intel/fs: Use ALIGN16 instructions for all derivatives on gen <= 7
[mesa.git] / src / intel / compiler / brw_fs_generator.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_generator.cpp
25 *
26 * This file supports generating code from the FS LIR to the actual
27 * native instructions.
28 */
29
30 #include "brw_eu.h"
31 #include "brw_fs.h"
32 #include "brw_cfg.h"
33
34 static enum brw_reg_file
35 brw_file_from_reg(fs_reg *reg)
36 {
37 switch (reg->file) {
38 case ARF:
39 return BRW_ARCHITECTURE_REGISTER_FILE;
40 case FIXED_GRF:
41 case VGRF:
42 return BRW_GENERAL_REGISTER_FILE;
43 case MRF:
44 return BRW_MESSAGE_REGISTER_FILE;
45 case IMM:
46 return BRW_IMMEDIATE_VALUE;
47 case BAD_FILE:
48 case ATTR:
49 case UNIFORM:
50 unreachable("not reached");
51 }
52 return BRW_ARCHITECTURE_REGISTER_FILE;
53 }
54
55 static struct brw_reg
56 brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst,
57 fs_reg *reg, bool compressed)
58 {
59 struct brw_reg brw_reg;
60
61 switch (reg->file) {
62 case MRF:
63 assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
64 /* Fallthrough */
65 case VGRF:
66 if (reg->stride == 0) {
67 brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
68 } else {
69 /* From the Haswell PRM:
70 *
71 * "VertStride must be used to cross GRF register boundaries. This
72 * rule implies that elements within a 'Width' cannot cross GRF
73 * boundaries."
74 *
75 * The maximum width value that could satisfy this restriction is:
76 */
77 const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
78
79 /* Because the hardware can only split source regions at a whole
80 * multiple of width during decompression (i.e. vertically), clamp
81 * the value obtained above to the physical execution size of a
82 * single decompressed chunk of the instruction:
83 */
84 const unsigned phys_width = compressed ? inst->exec_size / 2 :
85 inst->exec_size;
86
87 /* XXX - The equation above is strictly speaking not correct on
88 * hardware that supports unbalanced GRF writes -- On Gen9+
89 * each decompressed chunk of the instruction may have a
90 * different execution size when the number of components
91 * written to each destination GRF is not the same.
92 */
93 if (reg->stride > 4) {
94 assert(reg != &inst->dst);
95 assert(reg->stride * type_sz(reg->type) <= REG_SIZE);
96 brw_reg = brw_vecn_reg(1, brw_file_from_reg(reg), reg->nr, 0);
97 brw_reg = stride(brw_reg, reg->stride, 1, 0);
98 } else {
99 const unsigned width = MIN2(reg_width, phys_width);
100 brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
101 brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
102 }
103
104 if (devinfo->gen == 7 && !devinfo->is_haswell) {
105 /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
106 * "Each DF (Double Float) operand uses an element size of 4 rather
107 * than 8 and all regioning parameters are twice what the values
108 * would be based on the true element size: ExecSize, Width,
109 * HorzStride, and VertStride. Each DF operand uses a pair of
110 * channels and all masking and swizzing should be adjusted
111 * appropriately."
112 *
113 * From the IvyBridge PRM (Special Requirements for Handling Double
114 * Precision Data Types, page 71):
115 * "In Align1 mode, all regioning parameters like stride, execution
116 * size, and width must use the syntax of a pair of packed
117 * floats. The offsets for these data types must be 64-bit
118 * aligned. The execution size and regioning parameters are in terms
119 * of floats."
120 *
121 * Summarized: when handling DF-typed arguments, ExecSize,
122 * VertStride, and Width must be doubled.
123 *
124 * It applies to BayTrail too.
125 */
126 if (type_sz(reg->type) == 8) {
127 brw_reg.width++;
128 if (brw_reg.vstride > 0)
129 brw_reg.vstride++;
130 assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
131 }
132
133 /* When converting from DF->F, we set the destination stride to 2
134 * because each d2f conversion implicitly writes 2 floats, being
135 * the first one the converted value. IVB/BYT actually writes two
136 * F components per SIMD channel, and every other component is
137 * filled with garbage.
138 */
139 if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
140 type_sz(inst->dst.type) < 8) {
141 assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
142 brw_reg.hstride--;
143 }
144 }
145 }
146
147 brw_reg = retype(brw_reg, reg->type);
148 brw_reg = byte_offset(brw_reg, reg->offset);
149 brw_reg.abs = reg->abs;
150 brw_reg.negate = reg->negate;
151 break;
152 case ARF:
153 case FIXED_GRF:
154 case IMM:
155 assert(reg->offset == 0);
156 brw_reg = reg->as_brw_reg();
157 break;
158 case BAD_FILE:
159 /* Probably unused. */
160 brw_reg = brw_null_reg();
161 break;
162 case ATTR:
163 case UNIFORM:
164 unreachable("not reached");
165 }
166
167 /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
168 * region, but on IVB and BYT DF regions must be programmed in terms of
169 * floats. A <0,2,1> region accomplishes this.
170 */
171 if (devinfo->gen == 7 && !devinfo->is_haswell &&
172 type_sz(reg->type) == 8 &&
173 brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
174 brw_reg.width == BRW_WIDTH_1 &&
175 brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
176 brw_reg.width = BRW_WIDTH_2;
177 brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
178 }
179
180 return brw_reg;
181 }
182
183 fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
184 void *mem_ctx,
185 struct brw_stage_prog_data *prog_data,
186 struct shader_stats shader_stats,
187 bool runtime_check_aads_emit,
188 gl_shader_stage stage)
189
190 : compiler(compiler), log_data(log_data),
191 devinfo(compiler->devinfo),
192 prog_data(prog_data),
193 shader_stats(shader_stats),
194 runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
195 stage(stage), mem_ctx(mem_ctx)
196 {
197 p = rzalloc(mem_ctx, struct brw_codegen);
198 brw_init_codegen(devinfo, p, mem_ctx);
199
200 /* In the FS code generator, we are very careful to ensure that we always
201 * set the right execution size so we don't need the EU code to "help" us
202 * by trying to infer it. Sometimes, it infers the wrong thing.
203 */
204 p->automatic_exec_sizes = false;
205 }
206
207 fs_generator::~fs_generator()
208 {
209 }
210
211 class ip_record : public exec_node {
212 public:
213 DECLARE_RALLOC_CXX_OPERATORS(ip_record)
214
215 ip_record(int ip)
216 {
217 this->ip = ip;
218 }
219
220 int ip;
221 };
222
223 bool
224 fs_generator::patch_discard_jumps_to_fb_writes()
225 {
226 if (devinfo->gen < 6 || this->discard_halt_patches.is_empty())
227 return false;
228
229 int scale = brw_jump_scale(p->devinfo);
230
231 /* There is a somewhat strange undocumented requirement of using
232 * HALT, according to the simulator. If some channel has HALTed to
233 * a particular UIP, then by the end of the program, every channel
234 * must have HALTed to that UIP. Furthermore, the tracking is a
235 * stack, so you can't do the final halt of a UIP after starting
236 * halting to a new UIP.
237 *
238 * Symptoms of not emitting this instruction on actual hardware
239 * included GPU hangs and sparkly rendering on the piglit discard
240 * tests.
241 */
242 brw_inst *last_halt = gen6_HALT(p);
243 brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
244 brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
245
246 int ip = p->nr_insn;
247
248 foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
249 brw_inst *patch = &p->store[patch_ip->ip];
250
251 assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
252 /* HALT takes a half-instruction distance from the pre-incremented IP. */
253 brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
254 }
255
256 this->discard_halt_patches.make_empty();
257 return true;
258 }
259
260 void
261 fs_generator::generate_send(fs_inst *inst,
262 struct brw_reg dst,
263 struct brw_reg desc,
264 struct brw_reg ex_desc,
265 struct brw_reg payload,
266 struct brw_reg payload2)
267 {
268 const bool dst_is_null = dst.file == BRW_ARCHITECTURE_REGISTER_FILE &&
269 dst.nr == BRW_ARF_NULL;
270 const unsigned rlen = dst_is_null ? 0 : inst->size_written / REG_SIZE;
271
272 uint32_t desc_imm = inst->desc |
273 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size);
274
275 uint32_t ex_desc_imm = brw_message_ex_desc(devinfo, inst->ex_mlen);
276
277 if (ex_desc.file != BRW_IMMEDIATE_VALUE || ex_desc.ud || ex_desc_imm) {
278 /* If we have any sort of extended descriptor, then we need SENDS. This
279 * also covers the dual-payload case because ex_mlen goes in ex_desc.
280 */
281 brw_send_indirect_split_message(p, inst->sfid, dst, payload, payload2,
282 desc, desc_imm, ex_desc, ex_desc_imm,
283 inst->eot);
284 if (inst->check_tdr)
285 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDSC);
286 } else {
287 brw_send_indirect_message(p, inst->sfid, dst, payload, desc, desc_imm,
288 inst->eot);
289 if (inst->check_tdr)
290 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
291 }
292 }
293
294 void
295 fs_generator::fire_fb_write(fs_inst *inst,
296 struct brw_reg payload,
297 struct brw_reg implied_header,
298 GLuint nr)
299 {
300 uint32_t msg_control;
301
302 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
303
304 if (devinfo->gen < 6) {
305 brw_push_insn_state(p);
306 brw_set_default_exec_size(p, BRW_EXECUTE_8);
307 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
308 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
309 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
310 brw_MOV(p, offset(retype(payload, BRW_REGISTER_TYPE_UD), 1),
311 offset(retype(implied_header, BRW_REGISTER_TYPE_UD), 1));
312 brw_pop_insn_state(p);
313 }
314
315 if (inst->opcode == FS_OPCODE_REP_FB_WRITE) {
316 assert(inst->group == 0 && inst->exec_size == 16);
317 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
318
319 } else if (prog_data->dual_src_blend) {
320 assert(inst->exec_size == 8);
321
322 if (inst->group % 16 == 0)
323 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
324 else if (inst->group % 16 == 8)
325 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
326 else
327 unreachable("Invalid dual-source FB write instruction group");
328
329 } else {
330 assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));
331
332 if (inst->exec_size == 16)
333 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
334 else if (inst->exec_size == 8)
335 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
336 else
337 unreachable("Invalid FB write execution size");
338 }
339
340 /* We assume render targets start at 0, because headerless FB write
341 * messages set "Render Target Index" to 0. Using a different binding
342 * table index would make it impossible to use headerless messages.
343 */
344 const uint32_t surf_index = inst->target;
345
346 brw_inst *insn = brw_fb_WRITE(p,
347 payload,
348 retype(implied_header, BRW_REGISTER_TYPE_UW),
349 msg_control,
350 surf_index,
351 nr,
352 0,
353 inst->eot,
354 inst->last_rt,
355 inst->header_size != 0);
356
357 if (devinfo->gen >= 6)
358 brw_inst_set_rt_slot_group(devinfo, insn, inst->group / 16);
359 }
360
361 void
362 fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
363 {
364 if (devinfo->gen < 8 && !devinfo->is_haswell) {
365 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
366 brw_set_default_flag_reg(p, 0, 0);
367 }
368
369 const struct brw_reg implied_header =
370 devinfo->gen < 6 ? payload : brw_null_reg();
371
372 if (inst->base_mrf >= 0)
373 payload = brw_message_reg(inst->base_mrf);
374
375 if (!runtime_check_aads_emit) {
376 fire_fb_write(inst, payload, implied_header, inst->mlen);
377 } else {
378 /* This can only happen in gen < 6 */
379 assert(devinfo->gen < 6);
380
381 struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
382
383 /* Check runtime bit to detect if we have to send AA data or not */
384 brw_push_insn_state(p);
385 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
386 brw_set_default_exec_size(p, BRW_EXECUTE_1);
387 brw_AND(p,
388 v1_null_ud,
389 retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
390 brw_imm_ud(1<<26));
391 brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
392
393 int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
394 brw_pop_insn_state(p);
395 {
396 /* Don't send AA data */
397 fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
398 }
399 brw_land_fwd_jump(p, jmp);
400 fire_fb_write(inst, payload, implied_header, inst->mlen);
401 }
402 }
403
404 void
405 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
406 struct brw_reg payload)
407 {
408 assert(inst->size_written % REG_SIZE == 0);
409 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
410 /* We assume that render targets start at binding table index 0. */
411 const unsigned surf_index = inst->target;
412
413 gen9_fb_READ(p, dst, payload, surf_index,
414 inst->header_size, inst->size_written / REG_SIZE,
415 prog_data->persample_dispatch);
416 }
417
418 void
419 fs_generator::generate_mov_indirect(fs_inst *inst,
420 struct brw_reg dst,
421 struct brw_reg reg,
422 struct brw_reg indirect_byte_offset)
423 {
424 assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
425 assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
426 assert(!reg.abs && !reg.negate);
427 assert(reg.type == dst.type);
428
429 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
430
431 if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
432 imm_byte_offset += indirect_byte_offset.ud;
433
434 reg.nr = imm_byte_offset / REG_SIZE;
435 reg.subnr = imm_byte_offset % REG_SIZE;
436 brw_MOV(p, dst, reg);
437 } else {
438 /* Prior to Broadwell, there are only 8 address registers. */
439 assert(inst->exec_size <= 8 || devinfo->gen >= 8);
440
441 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
442 struct brw_reg addr = vec8(brw_address_reg(0));
443
444 /* The destination stride of an instruction (in bytes) must be greater
445 * than or equal to the size of the rest of the instruction. Since the
446 * address register is of type UW, we can't use a D-type instruction.
447 * In order to get around this, re retype to UW and use a stride.
448 */
449 indirect_byte_offset =
450 retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
451
452 /* There are a number of reasons why we don't use the base offset here.
453 * One reason is that the field is only 9 bits which means we can only
454 * use it to access the first 16 GRFs. Also, from the Haswell PRM
455 * section "Register Region Restrictions":
456 *
457 * "The lower bits of the AddressImmediate must not overflow to
458 * change the register address. The lower 5 bits of Address
459 * Immediate when added to lower 5 bits of address register gives
460 * the sub-register offset. The upper bits of Address Immediate
461 * when added to upper bits of address register gives the register
462 * address. Any overflow from sub-register offset is dropped."
463 *
464 * Since the indirect may cause us to cross a register boundary, this
465 * makes the base offset almost useless. We could try and do something
466 * clever where we use a actual base offset if base_offset % 32 == 0 but
467 * that would mean we were generating different code depending on the
468 * base offset. Instead, for the sake of consistency, we'll just do the
469 * add ourselves. This restriction is only listed in the Haswell PRM
470 * but empirical testing indicates that it applies on all older
471 * generations and is lifted on Broadwell.
472 *
473 * In the end, while base_offset is nice to look at in the generated
474 * code, using it saves us 0 instructions and would require quite a bit
475 * of case-by-case work. It's just not worth it.
476 */
477 brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
478
479 if (type_sz(reg.type) > 4 &&
480 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
481 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo) ||
482 !devinfo->has_64bit_types)) {
483 /* IVB has an issue (which we found empirically) where it reads two
484 * address register components per channel for indirectly addressed
485 * 64-bit sources.
486 *
487 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
488 *
489 * "When source or destination datatype is 64b or operation is
490 * integer DWord multiply, indirect addressing must not be used."
491 *
492 * To work around both of these, we do two integer MOVs insead of one
493 * 64-bit MOV. Because no double value should ever cross a register
494 * boundary, it's safe to use the immediate offset in the indirect
495 * here to handle adding 4 bytes to the offset and avoid the extra
496 * ADD to the register file.
497 */
498 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
499 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
500 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
501 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
502 } else {
503 struct brw_reg ind_src = brw_VxH_indirect(0, 0);
504
505 brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
506
507 if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
508 !inst->get_next()->is_tail_sentinel() &&
509 ((fs_inst *)inst->get_next())->mlen > 0) {
510 /* From the Sandybridge PRM:
511 *
512 * "[Errata: DevSNB(SNB)] If MRF register is updated by any
513 * instruction that “indexed/indirect” source AND is followed
514 * by a send, the instruction requires a “Switch”. This is to
515 * avoid race condition where send may dispatch before MRF is
516 * updated."
517 */
518 brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
519 }
520 }
521 }
522 }
523
524 void
525 fs_generator::generate_shuffle(fs_inst *inst,
526 struct brw_reg dst,
527 struct brw_reg src,
528 struct brw_reg idx)
529 {
530 /* Ivy bridge has some strange behavior that makes this a real pain to
531 * implement for 64-bit values so we just don't bother.
532 */
533 assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4);
534
535 /* Because we're using the address register, we're limited to 8-wide
536 * execution on gen7. On gen8, we're limited to 16-wide by the address
537 * register file and 8-wide for 64-bit types. We could try and make this
538 * instruction splittable higher up in the compiler but that gets weird
539 * because it reads all of the channels regardless of execution size. It's
540 * easier just to split it here.
541 */
542 const unsigned lower_width =
543 (devinfo->gen <= 7 || type_sz(src.type) > 4) ?
544 8 : MIN2(16, inst->exec_size);
545
546 brw_set_default_exec_size(p, cvt(lower_width) - 1);
547 for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
548 brw_set_default_group(p, group);
549
550 if ((src.vstride == 0 && src.hstride == 0) ||
551 idx.file == BRW_IMMEDIATE_VALUE) {
552 /* Trivial, the source is already uniform or the index is a constant.
553 * We will typically not get here if the optimizer is doing its job,
554 * but asserting would be mean.
555 */
556 const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
557 brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0));
558 } else {
559 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
560 struct brw_reg addr = vec8(brw_address_reg(0));
561
562 struct brw_reg group_idx = suboffset(idx, group);
563
564 if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
565 /* Things get grumpy if the register is too wide. */
566 group_idx.width--;
567 group_idx.vstride--;
568 }
569
570 assert(type_sz(group_idx.type) <= 4);
571 if (type_sz(group_idx.type) == 4) {
572 /* The destination stride of an instruction (in bytes) must be
573 * greater than or equal to the size of the rest of the
574 * instruction. Since the address register is of type UW, we
575 * can't use a D-type instruction. In order to get around this,
576 * re retype to UW and use a stride.
577 */
578 group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
579 }
580
581 /* Take into account the component size and horizontal stride. */
582 assert(src.vstride == src.hstride + src.width);
583 brw_SHL(p, addr, group_idx,
584 brw_imm_uw(_mesa_logbase2(type_sz(src.type)) +
585 src.hstride - 1));
586
587 /* Add on the register start offset */
588 brw_ADD(p, addr, addr, brw_imm_uw(src.nr * REG_SIZE + src.subnr));
589
590 if (type_sz(src.type) > 4 &&
591 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
592 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
593 /* IVB has an issue (which we found empirically) where it reads
594 * two address register components per channel for indirectly
595 * addressed 64-bit sources.
596 *
597 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
598 *
599 * "When source or destination datatype is 64b or operation is
600 * integer DWord multiply, indirect addressing must not be
601 * used."
602 *
603 * To work around both of these, we do two integer MOVs insead of
604 * one 64-bit MOV. Because no double value should ever cross a
605 * register boundary, it's safe to use the immediate offset in the
606 * indirect here to handle adding 4 bytes to the offset and avoid
607 * the extra ADD to the register file.
608 */
609 struct brw_reg gdst = suboffset(dst, group);
610 struct brw_reg dst_d = retype(spread(gdst, 2),
611 BRW_REGISTER_TYPE_D);
612 brw_MOV(p, dst_d,
613 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
614 brw_MOV(p, byte_offset(dst_d, 4),
615 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
616 } else {
617 brw_MOV(p, suboffset(dst, group),
618 retype(brw_VxH_indirect(0, 0), src.type));
619 }
620 }
621 }
622 }
623
624 void
625 fs_generator::generate_quad_swizzle(const fs_inst *inst,
626 struct brw_reg dst, struct brw_reg src,
627 unsigned swiz)
628 {
629 /* Requires a quad. */
630 assert(inst->exec_size >= 4);
631
632 if (src.file == BRW_IMMEDIATE_VALUE ||
633 has_scalar_region(src)) {
634 /* The value is uniform across all channels */
635 brw_MOV(p, dst, src);
636
637 } else if (devinfo->gen < 11 && type_sz(src.type) == 4) {
638 /* This only works on 8-wide 32-bit values */
639 assert(inst->exec_size == 8);
640 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
641 assert(src.vstride == src.width + 1);
642 brw_set_default_access_mode(p, BRW_ALIGN_16);
643 struct brw_reg swiz_src = stride(src, 4, 4, 1);
644 swiz_src.swizzle = swiz;
645 brw_MOV(p, dst, swiz_src);
646
647 } else {
648 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
649 assert(src.vstride == src.width + 1);
650 const struct brw_reg src_0 = suboffset(src, BRW_GET_SWZ(swiz, 0));
651
652 switch (swiz) {
653 case BRW_SWIZZLE_XXXX:
654 case BRW_SWIZZLE_YYYY:
655 case BRW_SWIZZLE_ZZZZ:
656 case BRW_SWIZZLE_WWWW:
657 brw_MOV(p, dst, stride(src_0, 4, 4, 0));
658 break;
659
660 case BRW_SWIZZLE_XXZZ:
661 case BRW_SWIZZLE_YYWW:
662 brw_MOV(p, dst, stride(src_0, 2, 2, 0));
663 break;
664
665 case BRW_SWIZZLE_XYXY:
666 case BRW_SWIZZLE_ZWZW:
667 assert(inst->exec_size == 4);
668 brw_MOV(p, dst, stride(src_0, 0, 2, 1));
669 break;
670
671 default:
672 assert(inst->force_writemask_all);
673 brw_set_default_exec_size(p, cvt(inst->exec_size / 4) - 1);
674
675 for (unsigned c = 0; c < 4; c++) {
676 brw_inst *insn = brw_MOV(
677 p, stride(suboffset(dst, c),
678 4 * inst->dst.stride, 1, 4 * inst->dst.stride),
679 stride(suboffset(src, BRW_GET_SWZ(swiz, c)), 4, 1, 0));
680
681 brw_inst_set_no_dd_clear(devinfo, insn, c < 3);
682 brw_inst_set_no_dd_check(devinfo, insn, c > 0);
683 }
684
685 break;
686 }
687 }
688 }
689
690 void
691 fs_generator::generate_urb_read(fs_inst *inst,
692 struct brw_reg dst,
693 struct brw_reg header)
694 {
695 assert(inst->size_written % REG_SIZE == 0);
696 assert(header.file == BRW_GENERAL_REGISTER_FILE);
697 assert(header.type == BRW_REGISTER_TYPE_UD);
698
699 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
700 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
701 brw_set_src0(p, send, header);
702 brw_set_src1(p, send, brw_imm_ud(0u));
703
704 brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
705 brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ);
706
707 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
708 brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
709
710 brw_inst_set_mlen(p->devinfo, send, inst->mlen);
711 brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
712 brw_inst_set_header_present(p->devinfo, send, true);
713 brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
714 }
715
716 void
717 fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
718 {
719 brw_inst *insn;
720
721 /* WaClearTDRRegBeforeEOTForNonPS.
722 *
723 * WA: Clear tdr register before send EOT in all non-PS shader kernels
724 *
725 * mov(8) tdr0:ud 0x0:ud {NoMask}"
726 */
727 if (inst->eot && p->devinfo->gen == 10) {
728 brw_push_insn_state(p);
729 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
730 brw_MOV(p, brw_tdr_reg(), brw_imm_uw(0));
731 brw_pop_insn_state(p);
732 }
733
734 insn = brw_next_insn(p, BRW_OPCODE_SEND);
735
736 brw_set_dest(p, insn, brw_null_reg());
737 brw_set_src0(p, insn, payload);
738 brw_set_src1(p, insn, brw_imm_ud(0u));
739
740 brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
741 brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE);
742
743 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
744 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
745 brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
746
747 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
748 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
749 brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
750
751 brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
752 brw_inst_set_rlen(p->devinfo, insn, 0);
753 brw_inst_set_eot(p->devinfo, insn, inst->eot);
754 brw_inst_set_header_present(p->devinfo, insn, true);
755 brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
756 }
757
758 void
759 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
760 {
761 struct brw_inst *insn;
762
763 insn = brw_next_insn(p, BRW_OPCODE_SEND);
764
765 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
766 brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
767 brw_set_src1(p, insn, brw_imm_ud(0u));
768
769 /* Terminate a compute shader by sending a message to the thread spawner.
770 */
771 brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
772 brw_inst_set_mlen(devinfo, insn, 1);
773 brw_inst_set_rlen(devinfo, insn, 0);
774 brw_inst_set_eot(devinfo, insn, inst->eot);
775 brw_inst_set_header_present(devinfo, insn, false);
776
777 brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
778 brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
779
780 /* Note that even though the thread has a URB resource associated with it,
781 * we set the "do not dereference URB" bit, because the URB resource is
782 * managed by the fixed-function unit, so it will free it automatically.
783 */
784 brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
785
786 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
787 }
788
789 void
790 fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
791 {
792 brw_barrier(p, src);
793 brw_WAIT(p);
794 }
795
796 bool
797 fs_generator::generate_linterp(fs_inst *inst,
798 struct brw_reg dst, struct brw_reg *src)
799 {
800 /* PLN reads:
801 * / in SIMD16 \
802 * -----------------------------------
803 * | src1+0 | src1+1 | src1+2 | src1+3 |
804 * |-----------------------------------|
805 * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
806 * -----------------------------------
807 *
808 * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
809 *
810 * -----------------------------------
811 * | src1+0 | src1+1 | src1+2 | src1+3 |
812 * |-----------------------------------|
813 * |(x0, x1)|(y0, y1)| | | in SIMD8
814 * |-----------------------------------|
815 * |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
816 * -----------------------------------
817 *
818 * See also: emit_interpolation_setup_gen4().
819 */
820 struct brw_reg delta_x = src[0];
821 struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
822 struct brw_reg interp = stride(src[1], 0, 1, 0);
823 brw_inst *i[2];
824
825 /* nir_lower_interpolation() will do the lowering to MAD instructions for
826 * us on gen11+
827 */
828 assert(devinfo->gen < 11);
829
830 if (devinfo->has_pln) {
831 if (devinfo->gen <= 6 && (delta_x.nr & 1) != 0) {
832 /* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane":
833 *
834 * "[DevSNB]:<src1> must be even register aligned.
835 *
836 * This restriction is lifted on Ivy Bridge.
837 *
838 * This means that we need to split PLN into LINE+MAC on-the-fly.
839 * Unfortunately, the inputs are laid out for PLN and not LINE+MAC so
840 * we have to split into SIMD8 pieces. For gen4 (!has_pln), the
841 * coordinate registers are laid out differently so we leave it as a
842 * SIMD16 instruction.
843 */
844 assert(inst->exec_size == 8 || inst->exec_size == 16);
845 assert(inst->group % 16 == 0);
846
847 brw_push_insn_state(p);
848 brw_set_default_exec_size(p, BRW_EXECUTE_8);
849
850 /* Thanks to two accumulators, we can emit all the LINEs and then all
851 * the MACs. This improves parallelism a bit.
852 */
853 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
854 brw_inst *line = brw_LINE(p, brw_null_reg(), interp,
855 offset(delta_x, g * 2));
856 brw_inst_set_group(devinfo, line, inst->group + g * 8);
857
858 /* LINE writes the accumulator automatically on gen4-5. On Sandy
859 * Bridge and later, we have to explicitly enable it.
860 */
861 if (devinfo->gen >= 6)
862 brw_inst_set_acc_wr_control(p->devinfo, line, true);
863
864 /* brw_set_default_saturate() is called before emitting
865 * instructions, so the saturate bit is set in each instruction,
866 * so we need to unset it on the LINE instructions.
867 */
868 brw_inst_set_saturate(p->devinfo, line, false);
869 }
870
871 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
872 brw_inst *mac = brw_MAC(p, offset(dst, g), suboffset(interp, 1),
873 offset(delta_x, g * 2 + 1));
874 brw_inst_set_group(devinfo, mac, inst->group + g * 8);
875 brw_inst_set_cond_modifier(p->devinfo, mac, inst->conditional_mod);
876 }
877
878 brw_pop_insn_state(p);
879
880 return true;
881 } else {
882 brw_PLN(p, dst, interp, delta_x);
883
884 return false;
885 }
886 } else {
887 i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
888 i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
889
890 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
891
892 /* brw_set_default_saturate() is called before emitting instructions, so
893 * the saturate bit is set in each instruction, so we need to unset it on
894 * the first instruction.
895 */
896 brw_inst_set_saturate(p->devinfo, i[0], false);
897
898 return true;
899 }
900 }
901
902 void
903 fs_generator::generate_get_buffer_size(fs_inst *inst,
904 struct brw_reg dst,
905 struct brw_reg src,
906 struct brw_reg surf_index)
907 {
908 assert(devinfo->gen >= 7);
909 assert(surf_index.file == BRW_IMMEDIATE_VALUE);
910
911 uint32_t simd_mode;
912 int rlen = 4;
913
914 switch (inst->exec_size) {
915 case 8:
916 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
917 break;
918 case 16:
919 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
920 break;
921 default:
922 unreachable("Invalid width for texture instruction");
923 }
924
925 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
926 rlen = 8;
927 dst = vec16(dst);
928 }
929
930 brw_SAMPLE(p,
931 retype(dst, BRW_REGISTER_TYPE_UW),
932 inst->base_mrf,
933 src,
934 surf_index.ud,
935 0,
936 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
937 rlen, /* response length */
938 inst->mlen,
939 inst->header_size > 0,
940 simd_mode,
941 BRW_SAMPLER_RETURN_FORMAT_SINT32);
942 }
943
944 void
945 fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst,
946 struct brw_reg surface_index,
947 struct brw_reg sampler_index)
948 {
949 assert(devinfo->gen < 7);
950 assert(inst->size_written % REG_SIZE == 0);
951 int msg_type = -1;
952 uint32_t simd_mode;
953 uint32_t return_format;
954
955 /* Sampler EOT message of less than the dispatch width would kill the
956 * thread prematurely.
957 */
958 assert(!inst->eot || inst->exec_size == dispatch_width);
959
960 switch (dst.type) {
961 case BRW_REGISTER_TYPE_D:
962 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
963 break;
964 case BRW_REGISTER_TYPE_UD:
965 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
966 break;
967 default:
968 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
969 break;
970 }
971
972 /* Stomp the resinfo output type to UINT32. On gens 4-5, the output type
973 * is set as part of the message descriptor. On gen4, the PRM seems to
974 * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
975 * later gens UINT32 is required. Once you hit Sandy Bridge, the bit is
976 * gone from the message descriptor entirely and you just get UINT32 all
977 * the time regasrdless. Since we can really only do non-UINT32 on gen4,
978 * just stomp it to UINT32 all the time.
979 */
980 if (inst->opcode == SHADER_OPCODE_TXS)
981 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
982
983 switch (inst->exec_size) {
984 case 8:
985 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
986 break;
987 case 16:
988 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
989 break;
990 default:
991 unreachable("Invalid width for texture instruction");
992 }
993
994 if (devinfo->gen >= 5) {
995 switch (inst->opcode) {
996 case SHADER_OPCODE_TEX:
997 if (inst->shadow_compare) {
998 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
999 } else {
1000 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
1001 }
1002 break;
1003 case FS_OPCODE_TXB:
1004 if (inst->shadow_compare) {
1005 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
1006 } else {
1007 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
1008 }
1009 break;
1010 case SHADER_OPCODE_TXL:
1011 if (inst->shadow_compare) {
1012 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
1013 } else {
1014 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
1015 }
1016 break;
1017 case SHADER_OPCODE_TXS:
1018 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
1019 break;
1020 case SHADER_OPCODE_TXD:
1021 assert(!inst->shadow_compare);
1022 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
1023 break;
1024 case SHADER_OPCODE_TXF:
1025 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1026 break;
1027 case SHADER_OPCODE_TXF_CMS:
1028 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1029 break;
1030 case SHADER_OPCODE_LOD:
1031 msg_type = GEN5_SAMPLER_MESSAGE_LOD;
1032 break;
1033 case SHADER_OPCODE_TG4:
1034 assert(devinfo->gen == 6);
1035 assert(!inst->shadow_compare);
1036 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
1037 break;
1038 case SHADER_OPCODE_SAMPLEINFO:
1039 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
1040 break;
1041 default:
1042 unreachable("not reached");
1043 }
1044 } else {
1045 switch (inst->opcode) {
1046 case SHADER_OPCODE_TEX:
1047 /* Note that G45 and older determines shadow compare and dispatch width
1048 * from message length for most messages.
1049 */
1050 if (inst->exec_size == 8) {
1051 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
1052 if (inst->shadow_compare) {
1053 assert(inst->mlen == 6);
1054 } else {
1055 assert(inst->mlen <= 4);
1056 }
1057 } else {
1058 if (inst->shadow_compare) {
1059 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1060 assert(inst->mlen == 9);
1061 } else {
1062 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1063 assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
1064 }
1065 }
1066 break;
1067 case FS_OPCODE_TXB:
1068 if (inst->shadow_compare) {
1069 assert(inst->exec_size == 8);
1070 assert(inst->mlen == 6);
1071 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
1072 } else {
1073 assert(inst->mlen == 9);
1074 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1075 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1076 }
1077 break;
1078 case SHADER_OPCODE_TXL:
1079 if (inst->shadow_compare) {
1080 assert(inst->exec_size == 8);
1081 assert(inst->mlen == 6);
1082 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
1083 } else {
1084 assert(inst->mlen == 9);
1085 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
1086 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1087 }
1088 break;
1089 case SHADER_OPCODE_TXD:
1090 /* There is no sample_d_c message; comparisons are done manually */
1091 assert(inst->exec_size == 8);
1092 assert(inst->mlen == 7 || inst->mlen == 10);
1093 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
1094 break;
1095 case SHADER_OPCODE_TXF:
1096 assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
1097 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1098 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1099 break;
1100 case SHADER_OPCODE_TXS:
1101 assert(inst->mlen == 3);
1102 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
1103 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1104 break;
1105 default:
1106 unreachable("not reached");
1107 }
1108 }
1109 assert(msg_type != -1);
1110
1111 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1112 dst = vec16(dst);
1113 }
1114
1115 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
1116
1117 /* Load the message header if present. If there's a texture offset,
1118 * we need to set it up explicitly and load the offset bitfield.
1119 * Otherwise, we can use an implied move from g0 to the first message reg.
1120 */
1121 struct brw_reg src = brw_null_reg();
1122 if (inst->header_size != 0) {
1123 if (devinfo->gen < 6 && !inst->offset) {
1124 /* Set up an implied move from g0 to the MRF. */
1125 src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1126 } else {
1127 assert(inst->base_mrf != -1);
1128 struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
1129
1130 brw_push_insn_state(p);
1131 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1132 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1133 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1134 /* Explicitly set up the message header by copying g0 to the MRF. */
1135 brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
1136
1137 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1138 if (inst->offset) {
1139 /* Set the offset bits in DWord 2. */
1140 brw_MOV(p, get_element_ud(header_reg, 2),
1141 brw_imm_ud(inst->offset));
1142 }
1143
1144 brw_pop_insn_state(p);
1145 }
1146 }
1147
1148 uint32_t base_binding_table_index;
1149 switch (inst->opcode) {
1150 case SHADER_OPCODE_TG4:
1151 base_binding_table_index = prog_data->binding_table.gather_texture_start;
1152 break;
1153 default:
1154 base_binding_table_index = prog_data->binding_table.texture_start;
1155 break;
1156 }
1157
1158 assert(surface_index.file == BRW_IMMEDIATE_VALUE);
1159 assert(sampler_index.file == BRW_IMMEDIATE_VALUE);
1160
1161 brw_SAMPLE(p,
1162 retype(dst, BRW_REGISTER_TYPE_UW),
1163 inst->base_mrf,
1164 src,
1165 surface_index.ud + base_binding_table_index,
1166 sampler_index.ud % 16,
1167 msg_type,
1168 inst->size_written / REG_SIZE,
1169 inst->mlen,
1170 inst->header_size != 0,
1171 simd_mode,
1172 return_format);
1173 }
1174
1175
1176 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
1177 * looking like:
1178 *
1179 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
1180 *
1181 * Ideally, we want to produce:
1182 *
1183 * DDX DDY
1184 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
1185 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
1186 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
1187 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
1188 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
1189 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
1190 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
1191 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
1192 *
1193 * and add another set of two more subspans if in 16-pixel dispatch mode.
1194 *
1195 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
1196 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
1197 * pair. But the ideal approximation may impose a huge performance cost on
1198 * sample_d. On at least Haswell, sample_d instruction does some
1199 * optimizations if the same LOD is used for all pixels in the subspan.
1200 *
1201 * For DDY, we need to use ALIGN16 mode since it's capable of doing the
1202 * appropriate swizzling.
1203 */
1204 void
1205 fs_generator::generate_ddx(const fs_inst *inst,
1206 struct brw_reg dst, struct brw_reg src)
1207 {
1208 unsigned vstride, width;
1209
1210 if (devinfo->gen >= 8) {
1211 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1212 /* produce accurate derivatives */
1213 vstride = BRW_VERTICAL_STRIDE_2;
1214 width = BRW_WIDTH_2;
1215 } else {
1216 /* replicate the derivative at the top-left pixel to other pixels */
1217 vstride = BRW_VERTICAL_STRIDE_4;
1218 width = BRW_WIDTH_4;
1219 }
1220
1221 struct brw_reg src0 = byte_offset(src, type_sz(src.type));;
1222 struct brw_reg src1 = src;
1223
1224 src0.vstride = vstride;
1225 src0.width = width;
1226 src0.hstride = BRW_HORIZONTAL_STRIDE_0;
1227 src1.vstride = vstride;
1228 src1.width = width;
1229 src1.hstride = BRW_HORIZONTAL_STRIDE_0;
1230
1231 brw_ADD(p, dst, src0, negate(src1));
1232 } else {
1233 /* On Haswell and earlier, the region used above appears to not work
1234 * correctly for compressed instructions. At least on Haswell and
1235 * Iron Lake, compressed ALIGN16 instructions do work. Since we
1236 * would have to split to SIMD8 no matter which method we choose, we
1237 * may as well use ALIGN16 on all platforms gen7 and earlier.
1238 */
1239 struct brw_reg src0 = stride(src, 4, 4, 1);
1240 struct brw_reg src1 = stride(src, 4, 4, 1);
1241 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1242 src0.swizzle = BRW_SWIZZLE_XXZZ;
1243 src1.swizzle = BRW_SWIZZLE_YYWW;
1244 } else {
1245 src0.swizzle = BRW_SWIZZLE_XXXX;
1246 src1.swizzle = BRW_SWIZZLE_YYYY;
1247 }
1248
1249 brw_push_insn_state(p);
1250 brw_set_default_access_mode(p, BRW_ALIGN_16);
1251 brw_ADD(p, dst, negate(src0), src1);
1252 brw_pop_insn_state(p);
1253 }
1254 }
1255
1256 /* The negate_value boolean is used to negate the derivative computation for
1257 * FBOs, since they place the origin at the upper left instead of the lower
1258 * left.
1259 */
1260 void
1261 fs_generator::generate_ddy(const fs_inst *inst,
1262 struct brw_reg dst, struct brw_reg src)
1263 {
1264 const uint32_t type_size = type_sz(src.type);
1265
1266 if (inst->opcode == FS_OPCODE_DDY_FINE) {
1267 /* produce accurate derivatives.
1268 *
1269 * From the Broadwell PRM, Volume 7 (3D-Media-GPGPU)
1270 * "Register Region Restrictions", Section "1. Special Restrictions":
1271 *
1272 * "In Align16 mode, the channel selects and channel enables apply to
1273 * a pair of half-floats, because these parameters are defined for
1274 * DWord elements ONLY. This is applicable when both source and
1275 * destination are half-floats."
1276 *
1277 * So for half-float operations we use the Gen11+ Align1 path. CHV
1278 * inherits its FP16 hardware from SKL, so it is not affected.
1279 */
1280 if (devinfo->gen >= 11 ||
1281 (devinfo->is_broadwell && src.type == BRW_REGISTER_TYPE_HF)) {
1282 src = stride(src, 0, 2, 1);
1283
1284 brw_push_insn_state(p);
1285 brw_set_default_exec_size(p, BRW_EXECUTE_4);
1286 for (uint32_t g = 0; g < inst->exec_size; g += 4) {
1287 brw_set_default_group(p, inst->group + g);
1288 brw_ADD(p, byte_offset(dst, g * type_size),
1289 negate(byte_offset(src, g * type_size)),
1290 byte_offset(src, (g + 2) * type_size));
1291 }
1292 brw_pop_insn_state(p);
1293 } else {
1294 struct brw_reg src0 = stride(src, 4, 4, 1);
1295 struct brw_reg src1 = stride(src, 4, 4, 1);
1296 src0.swizzle = BRW_SWIZZLE_XYXY;
1297 src1.swizzle = BRW_SWIZZLE_ZWZW;
1298
1299 brw_push_insn_state(p);
1300 brw_set_default_access_mode(p, BRW_ALIGN_16);
1301 brw_ADD(p, dst, negate(src0), src1);
1302 brw_pop_insn_state(p);
1303 }
1304 } else {
1305 /* replicate the derivative at the top-left pixel to other pixels */
1306 if (devinfo->gen >= 8) {
1307 struct brw_reg src0 = byte_offset(stride(src, 4, 4, 0), 0 * type_size);
1308 struct brw_reg src1 = byte_offset(stride(src, 4, 4, 0), 2 * type_size);
1309
1310 brw_ADD(p, dst, negate(src0), src1);
1311 } else {
1312 /* On Haswell and earlier, the region used above appears to not work
1313 * correctly for compressed instructions. At least on Haswell and
1314 * Iron Lake, compressed ALIGN16 instructions do work. Since we
1315 * would have to split to SIMD8 no matter which method we choose, we
1316 * may as well use ALIGN16 on all platforms gen7 and earlier.
1317 */
1318 struct brw_reg src0 = stride(src, 4, 4, 1);
1319 struct brw_reg src1 = stride(src, 4, 4, 1);
1320 src0.swizzle = BRW_SWIZZLE_XXXX;
1321 src1.swizzle = BRW_SWIZZLE_ZZZZ;
1322
1323 brw_push_insn_state(p);
1324 brw_set_default_access_mode(p, BRW_ALIGN_16);
1325 brw_ADD(p, dst, negate(src0), src1);
1326 brw_pop_insn_state(p);
1327 }
1328 }
1329 }
1330
1331 void
1332 fs_generator::generate_discard_jump(fs_inst *)
1333 {
1334 assert(devinfo->gen >= 6);
1335
1336 /* This HALT will be patched up at FB write time to point UIP at the end of
1337 * the program, and at brw_uip_jip() JIP will be set to the end of the
1338 * current block (or the program).
1339 */
1340 this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
1341 gen6_HALT(p);
1342 }
1343
1344 void
1345 fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
1346 {
1347 /* The 32-wide messages only respect the first 16-wide half of the channel
1348 * enable signals which are replicated identically for the second group of
1349 * 16 channels, so we cannot use them unless the write is marked
1350 * force_writemask_all.
1351 */
1352 const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
1353 MIN2(16, inst->exec_size);
1354 const unsigned block_size = 4 * lower_size / REG_SIZE;
1355 assert(inst->mlen != 0);
1356
1357 brw_push_insn_state(p);
1358 brw_set_default_exec_size(p, cvt(lower_size) - 1);
1359 brw_set_default_compression(p, lower_size > 8);
1360
1361 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1362 brw_set_default_group(p, inst->group + lower_size * i);
1363
1364 brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
1365 retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
1366
1367 brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
1368 block_size,
1369 inst->offset + block_size * REG_SIZE * i);
1370 }
1371
1372 brw_pop_insn_state(p);
1373 }
1374
1375 void
1376 fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
1377 {
1378 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1379 assert(inst->mlen != 0);
1380
1381 brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
1382 inst->exec_size / 8, inst->offset);
1383 }
1384
1385 void
1386 fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst)
1387 {
1388 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1389
1390 gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
1391 }
1392
1393 void
1394 fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
1395 struct brw_reg dst,
1396 struct brw_reg index,
1397 struct brw_reg offset)
1398 {
1399 assert(type_sz(dst.type) == 4);
1400 assert(inst->mlen != 0);
1401
1402 assert(index.file == BRW_IMMEDIATE_VALUE &&
1403 index.type == BRW_REGISTER_TYPE_UD);
1404 uint32_t surf_index = index.ud;
1405
1406 assert(offset.file == BRW_IMMEDIATE_VALUE &&
1407 offset.type == BRW_REGISTER_TYPE_UD);
1408 uint32_t read_offset = offset.ud;
1409
1410 brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
1411 read_offset, surf_index);
1412 }
1413
1414 void
1415 fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
1416 struct brw_reg dst,
1417 struct brw_reg index,
1418 struct brw_reg payload)
1419 {
1420 assert(index.type == BRW_REGISTER_TYPE_UD);
1421 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1422 assert(type_sz(dst.type) == 4);
1423
1424 if (index.file == BRW_IMMEDIATE_VALUE) {
1425 const uint32_t surf_index = index.ud;
1426
1427 brw_push_insn_state(p);
1428 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1429 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1430 brw_pop_insn_state(p);
1431
1432 brw_inst_set_sfid(devinfo, send, GEN6_SFID_DATAPORT_CONSTANT_CACHE);
1433 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
1434 brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
1435 brw_set_desc(p, send,
1436 brw_message_desc(devinfo, 1, DIV_ROUND_UP(inst->size_written,
1437 REG_SIZE), true) |
1438 brw_dp_read_desc(devinfo, surf_index,
1439 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1440 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1441 BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1442
1443 } else {
1444 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1445
1446 brw_push_insn_state(p);
1447 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1448
1449 /* a0.0 = surf_index & 0xff */
1450 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1451 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1452 brw_set_dest(p, insn_and, addr);
1453 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1454 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1455
1456 /* dst = send(payload, a0.0 | <descriptor>) */
1457 brw_send_indirect_message(
1458 p, GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1459 retype(dst, BRW_REGISTER_TYPE_UD),
1460 retype(payload, BRW_REGISTER_TYPE_UD), addr,
1461 brw_message_desc(devinfo, 1,
1462 DIV_ROUND_UP(inst->size_written, REG_SIZE), true) |
1463 brw_dp_read_desc(devinfo, 0 /* surface */,
1464 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1465 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1466 BRW_DATAPORT_READ_TARGET_DATA_CACHE),
1467 false /* EOT */);
1468
1469 brw_pop_insn_state(p);
1470 }
1471 }
1472
1473 void
1474 fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst,
1475 struct brw_reg dst,
1476 struct brw_reg index)
1477 {
1478 assert(devinfo->gen < 7); /* Should use the gen7 variant. */
1479 assert(inst->header_size != 0);
1480 assert(inst->mlen);
1481
1482 assert(index.file == BRW_IMMEDIATE_VALUE &&
1483 index.type == BRW_REGISTER_TYPE_UD);
1484 uint32_t surf_index = index.ud;
1485
1486 uint32_t simd_mode, rlen, msg_type;
1487 if (inst->exec_size == 16) {
1488 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1489 rlen = 8;
1490 } else {
1491 assert(inst->exec_size == 8);
1492 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1493 rlen = 4;
1494 }
1495
1496 if (devinfo->gen >= 5)
1497 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1498 else {
1499 /* We always use the SIMD16 message so that we only have to load U, and
1500 * not V or R.
1501 */
1502 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1503 assert(inst->mlen == 3);
1504 assert(inst->size_written == 8 * REG_SIZE);
1505 rlen = 8;
1506 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1507 }
1508
1509 struct brw_reg header = brw_vec8_grf(0, 0);
1510 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1511
1512 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1513 brw_inst_set_compression(devinfo, send, false);
1514 brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1515 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1516 brw_set_src0(p, send, header);
1517 if (devinfo->gen < 6)
1518 brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
1519
1520 /* Our surface is set up as floats, regardless of what actual data is
1521 * stored in it.
1522 */
1523 uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1524 brw_set_desc(p, send,
1525 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size) |
1526 brw_sampler_desc(devinfo, surf_index,
1527 0, /* sampler (unused) */
1528 msg_type, simd_mode, return_format));
1529 }
1530
1531 void
1532 fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
1533 struct brw_reg dst,
1534 struct brw_reg src,
1535 struct brw_reg msg_data,
1536 unsigned msg_type)
1537 {
1538 const bool has_payload = inst->src[0].file != BAD_FILE;
1539 assert(msg_data.type == BRW_REGISTER_TYPE_UD);
1540 assert(inst->size_written % REG_SIZE == 0);
1541
1542 brw_pixel_interpolator_query(p,
1543 retype(dst, BRW_REGISTER_TYPE_UW),
1544 /* If we don't have a payload, what we send doesn't matter */
1545 has_payload ? src : brw_vec8_grf(0, 0),
1546 inst->pi_noperspective,
1547 msg_type,
1548 msg_data,
1549 has_payload ? 2 * inst->exec_size / 8 : 1,
1550 inst->size_written / REG_SIZE);
1551 }
1552
1553 /* Sets vstride=1, width=4, hstride=0 of register src1 during
1554 * the ADD instruction.
1555 */
1556 void
1557 fs_generator::generate_set_sample_id(fs_inst *inst,
1558 struct brw_reg dst,
1559 struct brw_reg src0,
1560 struct brw_reg src1)
1561 {
1562 assert(dst.type == BRW_REGISTER_TYPE_D ||
1563 dst.type == BRW_REGISTER_TYPE_UD);
1564 assert(src0.type == BRW_REGISTER_TYPE_D ||
1565 src0.type == BRW_REGISTER_TYPE_UD);
1566
1567 const struct brw_reg reg = stride(src1, 1, 4, 0);
1568 const unsigned lower_size = MIN2(inst->exec_size,
1569 devinfo->gen >= 8 ? 16 : 8);
1570
1571 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1572 brw_inst *insn = brw_ADD(p, offset(dst, i * lower_size / 8),
1573 offset(src0, (src0.vstride == 0 ? 0 : (1 << (src0.vstride - 1)) *
1574 (i * lower_size / (1 << src0.width))) *
1575 type_sz(src0.type) / REG_SIZE),
1576 suboffset(reg, i * lower_size / 4));
1577 brw_inst_set_exec_size(devinfo, insn, cvt(lower_size) - 1);
1578 brw_inst_set_group(devinfo, insn, inst->group + lower_size * i);
1579 brw_inst_set_compression(devinfo, insn, lower_size > 8);
1580 }
1581 }
1582
1583 void
1584 fs_generator::generate_pack_half_2x16_split(fs_inst *,
1585 struct brw_reg dst,
1586 struct brw_reg x,
1587 struct brw_reg y)
1588 {
1589 assert(devinfo->gen >= 7);
1590 assert(dst.type == BRW_REGISTER_TYPE_UD);
1591 assert(x.type == BRW_REGISTER_TYPE_F);
1592 assert(y.type == BRW_REGISTER_TYPE_F);
1593
1594 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
1595 *
1596 * Because this instruction does not have a 16-bit floating-point type,
1597 * the destination data type must be Word (W).
1598 *
1599 * The destination must be DWord-aligned and specify a horizontal stride
1600 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
1601 * each destination channel and the upper word is not modified.
1602 */
1603 struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
1604
1605 /* Give each 32-bit channel of dst the form below, where "." means
1606 * unchanged.
1607 * 0x....hhhh
1608 */
1609 brw_F32TO16(p, dst_w, y);
1610
1611 /* Now the form:
1612 * 0xhhhh0000
1613 */
1614 brw_SHL(p, dst, dst, brw_imm_ud(16u));
1615
1616 /* And, finally the form of packHalf2x16's output:
1617 * 0xhhhhllll
1618 */
1619 brw_F32TO16(p, dst_w, x);
1620 }
1621
1622 void
1623 fs_generator::generate_shader_time_add(fs_inst *,
1624 struct brw_reg payload,
1625 struct brw_reg offset,
1626 struct brw_reg value)
1627 {
1628 assert(devinfo->gen >= 7);
1629 brw_push_insn_state(p);
1630 brw_set_default_mask_control(p, true);
1631
1632 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1633 struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
1634 offset.type);
1635 struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
1636 value.type);
1637
1638 assert(offset.file == BRW_IMMEDIATE_VALUE);
1639 if (value.file == BRW_GENERAL_REGISTER_FILE) {
1640 value.width = BRW_WIDTH_1;
1641 value.hstride = BRW_HORIZONTAL_STRIDE_0;
1642 value.vstride = BRW_VERTICAL_STRIDE_0;
1643 } else {
1644 assert(value.file == BRW_IMMEDIATE_VALUE);
1645 }
1646
1647 /* Trying to deal with setup of the params from the IR is crazy in the FS8
1648 * case, and we don't really care about squeezing every bit of performance
1649 * out of this path, so we just emit the MOVs from here.
1650 */
1651 brw_MOV(p, payload_offset, offset);
1652 brw_MOV(p, payload_value, value);
1653 brw_shader_time_add(p, payload,
1654 prog_data->binding_table.shader_time_start);
1655 brw_pop_insn_state(p);
1656 }
1657
1658 void
1659 fs_generator::enable_debug(const char *shader_name)
1660 {
1661 debug_flag = true;
1662 this->shader_name = shader_name;
1663 }
1664
1665 int
1666 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width)
1667 {
1668 /* align to 64 byte boundary. */
1669 while (p->next_insn_offset % 64)
1670 brw_NOP(p);
1671
1672 this->dispatch_width = dispatch_width;
1673
1674 int start_offset = p->next_insn_offset;
1675 int spill_count = 0, fill_count = 0;
1676 int loop_count = 0;
1677
1678 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1679
1680 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1681 if (inst->opcode == SHADER_OPCODE_UNDEF)
1682 continue;
1683
1684 struct brw_reg src[4], dst;
1685 unsigned int last_insn_offset = p->next_insn_offset;
1686 bool multiple_instructions_emitted = false;
1687
1688 /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
1689 * "Register Region Restrictions" section: for BDW, SKL:
1690 *
1691 * "A POW/FDIV operation must not be followed by an instruction
1692 * that requires two destination registers."
1693 *
1694 * The documentation is often lacking annotations for Atom parts,
1695 * and empirically this affects CHV as well.
1696 */
1697 if (devinfo->gen >= 8 &&
1698 devinfo->gen <= 9 &&
1699 p->nr_insn > 1 &&
1700 brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
1701 brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
1702 inst->dst.component_size(inst->exec_size) > REG_SIZE) {
1703 brw_NOP(p);
1704 last_insn_offset = p->next_insn_offset;
1705 }
1706
1707 if (unlikely(debug_flag))
1708 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1709
1710 /* If the instruction writes to more than one register, it needs to be
1711 * explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
1712 * hardware figures out by itself what the right compression mode is,
1713 * but we still need to know whether the instruction is compressed to
1714 * set up the source register regions appropriately.
1715 *
1716 * XXX - This is wrong for instructions that write a single register but
1717 * read more than one which should strictly speaking be treated as
1718 * compressed. For instructions that don't write any registers it
1719 * relies on the destination being a null register of the correct
1720 * type and regioning so the instruction is considered compressed
1721 * or not accordingly.
1722 */
1723 const bool compressed =
1724 inst->dst.component_size(inst->exec_size) > REG_SIZE;
1725 brw_set_default_compression(p, compressed);
1726 brw_set_default_group(p, inst->group);
1727
1728 for (unsigned int i = 0; i < inst->sources; i++) {
1729 src[i] = brw_reg_from_fs_reg(devinfo, inst,
1730 &inst->src[i], compressed);
1731 /* The accumulator result appears to get used for the
1732 * conditional modifier generation. When negating a UD
1733 * value, there is a 33rd bit generated for the sign in the
1734 * accumulator value, so now you can't check, for example,
1735 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
1736 */
1737 assert(!inst->conditional_mod ||
1738 inst->src[i].type != BRW_REGISTER_TYPE_UD ||
1739 !inst->src[i].negate);
1740 }
1741 dst = brw_reg_from_fs_reg(devinfo, inst,
1742 &inst->dst, compressed);
1743
1744 brw_set_default_access_mode(p, BRW_ALIGN_1);
1745 brw_set_default_predicate_control(p, inst->predicate);
1746 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1747 /* On gen7 and above, hardware automatically adds the group onto the
1748 * flag subregister number. On Sandy Bridge and older, we have to do it
1749 * ourselves.
1750 */
1751 const unsigned flag_subreg = inst->flag_subreg +
1752 (devinfo->gen >= 7 ? 0 : inst->group / 16);
1753 brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2);
1754 brw_set_default_saturate(p, inst->saturate);
1755 brw_set_default_mask_control(p, inst->force_writemask_all);
1756 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1757
1758 unsigned exec_size = inst->exec_size;
1759 if (devinfo->gen == 7 && !devinfo->is_haswell &&
1760 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
1761 exec_size *= 2;
1762 }
1763
1764 brw_set_default_exec_size(p, cvt(exec_size) - 1);
1765
1766 assert(inst->force_writemask_all || inst->exec_size >= 4);
1767 assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
1768 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1769 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1770
1771 switch (inst->opcode) {
1772 case BRW_OPCODE_MOV:
1773 brw_MOV(p, dst, src[0]);
1774 break;
1775 case BRW_OPCODE_ADD:
1776 brw_ADD(p, dst, src[0], src[1]);
1777 break;
1778 case BRW_OPCODE_MUL:
1779 brw_MUL(p, dst, src[0], src[1]);
1780 break;
1781 case BRW_OPCODE_AVG:
1782 brw_AVG(p, dst, src[0], src[1]);
1783 break;
1784 case BRW_OPCODE_MACH:
1785 brw_MACH(p, dst, src[0], src[1]);
1786 break;
1787
1788 case BRW_OPCODE_LINE:
1789 brw_LINE(p, dst, src[0], src[1]);
1790 break;
1791
1792 case BRW_OPCODE_MAD:
1793 assert(devinfo->gen >= 6);
1794 if (devinfo->gen < 10)
1795 brw_set_default_access_mode(p, BRW_ALIGN_16);
1796 brw_MAD(p, dst, src[0], src[1], src[2]);
1797 break;
1798
1799 case BRW_OPCODE_LRP:
1800 assert(devinfo->gen >= 6 && devinfo->gen <= 10);
1801 if (devinfo->gen < 10)
1802 brw_set_default_access_mode(p, BRW_ALIGN_16);
1803 brw_LRP(p, dst, src[0], src[1], src[2]);
1804 break;
1805
1806 case BRW_OPCODE_FRC:
1807 brw_FRC(p, dst, src[0]);
1808 break;
1809 case BRW_OPCODE_RNDD:
1810 brw_RNDD(p, dst, src[0]);
1811 break;
1812 case BRW_OPCODE_RNDE:
1813 brw_RNDE(p, dst, src[0]);
1814 break;
1815 case BRW_OPCODE_RNDZ:
1816 brw_RNDZ(p, dst, src[0]);
1817 break;
1818
1819 case BRW_OPCODE_AND:
1820 brw_AND(p, dst, src[0], src[1]);
1821 break;
1822 case BRW_OPCODE_OR:
1823 brw_OR(p, dst, src[0], src[1]);
1824 break;
1825 case BRW_OPCODE_XOR:
1826 brw_XOR(p, dst, src[0], src[1]);
1827 break;
1828 case BRW_OPCODE_NOT:
1829 brw_NOT(p, dst, src[0]);
1830 break;
1831 case BRW_OPCODE_ASR:
1832 brw_ASR(p, dst, src[0], src[1]);
1833 break;
1834 case BRW_OPCODE_SHR:
1835 brw_SHR(p, dst, src[0], src[1]);
1836 break;
1837 case BRW_OPCODE_SHL:
1838 brw_SHL(p, dst, src[0], src[1]);
1839 break;
1840 case BRW_OPCODE_ROL:
1841 assert(devinfo->gen >= 11);
1842 assert(src[0].type == dst.type);
1843 brw_ROL(p, dst, src[0], src[1]);
1844 break;
1845 case BRW_OPCODE_ROR:
1846 assert(devinfo->gen >= 11);
1847 assert(src[0].type == dst.type);
1848 brw_ROR(p, dst, src[0], src[1]);
1849 break;
1850 case BRW_OPCODE_F32TO16:
1851 assert(devinfo->gen >= 7);
1852 brw_F32TO16(p, dst, src[0]);
1853 break;
1854 case BRW_OPCODE_F16TO32:
1855 assert(devinfo->gen >= 7);
1856 brw_F16TO32(p, dst, src[0]);
1857 break;
1858 case BRW_OPCODE_CMP:
1859 if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell &&
1860 dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1861 /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
1862 * implemented in the compiler is not sufficient. Overriding the
1863 * type when the destination is the null register is necessary but
1864 * not sufficient by itself.
1865 */
1866 assert(dst.nr == BRW_ARF_NULL);
1867 dst.type = BRW_REGISTER_TYPE_D;
1868 }
1869 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1870 break;
1871 case BRW_OPCODE_SEL:
1872 brw_SEL(p, dst, src[0], src[1]);
1873 break;
1874 case BRW_OPCODE_CSEL:
1875 assert(devinfo->gen >= 8);
1876 if (devinfo->gen < 10)
1877 brw_set_default_access_mode(p, BRW_ALIGN_16);
1878 brw_CSEL(p, dst, src[0], src[1], src[2]);
1879 break;
1880 case BRW_OPCODE_BFREV:
1881 assert(devinfo->gen >= 7);
1882 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1883 retype(src[0], BRW_REGISTER_TYPE_UD));
1884 break;
1885 case BRW_OPCODE_FBH:
1886 assert(devinfo->gen >= 7);
1887 brw_FBH(p, retype(dst, src[0].type), src[0]);
1888 break;
1889 case BRW_OPCODE_FBL:
1890 assert(devinfo->gen >= 7);
1891 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
1892 retype(src[0], BRW_REGISTER_TYPE_UD));
1893 break;
1894 case BRW_OPCODE_LZD:
1895 brw_LZD(p, dst, src[0]);
1896 break;
1897 case BRW_OPCODE_CBIT:
1898 assert(devinfo->gen >= 7);
1899 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
1900 retype(src[0], BRW_REGISTER_TYPE_UD));
1901 break;
1902 case BRW_OPCODE_ADDC:
1903 assert(devinfo->gen >= 7);
1904 brw_ADDC(p, dst, src[0], src[1]);
1905 break;
1906 case BRW_OPCODE_SUBB:
1907 assert(devinfo->gen >= 7);
1908 brw_SUBB(p, dst, src[0], src[1]);
1909 break;
1910 case BRW_OPCODE_MAC:
1911 brw_MAC(p, dst, src[0], src[1]);
1912 break;
1913
1914 case BRW_OPCODE_BFE:
1915 assert(devinfo->gen >= 7);
1916 if (devinfo->gen < 10)
1917 brw_set_default_access_mode(p, BRW_ALIGN_16);
1918 brw_BFE(p, dst, src[0], src[1], src[2]);
1919 break;
1920
1921 case BRW_OPCODE_BFI1:
1922 assert(devinfo->gen >= 7);
1923 brw_BFI1(p, dst, src[0], src[1]);
1924 break;
1925 case BRW_OPCODE_BFI2:
1926 assert(devinfo->gen >= 7);
1927 if (devinfo->gen < 10)
1928 brw_set_default_access_mode(p, BRW_ALIGN_16);
1929 brw_BFI2(p, dst, src[0], src[1], src[2]);
1930 break;
1931
1932 case BRW_OPCODE_IF:
1933 if (inst->src[0].file != BAD_FILE) {
1934 /* The instruction has an embedded compare (only allowed on gen6) */
1935 assert(devinfo->gen == 6);
1936 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
1937 } else {
1938 brw_IF(p, brw_get_default_exec_size(p));
1939 }
1940 break;
1941
1942 case BRW_OPCODE_ELSE:
1943 brw_ELSE(p);
1944 break;
1945 case BRW_OPCODE_ENDIF:
1946 brw_ENDIF(p);
1947 break;
1948
1949 case BRW_OPCODE_DO:
1950 brw_DO(p, brw_get_default_exec_size(p));
1951 break;
1952
1953 case BRW_OPCODE_BREAK:
1954 brw_BREAK(p);
1955 break;
1956 case BRW_OPCODE_CONTINUE:
1957 brw_CONT(p);
1958 break;
1959
1960 case BRW_OPCODE_WHILE:
1961 brw_WHILE(p);
1962 loop_count++;
1963 break;
1964
1965 case SHADER_OPCODE_RCP:
1966 case SHADER_OPCODE_RSQ:
1967 case SHADER_OPCODE_SQRT:
1968 case SHADER_OPCODE_EXP2:
1969 case SHADER_OPCODE_LOG2:
1970 case SHADER_OPCODE_SIN:
1971 case SHADER_OPCODE_COS:
1972 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1973 if (devinfo->gen >= 6) {
1974 assert(inst->mlen == 0);
1975 assert(devinfo->gen >= 7 || inst->exec_size == 8);
1976 gen6_math(p, dst, brw_math_function(inst->opcode),
1977 src[0], brw_null_reg());
1978 } else {
1979 assert(inst->mlen >= 1);
1980 assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8);
1981 gen4_math(p, dst,
1982 brw_math_function(inst->opcode),
1983 inst->base_mrf, src[0],
1984 BRW_MATH_PRECISION_FULL);
1985 }
1986 break;
1987 case SHADER_OPCODE_INT_QUOTIENT:
1988 case SHADER_OPCODE_INT_REMAINDER:
1989 case SHADER_OPCODE_POW:
1990 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1991 if (devinfo->gen >= 6) {
1992 assert(inst->mlen == 0);
1993 assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
1994 inst->exec_size == 8);
1995 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
1996 } else {
1997 assert(inst->mlen >= 1);
1998 assert(inst->exec_size == 8);
1999 gen4_math(p, dst, brw_math_function(inst->opcode),
2000 inst->base_mrf, src[0],
2001 BRW_MATH_PRECISION_FULL);
2002 }
2003 break;
2004 case FS_OPCODE_LINTERP:
2005 multiple_instructions_emitted = generate_linterp(inst, dst, src);
2006 break;
2007 case FS_OPCODE_PIXEL_X:
2008 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2009 src[0].subnr = 0 * type_sz(src[0].type);
2010 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2011 break;
2012 case FS_OPCODE_PIXEL_Y:
2013 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2014 src[0].subnr = 4 * type_sz(src[0].type);
2015 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2016 break;
2017
2018 case SHADER_OPCODE_SEND:
2019 generate_send(inst, dst, src[0], src[1], src[2],
2020 inst->ex_mlen > 0 ? src[3] : brw_null_reg());
2021 break;
2022
2023 case SHADER_OPCODE_GET_BUFFER_SIZE:
2024 generate_get_buffer_size(inst, dst, src[0], src[1]);
2025 break;
2026 case SHADER_OPCODE_TEX:
2027 case FS_OPCODE_TXB:
2028 case SHADER_OPCODE_TXD:
2029 case SHADER_OPCODE_TXF:
2030 case SHADER_OPCODE_TXF_CMS:
2031 case SHADER_OPCODE_TXL:
2032 case SHADER_OPCODE_TXS:
2033 case SHADER_OPCODE_LOD:
2034 case SHADER_OPCODE_TG4:
2035 case SHADER_OPCODE_SAMPLEINFO:
2036 assert(inst->src[0].file == BAD_FILE);
2037 generate_tex(inst, dst, src[1], src[2]);
2038 break;
2039
2040 case FS_OPCODE_DDX_COARSE:
2041 case FS_OPCODE_DDX_FINE:
2042 generate_ddx(inst, dst, src[0]);
2043 break;
2044 case FS_OPCODE_DDY_COARSE:
2045 case FS_OPCODE_DDY_FINE:
2046 generate_ddy(inst, dst, src[0]);
2047 break;
2048
2049 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2050 generate_scratch_write(inst, src[0]);
2051 spill_count++;
2052 break;
2053
2054 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2055 generate_scratch_read(inst, dst);
2056 fill_count++;
2057 break;
2058
2059 case SHADER_OPCODE_GEN7_SCRATCH_READ:
2060 generate_scratch_read_gen7(inst, dst);
2061 fill_count++;
2062 break;
2063
2064 case SHADER_OPCODE_MOV_INDIRECT:
2065 generate_mov_indirect(inst, dst, src[0], src[1]);
2066 break;
2067
2068 case SHADER_OPCODE_URB_READ_SIMD8:
2069 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
2070 generate_urb_read(inst, dst, src[0]);
2071 break;
2072
2073 case SHADER_OPCODE_URB_WRITE_SIMD8:
2074 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
2075 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
2076 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
2077 generate_urb_write(inst, src[0]);
2078 break;
2079
2080 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
2081 assert(inst->force_writemask_all);
2082 generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
2083 break;
2084
2085 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
2086 assert(inst->force_writemask_all);
2087 generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2088 break;
2089
2090 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
2091 generate_varying_pull_constant_load_gen4(inst, dst, src[0]);
2092 break;
2093
2094 case FS_OPCODE_REP_FB_WRITE:
2095 case FS_OPCODE_FB_WRITE:
2096 generate_fb_write(inst, src[0]);
2097 break;
2098
2099 case FS_OPCODE_FB_READ:
2100 generate_fb_read(inst, dst, src[0]);
2101 break;
2102
2103 case FS_OPCODE_DISCARD_JUMP:
2104 generate_discard_jump(inst);
2105 break;
2106
2107 case SHADER_OPCODE_SHADER_TIME_ADD:
2108 generate_shader_time_add(inst, src[0], src[1], src[2]);
2109 break;
2110
2111 case SHADER_OPCODE_MEMORY_FENCE:
2112 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2113 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2114 brw_memory_fence(p, dst, src[0], BRW_OPCODE_SEND, src[1].ud, src[2].ud);
2115 break;
2116
2117 case SHADER_OPCODE_INTERLOCK:
2118 assert(devinfo->gen >= 9);
2119 /* The interlock is basically a memory fence issued via sendc */
2120 brw_memory_fence(p, dst, src[0], BRW_OPCODE_SENDC, false, /* bti */ 0);
2121 break;
2122
2123 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
2124 const struct brw_reg mask =
2125 brw_stage_has_packed_dispatch(devinfo, stage,
2126 prog_data) ? brw_imm_ud(~0u) :
2127 stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
2128 brw_dmask_reg();
2129 brw_find_live_channel(p, dst, mask);
2130 break;
2131 }
2132
2133 case SHADER_OPCODE_BROADCAST:
2134 assert(inst->force_writemask_all);
2135 brw_broadcast(p, dst, src[0], src[1]);
2136 break;
2137
2138 case SHADER_OPCODE_SHUFFLE:
2139 generate_shuffle(inst, dst, src[0], src[1]);
2140 break;
2141
2142 case SHADER_OPCODE_SEL_EXEC:
2143 assert(inst->force_writemask_all);
2144 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2145 brw_MOV(p, dst, src[1]);
2146 brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2147 brw_MOV(p, dst, src[0]);
2148 break;
2149
2150 case SHADER_OPCODE_QUAD_SWIZZLE:
2151 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2152 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2153 generate_quad_swizzle(inst, dst, src[0], src[1].ud);
2154 break;
2155
2156 case SHADER_OPCODE_CLUSTER_BROADCAST: {
2157 assert(src[0].type == dst.type);
2158 assert(!src[0].negate && !src[0].abs);
2159 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2160 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2161 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2162 assert(src[2].type == BRW_REGISTER_TYPE_UD);
2163 const unsigned component = src[1].ud;
2164 const unsigned cluster_size = src[2].ud;
2165 struct brw_reg strided = stride(suboffset(src[0], component),
2166 cluster_size, cluster_size, 0);
2167 if (type_sz(src[0].type) > 4 &&
2168 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
2169 /* IVB has an issue (which we found empirically) where it reads
2170 * two address register components per channel for indirectly
2171 * addressed 64-bit sources.
2172 *
2173 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
2174 *
2175 * "When source or destination datatype is 64b or operation is
2176 * integer DWord multiply, indirect addressing must not be
2177 * used."
2178 *
2179 * To work around both of these, we do two integer MOVs insead of
2180 * one 64-bit MOV. Because no double value should ever cross a
2181 * register boundary, it's safe to use the immediate offset in the
2182 * indirect here to handle adding 4 bytes to the offset and avoid
2183 * the extra ADD to the register file.
2184 */
2185 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
2186 subscript(strided, BRW_REGISTER_TYPE_D, 0));
2187 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
2188 subscript(strided, BRW_REGISTER_TYPE_D, 1));
2189 } else {
2190 brw_MOV(p, dst, strided);
2191 }
2192 break;
2193 }
2194
2195 case FS_OPCODE_SET_SAMPLE_ID:
2196 generate_set_sample_id(inst, dst, src[0], src[1]);
2197 break;
2198
2199 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
2200 generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
2201 break;
2202
2203 case FS_OPCODE_PLACEHOLDER_HALT:
2204 /* This is the place where the final HALT needs to be inserted if
2205 * we've emitted any discards. If not, this will emit no code.
2206 */
2207 if (!patch_discard_jumps_to_fb_writes()) {
2208 if (unlikely(debug_flag)) {
2209 disasm_info->use_tail = true;
2210 }
2211 }
2212 break;
2213
2214 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
2215 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2216 GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
2217 break;
2218
2219 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
2220 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2221 GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
2222 break;
2223
2224 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
2225 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2226 GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
2227 break;
2228
2229 case CS_OPCODE_CS_TERMINATE:
2230 generate_cs_terminate(inst, src[0]);
2231 break;
2232
2233 case SHADER_OPCODE_BARRIER:
2234 generate_barrier(inst, src[0]);
2235 break;
2236
2237 case BRW_OPCODE_DIM:
2238 assert(devinfo->is_haswell);
2239 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2240 assert(dst.type == BRW_REGISTER_TYPE_DF);
2241 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2242 break;
2243
2244 case SHADER_OPCODE_RND_MODE:
2245 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2246 brw_rounding_mode(p, (brw_rnd_mode) src[0].d);
2247 break;
2248
2249 default:
2250 unreachable("Unsupported opcode");
2251
2252 case SHADER_OPCODE_LOAD_PAYLOAD:
2253 unreachable("Should be lowered by lower_load_payload()");
2254 }
2255
2256 if (multiple_instructions_emitted)
2257 continue;
2258
2259 if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2260 assert(p->next_insn_offset == last_insn_offset + 16 ||
2261 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2262 "emitting more than 1 instruction");
2263
2264 brw_inst *last = &p->store[last_insn_offset / 16];
2265
2266 if (inst->conditional_mod)
2267 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2268 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2269 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2270 }
2271 }
2272
2273 brw_set_uip_jip(p, start_offset);
2274
2275 /* end of program sentinel */
2276 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2277
2278 #ifndef NDEBUG
2279 bool validated =
2280 #else
2281 if (unlikely(debug_flag))
2282 #endif
2283 brw_validate_instructions(devinfo, p->store,
2284 start_offset,
2285 p->next_insn_offset,
2286 disasm_info);
2287
2288 int before_size = p->next_insn_offset - start_offset;
2289 brw_compact_instructions(p, start_offset, disasm_info);
2290 int after_size = p->next_insn_offset - start_offset;
2291
2292 if (unlikely(debug_flag)) {
2293 fprintf(stderr, "Native code for %s\n"
2294 "SIMD%d shader: %d instructions. %d loops. %u cycles. "
2295 "%d:%d spills:fills. "
2296 "scheduled with mode %s. "
2297 "Promoted %u constants. "
2298 "Compacted %d to %d bytes (%.0f%%)\n",
2299 shader_name, dispatch_width, before_size / 16,
2300 loop_count, cfg->cycle_count,
2301 spill_count, fill_count,
2302 shader_stats.scheduler_mode,
2303 shader_stats.promoted_constants,
2304 before_size, after_size,
2305 100.0f * (before_size - after_size) / before_size);
2306
2307 dump_assembly(p->store, disasm_info);
2308 }
2309 ralloc_free(disasm_info);
2310 assert(validated);
2311
2312 compiler->shader_debug_log(log_data,
2313 "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
2314 "%d:%d spills:fills, "
2315 "scheduled with mode %s, "
2316 "Promoted %u constants, "
2317 "compacted %d to %d bytes.",
2318 _mesa_shader_stage_to_abbrev(stage),
2319 dispatch_width, before_size / 16,
2320 loop_count, cfg->cycle_count,
2321 spill_count, fill_count,
2322 shader_stats.scheduler_mode,
2323 shader_stats.promoted_constants,
2324 before_size, after_size);
2325
2326 return start_offset;
2327 }
2328
2329 const unsigned *
2330 fs_generator::get_assembly()
2331 {
2332 return brw_get_program(p, &prog_data->program_size);
2333 }