intel/fs: Add support for subgroup quad operations
[mesa.git] / src / intel / compiler / brw_fs_generator.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_generator.cpp
25 *
26 * This file supports generating code from the FS LIR to the actual
27 * native instructions.
28 */
29
30 #include "brw_eu.h"
31 #include "brw_fs.h"
32 #include "brw_cfg.h"
33
34 static enum brw_reg_file
35 brw_file_from_reg(fs_reg *reg)
36 {
37 switch (reg->file) {
38 case ARF:
39 return BRW_ARCHITECTURE_REGISTER_FILE;
40 case FIXED_GRF:
41 case VGRF:
42 return BRW_GENERAL_REGISTER_FILE;
43 case MRF:
44 return BRW_MESSAGE_REGISTER_FILE;
45 case IMM:
46 return BRW_IMMEDIATE_VALUE;
47 case BAD_FILE:
48 case ATTR:
49 case UNIFORM:
50 unreachable("not reached");
51 }
52 return BRW_ARCHITECTURE_REGISTER_FILE;
53 }
54
55 static struct brw_reg
56 brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst,
57 fs_reg *reg, bool compressed)
58 {
59 struct brw_reg brw_reg;
60
61 switch (reg->file) {
62 case MRF:
63 assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
64 /* Fallthrough */
65 case VGRF:
66 if (reg->stride == 0) {
67 brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
68 } else {
69 /* From the Haswell PRM:
70 *
71 * "VertStride must be used to cross GRF register boundaries. This
72 * rule implies that elements within a 'Width' cannot cross GRF
73 * boundaries."
74 *
75 * The maximum width value that could satisfy this restriction is:
76 */
77 const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
78
79 /* Because the hardware can only split source regions at a whole
80 * multiple of width during decompression (i.e. vertically), clamp
81 * the value obtained above to the physical execution size of a
82 * single decompressed chunk of the instruction:
83 */
84 const unsigned phys_width = compressed ? inst->exec_size / 2 :
85 inst->exec_size;
86
87 /* XXX - The equation above is strictly speaking not correct on
88 * hardware that supports unbalanced GRF writes -- On Gen9+
89 * each decompressed chunk of the instruction may have a
90 * different execution size when the number of components
91 * written to each destination GRF is not the same.
92 */
93 const unsigned width = MIN2(reg_width, phys_width);
94 brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
95 brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
96
97 if (devinfo->gen == 7 && !devinfo->is_haswell) {
98 /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
99 * "Each DF (Double Float) operand uses an element size of 4 rather
100 * than 8 and all regioning parameters are twice what the values
101 * would be based on the true element size: ExecSize, Width,
102 * HorzStride, and VertStride. Each DF operand uses a pair of
103 * channels and all masking and swizzing should be adjusted
104 * appropriately."
105 *
106 * From the IvyBridge PRM (Special Requirements for Handling Double
107 * Precision Data Types, page 71):
108 * "In Align1 mode, all regioning parameters like stride, execution
109 * size, and width must use the syntax of a pair of packed
110 * floats. The offsets for these data types must be 64-bit
111 * aligned. The execution size and regioning parameters are in terms
112 * of floats."
113 *
114 * Summarized: when handling DF-typed arguments, ExecSize,
115 * VertStride, and Width must be doubled.
116 *
117 * It applies to BayTrail too.
118 */
119 if (type_sz(reg->type) == 8) {
120 brw_reg.width++;
121 if (brw_reg.vstride > 0)
122 brw_reg.vstride++;
123 assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
124 }
125
126 /* When converting from DF->F, we set the destination stride to 2
127 * because each d2f conversion implicitly writes 2 floats, being
128 * the first one the converted value. IVB/BYT actually writes two
129 * F components per SIMD channel, and every other component is
130 * filled with garbage.
131 */
132 if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
133 type_sz(inst->dst.type) < 8) {
134 assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
135 brw_reg.hstride--;
136 }
137 }
138 }
139
140 brw_reg = retype(brw_reg, reg->type);
141 brw_reg = byte_offset(brw_reg, reg->offset);
142 brw_reg.abs = reg->abs;
143 brw_reg.negate = reg->negate;
144 break;
145 case ARF:
146 case FIXED_GRF:
147 case IMM:
148 assert(reg->offset == 0);
149 brw_reg = reg->as_brw_reg();
150 break;
151 case BAD_FILE:
152 /* Probably unused. */
153 brw_reg = brw_null_reg();
154 break;
155 case ATTR:
156 case UNIFORM:
157 unreachable("not reached");
158 }
159
160 /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
161 * region, but on IVB and BYT DF regions must be programmed in terms of
162 * floats. A <0,2,1> region accomplishes this.
163 */
164 if (devinfo->gen == 7 && !devinfo->is_haswell &&
165 type_sz(reg->type) == 8 &&
166 brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
167 brw_reg.width == BRW_WIDTH_1 &&
168 brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
169 brw_reg.width = BRW_WIDTH_2;
170 brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
171 }
172
173 return brw_reg;
174 }
175
176 fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
177 void *mem_ctx,
178 const void *key,
179 struct brw_stage_prog_data *prog_data,
180 unsigned promoted_constants,
181 bool runtime_check_aads_emit,
182 gl_shader_stage stage)
183
184 : compiler(compiler), log_data(log_data),
185 devinfo(compiler->devinfo), key(key),
186 prog_data(prog_data),
187 promoted_constants(promoted_constants),
188 runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
189 stage(stage), mem_ctx(mem_ctx)
190 {
191 p = rzalloc(mem_ctx, struct brw_codegen);
192 brw_init_codegen(devinfo, p, mem_ctx);
193
194 /* In the FS code generator, we are very careful to ensure that we always
195 * set the right execution size so we don't need the EU code to "help" us
196 * by trying to infer it. Sometimes, it infers the wrong thing.
197 */
198 p->automatic_exec_sizes = false;
199 }
200
201 fs_generator::~fs_generator()
202 {
203 }
204
205 class ip_record : public exec_node {
206 public:
207 DECLARE_RALLOC_CXX_OPERATORS(ip_record)
208
209 ip_record(int ip)
210 {
211 this->ip = ip;
212 }
213
214 int ip;
215 };
216
217 bool
218 fs_generator::patch_discard_jumps_to_fb_writes()
219 {
220 if (devinfo->gen < 6 || this->discard_halt_patches.is_empty())
221 return false;
222
223 int scale = brw_jump_scale(p->devinfo);
224
225 /* There is a somewhat strange undocumented requirement of using
226 * HALT, according to the simulator. If some channel has HALTed to
227 * a particular UIP, then by the end of the program, every channel
228 * must have HALTed to that UIP. Furthermore, the tracking is a
229 * stack, so you can't do the final halt of a UIP after starting
230 * halting to a new UIP.
231 *
232 * Symptoms of not emitting this instruction on actual hardware
233 * included GPU hangs and sparkly rendering on the piglit discard
234 * tests.
235 */
236 brw_inst *last_halt = gen6_HALT(p);
237 brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
238 brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
239
240 int ip = p->nr_insn;
241
242 foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
243 brw_inst *patch = &p->store[patch_ip->ip];
244
245 assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
246 /* HALT takes a half-instruction distance from the pre-incremented IP. */
247 brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
248 }
249
250 this->discard_halt_patches.make_empty();
251 return true;
252 }
253
254 void
255 fs_generator::fire_fb_write(fs_inst *inst,
256 struct brw_reg payload,
257 struct brw_reg implied_header,
258 GLuint nr)
259 {
260 uint32_t msg_control;
261
262 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
263
264 if (devinfo->gen < 6) {
265 brw_push_insn_state(p);
266 brw_set_default_exec_size(p, BRW_EXECUTE_8);
267 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
268 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
269 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
270 brw_MOV(p, offset(payload, 1), brw_vec8_grf(1, 0));
271 brw_pop_insn_state(p);
272 }
273
274 if (inst->opcode == FS_OPCODE_REP_FB_WRITE)
275 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
276 else if (prog_data->dual_src_blend) {
277 if (!inst->group)
278 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
279 else
280 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
281 } else if (inst->exec_size == 16)
282 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
283 else
284 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
285
286 /* We assume render targets start at 0, because headerless FB write
287 * messages set "Render Target Index" to 0. Using a different binding
288 * table index would make it impossible to use headerless messages.
289 */
290 const uint32_t surf_index = inst->target;
291
292 bool last_render_target = inst->eot ||
293 (prog_data->dual_src_blend && dispatch_width == 16);
294
295
296 brw_fb_WRITE(p,
297 payload,
298 implied_header,
299 msg_control,
300 surf_index,
301 nr,
302 0,
303 inst->eot,
304 last_render_target,
305 inst->header_size != 0);
306
307 brw_mark_surface_used(&prog_data->base, surf_index);
308 }
309
310 void
311 fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
312 {
313 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
314 const brw_wm_prog_key * const key = (brw_wm_prog_key * const) this->key;
315 struct brw_reg implied_header;
316
317 if (devinfo->gen < 8 && !devinfo->is_haswell) {
318 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
319 }
320
321 if (inst->base_mrf >= 0)
322 payload = brw_message_reg(inst->base_mrf);
323
324 /* Header is 2 regs, g0 and g1 are the contents. g0 will be implied
325 * move, here's g1.
326 */
327 if (inst->header_size != 0) {
328 brw_push_insn_state(p);
329 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
330 brw_set_default_exec_size(p, BRW_EXECUTE_1);
331 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
332 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
333 brw_set_default_flag_reg(p, 0, 0);
334
335 /* On HSW, the GPU will use the predicate on SENDC, unless the header is
336 * present.
337 */
338 if (prog_data->uses_kill) {
339 struct brw_reg pixel_mask;
340
341 if (devinfo->gen >= 6)
342 pixel_mask = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW);
343 else
344 pixel_mask = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
345
346 brw_MOV(p, pixel_mask, brw_flag_reg(0, 1));
347 }
348
349 if (devinfo->gen >= 6) {
350 brw_push_insn_state(p);
351 brw_set_default_exec_size(p, BRW_EXECUTE_16);
352 brw_set_default_compression_control(p, BRW_COMPRESSION_COMPRESSED);
353 brw_MOV(p,
354 retype(payload, BRW_REGISTER_TYPE_UD),
355 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
356 brw_pop_insn_state(p);
357
358 if (inst->target > 0 && key->replicate_alpha) {
359 /* Set "Source0 Alpha Present to RenderTarget" bit in message
360 * header.
361 */
362 brw_OR(p,
363 vec1(retype(payload, BRW_REGISTER_TYPE_UD)),
364 vec1(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)),
365 brw_imm_ud(0x1 << 11));
366 }
367
368 if (inst->target > 0) {
369 /* Set the render target index for choosing BLEND_STATE. */
370 brw_MOV(p, retype(vec1(suboffset(payload, 2)),
371 BRW_REGISTER_TYPE_UD),
372 brw_imm_ud(inst->target));
373 }
374
375 /* Set computes stencil to render target */
376 if (prog_data->computed_stencil) {
377 brw_OR(p,
378 vec1(retype(payload, BRW_REGISTER_TYPE_UD)),
379 vec1(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)),
380 brw_imm_ud(0x1 << 14));
381 }
382
383 implied_header = brw_null_reg();
384 } else {
385 implied_header = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
386 }
387
388 brw_pop_insn_state(p);
389 } else {
390 implied_header = brw_null_reg();
391 }
392
393 if (!runtime_check_aads_emit) {
394 fire_fb_write(inst, payload, implied_header, inst->mlen);
395 } else {
396 /* This can only happen in gen < 6 */
397 assert(devinfo->gen < 6);
398
399 struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
400
401 /* Check runtime bit to detect if we have to send AA data or not */
402 brw_push_insn_state(p);
403 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
404 brw_set_default_exec_size(p, BRW_EXECUTE_1);
405 brw_AND(p,
406 v1_null_ud,
407 retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
408 brw_imm_ud(1<<26));
409 brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
410
411 int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
412 brw_pop_insn_state(p);
413 {
414 /* Don't send AA data */
415 fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
416 }
417 brw_land_fwd_jump(p, jmp);
418 fire_fb_write(inst, payload, implied_header, inst->mlen);
419 }
420 }
421
422 void
423 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
424 struct brw_reg payload)
425 {
426 assert(inst->size_written % REG_SIZE == 0);
427 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
428 /* We assume that render targets start at binding table index 0. */
429 const unsigned surf_index = inst->target;
430
431 gen9_fb_READ(p, dst, payload, surf_index,
432 inst->header_size, inst->size_written / REG_SIZE,
433 prog_data->persample_dispatch);
434
435 brw_mark_surface_used(&prog_data->base, surf_index);
436 }
437
438 void
439 fs_generator::generate_mov_indirect(fs_inst *inst,
440 struct brw_reg dst,
441 struct brw_reg reg,
442 struct brw_reg indirect_byte_offset)
443 {
444 assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
445 assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
446 assert(!reg.abs && !reg.negate);
447 assert(reg.type == dst.type);
448
449 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
450
451 if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
452 imm_byte_offset += indirect_byte_offset.ud;
453
454 reg.nr = imm_byte_offset / REG_SIZE;
455 reg.subnr = imm_byte_offset % REG_SIZE;
456 brw_MOV(p, dst, reg);
457 } else {
458 /* Prior to Broadwell, there are only 8 address registers. */
459 assert(inst->exec_size <= 8 || devinfo->gen >= 8);
460
461 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
462 struct brw_reg addr = vec8(brw_address_reg(0));
463
464 /* The destination stride of an instruction (in bytes) must be greater
465 * than or equal to the size of the rest of the instruction. Since the
466 * address register is of type UW, we can't use a D-type instruction.
467 * In order to get around this, re retype to UW and use a stride.
468 */
469 indirect_byte_offset =
470 retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
471
472 /* There are a number of reasons why we don't use the base offset here.
473 * One reason is that the field is only 9 bits which means we can only
474 * use it to access the first 16 GRFs. Also, from the Haswell PRM
475 * section "Register Region Restrictions":
476 *
477 * "The lower bits of the AddressImmediate must not overflow to
478 * change the register address. The lower 5 bits of Address
479 * Immediate when added to lower 5 bits of address register gives
480 * the sub-register offset. The upper bits of Address Immediate
481 * when added to upper bits of address register gives the register
482 * address. Any overflow from sub-register offset is dropped."
483 *
484 * Since the indirect may cause us to cross a register boundary, this
485 * makes the base offset almost useless. We could try and do something
486 * clever where we use a actual base offset if base_offset % 32 == 0 but
487 * that would mean we were generating different code depending on the
488 * base offset. Instead, for the sake of consistency, we'll just do the
489 * add ourselves. This restriction is only listed in the Haswell PRM
490 * but empirical testing indicates that it applies on all older
491 * generations and is lifted on Broadwell.
492 *
493 * In the end, while base_offset is nice to look at in the generated
494 * code, using it saves us 0 instructions and would require quite a bit
495 * of case-by-case work. It's just not worth it.
496 */
497 brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
498
499 if (type_sz(reg.type) > 4 &&
500 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
501 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
502 /* IVB has an issue (which we found empirically) where it reads two
503 * address register components per channel for indirectly addressed
504 * 64-bit sources.
505 *
506 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
507 *
508 * "When source or destination datatype is 64b or operation is
509 * integer DWord multiply, indirect addressing must not be used."
510 *
511 * To work around both of these, we do two integer MOVs insead of one
512 * 64-bit MOV. Because no double value should ever cross a register
513 * boundary, it's safe to use the immediate offset in the indirect
514 * here to handle adding 4 bytes to the offset and avoid the extra
515 * ADD to the register file.
516 */
517 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
518 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
519 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
520 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
521 } else {
522 struct brw_reg ind_src = brw_VxH_indirect(0, 0);
523
524 brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
525
526 if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
527 !inst->get_next()->is_tail_sentinel() &&
528 ((fs_inst *)inst->get_next())->mlen > 0) {
529 /* From the Sandybridge PRM:
530 *
531 * "[Errata: DevSNB(SNB)] If MRF register is updated by any
532 * instruction that “indexed/indirect” source AND is followed
533 * by a send, the instruction requires a “Switch”. This is to
534 * avoid race condition where send may dispatch before MRF is
535 * updated."
536 */
537 brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
538 }
539 }
540 }
541 }
542
543 void
544 fs_generator::generate_shuffle(fs_inst *inst,
545 struct brw_reg dst,
546 struct brw_reg src,
547 struct brw_reg idx)
548 {
549 /* Ivy bridge has some strange behavior that makes this a real pain to
550 * implement for 64-bit values so we just don't bother.
551 */
552 assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4);
553
554 /* Because we're using the address register, we're limited to 8-wide
555 * execution on gen7. On gen8, we're limited to 16-wide by the address
556 * register file and 8-wide for 64-bit types. We could try and make this
557 * instruction splittable higher up in the compiler but that gets weird
558 * because it reads all of the channels regardless of execution size. It's
559 * easier just to split it here.
560 */
561 const unsigned lower_width =
562 (devinfo->gen <= 7 || type_sz(src.type) > 4) ?
563 8 : MIN2(16, inst->exec_size);
564
565 brw_set_default_exec_size(p, cvt(lower_width) - 1);
566 for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
567 brw_set_default_group(p, group);
568
569 if ((src.vstride == 0 && src.hstride == 0) ||
570 idx.file == BRW_IMMEDIATE_VALUE) {
571 /* Trivial, the source is already uniform or the index is a constant.
572 * We will typically not get here if the optimizer is doing its job,
573 * but asserting would be mean.
574 */
575 const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
576 brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0));
577 } else {
578 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
579 struct brw_reg addr = vec8(brw_address_reg(0));
580
581 struct brw_reg group_idx = suboffset(idx, group);
582
583 if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
584 /* Things get grumpy if the register is too wide. */
585 group_idx.width--;
586 group_idx.vstride--;
587 }
588
589 assert(type_sz(group_idx.type) <= 4);
590 if (type_sz(group_idx.type) == 4) {
591 /* The destination stride of an instruction (in bytes) must be
592 * greater than or equal to the size of the rest of the
593 * instruction. Since the address register is of type UW, we
594 * can't use a D-type instruction. In order to get around this,
595 * re retype to UW and use a stride.
596 */
597 group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
598 }
599
600 /* Take into account the component size and horizontal stride. */
601 assert(src.vstride == src.hstride + src.width);
602 brw_SHL(p, addr, group_idx,
603 brw_imm_uw(_mesa_logbase2(type_sz(src.type)) +
604 src.hstride - 1));
605
606 /* Add on the register start offset */
607 brw_ADD(p, addr, addr, brw_imm_uw(src.nr * REG_SIZE + src.subnr));
608
609 if (type_sz(src.type) > 4 &&
610 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
611 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
612 /* IVB has an issue (which we found empirically) where it reads
613 * two address register components per channel for indirectly
614 * addressed 64-bit sources.
615 *
616 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
617 *
618 * "When source or destination datatype is 64b or operation is
619 * integer DWord multiply, indirect addressing must not be
620 * used."
621 *
622 * To work around both of these, we do two integer MOVs insead of
623 * one 64-bit MOV. Because no double value should ever cross a
624 * register boundary, it's safe to use the immediate offset in the
625 * indirect here to handle adding 4 bytes to the offset and avoid
626 * the extra ADD to the register file.
627 */
628 struct brw_reg gdst = suboffset(dst, group);
629 struct brw_reg dst_d = retype(spread(gdst, 2),
630 BRW_REGISTER_TYPE_D);
631 brw_MOV(p, dst_d,
632 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
633 brw_MOV(p, byte_offset(dst_d, 4),
634 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
635 } else {
636 brw_MOV(p, suboffset(dst, group),
637 retype(brw_VxH_indirect(0, 0), src.type));
638 }
639 }
640 }
641 }
642
643 void
644 fs_generator::generate_urb_read(fs_inst *inst,
645 struct brw_reg dst,
646 struct brw_reg header)
647 {
648 assert(inst->size_written % REG_SIZE == 0);
649 assert(header.file == BRW_GENERAL_REGISTER_FILE);
650 assert(header.type == BRW_REGISTER_TYPE_UD);
651
652 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
653 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
654 brw_set_src0(p, send, header);
655 brw_set_src1(p, send, brw_imm_ud(0u));
656
657 brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
658 brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ);
659
660 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
661 brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
662
663 brw_inst_set_mlen(p->devinfo, send, inst->mlen);
664 brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
665 brw_inst_set_header_present(p->devinfo, send, true);
666 brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
667 }
668
669 void
670 fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
671 {
672 brw_inst *insn;
673
674 /* WaClearTDRRegBeforeEOTForNonPS.
675 *
676 * WA: Clear tdr register before send EOT in all non-PS shader kernels
677 *
678 * mov(8) tdr0:ud 0x0:ud {NoMask}"
679 */
680 if (inst->eot && p->devinfo->gen == 10) {
681 brw_push_insn_state(p);
682 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
683 brw_MOV(p, brw_tdr_reg(), brw_imm_uw(0));
684 brw_pop_insn_state(p);
685 }
686
687 insn = brw_next_insn(p, BRW_OPCODE_SEND);
688
689 brw_set_dest(p, insn, brw_null_reg());
690 brw_set_src0(p, insn, payload);
691 brw_set_src1(p, insn, brw_imm_d(0));
692
693 brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
694 brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE);
695
696 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
697 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
698 brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
699
700 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
701 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
702 brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
703
704 brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
705 brw_inst_set_rlen(p->devinfo, insn, 0);
706 brw_inst_set_eot(p->devinfo, insn, inst->eot);
707 brw_inst_set_header_present(p->devinfo, insn, true);
708 brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
709 }
710
711 void
712 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
713 {
714 struct brw_inst *insn;
715
716 insn = brw_next_insn(p, BRW_OPCODE_SEND);
717
718 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
719 brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
720 brw_set_src1(p, insn, brw_imm_d(0));
721
722 /* Terminate a compute shader by sending a message to the thread spawner.
723 */
724 brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
725 brw_inst_set_mlen(devinfo, insn, 1);
726 brw_inst_set_rlen(devinfo, insn, 0);
727 brw_inst_set_eot(devinfo, insn, inst->eot);
728 brw_inst_set_header_present(devinfo, insn, false);
729
730 brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
731 brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
732
733 /* Note that even though the thread has a URB resource associated with it,
734 * we set the "do not dereference URB" bit, because the URB resource is
735 * managed by the fixed-function unit, so it will free it automatically.
736 */
737 brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
738
739 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
740 }
741
742 void
743 fs_generator::generate_barrier(fs_inst *inst, struct brw_reg src)
744 {
745 brw_barrier(p, src);
746 brw_WAIT(p);
747 }
748
749 bool
750 fs_generator::generate_linterp(fs_inst *inst,
751 struct brw_reg dst, struct brw_reg *src)
752 {
753 /* PLN reads:
754 * / in SIMD16 \
755 * -----------------------------------
756 * | src1+0 | src1+1 | src1+2 | src1+3 |
757 * |-----------------------------------|
758 * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
759 * -----------------------------------
760 *
761 * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
762 *
763 * -----------------------------------
764 * | src1+0 | src1+1 | src1+2 | src1+3 |
765 * |-----------------------------------|
766 * |(x0, x1)|(y0, y1)| | | in SIMD8
767 * |-----------------------------------|
768 * |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
769 * -----------------------------------
770 *
771 * See also: emit_interpolation_setup_gen4().
772 */
773 struct brw_reg delta_x = src[0];
774 struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
775 struct brw_reg interp = src[1];
776 brw_inst *i[4];
777
778 if (devinfo->gen >= 11) {
779 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_NF);
780 struct brw_reg dwP = suboffset(interp, 0);
781 struct brw_reg dwQ = suboffset(interp, 1);
782 struct brw_reg dwR = suboffset(interp, 3);
783
784 brw_set_default_exec_size(p, BRW_EXECUTE_8);
785
786 if (inst->exec_size == 8) {
787 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
788 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_y, 0), dwQ);
789
790 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
791
792 /* brw_set_default_saturate() is called before emitting instructions,
793 * so the saturate bit is set in each instruction, so we need to unset
794 * it on the first instruction of each pair.
795 */
796 brw_inst_set_saturate(p->devinfo, i[0], false);
797 } else {
798 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
799 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
800 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_x, 1), dwQ);
801
802 brw_set_default_compression_control(p, BRW_COMPRESSION_2NDHALF);
803 i[2] = brw_MAD(p, acc, dwR, offset(delta_y, 0), dwP);
804 i[3] = brw_MAD(p, offset(dst, 1), acc, offset(delta_y, 1), dwQ);
805
806 brw_set_default_compression_control(p, BRW_COMPRESSION_COMPRESSED);
807
808 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
809 brw_inst_set_cond_modifier(p->devinfo, i[3], inst->conditional_mod);
810
811 /* brw_set_default_saturate() is called before emitting instructions,
812 * so the saturate bit is set in each instruction, so we need to unset
813 * it on the first instruction of each pair.
814 */
815 brw_inst_set_saturate(p->devinfo, i[0], false);
816 brw_inst_set_saturate(p->devinfo, i[2], false);
817 }
818
819 return true;
820 } else if (devinfo->has_pln &&
821 (devinfo->gen >= 7 || (delta_x.nr & 1) == 0)) {
822 brw_PLN(p, dst, interp, delta_x);
823
824 return false;
825 } else {
826 i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
827 i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
828
829 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
830
831 /* brw_set_default_saturate() is called before emitting instructions, so
832 * the saturate bit is set in each instruction, so we need to unset it on
833 * the first instruction.
834 */
835 brw_inst_set_saturate(p->devinfo, i[0], false);
836
837 return true;
838 }
839 }
840
841 void
842 fs_generator::generate_get_buffer_size(fs_inst *inst,
843 struct brw_reg dst,
844 struct brw_reg src,
845 struct brw_reg surf_index)
846 {
847 assert(devinfo->gen >= 7);
848 assert(surf_index.file == BRW_IMMEDIATE_VALUE);
849
850 uint32_t simd_mode;
851 int rlen = 4;
852
853 switch (inst->exec_size) {
854 case 8:
855 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
856 break;
857 case 16:
858 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
859 break;
860 default:
861 unreachable("Invalid width for texture instruction");
862 }
863
864 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
865 rlen = 8;
866 dst = vec16(dst);
867 }
868
869 brw_SAMPLE(p,
870 retype(dst, BRW_REGISTER_TYPE_UW),
871 inst->base_mrf,
872 src,
873 surf_index.ud,
874 0,
875 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
876 rlen, /* response length */
877 inst->mlen,
878 inst->header_size > 0,
879 simd_mode,
880 BRW_SAMPLER_RETURN_FORMAT_SINT32);
881
882 brw_mark_surface_used(prog_data, surf_index.ud);
883 }
884
885 void
886 fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src,
887 struct brw_reg surface_index,
888 struct brw_reg sampler_index)
889 {
890 assert(inst->size_written % REG_SIZE == 0);
891 int msg_type = -1;
892 uint32_t simd_mode;
893 uint32_t return_format;
894 bool is_combined_send = inst->eot;
895
896 switch (dst.type) {
897 case BRW_REGISTER_TYPE_D:
898 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
899 break;
900 case BRW_REGISTER_TYPE_UD:
901 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
902 break;
903 default:
904 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
905 break;
906 }
907
908 /* Stomp the resinfo output type to UINT32. On gens 4-5, the output type
909 * is set as part of the message descriptor. On gen4, the PRM seems to
910 * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
911 * later gens UINT32 is required. Once you hit Sandy Bridge, the bit is
912 * gone from the message descriptor entirely and you just get UINT32 all
913 * the time regasrdless. Since we can really only do non-UINT32 on gen4,
914 * just stomp it to UINT32 all the time.
915 */
916 if (inst->opcode == SHADER_OPCODE_TXS)
917 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
918
919 switch (inst->exec_size) {
920 case 8:
921 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
922 break;
923 case 16:
924 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
925 break;
926 default:
927 unreachable("Invalid width for texture instruction");
928 }
929
930 if (devinfo->gen >= 5) {
931 switch (inst->opcode) {
932 case SHADER_OPCODE_TEX:
933 if (inst->shadow_compare) {
934 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
935 } else {
936 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
937 }
938 break;
939 case FS_OPCODE_TXB:
940 if (inst->shadow_compare) {
941 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
942 } else {
943 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
944 }
945 break;
946 case SHADER_OPCODE_TXL:
947 if (inst->shadow_compare) {
948 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
949 } else {
950 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
951 }
952 break;
953 case SHADER_OPCODE_TXL_LZ:
954 assert(devinfo->gen >= 9);
955 if (inst->shadow_compare) {
956 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_C_LZ;
957 } else {
958 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LZ;
959 }
960 break;
961 case SHADER_OPCODE_TXS:
962 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
963 break;
964 case SHADER_OPCODE_TXD:
965 if (inst->shadow_compare) {
966 /* Gen7.5+. Otherwise, lowered in NIR */
967 assert(devinfo->gen >= 8 || devinfo->is_haswell);
968 msg_type = HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE;
969 } else {
970 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
971 }
972 break;
973 case SHADER_OPCODE_TXF:
974 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
975 break;
976 case SHADER_OPCODE_TXF_LZ:
977 assert(devinfo->gen >= 9);
978 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD_LZ;
979 break;
980 case SHADER_OPCODE_TXF_CMS_W:
981 assert(devinfo->gen >= 9);
982 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
983 break;
984 case SHADER_OPCODE_TXF_CMS:
985 if (devinfo->gen >= 7)
986 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS;
987 else
988 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
989 break;
990 case SHADER_OPCODE_TXF_UMS:
991 assert(devinfo->gen >= 7);
992 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS;
993 break;
994 case SHADER_OPCODE_TXF_MCS:
995 assert(devinfo->gen >= 7);
996 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
997 break;
998 case SHADER_OPCODE_LOD:
999 msg_type = GEN5_SAMPLER_MESSAGE_LOD;
1000 break;
1001 case SHADER_OPCODE_TG4:
1002 if (inst->shadow_compare) {
1003 assert(devinfo->gen >= 7);
1004 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C;
1005 } else {
1006 assert(devinfo->gen >= 6);
1007 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
1008 }
1009 break;
1010 case SHADER_OPCODE_TG4_OFFSET:
1011 assert(devinfo->gen >= 7);
1012 if (inst->shadow_compare) {
1013 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C;
1014 } else {
1015 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
1016 }
1017 break;
1018 case SHADER_OPCODE_SAMPLEINFO:
1019 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
1020 break;
1021 default:
1022 unreachable("not reached");
1023 }
1024 } else {
1025 switch (inst->opcode) {
1026 case SHADER_OPCODE_TEX:
1027 /* Note that G45 and older determines shadow compare and dispatch width
1028 * from message length for most messages.
1029 */
1030 if (inst->exec_size == 8) {
1031 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
1032 if (inst->shadow_compare) {
1033 assert(inst->mlen == 6);
1034 } else {
1035 assert(inst->mlen <= 4);
1036 }
1037 } else {
1038 if (inst->shadow_compare) {
1039 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1040 assert(inst->mlen == 9);
1041 } else {
1042 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1043 assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
1044 }
1045 }
1046 break;
1047 case FS_OPCODE_TXB:
1048 if (inst->shadow_compare) {
1049 assert(inst->exec_size == 8);
1050 assert(inst->mlen == 6);
1051 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
1052 } else {
1053 assert(inst->mlen == 9);
1054 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1055 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1056 }
1057 break;
1058 case SHADER_OPCODE_TXL:
1059 if (inst->shadow_compare) {
1060 assert(inst->exec_size == 8);
1061 assert(inst->mlen == 6);
1062 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
1063 } else {
1064 assert(inst->mlen == 9);
1065 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
1066 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1067 }
1068 break;
1069 case SHADER_OPCODE_TXD:
1070 /* There is no sample_d_c message; comparisons are done manually */
1071 assert(inst->exec_size == 8);
1072 assert(inst->mlen == 7 || inst->mlen == 10);
1073 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
1074 break;
1075 case SHADER_OPCODE_TXF:
1076 assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
1077 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1078 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1079 break;
1080 case SHADER_OPCODE_TXS:
1081 assert(inst->mlen == 3);
1082 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
1083 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1084 break;
1085 default:
1086 unreachable("not reached");
1087 }
1088 }
1089 assert(msg_type != -1);
1090
1091 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1092 dst = vec16(dst);
1093 }
1094
1095 assert(devinfo->gen < 7 || inst->header_size == 0 ||
1096 src.file == BRW_GENERAL_REGISTER_FILE);
1097
1098 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
1099
1100 /* Load the message header if present. If there's a texture offset,
1101 * we need to set it up explicitly and load the offset bitfield.
1102 * Otherwise, we can use an implied move from g0 to the first message reg.
1103 */
1104 if (inst->header_size != 0 && devinfo->gen < 7) {
1105 if (devinfo->gen < 6 && !inst->offset) {
1106 /* Set up an implied move from g0 to the MRF. */
1107 src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1108 } else {
1109 assert(inst->base_mrf != -1);
1110 struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
1111
1112 brw_push_insn_state(p);
1113 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1114 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1115 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1116 /* Explicitly set up the message header by copying g0 to the MRF. */
1117 brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
1118
1119 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1120 if (inst->offset) {
1121 /* Set the offset bits in DWord 2. */
1122 brw_MOV(p, get_element_ud(header_reg, 2),
1123 brw_imm_ud(inst->offset));
1124 }
1125
1126 brw_pop_insn_state(p);
1127 }
1128 }
1129
1130 uint32_t base_binding_table_index = (inst->opcode == SHADER_OPCODE_TG4 ||
1131 inst->opcode == SHADER_OPCODE_TG4_OFFSET)
1132 ? prog_data->binding_table.gather_texture_start
1133 : prog_data->binding_table.texture_start;
1134
1135 if (surface_index.file == BRW_IMMEDIATE_VALUE &&
1136 sampler_index.file == BRW_IMMEDIATE_VALUE) {
1137 uint32_t surface = surface_index.ud;
1138 uint32_t sampler = sampler_index.ud;
1139
1140 brw_SAMPLE(p,
1141 retype(dst, BRW_REGISTER_TYPE_UW),
1142 inst->base_mrf,
1143 src,
1144 surface + base_binding_table_index,
1145 sampler % 16,
1146 msg_type,
1147 inst->size_written / REG_SIZE,
1148 inst->mlen,
1149 inst->header_size != 0,
1150 simd_mode,
1151 return_format);
1152
1153 brw_mark_surface_used(prog_data, surface + base_binding_table_index);
1154 } else {
1155 /* Non-const sampler index */
1156
1157 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1158 struct brw_reg surface_reg = vec1(retype(surface_index, BRW_REGISTER_TYPE_UD));
1159 struct brw_reg sampler_reg = vec1(retype(sampler_index, BRW_REGISTER_TYPE_UD));
1160
1161 brw_push_insn_state(p);
1162 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1163 brw_set_default_access_mode(p, BRW_ALIGN_1);
1164 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1165
1166 if (brw_regs_equal(&surface_reg, &sampler_reg)) {
1167 brw_MUL(p, addr, sampler_reg, brw_imm_uw(0x101));
1168 } else {
1169 if (sampler_reg.file == BRW_IMMEDIATE_VALUE) {
1170 brw_OR(p, addr, surface_reg, brw_imm_ud(sampler_reg.ud << 8));
1171 } else {
1172 brw_SHL(p, addr, sampler_reg, brw_imm_ud(8));
1173 brw_OR(p, addr, addr, surface_reg);
1174 }
1175 }
1176 if (base_binding_table_index)
1177 brw_ADD(p, addr, addr, brw_imm_ud(base_binding_table_index));
1178 brw_AND(p, addr, addr, brw_imm_ud(0xfff));
1179
1180 brw_pop_insn_state(p);
1181
1182 /* dst = send(offset, a0.0 | <descriptor>) */
1183 brw_inst *insn = brw_send_indirect_message(
1184 p, BRW_SFID_SAMPLER, dst, src, addr);
1185 brw_set_sampler_message(p, insn,
1186 0 /* surface */,
1187 0 /* sampler */,
1188 msg_type,
1189 inst->size_written / REG_SIZE,
1190 inst->mlen /* mlen */,
1191 inst->header_size != 0 /* header */,
1192 simd_mode,
1193 return_format);
1194
1195 /* visitor knows more than we do about the surface limit required,
1196 * so has already done marking.
1197 */
1198 }
1199
1200 if (is_combined_send) {
1201 brw_inst_set_eot(p->devinfo, brw_last_inst, true);
1202 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
1203 }
1204 }
1205
1206
1207 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
1208 * looking like:
1209 *
1210 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
1211 *
1212 * Ideally, we want to produce:
1213 *
1214 * DDX DDY
1215 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
1216 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
1217 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
1218 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
1219 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
1220 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
1221 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
1222 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
1223 *
1224 * and add another set of two more subspans if in 16-pixel dispatch mode.
1225 *
1226 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
1227 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
1228 * pair. But the ideal approximation may impose a huge performance cost on
1229 * sample_d. On at least Haswell, sample_d instruction does some
1230 * optimizations if the same LOD is used for all pixels in the subspan.
1231 *
1232 * For DDY, we need to use ALIGN16 mode since it's capable of doing the
1233 * appropriate swizzling.
1234 */
1235 void
1236 fs_generator::generate_ddx(const fs_inst *inst,
1237 struct brw_reg dst, struct brw_reg src)
1238 {
1239 unsigned vstride, width;
1240
1241 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1242 /* produce accurate derivatives */
1243 vstride = BRW_VERTICAL_STRIDE_2;
1244 width = BRW_WIDTH_2;
1245 } else {
1246 /* replicate the derivative at the top-left pixel to other pixels */
1247 vstride = BRW_VERTICAL_STRIDE_4;
1248 width = BRW_WIDTH_4;
1249 }
1250
1251 struct brw_reg src0 = src;
1252 struct brw_reg src1 = src;
1253
1254 src0.subnr = sizeof(float);
1255 src0.vstride = vstride;
1256 src0.width = width;
1257 src0.hstride = BRW_HORIZONTAL_STRIDE_0;
1258 src1.vstride = vstride;
1259 src1.width = width;
1260 src1.hstride = BRW_HORIZONTAL_STRIDE_0;
1261
1262 brw_ADD(p, dst, src0, negate(src1));
1263 }
1264
1265 /* The negate_value boolean is used to negate the derivative computation for
1266 * FBOs, since they place the origin at the upper left instead of the lower
1267 * left.
1268 */
1269 void
1270 fs_generator::generate_ddy(const fs_inst *inst,
1271 struct brw_reg dst, struct brw_reg src)
1272 {
1273 if (inst->opcode == FS_OPCODE_DDY_FINE) {
1274 /* produce accurate derivatives */
1275 if (devinfo->gen >= 11) {
1276 src = stride(src, 0, 2, 1);
1277 struct brw_reg src_0 = byte_offset(src, 0 * sizeof(float));
1278 struct brw_reg src_2 = byte_offset(src, 2 * sizeof(float));
1279 struct brw_reg src_4 = byte_offset(src, 4 * sizeof(float));
1280 struct brw_reg src_6 = byte_offset(src, 6 * sizeof(float));
1281 struct brw_reg src_8 = byte_offset(src, 8 * sizeof(float));
1282 struct brw_reg src_10 = byte_offset(src, 10 * sizeof(float));
1283 struct brw_reg src_12 = byte_offset(src, 12 * sizeof(float));
1284 struct brw_reg src_14 = byte_offset(src, 14 * sizeof(float));
1285
1286 struct brw_reg dst_0 = byte_offset(dst, 0 * sizeof(float));
1287 struct brw_reg dst_4 = byte_offset(dst, 4 * sizeof(float));
1288 struct brw_reg dst_8 = byte_offset(dst, 8 * sizeof(float));
1289 struct brw_reg dst_12 = byte_offset(dst, 12 * sizeof(float));
1290
1291 brw_push_insn_state(p);
1292 brw_set_default_exec_size(p, BRW_EXECUTE_4);
1293
1294 brw_ADD(p, dst_0, negate(src_0), src_2);
1295 brw_ADD(p, dst_4, negate(src_4), src_6);
1296
1297 if (inst->exec_size == 16) {
1298 brw_ADD(p, dst_8, negate(src_8), src_10);
1299 brw_ADD(p, dst_12, negate(src_12), src_14);
1300 }
1301
1302 brw_pop_insn_state(p);
1303 } else {
1304 struct brw_reg src0 = stride(src, 4, 4, 1);
1305 struct brw_reg src1 = stride(src, 4, 4, 1);
1306 src0.swizzle = BRW_SWIZZLE_XYXY;
1307 src1.swizzle = BRW_SWIZZLE_ZWZW;
1308
1309 brw_push_insn_state(p);
1310 brw_set_default_access_mode(p, BRW_ALIGN_16);
1311 brw_ADD(p, dst, negate(src0), src1);
1312 brw_pop_insn_state(p);
1313 }
1314 } else {
1315 /* replicate the derivative at the top-left pixel to other pixels */
1316 struct brw_reg src0 = stride(src, 4, 4, 0);
1317 struct brw_reg src1 = stride(src, 4, 4, 0);
1318 src0.subnr = 0 * sizeof(float);
1319 src1.subnr = 2 * sizeof(float);
1320
1321 brw_ADD(p, dst, negate(src0), src1);
1322 }
1323 }
1324
1325 void
1326 fs_generator::generate_discard_jump(fs_inst *inst)
1327 {
1328 assert(devinfo->gen >= 6);
1329
1330 /* This HALT will be patched up at FB write time to point UIP at the end of
1331 * the program, and at brw_uip_jip() JIP will be set to the end of the
1332 * current block (or the program).
1333 */
1334 this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
1335 gen6_HALT(p);
1336 }
1337
1338 void
1339 fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
1340 {
1341 /* The 32-wide messages only respect the first 16-wide half of the channel
1342 * enable signals which are replicated identically for the second group of
1343 * 16 channels, so we cannot use them unless the write is marked
1344 * force_writemask_all.
1345 */
1346 const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
1347 MIN2(16, inst->exec_size);
1348 const unsigned block_size = 4 * lower_size / REG_SIZE;
1349 assert(inst->mlen != 0);
1350
1351 brw_push_insn_state(p);
1352 brw_set_default_exec_size(p, cvt(lower_size) - 1);
1353 brw_set_default_compression(p, lower_size > 8);
1354
1355 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1356 brw_set_default_group(p, inst->group + lower_size * i);
1357
1358 brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
1359 retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
1360
1361 brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
1362 block_size,
1363 inst->offset + block_size * REG_SIZE * i);
1364 }
1365
1366 brw_pop_insn_state(p);
1367 }
1368
1369 void
1370 fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
1371 {
1372 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1373 assert(inst->mlen != 0);
1374
1375 brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
1376 inst->exec_size / 8, inst->offset);
1377 }
1378
1379 void
1380 fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst)
1381 {
1382 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1383
1384 gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
1385 }
1386
1387 void
1388 fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
1389 struct brw_reg dst,
1390 struct brw_reg index,
1391 struct brw_reg offset)
1392 {
1393 assert(type_sz(dst.type) == 4);
1394 assert(inst->mlen != 0);
1395
1396 assert(index.file == BRW_IMMEDIATE_VALUE &&
1397 index.type == BRW_REGISTER_TYPE_UD);
1398 uint32_t surf_index = index.ud;
1399
1400 assert(offset.file == BRW_IMMEDIATE_VALUE &&
1401 offset.type == BRW_REGISTER_TYPE_UD);
1402 uint32_t read_offset = offset.ud;
1403
1404 brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
1405 read_offset, surf_index);
1406 }
1407
1408 void
1409 fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
1410 struct brw_reg dst,
1411 struct brw_reg index,
1412 struct brw_reg payload)
1413 {
1414 assert(index.type == BRW_REGISTER_TYPE_UD);
1415 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1416 assert(type_sz(dst.type) == 4);
1417
1418 if (index.file == BRW_IMMEDIATE_VALUE) {
1419 const uint32_t surf_index = index.ud;
1420
1421 brw_push_insn_state(p);
1422 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1423 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1424 brw_pop_insn_state(p);
1425
1426 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
1427 brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
1428 brw_set_dp_read_message(p, send, surf_index,
1429 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1430 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1431 GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1432 1, /* mlen */
1433 true, /* header */
1434 DIV_ROUND_UP(inst->size_written, REG_SIZE));
1435
1436 } else {
1437 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1438
1439 brw_push_insn_state(p);
1440 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1441
1442 /* a0.0 = surf_index & 0xff */
1443 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1444 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1445 brw_set_dest(p, insn_and, addr);
1446 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1447 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1448
1449 /* dst = send(payload, a0.0 | <descriptor>) */
1450 brw_inst *insn = brw_send_indirect_message(
1451 p, GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1452 retype(dst, BRW_REGISTER_TYPE_UD),
1453 retype(payload, BRW_REGISTER_TYPE_UD), addr);
1454 brw_set_dp_read_message(p, insn, 0 /* surface */,
1455 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1456 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1457 GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1458 1, /* mlen */
1459 true, /* header */
1460 DIV_ROUND_UP(inst->size_written, REG_SIZE));
1461
1462 brw_pop_insn_state(p);
1463 }
1464 }
1465
1466 void
1467 fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst,
1468 struct brw_reg dst,
1469 struct brw_reg index)
1470 {
1471 assert(devinfo->gen < 7); /* Should use the gen7 variant. */
1472 assert(inst->header_size != 0);
1473 assert(inst->mlen);
1474
1475 assert(index.file == BRW_IMMEDIATE_VALUE &&
1476 index.type == BRW_REGISTER_TYPE_UD);
1477 uint32_t surf_index = index.ud;
1478
1479 uint32_t simd_mode, rlen, msg_type;
1480 if (inst->exec_size == 16) {
1481 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1482 rlen = 8;
1483 } else {
1484 assert(inst->exec_size == 8);
1485 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1486 rlen = 4;
1487 }
1488
1489 if (devinfo->gen >= 5)
1490 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1491 else {
1492 /* We always use the SIMD16 message so that we only have to load U, and
1493 * not V or R.
1494 */
1495 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1496 assert(inst->mlen == 3);
1497 assert(inst->size_written == 8 * REG_SIZE);
1498 rlen = 8;
1499 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1500 }
1501
1502 struct brw_reg header = brw_vec8_grf(0, 0);
1503 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1504
1505 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1506 brw_inst_set_compression(devinfo, send, false);
1507 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1508 brw_set_src0(p, send, header);
1509 if (devinfo->gen < 6)
1510 brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
1511
1512 /* Our surface is set up as floats, regardless of what actual data is
1513 * stored in it.
1514 */
1515 uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1516 brw_set_sampler_message(p, send,
1517 surf_index,
1518 0, /* sampler (unused) */
1519 msg_type,
1520 rlen,
1521 inst->mlen,
1522 inst->header_size != 0,
1523 simd_mode,
1524 return_format);
1525 }
1526
1527 void
1528 fs_generator::generate_varying_pull_constant_load_gen7(fs_inst *inst,
1529 struct brw_reg dst,
1530 struct brw_reg index,
1531 struct brw_reg offset)
1532 {
1533 assert(devinfo->gen >= 7);
1534 /* Varying-offset pull constant loads are treated as a normal expression on
1535 * gen7, so the fact that it's a send message is hidden at the IR level.
1536 */
1537 assert(inst->header_size == 0);
1538 assert(!inst->mlen);
1539 assert(index.type == BRW_REGISTER_TYPE_UD);
1540
1541 uint32_t simd_mode, rlen, mlen;
1542 if (inst->exec_size == 16) {
1543 mlen = 2;
1544 rlen = 8;
1545 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1546 } else {
1547 assert(inst->exec_size == 8);
1548 mlen = 1;
1549 rlen = 4;
1550 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1551 }
1552
1553 if (index.file == BRW_IMMEDIATE_VALUE) {
1554
1555 uint32_t surf_index = index.ud;
1556
1557 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1558 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1559 brw_set_src0(p, send, offset);
1560 brw_set_sampler_message(p, send,
1561 surf_index,
1562 0, /* LD message ignores sampler unit */
1563 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1564 rlen,
1565 mlen,
1566 false, /* no header */
1567 simd_mode,
1568 0);
1569
1570 } else {
1571
1572 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1573
1574 brw_push_insn_state(p);
1575 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1576
1577 /* a0.0 = surf_index & 0xff */
1578 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1579 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1580 brw_set_dest(p, insn_and, addr);
1581 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1582 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1583
1584 brw_pop_insn_state(p);
1585
1586 /* dst = send(offset, a0.0 | <descriptor>) */
1587 brw_inst *insn = brw_send_indirect_message(
1588 p, BRW_SFID_SAMPLER, retype(dst, BRW_REGISTER_TYPE_UW),
1589 offset, addr);
1590 brw_set_sampler_message(p, insn,
1591 0 /* surface */,
1592 0 /* sampler */,
1593 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1594 rlen /* rlen */,
1595 mlen /* mlen */,
1596 false /* header */,
1597 simd_mode,
1598 0);
1599 }
1600 }
1601
1602 /**
1603 * Cause the current pixel/sample mask (from R1.7 bits 15:0) to be transferred
1604 * into the flags register (f0.0).
1605 *
1606 * Used only on Gen6 and above.
1607 */
1608 void
1609 fs_generator::generate_mov_dispatch_to_flags(fs_inst *inst)
1610 {
1611 struct brw_reg flags = brw_flag_subreg(inst->flag_subreg);
1612 struct brw_reg dispatch_mask;
1613
1614 if (devinfo->gen >= 6)
1615 dispatch_mask = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW);
1616 else
1617 dispatch_mask = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
1618
1619 brw_push_insn_state(p);
1620 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1621 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1622 brw_MOV(p, flags, dispatch_mask);
1623 brw_pop_insn_state(p);
1624 }
1625
1626 void
1627 fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
1628 struct brw_reg dst,
1629 struct brw_reg src,
1630 struct brw_reg msg_data,
1631 unsigned msg_type)
1632 {
1633 assert(inst->size_written % REG_SIZE == 0);
1634 assert(msg_data.type == BRW_REGISTER_TYPE_UD);
1635
1636 brw_pixel_interpolator_query(p,
1637 retype(dst, BRW_REGISTER_TYPE_UW),
1638 src,
1639 inst->pi_noperspective,
1640 msg_type,
1641 msg_data,
1642 inst->mlen,
1643 inst->size_written / REG_SIZE);
1644 }
1645
1646 /* Sets vstride=1, width=4, hstride=0 of register src1 during
1647 * the ADD instruction.
1648 */
1649 void
1650 fs_generator::generate_set_sample_id(fs_inst *inst,
1651 struct brw_reg dst,
1652 struct brw_reg src0,
1653 struct brw_reg src1)
1654 {
1655 assert(dst.type == BRW_REGISTER_TYPE_D ||
1656 dst.type == BRW_REGISTER_TYPE_UD);
1657 assert(src0.type == BRW_REGISTER_TYPE_D ||
1658 src0.type == BRW_REGISTER_TYPE_UD);
1659
1660 struct brw_reg reg = stride(src1, 1, 4, 0);
1661 if (devinfo->gen >= 8 || inst->exec_size == 8) {
1662 brw_ADD(p, dst, src0, reg);
1663 } else if (inst->exec_size == 16) {
1664 brw_push_insn_state(p);
1665 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1666 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1667 brw_ADD(p, firsthalf(dst), firsthalf(src0), reg);
1668 brw_set_default_compression_control(p, BRW_COMPRESSION_2NDHALF);
1669 brw_ADD(p, sechalf(dst), sechalf(src0), suboffset(reg, 2));
1670 brw_pop_insn_state(p);
1671 }
1672 }
1673
1674 void
1675 fs_generator::generate_pack_half_2x16_split(fs_inst *inst,
1676 struct brw_reg dst,
1677 struct brw_reg x,
1678 struct brw_reg y)
1679 {
1680 assert(devinfo->gen >= 7);
1681 assert(dst.type == BRW_REGISTER_TYPE_UD);
1682 assert(x.type == BRW_REGISTER_TYPE_F);
1683 assert(y.type == BRW_REGISTER_TYPE_F);
1684
1685 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
1686 *
1687 * Because this instruction does not have a 16-bit floating-point type,
1688 * the destination data type must be Word (W).
1689 *
1690 * The destination must be DWord-aligned and specify a horizontal stride
1691 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
1692 * each destination channel and the upper word is not modified.
1693 */
1694 struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
1695
1696 /* Give each 32-bit channel of dst the form below, where "." means
1697 * unchanged.
1698 * 0x....hhhh
1699 */
1700 brw_F32TO16(p, dst_w, y);
1701
1702 /* Now the form:
1703 * 0xhhhh0000
1704 */
1705 brw_SHL(p, dst, dst, brw_imm_ud(16u));
1706
1707 /* And, finally the form of packHalf2x16's output:
1708 * 0xhhhhllll
1709 */
1710 brw_F32TO16(p, dst_w, x);
1711 }
1712
1713 void
1714 fs_generator::generate_unpack_half_2x16_split(fs_inst *inst,
1715 struct brw_reg dst,
1716 struct brw_reg src)
1717 {
1718 assert(devinfo->gen >= 7);
1719 assert(dst.type == BRW_REGISTER_TYPE_F);
1720 assert(src.type == BRW_REGISTER_TYPE_UD);
1721
1722 /* From the Ivybridge PRM, Vol4, Part3, Section 6.26 f16to32:
1723 *
1724 * Because this instruction does not have a 16-bit floating-point type,
1725 * the source data type must be Word (W). The destination type must be
1726 * F (Float).
1727 */
1728 struct brw_reg src_w = spread(retype(src, BRW_REGISTER_TYPE_W), 2);
1729
1730 /* Each channel of src has the form of unpackHalf2x16's input: 0xhhhhllll.
1731 * For the Y case, we wish to access only the upper word; therefore
1732 * a 16-bit subregister offset is needed.
1733 */
1734 assert(inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X ||
1735 inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y);
1736 if (inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y)
1737 src_w.subnr += 2;
1738
1739 brw_F16TO32(p, dst, src_w);
1740 }
1741
1742 void
1743 fs_generator::generate_shader_time_add(fs_inst *inst,
1744 struct brw_reg payload,
1745 struct brw_reg offset,
1746 struct brw_reg value)
1747 {
1748 assert(devinfo->gen >= 7);
1749 brw_push_insn_state(p);
1750 brw_set_default_mask_control(p, true);
1751
1752 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1753 struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
1754 offset.type);
1755 struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
1756 value.type);
1757
1758 assert(offset.file == BRW_IMMEDIATE_VALUE);
1759 if (value.file == BRW_GENERAL_REGISTER_FILE) {
1760 value.width = BRW_WIDTH_1;
1761 value.hstride = BRW_HORIZONTAL_STRIDE_0;
1762 value.vstride = BRW_VERTICAL_STRIDE_0;
1763 } else {
1764 assert(value.file == BRW_IMMEDIATE_VALUE);
1765 }
1766
1767 /* Trying to deal with setup of the params from the IR is crazy in the FS8
1768 * case, and we don't really care about squeezing every bit of performance
1769 * out of this path, so we just emit the MOVs from here.
1770 */
1771 brw_MOV(p, payload_offset, offset);
1772 brw_MOV(p, payload_value, value);
1773 brw_shader_time_add(p, payload,
1774 prog_data->binding_table.shader_time_start);
1775 brw_pop_insn_state(p);
1776
1777 brw_mark_surface_used(prog_data,
1778 prog_data->binding_table.shader_time_start);
1779 }
1780
1781 void
1782 fs_generator::enable_debug(const char *shader_name)
1783 {
1784 debug_flag = true;
1785 this->shader_name = shader_name;
1786 }
1787
1788 int
1789 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width)
1790 {
1791 /* align to 64 byte boundary. */
1792 while (p->next_insn_offset % 64)
1793 brw_NOP(p);
1794
1795 this->dispatch_width = dispatch_width;
1796
1797 int start_offset = p->next_insn_offset;
1798 int spill_count = 0, fill_count = 0;
1799 int loop_count = 0;
1800
1801 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1802
1803 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1804 struct brw_reg src[3], dst;
1805 unsigned int last_insn_offset = p->next_insn_offset;
1806 bool multiple_instructions_emitted = false;
1807
1808 /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
1809 * "Register Region Restrictions" section: for BDW, SKL:
1810 *
1811 * "A POW/FDIV operation must not be followed by an instruction
1812 * that requires two destination registers."
1813 *
1814 * The documentation is often lacking annotations for Atom parts,
1815 * and empirically this affects CHV as well.
1816 */
1817 if (devinfo->gen >= 8 &&
1818 devinfo->gen <= 9 &&
1819 p->nr_insn > 1 &&
1820 brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
1821 brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
1822 inst->dst.component_size(inst->exec_size) > REG_SIZE) {
1823 brw_NOP(p);
1824 last_insn_offset = p->next_insn_offset;
1825 }
1826
1827 if (unlikely(debug_flag))
1828 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1829
1830 /* If the instruction writes to more than one register, it needs to be
1831 * explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
1832 * hardware figures out by itself what the right compression mode is,
1833 * but we still need to know whether the instruction is compressed to
1834 * set up the source register regions appropriately.
1835 *
1836 * XXX - This is wrong for instructions that write a single register but
1837 * read more than one which should strictly speaking be treated as
1838 * compressed. For instructions that don't write any registers it
1839 * relies on the destination being a null register of the correct
1840 * type and regioning so the instruction is considered compressed
1841 * or not accordingly.
1842 */
1843 const bool compressed =
1844 inst->dst.component_size(inst->exec_size) > REG_SIZE;
1845 brw_set_default_compression(p, compressed);
1846 brw_set_default_group(p, inst->group);
1847
1848 for (unsigned int i = 0; i < inst->sources; i++) {
1849 src[i] = brw_reg_from_fs_reg(devinfo, inst,
1850 &inst->src[i], compressed);
1851 /* The accumulator result appears to get used for the
1852 * conditional modifier generation. When negating a UD
1853 * value, there is a 33rd bit generated for the sign in the
1854 * accumulator value, so now you can't check, for example,
1855 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
1856 */
1857 assert(!inst->conditional_mod ||
1858 inst->src[i].type != BRW_REGISTER_TYPE_UD ||
1859 !inst->src[i].negate);
1860 }
1861 dst = brw_reg_from_fs_reg(devinfo, inst,
1862 &inst->dst, compressed);
1863
1864 brw_set_default_access_mode(p, BRW_ALIGN_1);
1865 brw_set_default_predicate_control(p, inst->predicate);
1866 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1867 brw_set_default_flag_reg(p, inst->flag_subreg / 2, inst->flag_subreg % 2);
1868 brw_set_default_saturate(p, inst->saturate);
1869 brw_set_default_mask_control(p, inst->force_writemask_all);
1870 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1871
1872 unsigned exec_size = inst->exec_size;
1873 if (devinfo->gen == 7 && !devinfo->is_haswell &&
1874 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
1875 exec_size *= 2;
1876 }
1877
1878 brw_set_default_exec_size(p, cvt(exec_size) - 1);
1879
1880 assert(inst->force_writemask_all || inst->exec_size >= 4);
1881 assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
1882 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1883 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1884
1885 switch (inst->opcode) {
1886 case BRW_OPCODE_MOV:
1887 brw_MOV(p, dst, src[0]);
1888 break;
1889 case BRW_OPCODE_ADD:
1890 brw_ADD(p, dst, src[0], src[1]);
1891 break;
1892 case BRW_OPCODE_MUL:
1893 brw_MUL(p, dst, src[0], src[1]);
1894 break;
1895 case BRW_OPCODE_AVG:
1896 brw_AVG(p, dst, src[0], src[1]);
1897 break;
1898 case BRW_OPCODE_MACH:
1899 brw_MACH(p, dst, src[0], src[1]);
1900 break;
1901
1902 case BRW_OPCODE_LINE:
1903 brw_LINE(p, dst, src[0], src[1]);
1904 break;
1905
1906 case BRW_OPCODE_MAD:
1907 assert(devinfo->gen >= 6);
1908 if (devinfo->gen < 10)
1909 brw_set_default_access_mode(p, BRW_ALIGN_16);
1910 brw_MAD(p, dst, src[0], src[1], src[2]);
1911 break;
1912
1913 case BRW_OPCODE_LRP:
1914 assert(devinfo->gen >= 6 && devinfo->gen <= 10);
1915 if (devinfo->gen < 10)
1916 brw_set_default_access_mode(p, BRW_ALIGN_16);
1917 brw_LRP(p, dst, src[0], src[1], src[2]);
1918 break;
1919
1920 case BRW_OPCODE_FRC:
1921 brw_FRC(p, dst, src[0]);
1922 break;
1923 case BRW_OPCODE_RNDD:
1924 brw_RNDD(p, dst, src[0]);
1925 break;
1926 case BRW_OPCODE_RNDE:
1927 brw_RNDE(p, dst, src[0]);
1928 break;
1929 case BRW_OPCODE_RNDZ:
1930 brw_RNDZ(p, dst, src[0]);
1931 break;
1932
1933 case BRW_OPCODE_AND:
1934 brw_AND(p, dst, src[0], src[1]);
1935 break;
1936 case BRW_OPCODE_OR:
1937 brw_OR(p, dst, src[0], src[1]);
1938 break;
1939 case BRW_OPCODE_XOR:
1940 brw_XOR(p, dst, src[0], src[1]);
1941 break;
1942 case BRW_OPCODE_NOT:
1943 brw_NOT(p, dst, src[0]);
1944 break;
1945 case BRW_OPCODE_ASR:
1946 brw_ASR(p, dst, src[0], src[1]);
1947 break;
1948 case BRW_OPCODE_SHR:
1949 brw_SHR(p, dst, src[0], src[1]);
1950 break;
1951 case BRW_OPCODE_SHL:
1952 brw_SHL(p, dst, src[0], src[1]);
1953 break;
1954 case BRW_OPCODE_F32TO16:
1955 assert(devinfo->gen >= 7);
1956 brw_F32TO16(p, dst, src[0]);
1957 break;
1958 case BRW_OPCODE_F16TO32:
1959 assert(devinfo->gen >= 7);
1960 brw_F16TO32(p, dst, src[0]);
1961 break;
1962 case BRW_OPCODE_CMP:
1963 if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell &&
1964 dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1965 /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
1966 * implemented in the compiler is not sufficient. Overriding the
1967 * type when the destination is the null register is necessary but
1968 * not sufficient by itself.
1969 */
1970 assert(dst.nr == BRW_ARF_NULL);
1971 dst.type = BRW_REGISTER_TYPE_D;
1972 }
1973 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1974 break;
1975 case BRW_OPCODE_SEL:
1976 brw_SEL(p, dst, src[0], src[1]);
1977 break;
1978 case BRW_OPCODE_BFREV:
1979 assert(devinfo->gen >= 7);
1980 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1981 retype(src[0], BRW_REGISTER_TYPE_UD));
1982 break;
1983 case BRW_OPCODE_FBH:
1984 assert(devinfo->gen >= 7);
1985 brw_FBH(p, retype(dst, src[0].type), src[0]);
1986 break;
1987 case BRW_OPCODE_FBL:
1988 assert(devinfo->gen >= 7);
1989 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
1990 retype(src[0], BRW_REGISTER_TYPE_UD));
1991 break;
1992 case BRW_OPCODE_LZD:
1993 brw_LZD(p, dst, src[0]);
1994 break;
1995 case BRW_OPCODE_CBIT:
1996 assert(devinfo->gen >= 7);
1997 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
1998 retype(src[0], BRW_REGISTER_TYPE_UD));
1999 break;
2000 case BRW_OPCODE_ADDC:
2001 assert(devinfo->gen >= 7);
2002 brw_ADDC(p, dst, src[0], src[1]);
2003 break;
2004 case BRW_OPCODE_SUBB:
2005 assert(devinfo->gen >= 7);
2006 brw_SUBB(p, dst, src[0], src[1]);
2007 break;
2008 case BRW_OPCODE_MAC:
2009 brw_MAC(p, dst, src[0], src[1]);
2010 break;
2011
2012 case BRW_OPCODE_BFE:
2013 assert(devinfo->gen >= 7);
2014 if (devinfo->gen < 10)
2015 brw_set_default_access_mode(p, BRW_ALIGN_16);
2016 brw_BFE(p, dst, src[0], src[1], src[2]);
2017 break;
2018
2019 case BRW_OPCODE_BFI1:
2020 assert(devinfo->gen >= 7);
2021 brw_BFI1(p, dst, src[0], src[1]);
2022 break;
2023 case BRW_OPCODE_BFI2:
2024 assert(devinfo->gen >= 7);
2025 if (devinfo->gen < 10)
2026 brw_set_default_access_mode(p, BRW_ALIGN_16);
2027 brw_BFI2(p, dst, src[0], src[1], src[2]);
2028 break;
2029
2030 case BRW_OPCODE_IF:
2031 if (inst->src[0].file != BAD_FILE) {
2032 /* The instruction has an embedded compare (only allowed on gen6) */
2033 assert(devinfo->gen == 6);
2034 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
2035 } else {
2036 brw_IF(p, brw_inst_exec_size(devinfo, p->current));
2037 }
2038 break;
2039
2040 case BRW_OPCODE_ELSE:
2041 brw_ELSE(p);
2042 break;
2043 case BRW_OPCODE_ENDIF:
2044 brw_ENDIF(p);
2045 break;
2046
2047 case BRW_OPCODE_DO:
2048 brw_DO(p, brw_inst_exec_size(devinfo, p->current));
2049 break;
2050
2051 case BRW_OPCODE_BREAK:
2052 brw_BREAK(p);
2053 break;
2054 case BRW_OPCODE_CONTINUE:
2055 brw_CONT(p);
2056 break;
2057
2058 case BRW_OPCODE_WHILE:
2059 brw_WHILE(p);
2060 loop_count++;
2061 break;
2062
2063 case SHADER_OPCODE_RCP:
2064 case SHADER_OPCODE_RSQ:
2065 case SHADER_OPCODE_SQRT:
2066 case SHADER_OPCODE_EXP2:
2067 case SHADER_OPCODE_LOG2:
2068 case SHADER_OPCODE_SIN:
2069 case SHADER_OPCODE_COS:
2070 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2071 if (devinfo->gen >= 6) {
2072 assert(inst->mlen == 0);
2073 assert(devinfo->gen >= 7 || inst->exec_size == 8);
2074 gen6_math(p, dst, brw_math_function(inst->opcode),
2075 src[0], brw_null_reg());
2076 } else {
2077 assert(inst->mlen >= 1);
2078 assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8);
2079 gen4_math(p, dst,
2080 brw_math_function(inst->opcode),
2081 inst->base_mrf, src[0],
2082 BRW_MATH_PRECISION_FULL);
2083 }
2084 break;
2085 case SHADER_OPCODE_INT_QUOTIENT:
2086 case SHADER_OPCODE_INT_REMAINDER:
2087 case SHADER_OPCODE_POW:
2088 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2089 if (devinfo->gen >= 6) {
2090 assert(inst->mlen == 0);
2091 assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
2092 inst->exec_size == 8);
2093 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
2094 } else {
2095 assert(inst->mlen >= 1);
2096 assert(inst->exec_size == 8);
2097 gen4_math(p, dst, brw_math_function(inst->opcode),
2098 inst->base_mrf, src[0],
2099 BRW_MATH_PRECISION_FULL);
2100 }
2101 break;
2102 case FS_OPCODE_CINTERP:
2103 brw_MOV(p, dst, src[0]);
2104 break;
2105 case FS_OPCODE_LINTERP:
2106 multiple_instructions_emitted = generate_linterp(inst, dst, src);
2107 break;
2108 case FS_OPCODE_PIXEL_X:
2109 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2110 src[0].subnr = 0 * type_sz(src[0].type);
2111 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2112 break;
2113 case FS_OPCODE_PIXEL_Y:
2114 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2115 src[0].subnr = 4 * type_sz(src[0].type);
2116 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2117 break;
2118 case SHADER_OPCODE_GET_BUFFER_SIZE:
2119 generate_get_buffer_size(inst, dst, src[0], src[1]);
2120 break;
2121 case SHADER_OPCODE_TEX:
2122 case FS_OPCODE_TXB:
2123 case SHADER_OPCODE_TXD:
2124 case SHADER_OPCODE_TXF:
2125 case SHADER_OPCODE_TXF_LZ:
2126 case SHADER_OPCODE_TXF_CMS:
2127 case SHADER_OPCODE_TXF_CMS_W:
2128 case SHADER_OPCODE_TXF_UMS:
2129 case SHADER_OPCODE_TXF_MCS:
2130 case SHADER_OPCODE_TXL:
2131 case SHADER_OPCODE_TXL_LZ:
2132 case SHADER_OPCODE_TXS:
2133 case SHADER_OPCODE_LOD:
2134 case SHADER_OPCODE_TG4:
2135 case SHADER_OPCODE_TG4_OFFSET:
2136 case SHADER_OPCODE_SAMPLEINFO:
2137 generate_tex(inst, dst, src[0], src[1], src[2]);
2138 break;
2139 case FS_OPCODE_DDX_COARSE:
2140 case FS_OPCODE_DDX_FINE:
2141 generate_ddx(inst, dst, src[0]);
2142 break;
2143 case FS_OPCODE_DDY_COARSE:
2144 case FS_OPCODE_DDY_FINE:
2145 generate_ddy(inst, dst, src[0]);
2146 break;
2147
2148 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2149 generate_scratch_write(inst, src[0]);
2150 spill_count++;
2151 break;
2152
2153 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2154 generate_scratch_read(inst, dst);
2155 fill_count++;
2156 break;
2157
2158 case SHADER_OPCODE_GEN7_SCRATCH_READ:
2159 generate_scratch_read_gen7(inst, dst);
2160 fill_count++;
2161 break;
2162
2163 case SHADER_OPCODE_MOV_INDIRECT:
2164 generate_mov_indirect(inst, dst, src[0], src[1]);
2165 break;
2166
2167 case SHADER_OPCODE_URB_READ_SIMD8:
2168 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
2169 generate_urb_read(inst, dst, src[0]);
2170 break;
2171
2172 case SHADER_OPCODE_URB_WRITE_SIMD8:
2173 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
2174 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
2175 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
2176 generate_urb_write(inst, src[0]);
2177 break;
2178
2179 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
2180 assert(inst->force_writemask_all);
2181 generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
2182 break;
2183
2184 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
2185 assert(inst->force_writemask_all);
2186 generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2187 break;
2188
2189 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
2190 generate_varying_pull_constant_load_gen4(inst, dst, src[0]);
2191 break;
2192
2193 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
2194 generate_varying_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2195 break;
2196
2197 case FS_OPCODE_REP_FB_WRITE:
2198 case FS_OPCODE_FB_WRITE:
2199 generate_fb_write(inst, src[0]);
2200 break;
2201
2202 case FS_OPCODE_FB_READ:
2203 generate_fb_read(inst, dst, src[0]);
2204 break;
2205
2206 case FS_OPCODE_MOV_DISPATCH_TO_FLAGS:
2207 generate_mov_dispatch_to_flags(inst);
2208 break;
2209
2210 case FS_OPCODE_DISCARD_JUMP:
2211 generate_discard_jump(inst);
2212 break;
2213
2214 case SHADER_OPCODE_SHADER_TIME_ADD:
2215 generate_shader_time_add(inst, src[0], src[1], src[2]);
2216 break;
2217
2218 case SHADER_OPCODE_UNTYPED_ATOMIC:
2219 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2220 brw_untyped_atomic(p, dst, src[0], src[1], src[2].ud,
2221 inst->mlen, !inst->dst.is_null(),
2222 inst->header_size);
2223 break;
2224
2225 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
2226 assert(!inst->header_size);
2227 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2228 brw_untyped_surface_read(p, dst, src[0], src[1],
2229 inst->mlen, src[2].ud);
2230 break;
2231
2232 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
2233 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2234 brw_untyped_surface_write(p, src[0], src[1],
2235 inst->mlen, src[2].ud,
2236 inst->header_size);
2237 break;
2238
2239 case SHADER_OPCODE_BYTE_SCATTERED_READ:
2240 assert(!inst->header_size);
2241 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2242 brw_byte_scattered_read(p, dst, src[0], src[1],
2243 inst->mlen, src[2].ud);
2244 break;
2245
2246 case SHADER_OPCODE_BYTE_SCATTERED_WRITE:
2247 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2248 brw_byte_scattered_write(p, src[0], src[1],
2249 inst->mlen, src[2].ud,
2250 inst->header_size);
2251 break;
2252
2253 case SHADER_OPCODE_TYPED_ATOMIC:
2254 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2255 brw_typed_atomic(p, dst, src[0], src[1],
2256 src[2].ud, inst->mlen, !inst->dst.is_null(),
2257 inst->header_size);
2258 break;
2259
2260 case SHADER_OPCODE_TYPED_SURFACE_READ:
2261 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2262 brw_typed_surface_read(p, dst, src[0], src[1],
2263 inst->mlen, src[2].ud,
2264 inst->header_size);
2265 break;
2266
2267 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
2268 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2269 brw_typed_surface_write(p, src[0], src[1], inst->mlen, src[2].ud,
2270 inst->header_size);
2271 break;
2272
2273 case SHADER_OPCODE_MEMORY_FENCE:
2274 brw_memory_fence(p, dst);
2275 break;
2276
2277 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
2278 const struct brw_reg mask =
2279 brw_stage_has_packed_dispatch(devinfo, stage,
2280 prog_data) ? brw_imm_ud(~0u) :
2281 stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
2282 brw_dmask_reg();
2283 brw_find_live_channel(p, dst, mask);
2284 break;
2285 }
2286
2287 case SHADER_OPCODE_BROADCAST:
2288 assert(inst->force_writemask_all);
2289 brw_broadcast(p, dst, src[0], src[1]);
2290 break;
2291
2292 case SHADER_OPCODE_SHUFFLE:
2293 generate_shuffle(inst, dst, src[0], src[1]);
2294 break;
2295
2296 case SHADER_OPCODE_SEL_EXEC:
2297 assert(inst->force_writemask_all);
2298 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2299 brw_MOV(p, dst, src[1]);
2300 brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2301 brw_MOV(p, dst, src[0]);
2302 break;
2303
2304 case SHADER_OPCODE_QUAD_SWIZZLE:
2305 /* This only works on 8-wide 32-bit values */
2306 assert(inst->exec_size == 8);
2307 assert(type_sz(src[0].type) == 4);
2308 assert(inst->force_writemask_all);
2309 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2310 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2311
2312 if (src[0].file == BRW_IMMEDIATE_VALUE ||
2313 (src[0].vstride == 0 && src[0].hstride == 0)) {
2314 /* The value is uniform across all channels */
2315 brw_MOV(p, dst, src[0]);
2316 } else {
2317 brw_set_default_access_mode(p, BRW_ALIGN_16);
2318 struct brw_reg swiz_src = stride(src[0], 4, 4, 1);
2319 swiz_src.swizzle = inst->src[1].ud;
2320 brw_MOV(p, dst, swiz_src);
2321 }
2322 break;
2323
2324 case SHADER_OPCODE_CLUSTER_BROADCAST: {
2325 assert(src[0].type == dst.type);
2326 assert(!src[0].negate && !src[0].abs);
2327 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2328 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2329 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2330 assert(src[2].type == BRW_REGISTER_TYPE_UD);
2331 const unsigned component = src[1].ud;
2332 const unsigned cluster_size = src[2].ud;
2333 struct brw_reg strided = stride(suboffset(src[0], component),
2334 cluster_size, cluster_size, 0);
2335 if (type_sz(src[0].type) > 4 &&
2336 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
2337 /* IVB has an issue (which we found empirically) where it reads
2338 * two address register components per channel for indirectly
2339 * addressed 64-bit sources.
2340 *
2341 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
2342 *
2343 * "When source or destination datatype is 64b or operation is
2344 * integer DWord multiply, indirect addressing must not be
2345 * used."
2346 *
2347 * To work around both of these, we do two integer MOVs insead of
2348 * one 64-bit MOV. Because no double value should ever cross a
2349 * register boundary, it's safe to use the immediate offset in the
2350 * indirect here to handle adding 4 bytes to the offset and avoid
2351 * the extra ADD to the register file.
2352 */
2353 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
2354 subscript(strided, BRW_REGISTER_TYPE_D, 0));
2355 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
2356 subscript(strided, BRW_REGISTER_TYPE_D, 1));
2357 } else {
2358 brw_MOV(p, dst, strided);
2359 }
2360 break;
2361 }
2362
2363 case FS_OPCODE_SET_SAMPLE_ID:
2364 generate_set_sample_id(inst, dst, src[0], src[1]);
2365 break;
2366
2367 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
2368 generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
2369 break;
2370
2371 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
2372 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
2373 generate_unpack_half_2x16_split(inst, dst, src[0]);
2374 break;
2375
2376 case FS_OPCODE_PLACEHOLDER_HALT:
2377 /* This is the place where the final HALT needs to be inserted if
2378 * we've emitted any discards. If not, this will emit no code.
2379 */
2380 if (!patch_discard_jumps_to_fb_writes()) {
2381 if (unlikely(debug_flag)) {
2382 disasm_info->use_tail = true;
2383 }
2384 }
2385 break;
2386
2387 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
2388 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2389 GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
2390 break;
2391
2392 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
2393 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2394 GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
2395 break;
2396
2397 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
2398 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2399 GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
2400 break;
2401
2402 case CS_OPCODE_CS_TERMINATE:
2403 generate_cs_terminate(inst, src[0]);
2404 break;
2405
2406 case SHADER_OPCODE_BARRIER:
2407 generate_barrier(inst, src[0]);
2408 break;
2409
2410 case BRW_OPCODE_DIM:
2411 assert(devinfo->is_haswell);
2412 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2413 assert(dst.type == BRW_REGISTER_TYPE_DF);
2414 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2415 break;
2416
2417 case SHADER_OPCODE_RND_MODE:
2418 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2419 brw_rounding_mode(p, (brw_rnd_mode) src[0].d);
2420 break;
2421
2422 default:
2423 unreachable("Unsupported opcode");
2424
2425 case SHADER_OPCODE_LOAD_PAYLOAD:
2426 unreachable("Should be lowered by lower_load_payload()");
2427 }
2428
2429 if (multiple_instructions_emitted)
2430 continue;
2431
2432 if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2433 assert(p->next_insn_offset == last_insn_offset + 16 ||
2434 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2435 "emitting more than 1 instruction");
2436
2437 brw_inst *last = &p->store[last_insn_offset / 16];
2438
2439 if (inst->conditional_mod)
2440 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2441 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2442 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2443 }
2444 }
2445
2446 brw_set_uip_jip(p, start_offset);
2447
2448 /* end of program sentinel */
2449 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2450
2451 #ifndef NDEBUG
2452 bool validated =
2453 #else
2454 if (unlikely(debug_flag))
2455 #endif
2456 brw_validate_instructions(devinfo, p->store,
2457 start_offset,
2458 p->next_insn_offset,
2459 disasm_info);
2460
2461 int before_size = p->next_insn_offset - start_offset;
2462 brw_compact_instructions(p, start_offset, disasm_info);
2463 int after_size = p->next_insn_offset - start_offset;
2464
2465 if (unlikely(debug_flag)) {
2466 fprintf(stderr, "Native code for %s\n"
2467 "SIMD%d shader: %d instructions. %d loops. %u cycles. %d:%d spills:fills. Promoted %u constants. Compacted %d to %d"
2468 " bytes (%.0f%%)\n",
2469 shader_name, dispatch_width, before_size / 16, loop_count, cfg->cycle_count,
2470 spill_count, fill_count, promoted_constants, before_size, after_size,
2471 100.0f * (before_size - after_size) / before_size);
2472
2473 dump_assembly(p->store, disasm_info);
2474 }
2475 ralloc_free(disasm_info);
2476 assert(validated);
2477
2478 compiler->shader_debug_log(log_data,
2479 "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
2480 "%d:%d spills:fills, Promoted %u constants, "
2481 "compacted %d to %d bytes.",
2482 _mesa_shader_stage_to_abbrev(stage),
2483 dispatch_width, before_size / 16,
2484 loop_count, cfg->cycle_count, spill_count,
2485 fill_count, promoted_constants, before_size,
2486 after_size);
2487
2488 return start_offset;
2489 }
2490
2491 const unsigned *
2492 fs_generator::get_assembly()
2493 {
2494 return brw_get_program(p, &prog_data->program_size);
2495 }