intel/compiler: Allow MESA_SHADER_KERNEL
[mesa.git] / src / intel / compiler / brw_fs_cmod_propagation.cpp
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_fs.h"
25 #include "brw_cfg.h"
26 #include "brw_eu.h"
27
28 /** @file brw_fs_cmod_propagation.cpp
29 *
30 * Implements a pass that propagates the conditional modifier from a CMP x 0.0
31 * instruction into the instruction that generated x. For instance, in this
32 * sequence
33 *
34 * add(8) g70<1>F g69<8,8,1>F 4096F
35 * cmp.ge.f0(8) null g70<8,8,1>F 0F
36 *
37 * we can do the comparison as part of the ADD instruction directly:
38 *
39 * add.ge.f0(8) g70<1>F g69<8,8,1>F 4096F
40 *
41 * If there had been a use of the flag register and another CMP using g70
42 *
43 * add.ge.f0(8) g70<1>F g69<8,8,1>F 4096F
44 * (+f0) sel(8) g71<F> g72<8,8,1>F g73<8,8,1>F
45 * cmp.ge.f0(8) null g70<8,8,1>F 0F
46 *
47 * we can recognize that the CMP is generating the flag value that already
48 * exists and therefore remove the instruction.
49 */
50
51 using namespace brw;
52
53 static bool
54 cmod_propagate_cmp_to_add(const gen_device_info *devinfo, bblock_t *block,
55 fs_inst *inst)
56 {
57 bool read_flag = false;
58 const unsigned flags_written = inst->flags_written();
59
60 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
61 if (scan_inst->opcode == BRW_OPCODE_ADD &&
62 !scan_inst->is_partial_write() &&
63 scan_inst->exec_size == inst->exec_size) {
64 bool negate;
65
66 /* A CMP is basically a subtraction. The result of the
67 * subtraction must be the same as the result of the addition.
68 * This means that one of the operands must be negated. So (a +
69 * b) vs (a == -b) or (a + -b) vs (a == b).
70 */
71 if ((inst->src[0].equals(scan_inst->src[0]) &&
72 inst->src[1].negative_equals(scan_inst->src[1])) ||
73 (inst->src[0].equals(scan_inst->src[1]) &&
74 inst->src[1].negative_equals(scan_inst->src[0]))) {
75 negate = false;
76 } else if ((inst->src[0].negative_equals(scan_inst->src[0]) &&
77 inst->src[1].equals(scan_inst->src[1])) ||
78 (inst->src[0].negative_equals(scan_inst->src[1]) &&
79 inst->src[1].equals(scan_inst->src[0]))) {
80 negate = true;
81 } else {
82 goto not_match;
83 }
84
85 /* If the scan instruction writes a different flag register than the
86 * instruction we're trying to propagate from, bail.
87 *
88 * FINISHME: The second part of the condition may be too strong.
89 * Perhaps (scan_inst->flags_written() & flags_written) !=
90 * flags_written?
91 */
92 if (scan_inst->flags_written() != 0 &&
93 scan_inst->flags_written() != flags_written)
94 goto not_match;
95
96 /* From the Kaby Lake PRM Vol. 7 "Assigning Conditional Flags":
97 *
98 * * Note that the [post condition signal] bits generated at
99 * the output of a compute are before the .sat.
100 *
101 * Paragraph about post_zero does not mention saturation, but
102 * testing it on actual GPUs shows that conditional modifiers
103 * are applied after saturation.
104 *
105 * * post_zero bit: This bit reflects whether the final
106 * result is zero after all the clamping, normalizing,
107 * or format conversion logic.
108 *
109 * For signed types we don't care about saturation: it won't
110 * change the result of conditional modifier.
111 *
112 * For floating and unsigned types there two special cases,
113 * when we can remove inst even if scan_inst is saturated: G
114 * and LE. Since conditional modifiers are just comparations
115 * against zero, saturating positive values to the upper
116 * limit never changes the result of comparation.
117 *
118 * For negative values:
119 * (sat(x) > 0) == (x > 0) --- false
120 * (sat(x) <= 0) == (x <= 0) --- true
121 */
122 const enum brw_conditional_mod cond =
123 negate ? brw_swap_cmod(inst->conditional_mod)
124 : inst->conditional_mod;
125
126 if (scan_inst->saturate &&
127 (brw_reg_type_is_floating_point(scan_inst->dst.type) ||
128 type_is_unsigned_int(scan_inst->dst.type)) &&
129 (cond != BRW_CONDITIONAL_G &&
130 cond != BRW_CONDITIONAL_LE))
131 goto not_match;
132
133 /* Otherwise, try propagating the conditional. */
134 if (scan_inst->can_do_cmod() &&
135 ((!read_flag && scan_inst->conditional_mod == BRW_CONDITIONAL_NONE) ||
136 scan_inst->conditional_mod == cond)) {
137 scan_inst->conditional_mod = cond;
138 inst->remove(block);
139 return true;
140 }
141 break;
142 }
143
144 not_match:
145 if ((scan_inst->flags_written() & flags_written) != 0)
146 break;
147
148 read_flag = read_flag ||
149 (scan_inst->flags_read(devinfo) & flags_written) != 0;
150 }
151
152 return false;
153 }
154
155 /**
156 * Propagate conditional modifiers from NOT instructions
157 *
158 * Attempt to convert sequences like
159 *
160 * or(8) g78<8,8,1> g76<8,8,1>UD g77<8,8,1>UD
161 * ...
162 * not.nz.f0(8) null g78<8,8,1>UD
163 *
164 * into
165 *
166 * or.z.f0(8) g78<8,8,1> g76<8,8,1>UD g77<8,8,1>UD
167 */
168 static bool
169 cmod_propagate_not(const gen_device_info *devinfo, bblock_t *block,
170 fs_inst *inst)
171 {
172 const enum brw_conditional_mod cond = brw_negate_cmod(inst->conditional_mod);
173 bool read_flag = false;
174 const unsigned flags_written = inst->flags_written();
175
176 if (cond != BRW_CONDITIONAL_Z && cond != BRW_CONDITIONAL_NZ)
177 return false;
178
179 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
180 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
181 inst->src[0], inst->size_read(0))) {
182 if (scan_inst->opcode != BRW_OPCODE_OR &&
183 scan_inst->opcode != BRW_OPCODE_AND)
184 break;
185
186 if (scan_inst->is_partial_write() ||
187 scan_inst->dst.offset != inst->src[0].offset ||
188 scan_inst->exec_size != inst->exec_size)
189 break;
190
191 /* If the scan instruction writes a different flag register than the
192 * instruction we're trying to propagate from, bail.
193 *
194 * FINISHME: The second part of the condition may be too strong.
195 * Perhaps (scan_inst->flags_written() & flags_written) !=
196 * flags_written?
197 */
198 if (scan_inst->flags_written() != 0 &&
199 scan_inst->flags_written() != flags_written)
200 break;
201
202 if (scan_inst->can_do_cmod() &&
203 ((!read_flag && scan_inst->conditional_mod == BRW_CONDITIONAL_NONE) ||
204 scan_inst->conditional_mod == cond)) {
205 scan_inst->conditional_mod = cond;
206 inst->remove(block);
207 return true;
208 }
209 break;
210 }
211
212 if ((scan_inst->flags_written() & flags_written) != 0)
213 break;
214
215 read_flag = read_flag ||
216 (scan_inst->flags_read(devinfo) & flags_written) != 0;
217 }
218
219 return false;
220 }
221
222 static bool
223 opt_cmod_propagation_local(const gen_device_info *devinfo, bblock_t *block)
224 {
225 bool progress = false;
226 int ip = block->end_ip + 1;
227
228 foreach_inst_in_block_reverse_safe(fs_inst, inst, block) {
229 ip--;
230
231 if ((inst->opcode != BRW_OPCODE_AND &&
232 inst->opcode != BRW_OPCODE_CMP &&
233 inst->opcode != BRW_OPCODE_MOV &&
234 inst->opcode != BRW_OPCODE_NOT) ||
235 inst->predicate != BRW_PREDICATE_NONE ||
236 !inst->dst.is_null() ||
237 (inst->src[0].file != VGRF && inst->src[0].file != ATTR &&
238 inst->src[0].file != UNIFORM))
239 continue;
240
241 /* An ABS source modifier can only be handled when processing a compare
242 * with a value other than zero.
243 */
244 if (inst->src[0].abs &&
245 (inst->opcode != BRW_OPCODE_CMP || inst->src[1].is_zero()))
246 continue;
247
248 /* Only an AND.NZ can be propagated. Many AND.Z instructions are
249 * generated (for ir_unop_not in fs_visitor::emit_bool_to_cond_code).
250 * Propagating those would require inverting the condition on the CMP.
251 * This changes both the flag value and the register destination of the
252 * CMP. That result may be used elsewhere, so we can't change its value
253 * on a whim.
254 */
255 if (inst->opcode == BRW_OPCODE_AND &&
256 !(inst->src[1].is_one() &&
257 inst->conditional_mod == BRW_CONDITIONAL_NZ &&
258 !inst->src[0].negate))
259 continue;
260
261 if (inst->opcode == BRW_OPCODE_MOV &&
262 inst->conditional_mod != BRW_CONDITIONAL_NZ)
263 continue;
264
265 /* A CMP with a second source of zero can match with anything. A CMP
266 * with a second source that is not zero can only match with an ADD
267 * instruction.
268 *
269 * Only apply this optimization to float-point sources. It can fail for
270 * integers. For inputs a = 0x80000000, b = 4, int(0x80000000) < 4, but
271 * int(0x80000000) - 4 overflows and results in 0x7ffffffc. that's not
272 * less than zero, so the flags get set differently than for (a < b).
273 */
274 if (inst->opcode == BRW_OPCODE_CMP && !inst->src[1].is_zero()) {
275 if (brw_reg_type_is_floating_point(inst->src[0].type) &&
276 cmod_propagate_cmp_to_add(devinfo, block, inst))
277 progress = true;
278
279 continue;
280 }
281
282 if (inst->opcode == BRW_OPCODE_NOT) {
283 progress = cmod_propagate_not(devinfo, block, inst) || progress;
284 continue;
285 }
286
287 bool read_flag = false;
288 const unsigned flags_written = inst->flags_written();
289 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
290 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
291 inst->src[0], inst->size_read(0))) {
292 /* If the scan instruction writes a different flag register than
293 * the instruction we're trying to propagate from, bail.
294 *
295 * FINISHME: The second part of the condition may be too strong.
296 * Perhaps (scan_inst->flags_written() & flags_written) !=
297 * flags_written?
298 */
299 if (scan_inst->flags_written() != 0 &&
300 scan_inst->flags_written() != flags_written)
301 break;
302
303 if (scan_inst->is_partial_write() ||
304 scan_inst->dst.offset != inst->src[0].offset ||
305 scan_inst->exec_size != inst->exec_size)
306 break;
307
308 /* CMP's result is the same regardless of dest type. */
309 if (inst->conditional_mod == BRW_CONDITIONAL_NZ &&
310 scan_inst->opcode == BRW_OPCODE_CMP &&
311 brw_reg_type_is_integer(inst->dst.type)) {
312 inst->remove(block);
313 progress = true;
314 break;
315 }
316
317 /* If the AND wasn't handled by the previous case, it isn't safe
318 * to remove it.
319 */
320 if (inst->opcode == BRW_OPCODE_AND)
321 break;
322
323 /* Not safe to use inequality operators if the types are different
324 */
325 if (scan_inst->dst.type != inst->src[0].type &&
326 inst->conditional_mod != BRW_CONDITIONAL_Z &&
327 inst->conditional_mod != BRW_CONDITIONAL_NZ)
328 break;
329
330 /* Comparisons operate differently for ints and floats */
331 if (scan_inst->dst.type != inst->dst.type) {
332 /* Comparison result may be altered if the bit-size changes
333 * since that affects range, denorms, etc
334 */
335 if (type_sz(scan_inst->dst.type) != type_sz(inst->dst.type))
336 break;
337
338 /* We should propagate from a MOV to another instruction in a
339 * sequence like:
340 *
341 * and(16) g31<1>UD g20<8,8,1>UD g22<8,8,1>UD
342 * mov.nz.f0(16) null<1>F g31<8,8,1>D
343 */
344 if (inst->opcode == BRW_OPCODE_MOV) {
345 if ((inst->src[0].type != BRW_REGISTER_TYPE_D &&
346 inst->src[0].type != BRW_REGISTER_TYPE_UD) ||
347 (scan_inst->dst.type != BRW_REGISTER_TYPE_D &&
348 scan_inst->dst.type != BRW_REGISTER_TYPE_UD)) {
349 break;
350 }
351 } else if (brw_reg_type_is_floating_point(scan_inst->dst.type) !=
352 brw_reg_type_is_floating_point(inst->dst.type)) {
353 break;
354 }
355 }
356
357 /* Knowing following:
358 * - CMP writes to flag register the result of
359 * applying cmod to the `src0 - src1`.
360 * After that it stores the same value to dst.
361 * Other instructions first store their result to
362 * dst, and then store cmod(dst) to the flag
363 * register.
364 * - inst is either CMP or MOV
365 * - inst->dst is null
366 * - inst->src[0] overlaps with scan_inst->dst
367 * - inst->src[1] is zero
368 * - scan_inst wrote to a flag register
369 *
370 * There can be three possible paths:
371 *
372 * - scan_inst is CMP:
373 *
374 * Considering that src0 is either 0x0 (false),
375 * or 0xffffffff (true), and src1 is 0x0:
376 *
377 * - If inst's cmod is NZ, we can always remove
378 * scan_inst: NZ is invariant for false and true. This
379 * holds even if src0 is NaN: .nz is the only cmod,
380 * that returns true for NaN.
381 *
382 * - .g is invariant if src0 has a UD type
383 *
384 * - .l is invariant if src0 has a D type
385 *
386 * - scan_inst and inst have the same cmod:
387 *
388 * If scan_inst is anything than CMP, it already
389 * wrote the appropriate value to the flag register.
390 *
391 * - else:
392 *
393 * We can change cmod of scan_inst to that of inst,
394 * and remove inst. It is valid as long as we make
395 * sure that no instruction uses the flag register
396 * between scan_inst and inst.
397 */
398 if (!inst->src[0].negate &&
399 scan_inst->flags_written()) {
400 if (scan_inst->opcode == BRW_OPCODE_CMP) {
401 if ((inst->conditional_mod == BRW_CONDITIONAL_NZ) ||
402 (inst->conditional_mod == BRW_CONDITIONAL_G &&
403 inst->src[0].type == BRW_REGISTER_TYPE_UD) ||
404 (inst->conditional_mod == BRW_CONDITIONAL_L &&
405 inst->src[0].type == BRW_REGISTER_TYPE_D)) {
406 inst->remove(block);
407 progress = true;
408 break;
409 }
410 } else if (scan_inst->conditional_mod == inst->conditional_mod) {
411 inst->remove(block);
412 progress = true;
413 break;
414 } else if (!read_flag) {
415 scan_inst->conditional_mod = inst->conditional_mod;
416 inst->remove(block);
417 progress = true;
418 break;
419 }
420 }
421
422 /* The conditional mod of the CMP/CMPN instructions behaves
423 * specially because the flag output is not calculated from the
424 * result of the instruction, but the other way around, which
425 * means that even if the condmod to propagate and the condmod
426 * from the CMP instruction are the same they will in general give
427 * different results because they are evaluated based on different
428 * inputs.
429 */
430 if (scan_inst->opcode == BRW_OPCODE_CMP ||
431 scan_inst->opcode == BRW_OPCODE_CMPN)
432 break;
433
434 /* From the Sky Lake PRM, Vol 2a, "Multiply":
435 *
436 * "When multiplying integer data types, if one of the sources
437 * is a DW, the resulting full precision data is stored in
438 * the accumulator. However, if the destination data type is
439 * either W or DW, the low bits of the result are written to
440 * the destination register and the remaining high bits are
441 * discarded. This results in undefined Overflow and Sign
442 * flags. Therefore, conditional modifiers and saturation
443 * (.sat) cannot be used in this case."
444 *
445 * We just disallow cmod propagation on all integer multiplies.
446 */
447 if (!brw_reg_type_is_floating_point(scan_inst->dst.type) &&
448 scan_inst->opcode == BRW_OPCODE_MUL)
449 break;
450
451 enum brw_conditional_mod cond =
452 inst->src[0].negate ? brw_swap_cmod(inst->conditional_mod)
453 : inst->conditional_mod;
454
455 /* From the Sky Lake PRM Vol. 7 "Assigning Conditional Mods":
456 *
457 * * Note that the [post condition signal] bits generated at
458 * the output of a compute are before the .sat.
459 *
460 * This limits the cases where we can propagate the conditional
461 * modifier. If scan_inst has a saturate modifier, then we can
462 * only propagate from inst if inst is 'scan_inst <= 0',
463 * 'scan_inst == 0', 'scan_inst != 0', or 'scan_inst > 0'. If
464 * inst is 'scan_inst == 0', the conditional modifier must be
465 * replace with LE. Likewise, if inst is 'scan_inst != 0', the
466 * conditional modifier must be replace with G.
467 *
468 * The only other cases are 'scan_inst < 0' (which is a
469 * contradiction) and 'scan_inst >= 0' (which is a tautology).
470 */
471 if (scan_inst->saturate) {
472 if (scan_inst->dst.type != BRW_REGISTER_TYPE_F)
473 break;
474
475 if (cond != BRW_CONDITIONAL_Z &&
476 cond != BRW_CONDITIONAL_NZ &&
477 cond != BRW_CONDITIONAL_LE &&
478 cond != BRW_CONDITIONAL_G)
479 break;
480
481 if (inst->opcode != BRW_OPCODE_MOV &&
482 inst->opcode != BRW_OPCODE_CMP)
483 break;
484
485 /* inst->src[1].is_zero() was tested before, but be safe
486 * against possible future changes in this code.
487 */
488 assert(inst->opcode != BRW_OPCODE_CMP || inst->src[1].is_zero());
489
490 if (cond == BRW_CONDITIONAL_Z)
491 cond = BRW_CONDITIONAL_LE;
492 else if (cond == BRW_CONDITIONAL_NZ)
493 cond = BRW_CONDITIONAL_G;
494 }
495
496 /* Otherwise, try propagating the conditional. */
497 if (scan_inst->can_do_cmod() &&
498 ((!read_flag && scan_inst->conditional_mod == BRW_CONDITIONAL_NONE) ||
499 scan_inst->conditional_mod == cond)) {
500 scan_inst->conditional_mod = cond;
501 scan_inst->flag_subreg = inst->flag_subreg;
502 inst->remove(block);
503 progress = true;
504 }
505 break;
506 }
507
508 if ((scan_inst->flags_written() & flags_written) != 0)
509 break;
510
511 read_flag = read_flag ||
512 (scan_inst->flags_read(devinfo) & flags_written) != 0;
513 }
514 }
515
516 return progress;
517 }
518
519 bool
520 fs_visitor::opt_cmod_propagation()
521 {
522 bool progress = false;
523
524 foreach_block_reverse(block, cfg) {
525 progress = opt_cmod_propagation_local(devinfo, block) || progress;
526 }
527
528 if (progress)
529 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
530
531 return progress;
532 }