bee9816d8159bd8802701d37df973aee60bc6355
[mesa.git] / src / intel / compiler / brw_fs_generator.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_generator.cpp
25 *
26 * This file supports generating code from the FS LIR to the actual
27 * native instructions.
28 */
29
30 #include "brw_eu.h"
31 #include "brw_fs.h"
32 #include "brw_cfg.h"
33 #include "util/mesa-sha1.h"
34
35 static enum brw_reg_file
36 brw_file_from_reg(fs_reg *reg)
37 {
38 switch (reg->file) {
39 case ARF:
40 return BRW_ARCHITECTURE_REGISTER_FILE;
41 case FIXED_GRF:
42 case VGRF:
43 return BRW_GENERAL_REGISTER_FILE;
44 case MRF:
45 return BRW_MESSAGE_REGISTER_FILE;
46 case IMM:
47 return BRW_IMMEDIATE_VALUE;
48 case BAD_FILE:
49 case ATTR:
50 case UNIFORM:
51 unreachable("not reached");
52 }
53 return BRW_ARCHITECTURE_REGISTER_FILE;
54 }
55
56 static struct brw_reg
57 brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst,
58 fs_reg *reg, bool compressed)
59 {
60 struct brw_reg brw_reg;
61
62 switch (reg->file) {
63 case MRF:
64 assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
65 /* Fallthrough */
66 case VGRF:
67 if (reg->stride == 0) {
68 brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
69 } else {
70 /* From the Haswell PRM:
71 *
72 * "VertStride must be used to cross GRF register boundaries. This
73 * rule implies that elements within a 'Width' cannot cross GRF
74 * boundaries."
75 *
76 * The maximum width value that could satisfy this restriction is:
77 */
78 const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
79
80 /* Because the hardware can only split source regions at a whole
81 * multiple of width during decompression (i.e. vertically), clamp
82 * the value obtained above to the physical execution size of a
83 * single decompressed chunk of the instruction:
84 */
85 const unsigned phys_width = compressed ? inst->exec_size / 2 :
86 inst->exec_size;
87
88 const unsigned max_hw_width = 16;
89
90 /* XXX - The equation above is strictly speaking not correct on
91 * hardware that supports unbalanced GRF writes -- On Gen9+
92 * each decompressed chunk of the instruction may have a
93 * different execution size when the number of components
94 * written to each destination GRF is not the same.
95 */
96 if (reg->stride > 4) {
97 assert(reg != &inst->dst);
98 assert(reg->stride * type_sz(reg->type) <= REG_SIZE);
99 brw_reg = brw_vecn_reg(1, brw_file_from_reg(reg), reg->nr, 0);
100 brw_reg = stride(brw_reg, reg->stride, 1, 0);
101 } else {
102 const unsigned width = MIN3(reg_width, phys_width, max_hw_width);
103 brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
104 brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
105 }
106
107 if (devinfo->gen == 7 && !devinfo->is_haswell) {
108 /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
109 * "Each DF (Double Float) operand uses an element size of 4 rather
110 * than 8 and all regioning parameters are twice what the values
111 * would be based on the true element size: ExecSize, Width,
112 * HorzStride, and VertStride. Each DF operand uses a pair of
113 * channels and all masking and swizzing should be adjusted
114 * appropriately."
115 *
116 * From the IvyBridge PRM (Special Requirements for Handling Double
117 * Precision Data Types, page 71):
118 * "In Align1 mode, all regioning parameters like stride, execution
119 * size, and width must use the syntax of a pair of packed
120 * floats. The offsets for these data types must be 64-bit
121 * aligned. The execution size and regioning parameters are in terms
122 * of floats."
123 *
124 * Summarized: when handling DF-typed arguments, ExecSize,
125 * VertStride, and Width must be doubled.
126 *
127 * It applies to BayTrail too.
128 */
129 if (type_sz(reg->type) == 8) {
130 brw_reg.width++;
131 if (brw_reg.vstride > 0)
132 brw_reg.vstride++;
133 assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
134 }
135
136 /* When converting from DF->F, we set the destination stride to 2
137 * because each d2f conversion implicitly writes 2 floats, being
138 * the first one the converted value. IVB/BYT actually writes two
139 * F components per SIMD channel, and every other component is
140 * filled with garbage.
141 */
142 if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
143 type_sz(inst->dst.type) < 8) {
144 assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
145 brw_reg.hstride--;
146 }
147 }
148 }
149
150 brw_reg = retype(brw_reg, reg->type);
151 brw_reg = byte_offset(brw_reg, reg->offset);
152 brw_reg.abs = reg->abs;
153 brw_reg.negate = reg->negate;
154 break;
155 case ARF:
156 case FIXED_GRF:
157 case IMM:
158 assert(reg->offset == 0);
159 brw_reg = reg->as_brw_reg();
160 break;
161 case BAD_FILE:
162 /* Probably unused. */
163 brw_reg = brw_null_reg();
164 break;
165 case ATTR:
166 case UNIFORM:
167 unreachable("not reached");
168 }
169
170 /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
171 * region, but on IVB and BYT DF regions must be programmed in terms of
172 * floats. A <0,2,1> region accomplishes this.
173 */
174 if (devinfo->gen == 7 && !devinfo->is_haswell &&
175 type_sz(reg->type) == 8 &&
176 brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
177 brw_reg.width == BRW_WIDTH_1 &&
178 brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
179 brw_reg.width = BRW_WIDTH_2;
180 brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
181 }
182
183 return brw_reg;
184 }
185
186 fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
187 void *mem_ctx,
188 struct brw_stage_prog_data *prog_data,
189 bool runtime_check_aads_emit,
190 gl_shader_stage stage)
191
192 : compiler(compiler), log_data(log_data),
193 devinfo(compiler->devinfo),
194 prog_data(prog_data),
195 runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
196 stage(stage), mem_ctx(mem_ctx)
197 {
198 p = rzalloc(mem_ctx, struct brw_codegen);
199 brw_init_codegen(devinfo, p, mem_ctx);
200
201 /* In the FS code generator, we are very careful to ensure that we always
202 * set the right execution size so we don't need the EU code to "help" us
203 * by trying to infer it. Sometimes, it infers the wrong thing.
204 */
205 p->automatic_exec_sizes = false;
206 }
207
208 fs_generator::~fs_generator()
209 {
210 }
211
212 class ip_record : public exec_node {
213 public:
214 DECLARE_RALLOC_CXX_OPERATORS(ip_record)
215
216 ip_record(int ip)
217 {
218 this->ip = ip;
219 }
220
221 int ip;
222 };
223
224 bool
225 fs_generator::patch_discard_jumps_to_fb_writes()
226 {
227 if (this->discard_halt_patches.is_empty())
228 return false;
229
230 int scale = brw_jump_scale(p->devinfo);
231
232 if (devinfo->gen >= 6) {
233 /* There is a somewhat strange undocumented requirement of using
234 * HALT, according to the simulator. If some channel has HALTed to
235 * a particular UIP, then by the end of the program, every channel
236 * must have HALTed to that UIP. Furthermore, the tracking is a
237 * stack, so you can't do the final halt of a UIP after starting
238 * halting to a new UIP.
239 *
240 * Symptoms of not emitting this instruction on actual hardware
241 * included GPU hangs and sparkly rendering on the piglit discard
242 * tests.
243 */
244 brw_inst *last_halt = brw_HALT(p);
245 brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
246 brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
247 }
248
249 int ip = p->nr_insn;
250
251 foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
252 brw_inst *patch = &p->store[patch_ip->ip];
253
254 assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
255 if (devinfo->gen >= 6) {
256 /* HALT takes a half-instruction distance from the pre-incremented IP. */
257 brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
258 } else {
259 brw_set_src1(p, patch, brw_imm_d((ip - patch_ip->ip) * scale));
260 }
261 }
262
263 this->discard_halt_patches.make_empty();
264
265 if (devinfo->gen < 6) {
266 /* From the g965 PRM:
267 *
268 * "As DMask is not automatically reloaded into AMask upon completion
269 * of this instruction, software has to manually restore AMask upon
270 * completion."
271 *
272 * DMask lives in the bottom 16 bits of sr0.1.
273 */
274 brw_inst *reset = brw_MOV(p, brw_mask_reg(BRW_AMASK),
275 retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW));
276 brw_inst_set_exec_size(devinfo, reset, BRW_EXECUTE_1);
277 brw_inst_set_mask_control(devinfo, reset, BRW_MASK_DISABLE);
278 brw_inst_set_qtr_control(devinfo, reset, BRW_COMPRESSION_NONE);
279 brw_inst_set_thread_control(devinfo, reset, BRW_THREAD_SWITCH);
280 }
281
282 if (devinfo->gen == 4 && !devinfo->is_g4x) {
283 /* From the g965 PRM:
284 *
285 * "[DevBW, DevCL] Erratum: The subfields in mask stack register are
286 * reset to zero during graphics reset, however, they are not
287 * initialized at thread dispatch. These subfields will retain the
288 * values from the previous thread. Software should make sure the
289 * mask stack is empty (reset to zero) before terminating the thread.
290 * In case that this is not practical, software may have to reset the
291 * mask stack at the beginning of each kernel, which will impact the
292 * performance."
293 *
294 * Luckily we can rely on:
295 *
296 * "[DevBW, DevCL] This register access restriction is not
297 * applicable, hardware does ensure execution pipeline coherency,
298 * when a mask stack register is used as an explicit source and/or
299 * destination."
300 */
301 brw_push_insn_state(p);
302 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
303 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
304
305 brw_set_default_exec_size(p, BRW_EXECUTE_2);
306 brw_MOV(p, vec2(brw_mask_stack_depth_reg(0)), brw_imm_uw(0));
307
308 brw_set_default_exec_size(p, BRW_EXECUTE_16);
309 /* Reset the if stack. */
310 brw_MOV(p, retype(brw_mask_stack_reg(0), BRW_REGISTER_TYPE_UW),
311 brw_imm_uw(0));
312
313 brw_pop_insn_state(p);
314 }
315
316 return true;
317 }
318
319 void
320 fs_generator::generate_send(fs_inst *inst,
321 struct brw_reg dst,
322 struct brw_reg desc,
323 struct brw_reg ex_desc,
324 struct brw_reg payload,
325 struct brw_reg payload2)
326 {
327 const bool dst_is_null = dst.file == BRW_ARCHITECTURE_REGISTER_FILE &&
328 dst.nr == BRW_ARF_NULL;
329 const unsigned rlen = dst_is_null ? 0 : inst->size_written / REG_SIZE;
330
331 uint32_t desc_imm = inst->desc |
332 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size);
333
334 uint32_t ex_desc_imm = brw_message_ex_desc(devinfo, inst->ex_mlen);
335
336 if (ex_desc.file != BRW_IMMEDIATE_VALUE || ex_desc.ud || ex_desc_imm) {
337 /* If we have any sort of extended descriptor, then we need SENDS. This
338 * also covers the dual-payload case because ex_mlen goes in ex_desc.
339 */
340 brw_send_indirect_split_message(p, inst->sfid, dst, payload, payload2,
341 desc, desc_imm, ex_desc, ex_desc_imm,
342 inst->eot);
343 if (inst->check_tdr)
344 brw_inst_set_opcode(p->devinfo, brw_last_inst,
345 devinfo->gen >= 12 ? BRW_OPCODE_SENDC : BRW_OPCODE_SENDSC);
346 } else {
347 brw_send_indirect_message(p, inst->sfid, dst, payload, desc, desc_imm,
348 inst->eot);
349 if (inst->check_tdr)
350 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
351 }
352 }
353
354 void
355 fs_generator::fire_fb_write(fs_inst *inst,
356 struct brw_reg payload,
357 struct brw_reg implied_header,
358 GLuint nr)
359 {
360 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
361
362 if (devinfo->gen < 6) {
363 brw_push_insn_state(p);
364 brw_set_default_exec_size(p, BRW_EXECUTE_8);
365 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
366 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
367 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
368 brw_MOV(p, offset(retype(payload, BRW_REGISTER_TYPE_UD), 1),
369 offset(retype(implied_header, BRW_REGISTER_TYPE_UD), 1));
370 brw_pop_insn_state(p);
371 }
372
373 uint32_t msg_control = brw_fb_write_msg_control(inst, prog_data);
374
375 /* We assume render targets start at 0, because headerless FB write
376 * messages set "Render Target Index" to 0. Using a different binding
377 * table index would make it impossible to use headerless messages.
378 */
379 const uint32_t surf_index = inst->target;
380
381 brw_inst *insn = brw_fb_WRITE(p,
382 payload,
383 retype(implied_header, BRW_REGISTER_TYPE_UW),
384 msg_control,
385 surf_index,
386 nr,
387 0,
388 inst->eot,
389 inst->last_rt,
390 inst->header_size != 0);
391
392 if (devinfo->gen >= 6)
393 brw_inst_set_rt_slot_group(devinfo, insn, inst->group / 16);
394 }
395
396 void
397 fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
398 {
399 if (devinfo->gen < 8 && !devinfo->is_haswell) {
400 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
401 brw_set_default_flag_reg(p, 0, 0);
402 }
403
404 const struct brw_reg implied_header =
405 devinfo->gen < 6 ? payload : brw_null_reg();
406
407 if (inst->base_mrf >= 0)
408 payload = brw_message_reg(inst->base_mrf);
409
410 if (!runtime_check_aads_emit) {
411 fire_fb_write(inst, payload, implied_header, inst->mlen);
412 } else {
413 /* This can only happen in gen < 6 */
414 assert(devinfo->gen < 6);
415
416 struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
417
418 /* Check runtime bit to detect if we have to send AA data or not */
419 brw_push_insn_state(p);
420 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
421 brw_set_default_exec_size(p, BRW_EXECUTE_1);
422 brw_AND(p,
423 v1_null_ud,
424 retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
425 brw_imm_ud(1<<26));
426 brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
427
428 int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
429 brw_pop_insn_state(p);
430 {
431 /* Don't send AA data */
432 fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
433 }
434 brw_land_fwd_jump(p, jmp);
435 fire_fb_write(inst, payload, implied_header, inst->mlen);
436 }
437 }
438
439 void
440 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
441 struct brw_reg payload)
442 {
443 assert(inst->size_written % REG_SIZE == 0);
444 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
445 /* We assume that render targets start at binding table index 0. */
446 const unsigned surf_index = inst->target;
447
448 gen9_fb_READ(p, dst, payload, surf_index,
449 inst->header_size, inst->size_written / REG_SIZE,
450 prog_data->persample_dispatch);
451 }
452
453 void
454 fs_generator::generate_mov_indirect(fs_inst *inst,
455 struct brw_reg dst,
456 struct brw_reg reg,
457 struct brw_reg indirect_byte_offset)
458 {
459 assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
460 assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
461 assert(!reg.abs && !reg.negate);
462 assert(reg.type == dst.type);
463
464 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
465
466 if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
467 imm_byte_offset += indirect_byte_offset.ud;
468
469 reg.nr = imm_byte_offset / REG_SIZE;
470 reg.subnr = imm_byte_offset % REG_SIZE;
471 brw_MOV(p, dst, reg);
472 } else {
473 /* Prior to Broadwell, there are only 8 address registers. */
474 assert(inst->exec_size <= 8 || devinfo->gen >= 8);
475
476 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
477 struct brw_reg addr = vec8(brw_address_reg(0));
478
479 /* Whether we can use destination dependency control without running the
480 * risk of a hang if an instruction gets shot down.
481 */
482 const bool use_dep_ctrl = !inst->predicate &&
483 inst->exec_size == dispatch_width;
484 brw_inst *insn;
485
486 /* The destination stride of an instruction (in bytes) must be greater
487 * than or equal to the size of the rest of the instruction. Since the
488 * address register is of type UW, we can't use a D-type instruction.
489 * In order to get around this, re retype to UW and use a stride.
490 */
491 indirect_byte_offset =
492 retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
493
494 /* There are a number of reasons why we don't use the base offset here.
495 * One reason is that the field is only 9 bits which means we can only
496 * use it to access the first 16 GRFs. Also, from the Haswell PRM
497 * section "Register Region Restrictions":
498 *
499 * "The lower bits of the AddressImmediate must not overflow to
500 * change the register address. The lower 5 bits of Address
501 * Immediate when added to lower 5 bits of address register gives
502 * the sub-register offset. The upper bits of Address Immediate
503 * when added to upper bits of address register gives the register
504 * address. Any overflow from sub-register offset is dropped."
505 *
506 * Since the indirect may cause us to cross a register boundary, this
507 * makes the base offset almost useless. We could try and do something
508 * clever where we use a actual base offset if base_offset % 32 == 0 but
509 * that would mean we were generating different code depending on the
510 * base offset. Instead, for the sake of consistency, we'll just do the
511 * add ourselves. This restriction is only listed in the Haswell PRM
512 * but empirical testing indicates that it applies on all older
513 * generations and is lifted on Broadwell.
514 *
515 * In the end, while base_offset is nice to look at in the generated
516 * code, using it saves us 0 instructions and would require quite a bit
517 * of case-by-case work. It's just not worth it.
518 *
519 * Due to a hardware bug some platforms (particularly Gen11+) seem to
520 * require the address components of all channels to be valid whether or
521 * not they're active, which causes issues if we use VxH addressing
522 * under non-uniform control-flow. We can easily work around that by
523 * initializing the whole address register with a pipelined NoMask MOV
524 * instruction.
525 */
526 if (devinfo->gen >= 7) {
527 insn = brw_MOV(p, addr, brw_imm_uw(imm_byte_offset));
528 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
529 brw_inst_set_pred_control(devinfo, insn, BRW_PREDICATE_NONE);
530 if (devinfo->gen >= 12)
531 brw_set_default_swsb(p, tgl_swsb_null());
532 else
533 brw_inst_set_no_dd_clear(devinfo, insn, use_dep_ctrl);
534 }
535
536 insn = brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
537 if (devinfo->gen >= 12)
538 brw_set_default_swsb(p, tgl_swsb_regdist(1));
539 else if (devinfo->gen >= 7)
540 brw_inst_set_no_dd_check(devinfo, insn, use_dep_ctrl);
541
542 if (type_sz(reg.type) > 4 &&
543 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
544 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo) ||
545 !devinfo->has_64bit_float)) {
546 /* IVB has an issue (which we found empirically) where it reads two
547 * address register components per channel for indirectly addressed
548 * 64-bit sources.
549 *
550 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
551 *
552 * "When source or destination datatype is 64b or operation is
553 * integer DWord multiply, indirect addressing must not be used."
554 *
555 * To work around both of these, we do two integer MOVs insead of one
556 * 64-bit MOV. Because no double value should ever cross a register
557 * boundary, it's safe to use the immediate offset in the indirect
558 * here to handle adding 4 bytes to the offset and avoid the extra
559 * ADD to the register file.
560 */
561 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
562 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
563 brw_set_default_swsb(p, tgl_swsb_null());
564 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
565 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
566 } else {
567 struct brw_reg ind_src = brw_VxH_indirect(0, 0);
568
569 brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
570
571 if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
572 !inst->get_next()->is_tail_sentinel() &&
573 ((fs_inst *)inst->get_next())->mlen > 0) {
574 /* From the Sandybridge PRM:
575 *
576 * "[Errata: DevSNB(SNB)] If MRF register is updated by any
577 * instruction that “indexed/indirect” source AND is followed
578 * by a send, the instruction requires a “Switch”. This is to
579 * avoid race condition where send may dispatch before MRF is
580 * updated."
581 */
582 brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
583 }
584 }
585 }
586 }
587
588 void
589 fs_generator::generate_shuffle(fs_inst *inst,
590 struct brw_reg dst,
591 struct brw_reg src,
592 struct brw_reg idx)
593 {
594 /* Ivy bridge has some strange behavior that makes this a real pain to
595 * implement for 64-bit values so we just don't bother.
596 */
597 assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4);
598
599 /* Because we're using the address register, we're limited to 8-wide
600 * execution on gen7. On gen8, we're limited to 16-wide by the address
601 * register file and 8-wide for 64-bit types. We could try and make this
602 * instruction splittable higher up in the compiler but that gets weird
603 * because it reads all of the channels regardless of execution size. It's
604 * easier just to split it here.
605 */
606 const unsigned lower_width =
607 (devinfo->gen <= 7 || type_sz(src.type) > 4) ?
608 8 : MIN2(16, inst->exec_size);
609
610 brw_set_default_exec_size(p, cvt(lower_width) - 1);
611 for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
612 brw_set_default_group(p, group);
613
614 if ((src.vstride == 0 && src.hstride == 0) ||
615 idx.file == BRW_IMMEDIATE_VALUE) {
616 /* Trivial, the source is already uniform or the index is a constant.
617 * We will typically not get here if the optimizer is doing its job,
618 * but asserting would be mean.
619 */
620 const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
621 brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0));
622 } else {
623 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
624 struct brw_reg addr = vec8(brw_address_reg(0));
625
626 struct brw_reg group_idx = suboffset(idx, group);
627
628 if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
629 /* Things get grumpy if the register is too wide. */
630 group_idx.width--;
631 group_idx.vstride--;
632 }
633
634 assert(type_sz(group_idx.type) <= 4);
635 if (type_sz(group_idx.type) == 4) {
636 /* The destination stride of an instruction (in bytes) must be
637 * greater than or equal to the size of the rest of the
638 * instruction. Since the address register is of type UW, we
639 * can't use a D-type instruction. In order to get around this,
640 * re retype to UW and use a stride.
641 */
642 group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
643 }
644
645 /* Take into account the component size and horizontal stride. */
646 assert(src.vstride == src.hstride + src.width);
647 brw_SHL(p, addr, group_idx,
648 brw_imm_uw(util_logbase2(type_sz(src.type)) +
649 src.hstride - 1));
650
651 /* Add on the register start offset */
652 brw_set_default_swsb(p, tgl_swsb_regdist(1));
653 brw_ADD(p, addr, addr, brw_imm_uw(src.nr * REG_SIZE + src.subnr));
654
655 if (type_sz(src.type) > 4 &&
656 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
657 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
658 /* IVB has an issue (which we found empirically) where it reads
659 * two address register components per channel for indirectly
660 * addressed 64-bit sources.
661 *
662 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
663 *
664 * "When source or destination datatype is 64b or operation is
665 * integer DWord multiply, indirect addressing must not be
666 * used."
667 *
668 * To work around both of these, we do two integer MOVs insead of
669 * one 64-bit MOV. Because no double value should ever cross a
670 * register boundary, it's safe to use the immediate offset in the
671 * indirect here to handle adding 4 bytes to the offset and avoid
672 * the extra ADD to the register file.
673 */
674 struct brw_reg gdst = suboffset(dst, group);
675 struct brw_reg dst_d = retype(spread(gdst, 2),
676 BRW_REGISTER_TYPE_D);
677 assert(dst.hstride == 1);
678 brw_MOV(p, dst_d,
679 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
680 brw_set_default_swsb(p, tgl_swsb_null());
681 brw_MOV(p, byte_offset(dst_d, 4),
682 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
683 } else {
684 brw_MOV(p, suboffset(dst, group * dst.hstride),
685 retype(brw_VxH_indirect(0, 0), src.type));
686 }
687 }
688
689 brw_set_default_swsb(p, tgl_swsb_null());
690 }
691 }
692
693 void
694 fs_generator::generate_quad_swizzle(const fs_inst *inst,
695 struct brw_reg dst, struct brw_reg src,
696 unsigned swiz)
697 {
698 /* Requires a quad. */
699 assert(inst->exec_size >= 4);
700
701 if (src.file == BRW_IMMEDIATE_VALUE ||
702 has_scalar_region(src)) {
703 /* The value is uniform across all channels */
704 brw_MOV(p, dst, src);
705
706 } else if (devinfo->gen < 11 && type_sz(src.type) == 4) {
707 /* This only works on 8-wide 32-bit values */
708 assert(inst->exec_size == 8);
709 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
710 assert(src.vstride == src.width + 1);
711 brw_set_default_access_mode(p, BRW_ALIGN_16);
712 struct brw_reg swiz_src = stride(src, 4, 4, 1);
713 swiz_src.swizzle = swiz;
714 brw_MOV(p, dst, swiz_src);
715
716 } else {
717 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
718 assert(src.vstride == src.width + 1);
719 const struct brw_reg src_0 = suboffset(src, BRW_GET_SWZ(swiz, 0));
720
721 switch (swiz) {
722 case BRW_SWIZZLE_XXXX:
723 case BRW_SWIZZLE_YYYY:
724 case BRW_SWIZZLE_ZZZZ:
725 case BRW_SWIZZLE_WWWW:
726 brw_MOV(p, dst, stride(src_0, 4, 4, 0));
727 break;
728
729 case BRW_SWIZZLE_XXZZ:
730 case BRW_SWIZZLE_YYWW:
731 brw_MOV(p, dst, stride(src_0, 2, 2, 0));
732 break;
733
734 case BRW_SWIZZLE_XYXY:
735 case BRW_SWIZZLE_ZWZW:
736 assert(inst->exec_size == 4);
737 brw_MOV(p, dst, stride(src_0, 0, 2, 1));
738 break;
739
740 default:
741 assert(inst->force_writemask_all);
742 brw_set_default_exec_size(p, cvt(inst->exec_size / 4) - 1);
743
744 for (unsigned c = 0; c < 4; c++) {
745 brw_inst *insn = brw_MOV(
746 p, stride(suboffset(dst, c),
747 4 * inst->dst.stride, 1, 4 * inst->dst.stride),
748 stride(suboffset(src, BRW_GET_SWZ(swiz, c)), 4, 1, 0));
749
750 if (devinfo->gen < 12) {
751 brw_inst_set_no_dd_clear(devinfo, insn, c < 3);
752 brw_inst_set_no_dd_check(devinfo, insn, c > 0);
753 }
754
755 brw_set_default_swsb(p, tgl_swsb_null());
756 }
757
758 break;
759 }
760 }
761 }
762
763 void
764 fs_generator::generate_urb_read(fs_inst *inst,
765 struct brw_reg dst,
766 struct brw_reg header)
767 {
768 assert(inst->size_written % REG_SIZE == 0);
769 assert(header.file == BRW_GENERAL_REGISTER_FILE);
770 assert(header.type == BRW_REGISTER_TYPE_UD);
771
772 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
773 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
774 brw_set_src0(p, send, header);
775 if (devinfo->gen < 12)
776 brw_set_src1(p, send, brw_imm_ud(0u));
777
778 brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
779 brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ);
780
781 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
782 brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
783
784 brw_inst_set_mlen(p->devinfo, send, inst->mlen);
785 brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
786 brw_inst_set_header_present(p->devinfo, send, true);
787 brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
788 }
789
790 void
791 fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
792 {
793 brw_inst *insn;
794
795 /* WaClearTDRRegBeforeEOTForNonPS.
796 *
797 * WA: Clear tdr register before send EOT in all non-PS shader kernels
798 *
799 * mov(8) tdr0:ud 0x0:ud {NoMask}"
800 */
801 if (inst->eot && p->devinfo->gen == 10) {
802 brw_push_insn_state(p);
803 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
804 brw_MOV(p, brw_tdr_reg(), brw_imm_uw(0));
805 brw_pop_insn_state(p);
806 }
807
808 insn = brw_next_insn(p, BRW_OPCODE_SEND);
809
810 brw_set_dest(p, insn, brw_null_reg());
811 brw_set_src0(p, insn, payload);
812 if (devinfo->gen < 12)
813 brw_set_src1(p, insn, brw_imm_ud(0u));
814
815 brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
816 brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE);
817
818 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
819 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
820 brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
821
822 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
823 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
824 brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
825
826 brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
827 brw_inst_set_rlen(p->devinfo, insn, 0);
828 brw_inst_set_eot(p->devinfo, insn, inst->eot);
829 brw_inst_set_header_present(p->devinfo, insn, true);
830 brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
831 }
832
833 void
834 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
835 {
836 struct brw_inst *insn;
837
838 insn = brw_next_insn(p, BRW_OPCODE_SEND);
839
840 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
841 brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
842 if (devinfo->gen < 12)
843 brw_set_src1(p, insn, brw_imm_ud(0u));
844
845 /* Terminate a compute shader by sending a message to the thread spawner.
846 */
847 brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
848 brw_inst_set_mlen(devinfo, insn, 1);
849 brw_inst_set_rlen(devinfo, insn, 0);
850 brw_inst_set_eot(devinfo, insn, inst->eot);
851 brw_inst_set_header_present(devinfo, insn, false);
852
853 brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
854
855 if (devinfo->gen < 11) {
856 brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
857
858 /* Note that even though the thread has a URB resource associated with it,
859 * we set the "do not dereference URB" bit, because the URB resource is
860 * managed by the fixed-function unit, so it will free it automatically.
861 */
862 brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
863 }
864
865 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
866 }
867
868 void
869 fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
870 {
871 brw_barrier(p, src);
872 if (devinfo->gen >= 12) {
873 brw_set_default_swsb(p, tgl_swsb_null());
874 brw_SYNC(p, TGL_SYNC_BAR);
875 } else {
876 brw_WAIT(p);
877 }
878 }
879
880 bool
881 fs_generator::generate_linterp(fs_inst *inst,
882 struct brw_reg dst, struct brw_reg *src)
883 {
884 /* PLN reads:
885 * / in SIMD16 \
886 * -----------------------------------
887 * | src1+0 | src1+1 | src1+2 | src1+3 |
888 * |-----------------------------------|
889 * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
890 * -----------------------------------
891 *
892 * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
893 *
894 * -----------------------------------
895 * | src1+0 | src1+1 | src1+2 | src1+3 |
896 * |-----------------------------------|
897 * |(x0, x1)|(y0, y1)| | | in SIMD8
898 * |-----------------------------------|
899 * |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
900 * -----------------------------------
901 *
902 * See also: emit_interpolation_setup_gen4().
903 */
904 struct brw_reg delta_x = src[0];
905 struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
906 struct brw_reg interp = src[1];
907 brw_inst *i[2];
908
909 /* nir_lower_interpolation() will do the lowering to MAD instructions for
910 * us on gen11+
911 */
912 assert(devinfo->gen < 11);
913
914 if (devinfo->has_pln) {
915 if (devinfo->gen <= 6 && (delta_x.nr & 1) != 0) {
916 /* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane":
917 *
918 * "[DevSNB]:<src1> must be even register aligned.
919 *
920 * This restriction is lifted on Ivy Bridge.
921 *
922 * This means that we need to split PLN into LINE+MAC on-the-fly.
923 * Unfortunately, the inputs are laid out for PLN and not LINE+MAC so
924 * we have to split into SIMD8 pieces. For gen4 (!has_pln), the
925 * coordinate registers are laid out differently so we leave it as a
926 * SIMD16 instruction.
927 */
928 assert(inst->exec_size == 8 || inst->exec_size == 16);
929 assert(inst->group % 16 == 0);
930
931 brw_push_insn_state(p);
932 brw_set_default_exec_size(p, BRW_EXECUTE_8);
933
934 /* Thanks to two accumulators, we can emit all the LINEs and then all
935 * the MACs. This improves parallelism a bit.
936 */
937 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
938 brw_inst *line = brw_LINE(p, brw_null_reg(), interp,
939 offset(delta_x, g * 2));
940 brw_inst_set_group(devinfo, line, inst->group + g * 8);
941
942 /* LINE writes the accumulator automatically on gen4-5. On Sandy
943 * Bridge and later, we have to explicitly enable it.
944 */
945 if (devinfo->gen >= 6)
946 brw_inst_set_acc_wr_control(p->devinfo, line, true);
947
948 /* brw_set_default_saturate() is called before emitting
949 * instructions, so the saturate bit is set in each instruction,
950 * so we need to unset it on the LINE instructions.
951 */
952 brw_inst_set_saturate(p->devinfo, line, false);
953 }
954
955 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
956 brw_inst *mac = brw_MAC(p, offset(dst, g), suboffset(interp, 1),
957 offset(delta_x, g * 2 + 1));
958 brw_inst_set_group(devinfo, mac, inst->group + g * 8);
959 brw_inst_set_cond_modifier(p->devinfo, mac, inst->conditional_mod);
960 }
961
962 brw_pop_insn_state(p);
963
964 return true;
965 } else {
966 brw_PLN(p, dst, interp, delta_x);
967
968 return false;
969 }
970 } else {
971 i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
972 i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
973
974 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
975
976 /* brw_set_default_saturate() is called before emitting instructions, so
977 * the saturate bit is set in each instruction, so we need to unset it on
978 * the first instruction.
979 */
980 brw_inst_set_saturate(p->devinfo, i[0], false);
981
982 return true;
983 }
984 }
985
986 void
987 fs_generator::generate_get_buffer_size(fs_inst *inst,
988 struct brw_reg dst,
989 struct brw_reg src,
990 struct brw_reg surf_index)
991 {
992 assert(devinfo->gen >= 7);
993 assert(surf_index.file == BRW_IMMEDIATE_VALUE);
994
995 uint32_t simd_mode;
996 int rlen = 4;
997
998 switch (inst->exec_size) {
999 case 8:
1000 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1001 break;
1002 case 16:
1003 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1004 break;
1005 default:
1006 unreachable("Invalid width for texture instruction");
1007 }
1008
1009 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1010 rlen = 8;
1011 dst = vec16(dst);
1012 }
1013
1014 brw_SAMPLE(p,
1015 retype(dst, BRW_REGISTER_TYPE_UW),
1016 inst->base_mrf,
1017 src,
1018 surf_index.ud,
1019 0,
1020 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
1021 rlen, /* response length */
1022 inst->mlen,
1023 inst->header_size > 0,
1024 simd_mode,
1025 BRW_SAMPLER_RETURN_FORMAT_SINT32);
1026 }
1027
1028 void
1029 fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst,
1030 struct brw_reg surface_index,
1031 struct brw_reg sampler_index)
1032 {
1033 assert(devinfo->gen < 7);
1034 assert(inst->size_written % REG_SIZE == 0);
1035 int msg_type = -1;
1036 uint32_t simd_mode;
1037 uint32_t return_format;
1038
1039 /* Sampler EOT message of less than the dispatch width would kill the
1040 * thread prematurely.
1041 */
1042 assert(!inst->eot || inst->exec_size == dispatch_width);
1043
1044 switch (dst.type) {
1045 case BRW_REGISTER_TYPE_D:
1046 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
1047 break;
1048 case BRW_REGISTER_TYPE_UD:
1049 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
1050 break;
1051 default:
1052 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1053 break;
1054 }
1055
1056 /* Stomp the resinfo output type to UINT32. On gens 4-5, the output type
1057 * is set as part of the message descriptor. On gen4, the PRM seems to
1058 * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
1059 * later gens UINT32 is required. Once you hit Sandy Bridge, the bit is
1060 * gone from the message descriptor entirely and you just get UINT32 all
1061 * the time regasrdless. Since we can really only do non-UINT32 on gen4,
1062 * just stomp it to UINT32 all the time.
1063 */
1064 if (inst->opcode == SHADER_OPCODE_TXS)
1065 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
1066
1067 switch (inst->exec_size) {
1068 case 8:
1069 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1070 break;
1071 case 16:
1072 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1073 break;
1074 default:
1075 unreachable("Invalid width for texture instruction");
1076 }
1077
1078 if (devinfo->gen >= 5) {
1079 switch (inst->opcode) {
1080 case SHADER_OPCODE_TEX:
1081 if (inst->shadow_compare) {
1082 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
1083 } else {
1084 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
1085 }
1086 break;
1087 case FS_OPCODE_TXB:
1088 if (inst->shadow_compare) {
1089 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
1090 } else {
1091 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
1092 }
1093 break;
1094 case SHADER_OPCODE_TXL:
1095 if (inst->shadow_compare) {
1096 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
1097 } else {
1098 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
1099 }
1100 break;
1101 case SHADER_OPCODE_TXS:
1102 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
1103 break;
1104 case SHADER_OPCODE_TXD:
1105 assert(!inst->shadow_compare);
1106 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
1107 break;
1108 case SHADER_OPCODE_TXF:
1109 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1110 break;
1111 case SHADER_OPCODE_TXF_CMS:
1112 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1113 break;
1114 case SHADER_OPCODE_LOD:
1115 msg_type = GEN5_SAMPLER_MESSAGE_LOD;
1116 break;
1117 case SHADER_OPCODE_TG4:
1118 assert(devinfo->gen == 6);
1119 assert(!inst->shadow_compare);
1120 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
1121 break;
1122 case SHADER_OPCODE_SAMPLEINFO:
1123 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
1124 break;
1125 default:
1126 unreachable("not reached");
1127 }
1128 } else {
1129 switch (inst->opcode) {
1130 case SHADER_OPCODE_TEX:
1131 /* Note that G45 and older determines shadow compare and dispatch width
1132 * from message length for most messages.
1133 */
1134 if (inst->exec_size == 8) {
1135 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
1136 if (inst->shadow_compare) {
1137 assert(inst->mlen == 6);
1138 } else {
1139 assert(inst->mlen <= 4);
1140 }
1141 } else {
1142 if (inst->shadow_compare) {
1143 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1144 assert(inst->mlen == 9);
1145 } else {
1146 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1147 assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
1148 }
1149 }
1150 break;
1151 case FS_OPCODE_TXB:
1152 if (inst->shadow_compare) {
1153 assert(inst->exec_size == 8);
1154 assert(inst->mlen == 6);
1155 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
1156 } else {
1157 assert(inst->mlen == 9);
1158 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1159 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1160 }
1161 break;
1162 case SHADER_OPCODE_TXL:
1163 if (inst->shadow_compare) {
1164 assert(inst->exec_size == 8);
1165 assert(inst->mlen == 6);
1166 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
1167 } else {
1168 assert(inst->mlen == 9);
1169 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
1170 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1171 }
1172 break;
1173 case SHADER_OPCODE_TXD:
1174 /* There is no sample_d_c message; comparisons are done manually */
1175 assert(inst->exec_size == 8);
1176 assert(inst->mlen == 7 || inst->mlen == 10);
1177 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
1178 break;
1179 case SHADER_OPCODE_TXF:
1180 assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
1181 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1182 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1183 break;
1184 case SHADER_OPCODE_TXS:
1185 assert(inst->mlen == 3);
1186 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
1187 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1188 break;
1189 default:
1190 unreachable("not reached");
1191 }
1192 }
1193 assert(msg_type != -1);
1194
1195 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1196 dst = vec16(dst);
1197 }
1198
1199 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
1200
1201 /* Load the message header if present. If there's a texture offset,
1202 * we need to set it up explicitly and load the offset bitfield.
1203 * Otherwise, we can use an implied move from g0 to the first message reg.
1204 */
1205 struct brw_reg src = brw_null_reg();
1206 if (inst->header_size != 0) {
1207 if (devinfo->gen < 6 && !inst->offset) {
1208 /* Set up an implied move from g0 to the MRF. */
1209 src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1210 } else {
1211 const tgl_swsb swsb = brw_get_default_swsb(p);
1212 assert(inst->base_mrf != -1);
1213 struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
1214
1215 brw_push_insn_state(p);
1216 brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1217 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1218 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1219 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1220 /* Explicitly set up the message header by copying g0 to the MRF. */
1221 brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
1222 brw_set_default_swsb(p, tgl_swsb_regdist(1));
1223
1224 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1225 if (inst->offset) {
1226 /* Set the offset bits in DWord 2. */
1227 brw_MOV(p, get_element_ud(header_reg, 2),
1228 brw_imm_ud(inst->offset));
1229 }
1230
1231 brw_pop_insn_state(p);
1232 brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1233 }
1234 }
1235
1236 uint32_t base_binding_table_index;
1237 switch (inst->opcode) {
1238 case SHADER_OPCODE_TG4:
1239 base_binding_table_index = prog_data->binding_table.gather_texture_start;
1240 break;
1241 default:
1242 base_binding_table_index = prog_data->binding_table.texture_start;
1243 break;
1244 }
1245
1246 assert(surface_index.file == BRW_IMMEDIATE_VALUE);
1247 assert(sampler_index.file == BRW_IMMEDIATE_VALUE);
1248
1249 brw_SAMPLE(p,
1250 retype(dst, BRW_REGISTER_TYPE_UW),
1251 inst->base_mrf,
1252 src,
1253 surface_index.ud + base_binding_table_index,
1254 sampler_index.ud % 16,
1255 msg_type,
1256 inst->size_written / REG_SIZE,
1257 inst->mlen,
1258 inst->header_size != 0,
1259 simd_mode,
1260 return_format);
1261 }
1262
1263
1264 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
1265 * looking like:
1266 *
1267 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
1268 *
1269 * Ideally, we want to produce:
1270 *
1271 * DDX DDY
1272 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
1273 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
1274 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
1275 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
1276 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
1277 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
1278 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
1279 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
1280 *
1281 * and add another set of two more subspans if in 16-pixel dispatch mode.
1282 *
1283 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
1284 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
1285 * pair. But the ideal approximation may impose a huge performance cost on
1286 * sample_d. On at least Haswell, sample_d instruction does some
1287 * optimizations if the same LOD is used for all pixels in the subspan.
1288 *
1289 * For DDY, we need to use ALIGN16 mode since it's capable of doing the
1290 * appropriate swizzling.
1291 */
1292 void
1293 fs_generator::generate_ddx(const fs_inst *inst,
1294 struct brw_reg dst, struct brw_reg src)
1295 {
1296 unsigned vstride, width;
1297
1298 if (devinfo->gen >= 8) {
1299 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1300 /* produce accurate derivatives */
1301 vstride = BRW_VERTICAL_STRIDE_2;
1302 width = BRW_WIDTH_2;
1303 } else {
1304 /* replicate the derivative at the top-left pixel to other pixels */
1305 vstride = BRW_VERTICAL_STRIDE_4;
1306 width = BRW_WIDTH_4;
1307 }
1308
1309 struct brw_reg src0 = byte_offset(src, type_sz(src.type));;
1310 struct brw_reg src1 = src;
1311
1312 src0.vstride = vstride;
1313 src0.width = width;
1314 src0.hstride = BRW_HORIZONTAL_STRIDE_0;
1315 src1.vstride = vstride;
1316 src1.width = width;
1317 src1.hstride = BRW_HORIZONTAL_STRIDE_0;
1318
1319 brw_ADD(p, dst, src0, negate(src1));
1320 } else {
1321 /* On Haswell and earlier, the region used above appears to not work
1322 * correctly for compressed instructions. At least on Haswell and
1323 * Iron Lake, compressed ALIGN16 instructions do work. Since we
1324 * would have to split to SIMD8 no matter which method we choose, we
1325 * may as well use ALIGN16 on all platforms gen7 and earlier.
1326 */
1327 struct brw_reg src0 = stride(src, 4, 4, 1);
1328 struct brw_reg src1 = stride(src, 4, 4, 1);
1329 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1330 src0.swizzle = BRW_SWIZZLE_XXZZ;
1331 src1.swizzle = BRW_SWIZZLE_YYWW;
1332 } else {
1333 src0.swizzle = BRW_SWIZZLE_XXXX;
1334 src1.swizzle = BRW_SWIZZLE_YYYY;
1335 }
1336
1337 brw_push_insn_state(p);
1338 brw_set_default_access_mode(p, BRW_ALIGN_16);
1339 brw_ADD(p, dst, negate(src0), src1);
1340 brw_pop_insn_state(p);
1341 }
1342 }
1343
1344 /* The negate_value boolean is used to negate the derivative computation for
1345 * FBOs, since they place the origin at the upper left instead of the lower
1346 * left.
1347 */
1348 void
1349 fs_generator::generate_ddy(const fs_inst *inst,
1350 struct brw_reg dst, struct brw_reg src)
1351 {
1352 const uint32_t type_size = type_sz(src.type);
1353
1354 if (inst->opcode == FS_OPCODE_DDY_FINE) {
1355 /* produce accurate derivatives.
1356 *
1357 * From the Broadwell PRM, Volume 7 (3D-Media-GPGPU)
1358 * "Register Region Restrictions", Section "1. Special Restrictions":
1359 *
1360 * "In Align16 mode, the channel selects and channel enables apply to
1361 * a pair of half-floats, because these parameters are defined for
1362 * DWord elements ONLY. This is applicable when both source and
1363 * destination are half-floats."
1364 *
1365 * So for half-float operations we use the Gen11+ Align1 path. CHV
1366 * inherits its FP16 hardware from SKL, so it is not affected.
1367 */
1368 if (devinfo->gen >= 11 ||
1369 (devinfo->is_broadwell && src.type == BRW_REGISTER_TYPE_HF)) {
1370 src = stride(src, 0, 2, 1);
1371
1372 brw_push_insn_state(p);
1373 brw_set_default_exec_size(p, BRW_EXECUTE_4);
1374 for (uint32_t g = 0; g < inst->exec_size; g += 4) {
1375 brw_set_default_group(p, inst->group + g);
1376 brw_ADD(p, byte_offset(dst, g * type_size),
1377 negate(byte_offset(src, g * type_size)),
1378 byte_offset(src, (g + 2) * type_size));
1379 brw_set_default_swsb(p, tgl_swsb_null());
1380 }
1381 brw_pop_insn_state(p);
1382 } else {
1383 struct brw_reg src0 = stride(src, 4, 4, 1);
1384 struct brw_reg src1 = stride(src, 4, 4, 1);
1385 src0.swizzle = BRW_SWIZZLE_XYXY;
1386 src1.swizzle = BRW_SWIZZLE_ZWZW;
1387
1388 brw_push_insn_state(p);
1389 brw_set_default_access_mode(p, BRW_ALIGN_16);
1390 brw_ADD(p, dst, negate(src0), src1);
1391 brw_pop_insn_state(p);
1392 }
1393 } else {
1394 /* replicate the derivative at the top-left pixel to other pixels */
1395 if (devinfo->gen >= 8) {
1396 struct brw_reg src0 = byte_offset(stride(src, 4, 4, 0), 0 * type_size);
1397 struct brw_reg src1 = byte_offset(stride(src, 4, 4, 0), 2 * type_size);
1398
1399 brw_ADD(p, dst, negate(src0), src1);
1400 } else {
1401 /* On Haswell and earlier, the region used above appears to not work
1402 * correctly for compressed instructions. At least on Haswell and
1403 * Iron Lake, compressed ALIGN16 instructions do work. Since we
1404 * would have to split to SIMD8 no matter which method we choose, we
1405 * may as well use ALIGN16 on all platforms gen7 and earlier.
1406 */
1407 struct brw_reg src0 = stride(src, 4, 4, 1);
1408 struct brw_reg src1 = stride(src, 4, 4, 1);
1409 src0.swizzle = BRW_SWIZZLE_XXXX;
1410 src1.swizzle = BRW_SWIZZLE_ZZZZ;
1411
1412 brw_push_insn_state(p);
1413 brw_set_default_access_mode(p, BRW_ALIGN_16);
1414 brw_ADD(p, dst, negate(src0), src1);
1415 brw_pop_insn_state(p);
1416 }
1417 }
1418 }
1419
1420 void
1421 fs_generator::generate_discard_jump(fs_inst *)
1422 {
1423 /* This HALT will be patched up at FB write time to point UIP at the end of
1424 * the program, and at brw_uip_jip() JIP will be set to the end of the
1425 * current block (or the program).
1426 */
1427 this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
1428 brw_HALT(p);
1429 }
1430
1431 void
1432 fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
1433 {
1434 /* The 32-wide messages only respect the first 16-wide half of the channel
1435 * enable signals which are replicated identically for the second group of
1436 * 16 channels, so we cannot use them unless the write is marked
1437 * force_writemask_all.
1438 */
1439 const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
1440 MIN2(16, inst->exec_size);
1441 const unsigned block_size = 4 * lower_size / REG_SIZE;
1442 const tgl_swsb swsb = brw_get_default_swsb(p);
1443 assert(inst->mlen != 0);
1444
1445 brw_push_insn_state(p);
1446 brw_set_default_exec_size(p, cvt(lower_size) - 1);
1447 brw_set_default_compression(p, lower_size > 8);
1448
1449 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1450 brw_set_default_group(p, inst->group + lower_size * i);
1451
1452 if (i > 0) {
1453 assert(swsb.mode & TGL_SBID_SET);
1454 brw_set_default_swsb(p, tgl_swsb_sbid(TGL_SBID_SRC, swsb.sbid));
1455 } else {
1456 brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1457 }
1458
1459 brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
1460 retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
1461
1462 brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1463 brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
1464 block_size,
1465 inst->offset + block_size * REG_SIZE * i);
1466 }
1467
1468 brw_pop_insn_state(p);
1469 }
1470
1471 void
1472 fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
1473 {
1474 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1475 assert(inst->mlen != 0);
1476
1477 brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
1478 inst->exec_size / 8, inst->offset);
1479 }
1480
1481 void
1482 fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst)
1483 {
1484 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1485
1486 gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
1487 }
1488
1489 void
1490 fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
1491 struct brw_reg dst,
1492 struct brw_reg index,
1493 struct brw_reg offset)
1494 {
1495 assert(type_sz(dst.type) == 4);
1496 assert(inst->mlen != 0);
1497
1498 assert(index.file == BRW_IMMEDIATE_VALUE &&
1499 index.type == BRW_REGISTER_TYPE_UD);
1500 uint32_t surf_index = index.ud;
1501
1502 assert(offset.file == BRW_IMMEDIATE_VALUE &&
1503 offset.type == BRW_REGISTER_TYPE_UD);
1504 uint32_t read_offset = offset.ud;
1505
1506 brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
1507 read_offset, surf_index);
1508 }
1509
1510 void
1511 fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
1512 struct brw_reg dst,
1513 struct brw_reg index,
1514 struct brw_reg payload)
1515 {
1516 assert(index.type == BRW_REGISTER_TYPE_UD);
1517 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1518 assert(type_sz(dst.type) == 4);
1519
1520 if (index.file == BRW_IMMEDIATE_VALUE) {
1521 const uint32_t surf_index = index.ud;
1522
1523 brw_push_insn_state(p);
1524 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1525 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1526 brw_pop_insn_state(p);
1527
1528 brw_inst_set_sfid(devinfo, send, GEN6_SFID_DATAPORT_CONSTANT_CACHE);
1529 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
1530 brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
1531 brw_set_desc(p, send,
1532 brw_message_desc(devinfo, 1, DIV_ROUND_UP(inst->size_written,
1533 REG_SIZE), true) |
1534 brw_dp_read_desc(devinfo, surf_index,
1535 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1536 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1537 BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1538
1539 } else {
1540 const tgl_swsb swsb = brw_get_default_swsb(p);
1541 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1542
1543 brw_push_insn_state(p);
1544 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1545
1546 /* a0.0 = surf_index & 0xff */
1547 brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1548 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1549 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1550 brw_set_dest(p, insn_and, addr);
1551 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1552 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1553
1554 /* dst = send(payload, a0.0 | <descriptor>) */
1555 brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1556 brw_send_indirect_message(
1557 p, GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1558 retype(dst, BRW_REGISTER_TYPE_UD),
1559 retype(payload, BRW_REGISTER_TYPE_UD), addr,
1560 brw_message_desc(devinfo, 1,
1561 DIV_ROUND_UP(inst->size_written, REG_SIZE), true) |
1562 brw_dp_read_desc(devinfo, 0 /* surface */,
1563 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1564 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1565 BRW_DATAPORT_READ_TARGET_DATA_CACHE),
1566 false /* EOT */);
1567
1568 brw_pop_insn_state(p);
1569 }
1570 }
1571
1572 void
1573 fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst,
1574 struct brw_reg dst,
1575 struct brw_reg index)
1576 {
1577 assert(devinfo->gen < 7); /* Should use the gen7 variant. */
1578 assert(inst->header_size != 0);
1579 assert(inst->mlen);
1580
1581 assert(index.file == BRW_IMMEDIATE_VALUE &&
1582 index.type == BRW_REGISTER_TYPE_UD);
1583 uint32_t surf_index = index.ud;
1584
1585 uint32_t simd_mode, rlen, msg_type;
1586 if (inst->exec_size == 16) {
1587 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1588 rlen = 8;
1589 } else {
1590 assert(inst->exec_size == 8);
1591 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1592 rlen = 4;
1593 }
1594
1595 if (devinfo->gen >= 5)
1596 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1597 else {
1598 /* We always use the SIMD16 message so that we only have to load U, and
1599 * not V or R.
1600 */
1601 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1602 assert(inst->mlen == 3);
1603 assert(inst->size_written == 8 * REG_SIZE);
1604 rlen = 8;
1605 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1606 }
1607
1608 struct brw_reg header = brw_vec8_grf(0, 0);
1609 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1610
1611 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1612 brw_inst_set_compression(devinfo, send, false);
1613 brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1614 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1615 brw_set_src0(p, send, header);
1616 if (devinfo->gen < 6)
1617 brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
1618
1619 /* Our surface is set up as floats, regardless of what actual data is
1620 * stored in it.
1621 */
1622 uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1623 brw_set_desc(p, send,
1624 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size) |
1625 brw_sampler_desc(devinfo, surf_index,
1626 0, /* sampler (unused) */
1627 msg_type, simd_mode, return_format));
1628 }
1629
1630 void
1631 fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
1632 struct brw_reg dst,
1633 struct brw_reg src,
1634 struct brw_reg msg_data,
1635 unsigned msg_type)
1636 {
1637 const bool has_payload = inst->src[0].file != BAD_FILE;
1638 assert(msg_data.type == BRW_REGISTER_TYPE_UD);
1639 assert(inst->size_written % REG_SIZE == 0);
1640
1641 brw_pixel_interpolator_query(p,
1642 retype(dst, BRW_REGISTER_TYPE_UW),
1643 /* If we don't have a payload, what we send doesn't matter */
1644 has_payload ? src : brw_vec8_grf(0, 0),
1645 inst->pi_noperspective,
1646 msg_type,
1647 msg_data,
1648 has_payload ? 2 * inst->exec_size / 8 : 1,
1649 inst->size_written / REG_SIZE);
1650 }
1651
1652 /* Sets vstride=1, width=4, hstride=0 of register src1 during
1653 * the ADD instruction.
1654 */
1655 void
1656 fs_generator::generate_set_sample_id(fs_inst *inst,
1657 struct brw_reg dst,
1658 struct brw_reg src0,
1659 struct brw_reg src1)
1660 {
1661 assert(dst.type == BRW_REGISTER_TYPE_D ||
1662 dst.type == BRW_REGISTER_TYPE_UD);
1663 assert(src0.type == BRW_REGISTER_TYPE_D ||
1664 src0.type == BRW_REGISTER_TYPE_UD);
1665
1666 const struct brw_reg reg = stride(src1, 1, 4, 0);
1667 const unsigned lower_size = MIN2(inst->exec_size,
1668 devinfo->gen >= 8 ? 16 : 8);
1669
1670 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1671 brw_inst *insn = brw_ADD(p, offset(dst, i * lower_size / 8),
1672 offset(src0, (src0.vstride == 0 ? 0 : (1 << (src0.vstride - 1)) *
1673 (i * lower_size / (1 << src0.width))) *
1674 type_sz(src0.type) / REG_SIZE),
1675 suboffset(reg, i * lower_size / 4));
1676 brw_inst_set_exec_size(devinfo, insn, cvt(lower_size) - 1);
1677 brw_inst_set_group(devinfo, insn, inst->group + lower_size * i);
1678 brw_inst_set_compression(devinfo, insn, lower_size > 8);
1679 brw_set_default_swsb(p, tgl_swsb_null());
1680 }
1681 }
1682
1683 void
1684 fs_generator::generate_pack_half_2x16_split(fs_inst *,
1685 struct brw_reg dst,
1686 struct brw_reg x,
1687 struct brw_reg y)
1688 {
1689 assert(devinfo->gen >= 7);
1690 assert(dst.type == BRW_REGISTER_TYPE_UD);
1691 assert(x.type == BRW_REGISTER_TYPE_F);
1692 assert(y.type == BRW_REGISTER_TYPE_F);
1693
1694 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
1695 *
1696 * Because this instruction does not have a 16-bit floating-point type,
1697 * the destination data type must be Word (W).
1698 *
1699 * The destination must be DWord-aligned and specify a horizontal stride
1700 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
1701 * each destination channel and the upper word is not modified.
1702 */
1703 struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
1704
1705 /* Give each 32-bit channel of dst the form below, where "." means
1706 * unchanged.
1707 * 0x....hhhh
1708 */
1709 brw_F32TO16(p, dst_w, y);
1710
1711 /* Now the form:
1712 * 0xhhhh0000
1713 */
1714 brw_set_default_swsb(p, tgl_swsb_regdist(1));
1715 brw_SHL(p, dst, dst, brw_imm_ud(16u));
1716
1717 /* And, finally the form of packHalf2x16's output:
1718 * 0xhhhhllll
1719 */
1720 brw_F32TO16(p, dst_w, x);
1721 }
1722
1723 void
1724 fs_generator::generate_shader_time_add(fs_inst *,
1725 struct brw_reg payload,
1726 struct brw_reg offset,
1727 struct brw_reg value)
1728 {
1729 const tgl_swsb swsb = brw_get_default_swsb(p);
1730
1731 assert(devinfo->gen >= 7);
1732 brw_push_insn_state(p);
1733 brw_set_default_mask_control(p, true);
1734 brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1735
1736 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1737 struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
1738 offset.type);
1739 struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
1740 value.type);
1741
1742 assert(offset.file == BRW_IMMEDIATE_VALUE);
1743 if (value.file == BRW_GENERAL_REGISTER_FILE) {
1744 value.width = BRW_WIDTH_1;
1745 value.hstride = BRW_HORIZONTAL_STRIDE_0;
1746 value.vstride = BRW_VERTICAL_STRIDE_0;
1747 } else {
1748 assert(value.file == BRW_IMMEDIATE_VALUE);
1749 }
1750
1751 /* Trying to deal with setup of the params from the IR is crazy in the FS8
1752 * case, and we don't really care about squeezing every bit of performance
1753 * out of this path, so we just emit the MOVs from here.
1754 */
1755 brw_MOV(p, payload_offset, offset);
1756 brw_set_default_swsb(p, tgl_swsb_null());
1757 brw_MOV(p, payload_value, value);
1758 brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1759 brw_shader_time_add(p, payload,
1760 prog_data->binding_table.shader_time_start);
1761 brw_pop_insn_state(p);
1762 }
1763
1764 void
1765 fs_generator::enable_debug(const char *shader_name)
1766 {
1767 debug_flag = true;
1768 this->shader_name = shader_name;
1769 }
1770
1771 int
1772 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width,
1773 struct shader_stats shader_stats,
1774 const brw::performance &perf,
1775 struct brw_compile_stats *stats)
1776 {
1777 /* align to 64 byte boundary. */
1778 while (p->next_insn_offset % 64)
1779 brw_NOP(p);
1780
1781 this->dispatch_width = dispatch_width;
1782
1783 int start_offset = p->next_insn_offset;
1784
1785 /* `send_count` explicitly does not include spills or fills, as we'd
1786 * like to use it as a metric for intentional memory access or other
1787 * shared function use. Otherwise, subtle changes to scheduling or
1788 * register allocation could cause it to fluctuate wildly - and that
1789 * effect is already counted in spill/fill counts.
1790 */
1791 int spill_count = 0, fill_count = 0;
1792 int loop_count = 0, send_count = 0, nop_count = 0;
1793 bool is_accum_used = false;
1794
1795 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1796
1797 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1798 if (inst->opcode == SHADER_OPCODE_UNDEF)
1799 continue;
1800
1801 struct brw_reg src[4], dst;
1802 unsigned int last_insn_offset = p->next_insn_offset;
1803 bool multiple_instructions_emitted = false;
1804
1805 /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
1806 * "Register Region Restrictions" section: for BDW, SKL:
1807 *
1808 * "A POW/FDIV operation must not be followed by an instruction
1809 * that requires two destination registers."
1810 *
1811 * The documentation is often lacking annotations for Atom parts,
1812 * and empirically this affects CHV as well.
1813 */
1814 if (devinfo->gen >= 8 &&
1815 devinfo->gen <= 9 &&
1816 p->nr_insn > 1 &&
1817 brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
1818 brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
1819 inst->dst.component_size(inst->exec_size) > REG_SIZE) {
1820 brw_NOP(p);
1821 last_insn_offset = p->next_insn_offset;
1822
1823 /* In order to avoid spurious instruction count differences when the
1824 * instruction schedule changes, keep track of the number of inserted
1825 * NOPs.
1826 */
1827 nop_count++;
1828 }
1829
1830 /* GEN:BUG:14010017096:
1831 *
1832 * Clear accumulator register before end of thread.
1833 */
1834 if (inst->eot && is_accum_used && devinfo->gen >= 12) {
1835 brw_set_default_exec_size(p, BRW_EXECUTE_16);
1836 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1837 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
1838 brw_MOV(p, brw_acc_reg(8), brw_imm_f(0.0f));
1839 last_insn_offset = p->next_insn_offset;
1840 }
1841
1842 if (!is_accum_used && !inst->eot) {
1843 is_accum_used = inst->writes_accumulator_implicitly(devinfo) ||
1844 inst->dst.is_accumulator();
1845 }
1846
1847 if (unlikely(debug_flag))
1848 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1849
1850 /* If the instruction writes to more than one register, it needs to be
1851 * explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
1852 * hardware figures out by itself what the right compression mode is,
1853 * but we still need to know whether the instruction is compressed to
1854 * set up the source register regions appropriately.
1855 *
1856 * XXX - This is wrong for instructions that write a single register but
1857 * read more than one which should strictly speaking be treated as
1858 * compressed. For instructions that don't write any registers it
1859 * relies on the destination being a null register of the correct
1860 * type and regioning so the instruction is considered compressed
1861 * or not accordingly.
1862 */
1863 const bool compressed =
1864 inst->dst.component_size(inst->exec_size) > REG_SIZE;
1865 brw_set_default_compression(p, compressed);
1866 brw_set_default_group(p, inst->group);
1867
1868 for (unsigned int i = 0; i < inst->sources; i++) {
1869 src[i] = brw_reg_from_fs_reg(devinfo, inst,
1870 &inst->src[i], compressed);
1871 /* The accumulator result appears to get used for the
1872 * conditional modifier generation. When negating a UD
1873 * value, there is a 33rd bit generated for the sign in the
1874 * accumulator value, so now you can't check, for example,
1875 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
1876 */
1877 assert(!inst->conditional_mod ||
1878 inst->src[i].type != BRW_REGISTER_TYPE_UD ||
1879 !inst->src[i].negate);
1880 }
1881 dst = brw_reg_from_fs_reg(devinfo, inst,
1882 &inst->dst, compressed);
1883
1884 brw_set_default_access_mode(p, BRW_ALIGN_1);
1885 brw_set_default_predicate_control(p, inst->predicate);
1886 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1887 /* On gen7 and above, hardware automatically adds the group onto the
1888 * flag subregister number. On Sandy Bridge and older, we have to do it
1889 * ourselves.
1890 */
1891 const unsigned flag_subreg = inst->flag_subreg +
1892 (devinfo->gen >= 7 ? 0 : inst->group / 16);
1893 brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2);
1894 brw_set_default_saturate(p, inst->saturate);
1895 brw_set_default_mask_control(p, inst->force_writemask_all);
1896 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1897 brw_set_default_swsb(p, inst->sched);
1898
1899 unsigned exec_size = inst->exec_size;
1900 if (devinfo->gen == 7 && !devinfo->is_haswell &&
1901 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
1902 exec_size *= 2;
1903 }
1904
1905 brw_set_default_exec_size(p, cvt(exec_size) - 1);
1906
1907 assert(inst->force_writemask_all || inst->exec_size >= 4);
1908 assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
1909 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1910 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1911
1912 switch (inst->opcode) {
1913 case BRW_OPCODE_SYNC:
1914 assert(src[0].file == BRW_IMMEDIATE_VALUE);
1915 brw_SYNC(p, tgl_sync_function(src[0].ud));
1916 break;
1917 case BRW_OPCODE_MOV:
1918 brw_MOV(p, dst, src[0]);
1919 break;
1920 case BRW_OPCODE_ADD:
1921 brw_ADD(p, dst, src[0], src[1]);
1922 break;
1923 case BRW_OPCODE_MUL:
1924 brw_MUL(p, dst, src[0], src[1]);
1925 break;
1926 case BRW_OPCODE_AVG:
1927 brw_AVG(p, dst, src[0], src[1]);
1928 break;
1929 case BRW_OPCODE_MACH:
1930 brw_MACH(p, dst, src[0], src[1]);
1931 break;
1932
1933 case BRW_OPCODE_LINE:
1934 brw_LINE(p, dst, src[0], src[1]);
1935 break;
1936
1937 case BRW_OPCODE_MAD:
1938 assert(devinfo->gen >= 6);
1939 if (devinfo->gen < 10)
1940 brw_set_default_access_mode(p, BRW_ALIGN_16);
1941 brw_MAD(p, dst, src[0], src[1], src[2]);
1942 break;
1943
1944 case BRW_OPCODE_LRP:
1945 assert(devinfo->gen >= 6 && devinfo->gen <= 10);
1946 if (devinfo->gen < 10)
1947 brw_set_default_access_mode(p, BRW_ALIGN_16);
1948 brw_LRP(p, dst, src[0], src[1], src[2]);
1949 break;
1950
1951 case BRW_OPCODE_FRC:
1952 brw_FRC(p, dst, src[0]);
1953 break;
1954 case BRW_OPCODE_RNDD:
1955 brw_RNDD(p, dst, src[0]);
1956 break;
1957 case BRW_OPCODE_RNDE:
1958 brw_RNDE(p, dst, src[0]);
1959 break;
1960 case BRW_OPCODE_RNDZ:
1961 brw_RNDZ(p, dst, src[0]);
1962 break;
1963
1964 case BRW_OPCODE_AND:
1965 brw_AND(p, dst, src[0], src[1]);
1966 break;
1967 case BRW_OPCODE_OR:
1968 brw_OR(p, dst, src[0], src[1]);
1969 break;
1970 case BRW_OPCODE_XOR:
1971 brw_XOR(p, dst, src[0], src[1]);
1972 break;
1973 case BRW_OPCODE_NOT:
1974 brw_NOT(p, dst, src[0]);
1975 break;
1976 case BRW_OPCODE_ASR:
1977 brw_ASR(p, dst, src[0], src[1]);
1978 break;
1979 case BRW_OPCODE_SHR:
1980 brw_SHR(p, dst, src[0], src[1]);
1981 break;
1982 case BRW_OPCODE_SHL:
1983 brw_SHL(p, dst, src[0], src[1]);
1984 break;
1985 case BRW_OPCODE_ROL:
1986 assert(devinfo->gen >= 11);
1987 assert(src[0].type == dst.type);
1988 brw_ROL(p, dst, src[0], src[1]);
1989 break;
1990 case BRW_OPCODE_ROR:
1991 assert(devinfo->gen >= 11);
1992 assert(src[0].type == dst.type);
1993 brw_ROR(p, dst, src[0], src[1]);
1994 break;
1995 case BRW_OPCODE_F32TO16:
1996 assert(devinfo->gen >= 7);
1997 brw_F32TO16(p, dst, src[0]);
1998 break;
1999 case BRW_OPCODE_F16TO32:
2000 assert(devinfo->gen >= 7);
2001 brw_F16TO32(p, dst, src[0]);
2002 break;
2003 case BRW_OPCODE_CMP:
2004 if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell &&
2005 dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
2006 /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
2007 * implemented in the compiler is not sufficient. Overriding the
2008 * type when the destination is the null register is necessary but
2009 * not sufficient by itself.
2010 */
2011 assert(dst.nr == BRW_ARF_NULL);
2012 dst.type = BRW_REGISTER_TYPE_D;
2013 }
2014 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
2015 break;
2016 case BRW_OPCODE_SEL:
2017 brw_SEL(p, dst, src[0], src[1]);
2018 break;
2019 case BRW_OPCODE_CSEL:
2020 assert(devinfo->gen >= 8);
2021 if (devinfo->gen < 10)
2022 brw_set_default_access_mode(p, BRW_ALIGN_16);
2023 brw_CSEL(p, dst, src[0], src[1], src[2]);
2024 break;
2025 case BRW_OPCODE_BFREV:
2026 assert(devinfo->gen >= 7);
2027 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
2028 retype(src[0], BRW_REGISTER_TYPE_UD));
2029 break;
2030 case BRW_OPCODE_FBH:
2031 assert(devinfo->gen >= 7);
2032 brw_FBH(p, retype(dst, src[0].type), src[0]);
2033 break;
2034 case BRW_OPCODE_FBL:
2035 assert(devinfo->gen >= 7);
2036 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
2037 retype(src[0], BRW_REGISTER_TYPE_UD));
2038 break;
2039 case BRW_OPCODE_LZD:
2040 brw_LZD(p, dst, src[0]);
2041 break;
2042 case BRW_OPCODE_CBIT:
2043 assert(devinfo->gen >= 7);
2044 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
2045 retype(src[0], BRW_REGISTER_TYPE_UD));
2046 break;
2047 case BRW_OPCODE_ADDC:
2048 assert(devinfo->gen >= 7);
2049 brw_ADDC(p, dst, src[0], src[1]);
2050 break;
2051 case BRW_OPCODE_SUBB:
2052 assert(devinfo->gen >= 7);
2053 brw_SUBB(p, dst, src[0], src[1]);
2054 break;
2055 case BRW_OPCODE_MAC:
2056 brw_MAC(p, dst, src[0], src[1]);
2057 break;
2058
2059 case BRW_OPCODE_BFE:
2060 assert(devinfo->gen >= 7);
2061 if (devinfo->gen < 10)
2062 brw_set_default_access_mode(p, BRW_ALIGN_16);
2063 brw_BFE(p, dst, src[0], src[1], src[2]);
2064 break;
2065
2066 case BRW_OPCODE_BFI1:
2067 assert(devinfo->gen >= 7);
2068 brw_BFI1(p, dst, src[0], src[1]);
2069 break;
2070 case BRW_OPCODE_BFI2:
2071 assert(devinfo->gen >= 7);
2072 if (devinfo->gen < 10)
2073 brw_set_default_access_mode(p, BRW_ALIGN_16);
2074 brw_BFI2(p, dst, src[0], src[1], src[2]);
2075 break;
2076
2077 case BRW_OPCODE_IF:
2078 if (inst->src[0].file != BAD_FILE) {
2079 /* The instruction has an embedded compare (only allowed on gen6) */
2080 assert(devinfo->gen == 6);
2081 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
2082 } else {
2083 brw_IF(p, brw_get_default_exec_size(p));
2084 }
2085 break;
2086
2087 case BRW_OPCODE_ELSE:
2088 brw_ELSE(p);
2089 break;
2090 case BRW_OPCODE_ENDIF:
2091 brw_ENDIF(p);
2092 break;
2093
2094 case BRW_OPCODE_DO:
2095 brw_DO(p, brw_get_default_exec_size(p));
2096 break;
2097
2098 case BRW_OPCODE_BREAK:
2099 brw_BREAK(p);
2100 break;
2101 case BRW_OPCODE_CONTINUE:
2102 brw_CONT(p);
2103 break;
2104
2105 case BRW_OPCODE_WHILE:
2106 brw_WHILE(p);
2107 loop_count++;
2108 break;
2109
2110 case SHADER_OPCODE_RCP:
2111 case SHADER_OPCODE_RSQ:
2112 case SHADER_OPCODE_SQRT:
2113 case SHADER_OPCODE_EXP2:
2114 case SHADER_OPCODE_LOG2:
2115 case SHADER_OPCODE_SIN:
2116 case SHADER_OPCODE_COS:
2117 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2118 if (devinfo->gen >= 6) {
2119 assert(inst->mlen == 0);
2120 assert(devinfo->gen >= 7 || inst->exec_size == 8);
2121 gen6_math(p, dst, brw_math_function(inst->opcode),
2122 src[0], brw_null_reg());
2123 } else {
2124 assert(inst->mlen >= 1);
2125 assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8);
2126 gen4_math(p, dst,
2127 brw_math_function(inst->opcode),
2128 inst->base_mrf, src[0],
2129 BRW_MATH_PRECISION_FULL);
2130 send_count++;
2131 }
2132 break;
2133 case SHADER_OPCODE_INT_QUOTIENT:
2134 case SHADER_OPCODE_INT_REMAINDER:
2135 case SHADER_OPCODE_POW:
2136 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2137 if (devinfo->gen >= 6) {
2138 assert(inst->mlen == 0);
2139 assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
2140 inst->exec_size == 8);
2141 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
2142 } else {
2143 assert(inst->mlen >= 1);
2144 assert(inst->exec_size == 8);
2145 gen4_math(p, dst, brw_math_function(inst->opcode),
2146 inst->base_mrf, src[0],
2147 BRW_MATH_PRECISION_FULL);
2148 send_count++;
2149 }
2150 break;
2151 case FS_OPCODE_LINTERP:
2152 multiple_instructions_emitted = generate_linterp(inst, dst, src);
2153 break;
2154 case FS_OPCODE_PIXEL_X:
2155 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2156 src[0].subnr = 0 * type_sz(src[0].type);
2157 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2158 break;
2159 case FS_OPCODE_PIXEL_Y:
2160 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2161 src[0].subnr = 4 * type_sz(src[0].type);
2162 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2163 break;
2164
2165 case SHADER_OPCODE_SEND:
2166 generate_send(inst, dst, src[0], src[1], src[2],
2167 inst->ex_mlen > 0 ? src[3] : brw_null_reg());
2168 if ((inst->desc & 0xff) == BRW_BTI_STATELESS ||
2169 (inst->desc & 0xff) == GEN8_BTI_STATELESS_NON_COHERENT) {
2170 if (inst->size_written)
2171 fill_count++;
2172 else
2173 spill_count++;
2174 } else {
2175 send_count++;
2176 }
2177 break;
2178
2179 case SHADER_OPCODE_GET_BUFFER_SIZE:
2180 generate_get_buffer_size(inst, dst, src[0], src[1]);
2181 send_count++;
2182 break;
2183 case SHADER_OPCODE_TEX:
2184 case FS_OPCODE_TXB:
2185 case SHADER_OPCODE_TXD:
2186 case SHADER_OPCODE_TXF:
2187 case SHADER_OPCODE_TXF_CMS:
2188 case SHADER_OPCODE_TXL:
2189 case SHADER_OPCODE_TXS:
2190 case SHADER_OPCODE_LOD:
2191 case SHADER_OPCODE_TG4:
2192 case SHADER_OPCODE_SAMPLEINFO:
2193 assert(inst->src[0].file == BAD_FILE);
2194 generate_tex(inst, dst, src[1], src[2]);
2195 send_count++;
2196 break;
2197
2198 case FS_OPCODE_DDX_COARSE:
2199 case FS_OPCODE_DDX_FINE:
2200 generate_ddx(inst, dst, src[0]);
2201 break;
2202 case FS_OPCODE_DDY_COARSE:
2203 case FS_OPCODE_DDY_FINE:
2204 generate_ddy(inst, dst, src[0]);
2205 break;
2206
2207 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2208 generate_scratch_write(inst, src[0]);
2209 spill_count++;
2210 break;
2211
2212 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2213 generate_scratch_read(inst, dst);
2214 fill_count++;
2215 break;
2216
2217 case SHADER_OPCODE_GEN7_SCRATCH_READ:
2218 generate_scratch_read_gen7(inst, dst);
2219 fill_count++;
2220 break;
2221
2222 case SHADER_OPCODE_MOV_INDIRECT:
2223 generate_mov_indirect(inst, dst, src[0], src[1]);
2224 break;
2225
2226 case SHADER_OPCODE_URB_READ_SIMD8:
2227 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
2228 generate_urb_read(inst, dst, src[0]);
2229 send_count++;
2230 break;
2231
2232 case SHADER_OPCODE_URB_WRITE_SIMD8:
2233 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
2234 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
2235 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
2236 generate_urb_write(inst, src[0]);
2237 send_count++;
2238 break;
2239
2240 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
2241 assert(inst->force_writemask_all);
2242 generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
2243 send_count++;
2244 break;
2245
2246 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
2247 assert(inst->force_writemask_all);
2248 generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2249 send_count++;
2250 break;
2251
2252 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
2253 generate_varying_pull_constant_load_gen4(inst, dst, src[0]);
2254 send_count++;
2255 break;
2256
2257 case FS_OPCODE_REP_FB_WRITE:
2258 case FS_OPCODE_FB_WRITE:
2259 generate_fb_write(inst, src[0]);
2260 send_count++;
2261 break;
2262
2263 case FS_OPCODE_FB_READ:
2264 generate_fb_read(inst, dst, src[0]);
2265 send_count++;
2266 break;
2267
2268 case FS_OPCODE_DISCARD_JUMP:
2269 generate_discard_jump(inst);
2270 break;
2271
2272 case SHADER_OPCODE_SHADER_TIME_ADD:
2273 generate_shader_time_add(inst, src[0], src[1], src[2]);
2274 break;
2275
2276 case SHADER_OPCODE_INTERLOCK:
2277 case SHADER_OPCODE_MEMORY_FENCE: {
2278 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2279 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2280
2281 const enum opcode send_op = inst->opcode == SHADER_OPCODE_INTERLOCK ?
2282 BRW_OPCODE_SENDC : BRW_OPCODE_SEND;
2283
2284 brw_memory_fence(p, dst, src[0], send_op,
2285 brw_message_target(inst->sfid),
2286 /* commit_enable */ src[1].ud,
2287 /* bti */ src[2].ud);
2288 send_count++;
2289 break;
2290 }
2291
2292 case FS_OPCODE_SCHEDULING_FENCE:
2293 if (inst->sources == 0 && inst->sched.regdist == 0 &&
2294 inst->sched.mode == TGL_SBID_NULL) {
2295 if (unlikely(debug_flag))
2296 disasm_info->use_tail = true;
2297 break;
2298 }
2299
2300 if (devinfo->gen >= 12) {
2301 /* Use the available SWSB information to stall. A single SYNC is
2302 * sufficient since if there were multiple dependencies, the
2303 * scoreboard algorithm already injected other SYNCs before this
2304 * instruction.
2305 */
2306 brw_SYNC(p, TGL_SYNC_NOP);
2307 } else {
2308 for (unsigned i = 0; i < inst->sources; i++) {
2309 /* Emit a MOV to force a stall until the instruction producing the
2310 * registers finishes.
2311 */
2312 brw_MOV(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW),
2313 retype(src[i], BRW_REGISTER_TYPE_UW));
2314 }
2315
2316 if (inst->sources > 1)
2317 multiple_instructions_emitted = true;
2318 }
2319
2320 break;
2321
2322 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
2323 const struct brw_reg mask =
2324 brw_stage_has_packed_dispatch(devinfo, stage,
2325 prog_data) ? brw_imm_ud(~0u) :
2326 stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
2327 brw_dmask_reg();
2328 brw_find_live_channel(p, dst, mask);
2329 break;
2330 }
2331 case FS_OPCODE_LOAD_LIVE_CHANNELS: {
2332 assert(devinfo->gen >= 8);
2333 assert(inst->force_writemask_all && inst->group == 0);
2334 assert(inst->dst.file == BAD_FILE);
2335 brw_set_default_exec_size(p, BRW_EXECUTE_1);
2336 brw_MOV(p, retype(brw_flag_subreg(inst->flag_subreg),
2337 BRW_REGISTER_TYPE_UD),
2338 retype(brw_mask_reg(0), BRW_REGISTER_TYPE_UD));
2339 break;
2340 }
2341 case SHADER_OPCODE_BROADCAST:
2342 assert(inst->force_writemask_all);
2343 brw_broadcast(p, dst, src[0], src[1]);
2344 break;
2345
2346 case SHADER_OPCODE_SHUFFLE:
2347 generate_shuffle(inst, dst, src[0], src[1]);
2348 break;
2349
2350 case SHADER_OPCODE_SEL_EXEC:
2351 assert(inst->force_writemask_all);
2352 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2353 brw_MOV(p, dst, src[1]);
2354 brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2355 brw_set_default_swsb(p, tgl_swsb_null());
2356 brw_MOV(p, dst, src[0]);
2357 break;
2358
2359 case SHADER_OPCODE_QUAD_SWIZZLE:
2360 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2361 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2362 generate_quad_swizzle(inst, dst, src[0], src[1].ud);
2363 break;
2364
2365 case SHADER_OPCODE_CLUSTER_BROADCAST: {
2366 assert(!src[0].negate && !src[0].abs);
2367 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2368 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2369 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2370 assert(src[2].type == BRW_REGISTER_TYPE_UD);
2371 const unsigned component = src[1].ud;
2372 const unsigned cluster_size = src[2].ud;
2373 unsigned vstride = cluster_size;
2374 unsigned width = cluster_size;
2375
2376 /* The maximum exec_size is 32, but the maximum width is only 16. */
2377 if (inst->exec_size == width) {
2378 vstride = 0;
2379 width = 1;
2380 }
2381
2382 struct brw_reg strided = stride(suboffset(src[0], component),
2383 vstride, width, 0);
2384 if (type_sz(src[0].type) > 4 &&
2385 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
2386 /* IVB has an issue (which we found empirically) where it reads
2387 * two address register components per channel for indirectly
2388 * addressed 64-bit sources.
2389 *
2390 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
2391 *
2392 * "When source or destination datatype is 64b or operation is
2393 * integer DWord multiply, indirect addressing must not be
2394 * used."
2395 *
2396 * To work around both of these, we do two integer MOVs insead of
2397 * one 64-bit MOV. Because no double value should ever cross a
2398 * register boundary, it's safe to use the immediate offset in the
2399 * indirect here to handle adding 4 bytes to the offset and avoid
2400 * the extra ADD to the register file.
2401 */
2402 assert(src[0].type == dst.type);
2403 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
2404 subscript(strided, BRW_REGISTER_TYPE_D, 0));
2405 brw_set_default_swsb(p, tgl_swsb_null());
2406 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
2407 subscript(strided, BRW_REGISTER_TYPE_D, 1));
2408 } else {
2409 brw_MOV(p, dst, strided);
2410 }
2411 break;
2412 }
2413
2414 case FS_OPCODE_SET_SAMPLE_ID:
2415 generate_set_sample_id(inst, dst, src[0], src[1]);
2416 break;
2417
2418 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
2419 generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
2420 break;
2421
2422 case FS_OPCODE_PLACEHOLDER_HALT:
2423 /* This is the place where the final HALT needs to be inserted if
2424 * we've emitted any discards. If not, this will emit no code.
2425 */
2426 if (!patch_discard_jumps_to_fb_writes()) {
2427 if (unlikely(debug_flag)) {
2428 disasm_info->use_tail = true;
2429 }
2430 }
2431 break;
2432
2433 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
2434 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2435 GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
2436 send_count++;
2437 break;
2438
2439 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
2440 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2441 GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
2442 send_count++;
2443 break;
2444
2445 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
2446 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2447 GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
2448 send_count++;
2449 break;
2450
2451 case CS_OPCODE_CS_TERMINATE:
2452 generate_cs_terminate(inst, src[0]);
2453 send_count++;
2454 break;
2455
2456 case SHADER_OPCODE_BARRIER:
2457 generate_barrier(inst, src[0]);
2458 send_count++;
2459 break;
2460
2461 case BRW_OPCODE_DIM:
2462 assert(devinfo->is_haswell);
2463 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2464 assert(dst.type == BRW_REGISTER_TYPE_DF);
2465 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2466 break;
2467
2468 case SHADER_OPCODE_RND_MODE: {
2469 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2470 /*
2471 * Changes the floating point rounding mode updating the control
2472 * register field defined at cr0.0[5-6] bits.
2473 */
2474 enum brw_rnd_mode mode =
2475 (enum brw_rnd_mode) (src[0].d << BRW_CR0_RND_MODE_SHIFT);
2476 brw_float_controls_mode(p, mode, BRW_CR0_RND_MODE_MASK);
2477 }
2478 break;
2479
2480 case SHADER_OPCODE_FLOAT_CONTROL_MODE:
2481 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2482 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2483 brw_float_controls_mode(p, src[0].d, src[1].d);
2484 break;
2485
2486 default:
2487 unreachable("Unsupported opcode");
2488
2489 case SHADER_OPCODE_LOAD_PAYLOAD:
2490 unreachable("Should be lowered by lower_load_payload()");
2491 }
2492
2493 if (multiple_instructions_emitted)
2494 continue;
2495
2496 if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2497 assert(p->next_insn_offset == last_insn_offset + 16 ||
2498 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2499 "emitting more than 1 instruction");
2500
2501 brw_inst *last = &p->store[last_insn_offset / 16];
2502
2503 if (inst->conditional_mod)
2504 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2505 if (devinfo->gen < 12) {
2506 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2507 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2508 }
2509 }
2510 }
2511
2512 brw_set_uip_jip(p, start_offset);
2513
2514 /* end of program sentinel */
2515 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2516
2517 #ifndef NDEBUG
2518 bool validated =
2519 #else
2520 if (unlikely(debug_flag))
2521 #endif
2522 brw_validate_instructions(devinfo, p->store,
2523 start_offset,
2524 p->next_insn_offset,
2525 disasm_info);
2526
2527 int before_size = p->next_insn_offset - start_offset;
2528 brw_compact_instructions(p, start_offset, disasm_info);
2529 int after_size = p->next_insn_offset - start_offset;
2530
2531 if (unlikely(debug_flag)) {
2532 unsigned char sha1[21];
2533 char sha1buf[41];
2534
2535 _mesa_sha1_compute(p->store + start_offset / sizeof(brw_inst),
2536 after_size, sha1);
2537 _mesa_sha1_format(sha1buf, sha1);
2538
2539 fprintf(stderr, "Native code for %s (sha1 %s)\n"
2540 "SIMD%d shader: %d instructions. %d loops. %u cycles. "
2541 "%d:%d spills:fills, %u sends, "
2542 "scheduled with mode %s. "
2543 "Promoted %u constants. "
2544 "Compacted %d to %d bytes (%.0f%%)\n",
2545 shader_name, sha1buf,
2546 dispatch_width, before_size / 16,
2547 loop_count, perf.latency,
2548 spill_count, fill_count, send_count,
2549 shader_stats.scheduler_mode,
2550 shader_stats.promoted_constants,
2551 before_size, after_size,
2552 100.0f * (before_size - after_size) / before_size);
2553
2554 /* overriding the shader makes disasm_info invalid */
2555 if (!brw_try_override_assembly(p, start_offset, sha1buf)) {
2556 dump_assembly(p->store, disasm_info, perf.block_latency);
2557 } else {
2558 fprintf(stderr, "Successfully overrode shader with sha1 %s\n\n", sha1buf);
2559 }
2560 }
2561 ralloc_free(disasm_info);
2562 assert(validated);
2563
2564 compiler->shader_debug_log(log_data,
2565 "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
2566 "%d:%d spills:fills, %u sends, "
2567 "scheduled with mode %s, "
2568 "Promoted %u constants, "
2569 "compacted %d to %d bytes.",
2570 _mesa_shader_stage_to_abbrev(stage),
2571 dispatch_width, before_size / 16 - nop_count,
2572 loop_count, perf.latency,
2573 spill_count, fill_count, send_count,
2574 shader_stats.scheduler_mode,
2575 shader_stats.promoted_constants,
2576 before_size, after_size);
2577 if (stats) {
2578 stats->dispatch_width = dispatch_width;
2579 stats->instructions = before_size / 16 - nop_count;
2580 stats->sends = send_count;
2581 stats->loops = loop_count;
2582 stats->cycles = perf.latency;
2583 stats->spills = spill_count;
2584 stats->fills = fill_count;
2585 }
2586
2587 return start_offset;
2588 }
2589
2590 const unsigned *
2591 fs_generator::get_assembly()
2592 {
2593 return brw_get_program(p, &prog_data->program_size);
2594 }