
8538 } else {
8539 v = v32;
8540 cs_set_simd_size(prog_data, 32);
8541 cs_fill_push_const_info(compiler->devinfo, prog_data);
8542 }
8543 }
8544
8545 const unsigned *ret = NULL;
8546 if (unlikely(v == NULL)) {
8547 assert(fail_msg);
8548 if (error_str)
8549 *error_str = ralloc_strdup(mem_ctx, fail_msg);
8550 } else {
8551 fs_generator g(compiler, log_data, mem_ctx, &prog_data->base,
8552 v->shader_stats, v->runtime_check_aads_emit,
8553 MESA_SHADER_COMPUTE);
8554 if (INTEL_DEBUG & DEBUG_CS) {
8555 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
8556 src_shader->info.label ?
8557 src_shader->info.label : "unnamed",
8558 src_shader->info.name);
8559 g.enable_debug(name);
8560 }
8561
8562 g.generate_code(v->cfg, prog_data->simd_size, stats);
8563
8564 ret = g.get_assembly();
8565 }
8566
8567 delete v8;
8568 delete v16;
8569 delete v32;
8570
8571 return ret;
8572 }
8573
8574 /**
8575 * Test the dispatch mask packing assumptions of
8576 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
8577 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
8578 * executed with an unexpected dispatch mask.
8579 */
8580 static UNUSED void
8581 brw_fs_test_dispatch_packing(const fs_builder &bld)
8582 {
8583 const gl_shader_stage stage = bld.shader->stage;
8584
8585 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
8586 bld.shader->stage_prog_data)) {
8587 const fs_builder ubld = bld.exec_all().group(1, 0);
8588 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
8589 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
8590 brw_dmask_reg());
8591
8592 ubld.ADD(tmp, mask, brw_imm_ud(1));
8593 ubld.AND(tmp, mask, tmp);
8594
8595 /* This will loop forever if the dispatch mask doesn't have the expected
8596 * form '2^n-1', in which case tmp will be non-zero.
8597 */
8598 bld.emit(BRW_OPCODE_DO);
8599 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
8600 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
8601 }
8602 }