intel/fs: Move the scalar-region conversion to the generator.
[mesa.git] / src / intel / compiler / brw_fs_generator.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_generator.cpp
25 *
26 * This file supports generating code from the FS LIR to the actual
27 * native instructions.
28 */
29
30 #include "brw_eu.h"
31 #include "brw_fs.h"
32 #include "brw_cfg.h"
33
34 static enum brw_reg_file
35 brw_file_from_reg(fs_reg *reg)
36 {
37 switch (reg->file) {
38 case ARF:
39 return BRW_ARCHITECTURE_REGISTER_FILE;
40 case FIXED_GRF:
41 case VGRF:
42 return BRW_GENERAL_REGISTER_FILE;
43 case MRF:
44 return BRW_MESSAGE_REGISTER_FILE;
45 case IMM:
46 return BRW_IMMEDIATE_VALUE;
47 case BAD_FILE:
48 case ATTR:
49 case UNIFORM:
50 unreachable("not reached");
51 }
52 return BRW_ARCHITECTURE_REGISTER_FILE;
53 }
54
55 static struct brw_reg
56 brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst,
57 fs_reg *reg, bool compressed)
58 {
59 struct brw_reg brw_reg;
60
61 switch (reg->file) {
62 case MRF:
63 assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
64 /* Fallthrough */
65 case VGRF:
66 if (reg->stride == 0) {
67 brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
68 } else {
69 /* From the Haswell PRM:
70 *
71 * "VertStride must be used to cross GRF register boundaries. This
72 * rule implies that elements within a 'Width' cannot cross GRF
73 * boundaries."
74 *
75 * The maximum width value that could satisfy this restriction is:
76 */
77 const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
78
79 /* Because the hardware can only split source regions at a whole
80 * multiple of width during decompression (i.e. vertically), clamp
81 * the value obtained above to the physical execution size of a
82 * single decompressed chunk of the instruction:
83 */
84 const unsigned phys_width = compressed ? inst->exec_size / 2 :
85 inst->exec_size;
86
87 /* XXX - The equation above is strictly speaking not correct on
88 * hardware that supports unbalanced GRF writes -- On Gen9+
89 * each decompressed chunk of the instruction may have a
90 * different execution size when the number of components
91 * written to each destination GRF is not the same.
92 */
93 if (reg->stride > 4) {
94 assert(reg != &inst->dst);
95 assert(reg->stride * type_sz(reg->type) <= REG_SIZE);
96 brw_reg = brw_vecn_reg(1, brw_file_from_reg(reg), reg->nr, 0);
97 brw_reg = stride(brw_reg, reg->stride, 1, 0);
98 } else {
99 const unsigned width = MIN2(reg_width, phys_width);
100 brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
101 brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
102 }
103
104 if (devinfo->gen == 7 && !devinfo->is_haswell) {
105 /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
106 * "Each DF (Double Float) operand uses an element size of 4 rather
107 * than 8 and all regioning parameters are twice what the values
108 * would be based on the true element size: ExecSize, Width,
109 * HorzStride, and VertStride. Each DF operand uses a pair of
110 * channels and all masking and swizzing should be adjusted
111 * appropriately."
112 *
113 * From the IvyBridge PRM (Special Requirements for Handling Double
114 * Precision Data Types, page 71):
115 * "In Align1 mode, all regioning parameters like stride, execution
116 * size, and width must use the syntax of a pair of packed
117 * floats. The offsets for these data types must be 64-bit
118 * aligned. The execution size and regioning parameters are in terms
119 * of floats."
120 *
121 * Summarized: when handling DF-typed arguments, ExecSize,
122 * VertStride, and Width must be doubled.
123 *
124 * It applies to BayTrail too.
125 */
126 if (type_sz(reg->type) == 8) {
127 brw_reg.width++;
128 if (brw_reg.vstride > 0)
129 brw_reg.vstride++;
130 assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
131 }
132
133 /* When converting from DF->F, we set the destination stride to 2
134 * because each d2f conversion implicitly writes 2 floats, being
135 * the first one the converted value. IVB/BYT actually writes two
136 * F components per SIMD channel, and every other component is
137 * filled with garbage.
138 */
139 if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
140 type_sz(inst->dst.type) < 8) {
141 assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
142 brw_reg.hstride--;
143 }
144 }
145 }
146
147 brw_reg = retype(brw_reg, reg->type);
148 brw_reg = byte_offset(brw_reg, reg->offset);
149 brw_reg.abs = reg->abs;
150 brw_reg.negate = reg->negate;
151 break;
152 case ARF:
153 case FIXED_GRF:
154 case IMM:
155 assert(reg->offset == 0);
156 brw_reg = reg->as_brw_reg();
157 break;
158 case BAD_FILE:
159 /* Probably unused. */
160 brw_reg = brw_null_reg();
161 break;
162 case ATTR:
163 case UNIFORM:
164 unreachable("not reached");
165 }
166
167 /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
168 * region, but on IVB and BYT DF regions must be programmed in terms of
169 * floats. A <0,2,1> region accomplishes this.
170 */
171 if (devinfo->gen == 7 && !devinfo->is_haswell &&
172 type_sz(reg->type) == 8 &&
173 brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
174 brw_reg.width == BRW_WIDTH_1 &&
175 brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
176 brw_reg.width = BRW_WIDTH_2;
177 brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
178 }
179
180 return brw_reg;
181 }
182
183 fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
184 void *mem_ctx,
185 struct brw_stage_prog_data *prog_data,
186 unsigned promoted_constants,
187 bool runtime_check_aads_emit,
188 gl_shader_stage stage)
189
190 : compiler(compiler), log_data(log_data),
191 devinfo(compiler->devinfo),
192 prog_data(prog_data),
193 promoted_constants(promoted_constants),
194 runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
195 stage(stage), mem_ctx(mem_ctx)
196 {
197 p = rzalloc(mem_ctx, struct brw_codegen);
198 brw_init_codegen(devinfo, p, mem_ctx);
199
200 /* In the FS code generator, we are very careful to ensure that we always
201 * set the right execution size so we don't need the EU code to "help" us
202 * by trying to infer it. Sometimes, it infers the wrong thing.
203 */
204 p->automatic_exec_sizes = false;
205 }
206
207 fs_generator::~fs_generator()
208 {
209 }
210
211 class ip_record : public exec_node {
212 public:
213 DECLARE_RALLOC_CXX_OPERATORS(ip_record)
214
215 ip_record(int ip)
216 {
217 this->ip = ip;
218 }
219
220 int ip;
221 };
222
223 bool
224 fs_generator::patch_discard_jumps_to_fb_writes()
225 {
226 if (devinfo->gen < 6 || this->discard_halt_patches.is_empty())
227 return false;
228
229 int scale = brw_jump_scale(p->devinfo);
230
231 /* There is a somewhat strange undocumented requirement of using
232 * HALT, according to the simulator. If some channel has HALTed to
233 * a particular UIP, then by the end of the program, every channel
234 * must have HALTed to that UIP. Furthermore, the tracking is a
235 * stack, so you can't do the final halt of a UIP after starting
236 * halting to a new UIP.
237 *
238 * Symptoms of not emitting this instruction on actual hardware
239 * included GPU hangs and sparkly rendering on the piglit discard
240 * tests.
241 */
242 brw_inst *last_halt = gen6_HALT(p);
243 brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
244 brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
245
246 int ip = p->nr_insn;
247
248 foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
249 brw_inst *patch = &p->store[patch_ip->ip];
250
251 assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
252 /* HALT takes a half-instruction distance from the pre-incremented IP. */
253 brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
254 }
255
256 this->discard_halt_patches.make_empty();
257 return true;
258 }
259
260 void
261 fs_generator::generate_send(fs_inst *inst,
262 struct brw_reg dst,
263 struct brw_reg desc,
264 struct brw_reg ex_desc,
265 struct brw_reg payload,
266 struct brw_reg payload2)
267 {
268 const bool dst_is_null = dst.file == BRW_ARCHITECTURE_REGISTER_FILE &&
269 dst.nr == BRW_ARF_NULL;
270 const unsigned rlen = dst_is_null ? 0 : inst->size_written / REG_SIZE;
271
272 uint32_t desc_imm = inst->desc |
273 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size);
274
275 uint32_t ex_desc_imm = brw_message_ex_desc(devinfo, inst->ex_mlen);
276
277 if (ex_desc.file != BRW_IMMEDIATE_VALUE || ex_desc.ud || ex_desc_imm) {
278 /* If we have any sort of extended descriptor, then we need SENDS. This
279 * also covers the dual-payload case because ex_mlen goes in ex_desc.
280 */
281 brw_send_indirect_split_message(p, inst->sfid, dst, payload, payload2,
282 desc, desc_imm, ex_desc, ex_desc_imm,
283 inst->eot);
284 if (inst->check_tdr)
285 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDSC);
286 } else {
287 brw_send_indirect_message(p, inst->sfid, dst, payload, desc, desc_imm,
288 inst->eot);
289 if (inst->check_tdr)
290 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
291 }
292 }
293
294 void
295 fs_generator::fire_fb_write(fs_inst *inst,
296 struct brw_reg payload,
297 struct brw_reg implied_header,
298 GLuint nr)
299 {
300 uint32_t msg_control;
301
302 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
303
304 if (devinfo->gen < 6) {
305 brw_push_insn_state(p);
306 brw_set_default_exec_size(p, BRW_EXECUTE_8);
307 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
308 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
309 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
310 brw_MOV(p, offset(retype(payload, BRW_REGISTER_TYPE_UD), 1),
311 offset(retype(implied_header, BRW_REGISTER_TYPE_UD), 1));
312 brw_pop_insn_state(p);
313 }
314
315 if (inst->opcode == FS_OPCODE_REP_FB_WRITE) {
316 assert(inst->group == 0 && inst->exec_size == 16);
317 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
318
319 } else if (prog_data->dual_src_blend) {
320 assert(inst->exec_size == 8);
321
322 if (inst->group % 16 == 0)
323 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
324 else if (inst->group % 16 == 8)
325 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
326 else
327 unreachable("Invalid dual-source FB write instruction group");
328
329 } else {
330 assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));
331
332 if (inst->exec_size == 16)
333 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
334 else if (inst->exec_size == 8)
335 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
336 else
337 unreachable("Invalid FB write execution size");
338 }
339
340 /* We assume render targets start at 0, because headerless FB write
341 * messages set "Render Target Index" to 0. Using a different binding
342 * table index would make it impossible to use headerless messages.
343 */
344 const uint32_t surf_index = inst->target;
345
346 brw_inst *insn = brw_fb_WRITE(p,
347 payload,
348 retype(implied_header, BRW_REGISTER_TYPE_UW),
349 msg_control,
350 surf_index,
351 nr,
352 0,
353 inst->eot,
354 inst->last_rt,
355 inst->header_size != 0);
356
357 if (devinfo->gen >= 6)
358 brw_inst_set_rt_slot_group(devinfo, insn, inst->group / 16);
359 }
360
361 void
362 fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
363 {
364 if (devinfo->gen < 8 && !devinfo->is_haswell) {
365 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
366 }
367
368 const struct brw_reg implied_header =
369 devinfo->gen < 6 ? payload : brw_null_reg();
370
371 if (inst->base_mrf >= 0)
372 payload = brw_message_reg(inst->base_mrf);
373
374 if (!runtime_check_aads_emit) {
375 fire_fb_write(inst, payload, implied_header, inst->mlen);
376 } else {
377 /* This can only happen in gen < 6 */
378 assert(devinfo->gen < 6);
379
380 struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
381
382 /* Check runtime bit to detect if we have to send AA data or not */
383 brw_push_insn_state(p);
384 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
385 brw_set_default_exec_size(p, BRW_EXECUTE_1);
386 brw_AND(p,
387 v1_null_ud,
388 retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
389 brw_imm_ud(1<<26));
390 brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
391
392 int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
393 brw_pop_insn_state(p);
394 {
395 /* Don't send AA data */
396 fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
397 }
398 brw_land_fwd_jump(p, jmp);
399 fire_fb_write(inst, payload, implied_header, inst->mlen);
400 }
401 }
402
403 void
404 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
405 struct brw_reg payload)
406 {
407 assert(inst->size_written % REG_SIZE == 0);
408 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
409 /* We assume that render targets start at binding table index 0. */
410 const unsigned surf_index = inst->target;
411
412 gen9_fb_READ(p, dst, payload, surf_index,
413 inst->header_size, inst->size_written / REG_SIZE,
414 prog_data->persample_dispatch);
415 }
416
417 void
418 fs_generator::generate_mov_indirect(fs_inst *inst,
419 struct brw_reg dst,
420 struct brw_reg reg,
421 struct brw_reg indirect_byte_offset)
422 {
423 assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
424 assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
425 assert(!reg.abs && !reg.negate);
426 assert(reg.type == dst.type);
427
428 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
429
430 if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
431 imm_byte_offset += indirect_byte_offset.ud;
432
433 reg.nr = imm_byte_offset / REG_SIZE;
434 reg.subnr = imm_byte_offset % REG_SIZE;
435 brw_MOV(p, dst, reg);
436 } else {
437 /* Prior to Broadwell, there are only 8 address registers. */
438 assert(inst->exec_size <= 8 || devinfo->gen >= 8);
439
440 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
441 struct brw_reg addr = vec8(brw_address_reg(0));
442
443 /* The destination stride of an instruction (in bytes) must be greater
444 * than or equal to the size of the rest of the instruction. Since the
445 * address register is of type UW, we can't use a D-type instruction.
446 * In order to get around this, re retype to UW and use a stride.
447 */
448 indirect_byte_offset =
449 retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
450
451 /* There are a number of reasons why we don't use the base offset here.
452 * One reason is that the field is only 9 bits which means we can only
453 * use it to access the first 16 GRFs. Also, from the Haswell PRM
454 * section "Register Region Restrictions":
455 *
456 * "The lower bits of the AddressImmediate must not overflow to
457 * change the register address. The lower 5 bits of Address
458 * Immediate when added to lower 5 bits of address register gives
459 * the sub-register offset. The upper bits of Address Immediate
460 * when added to upper bits of address register gives the register
461 * address. Any overflow from sub-register offset is dropped."
462 *
463 * Since the indirect may cause us to cross a register boundary, this
464 * makes the base offset almost useless. We could try and do something
465 * clever where we use a actual base offset if base_offset % 32 == 0 but
466 * that would mean we were generating different code depending on the
467 * base offset. Instead, for the sake of consistency, we'll just do the
468 * add ourselves. This restriction is only listed in the Haswell PRM
469 * but empirical testing indicates that it applies on all older
470 * generations and is lifted on Broadwell.
471 *
472 * In the end, while base_offset is nice to look at in the generated
473 * code, using it saves us 0 instructions and would require quite a bit
474 * of case-by-case work. It's just not worth it.
475 */
476 brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
477
478 if (type_sz(reg.type) > 4 &&
479 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
480 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo) ||
481 !devinfo->has_64bit_types)) {
482 /* IVB has an issue (which we found empirically) where it reads two
483 * address register components per channel for indirectly addressed
484 * 64-bit sources.
485 *
486 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
487 *
488 * "When source or destination datatype is 64b or operation is
489 * integer DWord multiply, indirect addressing must not be used."
490 *
491 * To work around both of these, we do two integer MOVs insead of one
492 * 64-bit MOV. Because no double value should ever cross a register
493 * boundary, it's safe to use the immediate offset in the indirect
494 * here to handle adding 4 bytes to the offset and avoid the extra
495 * ADD to the register file.
496 */
497 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
498 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
499 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
500 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
501 } else {
502 struct brw_reg ind_src = brw_VxH_indirect(0, 0);
503
504 brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
505
506 if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
507 !inst->get_next()->is_tail_sentinel() &&
508 ((fs_inst *)inst->get_next())->mlen > 0) {
509 /* From the Sandybridge PRM:
510 *
511 * "[Errata: DevSNB(SNB)] If MRF register is updated by any
512 * instruction that “indexed/indirect” source AND is followed
513 * by a send, the instruction requires a “Switch”. This is to
514 * avoid race condition where send may dispatch before MRF is
515 * updated."
516 */
517 brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
518 }
519 }
520 }
521 }
522
523 void
524 fs_generator::generate_shuffle(fs_inst *inst,
525 struct brw_reg dst,
526 struct brw_reg src,
527 struct brw_reg idx)
528 {
529 /* Ivy bridge has some strange behavior that makes this a real pain to
530 * implement for 64-bit values so we just don't bother.
531 */
532 assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4);
533
534 /* Because we're using the address register, we're limited to 8-wide
535 * execution on gen7. On gen8, we're limited to 16-wide by the address
536 * register file and 8-wide for 64-bit types. We could try and make this
537 * instruction splittable higher up in the compiler but that gets weird
538 * because it reads all of the channels regardless of execution size. It's
539 * easier just to split it here.
540 */
541 const unsigned lower_width =
542 (devinfo->gen <= 7 || type_sz(src.type) > 4) ?
543 8 : MIN2(16, inst->exec_size);
544
545 brw_set_default_exec_size(p, cvt(lower_width) - 1);
546 for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
547 brw_set_default_group(p, group);
548
549 if ((src.vstride == 0 && src.hstride == 0) ||
550 idx.file == BRW_IMMEDIATE_VALUE) {
551 /* Trivial, the source is already uniform or the index is a constant.
552 * We will typically not get here if the optimizer is doing its job,
553 * but asserting would be mean.
554 */
555 const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
556 brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0));
557 } else {
558 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
559 struct brw_reg addr = vec8(brw_address_reg(0));
560
561 struct brw_reg group_idx = suboffset(idx, group);
562
563 if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
564 /* Things get grumpy if the register is too wide. */
565 group_idx.width--;
566 group_idx.vstride--;
567 }
568
569 assert(type_sz(group_idx.type) <= 4);
570 if (type_sz(group_idx.type) == 4) {
571 /* The destination stride of an instruction (in bytes) must be
572 * greater than or equal to the size of the rest of the
573 * instruction. Since the address register is of type UW, we
574 * can't use a D-type instruction. In order to get around this,
575 * re retype to UW and use a stride.
576 */
577 group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
578 }
579
580 /* Take into account the component size and horizontal stride. */
581 assert(src.vstride == src.hstride + src.width);
582 brw_SHL(p, addr, group_idx,
583 brw_imm_uw(_mesa_logbase2(type_sz(src.type)) +
584 src.hstride - 1));
585
586 /* Add on the register start offset */
587 brw_ADD(p, addr, addr, brw_imm_uw(src.nr * REG_SIZE + src.subnr));
588
589 if (type_sz(src.type) > 4 &&
590 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
591 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
592 /* IVB has an issue (which we found empirically) where it reads
593 * two address register components per channel for indirectly
594 * addressed 64-bit sources.
595 *
596 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
597 *
598 * "When source or destination datatype is 64b or operation is
599 * integer DWord multiply, indirect addressing must not be
600 * used."
601 *
602 * To work around both of these, we do two integer MOVs insead of
603 * one 64-bit MOV. Because no double value should ever cross a
604 * register boundary, it's safe to use the immediate offset in the
605 * indirect here to handle adding 4 bytes to the offset and avoid
606 * the extra ADD to the register file.
607 */
608 struct brw_reg gdst = suboffset(dst, group);
609 struct brw_reg dst_d = retype(spread(gdst, 2),
610 BRW_REGISTER_TYPE_D);
611 brw_MOV(p, dst_d,
612 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
613 brw_MOV(p, byte_offset(dst_d, 4),
614 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
615 } else {
616 brw_MOV(p, suboffset(dst, group),
617 retype(brw_VxH_indirect(0, 0), src.type));
618 }
619 }
620 }
621 }
622
623 void
624 fs_generator::generate_quad_swizzle(const fs_inst *inst,
625 struct brw_reg dst, struct brw_reg src,
626 unsigned swiz)
627 {
628 /* Requires a quad. */
629 assert(inst->exec_size >= 4);
630
631 if (src.file == BRW_IMMEDIATE_VALUE ||
632 has_scalar_region(src)) {
633 /* The value is uniform across all channels */
634 brw_MOV(p, dst, src);
635
636 } else if (devinfo->gen < 11 && type_sz(src.type) == 4) {
637 /* This only works on 8-wide 32-bit values */
638 assert(inst->exec_size == 8);
639 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
640 assert(src.vstride == src.width + 1);
641 brw_set_default_access_mode(p, BRW_ALIGN_16);
642 struct brw_reg swiz_src = stride(src, 4, 4, 1);
643 swiz_src.swizzle = swiz;
644 brw_MOV(p, dst, swiz_src);
645
646 } else {
647 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
648 assert(src.vstride == src.width + 1);
649 const struct brw_reg src_0 = suboffset(src, BRW_GET_SWZ(swiz, 0));
650
651 switch (swiz) {
652 case BRW_SWIZZLE_XXXX:
653 case BRW_SWIZZLE_YYYY:
654 case BRW_SWIZZLE_ZZZZ:
655 case BRW_SWIZZLE_WWWW:
656 brw_MOV(p, dst, stride(src_0, 4, 4, 0));
657 break;
658
659 case BRW_SWIZZLE_XXZZ:
660 case BRW_SWIZZLE_YYWW:
661 brw_MOV(p, dst, stride(src_0, 2, 2, 0));
662 break;
663
664 case BRW_SWIZZLE_XYXY:
665 case BRW_SWIZZLE_ZWZW:
666 assert(inst->exec_size == 4);
667 brw_MOV(p, dst, stride(src_0, 0, 2, 1));
668 break;
669
670 default:
671 assert(inst->force_writemask_all);
672 brw_set_default_exec_size(p, cvt(inst->exec_size / 4) - 1);
673
674 for (unsigned c = 0; c < 4; c++) {
675 brw_inst *insn = brw_MOV(
676 p, stride(suboffset(dst, c),
677 4 * inst->dst.stride, 1, 4 * inst->dst.stride),
678 stride(suboffset(src, BRW_GET_SWZ(swiz, c)), 4, 1, 0));
679
680 brw_inst_set_no_dd_clear(devinfo, insn, c < 3);
681 brw_inst_set_no_dd_check(devinfo, insn, c > 0);
682 }
683
684 break;
685 }
686 }
687 }
688
689 void
690 fs_generator::generate_urb_read(fs_inst *inst,
691 struct brw_reg dst,
692 struct brw_reg header)
693 {
694 assert(inst->size_written % REG_SIZE == 0);
695 assert(header.file == BRW_GENERAL_REGISTER_FILE);
696 assert(header.type == BRW_REGISTER_TYPE_UD);
697
698 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
699 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
700 brw_set_src0(p, send, header);
701 brw_set_src1(p, send, brw_imm_ud(0u));
702
703 brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
704 brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ);
705
706 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
707 brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
708
709 brw_inst_set_mlen(p->devinfo, send, inst->mlen);
710 brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
711 brw_inst_set_header_present(p->devinfo, send, true);
712 brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
713 }
714
715 void
716 fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
717 {
718 brw_inst *insn;
719
720 /* WaClearTDRRegBeforeEOTForNonPS.
721 *
722 * WA: Clear tdr register before send EOT in all non-PS shader kernels
723 *
724 * mov(8) tdr0:ud 0x0:ud {NoMask}"
725 */
726 if (inst->eot && p->devinfo->gen == 10) {
727 brw_push_insn_state(p);
728 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
729 brw_MOV(p, brw_tdr_reg(), brw_imm_uw(0));
730 brw_pop_insn_state(p);
731 }
732
733 insn = brw_next_insn(p, BRW_OPCODE_SEND);
734
735 brw_set_dest(p, insn, brw_null_reg());
736 brw_set_src0(p, insn, payload);
737 brw_set_src1(p, insn, brw_imm_ud(0u));
738
739 brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
740 brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE);
741
742 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
743 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
744 brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
745
746 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
747 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
748 brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
749
750 brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
751 brw_inst_set_rlen(p->devinfo, insn, 0);
752 brw_inst_set_eot(p->devinfo, insn, inst->eot);
753 brw_inst_set_header_present(p->devinfo, insn, true);
754 brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
755 }
756
757 void
758 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
759 {
760 struct brw_inst *insn;
761
762 insn = brw_next_insn(p, BRW_OPCODE_SEND);
763
764 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
765 brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
766 brw_set_src1(p, insn, brw_imm_ud(0u));
767
768 /* Terminate a compute shader by sending a message to the thread spawner.
769 */
770 brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
771 brw_inst_set_mlen(devinfo, insn, 1);
772 brw_inst_set_rlen(devinfo, insn, 0);
773 brw_inst_set_eot(devinfo, insn, inst->eot);
774 brw_inst_set_header_present(devinfo, insn, false);
775
776 brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
777 brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
778
779 /* Note that even though the thread has a URB resource associated with it,
780 * we set the "do not dereference URB" bit, because the URB resource is
781 * managed by the fixed-function unit, so it will free it automatically.
782 */
783 brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
784
785 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
786 }
787
788 void
789 fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
790 {
791 brw_barrier(p, src);
792 brw_WAIT(p);
793 }
794
795 bool
796 fs_generator::generate_linterp(fs_inst *inst,
797 struct brw_reg dst, struct brw_reg *src)
798 {
799 /* PLN reads:
800 * / in SIMD16 \
801 * -----------------------------------
802 * | src1+0 | src1+1 | src1+2 | src1+3 |
803 * |-----------------------------------|
804 * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
805 * -----------------------------------
806 *
807 * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
808 *
809 * -----------------------------------
810 * | src1+0 | src1+1 | src1+2 | src1+3 |
811 * |-----------------------------------|
812 * |(x0, x1)|(y0, y1)| | | in SIMD8
813 * |-----------------------------------|
814 * |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
815 * -----------------------------------
816 *
817 * See also: emit_interpolation_setup_gen4().
818 */
819 struct brw_reg delta_x = src[0];
820 struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
821 struct brw_reg interp = stride(src[1], 0, 1, 0);
822 brw_inst *i[4];
823
824 if (devinfo->gen >= 11) {
825 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_NF);
826 struct brw_reg dwP = suboffset(interp, 0);
827 struct brw_reg dwQ = suboffset(interp, 1);
828 struct brw_reg dwR = suboffset(interp, 3);
829
830 brw_push_insn_state(p);
831 brw_set_default_exec_size(p, BRW_EXECUTE_8);
832
833 if (inst->exec_size == 8) {
834 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
835 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_y, 0), dwQ);
836
837 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
838
839 /* brw_set_default_saturate() is called before emitting instructions,
840 * so the saturate bit is set in each instruction, so we need to unset
841 * it on the first instruction of each pair.
842 */
843 brw_inst_set_saturate(p->devinfo, i[0], false);
844 } else {
845 brw_set_default_group(p, inst->group);
846 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
847 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_x, 1), dwQ);
848
849 brw_set_default_group(p, inst->group + 8);
850 i[2] = brw_MAD(p, acc, dwR, offset(delta_y, 0), dwP);
851 i[3] = brw_MAD(p, offset(dst, 1), acc, offset(delta_y, 1), dwQ);
852
853 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
854 brw_inst_set_cond_modifier(p->devinfo, i[3], inst->conditional_mod);
855
856 /* brw_set_default_saturate() is called before emitting instructions,
857 * so the saturate bit is set in each instruction, so we need to unset
858 * it on the first instruction of each pair.
859 */
860 brw_inst_set_saturate(p->devinfo, i[0], false);
861 brw_inst_set_saturate(p->devinfo, i[2], false);
862 }
863
864 brw_pop_insn_state(p);
865
866 return true;
867 } else if (devinfo->has_pln) {
868 if (devinfo->gen <= 6 && (delta_x.nr & 1) != 0) {
869 /* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane":
870 *
871 * "[DevSNB]:<src1> must be even register aligned.
872 *
873 * This restriction is lifted on Ivy Bridge.
874 *
875 * This means that we need to split PLN into LINE+MAC on-the-fly.
876 * Unfortunately, the inputs are laid out for PLN and not LINE+MAC so
877 * we have to split into SIMD8 pieces. For gen4 (!has_pln), the
878 * coordinate registers are laid out differently so we leave it as a
879 * SIMD16 instruction.
880 */
881 assert(inst->exec_size == 8 || inst->exec_size == 16);
882 assert(inst->group % 16 == 0);
883
884 brw_push_insn_state(p);
885 brw_set_default_exec_size(p, BRW_EXECUTE_8);
886
887 /* Thanks to two accumulators, we can emit all the LINEs and then all
888 * the MACs. This improves parallelism a bit.
889 */
890 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
891 brw_inst *line = brw_LINE(p, brw_null_reg(), interp,
892 offset(delta_x, g * 2));
893 brw_inst_set_group(devinfo, line, inst->group + g * 8);
894
895 /* LINE writes the accumulator automatically on gen4-5. On Sandy
896 * Bridge and later, we have to explicitly enable it.
897 */
898 if (devinfo->gen >= 6)
899 brw_inst_set_acc_wr_control(p->devinfo, line, true);
900
901 /* brw_set_default_saturate() is called before emitting
902 * instructions, so the saturate bit is set in each instruction,
903 * so we need to unset it on the LINE instructions.
904 */
905 brw_inst_set_saturate(p->devinfo, line, false);
906 }
907
908 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
909 brw_inst *mac = brw_MAC(p, offset(dst, g), suboffset(interp, 1),
910 offset(delta_x, g * 2 + 1));
911 brw_inst_set_group(devinfo, mac, inst->group + g * 8);
912 brw_inst_set_cond_modifier(p->devinfo, mac, inst->conditional_mod);
913 }
914
915 brw_pop_insn_state(p);
916
917 return true;
918 } else {
919 brw_PLN(p, dst, interp, delta_x);
920
921 return false;
922 }
923 } else {
924 i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
925 i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
926
927 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
928
929 /* brw_set_default_saturate() is called before emitting instructions, so
930 * the saturate bit is set in each instruction, so we need to unset it on
931 * the first instruction.
932 */
933 brw_inst_set_saturate(p->devinfo, i[0], false);
934
935 return true;
936 }
937 }
938
939 void
940 fs_generator::generate_get_buffer_size(fs_inst *inst,
941 struct brw_reg dst,
942 struct brw_reg src,
943 struct brw_reg surf_index)
944 {
945 assert(devinfo->gen >= 7);
946 assert(surf_index.file == BRW_IMMEDIATE_VALUE);
947
948 uint32_t simd_mode;
949 int rlen = 4;
950
951 switch (inst->exec_size) {
952 case 8:
953 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
954 break;
955 case 16:
956 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
957 break;
958 default:
959 unreachable("Invalid width for texture instruction");
960 }
961
962 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
963 rlen = 8;
964 dst = vec16(dst);
965 }
966
967 brw_SAMPLE(p,
968 retype(dst, BRW_REGISTER_TYPE_UW),
969 inst->base_mrf,
970 src,
971 surf_index.ud,
972 0,
973 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
974 rlen, /* response length */
975 inst->mlen,
976 inst->header_size > 0,
977 simd_mode,
978 BRW_SAMPLER_RETURN_FORMAT_SINT32);
979 }
980
981 void
982 fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst,
983 struct brw_reg surface_index,
984 struct brw_reg sampler_index)
985 {
986 assert(devinfo->gen < 7);
987 assert(inst->size_written % REG_SIZE == 0);
988 int msg_type = -1;
989 uint32_t simd_mode;
990 uint32_t return_format;
991
992 /* Sampler EOT message of less than the dispatch width would kill the
993 * thread prematurely.
994 */
995 assert(!inst->eot || inst->exec_size == dispatch_width);
996
997 switch (dst.type) {
998 case BRW_REGISTER_TYPE_D:
999 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
1000 break;
1001 case BRW_REGISTER_TYPE_UD:
1002 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
1003 break;
1004 default:
1005 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1006 break;
1007 }
1008
1009 /* Stomp the resinfo output type to UINT32. On gens 4-5, the output type
1010 * is set as part of the message descriptor. On gen4, the PRM seems to
1011 * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
1012 * later gens UINT32 is required. Once you hit Sandy Bridge, the bit is
1013 * gone from the message descriptor entirely and you just get UINT32 all
1014 * the time regasrdless. Since we can really only do non-UINT32 on gen4,
1015 * just stomp it to UINT32 all the time.
1016 */
1017 if (inst->opcode == SHADER_OPCODE_TXS)
1018 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
1019
1020 switch (inst->exec_size) {
1021 case 8:
1022 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1023 break;
1024 case 16:
1025 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1026 break;
1027 default:
1028 unreachable("Invalid width for texture instruction");
1029 }
1030
1031 if (devinfo->gen >= 5) {
1032 switch (inst->opcode) {
1033 case SHADER_OPCODE_TEX:
1034 if (inst->shadow_compare) {
1035 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
1036 } else {
1037 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
1038 }
1039 break;
1040 case FS_OPCODE_TXB:
1041 if (inst->shadow_compare) {
1042 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
1043 } else {
1044 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
1045 }
1046 break;
1047 case SHADER_OPCODE_TXL:
1048 if (inst->shadow_compare) {
1049 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
1050 } else {
1051 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
1052 }
1053 break;
1054 case SHADER_OPCODE_TXS:
1055 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
1056 break;
1057 case SHADER_OPCODE_TXD:
1058 assert(!inst->shadow_compare);
1059 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
1060 break;
1061 case SHADER_OPCODE_TXF:
1062 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1063 break;
1064 case SHADER_OPCODE_TXF_CMS:
1065 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1066 break;
1067 case SHADER_OPCODE_LOD:
1068 msg_type = GEN5_SAMPLER_MESSAGE_LOD;
1069 break;
1070 case SHADER_OPCODE_TG4:
1071 assert(devinfo->gen == 6);
1072 assert(!inst->shadow_compare);
1073 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
1074 break;
1075 case SHADER_OPCODE_SAMPLEINFO:
1076 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
1077 break;
1078 default:
1079 unreachable("not reached");
1080 }
1081 } else {
1082 switch (inst->opcode) {
1083 case SHADER_OPCODE_TEX:
1084 /* Note that G45 and older determines shadow compare and dispatch width
1085 * from message length for most messages.
1086 */
1087 if (inst->exec_size == 8) {
1088 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
1089 if (inst->shadow_compare) {
1090 assert(inst->mlen == 6);
1091 } else {
1092 assert(inst->mlen <= 4);
1093 }
1094 } else {
1095 if (inst->shadow_compare) {
1096 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1097 assert(inst->mlen == 9);
1098 } else {
1099 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1100 assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
1101 }
1102 }
1103 break;
1104 case FS_OPCODE_TXB:
1105 if (inst->shadow_compare) {
1106 assert(inst->exec_size == 8);
1107 assert(inst->mlen == 6);
1108 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
1109 } else {
1110 assert(inst->mlen == 9);
1111 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1112 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1113 }
1114 break;
1115 case SHADER_OPCODE_TXL:
1116 if (inst->shadow_compare) {
1117 assert(inst->exec_size == 8);
1118 assert(inst->mlen == 6);
1119 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
1120 } else {
1121 assert(inst->mlen == 9);
1122 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
1123 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1124 }
1125 break;
1126 case SHADER_OPCODE_TXD:
1127 /* There is no sample_d_c message; comparisons are done manually */
1128 assert(inst->exec_size == 8);
1129 assert(inst->mlen == 7 || inst->mlen == 10);
1130 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
1131 break;
1132 case SHADER_OPCODE_TXF:
1133 assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
1134 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1135 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1136 break;
1137 case SHADER_OPCODE_TXS:
1138 assert(inst->mlen == 3);
1139 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
1140 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1141 break;
1142 default:
1143 unreachable("not reached");
1144 }
1145 }
1146 assert(msg_type != -1);
1147
1148 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1149 dst = vec16(dst);
1150 }
1151
1152 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
1153
1154 /* Load the message header if present. If there's a texture offset,
1155 * we need to set it up explicitly and load the offset bitfield.
1156 * Otherwise, we can use an implied move from g0 to the first message reg.
1157 */
1158 struct brw_reg src = brw_null_reg();
1159 if (inst->header_size != 0) {
1160 if (devinfo->gen < 6 && !inst->offset) {
1161 /* Set up an implied move from g0 to the MRF. */
1162 src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1163 } else {
1164 assert(inst->base_mrf != -1);
1165 struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
1166
1167 brw_push_insn_state(p);
1168 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1169 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1170 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1171 /* Explicitly set up the message header by copying g0 to the MRF. */
1172 brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
1173
1174 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1175 if (inst->offset) {
1176 /* Set the offset bits in DWord 2. */
1177 brw_MOV(p, get_element_ud(header_reg, 2),
1178 brw_imm_ud(inst->offset));
1179 }
1180
1181 brw_pop_insn_state(p);
1182 }
1183 }
1184
1185 uint32_t base_binding_table_index;
1186 switch (inst->opcode) {
1187 case SHADER_OPCODE_TG4:
1188 base_binding_table_index = prog_data->binding_table.gather_texture_start;
1189 break;
1190 default:
1191 base_binding_table_index = prog_data->binding_table.texture_start;
1192 break;
1193 }
1194
1195 assert(surface_index.file == BRW_IMMEDIATE_VALUE);
1196 assert(sampler_index.file == BRW_IMMEDIATE_VALUE);
1197
1198 brw_SAMPLE(p,
1199 retype(dst, BRW_REGISTER_TYPE_UW),
1200 inst->base_mrf,
1201 src,
1202 surface_index.ud + base_binding_table_index,
1203 sampler_index.ud % 16,
1204 msg_type,
1205 inst->size_written / REG_SIZE,
1206 inst->mlen,
1207 inst->header_size != 0,
1208 simd_mode,
1209 return_format);
1210 }
1211
1212
1213 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
1214 * looking like:
1215 *
1216 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
1217 *
1218 * Ideally, we want to produce:
1219 *
1220 * DDX DDY
1221 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
1222 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
1223 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
1224 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
1225 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
1226 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
1227 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
1228 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
1229 *
1230 * and add another set of two more subspans if in 16-pixel dispatch mode.
1231 *
1232 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
1233 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
1234 * pair. But the ideal approximation may impose a huge performance cost on
1235 * sample_d. On at least Haswell, sample_d instruction does some
1236 * optimizations if the same LOD is used for all pixels in the subspan.
1237 *
1238 * For DDY, we need to use ALIGN16 mode since it's capable of doing the
1239 * appropriate swizzling.
1240 */
1241 void
1242 fs_generator::generate_ddx(const fs_inst *inst,
1243 struct brw_reg dst, struct brw_reg src)
1244 {
1245 unsigned vstride, width;
1246
1247 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1248 /* produce accurate derivatives */
1249 vstride = BRW_VERTICAL_STRIDE_2;
1250 width = BRW_WIDTH_2;
1251 } else {
1252 /* replicate the derivative at the top-left pixel to other pixels */
1253 vstride = BRW_VERTICAL_STRIDE_4;
1254 width = BRW_WIDTH_4;
1255 }
1256
1257 struct brw_reg src0 = byte_offset(src, type_sz(src.type));;
1258 struct brw_reg src1 = src;
1259
1260 src0.vstride = vstride;
1261 src0.width = width;
1262 src0.hstride = BRW_HORIZONTAL_STRIDE_0;
1263 src1.vstride = vstride;
1264 src1.width = width;
1265 src1.hstride = BRW_HORIZONTAL_STRIDE_0;
1266
1267 brw_ADD(p, dst, src0, negate(src1));
1268 }
1269
1270 /* The negate_value boolean is used to negate the derivative computation for
1271 * FBOs, since they place the origin at the upper left instead of the lower
1272 * left.
1273 */
1274 void
1275 fs_generator::generate_ddy(const fs_inst *inst,
1276 struct brw_reg dst, struct brw_reg src)
1277 {
1278 const uint32_t type_size = type_sz(src.type);
1279
1280 if (inst->opcode == FS_OPCODE_DDY_FINE) {
1281 /* produce accurate derivatives.
1282 *
1283 * From the Broadwell PRM, Volume 7 (3D-Media-GPGPU)
1284 * "Register Region Restrictions", Section "1. Special Restrictions":
1285 *
1286 * "In Align16 mode, the channel selects and channel enables apply to
1287 * a pair of half-floats, because these parameters are defined for
1288 * DWord elements ONLY. This is applicable when both source and
1289 * destination are half-floats."
1290 *
1291 * So for half-float operations we use the Gen11+ Align1 path. CHV
1292 * inherits its FP16 hardware from SKL, so it is not affected.
1293 */
1294 if (devinfo->gen >= 11 ||
1295 (devinfo->is_broadwell && src.type == BRW_REGISTER_TYPE_HF)) {
1296 src = stride(src, 0, 2, 1);
1297 struct brw_reg src_0 = byte_offset(src, 0 * type_size);
1298 struct brw_reg src_2 = byte_offset(src, 2 * type_size);
1299 struct brw_reg src_4 = byte_offset(src, 4 * type_size);
1300 struct brw_reg src_6 = byte_offset(src, 6 * type_size);
1301 struct brw_reg src_8 = byte_offset(src, 8 * type_size);
1302 struct brw_reg src_10 = byte_offset(src, 10 * type_size);
1303 struct brw_reg src_12 = byte_offset(src, 12 * type_size);
1304 struct brw_reg src_14 = byte_offset(src, 14 * type_size);
1305
1306 struct brw_reg dst_0 = byte_offset(dst, 0 * type_size);
1307 struct brw_reg dst_4 = byte_offset(dst, 4 * type_size);
1308 struct brw_reg dst_8 = byte_offset(dst, 8 * type_size);
1309 struct brw_reg dst_12 = byte_offset(dst, 12 * type_size);
1310
1311 brw_push_insn_state(p);
1312 brw_set_default_exec_size(p, BRW_EXECUTE_4);
1313
1314 brw_ADD(p, dst_0, negate(src_0), src_2);
1315 brw_ADD(p, dst_4, negate(src_4), src_6);
1316
1317 if (inst->exec_size == 16) {
1318 brw_ADD(p, dst_8, negate(src_8), src_10);
1319 brw_ADD(p, dst_12, negate(src_12), src_14);
1320 }
1321
1322 brw_pop_insn_state(p);
1323 } else {
1324 struct brw_reg src0 = stride(src, 4, 4, 1);
1325 struct brw_reg src1 = stride(src, 4, 4, 1);
1326 src0.swizzle = BRW_SWIZZLE_XYXY;
1327 src1.swizzle = BRW_SWIZZLE_ZWZW;
1328
1329 brw_push_insn_state(p);
1330 brw_set_default_access_mode(p, BRW_ALIGN_16);
1331 brw_ADD(p, dst, negate(src0), src1);
1332 brw_pop_insn_state(p);
1333 }
1334 } else {
1335 /* replicate the derivative at the top-left pixel to other pixels */
1336 struct brw_reg src0 = byte_offset(stride(src, 4, 4, 0), 0 * type_size);
1337 struct brw_reg src1 = byte_offset(stride(src, 4, 4, 0), 2 * type_size);
1338
1339 brw_ADD(p, dst, negate(src0), src1);
1340 }
1341 }
1342
1343 void
1344 fs_generator::generate_discard_jump(fs_inst *)
1345 {
1346 assert(devinfo->gen >= 6);
1347
1348 /* This HALT will be patched up at FB write time to point UIP at the end of
1349 * the program, and at brw_uip_jip() JIP will be set to the end of the
1350 * current block (or the program).
1351 */
1352 this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
1353 gen6_HALT(p);
1354 }
1355
1356 void
1357 fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
1358 {
1359 /* The 32-wide messages only respect the first 16-wide half of the channel
1360 * enable signals which are replicated identically for the second group of
1361 * 16 channels, so we cannot use them unless the write is marked
1362 * force_writemask_all.
1363 */
1364 const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
1365 MIN2(16, inst->exec_size);
1366 const unsigned block_size = 4 * lower_size / REG_SIZE;
1367 assert(inst->mlen != 0);
1368
1369 brw_push_insn_state(p);
1370 brw_set_default_exec_size(p, cvt(lower_size) - 1);
1371 brw_set_default_compression(p, lower_size > 8);
1372
1373 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1374 brw_set_default_group(p, inst->group + lower_size * i);
1375
1376 brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
1377 retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
1378
1379 brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
1380 block_size,
1381 inst->offset + block_size * REG_SIZE * i);
1382 }
1383
1384 brw_pop_insn_state(p);
1385 }
1386
1387 void
1388 fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
1389 {
1390 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1391 assert(inst->mlen != 0);
1392
1393 brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
1394 inst->exec_size / 8, inst->offset);
1395 }
1396
1397 void
1398 fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst)
1399 {
1400 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1401
1402 gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
1403 }
1404
1405 void
1406 fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
1407 struct brw_reg dst,
1408 struct brw_reg index,
1409 struct brw_reg offset)
1410 {
1411 assert(type_sz(dst.type) == 4);
1412 assert(inst->mlen != 0);
1413
1414 assert(index.file == BRW_IMMEDIATE_VALUE &&
1415 index.type == BRW_REGISTER_TYPE_UD);
1416 uint32_t surf_index = index.ud;
1417
1418 assert(offset.file == BRW_IMMEDIATE_VALUE &&
1419 offset.type == BRW_REGISTER_TYPE_UD);
1420 uint32_t read_offset = offset.ud;
1421
1422 brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
1423 read_offset, surf_index);
1424 }
1425
1426 void
1427 fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
1428 struct brw_reg dst,
1429 struct brw_reg index,
1430 struct brw_reg payload)
1431 {
1432 assert(index.type == BRW_REGISTER_TYPE_UD);
1433 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1434 assert(type_sz(dst.type) == 4);
1435
1436 if (index.file == BRW_IMMEDIATE_VALUE) {
1437 const uint32_t surf_index = index.ud;
1438
1439 brw_push_insn_state(p);
1440 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1441 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1442 brw_pop_insn_state(p);
1443
1444 brw_inst_set_sfid(devinfo, send, GEN6_SFID_DATAPORT_CONSTANT_CACHE);
1445 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
1446 brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
1447 brw_set_desc(p, send,
1448 brw_message_desc(devinfo, 1, DIV_ROUND_UP(inst->size_written,
1449 REG_SIZE), true) |
1450 brw_dp_read_desc(devinfo, surf_index,
1451 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1452 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1453 BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1454
1455 } else {
1456 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1457
1458 brw_push_insn_state(p);
1459 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1460
1461 /* a0.0 = surf_index & 0xff */
1462 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1463 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1464 brw_set_dest(p, insn_and, addr);
1465 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1466 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1467
1468 /* dst = send(payload, a0.0 | <descriptor>) */
1469 brw_send_indirect_message(
1470 p, GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1471 retype(dst, BRW_REGISTER_TYPE_UD),
1472 retype(payload, BRW_REGISTER_TYPE_UD), addr,
1473 brw_message_desc(devinfo, 1,
1474 DIV_ROUND_UP(inst->size_written, REG_SIZE), true) |
1475 brw_dp_read_desc(devinfo, 0 /* surface */,
1476 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1477 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1478 BRW_DATAPORT_READ_TARGET_DATA_CACHE),
1479 false /* EOT */);
1480
1481 brw_pop_insn_state(p);
1482 }
1483 }
1484
1485 void
1486 fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst,
1487 struct brw_reg dst,
1488 struct brw_reg index)
1489 {
1490 assert(devinfo->gen < 7); /* Should use the gen7 variant. */
1491 assert(inst->header_size != 0);
1492 assert(inst->mlen);
1493
1494 assert(index.file == BRW_IMMEDIATE_VALUE &&
1495 index.type == BRW_REGISTER_TYPE_UD);
1496 uint32_t surf_index = index.ud;
1497
1498 uint32_t simd_mode, rlen, msg_type;
1499 if (inst->exec_size == 16) {
1500 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1501 rlen = 8;
1502 } else {
1503 assert(inst->exec_size == 8);
1504 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1505 rlen = 4;
1506 }
1507
1508 if (devinfo->gen >= 5)
1509 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1510 else {
1511 /* We always use the SIMD16 message so that we only have to load U, and
1512 * not V or R.
1513 */
1514 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1515 assert(inst->mlen == 3);
1516 assert(inst->size_written == 8 * REG_SIZE);
1517 rlen = 8;
1518 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1519 }
1520
1521 struct brw_reg header = brw_vec8_grf(0, 0);
1522 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1523
1524 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1525 brw_inst_set_compression(devinfo, send, false);
1526 brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1527 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1528 brw_set_src0(p, send, header);
1529 if (devinfo->gen < 6)
1530 brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
1531
1532 /* Our surface is set up as floats, regardless of what actual data is
1533 * stored in it.
1534 */
1535 uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1536 brw_set_desc(p, send,
1537 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size) |
1538 brw_sampler_desc(devinfo, surf_index,
1539 0, /* sampler (unused) */
1540 msg_type, simd_mode, return_format));
1541 }
1542
1543 void
1544 fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
1545 struct brw_reg dst,
1546 struct brw_reg src,
1547 struct brw_reg msg_data,
1548 unsigned msg_type)
1549 {
1550 const bool has_payload = inst->src[0].file != BAD_FILE;
1551 assert(msg_data.type == BRW_REGISTER_TYPE_UD);
1552 assert(inst->size_written % REG_SIZE == 0);
1553
1554 brw_pixel_interpolator_query(p,
1555 retype(dst, BRW_REGISTER_TYPE_UW),
1556 /* If we don't have a payload, what we send doesn't matter */
1557 has_payload ? src : brw_vec8_grf(0, 0),
1558 inst->pi_noperspective,
1559 msg_type,
1560 msg_data,
1561 has_payload ? 2 * inst->exec_size / 8 : 1,
1562 inst->size_written / REG_SIZE);
1563 }
1564
1565 /* Sets vstride=1, width=4, hstride=0 of register src1 during
1566 * the ADD instruction.
1567 */
1568 void
1569 fs_generator::generate_set_sample_id(fs_inst *inst,
1570 struct brw_reg dst,
1571 struct brw_reg src0,
1572 struct brw_reg src1)
1573 {
1574 assert(dst.type == BRW_REGISTER_TYPE_D ||
1575 dst.type == BRW_REGISTER_TYPE_UD);
1576 assert(src0.type == BRW_REGISTER_TYPE_D ||
1577 src0.type == BRW_REGISTER_TYPE_UD);
1578
1579 const struct brw_reg reg = stride(src1, 1, 4, 0);
1580 const unsigned lower_size = MIN2(inst->exec_size,
1581 devinfo->gen >= 8 ? 16 : 8);
1582
1583 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1584 brw_inst *insn = brw_ADD(p, offset(dst, i * lower_size / 8),
1585 offset(src0, (src0.vstride == 0 ? 0 : (1 << (src0.vstride - 1)) *
1586 (i * lower_size / (1 << src0.width))) *
1587 type_sz(src0.type) / REG_SIZE),
1588 suboffset(reg, i * lower_size / 4));
1589 brw_inst_set_exec_size(devinfo, insn, cvt(lower_size) - 1);
1590 brw_inst_set_group(devinfo, insn, inst->group + lower_size * i);
1591 brw_inst_set_compression(devinfo, insn, lower_size > 8);
1592 }
1593 }
1594
1595 void
1596 fs_generator::generate_pack_half_2x16_split(fs_inst *,
1597 struct brw_reg dst,
1598 struct brw_reg x,
1599 struct brw_reg y)
1600 {
1601 assert(devinfo->gen >= 7);
1602 assert(dst.type == BRW_REGISTER_TYPE_UD);
1603 assert(x.type == BRW_REGISTER_TYPE_F);
1604 assert(y.type == BRW_REGISTER_TYPE_F);
1605
1606 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
1607 *
1608 * Because this instruction does not have a 16-bit floating-point type,
1609 * the destination data type must be Word (W).
1610 *
1611 * The destination must be DWord-aligned and specify a horizontal stride
1612 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
1613 * each destination channel and the upper word is not modified.
1614 */
1615 struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
1616
1617 /* Give each 32-bit channel of dst the form below, where "." means
1618 * unchanged.
1619 * 0x....hhhh
1620 */
1621 brw_F32TO16(p, dst_w, y);
1622
1623 /* Now the form:
1624 * 0xhhhh0000
1625 */
1626 brw_SHL(p, dst, dst, brw_imm_ud(16u));
1627
1628 /* And, finally the form of packHalf2x16's output:
1629 * 0xhhhhllll
1630 */
1631 brw_F32TO16(p, dst_w, x);
1632 }
1633
1634 void
1635 fs_generator::generate_shader_time_add(fs_inst *,
1636 struct brw_reg payload,
1637 struct brw_reg offset,
1638 struct brw_reg value)
1639 {
1640 assert(devinfo->gen >= 7);
1641 brw_push_insn_state(p);
1642 brw_set_default_mask_control(p, true);
1643
1644 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1645 struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
1646 offset.type);
1647 struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
1648 value.type);
1649
1650 assert(offset.file == BRW_IMMEDIATE_VALUE);
1651 if (value.file == BRW_GENERAL_REGISTER_FILE) {
1652 value.width = BRW_WIDTH_1;
1653 value.hstride = BRW_HORIZONTAL_STRIDE_0;
1654 value.vstride = BRW_VERTICAL_STRIDE_0;
1655 } else {
1656 assert(value.file == BRW_IMMEDIATE_VALUE);
1657 }
1658
1659 /* Trying to deal with setup of the params from the IR is crazy in the FS8
1660 * case, and we don't really care about squeezing every bit of performance
1661 * out of this path, so we just emit the MOVs from here.
1662 */
1663 brw_MOV(p, payload_offset, offset);
1664 brw_MOV(p, payload_value, value);
1665 brw_shader_time_add(p, payload,
1666 prog_data->binding_table.shader_time_start);
1667 brw_pop_insn_state(p);
1668 }
1669
1670 void
1671 fs_generator::enable_debug(const char *shader_name)
1672 {
1673 debug_flag = true;
1674 this->shader_name = shader_name;
1675 }
1676
1677 int
1678 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width)
1679 {
1680 /* align to 64 byte boundary. */
1681 while (p->next_insn_offset % 64)
1682 brw_NOP(p);
1683
1684 this->dispatch_width = dispatch_width;
1685
1686 int start_offset = p->next_insn_offset;
1687 int spill_count = 0, fill_count = 0;
1688 int loop_count = 0;
1689
1690 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1691
1692 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1693 struct brw_reg src[4], dst;
1694 unsigned int last_insn_offset = p->next_insn_offset;
1695 bool multiple_instructions_emitted = false;
1696
1697 /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
1698 * "Register Region Restrictions" section: for BDW, SKL:
1699 *
1700 * "A POW/FDIV operation must not be followed by an instruction
1701 * that requires two destination registers."
1702 *
1703 * The documentation is often lacking annotations for Atom parts,
1704 * and empirically this affects CHV as well.
1705 */
1706 if (devinfo->gen >= 8 &&
1707 devinfo->gen <= 9 &&
1708 p->nr_insn > 1 &&
1709 brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
1710 brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
1711 inst->dst.component_size(inst->exec_size) > REG_SIZE) {
1712 brw_NOP(p);
1713 last_insn_offset = p->next_insn_offset;
1714 }
1715
1716 if (unlikely(debug_flag))
1717 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1718
1719 /* If the instruction writes to more than one register, it needs to be
1720 * explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
1721 * hardware figures out by itself what the right compression mode is,
1722 * but we still need to know whether the instruction is compressed to
1723 * set up the source register regions appropriately.
1724 *
1725 * XXX - This is wrong for instructions that write a single register but
1726 * read more than one which should strictly speaking be treated as
1727 * compressed. For instructions that don't write any registers it
1728 * relies on the destination being a null register of the correct
1729 * type and regioning so the instruction is considered compressed
1730 * or not accordingly.
1731 */
1732 const bool compressed =
1733 inst->dst.component_size(inst->exec_size) > REG_SIZE;
1734 brw_set_default_compression(p, compressed);
1735 brw_set_default_group(p, inst->group);
1736
1737 for (unsigned int i = 0; i < inst->sources; i++) {
1738 src[i] = brw_reg_from_fs_reg(devinfo, inst,
1739 &inst->src[i], compressed);
1740 /* The accumulator result appears to get used for the
1741 * conditional modifier generation. When negating a UD
1742 * value, there is a 33rd bit generated for the sign in the
1743 * accumulator value, so now you can't check, for example,
1744 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
1745 */
1746 assert(!inst->conditional_mod ||
1747 inst->src[i].type != BRW_REGISTER_TYPE_UD ||
1748 !inst->src[i].negate);
1749 }
1750 dst = brw_reg_from_fs_reg(devinfo, inst,
1751 &inst->dst, compressed);
1752
1753 brw_set_default_access_mode(p, BRW_ALIGN_1);
1754 brw_set_default_predicate_control(p, inst->predicate);
1755 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1756 /* On gen7 and above, hardware automatically adds the group onto the
1757 * flag subregister number. On Sandy Bridge and older, we have to do it
1758 * ourselves.
1759 */
1760 const unsigned flag_subreg = inst->flag_subreg +
1761 (devinfo->gen >= 7 ? 0 : inst->group / 16);
1762 brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2);
1763 brw_set_default_saturate(p, inst->saturate);
1764 brw_set_default_mask_control(p, inst->force_writemask_all);
1765 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1766
1767 unsigned exec_size = inst->exec_size;
1768 if (devinfo->gen == 7 && !devinfo->is_haswell &&
1769 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
1770 exec_size *= 2;
1771 }
1772
1773 brw_set_default_exec_size(p, cvt(exec_size) - 1);
1774
1775 assert(inst->force_writemask_all || inst->exec_size >= 4);
1776 assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
1777 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1778 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1779
1780 switch (inst->opcode) {
1781 case BRW_OPCODE_MOV:
1782 brw_MOV(p, dst, src[0]);
1783 break;
1784 case BRW_OPCODE_ADD:
1785 brw_ADD(p, dst, src[0], src[1]);
1786 break;
1787 case BRW_OPCODE_MUL:
1788 brw_MUL(p, dst, src[0], src[1]);
1789 break;
1790 case BRW_OPCODE_AVG:
1791 brw_AVG(p, dst, src[0], src[1]);
1792 break;
1793 case BRW_OPCODE_MACH:
1794 brw_MACH(p, dst, src[0], src[1]);
1795 break;
1796
1797 case BRW_OPCODE_LINE:
1798 brw_LINE(p, dst, src[0], src[1]);
1799 break;
1800
1801 case BRW_OPCODE_MAD:
1802 assert(devinfo->gen >= 6);
1803 if (devinfo->gen < 10)
1804 brw_set_default_access_mode(p, BRW_ALIGN_16);
1805 brw_MAD(p, dst, src[0], src[1], src[2]);
1806 break;
1807
1808 case BRW_OPCODE_LRP:
1809 assert(devinfo->gen >= 6 && devinfo->gen <= 10);
1810 if (devinfo->gen < 10)
1811 brw_set_default_access_mode(p, BRW_ALIGN_16);
1812 brw_LRP(p, dst, src[0], src[1], src[2]);
1813 break;
1814
1815 case BRW_OPCODE_FRC:
1816 brw_FRC(p, dst, src[0]);
1817 break;
1818 case BRW_OPCODE_RNDD:
1819 brw_RNDD(p, dst, src[0]);
1820 break;
1821 case BRW_OPCODE_RNDE:
1822 brw_RNDE(p, dst, src[0]);
1823 break;
1824 case BRW_OPCODE_RNDZ:
1825 brw_RNDZ(p, dst, src[0]);
1826 break;
1827
1828 case BRW_OPCODE_AND:
1829 brw_AND(p, dst, src[0], src[1]);
1830 break;
1831 case BRW_OPCODE_OR:
1832 brw_OR(p, dst, src[0], src[1]);
1833 break;
1834 case BRW_OPCODE_XOR:
1835 brw_XOR(p, dst, src[0], src[1]);
1836 break;
1837 case BRW_OPCODE_NOT:
1838 brw_NOT(p, dst, src[0]);
1839 break;
1840 case BRW_OPCODE_ASR:
1841 brw_ASR(p, dst, src[0], src[1]);
1842 break;
1843 case BRW_OPCODE_SHR:
1844 brw_SHR(p, dst, src[0], src[1]);
1845 break;
1846 case BRW_OPCODE_SHL:
1847 brw_SHL(p, dst, src[0], src[1]);
1848 break;
1849 case BRW_OPCODE_F32TO16:
1850 assert(devinfo->gen >= 7);
1851 brw_F32TO16(p, dst, src[0]);
1852 break;
1853 case BRW_OPCODE_F16TO32:
1854 assert(devinfo->gen >= 7);
1855 brw_F16TO32(p, dst, src[0]);
1856 break;
1857 case BRW_OPCODE_CMP:
1858 if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell &&
1859 dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1860 /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
1861 * implemented in the compiler is not sufficient. Overriding the
1862 * type when the destination is the null register is necessary but
1863 * not sufficient by itself.
1864 */
1865 assert(dst.nr == BRW_ARF_NULL);
1866 dst.type = BRW_REGISTER_TYPE_D;
1867 }
1868 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1869 break;
1870 case BRW_OPCODE_SEL:
1871 brw_SEL(p, dst, src[0], src[1]);
1872 break;
1873 case BRW_OPCODE_CSEL:
1874 assert(devinfo->gen >= 8);
1875 if (devinfo->gen < 10)
1876 brw_set_default_access_mode(p, BRW_ALIGN_16);
1877 brw_CSEL(p, dst, src[0], src[1], src[2]);
1878 break;
1879 case BRW_OPCODE_BFREV:
1880 assert(devinfo->gen >= 7);
1881 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1882 retype(src[0], BRW_REGISTER_TYPE_UD));
1883 break;
1884 case BRW_OPCODE_FBH:
1885 assert(devinfo->gen >= 7);
1886 brw_FBH(p, retype(dst, src[0].type), src[0]);
1887 break;
1888 case BRW_OPCODE_FBL:
1889 assert(devinfo->gen >= 7);
1890 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
1891 retype(src[0], BRW_REGISTER_TYPE_UD));
1892 break;
1893 case BRW_OPCODE_LZD:
1894 brw_LZD(p, dst, src[0]);
1895 break;
1896 case BRW_OPCODE_CBIT:
1897 assert(devinfo->gen >= 7);
1898 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
1899 retype(src[0], BRW_REGISTER_TYPE_UD));
1900 break;
1901 case BRW_OPCODE_ADDC:
1902 assert(devinfo->gen >= 7);
1903 brw_ADDC(p, dst, src[0], src[1]);
1904 break;
1905 case BRW_OPCODE_SUBB:
1906 assert(devinfo->gen >= 7);
1907 brw_SUBB(p, dst, src[0], src[1]);
1908 break;
1909 case BRW_OPCODE_MAC:
1910 brw_MAC(p, dst, src[0], src[1]);
1911 break;
1912
1913 case BRW_OPCODE_BFE:
1914 assert(devinfo->gen >= 7);
1915 if (devinfo->gen < 10)
1916 brw_set_default_access_mode(p, BRW_ALIGN_16);
1917 brw_BFE(p, dst, src[0], src[1], src[2]);
1918 break;
1919
1920 case BRW_OPCODE_BFI1:
1921 assert(devinfo->gen >= 7);
1922 brw_BFI1(p, dst, src[0], src[1]);
1923 break;
1924 case BRW_OPCODE_BFI2:
1925 assert(devinfo->gen >= 7);
1926 if (devinfo->gen < 10)
1927 brw_set_default_access_mode(p, BRW_ALIGN_16);
1928 brw_BFI2(p, dst, src[0], src[1], src[2]);
1929 break;
1930
1931 case BRW_OPCODE_IF:
1932 if (inst->src[0].file != BAD_FILE) {
1933 /* The instruction has an embedded compare (only allowed on gen6) */
1934 assert(devinfo->gen == 6);
1935 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
1936 } else {
1937 brw_IF(p, brw_get_default_exec_size(p));
1938 }
1939 break;
1940
1941 case BRW_OPCODE_ELSE:
1942 brw_ELSE(p);
1943 break;
1944 case BRW_OPCODE_ENDIF:
1945 brw_ENDIF(p);
1946 break;
1947
1948 case BRW_OPCODE_DO:
1949 brw_DO(p, brw_get_default_exec_size(p));
1950 break;
1951
1952 case BRW_OPCODE_BREAK:
1953 brw_BREAK(p);
1954 break;
1955 case BRW_OPCODE_CONTINUE:
1956 brw_CONT(p);
1957 break;
1958
1959 case BRW_OPCODE_WHILE:
1960 brw_WHILE(p);
1961 loop_count++;
1962 break;
1963
1964 case SHADER_OPCODE_RCP:
1965 case SHADER_OPCODE_RSQ:
1966 case SHADER_OPCODE_SQRT:
1967 case SHADER_OPCODE_EXP2:
1968 case SHADER_OPCODE_LOG2:
1969 case SHADER_OPCODE_SIN:
1970 case SHADER_OPCODE_COS:
1971 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1972 if (devinfo->gen >= 6) {
1973 assert(inst->mlen == 0);
1974 assert(devinfo->gen >= 7 || inst->exec_size == 8);
1975 gen6_math(p, dst, brw_math_function(inst->opcode),
1976 src[0], brw_null_reg());
1977 } else {
1978 assert(inst->mlen >= 1);
1979 assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8);
1980 gen4_math(p, dst,
1981 brw_math_function(inst->opcode),
1982 inst->base_mrf, src[0],
1983 BRW_MATH_PRECISION_FULL);
1984 }
1985 break;
1986 case SHADER_OPCODE_INT_QUOTIENT:
1987 case SHADER_OPCODE_INT_REMAINDER:
1988 case SHADER_OPCODE_POW:
1989 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1990 if (devinfo->gen >= 6) {
1991 assert(inst->mlen == 0);
1992 assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
1993 inst->exec_size == 8);
1994 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
1995 } else {
1996 assert(inst->mlen >= 1);
1997 assert(inst->exec_size == 8);
1998 gen4_math(p, dst, brw_math_function(inst->opcode),
1999 inst->base_mrf, src[0],
2000 BRW_MATH_PRECISION_FULL);
2001 }
2002 break;
2003 case FS_OPCODE_LINTERP:
2004 multiple_instructions_emitted = generate_linterp(inst, dst, src);
2005 break;
2006 case FS_OPCODE_PIXEL_X:
2007 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2008 src[0].subnr = 0 * type_sz(src[0].type);
2009 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2010 break;
2011 case FS_OPCODE_PIXEL_Y:
2012 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2013 src[0].subnr = 4 * type_sz(src[0].type);
2014 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2015 break;
2016
2017 case SHADER_OPCODE_SEND:
2018 generate_send(inst, dst, src[0], src[1], src[2],
2019 inst->ex_mlen > 0 ? src[3] : brw_null_reg());
2020 break;
2021
2022 case SHADER_OPCODE_GET_BUFFER_SIZE:
2023 generate_get_buffer_size(inst, dst, src[0], src[1]);
2024 break;
2025 case SHADER_OPCODE_TEX:
2026 case FS_OPCODE_TXB:
2027 case SHADER_OPCODE_TXD:
2028 case SHADER_OPCODE_TXF:
2029 case SHADER_OPCODE_TXF_CMS:
2030 case SHADER_OPCODE_TXL:
2031 case SHADER_OPCODE_TXS:
2032 case SHADER_OPCODE_LOD:
2033 case SHADER_OPCODE_TG4:
2034 case SHADER_OPCODE_SAMPLEINFO:
2035 assert(inst->src[0].file == BAD_FILE);
2036 generate_tex(inst, dst, src[1], src[2]);
2037 break;
2038
2039 case FS_OPCODE_DDX_COARSE:
2040 case FS_OPCODE_DDX_FINE:
2041 generate_ddx(inst, dst, src[0]);
2042 break;
2043 case FS_OPCODE_DDY_COARSE:
2044 case FS_OPCODE_DDY_FINE:
2045 generate_ddy(inst, dst, src[0]);
2046 break;
2047
2048 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2049 generate_scratch_write(inst, src[0]);
2050 spill_count++;
2051 break;
2052
2053 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2054 generate_scratch_read(inst, dst);
2055 fill_count++;
2056 break;
2057
2058 case SHADER_OPCODE_GEN7_SCRATCH_READ:
2059 generate_scratch_read_gen7(inst, dst);
2060 fill_count++;
2061 break;
2062
2063 case SHADER_OPCODE_MOV_INDIRECT:
2064 generate_mov_indirect(inst, dst, src[0], src[1]);
2065 break;
2066
2067 case SHADER_OPCODE_URB_READ_SIMD8:
2068 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
2069 generate_urb_read(inst, dst, src[0]);
2070 break;
2071
2072 case SHADER_OPCODE_URB_WRITE_SIMD8:
2073 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
2074 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
2075 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
2076 generate_urb_write(inst, src[0]);
2077 break;
2078
2079 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
2080 assert(inst->force_writemask_all);
2081 generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
2082 break;
2083
2084 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
2085 assert(inst->force_writemask_all);
2086 generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2087 break;
2088
2089 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
2090 generate_varying_pull_constant_load_gen4(inst, dst, src[0]);
2091 break;
2092
2093 case FS_OPCODE_REP_FB_WRITE:
2094 case FS_OPCODE_FB_WRITE:
2095 generate_fb_write(inst, src[0]);
2096 break;
2097
2098 case FS_OPCODE_FB_READ:
2099 generate_fb_read(inst, dst, src[0]);
2100 break;
2101
2102 case FS_OPCODE_DISCARD_JUMP:
2103 generate_discard_jump(inst);
2104 break;
2105
2106 case SHADER_OPCODE_SHADER_TIME_ADD:
2107 generate_shader_time_add(inst, src[0], src[1], src[2]);
2108 break;
2109
2110 case SHADER_OPCODE_MEMORY_FENCE:
2111 brw_memory_fence(p, dst, BRW_OPCODE_SEND);
2112 break;
2113
2114 case SHADER_OPCODE_INTERLOCK:
2115 assert(devinfo->gen >= 9);
2116 /* The interlock is basically a memory fence issued via sendc */
2117 brw_memory_fence(p, dst, BRW_OPCODE_SENDC);
2118 break;
2119
2120 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
2121 const struct brw_reg mask =
2122 brw_stage_has_packed_dispatch(devinfo, stage,
2123 prog_data) ? brw_imm_ud(~0u) :
2124 stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
2125 brw_dmask_reg();
2126 brw_find_live_channel(p, dst, mask);
2127 break;
2128 }
2129
2130 case SHADER_OPCODE_BROADCAST:
2131 assert(inst->force_writemask_all);
2132 brw_broadcast(p, dst, src[0], src[1]);
2133 break;
2134
2135 case SHADER_OPCODE_SHUFFLE:
2136 generate_shuffle(inst, dst, src[0], src[1]);
2137 break;
2138
2139 case SHADER_OPCODE_SEL_EXEC:
2140 assert(inst->force_writemask_all);
2141 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2142 brw_MOV(p, dst, src[1]);
2143 brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2144 brw_MOV(p, dst, src[0]);
2145 break;
2146
2147 case SHADER_OPCODE_QUAD_SWIZZLE:
2148 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2149 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2150 generate_quad_swizzle(inst, dst, src[0], src[1].ud);
2151 break;
2152
2153 case SHADER_OPCODE_CLUSTER_BROADCAST: {
2154 assert(src[0].type == dst.type);
2155 assert(!src[0].negate && !src[0].abs);
2156 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2157 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2158 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2159 assert(src[2].type == BRW_REGISTER_TYPE_UD);
2160 const unsigned component = src[1].ud;
2161 const unsigned cluster_size = src[2].ud;
2162 struct brw_reg strided = stride(suboffset(src[0], component),
2163 cluster_size, cluster_size, 0);
2164 if (type_sz(src[0].type) > 4 &&
2165 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
2166 /* IVB has an issue (which we found empirically) where it reads
2167 * two address register components per channel for indirectly
2168 * addressed 64-bit sources.
2169 *
2170 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
2171 *
2172 * "When source or destination datatype is 64b or operation is
2173 * integer DWord multiply, indirect addressing must not be
2174 * used."
2175 *
2176 * To work around both of these, we do two integer MOVs insead of
2177 * one 64-bit MOV. Because no double value should ever cross a
2178 * register boundary, it's safe to use the immediate offset in the
2179 * indirect here to handle adding 4 bytes to the offset and avoid
2180 * the extra ADD to the register file.
2181 */
2182 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
2183 subscript(strided, BRW_REGISTER_TYPE_D, 0));
2184 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
2185 subscript(strided, BRW_REGISTER_TYPE_D, 1));
2186 } else {
2187 brw_MOV(p, dst, strided);
2188 }
2189 break;
2190 }
2191
2192 case FS_OPCODE_SET_SAMPLE_ID:
2193 generate_set_sample_id(inst, dst, src[0], src[1]);
2194 break;
2195
2196 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
2197 generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
2198 break;
2199
2200 case FS_OPCODE_PLACEHOLDER_HALT:
2201 /* This is the place where the final HALT needs to be inserted if
2202 * we've emitted any discards. If not, this will emit no code.
2203 */
2204 if (!patch_discard_jumps_to_fb_writes()) {
2205 if (unlikely(debug_flag)) {
2206 disasm_info->use_tail = true;
2207 }
2208 }
2209 break;
2210
2211 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
2212 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2213 GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
2214 break;
2215
2216 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
2217 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2218 GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
2219 break;
2220
2221 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
2222 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2223 GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
2224 break;
2225
2226 case CS_OPCODE_CS_TERMINATE:
2227 generate_cs_terminate(inst, src[0]);
2228 break;
2229
2230 case SHADER_OPCODE_BARRIER:
2231 generate_barrier(inst, src[0]);
2232 break;
2233
2234 case BRW_OPCODE_DIM:
2235 assert(devinfo->is_haswell);
2236 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2237 assert(dst.type == BRW_REGISTER_TYPE_DF);
2238 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2239 break;
2240
2241 case SHADER_OPCODE_RND_MODE:
2242 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2243 brw_rounding_mode(p, (brw_rnd_mode) src[0].d);
2244 break;
2245
2246 default:
2247 unreachable("Unsupported opcode");
2248
2249 case SHADER_OPCODE_LOAD_PAYLOAD:
2250 unreachable("Should be lowered by lower_load_payload()");
2251 }
2252
2253 if (multiple_instructions_emitted)
2254 continue;
2255
2256 if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2257 assert(p->next_insn_offset == last_insn_offset + 16 ||
2258 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2259 "emitting more than 1 instruction");
2260
2261 brw_inst *last = &p->store[last_insn_offset / 16];
2262
2263 if (inst->conditional_mod)
2264 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2265 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2266 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2267 }
2268 }
2269
2270 brw_set_uip_jip(p, start_offset);
2271
2272 /* end of program sentinel */
2273 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2274
2275 #ifndef NDEBUG
2276 bool validated =
2277 #else
2278 if (unlikely(debug_flag))
2279 #endif
2280 brw_validate_instructions(devinfo, p->store,
2281 start_offset,
2282 p->next_insn_offset,
2283 disasm_info);
2284
2285 int before_size = p->next_insn_offset - start_offset;
2286 brw_compact_instructions(p, start_offset, disasm_info);
2287 int after_size = p->next_insn_offset - start_offset;
2288
2289 if (unlikely(debug_flag)) {
2290 fprintf(stderr, "Native code for %s\n"
2291 "SIMD%d shader: %d instructions. %d loops. %u cycles. %d:%d spills:fills. Promoted %u constants. Compacted %d to %d"
2292 " bytes (%.0f%%)\n",
2293 shader_name, dispatch_width, before_size / 16, loop_count, cfg->cycle_count,
2294 spill_count, fill_count, promoted_constants, before_size, after_size,
2295 100.0f * (before_size - after_size) / before_size);
2296
2297 dump_assembly(p->store, disasm_info);
2298 }
2299 ralloc_free(disasm_info);
2300 assert(validated);
2301
2302 compiler->shader_debug_log(log_data,
2303 "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
2304 "%d:%d spills:fills, Promoted %u constants, "
2305 "compacted %d to %d bytes.",
2306 _mesa_shader_stage_to_abbrev(stage),
2307 dispatch_width, before_size / 16,
2308 loop_count, cfg->cycle_count, spill_count,
2309 fill_count, promoted_constants, before_size,
2310 after_size);
2311
2312 return start_offset;
2313 }
2314
2315 const unsigned *
2316 fs_generator::get_assembly()
2317 {
2318 return brw_get_program(p, &prog_data->program_size);
2319 }