intel/fs: Add virtual instruction to load mask of live channels into flag register.
[mesa.git] / src / intel / compiler / brw_fs_generator.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_generator.cpp
25 *
26 * This file supports generating code from the FS LIR to the actual
27 * native instructions.
28 */
29
30 #include "brw_eu.h"
31 #include "brw_fs.h"
32 #include "brw_cfg.h"
33 #include "util/mesa-sha1.h"
34
35 static enum brw_reg_file
36 brw_file_from_reg(fs_reg *reg)
37 {
38 switch (reg->file) {
39 case ARF:
40 return BRW_ARCHITECTURE_REGISTER_FILE;
41 case FIXED_GRF:
42 case VGRF:
43 return BRW_GENERAL_REGISTER_FILE;
44 case MRF:
45 return BRW_MESSAGE_REGISTER_FILE;
46 case IMM:
47 return BRW_IMMEDIATE_VALUE;
48 case BAD_FILE:
49 case ATTR:
50 case UNIFORM:
51 unreachable("not reached");
52 }
53 return BRW_ARCHITECTURE_REGISTER_FILE;
54 }
55
56 static struct brw_reg
57 brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst,
58 fs_reg *reg, bool compressed)
59 {
60 struct brw_reg brw_reg;
61
62 switch (reg->file) {
63 case MRF:
64 assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
65 /* Fallthrough */
66 case VGRF:
67 if (reg->stride == 0) {
68 brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
69 } else {
70 /* From the Haswell PRM:
71 *
72 * "VertStride must be used to cross GRF register boundaries. This
73 * rule implies that elements within a 'Width' cannot cross GRF
74 * boundaries."
75 *
76 * The maximum width value that could satisfy this restriction is:
77 */
78 const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
79
80 /* Because the hardware can only split source regions at a whole
81 * multiple of width during decompression (i.e. vertically), clamp
82 * the value obtained above to the physical execution size of a
83 * single decompressed chunk of the instruction:
84 */
85 const unsigned phys_width = compressed ? inst->exec_size / 2 :
86 inst->exec_size;
87
88 const unsigned max_hw_width = 16;
89
90 /* XXX - The equation above is strictly speaking not correct on
91 * hardware that supports unbalanced GRF writes -- On Gen9+
92 * each decompressed chunk of the instruction may have a
93 * different execution size when the number of components
94 * written to each destination GRF is not the same.
95 */
96 if (reg->stride > 4) {
97 assert(reg != &inst->dst);
98 assert(reg->stride * type_sz(reg->type) <= REG_SIZE);
99 brw_reg = brw_vecn_reg(1, brw_file_from_reg(reg), reg->nr, 0);
100 brw_reg = stride(brw_reg, reg->stride, 1, 0);
101 } else {
102 const unsigned width = MIN3(reg_width, phys_width, max_hw_width);
103 brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
104 brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
105 }
106
107 if (devinfo->gen == 7 && !devinfo->is_haswell) {
108 /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
109 * "Each DF (Double Float) operand uses an element size of 4 rather
110 * than 8 and all regioning parameters are twice what the values
111 * would be based on the true element size: ExecSize, Width,
112 * HorzStride, and VertStride. Each DF operand uses a pair of
113 * channels and all masking and swizzing should be adjusted
114 * appropriately."
115 *
116 * From the IvyBridge PRM (Special Requirements for Handling Double
117 * Precision Data Types, page 71):
118 * "In Align1 mode, all regioning parameters like stride, execution
119 * size, and width must use the syntax of a pair of packed
120 * floats. The offsets for these data types must be 64-bit
121 * aligned. The execution size and regioning parameters are in terms
122 * of floats."
123 *
124 * Summarized: when handling DF-typed arguments, ExecSize,
125 * VertStride, and Width must be doubled.
126 *
127 * It applies to BayTrail too.
128 */
129 if (type_sz(reg->type) == 8) {
130 brw_reg.width++;
131 if (brw_reg.vstride > 0)
132 brw_reg.vstride++;
133 assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
134 }
135
136 /* When converting from DF->F, we set the destination stride to 2
137 * because each d2f conversion implicitly writes 2 floats, being
138 * the first one the converted value. IVB/BYT actually writes two
139 * F components per SIMD channel, and every other component is
140 * filled with garbage.
141 */
142 if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
143 type_sz(inst->dst.type) < 8) {
144 assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
145 brw_reg.hstride--;
146 }
147 }
148 }
149
150 brw_reg = retype(brw_reg, reg->type);
151 brw_reg = byte_offset(brw_reg, reg->offset);
152 brw_reg.abs = reg->abs;
153 brw_reg.negate = reg->negate;
154 break;
155 case ARF:
156 case FIXED_GRF:
157 case IMM:
158 assert(reg->offset == 0);
159 brw_reg = reg->as_brw_reg();
160 break;
161 case BAD_FILE:
162 /* Probably unused. */
163 brw_reg = brw_null_reg();
164 break;
165 case ATTR:
166 case UNIFORM:
167 unreachable("not reached");
168 }
169
170 /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
171 * region, but on IVB and BYT DF regions must be programmed in terms of
172 * floats. A <0,2,1> region accomplishes this.
173 */
174 if (devinfo->gen == 7 && !devinfo->is_haswell &&
175 type_sz(reg->type) == 8 &&
176 brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
177 brw_reg.width == BRW_WIDTH_1 &&
178 brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
179 brw_reg.width = BRW_WIDTH_2;
180 brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
181 }
182
183 return brw_reg;
184 }
185
186 fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
187 void *mem_ctx,
188 struct brw_stage_prog_data *prog_data,
189 struct shader_stats shader_stats,
190 bool runtime_check_aads_emit,
191 gl_shader_stage stage)
192
193 : compiler(compiler), log_data(log_data),
194 devinfo(compiler->devinfo),
195 prog_data(prog_data),
196 shader_stats(shader_stats),
197 runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
198 stage(stage), mem_ctx(mem_ctx)
199 {
200 p = rzalloc(mem_ctx, struct brw_codegen);
201 brw_init_codegen(devinfo, p, mem_ctx);
202
203 /* In the FS code generator, we are very careful to ensure that we always
204 * set the right execution size so we don't need the EU code to "help" us
205 * by trying to infer it. Sometimes, it infers the wrong thing.
206 */
207 p->automatic_exec_sizes = false;
208 }
209
210 fs_generator::~fs_generator()
211 {
212 }
213
214 class ip_record : public exec_node {
215 public:
216 DECLARE_RALLOC_CXX_OPERATORS(ip_record)
217
218 ip_record(int ip)
219 {
220 this->ip = ip;
221 }
222
223 int ip;
224 };
225
226 bool
227 fs_generator::patch_discard_jumps_to_fb_writes()
228 {
229 if (devinfo->gen < 6 || this->discard_halt_patches.is_empty())
230 return false;
231
232 int scale = brw_jump_scale(p->devinfo);
233
234 /* There is a somewhat strange undocumented requirement of using
235 * HALT, according to the simulator. If some channel has HALTed to
236 * a particular UIP, then by the end of the program, every channel
237 * must have HALTed to that UIP. Furthermore, the tracking is a
238 * stack, so you can't do the final halt of a UIP after starting
239 * halting to a new UIP.
240 *
241 * Symptoms of not emitting this instruction on actual hardware
242 * included GPU hangs and sparkly rendering on the piglit discard
243 * tests.
244 */
245 brw_inst *last_halt = gen6_HALT(p);
246 brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
247 brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
248
249 int ip = p->nr_insn;
250
251 foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
252 brw_inst *patch = &p->store[patch_ip->ip];
253
254 assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
255 /* HALT takes a half-instruction distance from the pre-incremented IP. */
256 brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
257 }
258
259 this->discard_halt_patches.make_empty();
260 return true;
261 }
262
263 void
264 fs_generator::generate_send(fs_inst *inst,
265 struct brw_reg dst,
266 struct brw_reg desc,
267 struct brw_reg ex_desc,
268 struct brw_reg payload,
269 struct brw_reg payload2)
270 {
271 const bool dst_is_null = dst.file == BRW_ARCHITECTURE_REGISTER_FILE &&
272 dst.nr == BRW_ARF_NULL;
273 const unsigned rlen = dst_is_null ? 0 : inst->size_written / REG_SIZE;
274
275 uint32_t desc_imm = inst->desc |
276 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size);
277
278 uint32_t ex_desc_imm = brw_message_ex_desc(devinfo, inst->ex_mlen);
279
280 if (ex_desc.file != BRW_IMMEDIATE_VALUE || ex_desc.ud || ex_desc_imm) {
281 /* If we have any sort of extended descriptor, then we need SENDS. This
282 * also covers the dual-payload case because ex_mlen goes in ex_desc.
283 */
284 brw_send_indirect_split_message(p, inst->sfid, dst, payload, payload2,
285 desc, desc_imm, ex_desc, ex_desc_imm,
286 inst->eot);
287 if (inst->check_tdr)
288 brw_inst_set_opcode(p->devinfo, brw_last_inst,
289 devinfo->gen >= 12 ? BRW_OPCODE_SENDC : BRW_OPCODE_SENDSC);
290 } else {
291 brw_send_indirect_message(p, inst->sfid, dst, payload, desc, desc_imm,
292 inst->eot);
293 if (inst->check_tdr)
294 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
295 }
296 }
297
298 void
299 fs_generator::fire_fb_write(fs_inst *inst,
300 struct brw_reg payload,
301 struct brw_reg implied_header,
302 GLuint nr)
303 {
304 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
305
306 if (devinfo->gen < 6) {
307 brw_push_insn_state(p);
308 brw_set_default_exec_size(p, BRW_EXECUTE_8);
309 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
310 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
311 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
312 brw_MOV(p, offset(retype(payload, BRW_REGISTER_TYPE_UD), 1),
313 offset(retype(implied_header, BRW_REGISTER_TYPE_UD), 1));
314 brw_pop_insn_state(p);
315 }
316
317 uint32_t msg_control = brw_fb_write_msg_control(inst, prog_data);
318
319 /* We assume render targets start at 0, because headerless FB write
320 * messages set "Render Target Index" to 0. Using a different binding
321 * table index would make it impossible to use headerless messages.
322 */
323 const uint32_t surf_index = inst->target;
324
325 brw_inst *insn = brw_fb_WRITE(p,
326 payload,
327 retype(implied_header, BRW_REGISTER_TYPE_UW),
328 msg_control,
329 surf_index,
330 nr,
331 0,
332 inst->eot,
333 inst->last_rt,
334 inst->header_size != 0);
335
336 if (devinfo->gen >= 6)
337 brw_inst_set_rt_slot_group(devinfo, insn, inst->group / 16);
338 }
339
340 void
341 fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
342 {
343 if (devinfo->gen < 8 && !devinfo->is_haswell) {
344 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
345 brw_set_default_flag_reg(p, 0, 0);
346 }
347
348 const struct brw_reg implied_header =
349 devinfo->gen < 6 ? payload : brw_null_reg();
350
351 if (inst->base_mrf >= 0)
352 payload = brw_message_reg(inst->base_mrf);
353
354 if (!runtime_check_aads_emit) {
355 fire_fb_write(inst, payload, implied_header, inst->mlen);
356 } else {
357 /* This can only happen in gen < 6 */
358 assert(devinfo->gen < 6);
359
360 struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
361
362 /* Check runtime bit to detect if we have to send AA data or not */
363 brw_push_insn_state(p);
364 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
365 brw_set_default_exec_size(p, BRW_EXECUTE_1);
366 brw_AND(p,
367 v1_null_ud,
368 retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
369 brw_imm_ud(1<<26));
370 brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
371
372 int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
373 brw_pop_insn_state(p);
374 {
375 /* Don't send AA data */
376 fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
377 }
378 brw_land_fwd_jump(p, jmp);
379 fire_fb_write(inst, payload, implied_header, inst->mlen);
380 }
381 }
382
383 void
384 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
385 struct brw_reg payload)
386 {
387 assert(inst->size_written % REG_SIZE == 0);
388 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
389 /* We assume that render targets start at binding table index 0. */
390 const unsigned surf_index = inst->target;
391
392 gen9_fb_READ(p, dst, payload, surf_index,
393 inst->header_size, inst->size_written / REG_SIZE,
394 prog_data->persample_dispatch);
395 }
396
397 void
398 fs_generator::generate_mov_indirect(fs_inst *inst,
399 struct brw_reg dst,
400 struct brw_reg reg,
401 struct brw_reg indirect_byte_offset)
402 {
403 assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
404 assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
405 assert(!reg.abs && !reg.negate);
406 assert(reg.type == dst.type);
407
408 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
409
410 if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
411 imm_byte_offset += indirect_byte_offset.ud;
412
413 reg.nr = imm_byte_offset / REG_SIZE;
414 reg.subnr = imm_byte_offset % REG_SIZE;
415 brw_MOV(p, dst, reg);
416 } else {
417 /* Prior to Broadwell, there are only 8 address registers. */
418 assert(inst->exec_size <= 8 || devinfo->gen >= 8);
419
420 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
421 struct brw_reg addr = vec8(brw_address_reg(0));
422
423 /* The destination stride of an instruction (in bytes) must be greater
424 * than or equal to the size of the rest of the instruction. Since the
425 * address register is of type UW, we can't use a D-type instruction.
426 * In order to get around this, re retype to UW and use a stride.
427 */
428 indirect_byte_offset =
429 retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
430
431 /* There are a number of reasons why we don't use the base offset here.
432 * One reason is that the field is only 9 bits which means we can only
433 * use it to access the first 16 GRFs. Also, from the Haswell PRM
434 * section "Register Region Restrictions":
435 *
436 * "The lower bits of the AddressImmediate must not overflow to
437 * change the register address. The lower 5 bits of Address
438 * Immediate when added to lower 5 bits of address register gives
439 * the sub-register offset. The upper bits of Address Immediate
440 * when added to upper bits of address register gives the register
441 * address. Any overflow from sub-register offset is dropped."
442 *
443 * Since the indirect may cause us to cross a register boundary, this
444 * makes the base offset almost useless. We could try and do something
445 * clever where we use a actual base offset if base_offset % 32 == 0 but
446 * that would mean we were generating different code depending on the
447 * base offset. Instead, for the sake of consistency, we'll just do the
448 * add ourselves. This restriction is only listed in the Haswell PRM
449 * but empirical testing indicates that it applies on all older
450 * generations and is lifted on Broadwell.
451 *
452 * In the end, while base_offset is nice to look at in the generated
453 * code, using it saves us 0 instructions and would require quite a bit
454 * of case-by-case work. It's just not worth it.
455 *
456 * There's some sort of HW bug on Gen12 which causes issues if we write
457 * to the address register in control-flow. Since we only ever touch
458 * the address register from the generator, we can easily enough work
459 * around it by setting NoMask on the add.
460 */
461 brw_push_insn_state(p);
462 if (devinfo->gen == 12)
463 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
464 brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
465 brw_pop_insn_state(p);
466 brw_set_default_swsb(p, tgl_swsb_regdist(1));
467
468 if (type_sz(reg.type) > 4 &&
469 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
470 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo) ||
471 !devinfo->has_64bit_float)) {
472 /* IVB has an issue (which we found empirically) where it reads two
473 * address register components per channel for indirectly addressed
474 * 64-bit sources.
475 *
476 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
477 *
478 * "When source or destination datatype is 64b or operation is
479 * integer DWord multiply, indirect addressing must not be used."
480 *
481 * To work around both of these, we do two integer MOVs insead of one
482 * 64-bit MOV. Because no double value should ever cross a register
483 * boundary, it's safe to use the immediate offset in the indirect
484 * here to handle adding 4 bytes to the offset and avoid the extra
485 * ADD to the register file.
486 */
487 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
488 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
489 brw_set_default_swsb(p, tgl_swsb_null());
490 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
491 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
492 } else {
493 struct brw_reg ind_src = brw_VxH_indirect(0, 0);
494
495 brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
496
497 if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
498 !inst->get_next()->is_tail_sentinel() &&
499 ((fs_inst *)inst->get_next())->mlen > 0) {
500 /* From the Sandybridge PRM:
501 *
502 * "[Errata: DevSNB(SNB)] If MRF register is updated by any
503 * instruction that “indexed/indirect” source AND is followed
504 * by a send, the instruction requires a “Switch”. This is to
505 * avoid race condition where send may dispatch before MRF is
506 * updated."
507 */
508 brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
509 }
510 }
511 }
512 }
513
514 void
515 fs_generator::generate_shuffle(fs_inst *inst,
516 struct brw_reg dst,
517 struct brw_reg src,
518 struct brw_reg idx)
519 {
520 /* Ivy bridge has some strange behavior that makes this a real pain to
521 * implement for 64-bit values so we just don't bother.
522 */
523 assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4);
524
525 /* Because we're using the address register, we're limited to 8-wide
526 * execution on gen7. On gen8, we're limited to 16-wide by the address
527 * register file and 8-wide for 64-bit types. We could try and make this
528 * instruction splittable higher up in the compiler but that gets weird
529 * because it reads all of the channels regardless of execution size. It's
530 * easier just to split it here.
531 */
532 const unsigned lower_width =
533 (devinfo->gen <= 7 || type_sz(src.type) > 4) ?
534 8 : MIN2(16, inst->exec_size);
535
536 brw_set_default_exec_size(p, cvt(lower_width) - 1);
537 for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
538 brw_set_default_group(p, group);
539
540 if ((src.vstride == 0 && src.hstride == 0) ||
541 idx.file == BRW_IMMEDIATE_VALUE) {
542 /* Trivial, the source is already uniform or the index is a constant.
543 * We will typically not get here if the optimizer is doing its job,
544 * but asserting would be mean.
545 */
546 const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
547 brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0));
548 } else {
549 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
550 struct brw_reg addr = vec8(brw_address_reg(0));
551
552 struct brw_reg group_idx = suboffset(idx, group);
553
554 if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
555 /* Things get grumpy if the register is too wide. */
556 group_idx.width--;
557 group_idx.vstride--;
558 }
559
560 assert(type_sz(group_idx.type) <= 4);
561 if (type_sz(group_idx.type) == 4) {
562 /* The destination stride of an instruction (in bytes) must be
563 * greater than or equal to the size of the rest of the
564 * instruction. Since the address register is of type UW, we
565 * can't use a D-type instruction. In order to get around this,
566 * re retype to UW and use a stride.
567 */
568 group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
569 }
570
571 /* Take into account the component size and horizontal stride. */
572 assert(src.vstride == src.hstride + src.width);
573 brw_SHL(p, addr, group_idx,
574 brw_imm_uw(_mesa_logbase2(type_sz(src.type)) +
575 src.hstride - 1));
576
577 /* Add on the register start offset */
578 brw_set_default_swsb(p, tgl_swsb_regdist(1));
579 brw_ADD(p, addr, addr, brw_imm_uw(src.nr * REG_SIZE + src.subnr));
580
581 if (type_sz(src.type) > 4 &&
582 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
583 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
584 /* IVB has an issue (which we found empirically) where it reads
585 * two address register components per channel for indirectly
586 * addressed 64-bit sources.
587 *
588 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
589 *
590 * "When source or destination datatype is 64b or operation is
591 * integer DWord multiply, indirect addressing must not be
592 * used."
593 *
594 * To work around both of these, we do two integer MOVs insead of
595 * one 64-bit MOV. Because no double value should ever cross a
596 * register boundary, it's safe to use the immediate offset in the
597 * indirect here to handle adding 4 bytes to the offset and avoid
598 * the extra ADD to the register file.
599 */
600 struct brw_reg gdst = suboffset(dst, group);
601 struct brw_reg dst_d = retype(spread(gdst, 2),
602 BRW_REGISTER_TYPE_D);
603 assert(dst.hstride == 1);
604 brw_MOV(p, dst_d,
605 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
606 brw_set_default_swsb(p, tgl_swsb_null());
607 brw_MOV(p, byte_offset(dst_d, 4),
608 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
609 } else {
610 brw_MOV(p, suboffset(dst, group * dst.hstride),
611 retype(brw_VxH_indirect(0, 0), src.type));
612 }
613 }
614
615 brw_set_default_swsb(p, tgl_swsb_null());
616 }
617 }
618
619 void
620 fs_generator::generate_quad_swizzle(const fs_inst *inst,
621 struct brw_reg dst, struct brw_reg src,
622 unsigned swiz)
623 {
624 /* Requires a quad. */
625 assert(inst->exec_size >= 4);
626
627 if (src.file == BRW_IMMEDIATE_VALUE ||
628 has_scalar_region(src)) {
629 /* The value is uniform across all channels */
630 brw_MOV(p, dst, src);
631
632 } else if (devinfo->gen < 11 && type_sz(src.type) == 4) {
633 /* This only works on 8-wide 32-bit values */
634 assert(inst->exec_size == 8);
635 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
636 assert(src.vstride == src.width + 1);
637 brw_set_default_access_mode(p, BRW_ALIGN_16);
638 struct brw_reg swiz_src = stride(src, 4, 4, 1);
639 swiz_src.swizzle = swiz;
640 brw_MOV(p, dst, swiz_src);
641
642 } else {
643 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
644 assert(src.vstride == src.width + 1);
645 const struct brw_reg src_0 = suboffset(src, BRW_GET_SWZ(swiz, 0));
646
647 switch (swiz) {
648 case BRW_SWIZZLE_XXXX:
649 case BRW_SWIZZLE_YYYY:
650 case BRW_SWIZZLE_ZZZZ:
651 case BRW_SWIZZLE_WWWW:
652 brw_MOV(p, dst, stride(src_0, 4, 4, 0));
653 break;
654
655 case BRW_SWIZZLE_XXZZ:
656 case BRW_SWIZZLE_YYWW:
657 brw_MOV(p, dst, stride(src_0, 2, 2, 0));
658 break;
659
660 case BRW_SWIZZLE_XYXY:
661 case BRW_SWIZZLE_ZWZW:
662 assert(inst->exec_size == 4);
663 brw_MOV(p, dst, stride(src_0, 0, 2, 1));
664 break;
665
666 default:
667 assert(inst->force_writemask_all);
668 brw_set_default_exec_size(p, cvt(inst->exec_size / 4) - 1);
669
670 for (unsigned c = 0; c < 4; c++) {
671 brw_inst *insn = brw_MOV(
672 p, stride(suboffset(dst, c),
673 4 * inst->dst.stride, 1, 4 * inst->dst.stride),
674 stride(suboffset(src, BRW_GET_SWZ(swiz, c)), 4, 1, 0));
675
676 if (devinfo->gen < 12) {
677 brw_inst_set_no_dd_clear(devinfo, insn, c < 3);
678 brw_inst_set_no_dd_check(devinfo, insn, c > 0);
679 }
680
681 brw_set_default_swsb(p, tgl_swsb_null());
682 }
683
684 break;
685 }
686 }
687 }
688
689 void
690 fs_generator::generate_urb_read(fs_inst *inst,
691 struct brw_reg dst,
692 struct brw_reg header)
693 {
694 assert(inst->size_written % REG_SIZE == 0);
695 assert(header.file == BRW_GENERAL_REGISTER_FILE);
696 assert(header.type == BRW_REGISTER_TYPE_UD);
697
698 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
699 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
700 brw_set_src0(p, send, header);
701 if (devinfo->gen < 12)
702 brw_set_src1(p, send, brw_imm_ud(0u));
703
704 brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
705 brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ);
706
707 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
708 brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
709
710 brw_inst_set_mlen(p->devinfo, send, inst->mlen);
711 brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
712 brw_inst_set_header_present(p->devinfo, send, true);
713 brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
714 }
715
716 void
717 fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
718 {
719 brw_inst *insn;
720
721 /* WaClearTDRRegBeforeEOTForNonPS.
722 *
723 * WA: Clear tdr register before send EOT in all non-PS shader kernels
724 *
725 * mov(8) tdr0:ud 0x0:ud {NoMask}"
726 */
727 if (inst->eot && p->devinfo->gen == 10) {
728 brw_push_insn_state(p);
729 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
730 brw_MOV(p, brw_tdr_reg(), brw_imm_uw(0));
731 brw_pop_insn_state(p);
732 }
733
734 insn = brw_next_insn(p, BRW_OPCODE_SEND);
735
736 brw_set_dest(p, insn, brw_null_reg());
737 brw_set_src0(p, insn, payload);
738 if (devinfo->gen < 12)
739 brw_set_src1(p, insn, brw_imm_ud(0u));
740
741 brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
742 brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE);
743
744 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
745 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
746 brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
747
748 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
749 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
750 brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
751
752 brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
753 brw_inst_set_rlen(p->devinfo, insn, 0);
754 brw_inst_set_eot(p->devinfo, insn, inst->eot);
755 brw_inst_set_header_present(p->devinfo, insn, true);
756 brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
757 }
758
759 void
760 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
761 {
762 struct brw_inst *insn;
763
764 insn = brw_next_insn(p, BRW_OPCODE_SEND);
765
766 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
767 brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
768 if (devinfo->gen < 12)
769 brw_set_src1(p, insn, brw_imm_ud(0u));
770
771 /* Terminate a compute shader by sending a message to the thread spawner.
772 */
773 brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
774 brw_inst_set_mlen(devinfo, insn, 1);
775 brw_inst_set_rlen(devinfo, insn, 0);
776 brw_inst_set_eot(devinfo, insn, inst->eot);
777 brw_inst_set_header_present(devinfo, insn, false);
778
779 brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
780
781 if (devinfo->gen < 11) {
782 brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
783
784 /* Note that even though the thread has a URB resource associated with it,
785 * we set the "do not dereference URB" bit, because the URB resource is
786 * managed by the fixed-function unit, so it will free it automatically.
787 */
788 brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
789 }
790
791 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
792 }
793
794 void
795 fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
796 {
797 brw_barrier(p, src);
798 if (devinfo->gen >= 12) {
799 brw_set_default_swsb(p, tgl_swsb_null());
800 brw_SYNC(p, TGL_SYNC_BAR);
801 } else {
802 brw_WAIT(p);
803 }
804 }
805
806 bool
807 fs_generator::generate_linterp(fs_inst *inst,
808 struct brw_reg dst, struct brw_reg *src)
809 {
810 /* PLN reads:
811 * / in SIMD16 \
812 * -----------------------------------
813 * | src1+0 | src1+1 | src1+2 | src1+3 |
814 * |-----------------------------------|
815 * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
816 * -----------------------------------
817 *
818 * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
819 *
820 * -----------------------------------
821 * | src1+0 | src1+1 | src1+2 | src1+3 |
822 * |-----------------------------------|
823 * |(x0, x1)|(y0, y1)| | | in SIMD8
824 * |-----------------------------------|
825 * |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
826 * -----------------------------------
827 *
828 * See also: emit_interpolation_setup_gen4().
829 */
830 struct brw_reg delta_x = src[0];
831 struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
832 struct brw_reg interp = src[1];
833 brw_inst *i[2];
834
835 /* nir_lower_interpolation() will do the lowering to MAD instructions for
836 * us on gen11+
837 */
838 assert(devinfo->gen < 11);
839
840 if (devinfo->has_pln) {
841 if (devinfo->gen <= 6 && (delta_x.nr & 1) != 0) {
842 /* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane":
843 *
844 * "[DevSNB]:<src1> must be even register aligned.
845 *
846 * This restriction is lifted on Ivy Bridge.
847 *
848 * This means that we need to split PLN into LINE+MAC on-the-fly.
849 * Unfortunately, the inputs are laid out for PLN and not LINE+MAC so
850 * we have to split into SIMD8 pieces. For gen4 (!has_pln), the
851 * coordinate registers are laid out differently so we leave it as a
852 * SIMD16 instruction.
853 */
854 assert(inst->exec_size == 8 || inst->exec_size == 16);
855 assert(inst->group % 16 == 0);
856
857 brw_push_insn_state(p);
858 brw_set_default_exec_size(p, BRW_EXECUTE_8);
859
860 /* Thanks to two accumulators, we can emit all the LINEs and then all
861 * the MACs. This improves parallelism a bit.
862 */
863 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
864 brw_inst *line = brw_LINE(p, brw_null_reg(), interp,
865 offset(delta_x, g * 2));
866 brw_inst_set_group(devinfo, line, inst->group + g * 8);
867
868 /* LINE writes the accumulator automatically on gen4-5. On Sandy
869 * Bridge and later, we have to explicitly enable it.
870 */
871 if (devinfo->gen >= 6)
872 brw_inst_set_acc_wr_control(p->devinfo, line, true);
873
874 /* brw_set_default_saturate() is called before emitting
875 * instructions, so the saturate bit is set in each instruction,
876 * so we need to unset it on the LINE instructions.
877 */
878 brw_inst_set_saturate(p->devinfo, line, false);
879 }
880
881 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
882 brw_inst *mac = brw_MAC(p, offset(dst, g), suboffset(interp, 1),
883 offset(delta_x, g * 2 + 1));
884 brw_inst_set_group(devinfo, mac, inst->group + g * 8);
885 brw_inst_set_cond_modifier(p->devinfo, mac, inst->conditional_mod);
886 }
887
888 brw_pop_insn_state(p);
889
890 return true;
891 } else {
892 brw_PLN(p, dst, interp, delta_x);
893
894 return false;
895 }
896 } else {
897 i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
898 i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
899
900 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
901
902 /* brw_set_default_saturate() is called before emitting instructions, so
903 * the saturate bit is set in each instruction, so we need to unset it on
904 * the first instruction.
905 */
906 brw_inst_set_saturate(p->devinfo, i[0], false);
907
908 return true;
909 }
910 }
911
912 void
913 fs_generator::generate_get_buffer_size(fs_inst *inst,
914 struct brw_reg dst,
915 struct brw_reg src,
916 struct brw_reg surf_index)
917 {
918 assert(devinfo->gen >= 7);
919 assert(surf_index.file == BRW_IMMEDIATE_VALUE);
920
921 uint32_t simd_mode;
922 int rlen = 4;
923
924 switch (inst->exec_size) {
925 case 8:
926 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
927 break;
928 case 16:
929 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
930 break;
931 default:
932 unreachable("Invalid width for texture instruction");
933 }
934
935 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
936 rlen = 8;
937 dst = vec16(dst);
938 }
939
940 brw_SAMPLE(p,
941 retype(dst, BRW_REGISTER_TYPE_UW),
942 inst->base_mrf,
943 src,
944 surf_index.ud,
945 0,
946 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
947 rlen, /* response length */
948 inst->mlen,
949 inst->header_size > 0,
950 simd_mode,
951 BRW_SAMPLER_RETURN_FORMAT_SINT32);
952 }
953
954 void
955 fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst,
956 struct brw_reg surface_index,
957 struct brw_reg sampler_index)
958 {
959 assert(devinfo->gen < 7);
960 assert(inst->size_written % REG_SIZE == 0);
961 int msg_type = -1;
962 uint32_t simd_mode;
963 uint32_t return_format;
964
965 /* Sampler EOT message of less than the dispatch width would kill the
966 * thread prematurely.
967 */
968 assert(!inst->eot || inst->exec_size == dispatch_width);
969
970 switch (dst.type) {
971 case BRW_REGISTER_TYPE_D:
972 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
973 break;
974 case BRW_REGISTER_TYPE_UD:
975 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
976 break;
977 default:
978 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
979 break;
980 }
981
982 /* Stomp the resinfo output type to UINT32. On gens 4-5, the output type
983 * is set as part of the message descriptor. On gen4, the PRM seems to
984 * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
985 * later gens UINT32 is required. Once you hit Sandy Bridge, the bit is
986 * gone from the message descriptor entirely and you just get UINT32 all
987 * the time regasrdless. Since we can really only do non-UINT32 on gen4,
988 * just stomp it to UINT32 all the time.
989 */
990 if (inst->opcode == SHADER_OPCODE_TXS)
991 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
992
993 switch (inst->exec_size) {
994 case 8:
995 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
996 break;
997 case 16:
998 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
999 break;
1000 default:
1001 unreachable("Invalid width for texture instruction");
1002 }
1003
1004 if (devinfo->gen >= 5) {
1005 switch (inst->opcode) {
1006 case SHADER_OPCODE_TEX:
1007 if (inst->shadow_compare) {
1008 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
1009 } else {
1010 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
1011 }
1012 break;
1013 case FS_OPCODE_TXB:
1014 if (inst->shadow_compare) {
1015 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
1016 } else {
1017 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
1018 }
1019 break;
1020 case SHADER_OPCODE_TXL:
1021 if (inst->shadow_compare) {
1022 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
1023 } else {
1024 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
1025 }
1026 break;
1027 case SHADER_OPCODE_TXS:
1028 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
1029 break;
1030 case SHADER_OPCODE_TXD:
1031 assert(!inst->shadow_compare);
1032 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
1033 break;
1034 case SHADER_OPCODE_TXF:
1035 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1036 break;
1037 case SHADER_OPCODE_TXF_CMS:
1038 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1039 break;
1040 case SHADER_OPCODE_LOD:
1041 msg_type = GEN5_SAMPLER_MESSAGE_LOD;
1042 break;
1043 case SHADER_OPCODE_TG4:
1044 assert(devinfo->gen == 6);
1045 assert(!inst->shadow_compare);
1046 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
1047 break;
1048 case SHADER_OPCODE_SAMPLEINFO:
1049 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
1050 break;
1051 default:
1052 unreachable("not reached");
1053 }
1054 } else {
1055 switch (inst->opcode) {
1056 case SHADER_OPCODE_TEX:
1057 /* Note that G45 and older determines shadow compare and dispatch width
1058 * from message length for most messages.
1059 */
1060 if (inst->exec_size == 8) {
1061 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
1062 if (inst->shadow_compare) {
1063 assert(inst->mlen == 6);
1064 } else {
1065 assert(inst->mlen <= 4);
1066 }
1067 } else {
1068 if (inst->shadow_compare) {
1069 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1070 assert(inst->mlen == 9);
1071 } else {
1072 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1073 assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
1074 }
1075 }
1076 break;
1077 case FS_OPCODE_TXB:
1078 if (inst->shadow_compare) {
1079 assert(inst->exec_size == 8);
1080 assert(inst->mlen == 6);
1081 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
1082 } else {
1083 assert(inst->mlen == 9);
1084 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1085 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1086 }
1087 break;
1088 case SHADER_OPCODE_TXL:
1089 if (inst->shadow_compare) {
1090 assert(inst->exec_size == 8);
1091 assert(inst->mlen == 6);
1092 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
1093 } else {
1094 assert(inst->mlen == 9);
1095 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
1096 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1097 }
1098 break;
1099 case SHADER_OPCODE_TXD:
1100 /* There is no sample_d_c message; comparisons are done manually */
1101 assert(inst->exec_size == 8);
1102 assert(inst->mlen == 7 || inst->mlen == 10);
1103 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
1104 break;
1105 case SHADER_OPCODE_TXF:
1106 assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
1107 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1108 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1109 break;
1110 case SHADER_OPCODE_TXS:
1111 assert(inst->mlen == 3);
1112 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
1113 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1114 break;
1115 default:
1116 unreachable("not reached");
1117 }
1118 }
1119 assert(msg_type != -1);
1120
1121 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1122 dst = vec16(dst);
1123 }
1124
1125 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
1126
1127 /* Load the message header if present. If there's a texture offset,
1128 * we need to set it up explicitly and load the offset bitfield.
1129 * Otherwise, we can use an implied move from g0 to the first message reg.
1130 */
1131 struct brw_reg src = brw_null_reg();
1132 if (inst->header_size != 0) {
1133 if (devinfo->gen < 6 && !inst->offset) {
1134 /* Set up an implied move from g0 to the MRF. */
1135 src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1136 } else {
1137 const tgl_swsb swsb = brw_get_default_swsb(p);
1138 assert(inst->base_mrf != -1);
1139 struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
1140
1141 brw_push_insn_state(p);
1142 brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1143 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1144 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1145 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1146 /* Explicitly set up the message header by copying g0 to the MRF. */
1147 brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
1148 brw_set_default_swsb(p, tgl_swsb_regdist(1));
1149
1150 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1151 if (inst->offset) {
1152 /* Set the offset bits in DWord 2. */
1153 brw_MOV(p, get_element_ud(header_reg, 2),
1154 brw_imm_ud(inst->offset));
1155 }
1156
1157 brw_pop_insn_state(p);
1158 brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1159 }
1160 }
1161
1162 uint32_t base_binding_table_index;
1163 switch (inst->opcode) {
1164 case SHADER_OPCODE_TG4:
1165 base_binding_table_index = prog_data->binding_table.gather_texture_start;
1166 break;
1167 default:
1168 base_binding_table_index = prog_data->binding_table.texture_start;
1169 break;
1170 }
1171
1172 assert(surface_index.file == BRW_IMMEDIATE_VALUE);
1173 assert(sampler_index.file == BRW_IMMEDIATE_VALUE);
1174
1175 brw_SAMPLE(p,
1176 retype(dst, BRW_REGISTER_TYPE_UW),
1177 inst->base_mrf,
1178 src,
1179 surface_index.ud + base_binding_table_index,
1180 sampler_index.ud % 16,
1181 msg_type,
1182 inst->size_written / REG_SIZE,
1183 inst->mlen,
1184 inst->header_size != 0,
1185 simd_mode,
1186 return_format);
1187 }
1188
1189
1190 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
1191 * looking like:
1192 *
1193 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
1194 *
1195 * Ideally, we want to produce:
1196 *
1197 * DDX DDY
1198 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
1199 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
1200 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
1201 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
1202 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
1203 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
1204 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
1205 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
1206 *
1207 * and add another set of two more subspans if in 16-pixel dispatch mode.
1208 *
1209 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
1210 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
1211 * pair. But the ideal approximation may impose a huge performance cost on
1212 * sample_d. On at least Haswell, sample_d instruction does some
1213 * optimizations if the same LOD is used for all pixels in the subspan.
1214 *
1215 * For DDY, we need to use ALIGN16 mode since it's capable of doing the
1216 * appropriate swizzling.
1217 */
1218 void
1219 fs_generator::generate_ddx(const fs_inst *inst,
1220 struct brw_reg dst, struct brw_reg src)
1221 {
1222 unsigned vstride, width;
1223
1224 if (devinfo->gen >= 8) {
1225 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1226 /* produce accurate derivatives */
1227 vstride = BRW_VERTICAL_STRIDE_2;
1228 width = BRW_WIDTH_2;
1229 } else {
1230 /* replicate the derivative at the top-left pixel to other pixels */
1231 vstride = BRW_VERTICAL_STRIDE_4;
1232 width = BRW_WIDTH_4;
1233 }
1234
1235 struct brw_reg src0 = byte_offset(src, type_sz(src.type));;
1236 struct brw_reg src1 = src;
1237
1238 src0.vstride = vstride;
1239 src0.width = width;
1240 src0.hstride = BRW_HORIZONTAL_STRIDE_0;
1241 src1.vstride = vstride;
1242 src1.width = width;
1243 src1.hstride = BRW_HORIZONTAL_STRIDE_0;
1244
1245 brw_ADD(p, dst, src0, negate(src1));
1246 } else {
1247 /* On Haswell and earlier, the region used above appears to not work
1248 * correctly for compressed instructions. At least on Haswell and
1249 * Iron Lake, compressed ALIGN16 instructions do work. Since we
1250 * would have to split to SIMD8 no matter which method we choose, we
1251 * may as well use ALIGN16 on all platforms gen7 and earlier.
1252 */
1253 struct brw_reg src0 = stride(src, 4, 4, 1);
1254 struct brw_reg src1 = stride(src, 4, 4, 1);
1255 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1256 src0.swizzle = BRW_SWIZZLE_XXZZ;
1257 src1.swizzle = BRW_SWIZZLE_YYWW;
1258 } else {
1259 src0.swizzle = BRW_SWIZZLE_XXXX;
1260 src1.swizzle = BRW_SWIZZLE_YYYY;
1261 }
1262
1263 brw_push_insn_state(p);
1264 brw_set_default_access_mode(p, BRW_ALIGN_16);
1265 brw_ADD(p, dst, negate(src0), src1);
1266 brw_pop_insn_state(p);
1267 }
1268 }
1269
1270 /* The negate_value boolean is used to negate the derivative computation for
1271 * FBOs, since they place the origin at the upper left instead of the lower
1272 * left.
1273 */
1274 void
1275 fs_generator::generate_ddy(const fs_inst *inst,
1276 struct brw_reg dst, struct brw_reg src)
1277 {
1278 const uint32_t type_size = type_sz(src.type);
1279
1280 if (inst->opcode == FS_OPCODE_DDY_FINE) {
1281 /* produce accurate derivatives.
1282 *
1283 * From the Broadwell PRM, Volume 7 (3D-Media-GPGPU)
1284 * "Register Region Restrictions", Section "1. Special Restrictions":
1285 *
1286 * "In Align16 mode, the channel selects and channel enables apply to
1287 * a pair of half-floats, because these parameters are defined for
1288 * DWord elements ONLY. This is applicable when both source and
1289 * destination are half-floats."
1290 *
1291 * So for half-float operations we use the Gen11+ Align1 path. CHV
1292 * inherits its FP16 hardware from SKL, so it is not affected.
1293 */
1294 if (devinfo->gen >= 11 ||
1295 (devinfo->is_broadwell && src.type == BRW_REGISTER_TYPE_HF)) {
1296 src = stride(src, 0, 2, 1);
1297
1298 brw_push_insn_state(p);
1299 brw_set_default_exec_size(p, BRW_EXECUTE_4);
1300 for (uint32_t g = 0; g < inst->exec_size; g += 4) {
1301 brw_set_default_group(p, inst->group + g);
1302 brw_ADD(p, byte_offset(dst, g * type_size),
1303 negate(byte_offset(src, g * type_size)),
1304 byte_offset(src, (g + 2) * type_size));
1305 brw_set_default_swsb(p, tgl_swsb_null());
1306 }
1307 brw_pop_insn_state(p);
1308 } else {
1309 struct brw_reg src0 = stride(src, 4, 4, 1);
1310 struct brw_reg src1 = stride(src, 4, 4, 1);
1311 src0.swizzle = BRW_SWIZZLE_XYXY;
1312 src1.swizzle = BRW_SWIZZLE_ZWZW;
1313
1314 brw_push_insn_state(p);
1315 brw_set_default_access_mode(p, BRW_ALIGN_16);
1316 brw_ADD(p, dst, negate(src0), src1);
1317 brw_pop_insn_state(p);
1318 }
1319 } else {
1320 /* replicate the derivative at the top-left pixel to other pixels */
1321 if (devinfo->gen >= 8) {
1322 struct brw_reg src0 = byte_offset(stride(src, 4, 4, 0), 0 * type_size);
1323 struct brw_reg src1 = byte_offset(stride(src, 4, 4, 0), 2 * type_size);
1324
1325 brw_ADD(p, dst, negate(src0), src1);
1326 } else {
1327 /* On Haswell and earlier, the region used above appears to not work
1328 * correctly for compressed instructions. At least on Haswell and
1329 * Iron Lake, compressed ALIGN16 instructions do work. Since we
1330 * would have to split to SIMD8 no matter which method we choose, we
1331 * may as well use ALIGN16 on all platforms gen7 and earlier.
1332 */
1333 struct brw_reg src0 = stride(src, 4, 4, 1);
1334 struct brw_reg src1 = stride(src, 4, 4, 1);
1335 src0.swizzle = BRW_SWIZZLE_XXXX;
1336 src1.swizzle = BRW_SWIZZLE_ZZZZ;
1337
1338 brw_push_insn_state(p);
1339 brw_set_default_access_mode(p, BRW_ALIGN_16);
1340 brw_ADD(p, dst, negate(src0), src1);
1341 brw_pop_insn_state(p);
1342 }
1343 }
1344 }
1345
1346 void
1347 fs_generator::generate_discard_jump(fs_inst *)
1348 {
1349 assert(devinfo->gen >= 6);
1350
1351 /* This HALT will be patched up at FB write time to point UIP at the end of
1352 * the program, and at brw_uip_jip() JIP will be set to the end of the
1353 * current block (or the program).
1354 */
1355 this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
1356 gen6_HALT(p);
1357 }
1358
1359 void
1360 fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
1361 {
1362 /* The 32-wide messages only respect the first 16-wide half of the channel
1363 * enable signals which are replicated identically for the second group of
1364 * 16 channels, so we cannot use them unless the write is marked
1365 * force_writemask_all.
1366 */
1367 const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
1368 MIN2(16, inst->exec_size);
1369 const unsigned block_size = 4 * lower_size / REG_SIZE;
1370 const tgl_swsb swsb = brw_get_default_swsb(p);
1371 assert(inst->mlen != 0);
1372
1373 brw_push_insn_state(p);
1374 brw_set_default_exec_size(p, cvt(lower_size) - 1);
1375 brw_set_default_compression(p, lower_size > 8);
1376
1377 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1378 brw_set_default_group(p, inst->group + lower_size * i);
1379
1380 if (i > 0) {
1381 brw_set_default_swsb(p, tgl_swsb_null());
1382 brw_SYNC(p, TGL_SYNC_ALLRD);
1383 } else {
1384 brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1385 }
1386
1387 brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
1388 retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
1389
1390 if (i + 1 < inst->exec_size / lower_size)
1391 brw_set_default_swsb(p, tgl_swsb_regdist(1));
1392 else
1393 brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1394
1395 brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
1396 block_size,
1397 inst->offset + block_size * REG_SIZE * i);
1398 }
1399
1400 brw_pop_insn_state(p);
1401 }
1402
1403 void
1404 fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
1405 {
1406 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1407 assert(inst->mlen != 0);
1408
1409 brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
1410 inst->exec_size / 8, inst->offset);
1411 }
1412
1413 void
1414 fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst)
1415 {
1416 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1417
1418 gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
1419 }
1420
1421 void
1422 fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
1423 struct brw_reg dst,
1424 struct brw_reg index,
1425 struct brw_reg offset)
1426 {
1427 assert(type_sz(dst.type) == 4);
1428 assert(inst->mlen != 0);
1429
1430 assert(index.file == BRW_IMMEDIATE_VALUE &&
1431 index.type == BRW_REGISTER_TYPE_UD);
1432 uint32_t surf_index = index.ud;
1433
1434 assert(offset.file == BRW_IMMEDIATE_VALUE &&
1435 offset.type == BRW_REGISTER_TYPE_UD);
1436 uint32_t read_offset = offset.ud;
1437
1438 brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
1439 read_offset, surf_index);
1440 }
1441
1442 void
1443 fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
1444 struct brw_reg dst,
1445 struct brw_reg index,
1446 struct brw_reg payload)
1447 {
1448 assert(index.type == BRW_REGISTER_TYPE_UD);
1449 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1450 assert(type_sz(dst.type) == 4);
1451
1452 if (index.file == BRW_IMMEDIATE_VALUE) {
1453 const uint32_t surf_index = index.ud;
1454
1455 brw_push_insn_state(p);
1456 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1457 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1458 brw_pop_insn_state(p);
1459
1460 brw_inst_set_sfid(devinfo, send, GEN6_SFID_DATAPORT_CONSTANT_CACHE);
1461 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
1462 brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
1463 brw_set_desc(p, send,
1464 brw_message_desc(devinfo, 1, DIV_ROUND_UP(inst->size_written,
1465 REG_SIZE), true) |
1466 brw_dp_read_desc(devinfo, surf_index,
1467 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1468 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1469 BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1470
1471 } else {
1472 const tgl_swsb swsb = brw_get_default_swsb(p);
1473 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1474
1475 brw_push_insn_state(p);
1476 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1477
1478 /* a0.0 = surf_index & 0xff */
1479 brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1480 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1481 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1482 brw_set_dest(p, insn_and, addr);
1483 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1484 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1485
1486 /* dst = send(payload, a0.0 | <descriptor>) */
1487 brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1488 brw_send_indirect_message(
1489 p, GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1490 retype(dst, BRW_REGISTER_TYPE_UD),
1491 retype(payload, BRW_REGISTER_TYPE_UD), addr,
1492 brw_message_desc(devinfo, 1,
1493 DIV_ROUND_UP(inst->size_written, REG_SIZE), true) |
1494 brw_dp_read_desc(devinfo, 0 /* surface */,
1495 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1496 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1497 BRW_DATAPORT_READ_TARGET_DATA_CACHE),
1498 false /* EOT */);
1499
1500 brw_pop_insn_state(p);
1501 }
1502 }
1503
1504 void
1505 fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst,
1506 struct brw_reg dst,
1507 struct brw_reg index)
1508 {
1509 assert(devinfo->gen < 7); /* Should use the gen7 variant. */
1510 assert(inst->header_size != 0);
1511 assert(inst->mlen);
1512
1513 assert(index.file == BRW_IMMEDIATE_VALUE &&
1514 index.type == BRW_REGISTER_TYPE_UD);
1515 uint32_t surf_index = index.ud;
1516
1517 uint32_t simd_mode, rlen, msg_type;
1518 if (inst->exec_size == 16) {
1519 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1520 rlen = 8;
1521 } else {
1522 assert(inst->exec_size == 8);
1523 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1524 rlen = 4;
1525 }
1526
1527 if (devinfo->gen >= 5)
1528 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1529 else {
1530 /* We always use the SIMD16 message so that we only have to load U, and
1531 * not V or R.
1532 */
1533 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1534 assert(inst->mlen == 3);
1535 assert(inst->size_written == 8 * REG_SIZE);
1536 rlen = 8;
1537 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1538 }
1539
1540 struct brw_reg header = brw_vec8_grf(0, 0);
1541 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1542
1543 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1544 brw_inst_set_compression(devinfo, send, false);
1545 brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1546 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1547 brw_set_src0(p, send, header);
1548 if (devinfo->gen < 6)
1549 brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
1550
1551 /* Our surface is set up as floats, regardless of what actual data is
1552 * stored in it.
1553 */
1554 uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1555 brw_set_desc(p, send,
1556 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size) |
1557 brw_sampler_desc(devinfo, surf_index,
1558 0, /* sampler (unused) */
1559 msg_type, simd_mode, return_format));
1560 }
1561
1562 void
1563 fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
1564 struct brw_reg dst,
1565 struct brw_reg src,
1566 struct brw_reg msg_data,
1567 unsigned msg_type)
1568 {
1569 const bool has_payload = inst->src[0].file != BAD_FILE;
1570 assert(msg_data.type == BRW_REGISTER_TYPE_UD);
1571 assert(inst->size_written % REG_SIZE == 0);
1572
1573 brw_pixel_interpolator_query(p,
1574 retype(dst, BRW_REGISTER_TYPE_UW),
1575 /* If we don't have a payload, what we send doesn't matter */
1576 has_payload ? src : brw_vec8_grf(0, 0),
1577 inst->pi_noperspective,
1578 msg_type,
1579 msg_data,
1580 has_payload ? 2 * inst->exec_size / 8 : 1,
1581 inst->size_written / REG_SIZE);
1582 }
1583
1584 /* Sets vstride=1, width=4, hstride=0 of register src1 during
1585 * the ADD instruction.
1586 */
1587 void
1588 fs_generator::generate_set_sample_id(fs_inst *inst,
1589 struct brw_reg dst,
1590 struct brw_reg src0,
1591 struct brw_reg src1)
1592 {
1593 assert(dst.type == BRW_REGISTER_TYPE_D ||
1594 dst.type == BRW_REGISTER_TYPE_UD);
1595 assert(src0.type == BRW_REGISTER_TYPE_D ||
1596 src0.type == BRW_REGISTER_TYPE_UD);
1597
1598 const struct brw_reg reg = stride(src1, 1, 4, 0);
1599 const unsigned lower_size = MIN2(inst->exec_size,
1600 devinfo->gen >= 8 ? 16 : 8);
1601
1602 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1603 brw_inst *insn = brw_ADD(p, offset(dst, i * lower_size / 8),
1604 offset(src0, (src0.vstride == 0 ? 0 : (1 << (src0.vstride - 1)) *
1605 (i * lower_size / (1 << src0.width))) *
1606 type_sz(src0.type) / REG_SIZE),
1607 suboffset(reg, i * lower_size / 4));
1608 brw_inst_set_exec_size(devinfo, insn, cvt(lower_size) - 1);
1609 brw_inst_set_group(devinfo, insn, inst->group + lower_size * i);
1610 brw_inst_set_compression(devinfo, insn, lower_size > 8);
1611 brw_set_default_swsb(p, tgl_swsb_null());
1612 }
1613 }
1614
1615 void
1616 fs_generator::generate_pack_half_2x16_split(fs_inst *,
1617 struct brw_reg dst,
1618 struct brw_reg x,
1619 struct brw_reg y)
1620 {
1621 assert(devinfo->gen >= 7);
1622 assert(dst.type == BRW_REGISTER_TYPE_UD);
1623 assert(x.type == BRW_REGISTER_TYPE_F);
1624 assert(y.type == BRW_REGISTER_TYPE_F);
1625
1626 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
1627 *
1628 * Because this instruction does not have a 16-bit floating-point type,
1629 * the destination data type must be Word (W).
1630 *
1631 * The destination must be DWord-aligned and specify a horizontal stride
1632 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
1633 * each destination channel and the upper word is not modified.
1634 */
1635 struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
1636
1637 /* Give each 32-bit channel of dst the form below, where "." means
1638 * unchanged.
1639 * 0x....hhhh
1640 */
1641 brw_F32TO16(p, dst_w, y);
1642
1643 /* Now the form:
1644 * 0xhhhh0000
1645 */
1646 brw_set_default_swsb(p, tgl_swsb_regdist(1));
1647 brw_SHL(p, dst, dst, brw_imm_ud(16u));
1648
1649 /* And, finally the form of packHalf2x16's output:
1650 * 0xhhhhllll
1651 */
1652 brw_F32TO16(p, dst_w, x);
1653 }
1654
1655 void
1656 fs_generator::generate_shader_time_add(fs_inst *,
1657 struct brw_reg payload,
1658 struct brw_reg offset,
1659 struct brw_reg value)
1660 {
1661 const tgl_swsb swsb = brw_get_default_swsb(p);
1662
1663 assert(devinfo->gen >= 7);
1664 brw_push_insn_state(p);
1665 brw_set_default_mask_control(p, true);
1666 brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1667
1668 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1669 struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
1670 offset.type);
1671 struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
1672 value.type);
1673
1674 assert(offset.file == BRW_IMMEDIATE_VALUE);
1675 if (value.file == BRW_GENERAL_REGISTER_FILE) {
1676 value.width = BRW_WIDTH_1;
1677 value.hstride = BRW_HORIZONTAL_STRIDE_0;
1678 value.vstride = BRW_VERTICAL_STRIDE_0;
1679 } else {
1680 assert(value.file == BRW_IMMEDIATE_VALUE);
1681 }
1682
1683 /* Trying to deal with setup of the params from the IR is crazy in the FS8
1684 * case, and we don't really care about squeezing every bit of performance
1685 * out of this path, so we just emit the MOVs from here.
1686 */
1687 brw_MOV(p, payload_offset, offset);
1688 brw_set_default_swsb(p, tgl_swsb_null());
1689 brw_MOV(p, payload_value, value);
1690 brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1691 brw_shader_time_add(p, payload,
1692 prog_data->binding_table.shader_time_start);
1693 brw_pop_insn_state(p);
1694 }
1695
1696 void
1697 fs_generator::enable_debug(const char *shader_name)
1698 {
1699 debug_flag = true;
1700 this->shader_name = shader_name;
1701 }
1702
1703 int
1704 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width,
1705 struct brw_compile_stats *stats)
1706 {
1707 /* align to 64 byte boundary. */
1708 while (p->next_insn_offset % 64)
1709 brw_NOP(p);
1710
1711 this->dispatch_width = dispatch_width;
1712
1713 int start_offset = p->next_insn_offset;
1714
1715 /* `send_count` explicitly does not include spills or fills, as we'd
1716 * like to use it as a metric for intentional memory access or other
1717 * shared function use. Otherwise, subtle changes to scheduling or
1718 * register allocation could cause it to fluctuate wildly - and that
1719 * effect is already counted in spill/fill counts.
1720 */
1721 int spill_count = 0, fill_count = 0;
1722 int loop_count = 0, send_count = 0;
1723 bool is_accum_used = false;
1724
1725 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1726
1727 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1728 if (inst->opcode == SHADER_OPCODE_UNDEF)
1729 continue;
1730
1731 struct brw_reg src[4], dst;
1732 unsigned int last_insn_offset = p->next_insn_offset;
1733 bool multiple_instructions_emitted = false;
1734
1735 /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
1736 * "Register Region Restrictions" section: for BDW, SKL:
1737 *
1738 * "A POW/FDIV operation must not be followed by an instruction
1739 * that requires two destination registers."
1740 *
1741 * The documentation is often lacking annotations for Atom parts,
1742 * and empirically this affects CHV as well.
1743 */
1744 if (devinfo->gen >= 8 &&
1745 devinfo->gen <= 9 &&
1746 p->nr_insn > 1 &&
1747 brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
1748 brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
1749 inst->dst.component_size(inst->exec_size) > REG_SIZE) {
1750 brw_NOP(p);
1751 last_insn_offset = p->next_insn_offset;
1752 }
1753
1754 /* GEN:BUG:14010017096:
1755 *
1756 * Clear accumulator register before end of thread.
1757 */
1758 if (inst->eot && is_accum_used && devinfo->gen >= 12) {
1759 brw_set_default_exec_size(p, BRW_EXECUTE_16);
1760 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1761 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
1762 brw_MOV(p, brw_acc_reg(8), brw_imm_f(0.0f));
1763 last_insn_offset = p->next_insn_offset;
1764 }
1765
1766 if (!is_accum_used && !inst->eot) {
1767 is_accum_used = inst->writes_accumulator_implicitly(devinfo) ||
1768 inst->dst.is_accumulator();
1769 }
1770
1771 if (unlikely(debug_flag))
1772 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1773
1774 /* If the instruction writes to more than one register, it needs to be
1775 * explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
1776 * hardware figures out by itself what the right compression mode is,
1777 * but we still need to know whether the instruction is compressed to
1778 * set up the source register regions appropriately.
1779 *
1780 * XXX - This is wrong for instructions that write a single register but
1781 * read more than one which should strictly speaking be treated as
1782 * compressed. For instructions that don't write any registers it
1783 * relies on the destination being a null register of the correct
1784 * type and regioning so the instruction is considered compressed
1785 * or not accordingly.
1786 */
1787 const bool compressed =
1788 inst->dst.component_size(inst->exec_size) > REG_SIZE;
1789 brw_set_default_compression(p, compressed);
1790 brw_set_default_group(p, inst->group);
1791
1792 for (unsigned int i = 0; i < inst->sources; i++) {
1793 src[i] = brw_reg_from_fs_reg(devinfo, inst,
1794 &inst->src[i], compressed);
1795 /* The accumulator result appears to get used for the
1796 * conditional modifier generation. When negating a UD
1797 * value, there is a 33rd bit generated for the sign in the
1798 * accumulator value, so now you can't check, for example,
1799 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
1800 */
1801 assert(!inst->conditional_mod ||
1802 inst->src[i].type != BRW_REGISTER_TYPE_UD ||
1803 !inst->src[i].negate);
1804 }
1805 dst = brw_reg_from_fs_reg(devinfo, inst,
1806 &inst->dst, compressed);
1807
1808 brw_set_default_access_mode(p, BRW_ALIGN_1);
1809 brw_set_default_predicate_control(p, inst->predicate);
1810 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1811 /* On gen7 and above, hardware automatically adds the group onto the
1812 * flag subregister number. On Sandy Bridge and older, we have to do it
1813 * ourselves.
1814 */
1815 const unsigned flag_subreg = inst->flag_subreg +
1816 (devinfo->gen >= 7 ? 0 : inst->group / 16);
1817 brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2);
1818 brw_set_default_saturate(p, inst->saturate);
1819 brw_set_default_mask_control(p, inst->force_writemask_all);
1820 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1821 brw_set_default_swsb(p, inst->sched);
1822
1823 unsigned exec_size = inst->exec_size;
1824 if (devinfo->gen == 7 && !devinfo->is_haswell &&
1825 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
1826 exec_size *= 2;
1827 }
1828
1829 brw_set_default_exec_size(p, cvt(exec_size) - 1);
1830
1831 assert(inst->force_writemask_all || inst->exec_size >= 4);
1832 assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
1833 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1834 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1835
1836 switch (inst->opcode) {
1837 case BRW_OPCODE_SYNC:
1838 assert(src[0].file == BRW_IMMEDIATE_VALUE);
1839 brw_SYNC(p, tgl_sync_function(src[0].ud));
1840 break;
1841 case BRW_OPCODE_MOV:
1842 brw_MOV(p, dst, src[0]);
1843 break;
1844 case BRW_OPCODE_ADD:
1845 brw_ADD(p, dst, src[0], src[1]);
1846 break;
1847 case BRW_OPCODE_MUL:
1848 brw_MUL(p, dst, src[0], src[1]);
1849 break;
1850 case BRW_OPCODE_AVG:
1851 brw_AVG(p, dst, src[0], src[1]);
1852 break;
1853 case BRW_OPCODE_MACH:
1854 brw_MACH(p, dst, src[0], src[1]);
1855 break;
1856
1857 case BRW_OPCODE_LINE:
1858 brw_LINE(p, dst, src[0], src[1]);
1859 break;
1860
1861 case BRW_OPCODE_MAD:
1862 assert(devinfo->gen >= 6);
1863 if (devinfo->gen < 10)
1864 brw_set_default_access_mode(p, BRW_ALIGN_16);
1865 brw_MAD(p, dst, src[0], src[1], src[2]);
1866 break;
1867
1868 case BRW_OPCODE_LRP:
1869 assert(devinfo->gen >= 6 && devinfo->gen <= 10);
1870 if (devinfo->gen < 10)
1871 brw_set_default_access_mode(p, BRW_ALIGN_16);
1872 brw_LRP(p, dst, src[0], src[1], src[2]);
1873 break;
1874
1875 case BRW_OPCODE_FRC:
1876 brw_FRC(p, dst, src[0]);
1877 break;
1878 case BRW_OPCODE_RNDD:
1879 brw_RNDD(p, dst, src[0]);
1880 break;
1881 case BRW_OPCODE_RNDE:
1882 brw_RNDE(p, dst, src[0]);
1883 break;
1884 case BRW_OPCODE_RNDZ:
1885 brw_RNDZ(p, dst, src[0]);
1886 break;
1887
1888 case BRW_OPCODE_AND:
1889 brw_AND(p, dst, src[0], src[1]);
1890 break;
1891 case BRW_OPCODE_OR:
1892 brw_OR(p, dst, src[0], src[1]);
1893 break;
1894 case BRW_OPCODE_XOR:
1895 brw_XOR(p, dst, src[0], src[1]);
1896 break;
1897 case BRW_OPCODE_NOT:
1898 brw_NOT(p, dst, src[0]);
1899 break;
1900 case BRW_OPCODE_ASR:
1901 brw_ASR(p, dst, src[0], src[1]);
1902 break;
1903 case BRW_OPCODE_SHR:
1904 brw_SHR(p, dst, src[0], src[1]);
1905 break;
1906 case BRW_OPCODE_SHL:
1907 brw_SHL(p, dst, src[0], src[1]);
1908 break;
1909 case BRW_OPCODE_ROL:
1910 assert(devinfo->gen >= 11);
1911 assert(src[0].type == dst.type);
1912 brw_ROL(p, dst, src[0], src[1]);
1913 break;
1914 case BRW_OPCODE_ROR:
1915 assert(devinfo->gen >= 11);
1916 assert(src[0].type == dst.type);
1917 brw_ROR(p, dst, src[0], src[1]);
1918 break;
1919 case BRW_OPCODE_F32TO16:
1920 assert(devinfo->gen >= 7);
1921 brw_F32TO16(p, dst, src[0]);
1922 break;
1923 case BRW_OPCODE_F16TO32:
1924 assert(devinfo->gen >= 7);
1925 brw_F16TO32(p, dst, src[0]);
1926 break;
1927 case BRW_OPCODE_CMP:
1928 if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell &&
1929 dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1930 /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
1931 * implemented in the compiler is not sufficient. Overriding the
1932 * type when the destination is the null register is necessary but
1933 * not sufficient by itself.
1934 */
1935 assert(dst.nr == BRW_ARF_NULL);
1936 dst.type = BRW_REGISTER_TYPE_D;
1937 }
1938 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1939 break;
1940 case BRW_OPCODE_SEL:
1941 brw_SEL(p, dst, src[0], src[1]);
1942 break;
1943 case BRW_OPCODE_CSEL:
1944 assert(devinfo->gen >= 8);
1945 if (devinfo->gen < 10)
1946 brw_set_default_access_mode(p, BRW_ALIGN_16);
1947 brw_CSEL(p, dst, src[0], src[1], src[2]);
1948 break;
1949 case BRW_OPCODE_BFREV:
1950 assert(devinfo->gen >= 7);
1951 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1952 retype(src[0], BRW_REGISTER_TYPE_UD));
1953 break;
1954 case BRW_OPCODE_FBH:
1955 assert(devinfo->gen >= 7);
1956 brw_FBH(p, retype(dst, src[0].type), src[0]);
1957 break;
1958 case BRW_OPCODE_FBL:
1959 assert(devinfo->gen >= 7);
1960 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
1961 retype(src[0], BRW_REGISTER_TYPE_UD));
1962 break;
1963 case BRW_OPCODE_LZD:
1964 brw_LZD(p, dst, src[0]);
1965 break;
1966 case BRW_OPCODE_CBIT:
1967 assert(devinfo->gen >= 7);
1968 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
1969 retype(src[0], BRW_REGISTER_TYPE_UD));
1970 break;
1971 case BRW_OPCODE_ADDC:
1972 assert(devinfo->gen >= 7);
1973 brw_ADDC(p, dst, src[0], src[1]);
1974 break;
1975 case BRW_OPCODE_SUBB:
1976 assert(devinfo->gen >= 7);
1977 brw_SUBB(p, dst, src[0], src[1]);
1978 break;
1979 case BRW_OPCODE_MAC:
1980 brw_MAC(p, dst, src[0], src[1]);
1981 break;
1982
1983 case BRW_OPCODE_BFE:
1984 assert(devinfo->gen >= 7);
1985 if (devinfo->gen < 10)
1986 brw_set_default_access_mode(p, BRW_ALIGN_16);
1987 brw_BFE(p, dst, src[0], src[1], src[2]);
1988 break;
1989
1990 case BRW_OPCODE_BFI1:
1991 assert(devinfo->gen >= 7);
1992 brw_BFI1(p, dst, src[0], src[1]);
1993 break;
1994 case BRW_OPCODE_BFI2:
1995 assert(devinfo->gen >= 7);
1996 if (devinfo->gen < 10)
1997 brw_set_default_access_mode(p, BRW_ALIGN_16);
1998 brw_BFI2(p, dst, src[0], src[1], src[2]);
1999 break;
2000
2001 case BRW_OPCODE_IF:
2002 if (inst->src[0].file != BAD_FILE) {
2003 /* The instruction has an embedded compare (only allowed on gen6) */
2004 assert(devinfo->gen == 6);
2005 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
2006 } else {
2007 brw_IF(p, brw_get_default_exec_size(p));
2008 }
2009 break;
2010
2011 case BRW_OPCODE_ELSE:
2012 brw_ELSE(p);
2013 break;
2014 case BRW_OPCODE_ENDIF:
2015 brw_ENDIF(p);
2016 break;
2017
2018 case BRW_OPCODE_DO:
2019 brw_DO(p, brw_get_default_exec_size(p));
2020 break;
2021
2022 case BRW_OPCODE_BREAK:
2023 brw_BREAK(p);
2024 break;
2025 case BRW_OPCODE_CONTINUE:
2026 brw_CONT(p);
2027 break;
2028
2029 case BRW_OPCODE_WHILE:
2030 brw_WHILE(p);
2031 loop_count++;
2032 break;
2033
2034 case SHADER_OPCODE_RCP:
2035 case SHADER_OPCODE_RSQ:
2036 case SHADER_OPCODE_SQRT:
2037 case SHADER_OPCODE_EXP2:
2038 case SHADER_OPCODE_LOG2:
2039 case SHADER_OPCODE_SIN:
2040 case SHADER_OPCODE_COS:
2041 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2042 if (devinfo->gen >= 6) {
2043 assert(inst->mlen == 0);
2044 assert(devinfo->gen >= 7 || inst->exec_size == 8);
2045 gen6_math(p, dst, brw_math_function(inst->opcode),
2046 src[0], brw_null_reg());
2047 } else {
2048 assert(inst->mlen >= 1);
2049 assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8);
2050 gen4_math(p, dst,
2051 brw_math_function(inst->opcode),
2052 inst->base_mrf, src[0],
2053 BRW_MATH_PRECISION_FULL);
2054 send_count++;
2055 }
2056 break;
2057 case SHADER_OPCODE_INT_QUOTIENT:
2058 case SHADER_OPCODE_INT_REMAINDER:
2059 case SHADER_OPCODE_POW:
2060 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2061 if (devinfo->gen >= 6) {
2062 assert(inst->mlen == 0);
2063 assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
2064 inst->exec_size == 8);
2065 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
2066 } else {
2067 assert(inst->mlen >= 1);
2068 assert(inst->exec_size == 8);
2069 gen4_math(p, dst, brw_math_function(inst->opcode),
2070 inst->base_mrf, src[0],
2071 BRW_MATH_PRECISION_FULL);
2072 send_count++;
2073 }
2074 break;
2075 case FS_OPCODE_LINTERP:
2076 multiple_instructions_emitted = generate_linterp(inst, dst, src);
2077 break;
2078 case FS_OPCODE_PIXEL_X:
2079 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2080 src[0].subnr = 0 * type_sz(src[0].type);
2081 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2082 break;
2083 case FS_OPCODE_PIXEL_Y:
2084 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2085 src[0].subnr = 4 * type_sz(src[0].type);
2086 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2087 break;
2088
2089 case SHADER_OPCODE_SEND:
2090 generate_send(inst, dst, src[0], src[1], src[2],
2091 inst->ex_mlen > 0 ? src[3] : brw_null_reg());
2092 if ((inst->desc & 0xff) == BRW_BTI_STATELESS ||
2093 (inst->desc & 0xff) == GEN8_BTI_STATELESS_NON_COHERENT) {
2094 if (inst->size_written)
2095 fill_count++;
2096 else
2097 spill_count++;
2098 } else {
2099 send_count++;
2100 }
2101 break;
2102
2103 case SHADER_OPCODE_GET_BUFFER_SIZE:
2104 generate_get_buffer_size(inst, dst, src[0], src[1]);
2105 send_count++;
2106 break;
2107 case SHADER_OPCODE_TEX:
2108 case FS_OPCODE_TXB:
2109 case SHADER_OPCODE_TXD:
2110 case SHADER_OPCODE_TXF:
2111 case SHADER_OPCODE_TXF_CMS:
2112 case SHADER_OPCODE_TXL:
2113 case SHADER_OPCODE_TXS:
2114 case SHADER_OPCODE_LOD:
2115 case SHADER_OPCODE_TG4:
2116 case SHADER_OPCODE_SAMPLEINFO:
2117 assert(inst->src[0].file == BAD_FILE);
2118 generate_tex(inst, dst, src[1], src[2]);
2119 send_count++;
2120 break;
2121
2122 case FS_OPCODE_DDX_COARSE:
2123 case FS_OPCODE_DDX_FINE:
2124 generate_ddx(inst, dst, src[0]);
2125 break;
2126 case FS_OPCODE_DDY_COARSE:
2127 case FS_OPCODE_DDY_FINE:
2128 generate_ddy(inst, dst, src[0]);
2129 break;
2130
2131 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2132 generate_scratch_write(inst, src[0]);
2133 spill_count++;
2134 break;
2135
2136 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2137 generate_scratch_read(inst, dst);
2138 fill_count++;
2139 break;
2140
2141 case SHADER_OPCODE_GEN7_SCRATCH_READ:
2142 generate_scratch_read_gen7(inst, dst);
2143 fill_count++;
2144 break;
2145
2146 case SHADER_OPCODE_MOV_INDIRECT:
2147 generate_mov_indirect(inst, dst, src[0], src[1]);
2148 break;
2149
2150 case SHADER_OPCODE_URB_READ_SIMD8:
2151 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
2152 generate_urb_read(inst, dst, src[0]);
2153 send_count++;
2154 break;
2155
2156 case SHADER_OPCODE_URB_WRITE_SIMD8:
2157 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
2158 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
2159 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
2160 generate_urb_write(inst, src[0]);
2161 send_count++;
2162 break;
2163
2164 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
2165 assert(inst->force_writemask_all);
2166 generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
2167 send_count++;
2168 break;
2169
2170 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
2171 assert(inst->force_writemask_all);
2172 generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2173 send_count++;
2174 break;
2175
2176 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
2177 generate_varying_pull_constant_load_gen4(inst, dst, src[0]);
2178 send_count++;
2179 break;
2180
2181 case FS_OPCODE_REP_FB_WRITE:
2182 case FS_OPCODE_FB_WRITE:
2183 generate_fb_write(inst, src[0]);
2184 send_count++;
2185 break;
2186
2187 case FS_OPCODE_FB_READ:
2188 generate_fb_read(inst, dst, src[0]);
2189 send_count++;
2190 break;
2191
2192 case FS_OPCODE_DISCARD_JUMP:
2193 generate_discard_jump(inst);
2194 break;
2195
2196 case SHADER_OPCODE_SHADER_TIME_ADD:
2197 generate_shader_time_add(inst, src[0], src[1], src[2]);
2198 break;
2199
2200 case SHADER_OPCODE_MEMORY_FENCE:
2201 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2202 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2203 brw_memory_fence(p, dst, src[0], BRW_OPCODE_SEND, src[1].ud, src[2].ud);
2204 send_count++;
2205 break;
2206
2207 case FS_OPCODE_SCHEDULING_FENCE:
2208 if (unlikely(debug_flag))
2209 disasm_info->use_tail = true;
2210 break;
2211
2212 case SHADER_OPCODE_INTERLOCK:
2213 assert(devinfo->gen >= 9);
2214 /* The interlock is basically a memory fence issued via sendc */
2215 brw_memory_fence(p, dst, src[0], BRW_OPCODE_SENDC, false, /* bti */ 0);
2216 break;
2217
2218 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
2219 const struct brw_reg mask =
2220 brw_stage_has_packed_dispatch(devinfo, stage,
2221 prog_data) ? brw_imm_ud(~0u) :
2222 stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
2223 brw_dmask_reg();
2224 brw_find_live_channel(p, dst, mask);
2225 break;
2226 }
2227 case FS_OPCODE_LOAD_LIVE_CHANNELS: {
2228 assert(devinfo->gen >= 8);
2229 assert(inst->force_writemask_all && inst->group == 0);
2230 assert(inst->dst.file == BAD_FILE);
2231 brw_set_default_exec_size(p, BRW_EXECUTE_1);
2232 brw_MOV(p, retype(brw_flag_subreg(inst->flag_subreg),
2233 BRW_REGISTER_TYPE_UD),
2234 retype(brw_mask_reg(0), BRW_REGISTER_TYPE_UD));
2235 break;
2236 }
2237 case SHADER_OPCODE_BROADCAST:
2238 assert(inst->force_writemask_all);
2239 brw_broadcast(p, dst, src[0], src[1]);
2240 break;
2241
2242 case SHADER_OPCODE_SHUFFLE:
2243 generate_shuffle(inst, dst, src[0], src[1]);
2244 break;
2245
2246 case SHADER_OPCODE_SEL_EXEC:
2247 assert(inst->force_writemask_all);
2248 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2249 brw_MOV(p, dst, src[1]);
2250 brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2251 brw_set_default_swsb(p, tgl_swsb_null());
2252 brw_MOV(p, dst, src[0]);
2253 break;
2254
2255 case SHADER_OPCODE_QUAD_SWIZZLE:
2256 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2257 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2258 generate_quad_swizzle(inst, dst, src[0], src[1].ud);
2259 break;
2260
2261 case SHADER_OPCODE_CLUSTER_BROADCAST: {
2262 assert(!src[0].negate && !src[0].abs);
2263 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2264 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2265 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2266 assert(src[2].type == BRW_REGISTER_TYPE_UD);
2267 const unsigned component = src[1].ud;
2268 const unsigned cluster_size = src[2].ud;
2269 unsigned vstride = cluster_size;
2270 unsigned width = cluster_size;
2271
2272 /* The maximum exec_size is 32, but the maximum width is only 16. */
2273 if (inst->exec_size == width) {
2274 vstride = 0;
2275 width = 1;
2276 }
2277
2278 struct brw_reg strided = stride(suboffset(src[0], component),
2279 vstride, width, 0);
2280 if (type_sz(src[0].type) > 4 &&
2281 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
2282 /* IVB has an issue (which we found empirically) where it reads
2283 * two address register components per channel for indirectly
2284 * addressed 64-bit sources.
2285 *
2286 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
2287 *
2288 * "When source or destination datatype is 64b or operation is
2289 * integer DWord multiply, indirect addressing must not be
2290 * used."
2291 *
2292 * To work around both of these, we do two integer MOVs insead of
2293 * one 64-bit MOV. Because no double value should ever cross a
2294 * register boundary, it's safe to use the immediate offset in the
2295 * indirect here to handle adding 4 bytes to the offset and avoid
2296 * the extra ADD to the register file.
2297 */
2298 assert(src[0].type == dst.type);
2299 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
2300 subscript(strided, BRW_REGISTER_TYPE_D, 0));
2301 brw_set_default_swsb(p, tgl_swsb_null());
2302 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
2303 subscript(strided, BRW_REGISTER_TYPE_D, 1));
2304 } else {
2305 brw_MOV(p, dst, strided);
2306 }
2307 break;
2308 }
2309
2310 case FS_OPCODE_SET_SAMPLE_ID:
2311 generate_set_sample_id(inst, dst, src[0], src[1]);
2312 break;
2313
2314 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
2315 generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
2316 break;
2317
2318 case FS_OPCODE_PLACEHOLDER_HALT:
2319 /* This is the place where the final HALT needs to be inserted if
2320 * we've emitted any discards. If not, this will emit no code.
2321 */
2322 if (!patch_discard_jumps_to_fb_writes()) {
2323 if (unlikely(debug_flag)) {
2324 disasm_info->use_tail = true;
2325 }
2326 }
2327 break;
2328
2329 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
2330 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2331 GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
2332 send_count++;
2333 break;
2334
2335 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
2336 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2337 GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
2338 send_count++;
2339 break;
2340
2341 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
2342 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2343 GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
2344 send_count++;
2345 break;
2346
2347 case CS_OPCODE_CS_TERMINATE:
2348 generate_cs_terminate(inst, src[0]);
2349 send_count++;
2350 break;
2351
2352 case SHADER_OPCODE_BARRIER:
2353 generate_barrier(inst, src[0]);
2354 send_count++;
2355 break;
2356
2357 case BRW_OPCODE_DIM:
2358 assert(devinfo->is_haswell);
2359 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2360 assert(dst.type == BRW_REGISTER_TYPE_DF);
2361 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2362 break;
2363
2364 case SHADER_OPCODE_RND_MODE: {
2365 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2366 /*
2367 * Changes the floating point rounding mode updating the control
2368 * register field defined at cr0.0[5-6] bits.
2369 */
2370 enum brw_rnd_mode mode =
2371 (enum brw_rnd_mode) (src[0].d << BRW_CR0_RND_MODE_SHIFT);
2372 brw_float_controls_mode(p, mode, BRW_CR0_RND_MODE_MASK);
2373 }
2374 break;
2375
2376 case SHADER_OPCODE_FLOAT_CONTROL_MODE:
2377 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2378 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2379 brw_float_controls_mode(p, src[0].d, src[1].d);
2380 break;
2381
2382 default:
2383 unreachable("Unsupported opcode");
2384
2385 case SHADER_OPCODE_LOAD_PAYLOAD:
2386 unreachable("Should be lowered by lower_load_payload()");
2387 }
2388
2389 if (multiple_instructions_emitted)
2390 continue;
2391
2392 if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2393 assert(p->next_insn_offset == last_insn_offset + 16 ||
2394 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2395 "emitting more than 1 instruction");
2396
2397 brw_inst *last = &p->store[last_insn_offset / 16];
2398
2399 if (inst->conditional_mod)
2400 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2401 if (devinfo->gen < 12) {
2402 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2403 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2404 }
2405 }
2406 }
2407
2408 brw_set_uip_jip(p, start_offset);
2409
2410 /* end of program sentinel */
2411 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2412
2413 #ifndef NDEBUG
2414 bool validated =
2415 #else
2416 if (unlikely(debug_flag))
2417 #endif
2418 brw_validate_instructions(devinfo, p->store,
2419 start_offset,
2420 p->next_insn_offset,
2421 disasm_info);
2422
2423 int before_size = p->next_insn_offset - start_offset;
2424 brw_compact_instructions(p, start_offset, disasm_info);
2425 int after_size = p->next_insn_offset - start_offset;
2426
2427 if (unlikely(debug_flag)) {
2428 unsigned char sha1[21];
2429 char sha1buf[41];
2430
2431 _mesa_sha1_compute(p->store + start_offset / sizeof(brw_inst),
2432 after_size, sha1);
2433 _mesa_sha1_format(sha1buf, sha1);
2434
2435 fprintf(stderr, "Native code for %s (sha1 %s)\n"
2436 "SIMD%d shader: %d instructions. %d loops. %u cycles. "
2437 "%d:%d spills:fills, %u sends, "
2438 "scheduled with mode %s. "
2439 "Promoted %u constants. "
2440 "Compacted %d to %d bytes (%.0f%%)\n",
2441 shader_name, sha1buf,
2442 dispatch_width, before_size / 16,
2443 loop_count, cfg->cycle_count,
2444 spill_count, fill_count, send_count,
2445 shader_stats.scheduler_mode,
2446 shader_stats.promoted_constants,
2447 before_size, after_size,
2448 100.0f * (before_size - after_size) / before_size);
2449
2450 /* overriding the shader makes disasm_info invalid */
2451 if (!brw_try_override_assembly(p, start_offset, sha1buf)) {
2452 dump_assembly(p->store, disasm_info);
2453 } else {
2454 fprintf(stderr, "Successfully overrode shader with sha1 %s\n\n", sha1buf);
2455 }
2456 }
2457 ralloc_free(disasm_info);
2458 assert(validated);
2459
2460 compiler->shader_debug_log(log_data,
2461 "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
2462 "%d:%d spills:fills, %u sends, "
2463 "scheduled with mode %s, "
2464 "Promoted %u constants, "
2465 "compacted %d to %d bytes.",
2466 _mesa_shader_stage_to_abbrev(stage),
2467 dispatch_width, before_size / 16,
2468 loop_count, cfg->cycle_count,
2469 spill_count, fill_count, send_count,
2470 shader_stats.scheduler_mode,
2471 shader_stats.promoted_constants,
2472 before_size, after_size);
2473 if (stats) {
2474 stats->dispatch_width = dispatch_width;
2475 stats->instructions = before_size / 16;
2476 stats->loops = loop_count;
2477 stats->cycles = cfg->cycle_count;
2478 stats->spills = spill_count;
2479 stats->fills = fill_count;
2480 }
2481
2482 return start_offset;
2483 }
2484
2485 const unsigned *
2486 fs_generator::get_assembly()
2487 {
2488 return brw_get_program(p, &prog_data->program_size);
2489 }