intel/fs: Rework INTERPOLATE_AT_PER_SLOT_OFFSET
[mesa.git] / src / intel / compiler / brw_fs_generator.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_generator.cpp
25 *
26 * This file supports generating code from the FS LIR to the actual
27 * native instructions.
28 */
29
30 #include "brw_eu.h"
31 #include "brw_fs.h"
32 #include "brw_cfg.h"
33
34 static enum brw_reg_file
35 brw_file_from_reg(fs_reg *reg)
36 {
37 switch (reg->file) {
38 case ARF:
39 return BRW_ARCHITECTURE_REGISTER_FILE;
40 case FIXED_GRF:
41 case VGRF:
42 return BRW_GENERAL_REGISTER_FILE;
43 case MRF:
44 return BRW_MESSAGE_REGISTER_FILE;
45 case IMM:
46 return BRW_IMMEDIATE_VALUE;
47 case BAD_FILE:
48 case ATTR:
49 case UNIFORM:
50 unreachable("not reached");
51 }
52 return BRW_ARCHITECTURE_REGISTER_FILE;
53 }
54
55 static struct brw_reg
56 brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst,
57 fs_reg *reg, bool compressed)
58 {
59 struct brw_reg brw_reg;
60
61 switch (reg->file) {
62 case MRF:
63 assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
64 /* Fallthrough */
65 case VGRF:
66 if (reg->stride == 0) {
67 brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
68 } else {
69 /* From the Haswell PRM:
70 *
71 * "VertStride must be used to cross GRF register boundaries. This
72 * rule implies that elements within a 'Width' cannot cross GRF
73 * boundaries."
74 *
75 * The maximum width value that could satisfy this restriction is:
76 */
77 const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
78
79 /* Because the hardware can only split source regions at a whole
80 * multiple of width during decompression (i.e. vertically), clamp
81 * the value obtained above to the physical execution size of a
82 * single decompressed chunk of the instruction:
83 */
84 const unsigned phys_width = compressed ? inst->exec_size / 2 :
85 inst->exec_size;
86
87 /* XXX - The equation above is strictly speaking not correct on
88 * hardware that supports unbalanced GRF writes -- On Gen9+
89 * each decompressed chunk of the instruction may have a
90 * different execution size when the number of components
91 * written to each destination GRF is not the same.
92 */
93 const unsigned width = MIN2(reg_width, phys_width);
94 brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
95 brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
96
97 if (devinfo->gen == 7 && !devinfo->is_haswell) {
98 /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
99 * "Each DF (Double Float) operand uses an element size of 4 rather
100 * than 8 and all regioning parameters are twice what the values
101 * would be based on the true element size: ExecSize, Width,
102 * HorzStride, and VertStride. Each DF operand uses a pair of
103 * channels and all masking and swizzing should be adjusted
104 * appropriately."
105 *
106 * From the IvyBridge PRM (Special Requirements for Handling Double
107 * Precision Data Types, page 71):
108 * "In Align1 mode, all regioning parameters like stride, execution
109 * size, and width must use the syntax of a pair of packed
110 * floats. The offsets for these data types must be 64-bit
111 * aligned. The execution size and regioning parameters are in terms
112 * of floats."
113 *
114 * Summarized: when handling DF-typed arguments, ExecSize,
115 * VertStride, and Width must be doubled.
116 *
117 * It applies to BayTrail too.
118 */
119 if (type_sz(reg->type) == 8) {
120 brw_reg.width++;
121 if (brw_reg.vstride > 0)
122 brw_reg.vstride++;
123 assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
124 }
125
126 /* When converting from DF->F, we set the destination stride to 2
127 * because each d2f conversion implicitly writes 2 floats, being
128 * the first one the converted value. IVB/BYT actually writes two
129 * F components per SIMD channel, and every other component is
130 * filled with garbage.
131 */
132 if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
133 type_sz(inst->dst.type) < 8) {
134 assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
135 brw_reg.hstride--;
136 }
137 }
138 }
139
140 brw_reg = retype(brw_reg, reg->type);
141 brw_reg = byte_offset(brw_reg, reg->offset);
142 brw_reg.abs = reg->abs;
143 brw_reg.negate = reg->negate;
144 break;
145 case ARF:
146 case FIXED_GRF:
147 case IMM:
148 assert(reg->offset == 0);
149 brw_reg = reg->as_brw_reg();
150 break;
151 case BAD_FILE:
152 /* Probably unused. */
153 brw_reg = brw_null_reg();
154 break;
155 case ATTR:
156 case UNIFORM:
157 unreachable("not reached");
158 }
159
160 /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
161 * region, but on IVB and BYT DF regions must be programmed in terms of
162 * floats. A <0,2,1> region accomplishes this.
163 */
164 if (devinfo->gen == 7 && !devinfo->is_haswell &&
165 type_sz(reg->type) == 8 &&
166 brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
167 brw_reg.width == BRW_WIDTH_1 &&
168 brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
169 brw_reg.width = BRW_WIDTH_2;
170 brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
171 }
172
173 return brw_reg;
174 }
175
176 fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
177 void *mem_ctx,
178 struct brw_stage_prog_data *prog_data,
179 unsigned promoted_constants,
180 bool runtime_check_aads_emit,
181 gl_shader_stage stage)
182
183 : compiler(compiler), log_data(log_data),
184 devinfo(compiler->devinfo),
185 prog_data(prog_data),
186 promoted_constants(promoted_constants),
187 runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
188 stage(stage), mem_ctx(mem_ctx)
189 {
190 p = rzalloc(mem_ctx, struct brw_codegen);
191 brw_init_codegen(devinfo, p, mem_ctx);
192
193 /* In the FS code generator, we are very careful to ensure that we always
194 * set the right execution size so we don't need the EU code to "help" us
195 * by trying to infer it. Sometimes, it infers the wrong thing.
196 */
197 p->automatic_exec_sizes = false;
198 }
199
200 fs_generator::~fs_generator()
201 {
202 }
203
204 class ip_record : public exec_node {
205 public:
206 DECLARE_RALLOC_CXX_OPERATORS(ip_record)
207
208 ip_record(int ip)
209 {
210 this->ip = ip;
211 }
212
213 int ip;
214 };
215
216 bool
217 fs_generator::patch_discard_jumps_to_fb_writes()
218 {
219 if (devinfo->gen < 6 || this->discard_halt_patches.is_empty())
220 return false;
221
222 int scale = brw_jump_scale(p->devinfo);
223
224 /* There is a somewhat strange undocumented requirement of using
225 * HALT, according to the simulator. If some channel has HALTed to
226 * a particular UIP, then by the end of the program, every channel
227 * must have HALTed to that UIP. Furthermore, the tracking is a
228 * stack, so you can't do the final halt of a UIP after starting
229 * halting to a new UIP.
230 *
231 * Symptoms of not emitting this instruction on actual hardware
232 * included GPU hangs and sparkly rendering on the piglit discard
233 * tests.
234 */
235 brw_inst *last_halt = gen6_HALT(p);
236 brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
237 brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
238
239 int ip = p->nr_insn;
240
241 foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
242 brw_inst *patch = &p->store[patch_ip->ip];
243
244 assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
245 /* HALT takes a half-instruction distance from the pre-incremented IP. */
246 brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
247 }
248
249 this->discard_halt_patches.make_empty();
250 return true;
251 }
252
253 void
254 fs_generator::fire_fb_write(fs_inst *inst,
255 struct brw_reg payload,
256 struct brw_reg implied_header,
257 GLuint nr)
258 {
259 uint32_t msg_control;
260
261 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
262
263 if (devinfo->gen < 6) {
264 brw_push_insn_state(p);
265 brw_set_default_exec_size(p, BRW_EXECUTE_8);
266 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
267 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
268 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
269 brw_MOV(p, offset(retype(payload, BRW_REGISTER_TYPE_UD), 1),
270 offset(retype(implied_header, BRW_REGISTER_TYPE_UD), 1));
271 brw_pop_insn_state(p);
272 }
273
274 if (inst->opcode == FS_OPCODE_REP_FB_WRITE) {
275 assert(inst->group == 0 && inst->exec_size == 16);
276 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
277
278 } else if (prog_data->dual_src_blend) {
279 assert(inst->exec_size == 8);
280
281 if (inst->group % 16 == 0)
282 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
283 else if (inst->group % 16 == 8)
284 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
285 else
286 unreachable("Invalid dual-source FB write instruction group");
287
288 } else {
289 assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));
290
291 if (inst->exec_size == 16)
292 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
293 else if (inst->exec_size == 8)
294 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
295 else
296 unreachable("Invalid FB write execution size");
297 }
298
299 /* We assume render targets start at 0, because headerless FB write
300 * messages set "Render Target Index" to 0. Using a different binding
301 * table index would make it impossible to use headerless messages.
302 */
303 const uint32_t surf_index = inst->target;
304
305 brw_inst *insn = brw_fb_WRITE(p,
306 payload,
307 retype(implied_header, BRW_REGISTER_TYPE_UW),
308 msg_control,
309 surf_index,
310 nr,
311 0,
312 inst->eot,
313 inst->last_rt,
314 inst->header_size != 0);
315
316 if (devinfo->gen >= 6)
317 brw_inst_set_rt_slot_group(devinfo, insn, inst->group / 16);
318
319 brw_mark_surface_used(&prog_data->base, surf_index);
320 }
321
322 void
323 fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
324 {
325 if (devinfo->gen < 8 && !devinfo->is_haswell) {
326 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
327 }
328
329 const struct brw_reg implied_header =
330 devinfo->gen < 6 ? payload : brw_null_reg();
331
332 if (inst->base_mrf >= 0)
333 payload = brw_message_reg(inst->base_mrf);
334
335 if (!runtime_check_aads_emit) {
336 fire_fb_write(inst, payload, implied_header, inst->mlen);
337 } else {
338 /* This can only happen in gen < 6 */
339 assert(devinfo->gen < 6);
340
341 struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
342
343 /* Check runtime bit to detect if we have to send AA data or not */
344 brw_push_insn_state(p);
345 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
346 brw_set_default_exec_size(p, BRW_EXECUTE_1);
347 brw_AND(p,
348 v1_null_ud,
349 retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
350 brw_imm_ud(1<<26));
351 brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
352
353 int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
354 brw_pop_insn_state(p);
355 {
356 /* Don't send AA data */
357 fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
358 }
359 brw_land_fwd_jump(p, jmp);
360 fire_fb_write(inst, payload, implied_header, inst->mlen);
361 }
362 }
363
364 void
365 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
366 struct brw_reg payload)
367 {
368 assert(inst->size_written % REG_SIZE == 0);
369 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
370 /* We assume that render targets start at binding table index 0. */
371 const unsigned surf_index = inst->target;
372
373 gen9_fb_READ(p, dst, payload, surf_index,
374 inst->header_size, inst->size_written / REG_SIZE,
375 prog_data->persample_dispatch);
376
377 brw_mark_surface_used(&prog_data->base, surf_index);
378 }
379
380 void
381 fs_generator::generate_mov_indirect(fs_inst *inst,
382 struct brw_reg dst,
383 struct brw_reg reg,
384 struct brw_reg indirect_byte_offset)
385 {
386 assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
387 assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
388 assert(!reg.abs && !reg.negate);
389 assert(reg.type == dst.type);
390
391 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
392
393 if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
394 imm_byte_offset += indirect_byte_offset.ud;
395
396 reg.nr = imm_byte_offset / REG_SIZE;
397 reg.subnr = imm_byte_offset % REG_SIZE;
398 brw_MOV(p, dst, reg);
399 } else {
400 /* Prior to Broadwell, there are only 8 address registers. */
401 assert(inst->exec_size <= 8 || devinfo->gen >= 8);
402
403 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
404 struct brw_reg addr = vec8(brw_address_reg(0));
405
406 /* The destination stride of an instruction (in bytes) must be greater
407 * than or equal to the size of the rest of the instruction. Since the
408 * address register is of type UW, we can't use a D-type instruction.
409 * In order to get around this, re retype to UW and use a stride.
410 */
411 indirect_byte_offset =
412 retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
413
414 /* There are a number of reasons why we don't use the base offset here.
415 * One reason is that the field is only 9 bits which means we can only
416 * use it to access the first 16 GRFs. Also, from the Haswell PRM
417 * section "Register Region Restrictions":
418 *
419 * "The lower bits of the AddressImmediate must not overflow to
420 * change the register address. The lower 5 bits of Address
421 * Immediate when added to lower 5 bits of address register gives
422 * the sub-register offset. The upper bits of Address Immediate
423 * when added to upper bits of address register gives the register
424 * address. Any overflow from sub-register offset is dropped."
425 *
426 * Since the indirect may cause us to cross a register boundary, this
427 * makes the base offset almost useless. We could try and do something
428 * clever where we use a actual base offset if base_offset % 32 == 0 but
429 * that would mean we were generating different code depending on the
430 * base offset. Instead, for the sake of consistency, we'll just do the
431 * add ourselves. This restriction is only listed in the Haswell PRM
432 * but empirical testing indicates that it applies on all older
433 * generations and is lifted on Broadwell.
434 *
435 * In the end, while base_offset is nice to look at in the generated
436 * code, using it saves us 0 instructions and would require quite a bit
437 * of case-by-case work. It's just not worth it.
438 */
439 brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
440
441 if (type_sz(reg.type) > 4 &&
442 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
443 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
444 /* IVB has an issue (which we found empirically) where it reads two
445 * address register components per channel for indirectly addressed
446 * 64-bit sources.
447 *
448 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
449 *
450 * "When source or destination datatype is 64b or operation is
451 * integer DWord multiply, indirect addressing must not be used."
452 *
453 * To work around both of these, we do two integer MOVs insead of one
454 * 64-bit MOV. Because no double value should ever cross a register
455 * boundary, it's safe to use the immediate offset in the indirect
456 * here to handle adding 4 bytes to the offset and avoid the extra
457 * ADD to the register file.
458 */
459 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
460 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
461 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
462 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
463 } else {
464 struct brw_reg ind_src = brw_VxH_indirect(0, 0);
465
466 brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
467
468 if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
469 !inst->get_next()->is_tail_sentinel() &&
470 ((fs_inst *)inst->get_next())->mlen > 0) {
471 /* From the Sandybridge PRM:
472 *
473 * "[Errata: DevSNB(SNB)] If MRF register is updated by any
474 * instruction that “indexed/indirect” source AND is followed
475 * by a send, the instruction requires a “Switch”. This is to
476 * avoid race condition where send may dispatch before MRF is
477 * updated."
478 */
479 brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
480 }
481 }
482 }
483 }
484
485 void
486 fs_generator::generate_shuffle(fs_inst *inst,
487 struct brw_reg dst,
488 struct brw_reg src,
489 struct brw_reg idx)
490 {
491 /* Ivy bridge has some strange behavior that makes this a real pain to
492 * implement for 64-bit values so we just don't bother.
493 */
494 assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4);
495
496 /* Because we're using the address register, we're limited to 8-wide
497 * execution on gen7. On gen8, we're limited to 16-wide by the address
498 * register file and 8-wide for 64-bit types. We could try and make this
499 * instruction splittable higher up in the compiler but that gets weird
500 * because it reads all of the channels regardless of execution size. It's
501 * easier just to split it here.
502 */
503 const unsigned lower_width =
504 (devinfo->gen <= 7 || type_sz(src.type) > 4) ?
505 8 : MIN2(16, inst->exec_size);
506
507 brw_set_default_exec_size(p, cvt(lower_width) - 1);
508 for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
509 brw_set_default_group(p, group);
510
511 if ((src.vstride == 0 && src.hstride == 0) ||
512 idx.file == BRW_IMMEDIATE_VALUE) {
513 /* Trivial, the source is already uniform or the index is a constant.
514 * We will typically not get here if the optimizer is doing its job,
515 * but asserting would be mean.
516 */
517 const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
518 brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0));
519 } else {
520 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
521 struct brw_reg addr = vec8(brw_address_reg(0));
522
523 struct brw_reg group_idx = suboffset(idx, group);
524
525 if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
526 /* Things get grumpy if the register is too wide. */
527 group_idx.width--;
528 group_idx.vstride--;
529 }
530
531 assert(type_sz(group_idx.type) <= 4);
532 if (type_sz(group_idx.type) == 4) {
533 /* The destination stride of an instruction (in bytes) must be
534 * greater than or equal to the size of the rest of the
535 * instruction. Since the address register is of type UW, we
536 * can't use a D-type instruction. In order to get around this,
537 * re retype to UW and use a stride.
538 */
539 group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
540 }
541
542 /* Take into account the component size and horizontal stride. */
543 assert(src.vstride == src.hstride + src.width);
544 brw_SHL(p, addr, group_idx,
545 brw_imm_uw(_mesa_logbase2(type_sz(src.type)) +
546 src.hstride - 1));
547
548 /* Add on the register start offset */
549 brw_ADD(p, addr, addr, brw_imm_uw(src.nr * REG_SIZE + src.subnr));
550
551 if (type_sz(src.type) > 4 &&
552 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
553 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
554 /* IVB has an issue (which we found empirically) where it reads
555 * two address register components per channel for indirectly
556 * addressed 64-bit sources.
557 *
558 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
559 *
560 * "When source or destination datatype is 64b or operation is
561 * integer DWord multiply, indirect addressing must not be
562 * used."
563 *
564 * To work around both of these, we do two integer MOVs insead of
565 * one 64-bit MOV. Because no double value should ever cross a
566 * register boundary, it's safe to use the immediate offset in the
567 * indirect here to handle adding 4 bytes to the offset and avoid
568 * the extra ADD to the register file.
569 */
570 struct brw_reg gdst = suboffset(dst, group);
571 struct brw_reg dst_d = retype(spread(gdst, 2),
572 BRW_REGISTER_TYPE_D);
573 brw_MOV(p, dst_d,
574 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
575 brw_MOV(p, byte_offset(dst_d, 4),
576 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
577 } else {
578 brw_MOV(p, suboffset(dst, group),
579 retype(brw_VxH_indirect(0, 0), src.type));
580 }
581 }
582 }
583 }
584
585 void
586 fs_generator::generate_urb_read(fs_inst *inst,
587 struct brw_reg dst,
588 struct brw_reg header)
589 {
590 assert(inst->size_written % REG_SIZE == 0);
591 assert(header.file == BRW_GENERAL_REGISTER_FILE);
592 assert(header.type == BRW_REGISTER_TYPE_UD);
593
594 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
595 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
596 brw_set_src0(p, send, header);
597 brw_set_src1(p, send, brw_imm_ud(0u));
598
599 brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
600 brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ);
601
602 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
603 brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
604
605 brw_inst_set_mlen(p->devinfo, send, inst->mlen);
606 brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
607 brw_inst_set_header_present(p->devinfo, send, true);
608 brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
609 }
610
611 void
612 fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
613 {
614 brw_inst *insn;
615
616 /* WaClearTDRRegBeforeEOTForNonPS.
617 *
618 * WA: Clear tdr register before send EOT in all non-PS shader kernels
619 *
620 * mov(8) tdr0:ud 0x0:ud {NoMask}"
621 */
622 if (inst->eot && p->devinfo->gen == 10) {
623 brw_push_insn_state(p);
624 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
625 brw_MOV(p, brw_tdr_reg(), brw_imm_uw(0));
626 brw_pop_insn_state(p);
627 }
628
629 insn = brw_next_insn(p, BRW_OPCODE_SEND);
630
631 brw_set_dest(p, insn, brw_null_reg());
632 brw_set_src0(p, insn, payload);
633 brw_set_src1(p, insn, brw_imm_d(0));
634
635 brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
636 brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE);
637
638 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
639 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
640 brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
641
642 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
643 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
644 brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
645
646 brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
647 brw_inst_set_rlen(p->devinfo, insn, 0);
648 brw_inst_set_eot(p->devinfo, insn, inst->eot);
649 brw_inst_set_header_present(p->devinfo, insn, true);
650 brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
651 }
652
653 void
654 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
655 {
656 struct brw_inst *insn;
657
658 insn = brw_next_insn(p, BRW_OPCODE_SEND);
659
660 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
661 brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
662 brw_set_src1(p, insn, brw_imm_d(0));
663
664 /* Terminate a compute shader by sending a message to the thread spawner.
665 */
666 brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
667 brw_inst_set_mlen(devinfo, insn, 1);
668 brw_inst_set_rlen(devinfo, insn, 0);
669 brw_inst_set_eot(devinfo, insn, inst->eot);
670 brw_inst_set_header_present(devinfo, insn, false);
671
672 brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
673 brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
674
675 /* Note that even though the thread has a URB resource associated with it,
676 * we set the "do not dereference URB" bit, because the URB resource is
677 * managed by the fixed-function unit, so it will free it automatically.
678 */
679 brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
680
681 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
682 }
683
684 void
685 fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
686 {
687 brw_barrier(p, src);
688 brw_WAIT(p);
689 }
690
691 bool
692 fs_generator::generate_linterp(fs_inst *inst,
693 struct brw_reg dst, struct brw_reg *src)
694 {
695 /* PLN reads:
696 * / in SIMD16 \
697 * -----------------------------------
698 * | src1+0 | src1+1 | src1+2 | src1+3 |
699 * |-----------------------------------|
700 * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
701 * -----------------------------------
702 *
703 * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
704 *
705 * -----------------------------------
706 * | src1+0 | src1+1 | src1+2 | src1+3 |
707 * |-----------------------------------|
708 * |(x0, x1)|(y0, y1)| | | in SIMD8
709 * |-----------------------------------|
710 * |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
711 * -----------------------------------
712 *
713 * See also: emit_interpolation_setup_gen4().
714 */
715 struct brw_reg delta_x = src[0];
716 struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
717 struct brw_reg interp = src[1];
718 brw_inst *i[4];
719
720 if (devinfo->gen >= 11) {
721 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_NF);
722 struct brw_reg dwP = suboffset(interp, 0);
723 struct brw_reg dwQ = suboffset(interp, 1);
724 struct brw_reg dwR = suboffset(interp, 3);
725
726 brw_push_insn_state(p);
727 brw_set_default_exec_size(p, BRW_EXECUTE_8);
728
729 if (inst->exec_size == 8) {
730 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
731 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_y, 0), dwQ);
732
733 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
734
735 /* brw_set_default_saturate() is called before emitting instructions,
736 * so the saturate bit is set in each instruction, so we need to unset
737 * it on the first instruction of each pair.
738 */
739 brw_inst_set_saturate(p->devinfo, i[0], false);
740 } else {
741 brw_set_default_group(p, inst->group);
742 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
743 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_x, 1), dwQ);
744
745 brw_set_default_group(p, inst->group + 8);
746 i[2] = brw_MAD(p, acc, dwR, offset(delta_y, 0), dwP);
747 i[3] = brw_MAD(p, offset(dst, 1), acc, offset(delta_y, 1), dwQ);
748
749 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
750 brw_inst_set_cond_modifier(p->devinfo, i[3], inst->conditional_mod);
751
752 /* brw_set_default_saturate() is called before emitting instructions,
753 * so the saturate bit is set in each instruction, so we need to unset
754 * it on the first instruction of each pair.
755 */
756 brw_inst_set_saturate(p->devinfo, i[0], false);
757 brw_inst_set_saturate(p->devinfo, i[2], false);
758 }
759
760 brw_pop_insn_state(p);
761
762 return true;
763 } else if (devinfo->has_pln) {
764 /* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane":
765 *
766 * "[DevSNB]:<src1> must be even register aligned.
767 *
768 * This restriction is lifted on Ivy Bridge.
769 */
770 assert(devinfo->gen >= 7 || (delta_x.nr & 1) == 0);
771 brw_PLN(p, dst, interp, delta_x);
772
773 return false;
774 } else {
775 i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
776 i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
777
778 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
779
780 /* brw_set_default_saturate() is called before emitting instructions, so
781 * the saturate bit is set in each instruction, so we need to unset it on
782 * the first instruction.
783 */
784 brw_inst_set_saturate(p->devinfo, i[0], false);
785
786 return true;
787 }
788 }
789
790 void
791 fs_generator::generate_get_buffer_size(fs_inst *inst,
792 struct brw_reg dst,
793 struct brw_reg src,
794 struct brw_reg surf_index)
795 {
796 assert(devinfo->gen >= 7);
797 assert(surf_index.file == BRW_IMMEDIATE_VALUE);
798
799 uint32_t simd_mode;
800 int rlen = 4;
801
802 switch (inst->exec_size) {
803 case 8:
804 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
805 break;
806 case 16:
807 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
808 break;
809 default:
810 unreachable("Invalid width for texture instruction");
811 }
812
813 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
814 rlen = 8;
815 dst = vec16(dst);
816 }
817
818 brw_SAMPLE(p,
819 retype(dst, BRW_REGISTER_TYPE_UW),
820 inst->base_mrf,
821 src,
822 surf_index.ud,
823 0,
824 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
825 rlen, /* response length */
826 inst->mlen,
827 inst->header_size > 0,
828 simd_mode,
829 BRW_SAMPLER_RETURN_FORMAT_SINT32);
830
831 brw_mark_surface_used(prog_data, surf_index.ud);
832 }
833
834 void
835 fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src,
836 struct brw_reg surface_index,
837 struct brw_reg sampler_index)
838 {
839 assert(inst->size_written % REG_SIZE == 0);
840 int msg_type = -1;
841 uint32_t simd_mode;
842 uint32_t return_format;
843 bool is_combined_send = inst->eot;
844
845 switch (dst.type) {
846 case BRW_REGISTER_TYPE_D:
847 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
848 break;
849 case BRW_REGISTER_TYPE_UD:
850 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
851 break;
852 default:
853 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
854 break;
855 }
856
857 /* Stomp the resinfo output type to UINT32. On gens 4-5, the output type
858 * is set as part of the message descriptor. On gen4, the PRM seems to
859 * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
860 * later gens UINT32 is required. Once you hit Sandy Bridge, the bit is
861 * gone from the message descriptor entirely and you just get UINT32 all
862 * the time regasrdless. Since we can really only do non-UINT32 on gen4,
863 * just stomp it to UINT32 all the time.
864 */
865 if (inst->opcode == SHADER_OPCODE_TXS)
866 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
867
868 switch (inst->exec_size) {
869 case 8:
870 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
871 break;
872 case 16:
873 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
874 break;
875 default:
876 unreachable("Invalid width for texture instruction");
877 }
878
879 if (devinfo->gen >= 5) {
880 switch (inst->opcode) {
881 case SHADER_OPCODE_TEX:
882 if (inst->shadow_compare) {
883 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
884 } else {
885 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
886 }
887 break;
888 case FS_OPCODE_TXB:
889 if (inst->shadow_compare) {
890 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
891 } else {
892 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
893 }
894 break;
895 case SHADER_OPCODE_TXL:
896 if (inst->shadow_compare) {
897 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
898 } else {
899 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
900 }
901 break;
902 case SHADER_OPCODE_TXL_LZ:
903 assert(devinfo->gen >= 9);
904 if (inst->shadow_compare) {
905 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_C_LZ;
906 } else {
907 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LZ;
908 }
909 break;
910 case SHADER_OPCODE_TXS:
911 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
912 break;
913 case SHADER_OPCODE_TXD:
914 if (inst->shadow_compare) {
915 /* Gen7.5+. Otherwise, lowered in NIR */
916 assert(devinfo->gen >= 8 || devinfo->is_haswell);
917 msg_type = HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE;
918 } else {
919 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
920 }
921 break;
922 case SHADER_OPCODE_TXF:
923 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
924 break;
925 case SHADER_OPCODE_TXF_LZ:
926 assert(devinfo->gen >= 9);
927 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD_LZ;
928 break;
929 case SHADER_OPCODE_TXF_CMS_W:
930 assert(devinfo->gen >= 9);
931 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
932 break;
933 case SHADER_OPCODE_TXF_CMS:
934 if (devinfo->gen >= 7)
935 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS;
936 else
937 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
938 break;
939 case SHADER_OPCODE_TXF_UMS:
940 assert(devinfo->gen >= 7);
941 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS;
942 break;
943 case SHADER_OPCODE_TXF_MCS:
944 assert(devinfo->gen >= 7);
945 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
946 break;
947 case SHADER_OPCODE_LOD:
948 msg_type = GEN5_SAMPLER_MESSAGE_LOD;
949 break;
950 case SHADER_OPCODE_TG4:
951 if (inst->shadow_compare) {
952 assert(devinfo->gen >= 7);
953 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C;
954 } else {
955 assert(devinfo->gen >= 6);
956 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
957 }
958 break;
959 case SHADER_OPCODE_TG4_OFFSET:
960 assert(devinfo->gen >= 7);
961 if (inst->shadow_compare) {
962 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C;
963 } else {
964 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
965 }
966 break;
967 case SHADER_OPCODE_SAMPLEINFO:
968 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
969 break;
970 default:
971 unreachable("not reached");
972 }
973 } else {
974 switch (inst->opcode) {
975 case SHADER_OPCODE_TEX:
976 /* Note that G45 and older determines shadow compare and dispatch width
977 * from message length for most messages.
978 */
979 if (inst->exec_size == 8) {
980 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
981 if (inst->shadow_compare) {
982 assert(inst->mlen == 6);
983 } else {
984 assert(inst->mlen <= 4);
985 }
986 } else {
987 if (inst->shadow_compare) {
988 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
989 assert(inst->mlen == 9);
990 } else {
991 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
992 assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
993 }
994 }
995 break;
996 case FS_OPCODE_TXB:
997 if (inst->shadow_compare) {
998 assert(inst->exec_size == 8);
999 assert(inst->mlen == 6);
1000 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
1001 } else {
1002 assert(inst->mlen == 9);
1003 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1004 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1005 }
1006 break;
1007 case SHADER_OPCODE_TXL:
1008 if (inst->shadow_compare) {
1009 assert(inst->exec_size == 8);
1010 assert(inst->mlen == 6);
1011 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
1012 } else {
1013 assert(inst->mlen == 9);
1014 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
1015 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1016 }
1017 break;
1018 case SHADER_OPCODE_TXD:
1019 /* There is no sample_d_c message; comparisons are done manually */
1020 assert(inst->exec_size == 8);
1021 assert(inst->mlen == 7 || inst->mlen == 10);
1022 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
1023 break;
1024 case SHADER_OPCODE_TXF:
1025 assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
1026 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1027 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1028 break;
1029 case SHADER_OPCODE_TXS:
1030 assert(inst->mlen == 3);
1031 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
1032 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1033 break;
1034 default:
1035 unreachable("not reached");
1036 }
1037 }
1038 assert(msg_type != -1);
1039
1040 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1041 dst = vec16(dst);
1042 }
1043
1044 assert(devinfo->gen < 7 || inst->header_size == 0 ||
1045 src.file == BRW_GENERAL_REGISTER_FILE);
1046
1047 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
1048
1049 /* Load the message header if present. If there's a texture offset,
1050 * we need to set it up explicitly and load the offset bitfield.
1051 * Otherwise, we can use an implied move from g0 to the first message reg.
1052 */
1053 if (inst->header_size != 0 && devinfo->gen < 7) {
1054 if (devinfo->gen < 6 && !inst->offset) {
1055 /* Set up an implied move from g0 to the MRF. */
1056 src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1057 } else {
1058 assert(inst->base_mrf != -1);
1059 struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
1060
1061 brw_push_insn_state(p);
1062 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1063 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1064 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1065 /* Explicitly set up the message header by copying g0 to the MRF. */
1066 brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
1067
1068 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1069 if (inst->offset) {
1070 /* Set the offset bits in DWord 2. */
1071 brw_MOV(p, get_element_ud(header_reg, 2),
1072 brw_imm_ud(inst->offset));
1073 }
1074
1075 brw_pop_insn_state(p);
1076 }
1077 }
1078
1079 uint32_t base_binding_table_index = (inst->opcode == SHADER_OPCODE_TG4 ||
1080 inst->opcode == SHADER_OPCODE_TG4_OFFSET)
1081 ? prog_data->binding_table.gather_texture_start
1082 : prog_data->binding_table.texture_start;
1083
1084 if (surface_index.file == BRW_IMMEDIATE_VALUE &&
1085 sampler_index.file == BRW_IMMEDIATE_VALUE) {
1086 uint32_t surface = surface_index.ud;
1087 uint32_t sampler = sampler_index.ud;
1088
1089 brw_SAMPLE(p,
1090 retype(dst, BRW_REGISTER_TYPE_UW),
1091 inst->base_mrf,
1092 src,
1093 surface + base_binding_table_index,
1094 sampler % 16,
1095 msg_type,
1096 inst->size_written / REG_SIZE,
1097 inst->mlen,
1098 inst->header_size != 0,
1099 simd_mode,
1100 return_format);
1101
1102 brw_mark_surface_used(prog_data, surface + base_binding_table_index);
1103 } else {
1104 /* Non-const sampler index */
1105
1106 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1107 struct brw_reg surface_reg = vec1(retype(surface_index, BRW_REGISTER_TYPE_UD));
1108 struct brw_reg sampler_reg = vec1(retype(sampler_index, BRW_REGISTER_TYPE_UD));
1109
1110 brw_push_insn_state(p);
1111 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1112 brw_set_default_access_mode(p, BRW_ALIGN_1);
1113 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1114
1115 if (brw_regs_equal(&surface_reg, &sampler_reg)) {
1116 brw_MUL(p, addr, sampler_reg, brw_imm_uw(0x101));
1117 } else {
1118 if (sampler_reg.file == BRW_IMMEDIATE_VALUE) {
1119 brw_OR(p, addr, surface_reg, brw_imm_ud(sampler_reg.ud << 8));
1120 } else {
1121 brw_SHL(p, addr, sampler_reg, brw_imm_ud(8));
1122 brw_OR(p, addr, addr, surface_reg);
1123 }
1124 }
1125 if (base_binding_table_index)
1126 brw_ADD(p, addr, addr, brw_imm_ud(base_binding_table_index));
1127 brw_AND(p, addr, addr, brw_imm_ud(0xfff));
1128
1129 brw_pop_insn_state(p);
1130
1131 /* dst = send(offset, a0.0 | <descriptor>) */
1132 brw_inst *insn = brw_send_indirect_message(
1133 p, BRW_SFID_SAMPLER, dst, src, addr);
1134 brw_set_sampler_message(p, insn,
1135 0 /* surface */,
1136 0 /* sampler */,
1137 msg_type,
1138 inst->size_written / REG_SIZE,
1139 inst->mlen /* mlen */,
1140 inst->header_size != 0 /* header */,
1141 simd_mode,
1142 return_format);
1143
1144 /* visitor knows more than we do about the surface limit required,
1145 * so has already done marking.
1146 */
1147 }
1148
1149 if (is_combined_send) {
1150 brw_inst_set_eot(p->devinfo, brw_last_inst, true);
1151 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
1152 }
1153 }
1154
1155
1156 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
1157 * looking like:
1158 *
1159 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
1160 *
1161 * Ideally, we want to produce:
1162 *
1163 * DDX DDY
1164 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
1165 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
1166 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
1167 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
1168 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
1169 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
1170 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
1171 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
1172 *
1173 * and add another set of two more subspans if in 16-pixel dispatch mode.
1174 *
1175 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
1176 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
1177 * pair. But the ideal approximation may impose a huge performance cost on
1178 * sample_d. On at least Haswell, sample_d instruction does some
1179 * optimizations if the same LOD is used for all pixels in the subspan.
1180 *
1181 * For DDY, we need to use ALIGN16 mode since it's capable of doing the
1182 * appropriate swizzling.
1183 */
1184 void
1185 fs_generator::generate_ddx(const fs_inst *inst,
1186 struct brw_reg dst, struct brw_reg src)
1187 {
1188 unsigned vstride, width;
1189
1190 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1191 /* produce accurate derivatives */
1192 vstride = BRW_VERTICAL_STRIDE_2;
1193 width = BRW_WIDTH_2;
1194 } else {
1195 /* replicate the derivative at the top-left pixel to other pixels */
1196 vstride = BRW_VERTICAL_STRIDE_4;
1197 width = BRW_WIDTH_4;
1198 }
1199
1200 struct brw_reg src0 = src;
1201 struct brw_reg src1 = src;
1202
1203 src0.subnr = sizeof(float);
1204 src0.vstride = vstride;
1205 src0.width = width;
1206 src0.hstride = BRW_HORIZONTAL_STRIDE_0;
1207 src1.vstride = vstride;
1208 src1.width = width;
1209 src1.hstride = BRW_HORIZONTAL_STRIDE_0;
1210
1211 brw_ADD(p, dst, src0, negate(src1));
1212 }
1213
1214 /* The negate_value boolean is used to negate the derivative computation for
1215 * FBOs, since they place the origin at the upper left instead of the lower
1216 * left.
1217 */
1218 void
1219 fs_generator::generate_ddy(const fs_inst *inst,
1220 struct brw_reg dst, struct brw_reg src)
1221 {
1222 if (inst->opcode == FS_OPCODE_DDY_FINE) {
1223 /* produce accurate derivatives */
1224 if (devinfo->gen >= 11) {
1225 src = stride(src, 0, 2, 1);
1226 struct brw_reg src_0 = byte_offset(src, 0 * sizeof(float));
1227 struct brw_reg src_2 = byte_offset(src, 2 * sizeof(float));
1228 struct brw_reg src_4 = byte_offset(src, 4 * sizeof(float));
1229 struct brw_reg src_6 = byte_offset(src, 6 * sizeof(float));
1230 struct brw_reg src_8 = byte_offset(src, 8 * sizeof(float));
1231 struct brw_reg src_10 = byte_offset(src, 10 * sizeof(float));
1232 struct brw_reg src_12 = byte_offset(src, 12 * sizeof(float));
1233 struct brw_reg src_14 = byte_offset(src, 14 * sizeof(float));
1234
1235 struct brw_reg dst_0 = byte_offset(dst, 0 * sizeof(float));
1236 struct brw_reg dst_4 = byte_offset(dst, 4 * sizeof(float));
1237 struct brw_reg dst_8 = byte_offset(dst, 8 * sizeof(float));
1238 struct brw_reg dst_12 = byte_offset(dst, 12 * sizeof(float));
1239
1240 brw_push_insn_state(p);
1241 brw_set_default_exec_size(p, BRW_EXECUTE_4);
1242
1243 brw_ADD(p, dst_0, negate(src_0), src_2);
1244 brw_ADD(p, dst_4, negate(src_4), src_6);
1245
1246 if (inst->exec_size == 16) {
1247 brw_ADD(p, dst_8, negate(src_8), src_10);
1248 brw_ADD(p, dst_12, negate(src_12), src_14);
1249 }
1250
1251 brw_pop_insn_state(p);
1252 } else {
1253 struct brw_reg src0 = stride(src, 4, 4, 1);
1254 struct brw_reg src1 = stride(src, 4, 4, 1);
1255 src0.swizzle = BRW_SWIZZLE_XYXY;
1256 src1.swizzle = BRW_SWIZZLE_ZWZW;
1257
1258 brw_push_insn_state(p);
1259 brw_set_default_access_mode(p, BRW_ALIGN_16);
1260 brw_ADD(p, dst, negate(src0), src1);
1261 brw_pop_insn_state(p);
1262 }
1263 } else {
1264 /* replicate the derivative at the top-left pixel to other pixels */
1265 struct brw_reg src0 = stride(src, 4, 4, 0);
1266 struct brw_reg src1 = stride(src, 4, 4, 0);
1267 src0.subnr = 0 * sizeof(float);
1268 src1.subnr = 2 * sizeof(float);
1269
1270 brw_ADD(p, dst, negate(src0), src1);
1271 }
1272 }
1273
1274 void
1275 fs_generator::generate_discard_jump(fs_inst *)
1276 {
1277 assert(devinfo->gen >= 6);
1278
1279 /* This HALT will be patched up at FB write time to point UIP at the end of
1280 * the program, and at brw_uip_jip() JIP will be set to the end of the
1281 * current block (or the program).
1282 */
1283 this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
1284 gen6_HALT(p);
1285 }
1286
1287 void
1288 fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
1289 {
1290 /* The 32-wide messages only respect the first 16-wide half of the channel
1291 * enable signals which are replicated identically for the second group of
1292 * 16 channels, so we cannot use them unless the write is marked
1293 * force_writemask_all.
1294 */
1295 const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
1296 MIN2(16, inst->exec_size);
1297 const unsigned block_size = 4 * lower_size / REG_SIZE;
1298 assert(inst->mlen != 0);
1299
1300 brw_push_insn_state(p);
1301 brw_set_default_exec_size(p, cvt(lower_size) - 1);
1302 brw_set_default_compression(p, lower_size > 8);
1303
1304 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1305 brw_set_default_group(p, inst->group + lower_size * i);
1306
1307 brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
1308 retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
1309
1310 brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
1311 block_size,
1312 inst->offset + block_size * REG_SIZE * i);
1313 }
1314
1315 brw_pop_insn_state(p);
1316 }
1317
1318 void
1319 fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
1320 {
1321 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1322 assert(inst->mlen != 0);
1323
1324 brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
1325 inst->exec_size / 8, inst->offset);
1326 }
1327
1328 void
1329 fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst)
1330 {
1331 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1332
1333 gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
1334 }
1335
1336 void
1337 fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
1338 struct brw_reg dst,
1339 struct brw_reg index,
1340 struct brw_reg offset)
1341 {
1342 assert(type_sz(dst.type) == 4);
1343 assert(inst->mlen != 0);
1344
1345 assert(index.file == BRW_IMMEDIATE_VALUE &&
1346 index.type == BRW_REGISTER_TYPE_UD);
1347 uint32_t surf_index = index.ud;
1348
1349 assert(offset.file == BRW_IMMEDIATE_VALUE &&
1350 offset.type == BRW_REGISTER_TYPE_UD);
1351 uint32_t read_offset = offset.ud;
1352
1353 brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
1354 read_offset, surf_index);
1355 }
1356
1357 void
1358 fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
1359 struct brw_reg dst,
1360 struct brw_reg index,
1361 struct brw_reg payload)
1362 {
1363 assert(index.type == BRW_REGISTER_TYPE_UD);
1364 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1365 assert(type_sz(dst.type) == 4);
1366
1367 if (index.file == BRW_IMMEDIATE_VALUE) {
1368 const uint32_t surf_index = index.ud;
1369
1370 brw_push_insn_state(p);
1371 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1372 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1373 brw_pop_insn_state(p);
1374
1375 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
1376 brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
1377 brw_set_dp_read_message(p, send, surf_index,
1378 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1379 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1380 GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1381 1, /* mlen */
1382 true, /* header */
1383 DIV_ROUND_UP(inst->size_written, REG_SIZE));
1384
1385 } else {
1386 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1387
1388 brw_push_insn_state(p);
1389 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1390
1391 /* a0.0 = surf_index & 0xff */
1392 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1393 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1394 brw_set_dest(p, insn_and, addr);
1395 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1396 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1397
1398 /* dst = send(payload, a0.0 | <descriptor>) */
1399 brw_inst *insn = brw_send_indirect_message(
1400 p, GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1401 retype(dst, BRW_REGISTER_TYPE_UD),
1402 retype(payload, BRW_REGISTER_TYPE_UD), addr);
1403 brw_set_dp_read_message(p, insn, 0 /* surface */,
1404 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1405 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1406 GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1407 1, /* mlen */
1408 true, /* header */
1409 DIV_ROUND_UP(inst->size_written, REG_SIZE));
1410
1411 brw_pop_insn_state(p);
1412 }
1413 }
1414
1415 void
1416 fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst,
1417 struct brw_reg dst,
1418 struct brw_reg index)
1419 {
1420 assert(devinfo->gen < 7); /* Should use the gen7 variant. */
1421 assert(inst->header_size != 0);
1422 assert(inst->mlen);
1423
1424 assert(index.file == BRW_IMMEDIATE_VALUE &&
1425 index.type == BRW_REGISTER_TYPE_UD);
1426 uint32_t surf_index = index.ud;
1427
1428 uint32_t simd_mode, rlen, msg_type;
1429 if (inst->exec_size == 16) {
1430 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1431 rlen = 8;
1432 } else {
1433 assert(inst->exec_size == 8);
1434 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1435 rlen = 4;
1436 }
1437
1438 if (devinfo->gen >= 5)
1439 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1440 else {
1441 /* We always use the SIMD16 message so that we only have to load U, and
1442 * not V or R.
1443 */
1444 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1445 assert(inst->mlen == 3);
1446 assert(inst->size_written == 8 * REG_SIZE);
1447 rlen = 8;
1448 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1449 }
1450
1451 struct brw_reg header = brw_vec8_grf(0, 0);
1452 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1453
1454 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1455 brw_inst_set_compression(devinfo, send, false);
1456 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1457 brw_set_src0(p, send, header);
1458 if (devinfo->gen < 6)
1459 brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
1460
1461 /* Our surface is set up as floats, regardless of what actual data is
1462 * stored in it.
1463 */
1464 uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1465 brw_set_sampler_message(p, send,
1466 surf_index,
1467 0, /* sampler (unused) */
1468 msg_type,
1469 rlen,
1470 inst->mlen,
1471 inst->header_size != 0,
1472 simd_mode,
1473 return_format);
1474 }
1475
1476 void
1477 fs_generator::generate_varying_pull_constant_load_gen7(fs_inst *inst,
1478 struct brw_reg dst,
1479 struct brw_reg index,
1480 struct brw_reg offset)
1481 {
1482 assert(devinfo->gen >= 7);
1483 /* Varying-offset pull constant loads are treated as a normal expression on
1484 * gen7, so the fact that it's a send message is hidden at the IR level.
1485 */
1486 assert(inst->header_size == 0);
1487 assert(!inst->mlen);
1488 assert(index.type == BRW_REGISTER_TYPE_UD);
1489
1490 uint32_t simd_mode, rlen, mlen;
1491 if (inst->exec_size == 16) {
1492 mlen = 2;
1493 rlen = 8;
1494 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1495 } else {
1496 assert(inst->exec_size == 8);
1497 mlen = 1;
1498 rlen = 4;
1499 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1500 }
1501
1502 if (index.file == BRW_IMMEDIATE_VALUE) {
1503
1504 uint32_t surf_index = index.ud;
1505
1506 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1507 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1508 brw_set_src0(p, send, offset);
1509 brw_set_sampler_message(p, send,
1510 surf_index,
1511 0, /* LD message ignores sampler unit */
1512 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1513 rlen,
1514 mlen,
1515 false, /* no header */
1516 simd_mode,
1517 0);
1518
1519 } else {
1520
1521 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1522
1523 brw_push_insn_state(p);
1524 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1525
1526 /* a0.0 = surf_index & 0xff */
1527 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1528 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1529 brw_set_dest(p, insn_and, addr);
1530 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1531 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1532
1533 brw_pop_insn_state(p);
1534
1535 /* dst = send(offset, a0.0 | <descriptor>) */
1536 brw_inst *insn = brw_send_indirect_message(
1537 p, BRW_SFID_SAMPLER, retype(dst, BRW_REGISTER_TYPE_UW),
1538 offset, addr);
1539 brw_set_sampler_message(p, insn,
1540 0 /* surface */,
1541 0 /* sampler */,
1542 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1543 rlen /* rlen */,
1544 mlen /* mlen */,
1545 false /* header */,
1546 simd_mode,
1547 0);
1548 }
1549 }
1550
1551 /**
1552 * Cause the current pixel/sample mask (from R1.7 bits 15:0) to be transferred
1553 * into the flags register (f0.0).
1554 *
1555 * Used only on Gen6 and above.
1556 */
1557 void
1558 fs_generator::generate_mov_dispatch_to_flags(fs_inst *inst)
1559 {
1560 struct brw_reg flags = brw_flag_subreg(inst->flag_subreg);
1561 struct brw_reg dispatch_mask;
1562
1563 if (devinfo->gen >= 6)
1564 dispatch_mask = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW);
1565 else
1566 dispatch_mask = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
1567
1568 brw_push_insn_state(p);
1569 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1570 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1571 brw_MOV(p, flags, dispatch_mask);
1572 brw_pop_insn_state(p);
1573 }
1574
1575 void
1576 fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
1577 struct brw_reg dst,
1578 struct brw_reg src,
1579 struct brw_reg msg_data,
1580 unsigned msg_type)
1581 {
1582 const bool has_payload = inst->src[0].file != BAD_FILE;
1583 assert(msg_data.type == BRW_REGISTER_TYPE_UD);
1584 assert(inst->size_written % REG_SIZE == 0);
1585
1586 brw_pixel_interpolator_query(p,
1587 retype(dst, BRW_REGISTER_TYPE_UW),
1588 /* If we don't have a payload, what we send doesn't matter */
1589 has_payload ? src : brw_vec8_grf(0, 0),
1590 inst->pi_noperspective,
1591 msg_type,
1592 msg_data,
1593 has_payload ? 2 * inst->exec_size / 8 : 1,
1594 inst->size_written / REG_SIZE);
1595 }
1596
1597 /* Sets vstride=1, width=4, hstride=0 of register src1 during
1598 * the ADD instruction.
1599 */
1600 void
1601 fs_generator::generate_set_sample_id(fs_inst *inst,
1602 struct brw_reg dst,
1603 struct brw_reg src0,
1604 struct brw_reg src1)
1605 {
1606 assert(dst.type == BRW_REGISTER_TYPE_D ||
1607 dst.type == BRW_REGISTER_TYPE_UD);
1608 assert(src0.type == BRW_REGISTER_TYPE_D ||
1609 src0.type == BRW_REGISTER_TYPE_UD);
1610
1611 const struct brw_reg reg = stride(src1, 1, 4, 0);
1612 const unsigned lower_size = MIN2(inst->exec_size,
1613 devinfo->gen >= 8 ? 16 : 8);
1614
1615 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1616 brw_inst *insn = brw_ADD(p, offset(dst, i * lower_size / 8),
1617 offset(src0, (src0.vstride == 0 ? 0 : (1 << (src0.vstride - 1)) *
1618 (i * lower_size / (1 << src0.width))) *
1619 type_sz(src0.type) / REG_SIZE),
1620 suboffset(reg, i * lower_size / 4));
1621 brw_inst_set_exec_size(devinfo, insn, cvt(lower_size) - 1);
1622 brw_inst_set_group(devinfo, insn, inst->group + lower_size * i);
1623 brw_inst_set_compression(devinfo, insn, lower_size > 8);
1624 }
1625 }
1626
1627 void
1628 fs_generator::generate_pack_half_2x16_split(fs_inst *,
1629 struct brw_reg dst,
1630 struct brw_reg x,
1631 struct brw_reg y)
1632 {
1633 assert(devinfo->gen >= 7);
1634 assert(dst.type == BRW_REGISTER_TYPE_UD);
1635 assert(x.type == BRW_REGISTER_TYPE_F);
1636 assert(y.type == BRW_REGISTER_TYPE_F);
1637
1638 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
1639 *
1640 * Because this instruction does not have a 16-bit floating-point type,
1641 * the destination data type must be Word (W).
1642 *
1643 * The destination must be DWord-aligned and specify a horizontal stride
1644 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
1645 * each destination channel and the upper word is not modified.
1646 */
1647 struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
1648
1649 /* Give each 32-bit channel of dst the form below, where "." means
1650 * unchanged.
1651 * 0x....hhhh
1652 */
1653 brw_F32TO16(p, dst_w, y);
1654
1655 /* Now the form:
1656 * 0xhhhh0000
1657 */
1658 brw_SHL(p, dst, dst, brw_imm_ud(16u));
1659
1660 /* And, finally the form of packHalf2x16's output:
1661 * 0xhhhhllll
1662 */
1663 brw_F32TO16(p, dst_w, x);
1664 }
1665
1666 void
1667 fs_generator::generate_unpack_half_2x16_split(fs_inst *inst,
1668 struct brw_reg dst,
1669 struct brw_reg src)
1670 {
1671 assert(devinfo->gen >= 7);
1672 assert(dst.type == BRW_REGISTER_TYPE_F);
1673 assert(src.type == BRW_REGISTER_TYPE_UD);
1674
1675 /* From the Ivybridge PRM, Vol4, Part3, Section 6.26 f16to32:
1676 *
1677 * Because this instruction does not have a 16-bit floating-point type,
1678 * the source data type must be Word (W). The destination type must be
1679 * F (Float).
1680 */
1681 struct brw_reg src_w = spread(retype(src, BRW_REGISTER_TYPE_W), 2);
1682
1683 /* Each channel of src has the form of unpackHalf2x16's input: 0xhhhhllll.
1684 * For the Y case, we wish to access only the upper word; therefore
1685 * a 16-bit subregister offset is needed.
1686 */
1687 assert(inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X ||
1688 inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y);
1689 if (inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y)
1690 src_w.subnr += 2;
1691
1692 brw_F16TO32(p, dst, src_w);
1693 }
1694
1695 void
1696 fs_generator::generate_shader_time_add(fs_inst *,
1697 struct brw_reg payload,
1698 struct brw_reg offset,
1699 struct brw_reg value)
1700 {
1701 assert(devinfo->gen >= 7);
1702 brw_push_insn_state(p);
1703 brw_set_default_mask_control(p, true);
1704
1705 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1706 struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
1707 offset.type);
1708 struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
1709 value.type);
1710
1711 assert(offset.file == BRW_IMMEDIATE_VALUE);
1712 if (value.file == BRW_GENERAL_REGISTER_FILE) {
1713 value.width = BRW_WIDTH_1;
1714 value.hstride = BRW_HORIZONTAL_STRIDE_0;
1715 value.vstride = BRW_VERTICAL_STRIDE_0;
1716 } else {
1717 assert(value.file == BRW_IMMEDIATE_VALUE);
1718 }
1719
1720 /* Trying to deal with setup of the params from the IR is crazy in the FS8
1721 * case, and we don't really care about squeezing every bit of performance
1722 * out of this path, so we just emit the MOVs from here.
1723 */
1724 brw_MOV(p, payload_offset, offset);
1725 brw_MOV(p, payload_value, value);
1726 brw_shader_time_add(p, payload,
1727 prog_data->binding_table.shader_time_start);
1728 brw_pop_insn_state(p);
1729
1730 brw_mark_surface_used(prog_data,
1731 prog_data->binding_table.shader_time_start);
1732 }
1733
1734 void
1735 fs_generator::enable_debug(const char *shader_name)
1736 {
1737 debug_flag = true;
1738 this->shader_name = shader_name;
1739 }
1740
1741 int
1742 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width)
1743 {
1744 /* align to 64 byte boundary. */
1745 while (p->next_insn_offset % 64)
1746 brw_NOP(p);
1747
1748 this->dispatch_width = dispatch_width;
1749
1750 int start_offset = p->next_insn_offset;
1751 int spill_count = 0, fill_count = 0;
1752 int loop_count = 0;
1753
1754 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1755
1756 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1757 struct brw_reg src[3], dst;
1758 unsigned int last_insn_offset = p->next_insn_offset;
1759 bool multiple_instructions_emitted = false;
1760
1761 /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
1762 * "Register Region Restrictions" section: for BDW, SKL:
1763 *
1764 * "A POW/FDIV operation must not be followed by an instruction
1765 * that requires two destination registers."
1766 *
1767 * The documentation is often lacking annotations for Atom parts,
1768 * and empirically this affects CHV as well.
1769 */
1770 if (devinfo->gen >= 8 &&
1771 devinfo->gen <= 9 &&
1772 p->nr_insn > 1 &&
1773 brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
1774 brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
1775 inst->dst.component_size(inst->exec_size) > REG_SIZE) {
1776 brw_NOP(p);
1777 last_insn_offset = p->next_insn_offset;
1778 }
1779
1780 if (unlikely(debug_flag))
1781 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1782
1783 /* If the instruction writes to more than one register, it needs to be
1784 * explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
1785 * hardware figures out by itself what the right compression mode is,
1786 * but we still need to know whether the instruction is compressed to
1787 * set up the source register regions appropriately.
1788 *
1789 * XXX - This is wrong for instructions that write a single register but
1790 * read more than one which should strictly speaking be treated as
1791 * compressed. For instructions that don't write any registers it
1792 * relies on the destination being a null register of the correct
1793 * type and regioning so the instruction is considered compressed
1794 * or not accordingly.
1795 */
1796 const bool compressed =
1797 inst->dst.component_size(inst->exec_size) > REG_SIZE;
1798 brw_set_default_compression(p, compressed);
1799 brw_set_default_group(p, inst->group);
1800
1801 for (unsigned int i = 0; i < inst->sources; i++) {
1802 src[i] = brw_reg_from_fs_reg(devinfo, inst,
1803 &inst->src[i], compressed);
1804 /* The accumulator result appears to get used for the
1805 * conditional modifier generation. When negating a UD
1806 * value, there is a 33rd bit generated for the sign in the
1807 * accumulator value, so now you can't check, for example,
1808 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
1809 */
1810 assert(!inst->conditional_mod ||
1811 inst->src[i].type != BRW_REGISTER_TYPE_UD ||
1812 !inst->src[i].negate);
1813 }
1814 dst = brw_reg_from_fs_reg(devinfo, inst,
1815 &inst->dst, compressed);
1816
1817 brw_set_default_access_mode(p, BRW_ALIGN_1);
1818 brw_set_default_predicate_control(p, inst->predicate);
1819 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1820 /* On gen7 and above, hardware automatically adds the group onto the
1821 * flag subregister number. On Sandy Bridge and older, we have to do it
1822 * ourselves.
1823 */
1824 const unsigned flag_subreg = inst->flag_subreg +
1825 (devinfo->gen >= 7 ? 0 : inst->group / 16);
1826 brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2);
1827 brw_set_default_saturate(p, inst->saturate);
1828 brw_set_default_mask_control(p, inst->force_writemask_all);
1829 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1830
1831 unsigned exec_size = inst->exec_size;
1832 if (devinfo->gen == 7 && !devinfo->is_haswell &&
1833 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
1834 exec_size *= 2;
1835 }
1836
1837 brw_set_default_exec_size(p, cvt(exec_size) - 1);
1838
1839 assert(inst->force_writemask_all || inst->exec_size >= 4);
1840 assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
1841 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1842 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1843
1844 switch (inst->opcode) {
1845 case BRW_OPCODE_MOV:
1846 brw_MOV(p, dst, src[0]);
1847 break;
1848 case BRW_OPCODE_ADD:
1849 brw_ADD(p, dst, src[0], src[1]);
1850 break;
1851 case BRW_OPCODE_MUL:
1852 brw_MUL(p, dst, src[0], src[1]);
1853 break;
1854 case BRW_OPCODE_AVG:
1855 brw_AVG(p, dst, src[0], src[1]);
1856 break;
1857 case BRW_OPCODE_MACH:
1858 brw_MACH(p, dst, src[0], src[1]);
1859 break;
1860
1861 case BRW_OPCODE_LINE:
1862 brw_LINE(p, dst, src[0], src[1]);
1863 break;
1864
1865 case BRW_OPCODE_MAD:
1866 assert(devinfo->gen >= 6);
1867 if (devinfo->gen < 10)
1868 brw_set_default_access_mode(p, BRW_ALIGN_16);
1869 brw_MAD(p, dst, src[0], src[1], src[2]);
1870 break;
1871
1872 case BRW_OPCODE_LRP:
1873 assert(devinfo->gen >= 6 && devinfo->gen <= 10);
1874 if (devinfo->gen < 10)
1875 brw_set_default_access_mode(p, BRW_ALIGN_16);
1876 brw_LRP(p, dst, src[0], src[1], src[2]);
1877 break;
1878
1879 case BRW_OPCODE_FRC:
1880 brw_FRC(p, dst, src[0]);
1881 break;
1882 case BRW_OPCODE_RNDD:
1883 brw_RNDD(p, dst, src[0]);
1884 break;
1885 case BRW_OPCODE_RNDE:
1886 brw_RNDE(p, dst, src[0]);
1887 break;
1888 case BRW_OPCODE_RNDZ:
1889 brw_RNDZ(p, dst, src[0]);
1890 break;
1891
1892 case BRW_OPCODE_AND:
1893 brw_AND(p, dst, src[0], src[1]);
1894 break;
1895 case BRW_OPCODE_OR:
1896 brw_OR(p, dst, src[0], src[1]);
1897 break;
1898 case BRW_OPCODE_XOR:
1899 brw_XOR(p, dst, src[0], src[1]);
1900 break;
1901 case BRW_OPCODE_NOT:
1902 brw_NOT(p, dst, src[0]);
1903 break;
1904 case BRW_OPCODE_ASR:
1905 brw_ASR(p, dst, src[0], src[1]);
1906 break;
1907 case BRW_OPCODE_SHR:
1908 brw_SHR(p, dst, src[0], src[1]);
1909 break;
1910 case BRW_OPCODE_SHL:
1911 brw_SHL(p, dst, src[0], src[1]);
1912 break;
1913 case BRW_OPCODE_F32TO16:
1914 assert(devinfo->gen >= 7);
1915 brw_F32TO16(p, dst, src[0]);
1916 break;
1917 case BRW_OPCODE_F16TO32:
1918 assert(devinfo->gen >= 7);
1919 brw_F16TO32(p, dst, src[0]);
1920 break;
1921 case BRW_OPCODE_CMP:
1922 if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell &&
1923 dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1924 /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
1925 * implemented in the compiler is not sufficient. Overriding the
1926 * type when the destination is the null register is necessary but
1927 * not sufficient by itself.
1928 */
1929 assert(dst.nr == BRW_ARF_NULL);
1930 dst.type = BRW_REGISTER_TYPE_D;
1931 }
1932 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1933 break;
1934 case BRW_OPCODE_SEL:
1935 brw_SEL(p, dst, src[0], src[1]);
1936 break;
1937 case BRW_OPCODE_CSEL:
1938 assert(devinfo->gen >= 8);
1939 if (devinfo->gen < 10)
1940 brw_set_default_access_mode(p, BRW_ALIGN_16);
1941 brw_CSEL(p, dst, src[0], src[1], src[2]);
1942 break;
1943 case BRW_OPCODE_BFREV:
1944 assert(devinfo->gen >= 7);
1945 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1946 retype(src[0], BRW_REGISTER_TYPE_UD));
1947 break;
1948 case BRW_OPCODE_FBH:
1949 assert(devinfo->gen >= 7);
1950 brw_FBH(p, retype(dst, src[0].type), src[0]);
1951 break;
1952 case BRW_OPCODE_FBL:
1953 assert(devinfo->gen >= 7);
1954 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
1955 retype(src[0], BRW_REGISTER_TYPE_UD));
1956 break;
1957 case BRW_OPCODE_LZD:
1958 brw_LZD(p, dst, src[0]);
1959 break;
1960 case BRW_OPCODE_CBIT:
1961 assert(devinfo->gen >= 7);
1962 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
1963 retype(src[0], BRW_REGISTER_TYPE_UD));
1964 break;
1965 case BRW_OPCODE_ADDC:
1966 assert(devinfo->gen >= 7);
1967 brw_ADDC(p, dst, src[0], src[1]);
1968 break;
1969 case BRW_OPCODE_SUBB:
1970 assert(devinfo->gen >= 7);
1971 brw_SUBB(p, dst, src[0], src[1]);
1972 break;
1973 case BRW_OPCODE_MAC:
1974 brw_MAC(p, dst, src[0], src[1]);
1975 break;
1976
1977 case BRW_OPCODE_BFE:
1978 assert(devinfo->gen >= 7);
1979 if (devinfo->gen < 10)
1980 brw_set_default_access_mode(p, BRW_ALIGN_16);
1981 brw_BFE(p, dst, src[0], src[1], src[2]);
1982 break;
1983
1984 case BRW_OPCODE_BFI1:
1985 assert(devinfo->gen >= 7);
1986 brw_BFI1(p, dst, src[0], src[1]);
1987 break;
1988 case BRW_OPCODE_BFI2:
1989 assert(devinfo->gen >= 7);
1990 if (devinfo->gen < 10)
1991 brw_set_default_access_mode(p, BRW_ALIGN_16);
1992 brw_BFI2(p, dst, src[0], src[1], src[2]);
1993 break;
1994
1995 case BRW_OPCODE_IF:
1996 if (inst->src[0].file != BAD_FILE) {
1997 /* The instruction has an embedded compare (only allowed on gen6) */
1998 assert(devinfo->gen == 6);
1999 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
2000 } else {
2001 brw_IF(p, brw_get_default_exec_size(p));
2002 }
2003 break;
2004
2005 case BRW_OPCODE_ELSE:
2006 brw_ELSE(p);
2007 break;
2008 case BRW_OPCODE_ENDIF:
2009 brw_ENDIF(p);
2010 break;
2011
2012 case BRW_OPCODE_DO:
2013 brw_DO(p, brw_get_default_exec_size(p));
2014 break;
2015
2016 case BRW_OPCODE_BREAK:
2017 brw_BREAK(p);
2018 break;
2019 case BRW_OPCODE_CONTINUE:
2020 brw_CONT(p);
2021 break;
2022
2023 case BRW_OPCODE_WHILE:
2024 brw_WHILE(p);
2025 loop_count++;
2026 break;
2027
2028 case SHADER_OPCODE_RCP:
2029 case SHADER_OPCODE_RSQ:
2030 case SHADER_OPCODE_SQRT:
2031 case SHADER_OPCODE_EXP2:
2032 case SHADER_OPCODE_LOG2:
2033 case SHADER_OPCODE_SIN:
2034 case SHADER_OPCODE_COS:
2035 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2036 if (devinfo->gen >= 6) {
2037 assert(inst->mlen == 0);
2038 assert(devinfo->gen >= 7 || inst->exec_size == 8);
2039 gen6_math(p, dst, brw_math_function(inst->opcode),
2040 src[0], brw_null_reg());
2041 } else {
2042 assert(inst->mlen >= 1);
2043 assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8);
2044 gen4_math(p, dst,
2045 brw_math_function(inst->opcode),
2046 inst->base_mrf, src[0],
2047 BRW_MATH_PRECISION_FULL);
2048 }
2049 break;
2050 case SHADER_OPCODE_INT_QUOTIENT:
2051 case SHADER_OPCODE_INT_REMAINDER:
2052 case SHADER_OPCODE_POW:
2053 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2054 if (devinfo->gen >= 6) {
2055 assert(inst->mlen == 0);
2056 assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
2057 inst->exec_size == 8);
2058 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
2059 } else {
2060 assert(inst->mlen >= 1);
2061 assert(inst->exec_size == 8);
2062 gen4_math(p, dst, brw_math_function(inst->opcode),
2063 inst->base_mrf, src[0],
2064 BRW_MATH_PRECISION_FULL);
2065 }
2066 break;
2067 case FS_OPCODE_LINTERP:
2068 multiple_instructions_emitted = generate_linterp(inst, dst, src);
2069 break;
2070 case FS_OPCODE_PIXEL_X:
2071 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2072 src[0].subnr = 0 * type_sz(src[0].type);
2073 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2074 break;
2075 case FS_OPCODE_PIXEL_Y:
2076 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2077 src[0].subnr = 4 * type_sz(src[0].type);
2078 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2079 break;
2080 case SHADER_OPCODE_GET_BUFFER_SIZE:
2081 generate_get_buffer_size(inst, dst, src[0], src[1]);
2082 break;
2083 case SHADER_OPCODE_TEX:
2084 case FS_OPCODE_TXB:
2085 case SHADER_OPCODE_TXD:
2086 case SHADER_OPCODE_TXF:
2087 case SHADER_OPCODE_TXF_LZ:
2088 case SHADER_OPCODE_TXF_CMS:
2089 case SHADER_OPCODE_TXF_CMS_W:
2090 case SHADER_OPCODE_TXF_UMS:
2091 case SHADER_OPCODE_TXF_MCS:
2092 case SHADER_OPCODE_TXL:
2093 case SHADER_OPCODE_TXL_LZ:
2094 case SHADER_OPCODE_TXS:
2095 case SHADER_OPCODE_LOD:
2096 case SHADER_OPCODE_TG4:
2097 case SHADER_OPCODE_TG4_OFFSET:
2098 case SHADER_OPCODE_SAMPLEINFO:
2099 generate_tex(inst, dst, src[0], src[1], src[2]);
2100 break;
2101 case FS_OPCODE_DDX_COARSE:
2102 case FS_OPCODE_DDX_FINE:
2103 generate_ddx(inst, dst, src[0]);
2104 break;
2105 case FS_OPCODE_DDY_COARSE:
2106 case FS_OPCODE_DDY_FINE:
2107 generate_ddy(inst, dst, src[0]);
2108 break;
2109
2110 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2111 generate_scratch_write(inst, src[0]);
2112 spill_count++;
2113 break;
2114
2115 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2116 generate_scratch_read(inst, dst);
2117 fill_count++;
2118 break;
2119
2120 case SHADER_OPCODE_GEN7_SCRATCH_READ:
2121 generate_scratch_read_gen7(inst, dst);
2122 fill_count++;
2123 break;
2124
2125 case SHADER_OPCODE_MOV_INDIRECT:
2126 generate_mov_indirect(inst, dst, src[0], src[1]);
2127 break;
2128
2129 case SHADER_OPCODE_URB_READ_SIMD8:
2130 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
2131 generate_urb_read(inst, dst, src[0]);
2132 break;
2133
2134 case SHADER_OPCODE_URB_WRITE_SIMD8:
2135 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
2136 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
2137 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
2138 generate_urb_write(inst, src[0]);
2139 break;
2140
2141 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
2142 assert(inst->force_writemask_all);
2143 generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
2144 break;
2145
2146 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
2147 assert(inst->force_writemask_all);
2148 generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2149 break;
2150
2151 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
2152 generate_varying_pull_constant_load_gen4(inst, dst, src[0]);
2153 break;
2154
2155 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
2156 generate_varying_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2157 break;
2158
2159 case FS_OPCODE_REP_FB_WRITE:
2160 case FS_OPCODE_FB_WRITE:
2161 generate_fb_write(inst, src[0]);
2162 break;
2163
2164 case FS_OPCODE_FB_READ:
2165 generate_fb_read(inst, dst, src[0]);
2166 break;
2167
2168 case FS_OPCODE_MOV_DISPATCH_TO_FLAGS:
2169 generate_mov_dispatch_to_flags(inst);
2170 break;
2171
2172 case FS_OPCODE_DISCARD_JUMP:
2173 generate_discard_jump(inst);
2174 break;
2175
2176 case SHADER_OPCODE_SHADER_TIME_ADD:
2177 generate_shader_time_add(inst, src[0], src[1], src[2]);
2178 break;
2179
2180 case SHADER_OPCODE_UNTYPED_ATOMIC:
2181 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2182 brw_untyped_atomic(p, dst, src[0], src[1], src[2].ud,
2183 inst->mlen, !inst->dst.is_null(),
2184 inst->header_size);
2185 break;
2186
2187 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
2188 assert(!inst->header_size);
2189 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2190 brw_untyped_surface_read(p, dst, src[0], src[1],
2191 inst->mlen, src[2].ud);
2192 break;
2193
2194 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
2195 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2196 brw_untyped_surface_write(p, src[0], src[1],
2197 inst->mlen, src[2].ud,
2198 inst->header_size);
2199 break;
2200
2201 case SHADER_OPCODE_BYTE_SCATTERED_READ:
2202 assert(!inst->header_size);
2203 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2204 brw_byte_scattered_read(p, dst, src[0], src[1],
2205 inst->mlen, src[2].ud);
2206 break;
2207
2208 case SHADER_OPCODE_BYTE_SCATTERED_WRITE:
2209 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2210 brw_byte_scattered_write(p, src[0], src[1],
2211 inst->mlen, src[2].ud,
2212 inst->header_size);
2213 break;
2214
2215 case SHADER_OPCODE_TYPED_ATOMIC:
2216 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2217 brw_typed_atomic(p, dst, src[0], src[1],
2218 src[2].ud, inst->mlen, !inst->dst.is_null(),
2219 inst->header_size);
2220 break;
2221
2222 case SHADER_OPCODE_TYPED_SURFACE_READ:
2223 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2224 brw_typed_surface_read(p, dst, src[0], src[1],
2225 inst->mlen, src[2].ud,
2226 inst->header_size);
2227 break;
2228
2229 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
2230 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2231 brw_typed_surface_write(p, src[0], src[1], inst->mlen, src[2].ud,
2232 inst->header_size);
2233 break;
2234
2235 case SHADER_OPCODE_MEMORY_FENCE:
2236 brw_memory_fence(p, dst, BRW_OPCODE_SEND);
2237 break;
2238
2239 case SHADER_OPCODE_INTERLOCK:
2240 /* The interlock is basically a memory fence issued via sendc */
2241 brw_memory_fence(p, dst, BRW_OPCODE_SENDC);
2242 break;
2243
2244 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
2245 const struct brw_reg mask =
2246 brw_stage_has_packed_dispatch(devinfo, stage,
2247 prog_data) ? brw_imm_ud(~0u) :
2248 stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
2249 brw_dmask_reg();
2250 brw_find_live_channel(p, dst, mask);
2251 break;
2252 }
2253
2254 case SHADER_OPCODE_BROADCAST:
2255 assert(inst->force_writemask_all);
2256 brw_broadcast(p, dst, src[0], src[1]);
2257 break;
2258
2259 case SHADER_OPCODE_SHUFFLE:
2260 generate_shuffle(inst, dst, src[0], src[1]);
2261 break;
2262
2263 case SHADER_OPCODE_SEL_EXEC:
2264 assert(inst->force_writemask_all);
2265 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2266 brw_MOV(p, dst, src[1]);
2267 brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2268 brw_MOV(p, dst, src[0]);
2269 break;
2270
2271 case SHADER_OPCODE_QUAD_SWIZZLE:
2272 /* This only works on 8-wide 32-bit values */
2273 assert(inst->exec_size == 8);
2274 assert(type_sz(src[0].type) == 4);
2275 assert(inst->force_writemask_all);
2276 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2277 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2278
2279 if (src[0].file == BRW_IMMEDIATE_VALUE ||
2280 (src[0].vstride == 0 && src[0].hstride == 0)) {
2281 /* The value is uniform across all channels */
2282 brw_MOV(p, dst, src[0]);
2283 } else {
2284 brw_set_default_access_mode(p, BRW_ALIGN_16);
2285 struct brw_reg swiz_src = stride(src[0], 4, 4, 1);
2286 swiz_src.swizzle = inst->src[1].ud;
2287 brw_MOV(p, dst, swiz_src);
2288 }
2289 break;
2290
2291 case SHADER_OPCODE_CLUSTER_BROADCAST: {
2292 assert(src[0].type == dst.type);
2293 assert(!src[0].negate && !src[0].abs);
2294 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2295 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2296 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2297 assert(src[2].type == BRW_REGISTER_TYPE_UD);
2298 const unsigned component = src[1].ud;
2299 const unsigned cluster_size = src[2].ud;
2300 struct brw_reg strided = stride(suboffset(src[0], component),
2301 cluster_size, cluster_size, 0);
2302 if (type_sz(src[0].type) > 4 &&
2303 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
2304 /* IVB has an issue (which we found empirically) where it reads
2305 * two address register components per channel for indirectly
2306 * addressed 64-bit sources.
2307 *
2308 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
2309 *
2310 * "When source or destination datatype is 64b or operation is
2311 * integer DWord multiply, indirect addressing must not be
2312 * used."
2313 *
2314 * To work around both of these, we do two integer MOVs insead of
2315 * one 64-bit MOV. Because no double value should ever cross a
2316 * register boundary, it's safe to use the immediate offset in the
2317 * indirect here to handle adding 4 bytes to the offset and avoid
2318 * the extra ADD to the register file.
2319 */
2320 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
2321 subscript(strided, BRW_REGISTER_TYPE_D, 0));
2322 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
2323 subscript(strided, BRW_REGISTER_TYPE_D, 1));
2324 } else {
2325 brw_MOV(p, dst, strided);
2326 }
2327 break;
2328 }
2329
2330 case FS_OPCODE_SET_SAMPLE_ID:
2331 generate_set_sample_id(inst, dst, src[0], src[1]);
2332 break;
2333
2334 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
2335 generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
2336 break;
2337
2338 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
2339 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
2340 generate_unpack_half_2x16_split(inst, dst, src[0]);
2341 break;
2342
2343 case FS_OPCODE_PLACEHOLDER_HALT:
2344 /* This is the place where the final HALT needs to be inserted if
2345 * we've emitted any discards. If not, this will emit no code.
2346 */
2347 if (!patch_discard_jumps_to_fb_writes()) {
2348 if (unlikely(debug_flag)) {
2349 disasm_info->use_tail = true;
2350 }
2351 }
2352 break;
2353
2354 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
2355 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2356 GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
2357 break;
2358
2359 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
2360 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2361 GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
2362 break;
2363
2364 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
2365 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2366 GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
2367 break;
2368
2369 case CS_OPCODE_CS_TERMINATE:
2370 generate_cs_terminate(inst, src[0]);
2371 break;
2372
2373 case SHADER_OPCODE_BARRIER:
2374 generate_barrier(inst, src[0]);
2375 break;
2376
2377 case BRW_OPCODE_DIM:
2378 assert(devinfo->is_haswell);
2379 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2380 assert(dst.type == BRW_REGISTER_TYPE_DF);
2381 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2382 break;
2383
2384 case SHADER_OPCODE_RND_MODE:
2385 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2386 brw_rounding_mode(p, (brw_rnd_mode) src[0].d);
2387 break;
2388
2389 default:
2390 unreachable("Unsupported opcode");
2391
2392 case SHADER_OPCODE_LOAD_PAYLOAD:
2393 unreachable("Should be lowered by lower_load_payload()");
2394 }
2395
2396 if (multiple_instructions_emitted)
2397 continue;
2398
2399 if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2400 assert(p->next_insn_offset == last_insn_offset + 16 ||
2401 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2402 "emitting more than 1 instruction");
2403
2404 brw_inst *last = &p->store[last_insn_offset / 16];
2405
2406 if (inst->conditional_mod)
2407 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2408 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2409 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2410 }
2411 }
2412
2413 brw_set_uip_jip(p, start_offset);
2414
2415 /* end of program sentinel */
2416 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2417
2418 #ifndef NDEBUG
2419 bool validated =
2420 #else
2421 if (unlikely(debug_flag))
2422 #endif
2423 brw_validate_instructions(devinfo, p->store,
2424 start_offset,
2425 p->next_insn_offset,
2426 disasm_info);
2427
2428 int before_size = p->next_insn_offset - start_offset;
2429 brw_compact_instructions(p, start_offset, disasm_info);
2430 int after_size = p->next_insn_offset - start_offset;
2431
2432 if (unlikely(debug_flag)) {
2433 fprintf(stderr, "Native code for %s\n"
2434 "SIMD%d shader: %d instructions. %d loops. %u cycles. %d:%d spills:fills. Promoted %u constants. Compacted %d to %d"
2435 " bytes (%.0f%%)\n",
2436 shader_name, dispatch_width, before_size / 16, loop_count, cfg->cycle_count,
2437 spill_count, fill_count, promoted_constants, before_size, after_size,
2438 100.0f * (before_size - after_size) / before_size);
2439
2440 dump_assembly(p->store, disasm_info);
2441 }
2442 ralloc_free(disasm_info);
2443 assert(validated);
2444
2445 compiler->shader_debug_log(log_data,
2446 "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
2447 "%d:%d spills:fills, Promoted %u constants, "
2448 "compacted %d to %d bytes.",
2449 _mesa_shader_stage_to_abbrev(stage),
2450 dispatch_width, before_size / 16,
2451 loop_count, cfg->cycle_count, spill_count,
2452 fill_count, promoted_constants, before_size,
2453 after_size);
2454
2455 return start_offset;
2456 }
2457
2458 const unsigned *
2459 fs_generator::get_assembly()
2460 {
2461 return brw_get_program(p, &prog_data->program_size);
2462 }