Revert "intel/fs: Move the scalar-region conversion to the generator."
[mesa.git] / src / intel / compiler / brw_fs_generator.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_generator.cpp
25 *
26 * This file supports generating code from the FS LIR to the actual
27 * native instructions.
28 */
29
30 #include "brw_eu.h"
31 #include "brw_fs.h"
32 #include "brw_cfg.h"
33 #include "util/mesa-sha1.h"
34
35 static enum brw_reg_file
36 brw_file_from_reg(fs_reg *reg)
37 {
38 switch (reg->file) {
39 case ARF:
40 return BRW_ARCHITECTURE_REGISTER_FILE;
41 case FIXED_GRF:
42 case VGRF:
43 return BRW_GENERAL_REGISTER_FILE;
44 case MRF:
45 return BRW_MESSAGE_REGISTER_FILE;
46 case IMM:
47 return BRW_IMMEDIATE_VALUE;
48 case BAD_FILE:
49 case ATTR:
50 case UNIFORM:
51 unreachable("not reached");
52 }
53 return BRW_ARCHITECTURE_REGISTER_FILE;
54 }
55
56 static struct brw_reg
57 brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst,
58 fs_reg *reg, bool compressed)
59 {
60 struct brw_reg brw_reg;
61
62 switch (reg->file) {
63 case MRF:
64 assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
65 /* Fallthrough */
66 case VGRF:
67 if (reg->stride == 0) {
68 brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
69 } else {
70 /* From the Haswell PRM:
71 *
72 * "VertStride must be used to cross GRF register boundaries. This
73 * rule implies that elements within a 'Width' cannot cross GRF
74 * boundaries."
75 *
76 * The maximum width value that could satisfy this restriction is:
77 */
78 const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
79
80 /* Because the hardware can only split source regions at a whole
81 * multiple of width during decompression (i.e. vertically), clamp
82 * the value obtained above to the physical execution size of a
83 * single decompressed chunk of the instruction:
84 */
85 const unsigned phys_width = compressed ? inst->exec_size / 2 :
86 inst->exec_size;
87
88 /* XXX - The equation above is strictly speaking not correct on
89 * hardware that supports unbalanced GRF writes -- On Gen9+
90 * each decompressed chunk of the instruction may have a
91 * different execution size when the number of components
92 * written to each destination GRF is not the same.
93 */
94 if (reg->stride > 4) {
95 assert(reg != &inst->dst);
96 assert(reg->stride * type_sz(reg->type) <= REG_SIZE);
97 brw_reg = brw_vecn_reg(1, brw_file_from_reg(reg), reg->nr, 0);
98 brw_reg = stride(brw_reg, reg->stride, 1, 0);
99 } else {
100 const unsigned width = MIN2(reg_width, phys_width);
101 brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
102 brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
103 }
104
105 if (devinfo->gen == 7 && !devinfo->is_haswell) {
106 /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
107 * "Each DF (Double Float) operand uses an element size of 4 rather
108 * than 8 and all regioning parameters are twice what the values
109 * would be based on the true element size: ExecSize, Width,
110 * HorzStride, and VertStride. Each DF operand uses a pair of
111 * channels and all masking and swizzing should be adjusted
112 * appropriately."
113 *
114 * From the IvyBridge PRM (Special Requirements for Handling Double
115 * Precision Data Types, page 71):
116 * "In Align1 mode, all regioning parameters like stride, execution
117 * size, and width must use the syntax of a pair of packed
118 * floats. The offsets for these data types must be 64-bit
119 * aligned. The execution size and regioning parameters are in terms
120 * of floats."
121 *
122 * Summarized: when handling DF-typed arguments, ExecSize,
123 * VertStride, and Width must be doubled.
124 *
125 * It applies to BayTrail too.
126 */
127 if (type_sz(reg->type) == 8) {
128 brw_reg.width++;
129 if (brw_reg.vstride > 0)
130 brw_reg.vstride++;
131 assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
132 }
133
134 /* When converting from DF->F, we set the destination stride to 2
135 * because each d2f conversion implicitly writes 2 floats, being
136 * the first one the converted value. IVB/BYT actually writes two
137 * F components per SIMD channel, and every other component is
138 * filled with garbage.
139 */
140 if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
141 type_sz(inst->dst.type) < 8) {
142 assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
143 brw_reg.hstride--;
144 }
145 }
146 }
147
148 brw_reg = retype(brw_reg, reg->type);
149 brw_reg = byte_offset(brw_reg, reg->offset);
150 brw_reg.abs = reg->abs;
151 brw_reg.negate = reg->negate;
152 break;
153 case ARF:
154 case FIXED_GRF:
155 case IMM:
156 assert(reg->offset == 0);
157 brw_reg = reg->as_brw_reg();
158 break;
159 case BAD_FILE:
160 /* Probably unused. */
161 brw_reg = brw_null_reg();
162 break;
163 case ATTR:
164 case UNIFORM:
165 unreachable("not reached");
166 }
167
168 /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
169 * region, but on IVB and BYT DF regions must be programmed in terms of
170 * floats. A <0,2,1> region accomplishes this.
171 */
172 if (devinfo->gen == 7 && !devinfo->is_haswell &&
173 type_sz(reg->type) == 8 &&
174 brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
175 brw_reg.width == BRW_WIDTH_1 &&
176 brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
177 brw_reg.width = BRW_WIDTH_2;
178 brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
179 }
180
181 return brw_reg;
182 }
183
184 fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
185 void *mem_ctx,
186 struct brw_stage_prog_data *prog_data,
187 struct shader_stats shader_stats,
188 bool runtime_check_aads_emit,
189 gl_shader_stage stage)
190
191 : compiler(compiler), log_data(log_data),
192 devinfo(compiler->devinfo),
193 prog_data(prog_data),
194 shader_stats(shader_stats),
195 runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
196 stage(stage), mem_ctx(mem_ctx)
197 {
198 p = rzalloc(mem_ctx, struct brw_codegen);
199 brw_init_codegen(devinfo, p, mem_ctx);
200
201 /* In the FS code generator, we are very careful to ensure that we always
202 * set the right execution size so we don't need the EU code to "help" us
203 * by trying to infer it. Sometimes, it infers the wrong thing.
204 */
205 p->automatic_exec_sizes = false;
206 }
207
208 fs_generator::~fs_generator()
209 {
210 }
211
212 class ip_record : public exec_node {
213 public:
214 DECLARE_RALLOC_CXX_OPERATORS(ip_record)
215
216 ip_record(int ip)
217 {
218 this->ip = ip;
219 }
220
221 int ip;
222 };
223
224 bool
225 fs_generator::patch_discard_jumps_to_fb_writes()
226 {
227 if (devinfo->gen < 6 || this->discard_halt_patches.is_empty())
228 return false;
229
230 int scale = brw_jump_scale(p->devinfo);
231
232 /* There is a somewhat strange undocumented requirement of using
233 * HALT, according to the simulator. If some channel has HALTed to
234 * a particular UIP, then by the end of the program, every channel
235 * must have HALTed to that UIP. Furthermore, the tracking is a
236 * stack, so you can't do the final halt of a UIP after starting
237 * halting to a new UIP.
238 *
239 * Symptoms of not emitting this instruction on actual hardware
240 * included GPU hangs and sparkly rendering on the piglit discard
241 * tests.
242 */
243 brw_inst *last_halt = gen6_HALT(p);
244 brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
245 brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
246
247 int ip = p->nr_insn;
248
249 foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
250 brw_inst *patch = &p->store[patch_ip->ip];
251
252 assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
253 /* HALT takes a half-instruction distance from the pre-incremented IP. */
254 brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
255 }
256
257 this->discard_halt_patches.make_empty();
258 return true;
259 }
260
261 void
262 fs_generator::generate_send(fs_inst *inst,
263 struct brw_reg dst,
264 struct brw_reg desc,
265 struct brw_reg ex_desc,
266 struct brw_reg payload,
267 struct brw_reg payload2)
268 {
269 const bool dst_is_null = dst.file == BRW_ARCHITECTURE_REGISTER_FILE &&
270 dst.nr == BRW_ARF_NULL;
271 const unsigned rlen = dst_is_null ? 0 : inst->size_written / REG_SIZE;
272
273 uint32_t desc_imm = inst->desc |
274 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size);
275
276 uint32_t ex_desc_imm = brw_message_ex_desc(devinfo, inst->ex_mlen);
277
278 if (ex_desc.file != BRW_IMMEDIATE_VALUE || ex_desc.ud || ex_desc_imm) {
279 /* If we have any sort of extended descriptor, then we need SENDS. This
280 * also covers the dual-payload case because ex_mlen goes in ex_desc.
281 */
282 brw_send_indirect_split_message(p, inst->sfid, dst, payload, payload2,
283 desc, desc_imm, ex_desc, ex_desc_imm,
284 inst->eot);
285 if (inst->check_tdr)
286 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDSC);
287 } else {
288 brw_send_indirect_message(p, inst->sfid, dst, payload, desc, desc_imm,
289 inst->eot);
290 if (inst->check_tdr)
291 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
292 }
293 }
294
295 void
296 fs_generator::fire_fb_write(fs_inst *inst,
297 struct brw_reg payload,
298 struct brw_reg implied_header,
299 GLuint nr)
300 {
301 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
302
303 if (devinfo->gen < 6) {
304 brw_push_insn_state(p);
305 brw_set_default_exec_size(p, BRW_EXECUTE_8);
306 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
307 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
308 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
309 brw_MOV(p, offset(retype(payload, BRW_REGISTER_TYPE_UD), 1),
310 offset(retype(implied_header, BRW_REGISTER_TYPE_UD), 1));
311 brw_pop_insn_state(p);
312 }
313
314 uint32_t msg_control = brw_fb_write_msg_control(inst, prog_data);
315
316 /* We assume render targets start at 0, because headerless FB write
317 * messages set "Render Target Index" to 0. Using a different binding
318 * table index would make it impossible to use headerless messages.
319 */
320 const uint32_t surf_index = inst->target;
321
322 brw_inst *insn = brw_fb_WRITE(p,
323 payload,
324 retype(implied_header, BRW_REGISTER_TYPE_UW),
325 msg_control,
326 surf_index,
327 nr,
328 0,
329 inst->eot,
330 inst->last_rt,
331 inst->header_size != 0);
332
333 if (devinfo->gen >= 6)
334 brw_inst_set_rt_slot_group(devinfo, insn, inst->group / 16);
335 }
336
337 void
338 fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
339 {
340 if (devinfo->gen < 8 && !devinfo->is_haswell) {
341 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
342 brw_set_default_flag_reg(p, 0, 0);
343 }
344
345 const struct brw_reg implied_header =
346 devinfo->gen < 6 ? payload : brw_null_reg();
347
348 if (inst->base_mrf >= 0)
349 payload = brw_message_reg(inst->base_mrf);
350
351 if (!runtime_check_aads_emit) {
352 fire_fb_write(inst, payload, implied_header, inst->mlen);
353 } else {
354 /* This can only happen in gen < 6 */
355 assert(devinfo->gen < 6);
356
357 struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
358
359 /* Check runtime bit to detect if we have to send AA data or not */
360 brw_push_insn_state(p);
361 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
362 brw_set_default_exec_size(p, BRW_EXECUTE_1);
363 brw_AND(p,
364 v1_null_ud,
365 retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
366 brw_imm_ud(1<<26));
367 brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
368
369 int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
370 brw_pop_insn_state(p);
371 {
372 /* Don't send AA data */
373 fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
374 }
375 brw_land_fwd_jump(p, jmp);
376 fire_fb_write(inst, payload, implied_header, inst->mlen);
377 }
378 }
379
380 void
381 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
382 struct brw_reg payload)
383 {
384 assert(inst->size_written % REG_SIZE == 0);
385 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
386 /* We assume that render targets start at binding table index 0. */
387 const unsigned surf_index = inst->target;
388
389 gen9_fb_READ(p, dst, payload, surf_index,
390 inst->header_size, inst->size_written / REG_SIZE,
391 prog_data->persample_dispatch);
392 }
393
394 void
395 fs_generator::generate_mov_indirect(fs_inst *inst,
396 struct brw_reg dst,
397 struct brw_reg reg,
398 struct brw_reg indirect_byte_offset)
399 {
400 assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
401 assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
402 assert(!reg.abs && !reg.negate);
403 assert(reg.type == dst.type);
404
405 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
406
407 if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
408 imm_byte_offset += indirect_byte_offset.ud;
409
410 reg.nr = imm_byte_offset / REG_SIZE;
411 reg.subnr = imm_byte_offset % REG_SIZE;
412 brw_MOV(p, dst, reg);
413 } else {
414 /* Prior to Broadwell, there are only 8 address registers. */
415 assert(inst->exec_size <= 8 || devinfo->gen >= 8);
416
417 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
418 struct brw_reg addr = vec8(brw_address_reg(0));
419
420 /* The destination stride of an instruction (in bytes) must be greater
421 * than or equal to the size of the rest of the instruction. Since the
422 * address register is of type UW, we can't use a D-type instruction.
423 * In order to get around this, re retype to UW and use a stride.
424 */
425 indirect_byte_offset =
426 retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
427
428 /* There are a number of reasons why we don't use the base offset here.
429 * One reason is that the field is only 9 bits which means we can only
430 * use it to access the first 16 GRFs. Also, from the Haswell PRM
431 * section "Register Region Restrictions":
432 *
433 * "The lower bits of the AddressImmediate must not overflow to
434 * change the register address. The lower 5 bits of Address
435 * Immediate when added to lower 5 bits of address register gives
436 * the sub-register offset. The upper bits of Address Immediate
437 * when added to upper bits of address register gives the register
438 * address. Any overflow from sub-register offset is dropped."
439 *
440 * Since the indirect may cause us to cross a register boundary, this
441 * makes the base offset almost useless. We could try and do something
442 * clever where we use a actual base offset if base_offset % 32 == 0 but
443 * that would mean we were generating different code depending on the
444 * base offset. Instead, for the sake of consistency, we'll just do the
445 * add ourselves. This restriction is only listed in the Haswell PRM
446 * but empirical testing indicates that it applies on all older
447 * generations and is lifted on Broadwell.
448 *
449 * In the end, while base_offset is nice to look at in the generated
450 * code, using it saves us 0 instructions and would require quite a bit
451 * of case-by-case work. It's just not worth it.
452 */
453 brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
454
455 if (type_sz(reg.type) > 4 &&
456 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
457 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo) ||
458 !devinfo->has_64bit_types)) {
459 /* IVB has an issue (which we found empirically) where it reads two
460 * address register components per channel for indirectly addressed
461 * 64-bit sources.
462 *
463 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
464 *
465 * "When source or destination datatype is 64b or operation is
466 * integer DWord multiply, indirect addressing must not be used."
467 *
468 * To work around both of these, we do two integer MOVs insead of one
469 * 64-bit MOV. Because no double value should ever cross a register
470 * boundary, it's safe to use the immediate offset in the indirect
471 * here to handle adding 4 bytes to the offset and avoid the extra
472 * ADD to the register file.
473 */
474 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
475 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
476 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
477 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
478 } else {
479 struct brw_reg ind_src = brw_VxH_indirect(0, 0);
480
481 brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
482
483 if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
484 !inst->get_next()->is_tail_sentinel() &&
485 ((fs_inst *)inst->get_next())->mlen > 0) {
486 /* From the Sandybridge PRM:
487 *
488 * "[Errata: DevSNB(SNB)] If MRF register is updated by any
489 * instruction that “indexed/indirect” source AND is followed
490 * by a send, the instruction requires a “Switch”. This is to
491 * avoid race condition where send may dispatch before MRF is
492 * updated."
493 */
494 brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
495 }
496 }
497 }
498 }
499
500 void
501 fs_generator::generate_shuffle(fs_inst *inst,
502 struct brw_reg dst,
503 struct brw_reg src,
504 struct brw_reg idx)
505 {
506 /* Ivy bridge has some strange behavior that makes this a real pain to
507 * implement for 64-bit values so we just don't bother.
508 */
509 assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4);
510
511 /* Because we're using the address register, we're limited to 8-wide
512 * execution on gen7. On gen8, we're limited to 16-wide by the address
513 * register file and 8-wide for 64-bit types. We could try and make this
514 * instruction splittable higher up in the compiler but that gets weird
515 * because it reads all of the channels regardless of execution size. It's
516 * easier just to split it here.
517 */
518 const unsigned lower_width =
519 (devinfo->gen <= 7 || type_sz(src.type) > 4) ?
520 8 : MIN2(16, inst->exec_size);
521
522 brw_set_default_exec_size(p, cvt(lower_width) - 1);
523 for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
524 brw_set_default_group(p, group);
525
526 if ((src.vstride == 0 && src.hstride == 0) ||
527 idx.file == BRW_IMMEDIATE_VALUE) {
528 /* Trivial, the source is already uniform or the index is a constant.
529 * We will typically not get here if the optimizer is doing its job,
530 * but asserting would be mean.
531 */
532 const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
533 brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0));
534 } else {
535 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
536 struct brw_reg addr = vec8(brw_address_reg(0));
537
538 struct brw_reg group_idx = suboffset(idx, group);
539
540 if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
541 /* Things get grumpy if the register is too wide. */
542 group_idx.width--;
543 group_idx.vstride--;
544 }
545
546 assert(type_sz(group_idx.type) <= 4);
547 if (type_sz(group_idx.type) == 4) {
548 /* The destination stride of an instruction (in bytes) must be
549 * greater than or equal to the size of the rest of the
550 * instruction. Since the address register is of type UW, we
551 * can't use a D-type instruction. In order to get around this,
552 * re retype to UW and use a stride.
553 */
554 group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
555 }
556
557 /* Take into account the component size and horizontal stride. */
558 assert(src.vstride == src.hstride + src.width);
559 brw_SHL(p, addr, group_idx,
560 brw_imm_uw(_mesa_logbase2(type_sz(src.type)) +
561 src.hstride - 1));
562
563 /* Add on the register start offset */
564 brw_ADD(p, addr, addr, brw_imm_uw(src.nr * REG_SIZE + src.subnr));
565
566 if (type_sz(src.type) > 4 &&
567 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
568 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
569 /* IVB has an issue (which we found empirically) where it reads
570 * two address register components per channel for indirectly
571 * addressed 64-bit sources.
572 *
573 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
574 *
575 * "When source or destination datatype is 64b or operation is
576 * integer DWord multiply, indirect addressing must not be
577 * used."
578 *
579 * To work around both of these, we do two integer MOVs insead of
580 * one 64-bit MOV. Because no double value should ever cross a
581 * register boundary, it's safe to use the immediate offset in the
582 * indirect here to handle adding 4 bytes to the offset and avoid
583 * the extra ADD to the register file.
584 */
585 struct brw_reg gdst = suboffset(dst, group);
586 struct brw_reg dst_d = retype(spread(gdst, 2),
587 BRW_REGISTER_TYPE_D);
588 brw_MOV(p, dst_d,
589 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
590 brw_MOV(p, byte_offset(dst_d, 4),
591 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
592 } else {
593 brw_MOV(p, suboffset(dst, group),
594 retype(brw_VxH_indirect(0, 0), src.type));
595 }
596 }
597 }
598 }
599
600 void
601 fs_generator::generate_quad_swizzle(const fs_inst *inst,
602 struct brw_reg dst, struct brw_reg src,
603 unsigned swiz)
604 {
605 /* Requires a quad. */
606 assert(inst->exec_size >= 4);
607
608 if (src.file == BRW_IMMEDIATE_VALUE ||
609 has_scalar_region(src)) {
610 /* The value is uniform across all channels */
611 brw_MOV(p, dst, src);
612
613 } else if (devinfo->gen < 11 && type_sz(src.type) == 4) {
614 /* This only works on 8-wide 32-bit values */
615 assert(inst->exec_size == 8);
616 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
617 assert(src.vstride == src.width + 1);
618 brw_set_default_access_mode(p, BRW_ALIGN_16);
619 struct brw_reg swiz_src = stride(src, 4, 4, 1);
620 swiz_src.swizzle = swiz;
621 brw_MOV(p, dst, swiz_src);
622
623 } else {
624 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
625 assert(src.vstride == src.width + 1);
626 const struct brw_reg src_0 = suboffset(src, BRW_GET_SWZ(swiz, 0));
627
628 switch (swiz) {
629 case BRW_SWIZZLE_XXXX:
630 case BRW_SWIZZLE_YYYY:
631 case BRW_SWIZZLE_ZZZZ:
632 case BRW_SWIZZLE_WWWW:
633 brw_MOV(p, dst, stride(src_0, 4, 4, 0));
634 break;
635
636 case BRW_SWIZZLE_XXZZ:
637 case BRW_SWIZZLE_YYWW:
638 brw_MOV(p, dst, stride(src_0, 2, 2, 0));
639 break;
640
641 case BRW_SWIZZLE_XYXY:
642 case BRW_SWIZZLE_ZWZW:
643 assert(inst->exec_size == 4);
644 brw_MOV(p, dst, stride(src_0, 0, 2, 1));
645 break;
646
647 default:
648 assert(inst->force_writemask_all);
649 brw_set_default_exec_size(p, cvt(inst->exec_size / 4) - 1);
650
651 for (unsigned c = 0; c < 4; c++) {
652 brw_inst *insn = brw_MOV(
653 p, stride(suboffset(dst, c),
654 4 * inst->dst.stride, 1, 4 * inst->dst.stride),
655 stride(suboffset(src, BRW_GET_SWZ(swiz, c)), 4, 1, 0));
656
657 brw_inst_set_no_dd_clear(devinfo, insn, c < 3);
658 brw_inst_set_no_dd_check(devinfo, insn, c > 0);
659 }
660
661 break;
662 }
663 }
664 }
665
666 void
667 fs_generator::generate_urb_read(fs_inst *inst,
668 struct brw_reg dst,
669 struct brw_reg header)
670 {
671 assert(inst->size_written % REG_SIZE == 0);
672 assert(header.file == BRW_GENERAL_REGISTER_FILE);
673 assert(header.type == BRW_REGISTER_TYPE_UD);
674
675 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
676 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
677 brw_set_src0(p, send, header);
678 brw_set_src1(p, send, brw_imm_ud(0u));
679
680 brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
681 brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ);
682
683 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
684 brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
685
686 brw_inst_set_mlen(p->devinfo, send, inst->mlen);
687 brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
688 brw_inst_set_header_present(p->devinfo, send, true);
689 brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
690 }
691
692 void
693 fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
694 {
695 brw_inst *insn;
696
697 /* WaClearTDRRegBeforeEOTForNonPS.
698 *
699 * WA: Clear tdr register before send EOT in all non-PS shader kernels
700 *
701 * mov(8) tdr0:ud 0x0:ud {NoMask}"
702 */
703 if (inst->eot && p->devinfo->gen == 10) {
704 brw_push_insn_state(p);
705 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
706 brw_MOV(p, brw_tdr_reg(), brw_imm_uw(0));
707 brw_pop_insn_state(p);
708 }
709
710 insn = brw_next_insn(p, BRW_OPCODE_SEND);
711
712 brw_set_dest(p, insn, brw_null_reg());
713 brw_set_src0(p, insn, payload);
714 brw_set_src1(p, insn, brw_imm_ud(0u));
715
716 brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
717 brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE);
718
719 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
720 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
721 brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
722
723 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
724 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
725 brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
726
727 brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
728 brw_inst_set_rlen(p->devinfo, insn, 0);
729 brw_inst_set_eot(p->devinfo, insn, inst->eot);
730 brw_inst_set_header_present(p->devinfo, insn, true);
731 brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
732 }
733
734 void
735 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
736 {
737 struct brw_inst *insn;
738
739 insn = brw_next_insn(p, BRW_OPCODE_SEND);
740
741 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
742 brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
743 brw_set_src1(p, insn, brw_imm_ud(0u));
744
745 /* Terminate a compute shader by sending a message to the thread spawner.
746 */
747 brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
748 brw_inst_set_mlen(devinfo, insn, 1);
749 brw_inst_set_rlen(devinfo, insn, 0);
750 brw_inst_set_eot(devinfo, insn, inst->eot);
751 brw_inst_set_header_present(devinfo, insn, false);
752
753 brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
754 brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
755
756 /* Note that even though the thread has a URB resource associated with it,
757 * we set the "do not dereference URB" bit, because the URB resource is
758 * managed by the fixed-function unit, so it will free it automatically.
759 */
760 brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
761
762 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
763 }
764
765 void
766 fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
767 {
768 brw_barrier(p, src);
769 brw_WAIT(p);
770 }
771
772 bool
773 fs_generator::generate_linterp(fs_inst *inst,
774 struct brw_reg dst, struct brw_reg *src)
775 {
776 /* PLN reads:
777 * / in SIMD16 \
778 * -----------------------------------
779 * | src1+0 | src1+1 | src1+2 | src1+3 |
780 * |-----------------------------------|
781 * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
782 * -----------------------------------
783 *
784 * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
785 *
786 * -----------------------------------
787 * | src1+0 | src1+1 | src1+2 | src1+3 |
788 * |-----------------------------------|
789 * |(x0, x1)|(y0, y1)| | | in SIMD8
790 * |-----------------------------------|
791 * |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
792 * -----------------------------------
793 *
794 * See also: emit_interpolation_setup_gen4().
795 */
796 struct brw_reg delta_x = src[0];
797 struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
798 struct brw_reg interp = src[1];
799 brw_inst *i[2];
800
801 /* nir_lower_interpolation() will do the lowering to MAD instructions for
802 * us on gen11+
803 */
804 assert(devinfo->gen < 11);
805
806 if (devinfo->has_pln) {
807 if (devinfo->gen <= 6 && (delta_x.nr & 1) != 0) {
808 /* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane":
809 *
810 * "[DevSNB]:<src1> must be even register aligned.
811 *
812 * This restriction is lifted on Ivy Bridge.
813 *
814 * This means that we need to split PLN into LINE+MAC on-the-fly.
815 * Unfortunately, the inputs are laid out for PLN and not LINE+MAC so
816 * we have to split into SIMD8 pieces. For gen4 (!has_pln), the
817 * coordinate registers are laid out differently so we leave it as a
818 * SIMD16 instruction.
819 */
820 assert(inst->exec_size == 8 || inst->exec_size == 16);
821 assert(inst->group % 16 == 0);
822
823 brw_push_insn_state(p);
824 brw_set_default_exec_size(p, BRW_EXECUTE_8);
825
826 /* Thanks to two accumulators, we can emit all the LINEs and then all
827 * the MACs. This improves parallelism a bit.
828 */
829 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
830 brw_inst *line = brw_LINE(p, brw_null_reg(), interp,
831 offset(delta_x, g * 2));
832 brw_inst_set_group(devinfo, line, inst->group + g * 8);
833
834 /* LINE writes the accumulator automatically on gen4-5. On Sandy
835 * Bridge and later, we have to explicitly enable it.
836 */
837 if (devinfo->gen >= 6)
838 brw_inst_set_acc_wr_control(p->devinfo, line, true);
839
840 /* brw_set_default_saturate() is called before emitting
841 * instructions, so the saturate bit is set in each instruction,
842 * so we need to unset it on the LINE instructions.
843 */
844 brw_inst_set_saturate(p->devinfo, line, false);
845 }
846
847 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
848 brw_inst *mac = brw_MAC(p, offset(dst, g), suboffset(interp, 1),
849 offset(delta_x, g * 2 + 1));
850 brw_inst_set_group(devinfo, mac, inst->group + g * 8);
851 brw_inst_set_cond_modifier(p->devinfo, mac, inst->conditional_mod);
852 }
853
854 brw_pop_insn_state(p);
855
856 return true;
857 } else {
858 brw_PLN(p, dst, interp, delta_x);
859
860 return false;
861 }
862 } else {
863 i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
864 i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
865
866 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
867
868 /* brw_set_default_saturate() is called before emitting instructions, so
869 * the saturate bit is set in each instruction, so we need to unset it on
870 * the first instruction.
871 */
872 brw_inst_set_saturate(p->devinfo, i[0], false);
873
874 return true;
875 }
876 }
877
878 void
879 fs_generator::generate_get_buffer_size(fs_inst *inst,
880 struct brw_reg dst,
881 struct brw_reg src,
882 struct brw_reg surf_index)
883 {
884 assert(devinfo->gen >= 7);
885 assert(surf_index.file == BRW_IMMEDIATE_VALUE);
886
887 uint32_t simd_mode;
888 int rlen = 4;
889
890 switch (inst->exec_size) {
891 case 8:
892 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
893 break;
894 case 16:
895 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
896 break;
897 default:
898 unreachable("Invalid width for texture instruction");
899 }
900
901 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
902 rlen = 8;
903 dst = vec16(dst);
904 }
905
906 brw_SAMPLE(p,
907 retype(dst, BRW_REGISTER_TYPE_UW),
908 inst->base_mrf,
909 src,
910 surf_index.ud,
911 0,
912 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
913 rlen, /* response length */
914 inst->mlen,
915 inst->header_size > 0,
916 simd_mode,
917 BRW_SAMPLER_RETURN_FORMAT_SINT32);
918 }
919
920 void
921 fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst,
922 struct brw_reg surface_index,
923 struct brw_reg sampler_index)
924 {
925 assert(devinfo->gen < 7);
926 assert(inst->size_written % REG_SIZE == 0);
927 int msg_type = -1;
928 uint32_t simd_mode;
929 uint32_t return_format;
930
931 /* Sampler EOT message of less than the dispatch width would kill the
932 * thread prematurely.
933 */
934 assert(!inst->eot || inst->exec_size == dispatch_width);
935
936 switch (dst.type) {
937 case BRW_REGISTER_TYPE_D:
938 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
939 break;
940 case BRW_REGISTER_TYPE_UD:
941 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
942 break;
943 default:
944 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
945 break;
946 }
947
948 /* Stomp the resinfo output type to UINT32. On gens 4-5, the output type
949 * is set as part of the message descriptor. On gen4, the PRM seems to
950 * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
951 * later gens UINT32 is required. Once you hit Sandy Bridge, the bit is
952 * gone from the message descriptor entirely and you just get UINT32 all
953 * the time regasrdless. Since we can really only do non-UINT32 on gen4,
954 * just stomp it to UINT32 all the time.
955 */
956 if (inst->opcode == SHADER_OPCODE_TXS)
957 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
958
959 switch (inst->exec_size) {
960 case 8:
961 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
962 break;
963 case 16:
964 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
965 break;
966 default:
967 unreachable("Invalid width for texture instruction");
968 }
969
970 if (devinfo->gen >= 5) {
971 switch (inst->opcode) {
972 case SHADER_OPCODE_TEX:
973 if (inst->shadow_compare) {
974 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
975 } else {
976 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
977 }
978 break;
979 case FS_OPCODE_TXB:
980 if (inst->shadow_compare) {
981 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
982 } else {
983 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
984 }
985 break;
986 case SHADER_OPCODE_TXL:
987 if (inst->shadow_compare) {
988 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
989 } else {
990 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
991 }
992 break;
993 case SHADER_OPCODE_TXS:
994 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
995 break;
996 case SHADER_OPCODE_TXD:
997 assert(!inst->shadow_compare);
998 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
999 break;
1000 case SHADER_OPCODE_TXF:
1001 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1002 break;
1003 case SHADER_OPCODE_TXF_CMS:
1004 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1005 break;
1006 case SHADER_OPCODE_LOD:
1007 msg_type = GEN5_SAMPLER_MESSAGE_LOD;
1008 break;
1009 case SHADER_OPCODE_TG4:
1010 assert(devinfo->gen == 6);
1011 assert(!inst->shadow_compare);
1012 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
1013 break;
1014 case SHADER_OPCODE_SAMPLEINFO:
1015 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
1016 break;
1017 default:
1018 unreachable("not reached");
1019 }
1020 } else {
1021 switch (inst->opcode) {
1022 case SHADER_OPCODE_TEX:
1023 /* Note that G45 and older determines shadow compare and dispatch width
1024 * from message length for most messages.
1025 */
1026 if (inst->exec_size == 8) {
1027 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
1028 if (inst->shadow_compare) {
1029 assert(inst->mlen == 6);
1030 } else {
1031 assert(inst->mlen <= 4);
1032 }
1033 } else {
1034 if (inst->shadow_compare) {
1035 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1036 assert(inst->mlen == 9);
1037 } else {
1038 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1039 assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
1040 }
1041 }
1042 break;
1043 case FS_OPCODE_TXB:
1044 if (inst->shadow_compare) {
1045 assert(inst->exec_size == 8);
1046 assert(inst->mlen == 6);
1047 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
1048 } else {
1049 assert(inst->mlen == 9);
1050 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1051 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1052 }
1053 break;
1054 case SHADER_OPCODE_TXL:
1055 if (inst->shadow_compare) {
1056 assert(inst->exec_size == 8);
1057 assert(inst->mlen == 6);
1058 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
1059 } else {
1060 assert(inst->mlen == 9);
1061 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
1062 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1063 }
1064 break;
1065 case SHADER_OPCODE_TXD:
1066 /* There is no sample_d_c message; comparisons are done manually */
1067 assert(inst->exec_size == 8);
1068 assert(inst->mlen == 7 || inst->mlen == 10);
1069 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
1070 break;
1071 case SHADER_OPCODE_TXF:
1072 assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
1073 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1074 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1075 break;
1076 case SHADER_OPCODE_TXS:
1077 assert(inst->mlen == 3);
1078 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
1079 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1080 break;
1081 default:
1082 unreachable("not reached");
1083 }
1084 }
1085 assert(msg_type != -1);
1086
1087 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1088 dst = vec16(dst);
1089 }
1090
1091 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
1092
1093 /* Load the message header if present. If there's a texture offset,
1094 * we need to set it up explicitly and load the offset bitfield.
1095 * Otherwise, we can use an implied move from g0 to the first message reg.
1096 */
1097 struct brw_reg src = brw_null_reg();
1098 if (inst->header_size != 0) {
1099 if (devinfo->gen < 6 && !inst->offset) {
1100 /* Set up an implied move from g0 to the MRF. */
1101 src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1102 } else {
1103 assert(inst->base_mrf != -1);
1104 struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
1105
1106 brw_push_insn_state(p);
1107 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1108 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1109 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1110 /* Explicitly set up the message header by copying g0 to the MRF. */
1111 brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
1112
1113 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1114 if (inst->offset) {
1115 /* Set the offset bits in DWord 2. */
1116 brw_MOV(p, get_element_ud(header_reg, 2),
1117 brw_imm_ud(inst->offset));
1118 }
1119
1120 brw_pop_insn_state(p);
1121 }
1122 }
1123
1124 uint32_t base_binding_table_index;
1125 switch (inst->opcode) {
1126 case SHADER_OPCODE_TG4:
1127 base_binding_table_index = prog_data->binding_table.gather_texture_start;
1128 break;
1129 default:
1130 base_binding_table_index = prog_data->binding_table.texture_start;
1131 break;
1132 }
1133
1134 assert(surface_index.file == BRW_IMMEDIATE_VALUE);
1135 assert(sampler_index.file == BRW_IMMEDIATE_VALUE);
1136
1137 brw_SAMPLE(p,
1138 retype(dst, BRW_REGISTER_TYPE_UW),
1139 inst->base_mrf,
1140 src,
1141 surface_index.ud + base_binding_table_index,
1142 sampler_index.ud % 16,
1143 msg_type,
1144 inst->size_written / REG_SIZE,
1145 inst->mlen,
1146 inst->header_size != 0,
1147 simd_mode,
1148 return_format);
1149 }
1150
1151
1152 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
1153 * looking like:
1154 *
1155 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
1156 *
1157 * Ideally, we want to produce:
1158 *
1159 * DDX DDY
1160 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
1161 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
1162 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
1163 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
1164 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
1165 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
1166 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
1167 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
1168 *
1169 * and add another set of two more subspans if in 16-pixel dispatch mode.
1170 *
1171 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
1172 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
1173 * pair. But the ideal approximation may impose a huge performance cost on
1174 * sample_d. On at least Haswell, sample_d instruction does some
1175 * optimizations if the same LOD is used for all pixels in the subspan.
1176 *
1177 * For DDY, we need to use ALIGN16 mode since it's capable of doing the
1178 * appropriate swizzling.
1179 */
1180 void
1181 fs_generator::generate_ddx(const fs_inst *inst,
1182 struct brw_reg dst, struct brw_reg src)
1183 {
1184 unsigned vstride, width;
1185
1186 if (devinfo->gen >= 8) {
1187 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1188 /* produce accurate derivatives */
1189 vstride = BRW_VERTICAL_STRIDE_2;
1190 width = BRW_WIDTH_2;
1191 } else {
1192 /* replicate the derivative at the top-left pixel to other pixels */
1193 vstride = BRW_VERTICAL_STRIDE_4;
1194 width = BRW_WIDTH_4;
1195 }
1196
1197 struct brw_reg src0 = byte_offset(src, type_sz(src.type));;
1198 struct brw_reg src1 = src;
1199
1200 src0.vstride = vstride;
1201 src0.width = width;
1202 src0.hstride = BRW_HORIZONTAL_STRIDE_0;
1203 src1.vstride = vstride;
1204 src1.width = width;
1205 src1.hstride = BRW_HORIZONTAL_STRIDE_0;
1206
1207 brw_ADD(p, dst, src0, negate(src1));
1208 } else {
1209 /* On Haswell and earlier, the region used above appears to not work
1210 * correctly for compressed instructions. At least on Haswell and
1211 * Iron Lake, compressed ALIGN16 instructions do work. Since we
1212 * would have to split to SIMD8 no matter which method we choose, we
1213 * may as well use ALIGN16 on all platforms gen7 and earlier.
1214 */
1215 struct brw_reg src0 = stride(src, 4, 4, 1);
1216 struct brw_reg src1 = stride(src, 4, 4, 1);
1217 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1218 src0.swizzle = BRW_SWIZZLE_XXZZ;
1219 src1.swizzle = BRW_SWIZZLE_YYWW;
1220 } else {
1221 src0.swizzle = BRW_SWIZZLE_XXXX;
1222 src1.swizzle = BRW_SWIZZLE_YYYY;
1223 }
1224
1225 brw_push_insn_state(p);
1226 brw_set_default_access_mode(p, BRW_ALIGN_16);
1227 brw_ADD(p, dst, negate(src0), src1);
1228 brw_pop_insn_state(p);
1229 }
1230 }
1231
1232 /* The negate_value boolean is used to negate the derivative computation for
1233 * FBOs, since they place the origin at the upper left instead of the lower
1234 * left.
1235 */
1236 void
1237 fs_generator::generate_ddy(const fs_inst *inst,
1238 struct brw_reg dst, struct brw_reg src)
1239 {
1240 const uint32_t type_size = type_sz(src.type);
1241
1242 if (inst->opcode == FS_OPCODE_DDY_FINE) {
1243 /* produce accurate derivatives.
1244 *
1245 * From the Broadwell PRM, Volume 7 (3D-Media-GPGPU)
1246 * "Register Region Restrictions", Section "1. Special Restrictions":
1247 *
1248 * "In Align16 mode, the channel selects and channel enables apply to
1249 * a pair of half-floats, because these parameters are defined for
1250 * DWord elements ONLY. This is applicable when both source and
1251 * destination are half-floats."
1252 *
1253 * So for half-float operations we use the Gen11+ Align1 path. CHV
1254 * inherits its FP16 hardware from SKL, so it is not affected.
1255 */
1256 if (devinfo->gen >= 11 ||
1257 (devinfo->is_broadwell && src.type == BRW_REGISTER_TYPE_HF)) {
1258 src = stride(src, 0, 2, 1);
1259
1260 brw_push_insn_state(p);
1261 brw_set_default_exec_size(p, BRW_EXECUTE_4);
1262 for (uint32_t g = 0; g < inst->exec_size; g += 4) {
1263 brw_set_default_group(p, inst->group + g);
1264 brw_ADD(p, byte_offset(dst, g * type_size),
1265 negate(byte_offset(src, g * type_size)),
1266 byte_offset(src, (g + 2) * type_size));
1267 }
1268 brw_pop_insn_state(p);
1269 } else {
1270 struct brw_reg src0 = stride(src, 4, 4, 1);
1271 struct brw_reg src1 = stride(src, 4, 4, 1);
1272 src0.swizzle = BRW_SWIZZLE_XYXY;
1273 src1.swizzle = BRW_SWIZZLE_ZWZW;
1274
1275 brw_push_insn_state(p);
1276 brw_set_default_access_mode(p, BRW_ALIGN_16);
1277 brw_ADD(p, dst, negate(src0), src1);
1278 brw_pop_insn_state(p);
1279 }
1280 } else {
1281 /* replicate the derivative at the top-left pixel to other pixels */
1282 if (devinfo->gen >= 8) {
1283 struct brw_reg src0 = byte_offset(stride(src, 4, 4, 0), 0 * type_size);
1284 struct brw_reg src1 = byte_offset(stride(src, 4, 4, 0), 2 * type_size);
1285
1286 brw_ADD(p, dst, negate(src0), src1);
1287 } else {
1288 /* On Haswell and earlier, the region used above appears to not work
1289 * correctly for compressed instructions. At least on Haswell and
1290 * Iron Lake, compressed ALIGN16 instructions do work. Since we
1291 * would have to split to SIMD8 no matter which method we choose, we
1292 * may as well use ALIGN16 on all platforms gen7 and earlier.
1293 */
1294 struct brw_reg src0 = stride(src, 4, 4, 1);
1295 struct brw_reg src1 = stride(src, 4, 4, 1);
1296 src0.swizzle = BRW_SWIZZLE_XXXX;
1297 src1.swizzle = BRW_SWIZZLE_ZZZZ;
1298
1299 brw_push_insn_state(p);
1300 brw_set_default_access_mode(p, BRW_ALIGN_16);
1301 brw_ADD(p, dst, negate(src0), src1);
1302 brw_pop_insn_state(p);
1303 }
1304 }
1305 }
1306
1307 void
1308 fs_generator::generate_discard_jump(fs_inst *)
1309 {
1310 assert(devinfo->gen >= 6);
1311
1312 /* This HALT will be patched up at FB write time to point UIP at the end of
1313 * the program, and at brw_uip_jip() JIP will be set to the end of the
1314 * current block (or the program).
1315 */
1316 this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
1317 gen6_HALT(p);
1318 }
1319
1320 void
1321 fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
1322 {
1323 /* The 32-wide messages only respect the first 16-wide half of the channel
1324 * enable signals which are replicated identically for the second group of
1325 * 16 channels, so we cannot use them unless the write is marked
1326 * force_writemask_all.
1327 */
1328 const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
1329 MIN2(16, inst->exec_size);
1330 const unsigned block_size = 4 * lower_size / REG_SIZE;
1331 assert(inst->mlen != 0);
1332
1333 brw_push_insn_state(p);
1334 brw_set_default_exec_size(p, cvt(lower_size) - 1);
1335 brw_set_default_compression(p, lower_size > 8);
1336
1337 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1338 brw_set_default_group(p, inst->group + lower_size * i);
1339
1340 brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
1341 retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
1342
1343 brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
1344 block_size,
1345 inst->offset + block_size * REG_SIZE * i);
1346 }
1347
1348 brw_pop_insn_state(p);
1349 }
1350
1351 void
1352 fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
1353 {
1354 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1355 assert(inst->mlen != 0);
1356
1357 brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
1358 inst->exec_size / 8, inst->offset);
1359 }
1360
1361 void
1362 fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst)
1363 {
1364 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1365
1366 gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
1367 }
1368
1369 void
1370 fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
1371 struct brw_reg dst,
1372 struct brw_reg index,
1373 struct brw_reg offset)
1374 {
1375 assert(type_sz(dst.type) == 4);
1376 assert(inst->mlen != 0);
1377
1378 assert(index.file == BRW_IMMEDIATE_VALUE &&
1379 index.type == BRW_REGISTER_TYPE_UD);
1380 uint32_t surf_index = index.ud;
1381
1382 assert(offset.file == BRW_IMMEDIATE_VALUE &&
1383 offset.type == BRW_REGISTER_TYPE_UD);
1384 uint32_t read_offset = offset.ud;
1385
1386 brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
1387 read_offset, surf_index);
1388 }
1389
1390 void
1391 fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
1392 struct brw_reg dst,
1393 struct brw_reg index,
1394 struct brw_reg payload)
1395 {
1396 assert(index.type == BRW_REGISTER_TYPE_UD);
1397 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1398 assert(type_sz(dst.type) == 4);
1399
1400 if (index.file == BRW_IMMEDIATE_VALUE) {
1401 const uint32_t surf_index = index.ud;
1402
1403 brw_push_insn_state(p);
1404 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1405 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1406 brw_pop_insn_state(p);
1407
1408 brw_inst_set_sfid(devinfo, send, GEN6_SFID_DATAPORT_CONSTANT_CACHE);
1409 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
1410 brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
1411 brw_set_desc(p, send,
1412 brw_message_desc(devinfo, 1, DIV_ROUND_UP(inst->size_written,
1413 REG_SIZE), true) |
1414 brw_dp_read_desc(devinfo, surf_index,
1415 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1416 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1417 BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1418
1419 } else {
1420 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1421
1422 brw_push_insn_state(p);
1423 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1424
1425 /* a0.0 = surf_index & 0xff */
1426 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1427 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1428 brw_set_dest(p, insn_and, addr);
1429 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1430 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1431
1432 /* dst = send(payload, a0.0 | <descriptor>) */
1433 brw_send_indirect_message(
1434 p, GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1435 retype(dst, BRW_REGISTER_TYPE_UD),
1436 retype(payload, BRW_REGISTER_TYPE_UD), addr,
1437 brw_message_desc(devinfo, 1,
1438 DIV_ROUND_UP(inst->size_written, REG_SIZE), true) |
1439 brw_dp_read_desc(devinfo, 0 /* surface */,
1440 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1441 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1442 BRW_DATAPORT_READ_TARGET_DATA_CACHE),
1443 false /* EOT */);
1444
1445 brw_pop_insn_state(p);
1446 }
1447 }
1448
1449 void
1450 fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst,
1451 struct brw_reg dst,
1452 struct brw_reg index)
1453 {
1454 assert(devinfo->gen < 7); /* Should use the gen7 variant. */
1455 assert(inst->header_size != 0);
1456 assert(inst->mlen);
1457
1458 assert(index.file == BRW_IMMEDIATE_VALUE &&
1459 index.type == BRW_REGISTER_TYPE_UD);
1460 uint32_t surf_index = index.ud;
1461
1462 uint32_t simd_mode, rlen, msg_type;
1463 if (inst->exec_size == 16) {
1464 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1465 rlen = 8;
1466 } else {
1467 assert(inst->exec_size == 8);
1468 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1469 rlen = 4;
1470 }
1471
1472 if (devinfo->gen >= 5)
1473 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1474 else {
1475 /* We always use the SIMD16 message so that we only have to load U, and
1476 * not V or R.
1477 */
1478 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1479 assert(inst->mlen == 3);
1480 assert(inst->size_written == 8 * REG_SIZE);
1481 rlen = 8;
1482 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1483 }
1484
1485 struct brw_reg header = brw_vec8_grf(0, 0);
1486 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1487
1488 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1489 brw_inst_set_compression(devinfo, send, false);
1490 brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1491 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1492 brw_set_src0(p, send, header);
1493 if (devinfo->gen < 6)
1494 brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
1495
1496 /* Our surface is set up as floats, regardless of what actual data is
1497 * stored in it.
1498 */
1499 uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1500 brw_set_desc(p, send,
1501 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size) |
1502 brw_sampler_desc(devinfo, surf_index,
1503 0, /* sampler (unused) */
1504 msg_type, simd_mode, return_format));
1505 }
1506
1507 void
1508 fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
1509 struct brw_reg dst,
1510 struct brw_reg src,
1511 struct brw_reg msg_data,
1512 unsigned msg_type)
1513 {
1514 const bool has_payload = inst->src[0].file != BAD_FILE;
1515 assert(msg_data.type == BRW_REGISTER_TYPE_UD);
1516 assert(inst->size_written % REG_SIZE == 0);
1517
1518 brw_pixel_interpolator_query(p,
1519 retype(dst, BRW_REGISTER_TYPE_UW),
1520 /* If we don't have a payload, what we send doesn't matter */
1521 has_payload ? src : brw_vec8_grf(0, 0),
1522 inst->pi_noperspective,
1523 msg_type,
1524 msg_data,
1525 has_payload ? 2 * inst->exec_size / 8 : 1,
1526 inst->size_written / REG_SIZE);
1527 }
1528
1529 /* Sets vstride=1, width=4, hstride=0 of register src1 during
1530 * the ADD instruction.
1531 */
1532 void
1533 fs_generator::generate_set_sample_id(fs_inst *inst,
1534 struct brw_reg dst,
1535 struct brw_reg src0,
1536 struct brw_reg src1)
1537 {
1538 assert(dst.type == BRW_REGISTER_TYPE_D ||
1539 dst.type == BRW_REGISTER_TYPE_UD);
1540 assert(src0.type == BRW_REGISTER_TYPE_D ||
1541 src0.type == BRW_REGISTER_TYPE_UD);
1542
1543 const struct brw_reg reg = stride(src1, 1, 4, 0);
1544 const unsigned lower_size = MIN2(inst->exec_size,
1545 devinfo->gen >= 8 ? 16 : 8);
1546
1547 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1548 brw_inst *insn = brw_ADD(p, offset(dst, i * lower_size / 8),
1549 offset(src0, (src0.vstride == 0 ? 0 : (1 << (src0.vstride - 1)) *
1550 (i * lower_size / (1 << src0.width))) *
1551 type_sz(src0.type) / REG_SIZE),
1552 suboffset(reg, i * lower_size / 4));
1553 brw_inst_set_exec_size(devinfo, insn, cvt(lower_size) - 1);
1554 brw_inst_set_group(devinfo, insn, inst->group + lower_size * i);
1555 brw_inst_set_compression(devinfo, insn, lower_size > 8);
1556 }
1557 }
1558
1559 void
1560 fs_generator::generate_pack_half_2x16_split(fs_inst *,
1561 struct brw_reg dst,
1562 struct brw_reg x,
1563 struct brw_reg y)
1564 {
1565 assert(devinfo->gen >= 7);
1566 assert(dst.type == BRW_REGISTER_TYPE_UD);
1567 assert(x.type == BRW_REGISTER_TYPE_F);
1568 assert(y.type == BRW_REGISTER_TYPE_F);
1569
1570 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
1571 *
1572 * Because this instruction does not have a 16-bit floating-point type,
1573 * the destination data type must be Word (W).
1574 *
1575 * The destination must be DWord-aligned and specify a horizontal stride
1576 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
1577 * each destination channel and the upper word is not modified.
1578 */
1579 struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
1580
1581 /* Give each 32-bit channel of dst the form below, where "." means
1582 * unchanged.
1583 * 0x....hhhh
1584 */
1585 brw_F32TO16(p, dst_w, y);
1586
1587 /* Now the form:
1588 * 0xhhhh0000
1589 */
1590 brw_SHL(p, dst, dst, brw_imm_ud(16u));
1591
1592 /* And, finally the form of packHalf2x16's output:
1593 * 0xhhhhllll
1594 */
1595 brw_F32TO16(p, dst_w, x);
1596 }
1597
1598 void
1599 fs_generator::generate_shader_time_add(fs_inst *,
1600 struct brw_reg payload,
1601 struct brw_reg offset,
1602 struct brw_reg value)
1603 {
1604 assert(devinfo->gen >= 7);
1605 brw_push_insn_state(p);
1606 brw_set_default_mask_control(p, true);
1607
1608 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1609 struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
1610 offset.type);
1611 struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
1612 value.type);
1613
1614 assert(offset.file == BRW_IMMEDIATE_VALUE);
1615 if (value.file == BRW_GENERAL_REGISTER_FILE) {
1616 value.width = BRW_WIDTH_1;
1617 value.hstride = BRW_HORIZONTAL_STRIDE_0;
1618 value.vstride = BRW_VERTICAL_STRIDE_0;
1619 } else {
1620 assert(value.file == BRW_IMMEDIATE_VALUE);
1621 }
1622
1623 /* Trying to deal with setup of the params from the IR is crazy in the FS8
1624 * case, and we don't really care about squeezing every bit of performance
1625 * out of this path, so we just emit the MOVs from here.
1626 */
1627 brw_MOV(p, payload_offset, offset);
1628 brw_MOV(p, payload_value, value);
1629 brw_shader_time_add(p, payload,
1630 prog_data->binding_table.shader_time_start);
1631 brw_pop_insn_state(p);
1632 }
1633
1634 void
1635 fs_generator::enable_debug(const char *shader_name)
1636 {
1637 debug_flag = true;
1638 this->shader_name = shader_name;
1639 }
1640
1641 int
1642 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width,
1643 struct brw_compile_stats *stats)
1644 {
1645 /* align to 64 byte boundary. */
1646 while (p->next_insn_offset % 64)
1647 brw_NOP(p);
1648
1649 this->dispatch_width = dispatch_width;
1650
1651 int start_offset = p->next_insn_offset;
1652 int spill_count = 0, fill_count = 0;
1653 int loop_count = 0;
1654
1655 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1656
1657 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1658 if (inst->opcode == SHADER_OPCODE_UNDEF)
1659 continue;
1660
1661 struct brw_reg src[4], dst;
1662 unsigned int last_insn_offset = p->next_insn_offset;
1663 bool multiple_instructions_emitted = false;
1664
1665 /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
1666 * "Register Region Restrictions" section: for BDW, SKL:
1667 *
1668 * "A POW/FDIV operation must not be followed by an instruction
1669 * that requires two destination registers."
1670 *
1671 * The documentation is often lacking annotations for Atom parts,
1672 * and empirically this affects CHV as well.
1673 */
1674 if (devinfo->gen >= 8 &&
1675 devinfo->gen <= 9 &&
1676 p->nr_insn > 1 &&
1677 brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
1678 brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
1679 inst->dst.component_size(inst->exec_size) > REG_SIZE) {
1680 brw_NOP(p);
1681 last_insn_offset = p->next_insn_offset;
1682 }
1683
1684 if (unlikely(debug_flag))
1685 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1686
1687 /* If the instruction writes to more than one register, it needs to be
1688 * explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
1689 * hardware figures out by itself what the right compression mode is,
1690 * but we still need to know whether the instruction is compressed to
1691 * set up the source register regions appropriately.
1692 *
1693 * XXX - This is wrong for instructions that write a single register but
1694 * read more than one which should strictly speaking be treated as
1695 * compressed. For instructions that don't write any registers it
1696 * relies on the destination being a null register of the correct
1697 * type and regioning so the instruction is considered compressed
1698 * or not accordingly.
1699 */
1700 const bool compressed =
1701 inst->dst.component_size(inst->exec_size) > REG_SIZE;
1702 brw_set_default_compression(p, compressed);
1703 brw_set_default_group(p, inst->group);
1704
1705 for (unsigned int i = 0; i < inst->sources; i++) {
1706 src[i] = brw_reg_from_fs_reg(devinfo, inst,
1707 &inst->src[i], compressed);
1708 /* The accumulator result appears to get used for the
1709 * conditional modifier generation. When negating a UD
1710 * value, there is a 33rd bit generated for the sign in the
1711 * accumulator value, so now you can't check, for example,
1712 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
1713 */
1714 assert(!inst->conditional_mod ||
1715 inst->src[i].type != BRW_REGISTER_TYPE_UD ||
1716 !inst->src[i].negate);
1717 }
1718 dst = brw_reg_from_fs_reg(devinfo, inst,
1719 &inst->dst, compressed);
1720
1721 brw_set_default_access_mode(p, BRW_ALIGN_1);
1722 brw_set_default_predicate_control(p, inst->predicate);
1723 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1724 /* On gen7 and above, hardware automatically adds the group onto the
1725 * flag subregister number. On Sandy Bridge and older, we have to do it
1726 * ourselves.
1727 */
1728 const unsigned flag_subreg = inst->flag_subreg +
1729 (devinfo->gen >= 7 ? 0 : inst->group / 16);
1730 brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2);
1731 brw_set_default_saturate(p, inst->saturate);
1732 brw_set_default_mask_control(p, inst->force_writemask_all);
1733 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1734
1735 unsigned exec_size = inst->exec_size;
1736 if (devinfo->gen == 7 && !devinfo->is_haswell &&
1737 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
1738 exec_size *= 2;
1739 }
1740
1741 brw_set_default_exec_size(p, cvt(exec_size) - 1);
1742
1743 assert(inst->force_writemask_all || inst->exec_size >= 4);
1744 assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
1745 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1746 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1747
1748 switch (inst->opcode) {
1749 case BRW_OPCODE_MOV:
1750 brw_MOV(p, dst, src[0]);
1751 break;
1752 case BRW_OPCODE_ADD:
1753 brw_ADD(p, dst, src[0], src[1]);
1754 break;
1755 case BRW_OPCODE_MUL:
1756 brw_MUL(p, dst, src[0], src[1]);
1757 break;
1758 case BRW_OPCODE_AVG:
1759 brw_AVG(p, dst, src[0], src[1]);
1760 break;
1761 case BRW_OPCODE_MACH:
1762 brw_MACH(p, dst, src[0], src[1]);
1763 break;
1764
1765 case BRW_OPCODE_LINE:
1766 brw_LINE(p, dst, src[0], src[1]);
1767 break;
1768
1769 case BRW_OPCODE_MAD:
1770 assert(devinfo->gen >= 6);
1771 if (devinfo->gen < 10)
1772 brw_set_default_access_mode(p, BRW_ALIGN_16);
1773 brw_MAD(p, dst, src[0], src[1], src[2]);
1774 break;
1775
1776 case BRW_OPCODE_LRP:
1777 assert(devinfo->gen >= 6 && devinfo->gen <= 10);
1778 if (devinfo->gen < 10)
1779 brw_set_default_access_mode(p, BRW_ALIGN_16);
1780 brw_LRP(p, dst, src[0], src[1], src[2]);
1781 break;
1782
1783 case BRW_OPCODE_FRC:
1784 brw_FRC(p, dst, src[0]);
1785 break;
1786 case BRW_OPCODE_RNDD:
1787 brw_RNDD(p, dst, src[0]);
1788 break;
1789 case BRW_OPCODE_RNDE:
1790 brw_RNDE(p, dst, src[0]);
1791 break;
1792 case BRW_OPCODE_RNDZ:
1793 brw_RNDZ(p, dst, src[0]);
1794 break;
1795
1796 case BRW_OPCODE_AND:
1797 brw_AND(p, dst, src[0], src[1]);
1798 break;
1799 case BRW_OPCODE_OR:
1800 brw_OR(p, dst, src[0], src[1]);
1801 break;
1802 case BRW_OPCODE_XOR:
1803 brw_XOR(p, dst, src[0], src[1]);
1804 break;
1805 case BRW_OPCODE_NOT:
1806 brw_NOT(p, dst, src[0]);
1807 break;
1808 case BRW_OPCODE_ASR:
1809 brw_ASR(p, dst, src[0], src[1]);
1810 break;
1811 case BRW_OPCODE_SHR:
1812 brw_SHR(p, dst, src[0], src[1]);
1813 break;
1814 case BRW_OPCODE_SHL:
1815 brw_SHL(p, dst, src[0], src[1]);
1816 break;
1817 case BRW_OPCODE_ROL:
1818 assert(devinfo->gen >= 11);
1819 assert(src[0].type == dst.type);
1820 brw_ROL(p, dst, src[0], src[1]);
1821 break;
1822 case BRW_OPCODE_ROR:
1823 assert(devinfo->gen >= 11);
1824 assert(src[0].type == dst.type);
1825 brw_ROR(p, dst, src[0], src[1]);
1826 break;
1827 case BRW_OPCODE_F32TO16:
1828 assert(devinfo->gen >= 7);
1829 brw_F32TO16(p, dst, src[0]);
1830 break;
1831 case BRW_OPCODE_F16TO32:
1832 assert(devinfo->gen >= 7);
1833 brw_F16TO32(p, dst, src[0]);
1834 break;
1835 case BRW_OPCODE_CMP:
1836 if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell &&
1837 dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1838 /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
1839 * implemented in the compiler is not sufficient. Overriding the
1840 * type when the destination is the null register is necessary but
1841 * not sufficient by itself.
1842 */
1843 assert(dst.nr == BRW_ARF_NULL);
1844 dst.type = BRW_REGISTER_TYPE_D;
1845 }
1846 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1847 break;
1848 case BRW_OPCODE_SEL:
1849 brw_SEL(p, dst, src[0], src[1]);
1850 break;
1851 case BRW_OPCODE_CSEL:
1852 assert(devinfo->gen >= 8);
1853 if (devinfo->gen < 10)
1854 brw_set_default_access_mode(p, BRW_ALIGN_16);
1855 brw_CSEL(p, dst, src[0], src[1], src[2]);
1856 break;
1857 case BRW_OPCODE_BFREV:
1858 assert(devinfo->gen >= 7);
1859 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1860 retype(src[0], BRW_REGISTER_TYPE_UD));
1861 break;
1862 case BRW_OPCODE_FBH:
1863 assert(devinfo->gen >= 7);
1864 brw_FBH(p, retype(dst, src[0].type), src[0]);
1865 break;
1866 case BRW_OPCODE_FBL:
1867 assert(devinfo->gen >= 7);
1868 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
1869 retype(src[0], BRW_REGISTER_TYPE_UD));
1870 break;
1871 case BRW_OPCODE_LZD:
1872 brw_LZD(p, dst, src[0]);
1873 break;
1874 case BRW_OPCODE_CBIT:
1875 assert(devinfo->gen >= 7);
1876 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
1877 retype(src[0], BRW_REGISTER_TYPE_UD));
1878 break;
1879 case BRW_OPCODE_ADDC:
1880 assert(devinfo->gen >= 7);
1881 brw_ADDC(p, dst, src[0], src[1]);
1882 break;
1883 case BRW_OPCODE_SUBB:
1884 assert(devinfo->gen >= 7);
1885 brw_SUBB(p, dst, src[0], src[1]);
1886 break;
1887 case BRW_OPCODE_MAC:
1888 brw_MAC(p, dst, src[0], src[1]);
1889 break;
1890
1891 case BRW_OPCODE_BFE:
1892 assert(devinfo->gen >= 7);
1893 if (devinfo->gen < 10)
1894 brw_set_default_access_mode(p, BRW_ALIGN_16);
1895 brw_BFE(p, dst, src[0], src[1], src[2]);
1896 break;
1897
1898 case BRW_OPCODE_BFI1:
1899 assert(devinfo->gen >= 7);
1900 brw_BFI1(p, dst, src[0], src[1]);
1901 break;
1902 case BRW_OPCODE_BFI2:
1903 assert(devinfo->gen >= 7);
1904 if (devinfo->gen < 10)
1905 brw_set_default_access_mode(p, BRW_ALIGN_16);
1906 brw_BFI2(p, dst, src[0], src[1], src[2]);
1907 break;
1908
1909 case BRW_OPCODE_IF:
1910 if (inst->src[0].file != BAD_FILE) {
1911 /* The instruction has an embedded compare (only allowed on gen6) */
1912 assert(devinfo->gen == 6);
1913 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
1914 } else {
1915 brw_IF(p, brw_get_default_exec_size(p));
1916 }
1917 break;
1918
1919 case BRW_OPCODE_ELSE:
1920 brw_ELSE(p);
1921 break;
1922 case BRW_OPCODE_ENDIF:
1923 brw_ENDIF(p);
1924 break;
1925
1926 case BRW_OPCODE_DO:
1927 brw_DO(p, brw_get_default_exec_size(p));
1928 break;
1929
1930 case BRW_OPCODE_BREAK:
1931 brw_BREAK(p);
1932 break;
1933 case BRW_OPCODE_CONTINUE:
1934 brw_CONT(p);
1935 break;
1936
1937 case BRW_OPCODE_WHILE:
1938 brw_WHILE(p);
1939 loop_count++;
1940 break;
1941
1942 case SHADER_OPCODE_RCP:
1943 case SHADER_OPCODE_RSQ:
1944 case SHADER_OPCODE_SQRT:
1945 case SHADER_OPCODE_EXP2:
1946 case SHADER_OPCODE_LOG2:
1947 case SHADER_OPCODE_SIN:
1948 case SHADER_OPCODE_COS:
1949 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1950 if (devinfo->gen >= 6) {
1951 assert(inst->mlen == 0);
1952 assert(devinfo->gen >= 7 || inst->exec_size == 8);
1953 gen6_math(p, dst, brw_math_function(inst->opcode),
1954 src[0], brw_null_reg());
1955 } else {
1956 assert(inst->mlen >= 1);
1957 assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8);
1958 gen4_math(p, dst,
1959 brw_math_function(inst->opcode),
1960 inst->base_mrf, src[0],
1961 BRW_MATH_PRECISION_FULL);
1962 }
1963 break;
1964 case SHADER_OPCODE_INT_QUOTIENT:
1965 case SHADER_OPCODE_INT_REMAINDER:
1966 case SHADER_OPCODE_POW:
1967 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1968 if (devinfo->gen >= 6) {
1969 assert(inst->mlen == 0);
1970 assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
1971 inst->exec_size == 8);
1972 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
1973 } else {
1974 assert(inst->mlen >= 1);
1975 assert(inst->exec_size == 8);
1976 gen4_math(p, dst, brw_math_function(inst->opcode),
1977 inst->base_mrf, src[0],
1978 BRW_MATH_PRECISION_FULL);
1979 }
1980 break;
1981 case FS_OPCODE_LINTERP:
1982 multiple_instructions_emitted = generate_linterp(inst, dst, src);
1983 break;
1984 case FS_OPCODE_PIXEL_X:
1985 assert(src[0].type == BRW_REGISTER_TYPE_UW);
1986 src[0].subnr = 0 * type_sz(src[0].type);
1987 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
1988 break;
1989 case FS_OPCODE_PIXEL_Y:
1990 assert(src[0].type == BRW_REGISTER_TYPE_UW);
1991 src[0].subnr = 4 * type_sz(src[0].type);
1992 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
1993 break;
1994
1995 case SHADER_OPCODE_SEND:
1996 generate_send(inst, dst, src[0], src[1], src[2],
1997 inst->ex_mlen > 0 ? src[3] : brw_null_reg());
1998 break;
1999
2000 case SHADER_OPCODE_GET_BUFFER_SIZE:
2001 generate_get_buffer_size(inst, dst, src[0], src[1]);
2002 break;
2003 case SHADER_OPCODE_TEX:
2004 case FS_OPCODE_TXB:
2005 case SHADER_OPCODE_TXD:
2006 case SHADER_OPCODE_TXF:
2007 case SHADER_OPCODE_TXF_CMS:
2008 case SHADER_OPCODE_TXL:
2009 case SHADER_OPCODE_TXS:
2010 case SHADER_OPCODE_LOD:
2011 case SHADER_OPCODE_TG4:
2012 case SHADER_OPCODE_SAMPLEINFO:
2013 assert(inst->src[0].file == BAD_FILE);
2014 generate_tex(inst, dst, src[1], src[2]);
2015 break;
2016
2017 case FS_OPCODE_DDX_COARSE:
2018 case FS_OPCODE_DDX_FINE:
2019 generate_ddx(inst, dst, src[0]);
2020 break;
2021 case FS_OPCODE_DDY_COARSE:
2022 case FS_OPCODE_DDY_FINE:
2023 generate_ddy(inst, dst, src[0]);
2024 break;
2025
2026 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2027 generate_scratch_write(inst, src[0]);
2028 spill_count++;
2029 break;
2030
2031 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2032 generate_scratch_read(inst, dst);
2033 fill_count++;
2034 break;
2035
2036 case SHADER_OPCODE_GEN7_SCRATCH_READ:
2037 generate_scratch_read_gen7(inst, dst);
2038 fill_count++;
2039 break;
2040
2041 case SHADER_OPCODE_MOV_INDIRECT:
2042 generate_mov_indirect(inst, dst, src[0], src[1]);
2043 break;
2044
2045 case SHADER_OPCODE_URB_READ_SIMD8:
2046 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
2047 generate_urb_read(inst, dst, src[0]);
2048 break;
2049
2050 case SHADER_OPCODE_URB_WRITE_SIMD8:
2051 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
2052 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
2053 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
2054 generate_urb_write(inst, src[0]);
2055 break;
2056
2057 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
2058 assert(inst->force_writemask_all);
2059 generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
2060 break;
2061
2062 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
2063 assert(inst->force_writemask_all);
2064 generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2065 break;
2066
2067 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
2068 generate_varying_pull_constant_load_gen4(inst, dst, src[0]);
2069 break;
2070
2071 case FS_OPCODE_REP_FB_WRITE:
2072 case FS_OPCODE_FB_WRITE:
2073 generate_fb_write(inst, src[0]);
2074 break;
2075
2076 case FS_OPCODE_FB_READ:
2077 generate_fb_read(inst, dst, src[0]);
2078 break;
2079
2080 case FS_OPCODE_DISCARD_JUMP:
2081 generate_discard_jump(inst);
2082 break;
2083
2084 case SHADER_OPCODE_SHADER_TIME_ADD:
2085 generate_shader_time_add(inst, src[0], src[1], src[2]);
2086 break;
2087
2088 case SHADER_OPCODE_MEMORY_FENCE:
2089 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2090 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2091 brw_memory_fence(p, dst, src[0], BRW_OPCODE_SEND, src[1].ud, src[2].ud);
2092 break;
2093
2094 case SHADER_OPCODE_INTERLOCK:
2095 assert(devinfo->gen >= 9);
2096 /* The interlock is basically a memory fence issued via sendc */
2097 brw_memory_fence(p, dst, src[0], BRW_OPCODE_SENDC, false, /* bti */ 0);
2098 break;
2099
2100 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
2101 const struct brw_reg mask =
2102 brw_stage_has_packed_dispatch(devinfo, stage,
2103 prog_data) ? brw_imm_ud(~0u) :
2104 stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
2105 brw_dmask_reg();
2106 brw_find_live_channel(p, dst, mask);
2107 break;
2108 }
2109
2110 case SHADER_OPCODE_BROADCAST:
2111 assert(inst->force_writemask_all);
2112 brw_broadcast(p, dst, src[0], src[1]);
2113 break;
2114
2115 case SHADER_OPCODE_SHUFFLE:
2116 generate_shuffle(inst, dst, src[0], src[1]);
2117 break;
2118
2119 case SHADER_OPCODE_SEL_EXEC:
2120 assert(inst->force_writemask_all);
2121 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2122 brw_MOV(p, dst, src[1]);
2123 brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2124 brw_MOV(p, dst, src[0]);
2125 break;
2126
2127 case SHADER_OPCODE_QUAD_SWIZZLE:
2128 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2129 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2130 generate_quad_swizzle(inst, dst, src[0], src[1].ud);
2131 break;
2132
2133 case SHADER_OPCODE_CLUSTER_BROADCAST: {
2134 assert(src[0].type == dst.type);
2135 assert(!src[0].negate && !src[0].abs);
2136 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2137 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2138 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2139 assert(src[2].type == BRW_REGISTER_TYPE_UD);
2140 const unsigned component = src[1].ud;
2141 const unsigned cluster_size = src[2].ud;
2142 struct brw_reg strided = stride(suboffset(src[0], component),
2143 cluster_size, cluster_size, 0);
2144 if (type_sz(src[0].type) > 4 &&
2145 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
2146 /* IVB has an issue (which we found empirically) where it reads
2147 * two address register components per channel for indirectly
2148 * addressed 64-bit sources.
2149 *
2150 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
2151 *
2152 * "When source or destination datatype is 64b or operation is
2153 * integer DWord multiply, indirect addressing must not be
2154 * used."
2155 *
2156 * To work around both of these, we do two integer MOVs insead of
2157 * one 64-bit MOV. Because no double value should ever cross a
2158 * register boundary, it's safe to use the immediate offset in the
2159 * indirect here to handle adding 4 bytes to the offset and avoid
2160 * the extra ADD to the register file.
2161 */
2162 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
2163 subscript(strided, BRW_REGISTER_TYPE_D, 0));
2164 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
2165 subscript(strided, BRW_REGISTER_TYPE_D, 1));
2166 } else {
2167 brw_MOV(p, dst, strided);
2168 }
2169 break;
2170 }
2171
2172 case FS_OPCODE_SET_SAMPLE_ID:
2173 generate_set_sample_id(inst, dst, src[0], src[1]);
2174 break;
2175
2176 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
2177 generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
2178 break;
2179
2180 case FS_OPCODE_PLACEHOLDER_HALT:
2181 /* This is the place where the final HALT needs to be inserted if
2182 * we've emitted any discards. If not, this will emit no code.
2183 */
2184 if (!patch_discard_jumps_to_fb_writes()) {
2185 if (unlikely(debug_flag)) {
2186 disasm_info->use_tail = true;
2187 }
2188 }
2189 break;
2190
2191 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
2192 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2193 GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
2194 break;
2195
2196 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
2197 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2198 GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
2199 break;
2200
2201 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
2202 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2203 GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
2204 break;
2205
2206 case CS_OPCODE_CS_TERMINATE:
2207 generate_cs_terminate(inst, src[0]);
2208 break;
2209
2210 case SHADER_OPCODE_BARRIER:
2211 generate_barrier(inst, src[0]);
2212 break;
2213
2214 case BRW_OPCODE_DIM:
2215 assert(devinfo->is_haswell);
2216 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2217 assert(dst.type == BRW_REGISTER_TYPE_DF);
2218 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2219 break;
2220
2221 case SHADER_OPCODE_RND_MODE:
2222 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2223 brw_rounding_mode(p, (brw_rnd_mode) src[0].d);
2224 break;
2225
2226 default:
2227 unreachable("Unsupported opcode");
2228
2229 case SHADER_OPCODE_LOAD_PAYLOAD:
2230 unreachable("Should be lowered by lower_load_payload()");
2231 }
2232
2233 if (multiple_instructions_emitted)
2234 continue;
2235
2236 if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2237 assert(p->next_insn_offset == last_insn_offset + 16 ||
2238 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2239 "emitting more than 1 instruction");
2240
2241 brw_inst *last = &p->store[last_insn_offset / 16];
2242
2243 if (inst->conditional_mod)
2244 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2245 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2246 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2247 }
2248 }
2249
2250 brw_set_uip_jip(p, start_offset);
2251
2252 /* end of program sentinel */
2253 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2254
2255 #ifndef NDEBUG
2256 bool validated =
2257 #else
2258 if (unlikely(debug_flag))
2259 #endif
2260 brw_validate_instructions(devinfo, p->store,
2261 start_offset,
2262 p->next_insn_offset,
2263 disasm_info);
2264
2265 int before_size = p->next_insn_offset - start_offset;
2266 brw_compact_instructions(p, start_offset, disasm_info);
2267 int after_size = p->next_insn_offset - start_offset;
2268
2269 if (unlikely(debug_flag)) {
2270 unsigned char sha1[21];
2271 char sha1buf[41];
2272
2273 _mesa_sha1_compute(p->store + start_offset / sizeof(brw_inst),
2274 after_size, sha1);
2275 _mesa_sha1_format(sha1buf, sha1);
2276
2277 fprintf(stderr, "Native code for %s (sha1 %s)\n"
2278 "SIMD%d shader: %d instructions. %d loops. %u cycles. "
2279 "%d:%d spills:fills. "
2280 "scheduled with mode %s. "
2281 "Promoted %u constants. "
2282 "Compacted %d to %d bytes (%.0f%%)\n",
2283 shader_name, sha1buf,
2284 dispatch_width, before_size / 16,
2285 loop_count, cfg->cycle_count,
2286 spill_count, fill_count,
2287 shader_stats.scheduler_mode,
2288 shader_stats.promoted_constants,
2289 before_size, after_size,
2290 100.0f * (before_size - after_size) / before_size);
2291
2292 /* overriding the shader makes disasm_info invalid */
2293 if (!brw_try_override_assembly(p, start_offset, sha1buf)) {
2294 dump_assembly(p->store, disasm_info);
2295 } else {
2296 fprintf(stderr, "Successfully overrode shader with sha1 %s\n\n", sha1buf);
2297 }
2298 }
2299 ralloc_free(disasm_info);
2300 assert(validated);
2301
2302 compiler->shader_debug_log(log_data,
2303 "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
2304 "%d:%d spills:fills, "
2305 "scheduled with mode %s, "
2306 "Promoted %u constants, "
2307 "compacted %d to %d bytes.",
2308 _mesa_shader_stage_to_abbrev(stage),
2309 dispatch_width, before_size / 16,
2310 loop_count, cfg->cycle_count,
2311 spill_count, fill_count,
2312 shader_stats.scheduler_mode,
2313 shader_stats.promoted_constants,
2314 before_size, after_size);
2315 if (stats) {
2316 stats->dispatch_width = dispatch_width;
2317 stats->instructions = before_size / 16;
2318 stats->loops = loop_count;
2319 stats->cycles = cfg->cycle_count;
2320 stats->spills = spill_count;
2321 stats->fills = fill_count;
2322 }
2323
2324 return start_offset;
2325 }
2326
2327 const unsigned *
2328 fs_generator::get_assembly()
2329 {
2330 return brw_get_program(p, &prog_data->program_size);
2331 }