intel/fs: Use SHADER_OPCODE_SEND for surface messages
[mesa.git] / src / intel / compiler / brw_fs_generator.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_generator.cpp
25 *
26 * This file supports generating code from the FS LIR to the actual
27 * native instructions.
28 */
29
30 #include "brw_eu.h"
31 #include "brw_fs.h"
32 #include "brw_cfg.h"
33
34 static enum brw_reg_file
35 brw_file_from_reg(fs_reg *reg)
36 {
37 switch (reg->file) {
38 case ARF:
39 return BRW_ARCHITECTURE_REGISTER_FILE;
40 case FIXED_GRF:
41 case VGRF:
42 return BRW_GENERAL_REGISTER_FILE;
43 case MRF:
44 return BRW_MESSAGE_REGISTER_FILE;
45 case IMM:
46 return BRW_IMMEDIATE_VALUE;
47 case BAD_FILE:
48 case ATTR:
49 case UNIFORM:
50 unreachable("not reached");
51 }
52 return BRW_ARCHITECTURE_REGISTER_FILE;
53 }
54
55 static struct brw_reg
56 brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst,
57 fs_reg *reg, bool compressed)
58 {
59 struct brw_reg brw_reg;
60
61 switch (reg->file) {
62 case MRF:
63 assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
64 /* Fallthrough */
65 case VGRF:
66 if (reg->stride == 0) {
67 brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
68 } else {
69 /* From the Haswell PRM:
70 *
71 * "VertStride must be used to cross GRF register boundaries. This
72 * rule implies that elements within a 'Width' cannot cross GRF
73 * boundaries."
74 *
75 * The maximum width value that could satisfy this restriction is:
76 */
77 const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
78
79 /* Because the hardware can only split source regions at a whole
80 * multiple of width during decompression (i.e. vertically), clamp
81 * the value obtained above to the physical execution size of a
82 * single decompressed chunk of the instruction:
83 */
84 const unsigned phys_width = compressed ? inst->exec_size / 2 :
85 inst->exec_size;
86
87 /* XXX - The equation above is strictly speaking not correct on
88 * hardware that supports unbalanced GRF writes -- On Gen9+
89 * each decompressed chunk of the instruction may have a
90 * different execution size when the number of components
91 * written to each destination GRF is not the same.
92 */
93 const unsigned width = MIN2(reg_width, phys_width);
94 brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
95 brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
96
97 if (devinfo->gen == 7 && !devinfo->is_haswell) {
98 /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
99 * "Each DF (Double Float) operand uses an element size of 4 rather
100 * than 8 and all regioning parameters are twice what the values
101 * would be based on the true element size: ExecSize, Width,
102 * HorzStride, and VertStride. Each DF operand uses a pair of
103 * channels and all masking and swizzing should be adjusted
104 * appropriately."
105 *
106 * From the IvyBridge PRM (Special Requirements for Handling Double
107 * Precision Data Types, page 71):
108 * "In Align1 mode, all regioning parameters like stride, execution
109 * size, and width must use the syntax of a pair of packed
110 * floats. The offsets for these data types must be 64-bit
111 * aligned. The execution size and regioning parameters are in terms
112 * of floats."
113 *
114 * Summarized: when handling DF-typed arguments, ExecSize,
115 * VertStride, and Width must be doubled.
116 *
117 * It applies to BayTrail too.
118 */
119 if (type_sz(reg->type) == 8) {
120 brw_reg.width++;
121 if (brw_reg.vstride > 0)
122 brw_reg.vstride++;
123 assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
124 }
125
126 /* When converting from DF->F, we set the destination stride to 2
127 * because each d2f conversion implicitly writes 2 floats, being
128 * the first one the converted value. IVB/BYT actually writes two
129 * F components per SIMD channel, and every other component is
130 * filled with garbage.
131 */
132 if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
133 type_sz(inst->dst.type) < 8) {
134 assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
135 brw_reg.hstride--;
136 }
137 }
138 }
139
140 brw_reg = retype(brw_reg, reg->type);
141 brw_reg = byte_offset(brw_reg, reg->offset);
142 brw_reg.abs = reg->abs;
143 brw_reg.negate = reg->negate;
144 break;
145 case ARF:
146 case FIXED_GRF:
147 case IMM:
148 assert(reg->offset == 0);
149 brw_reg = reg->as_brw_reg();
150 break;
151 case BAD_FILE:
152 /* Probably unused. */
153 brw_reg = brw_null_reg();
154 break;
155 case ATTR:
156 case UNIFORM:
157 unreachable("not reached");
158 }
159
160 /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
161 * region, but on IVB and BYT DF regions must be programmed in terms of
162 * floats. A <0,2,1> region accomplishes this.
163 */
164 if (devinfo->gen == 7 && !devinfo->is_haswell &&
165 type_sz(reg->type) == 8 &&
166 brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
167 brw_reg.width == BRW_WIDTH_1 &&
168 brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
169 brw_reg.width = BRW_WIDTH_2;
170 brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
171 }
172
173 return brw_reg;
174 }
175
176 fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
177 void *mem_ctx,
178 struct brw_stage_prog_data *prog_data,
179 unsigned promoted_constants,
180 bool runtime_check_aads_emit,
181 gl_shader_stage stage)
182
183 : compiler(compiler), log_data(log_data),
184 devinfo(compiler->devinfo),
185 prog_data(prog_data),
186 promoted_constants(promoted_constants),
187 runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
188 stage(stage), mem_ctx(mem_ctx)
189 {
190 p = rzalloc(mem_ctx, struct brw_codegen);
191 brw_init_codegen(devinfo, p, mem_ctx);
192
193 /* In the FS code generator, we are very careful to ensure that we always
194 * set the right execution size so we don't need the EU code to "help" us
195 * by trying to infer it. Sometimes, it infers the wrong thing.
196 */
197 p->automatic_exec_sizes = false;
198 }
199
200 fs_generator::~fs_generator()
201 {
202 }
203
204 class ip_record : public exec_node {
205 public:
206 DECLARE_RALLOC_CXX_OPERATORS(ip_record)
207
208 ip_record(int ip)
209 {
210 this->ip = ip;
211 }
212
213 int ip;
214 };
215
216 bool
217 fs_generator::patch_discard_jumps_to_fb_writes()
218 {
219 if (devinfo->gen < 6 || this->discard_halt_patches.is_empty())
220 return false;
221
222 int scale = brw_jump_scale(p->devinfo);
223
224 /* There is a somewhat strange undocumented requirement of using
225 * HALT, according to the simulator. If some channel has HALTed to
226 * a particular UIP, then by the end of the program, every channel
227 * must have HALTed to that UIP. Furthermore, the tracking is a
228 * stack, so you can't do the final halt of a UIP after starting
229 * halting to a new UIP.
230 *
231 * Symptoms of not emitting this instruction on actual hardware
232 * included GPU hangs and sparkly rendering on the piglit discard
233 * tests.
234 */
235 brw_inst *last_halt = gen6_HALT(p);
236 brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
237 brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
238
239 int ip = p->nr_insn;
240
241 foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
242 brw_inst *patch = &p->store[patch_ip->ip];
243
244 assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
245 /* HALT takes a half-instruction distance from the pre-incremented IP. */
246 brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
247 }
248
249 this->discard_halt_patches.make_empty();
250 return true;
251 }
252
253 void
254 fs_generator::generate_send(fs_inst *inst,
255 struct brw_reg dst,
256 struct brw_reg desc,
257 struct brw_reg ex_desc,
258 struct brw_reg payload,
259 struct brw_reg payload2)
260 {
261 /* SENDS not yet supported */
262 assert(ex_desc.file == BRW_IMMEDIATE_VALUE && ex_desc.d == 0);
263 assert(payload2.file == BRW_ARCHITECTURE_REGISTER_FILE &&
264 payload2.nr == BRW_ARF_NULL);
265
266 const bool dst_is_null = dst.file == BRW_ARCHITECTURE_REGISTER_FILE &&
267 dst.nr == BRW_ARF_NULL;
268 const unsigned rlen = dst_is_null ? 0 : inst->size_written / REG_SIZE;
269
270 uint32_t desc_imm = inst->desc |
271 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size);
272
273 brw_send_indirect_message(p, inst->sfid, dst, payload, desc, desc_imm);
274
275 brw_inst_set_eot(p->devinfo, brw_last_inst, inst->eot);
276 if (inst->check_tdr)
277 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
278 }
279
280 void
281 fs_generator::fire_fb_write(fs_inst *inst,
282 struct brw_reg payload,
283 struct brw_reg implied_header,
284 GLuint nr)
285 {
286 uint32_t msg_control;
287
288 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
289
290 if (devinfo->gen < 6) {
291 brw_push_insn_state(p);
292 brw_set_default_exec_size(p, BRW_EXECUTE_8);
293 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
294 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
295 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
296 brw_MOV(p, offset(retype(payload, BRW_REGISTER_TYPE_UD), 1),
297 offset(retype(implied_header, BRW_REGISTER_TYPE_UD), 1));
298 brw_pop_insn_state(p);
299 }
300
301 if (inst->opcode == FS_OPCODE_REP_FB_WRITE) {
302 assert(inst->group == 0 && inst->exec_size == 16);
303 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
304
305 } else if (prog_data->dual_src_blend) {
306 assert(inst->exec_size == 8);
307
308 if (inst->group % 16 == 0)
309 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
310 else if (inst->group % 16 == 8)
311 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
312 else
313 unreachable("Invalid dual-source FB write instruction group");
314
315 } else {
316 assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));
317
318 if (inst->exec_size == 16)
319 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
320 else if (inst->exec_size == 8)
321 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
322 else
323 unreachable("Invalid FB write execution size");
324 }
325
326 /* We assume render targets start at 0, because headerless FB write
327 * messages set "Render Target Index" to 0. Using a different binding
328 * table index would make it impossible to use headerless messages.
329 */
330 const uint32_t surf_index = inst->target;
331
332 brw_inst *insn = brw_fb_WRITE(p,
333 payload,
334 retype(implied_header, BRW_REGISTER_TYPE_UW),
335 msg_control,
336 surf_index,
337 nr,
338 0,
339 inst->eot,
340 inst->last_rt,
341 inst->header_size != 0);
342
343 if (devinfo->gen >= 6)
344 brw_inst_set_rt_slot_group(devinfo, insn, inst->group / 16);
345 }
346
347 void
348 fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
349 {
350 if (devinfo->gen < 8 && !devinfo->is_haswell) {
351 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
352 }
353
354 const struct brw_reg implied_header =
355 devinfo->gen < 6 ? payload : brw_null_reg();
356
357 if (inst->base_mrf >= 0)
358 payload = brw_message_reg(inst->base_mrf);
359
360 if (!runtime_check_aads_emit) {
361 fire_fb_write(inst, payload, implied_header, inst->mlen);
362 } else {
363 /* This can only happen in gen < 6 */
364 assert(devinfo->gen < 6);
365
366 struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
367
368 /* Check runtime bit to detect if we have to send AA data or not */
369 brw_push_insn_state(p);
370 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
371 brw_set_default_exec_size(p, BRW_EXECUTE_1);
372 brw_AND(p,
373 v1_null_ud,
374 retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
375 brw_imm_ud(1<<26));
376 brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
377
378 int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
379 brw_pop_insn_state(p);
380 {
381 /* Don't send AA data */
382 fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
383 }
384 brw_land_fwd_jump(p, jmp);
385 fire_fb_write(inst, payload, implied_header, inst->mlen);
386 }
387 }
388
389 void
390 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
391 struct brw_reg payload)
392 {
393 assert(inst->size_written % REG_SIZE == 0);
394 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
395 /* We assume that render targets start at binding table index 0. */
396 const unsigned surf_index = inst->target;
397
398 gen9_fb_READ(p, dst, payload, surf_index,
399 inst->header_size, inst->size_written / REG_SIZE,
400 prog_data->persample_dispatch);
401 }
402
403 void
404 fs_generator::generate_mov_indirect(fs_inst *inst,
405 struct brw_reg dst,
406 struct brw_reg reg,
407 struct brw_reg indirect_byte_offset)
408 {
409 assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
410 assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
411 assert(!reg.abs && !reg.negate);
412 assert(reg.type == dst.type);
413
414 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
415
416 if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
417 imm_byte_offset += indirect_byte_offset.ud;
418
419 reg.nr = imm_byte_offset / REG_SIZE;
420 reg.subnr = imm_byte_offset % REG_SIZE;
421 brw_MOV(p, dst, reg);
422 } else {
423 /* Prior to Broadwell, there are only 8 address registers. */
424 assert(inst->exec_size <= 8 || devinfo->gen >= 8);
425
426 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
427 struct brw_reg addr = vec8(brw_address_reg(0));
428
429 /* The destination stride of an instruction (in bytes) must be greater
430 * than or equal to the size of the rest of the instruction. Since the
431 * address register is of type UW, we can't use a D-type instruction.
432 * In order to get around this, re retype to UW and use a stride.
433 */
434 indirect_byte_offset =
435 retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
436
437 /* There are a number of reasons why we don't use the base offset here.
438 * One reason is that the field is only 9 bits which means we can only
439 * use it to access the first 16 GRFs. Also, from the Haswell PRM
440 * section "Register Region Restrictions":
441 *
442 * "The lower bits of the AddressImmediate must not overflow to
443 * change the register address. The lower 5 bits of Address
444 * Immediate when added to lower 5 bits of address register gives
445 * the sub-register offset. The upper bits of Address Immediate
446 * when added to upper bits of address register gives the register
447 * address. Any overflow from sub-register offset is dropped."
448 *
449 * Since the indirect may cause us to cross a register boundary, this
450 * makes the base offset almost useless. We could try and do something
451 * clever where we use a actual base offset if base_offset % 32 == 0 but
452 * that would mean we were generating different code depending on the
453 * base offset. Instead, for the sake of consistency, we'll just do the
454 * add ourselves. This restriction is only listed in the Haswell PRM
455 * but empirical testing indicates that it applies on all older
456 * generations and is lifted on Broadwell.
457 *
458 * In the end, while base_offset is nice to look at in the generated
459 * code, using it saves us 0 instructions and would require quite a bit
460 * of case-by-case work. It's just not worth it.
461 */
462 brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
463
464 if (type_sz(reg.type) > 4 &&
465 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
466 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo) ||
467 !devinfo->has_64bit_types)) {
468 /* IVB has an issue (which we found empirically) where it reads two
469 * address register components per channel for indirectly addressed
470 * 64-bit sources.
471 *
472 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
473 *
474 * "When source or destination datatype is 64b or operation is
475 * integer DWord multiply, indirect addressing must not be used."
476 *
477 * To work around both of these, we do two integer MOVs insead of one
478 * 64-bit MOV. Because no double value should ever cross a register
479 * boundary, it's safe to use the immediate offset in the indirect
480 * here to handle adding 4 bytes to the offset and avoid the extra
481 * ADD to the register file.
482 */
483 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
484 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
485 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
486 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
487 } else {
488 struct brw_reg ind_src = brw_VxH_indirect(0, 0);
489
490 brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
491
492 if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
493 !inst->get_next()->is_tail_sentinel() &&
494 ((fs_inst *)inst->get_next())->mlen > 0) {
495 /* From the Sandybridge PRM:
496 *
497 * "[Errata: DevSNB(SNB)] If MRF register is updated by any
498 * instruction that “indexed/indirect” source AND is followed
499 * by a send, the instruction requires a “Switch”. This is to
500 * avoid race condition where send may dispatch before MRF is
501 * updated."
502 */
503 brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
504 }
505 }
506 }
507 }
508
509 void
510 fs_generator::generate_shuffle(fs_inst *inst,
511 struct brw_reg dst,
512 struct brw_reg src,
513 struct brw_reg idx)
514 {
515 /* Ivy bridge has some strange behavior that makes this a real pain to
516 * implement for 64-bit values so we just don't bother.
517 */
518 assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4);
519
520 /* Because we're using the address register, we're limited to 8-wide
521 * execution on gen7. On gen8, we're limited to 16-wide by the address
522 * register file and 8-wide for 64-bit types. We could try and make this
523 * instruction splittable higher up in the compiler but that gets weird
524 * because it reads all of the channels regardless of execution size. It's
525 * easier just to split it here.
526 */
527 const unsigned lower_width =
528 (devinfo->gen <= 7 || type_sz(src.type) > 4) ?
529 8 : MIN2(16, inst->exec_size);
530
531 brw_set_default_exec_size(p, cvt(lower_width) - 1);
532 for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
533 brw_set_default_group(p, group);
534
535 if ((src.vstride == 0 && src.hstride == 0) ||
536 idx.file == BRW_IMMEDIATE_VALUE) {
537 /* Trivial, the source is already uniform or the index is a constant.
538 * We will typically not get here if the optimizer is doing its job,
539 * but asserting would be mean.
540 */
541 const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
542 brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0));
543 } else {
544 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
545 struct brw_reg addr = vec8(brw_address_reg(0));
546
547 struct brw_reg group_idx = suboffset(idx, group);
548
549 if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
550 /* Things get grumpy if the register is too wide. */
551 group_idx.width--;
552 group_idx.vstride--;
553 }
554
555 assert(type_sz(group_idx.type) <= 4);
556 if (type_sz(group_idx.type) == 4) {
557 /* The destination stride of an instruction (in bytes) must be
558 * greater than or equal to the size of the rest of the
559 * instruction. Since the address register is of type UW, we
560 * can't use a D-type instruction. In order to get around this,
561 * re retype to UW and use a stride.
562 */
563 group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
564 }
565
566 /* Take into account the component size and horizontal stride. */
567 assert(src.vstride == src.hstride + src.width);
568 brw_SHL(p, addr, group_idx,
569 brw_imm_uw(_mesa_logbase2(type_sz(src.type)) +
570 src.hstride - 1));
571
572 /* Add on the register start offset */
573 brw_ADD(p, addr, addr, brw_imm_uw(src.nr * REG_SIZE + src.subnr));
574
575 if (type_sz(src.type) > 4 &&
576 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
577 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
578 /* IVB has an issue (which we found empirically) where it reads
579 * two address register components per channel for indirectly
580 * addressed 64-bit sources.
581 *
582 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
583 *
584 * "When source or destination datatype is 64b or operation is
585 * integer DWord multiply, indirect addressing must not be
586 * used."
587 *
588 * To work around both of these, we do two integer MOVs insead of
589 * one 64-bit MOV. Because no double value should ever cross a
590 * register boundary, it's safe to use the immediate offset in the
591 * indirect here to handle adding 4 bytes to the offset and avoid
592 * the extra ADD to the register file.
593 */
594 struct brw_reg gdst = suboffset(dst, group);
595 struct brw_reg dst_d = retype(spread(gdst, 2),
596 BRW_REGISTER_TYPE_D);
597 brw_MOV(p, dst_d,
598 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
599 brw_MOV(p, byte_offset(dst_d, 4),
600 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
601 } else {
602 brw_MOV(p, suboffset(dst, group),
603 retype(brw_VxH_indirect(0, 0), src.type));
604 }
605 }
606 }
607 }
608
609 void
610 fs_generator::generate_quad_swizzle(const fs_inst *inst,
611 struct brw_reg dst, struct brw_reg src,
612 unsigned swiz)
613 {
614 /* Requires a quad. */
615 assert(inst->exec_size >= 4);
616
617 if (src.file == BRW_IMMEDIATE_VALUE ||
618 has_scalar_region(src)) {
619 /* The value is uniform across all channels */
620 brw_MOV(p, dst, src);
621
622 } else if (devinfo->gen < 11 && type_sz(src.type) == 4) {
623 /* This only works on 8-wide 32-bit values */
624 assert(inst->exec_size == 8);
625 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
626 assert(src.vstride == src.width + 1);
627 brw_set_default_access_mode(p, BRW_ALIGN_16);
628 struct brw_reg swiz_src = stride(src, 4, 4, 1);
629 swiz_src.swizzle = swiz;
630 brw_MOV(p, dst, swiz_src);
631
632 } else {
633 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
634 assert(src.vstride == src.width + 1);
635 const struct brw_reg src_0 = suboffset(src, BRW_GET_SWZ(swiz, 0));
636
637 switch (swiz) {
638 case BRW_SWIZZLE_XXXX:
639 case BRW_SWIZZLE_YYYY:
640 case BRW_SWIZZLE_ZZZZ:
641 case BRW_SWIZZLE_WWWW:
642 brw_MOV(p, dst, stride(src_0, 4, 4, 0));
643 break;
644
645 case BRW_SWIZZLE_XXZZ:
646 case BRW_SWIZZLE_YYWW:
647 brw_MOV(p, dst, stride(src_0, 2, 2, 0));
648 break;
649
650 case BRW_SWIZZLE_XYXY:
651 case BRW_SWIZZLE_ZWZW:
652 assert(inst->exec_size == 4);
653 brw_MOV(p, dst, stride(src_0, 0, 2, 1));
654 break;
655
656 default:
657 assert(inst->force_writemask_all);
658 brw_set_default_exec_size(p, cvt(inst->exec_size / 4) - 1);
659
660 for (unsigned c = 0; c < 4; c++) {
661 brw_inst *insn = brw_MOV(
662 p, stride(suboffset(dst, c),
663 4 * inst->dst.stride, 1, 4 * inst->dst.stride),
664 stride(suboffset(src, BRW_GET_SWZ(swiz, c)), 4, 1, 0));
665
666 brw_inst_set_no_dd_clear(devinfo, insn, c < 3);
667 brw_inst_set_no_dd_check(devinfo, insn, c > 0);
668 }
669
670 break;
671 }
672 }
673 }
674
675 void
676 fs_generator::generate_urb_read(fs_inst *inst,
677 struct brw_reg dst,
678 struct brw_reg header)
679 {
680 assert(inst->size_written % REG_SIZE == 0);
681 assert(header.file == BRW_GENERAL_REGISTER_FILE);
682 assert(header.type == BRW_REGISTER_TYPE_UD);
683
684 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
685 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
686 brw_set_src0(p, send, header);
687 brw_set_src1(p, send, brw_imm_ud(0u));
688
689 brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
690 brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ);
691
692 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
693 brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
694
695 brw_inst_set_mlen(p->devinfo, send, inst->mlen);
696 brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
697 brw_inst_set_header_present(p->devinfo, send, true);
698 brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
699 }
700
701 void
702 fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
703 {
704 brw_inst *insn;
705
706 /* WaClearTDRRegBeforeEOTForNonPS.
707 *
708 * WA: Clear tdr register before send EOT in all non-PS shader kernels
709 *
710 * mov(8) tdr0:ud 0x0:ud {NoMask}"
711 */
712 if (inst->eot && p->devinfo->gen == 10) {
713 brw_push_insn_state(p);
714 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
715 brw_MOV(p, brw_tdr_reg(), brw_imm_uw(0));
716 brw_pop_insn_state(p);
717 }
718
719 insn = brw_next_insn(p, BRW_OPCODE_SEND);
720
721 brw_set_dest(p, insn, brw_null_reg());
722 brw_set_src0(p, insn, payload);
723 brw_set_src1(p, insn, brw_imm_ud(0u));
724
725 brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
726 brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE);
727
728 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
729 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
730 brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
731
732 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
733 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
734 brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
735
736 brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
737 brw_inst_set_rlen(p->devinfo, insn, 0);
738 brw_inst_set_eot(p->devinfo, insn, inst->eot);
739 brw_inst_set_header_present(p->devinfo, insn, true);
740 brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
741 }
742
743 void
744 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
745 {
746 struct brw_inst *insn;
747
748 insn = brw_next_insn(p, BRW_OPCODE_SEND);
749
750 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
751 brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
752 brw_set_src1(p, insn, brw_imm_ud(0u));
753
754 /* Terminate a compute shader by sending a message to the thread spawner.
755 */
756 brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
757 brw_inst_set_mlen(devinfo, insn, 1);
758 brw_inst_set_rlen(devinfo, insn, 0);
759 brw_inst_set_eot(devinfo, insn, inst->eot);
760 brw_inst_set_header_present(devinfo, insn, false);
761
762 brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
763 brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
764
765 /* Note that even though the thread has a URB resource associated with it,
766 * we set the "do not dereference URB" bit, because the URB resource is
767 * managed by the fixed-function unit, so it will free it automatically.
768 */
769 brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
770
771 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
772 }
773
774 void
775 fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
776 {
777 brw_barrier(p, src);
778 brw_WAIT(p);
779 }
780
781 bool
782 fs_generator::generate_linterp(fs_inst *inst,
783 struct brw_reg dst, struct brw_reg *src)
784 {
785 /* PLN reads:
786 * / in SIMD16 \
787 * -----------------------------------
788 * | src1+0 | src1+1 | src1+2 | src1+3 |
789 * |-----------------------------------|
790 * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
791 * -----------------------------------
792 *
793 * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
794 *
795 * -----------------------------------
796 * | src1+0 | src1+1 | src1+2 | src1+3 |
797 * |-----------------------------------|
798 * |(x0, x1)|(y0, y1)| | | in SIMD8
799 * |-----------------------------------|
800 * |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
801 * -----------------------------------
802 *
803 * See also: emit_interpolation_setup_gen4().
804 */
805 struct brw_reg delta_x = src[0];
806 struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
807 struct brw_reg interp = src[1];
808 brw_inst *i[4];
809
810 if (devinfo->gen >= 11) {
811 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_NF);
812 struct brw_reg dwP = suboffset(interp, 0);
813 struct brw_reg dwQ = suboffset(interp, 1);
814 struct brw_reg dwR = suboffset(interp, 3);
815
816 brw_push_insn_state(p);
817 brw_set_default_exec_size(p, BRW_EXECUTE_8);
818
819 if (inst->exec_size == 8) {
820 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
821 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_y, 0), dwQ);
822
823 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
824
825 /* brw_set_default_saturate() is called before emitting instructions,
826 * so the saturate bit is set in each instruction, so we need to unset
827 * it on the first instruction of each pair.
828 */
829 brw_inst_set_saturate(p->devinfo, i[0], false);
830 } else {
831 brw_set_default_group(p, inst->group);
832 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
833 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_x, 1), dwQ);
834
835 brw_set_default_group(p, inst->group + 8);
836 i[2] = brw_MAD(p, acc, dwR, offset(delta_y, 0), dwP);
837 i[3] = brw_MAD(p, offset(dst, 1), acc, offset(delta_y, 1), dwQ);
838
839 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
840 brw_inst_set_cond_modifier(p->devinfo, i[3], inst->conditional_mod);
841
842 /* brw_set_default_saturate() is called before emitting instructions,
843 * so the saturate bit is set in each instruction, so we need to unset
844 * it on the first instruction of each pair.
845 */
846 brw_inst_set_saturate(p->devinfo, i[0], false);
847 brw_inst_set_saturate(p->devinfo, i[2], false);
848 }
849
850 brw_pop_insn_state(p);
851
852 return true;
853 } else if (devinfo->has_pln) {
854 if (devinfo->gen <= 6 && (delta_x.nr & 1) != 0) {
855 /* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane":
856 *
857 * "[DevSNB]:<src1> must be even register aligned.
858 *
859 * This restriction is lifted on Ivy Bridge.
860 *
861 * This means that we need to split PLN into LINE+MAC on-the-fly.
862 * Unfortunately, the inputs are laid out for PLN and not LINE+MAC so
863 * we have to split into SIMD8 pieces. For gen4 (!has_pln), the
864 * coordinate registers are laid out differently so we leave it as a
865 * SIMD16 instruction.
866 */
867 assert(inst->exec_size == 8 || inst->exec_size == 16);
868 assert(inst->group % 16 == 0);
869
870 brw_push_insn_state(p);
871 brw_set_default_exec_size(p, BRW_EXECUTE_8);
872
873 /* Thanks to two accumulators, we can emit all the LINEs and then all
874 * the MACs. This improves parallelism a bit.
875 */
876 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
877 brw_inst *line = brw_LINE(p, brw_null_reg(), interp,
878 offset(delta_x, g * 2));
879 brw_inst_set_group(devinfo, line, inst->group + g * 8);
880
881 /* LINE writes the accumulator automatically on gen4-5. On Sandy
882 * Bridge and later, we have to explicitly enable it.
883 */
884 if (devinfo->gen >= 6)
885 brw_inst_set_acc_wr_control(p->devinfo, line, true);
886
887 /* brw_set_default_saturate() is called before emitting
888 * instructions, so the saturate bit is set in each instruction,
889 * so we need to unset it on the LINE instructions.
890 */
891 brw_inst_set_saturate(p->devinfo, line, false);
892 }
893
894 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
895 brw_inst *mac = brw_MAC(p, offset(dst, g), suboffset(interp, 1),
896 offset(delta_x, g * 2 + 1));
897 brw_inst_set_group(devinfo, mac, inst->group + g * 8);
898 brw_inst_set_cond_modifier(p->devinfo, mac, inst->conditional_mod);
899 }
900
901 brw_pop_insn_state(p);
902
903 return true;
904 } else {
905 brw_PLN(p, dst, interp, delta_x);
906
907 return false;
908 }
909 } else {
910 i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
911 i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
912
913 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
914
915 /* brw_set_default_saturate() is called before emitting instructions, so
916 * the saturate bit is set in each instruction, so we need to unset it on
917 * the first instruction.
918 */
919 brw_inst_set_saturate(p->devinfo, i[0], false);
920
921 return true;
922 }
923 }
924
925 void
926 fs_generator::generate_get_buffer_size(fs_inst *inst,
927 struct brw_reg dst,
928 struct brw_reg src,
929 struct brw_reg surf_index)
930 {
931 assert(devinfo->gen >= 7);
932 assert(surf_index.file == BRW_IMMEDIATE_VALUE);
933
934 uint32_t simd_mode;
935 int rlen = 4;
936
937 switch (inst->exec_size) {
938 case 8:
939 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
940 break;
941 case 16:
942 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
943 break;
944 default:
945 unreachable("Invalid width for texture instruction");
946 }
947
948 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
949 rlen = 8;
950 dst = vec16(dst);
951 }
952
953 brw_SAMPLE(p,
954 retype(dst, BRW_REGISTER_TYPE_UW),
955 inst->base_mrf,
956 src,
957 surf_index.ud,
958 0,
959 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
960 rlen, /* response length */
961 inst->mlen,
962 inst->header_size > 0,
963 simd_mode,
964 BRW_SAMPLER_RETURN_FORMAT_SINT32);
965 }
966
967 void
968 fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src,
969 struct brw_reg surface_index,
970 struct brw_reg sampler_index)
971 {
972 assert(inst->size_written % REG_SIZE == 0);
973 int msg_type = -1;
974 uint32_t simd_mode;
975 uint32_t return_format;
976 bool is_combined_send = inst->eot;
977
978 /* Sampler EOT message of less than the dispatch width would kill the
979 * thread prematurely.
980 */
981 assert(!is_combined_send || inst->exec_size == dispatch_width);
982
983 switch (dst.type) {
984 case BRW_REGISTER_TYPE_D:
985 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
986 break;
987 case BRW_REGISTER_TYPE_UD:
988 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
989 break;
990 default:
991 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
992 break;
993 }
994
995 /* Stomp the resinfo output type to UINT32. On gens 4-5, the output type
996 * is set as part of the message descriptor. On gen4, the PRM seems to
997 * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
998 * later gens UINT32 is required. Once you hit Sandy Bridge, the bit is
999 * gone from the message descriptor entirely and you just get UINT32 all
1000 * the time regasrdless. Since we can really only do non-UINT32 on gen4,
1001 * just stomp it to UINT32 all the time.
1002 */
1003 if (inst->opcode == SHADER_OPCODE_TXS)
1004 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
1005
1006 switch (inst->exec_size) {
1007 case 8:
1008 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1009 break;
1010 case 16:
1011 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1012 break;
1013 default:
1014 unreachable("Invalid width for texture instruction");
1015 }
1016
1017 if (devinfo->gen >= 5) {
1018 switch (inst->opcode) {
1019 case SHADER_OPCODE_TEX:
1020 if (inst->shadow_compare) {
1021 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
1022 } else {
1023 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
1024 }
1025 break;
1026 case FS_OPCODE_TXB:
1027 if (inst->shadow_compare) {
1028 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
1029 } else {
1030 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
1031 }
1032 break;
1033 case SHADER_OPCODE_TXL:
1034 if (inst->shadow_compare) {
1035 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
1036 } else {
1037 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
1038 }
1039 break;
1040 case SHADER_OPCODE_TXL_LZ:
1041 assert(devinfo->gen >= 9);
1042 if (inst->shadow_compare) {
1043 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_C_LZ;
1044 } else {
1045 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LZ;
1046 }
1047 break;
1048 case SHADER_OPCODE_TXS:
1049 case SHADER_OPCODE_IMAGE_SIZE:
1050 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
1051 break;
1052 case SHADER_OPCODE_TXD:
1053 if (inst->shadow_compare) {
1054 /* Gen7.5+. Otherwise, lowered in NIR */
1055 assert(devinfo->gen >= 8 || devinfo->is_haswell);
1056 msg_type = HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE;
1057 } else {
1058 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
1059 }
1060 break;
1061 case SHADER_OPCODE_TXF:
1062 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1063 break;
1064 case SHADER_OPCODE_TXF_LZ:
1065 assert(devinfo->gen >= 9);
1066 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD_LZ;
1067 break;
1068 case SHADER_OPCODE_TXF_CMS_W:
1069 assert(devinfo->gen >= 9);
1070 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
1071 break;
1072 case SHADER_OPCODE_TXF_CMS:
1073 if (devinfo->gen >= 7)
1074 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS;
1075 else
1076 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1077 break;
1078 case SHADER_OPCODE_TXF_UMS:
1079 assert(devinfo->gen >= 7);
1080 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS;
1081 break;
1082 case SHADER_OPCODE_TXF_MCS:
1083 assert(devinfo->gen >= 7);
1084 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
1085 break;
1086 case SHADER_OPCODE_LOD:
1087 msg_type = GEN5_SAMPLER_MESSAGE_LOD;
1088 break;
1089 case SHADER_OPCODE_TG4:
1090 if (inst->shadow_compare) {
1091 assert(devinfo->gen >= 7);
1092 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C;
1093 } else {
1094 assert(devinfo->gen >= 6);
1095 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
1096 }
1097 break;
1098 case SHADER_OPCODE_TG4_OFFSET:
1099 assert(devinfo->gen >= 7);
1100 if (inst->shadow_compare) {
1101 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C;
1102 } else {
1103 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
1104 }
1105 break;
1106 case SHADER_OPCODE_SAMPLEINFO:
1107 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
1108 break;
1109 default:
1110 unreachable("not reached");
1111 }
1112 } else {
1113 switch (inst->opcode) {
1114 case SHADER_OPCODE_TEX:
1115 /* Note that G45 and older determines shadow compare and dispatch width
1116 * from message length for most messages.
1117 */
1118 if (inst->exec_size == 8) {
1119 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
1120 if (inst->shadow_compare) {
1121 assert(inst->mlen == 6);
1122 } else {
1123 assert(inst->mlen <= 4);
1124 }
1125 } else {
1126 if (inst->shadow_compare) {
1127 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1128 assert(inst->mlen == 9);
1129 } else {
1130 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1131 assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
1132 }
1133 }
1134 break;
1135 case FS_OPCODE_TXB:
1136 if (inst->shadow_compare) {
1137 assert(inst->exec_size == 8);
1138 assert(inst->mlen == 6);
1139 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
1140 } else {
1141 assert(inst->mlen == 9);
1142 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1143 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1144 }
1145 break;
1146 case SHADER_OPCODE_TXL:
1147 if (inst->shadow_compare) {
1148 assert(inst->exec_size == 8);
1149 assert(inst->mlen == 6);
1150 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
1151 } else {
1152 assert(inst->mlen == 9);
1153 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
1154 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1155 }
1156 break;
1157 case SHADER_OPCODE_TXD:
1158 /* There is no sample_d_c message; comparisons are done manually */
1159 assert(inst->exec_size == 8);
1160 assert(inst->mlen == 7 || inst->mlen == 10);
1161 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
1162 break;
1163 case SHADER_OPCODE_TXF:
1164 assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
1165 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1166 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1167 break;
1168 case SHADER_OPCODE_TXS:
1169 assert(inst->mlen == 3);
1170 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
1171 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1172 break;
1173 default:
1174 unreachable("not reached");
1175 }
1176 }
1177 assert(msg_type != -1);
1178
1179 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1180 dst = vec16(dst);
1181 }
1182
1183 assert(devinfo->gen < 7 || inst->header_size == 0 ||
1184 src.file == BRW_GENERAL_REGISTER_FILE);
1185
1186 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
1187
1188 /* Load the message header if present. If there's a texture offset,
1189 * we need to set it up explicitly and load the offset bitfield.
1190 * Otherwise, we can use an implied move from g0 to the first message reg.
1191 */
1192 if (inst->header_size != 0 && devinfo->gen < 7) {
1193 if (devinfo->gen < 6 && !inst->offset) {
1194 /* Set up an implied move from g0 to the MRF. */
1195 src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1196 } else {
1197 assert(inst->base_mrf != -1);
1198 struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
1199
1200 brw_push_insn_state(p);
1201 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1202 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1203 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1204 /* Explicitly set up the message header by copying g0 to the MRF. */
1205 brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
1206
1207 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1208 if (inst->offset) {
1209 /* Set the offset bits in DWord 2. */
1210 brw_MOV(p, get_element_ud(header_reg, 2),
1211 brw_imm_ud(inst->offset));
1212 }
1213
1214 brw_pop_insn_state(p);
1215 }
1216 }
1217
1218 uint32_t base_binding_table_index;
1219 switch (inst->opcode) {
1220 case SHADER_OPCODE_TG4:
1221 case SHADER_OPCODE_TG4_OFFSET:
1222 base_binding_table_index = prog_data->binding_table.gather_texture_start;
1223 break;
1224 case SHADER_OPCODE_IMAGE_SIZE:
1225 base_binding_table_index = prog_data->binding_table.image_start;
1226 break;
1227 default:
1228 base_binding_table_index = prog_data->binding_table.texture_start;
1229 break;
1230 }
1231
1232 if (surface_index.file == BRW_IMMEDIATE_VALUE &&
1233 sampler_index.file == BRW_IMMEDIATE_VALUE) {
1234 uint32_t surface = surface_index.ud;
1235 uint32_t sampler = sampler_index.ud;
1236
1237 brw_SAMPLE(p,
1238 retype(dst, BRW_REGISTER_TYPE_UW),
1239 inst->base_mrf,
1240 src,
1241 surface + base_binding_table_index,
1242 sampler % 16,
1243 msg_type,
1244 inst->size_written / REG_SIZE,
1245 inst->mlen,
1246 inst->header_size != 0,
1247 simd_mode,
1248 return_format);
1249 } else {
1250 /* Non-const sampler index */
1251
1252 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1253 struct brw_reg surface_reg = vec1(retype(surface_index, BRW_REGISTER_TYPE_UD));
1254 struct brw_reg sampler_reg = vec1(retype(sampler_index, BRW_REGISTER_TYPE_UD));
1255
1256 brw_push_insn_state(p);
1257 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1258 brw_set_default_access_mode(p, BRW_ALIGN_1);
1259 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1260
1261 if (brw_regs_equal(&surface_reg, &sampler_reg)) {
1262 brw_MUL(p, addr, sampler_reg, brw_imm_uw(0x101));
1263 } else {
1264 if (sampler_reg.file == BRW_IMMEDIATE_VALUE) {
1265 brw_OR(p, addr, surface_reg, brw_imm_ud(sampler_reg.ud << 8));
1266 } else {
1267 brw_SHL(p, addr, sampler_reg, brw_imm_ud(8));
1268 brw_OR(p, addr, addr, surface_reg);
1269 }
1270 }
1271 if (base_binding_table_index)
1272 brw_ADD(p, addr, addr, brw_imm_ud(base_binding_table_index));
1273 brw_AND(p, addr, addr, brw_imm_ud(0xfff));
1274
1275 brw_pop_insn_state(p);
1276
1277 /* dst = send(offset, a0.0 | <descriptor>) */
1278 brw_send_indirect_message(
1279 p, BRW_SFID_SAMPLER, dst, src, addr,
1280 brw_message_desc(devinfo, inst->mlen, inst->size_written / REG_SIZE,
1281 inst->header_size) |
1282 brw_sampler_desc(devinfo,
1283 0 /* surface */,
1284 0 /* sampler */,
1285 msg_type,
1286 simd_mode,
1287 return_format));
1288
1289 /* visitor knows more than we do about the surface limit required,
1290 * so has already done marking.
1291 */
1292 }
1293
1294 if (is_combined_send) {
1295 brw_inst_set_eot(p->devinfo, brw_last_inst, true);
1296 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
1297 }
1298 }
1299
1300
1301 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
1302 * looking like:
1303 *
1304 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
1305 *
1306 * Ideally, we want to produce:
1307 *
1308 * DDX DDY
1309 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
1310 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
1311 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
1312 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
1313 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
1314 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
1315 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
1316 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
1317 *
1318 * and add another set of two more subspans if in 16-pixel dispatch mode.
1319 *
1320 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
1321 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
1322 * pair. But the ideal approximation may impose a huge performance cost on
1323 * sample_d. On at least Haswell, sample_d instruction does some
1324 * optimizations if the same LOD is used for all pixels in the subspan.
1325 *
1326 * For DDY, we need to use ALIGN16 mode since it's capable of doing the
1327 * appropriate swizzling.
1328 */
1329 void
1330 fs_generator::generate_ddx(const fs_inst *inst,
1331 struct brw_reg dst, struct brw_reg src)
1332 {
1333 unsigned vstride, width;
1334
1335 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1336 /* produce accurate derivatives */
1337 vstride = BRW_VERTICAL_STRIDE_2;
1338 width = BRW_WIDTH_2;
1339 } else {
1340 /* replicate the derivative at the top-left pixel to other pixels */
1341 vstride = BRW_VERTICAL_STRIDE_4;
1342 width = BRW_WIDTH_4;
1343 }
1344
1345 struct brw_reg src0 = src;
1346 struct brw_reg src1 = src;
1347
1348 src0.subnr = sizeof(float);
1349 src0.vstride = vstride;
1350 src0.width = width;
1351 src0.hstride = BRW_HORIZONTAL_STRIDE_0;
1352 src1.vstride = vstride;
1353 src1.width = width;
1354 src1.hstride = BRW_HORIZONTAL_STRIDE_0;
1355
1356 brw_ADD(p, dst, src0, negate(src1));
1357 }
1358
1359 /* The negate_value boolean is used to negate the derivative computation for
1360 * FBOs, since they place the origin at the upper left instead of the lower
1361 * left.
1362 */
1363 void
1364 fs_generator::generate_ddy(const fs_inst *inst,
1365 struct brw_reg dst, struct brw_reg src)
1366 {
1367 if (inst->opcode == FS_OPCODE_DDY_FINE) {
1368 /* produce accurate derivatives */
1369 if (devinfo->gen >= 11) {
1370 src = stride(src, 0, 2, 1);
1371 struct brw_reg src_0 = byte_offset(src, 0 * sizeof(float));
1372 struct brw_reg src_2 = byte_offset(src, 2 * sizeof(float));
1373 struct brw_reg src_4 = byte_offset(src, 4 * sizeof(float));
1374 struct brw_reg src_6 = byte_offset(src, 6 * sizeof(float));
1375 struct brw_reg src_8 = byte_offset(src, 8 * sizeof(float));
1376 struct brw_reg src_10 = byte_offset(src, 10 * sizeof(float));
1377 struct brw_reg src_12 = byte_offset(src, 12 * sizeof(float));
1378 struct brw_reg src_14 = byte_offset(src, 14 * sizeof(float));
1379
1380 struct brw_reg dst_0 = byte_offset(dst, 0 * sizeof(float));
1381 struct brw_reg dst_4 = byte_offset(dst, 4 * sizeof(float));
1382 struct brw_reg dst_8 = byte_offset(dst, 8 * sizeof(float));
1383 struct brw_reg dst_12 = byte_offset(dst, 12 * sizeof(float));
1384
1385 brw_push_insn_state(p);
1386 brw_set_default_exec_size(p, BRW_EXECUTE_4);
1387
1388 brw_ADD(p, dst_0, negate(src_0), src_2);
1389 brw_ADD(p, dst_4, negate(src_4), src_6);
1390
1391 if (inst->exec_size == 16) {
1392 brw_ADD(p, dst_8, negate(src_8), src_10);
1393 brw_ADD(p, dst_12, negate(src_12), src_14);
1394 }
1395
1396 brw_pop_insn_state(p);
1397 } else {
1398 struct brw_reg src0 = stride(src, 4, 4, 1);
1399 struct brw_reg src1 = stride(src, 4, 4, 1);
1400 src0.swizzle = BRW_SWIZZLE_XYXY;
1401 src1.swizzle = BRW_SWIZZLE_ZWZW;
1402
1403 brw_push_insn_state(p);
1404 brw_set_default_access_mode(p, BRW_ALIGN_16);
1405 brw_ADD(p, dst, negate(src0), src1);
1406 brw_pop_insn_state(p);
1407 }
1408 } else {
1409 /* replicate the derivative at the top-left pixel to other pixels */
1410 struct brw_reg src0 = stride(src, 4, 4, 0);
1411 struct brw_reg src1 = stride(src, 4, 4, 0);
1412 src0.subnr = 0 * sizeof(float);
1413 src1.subnr = 2 * sizeof(float);
1414
1415 brw_ADD(p, dst, negate(src0), src1);
1416 }
1417 }
1418
1419 void
1420 fs_generator::generate_discard_jump(fs_inst *)
1421 {
1422 assert(devinfo->gen >= 6);
1423
1424 /* This HALT will be patched up at FB write time to point UIP at the end of
1425 * the program, and at brw_uip_jip() JIP will be set to the end of the
1426 * current block (or the program).
1427 */
1428 this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
1429 gen6_HALT(p);
1430 }
1431
1432 void
1433 fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
1434 {
1435 /* The 32-wide messages only respect the first 16-wide half of the channel
1436 * enable signals which are replicated identically for the second group of
1437 * 16 channels, so we cannot use them unless the write is marked
1438 * force_writemask_all.
1439 */
1440 const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
1441 MIN2(16, inst->exec_size);
1442 const unsigned block_size = 4 * lower_size / REG_SIZE;
1443 assert(inst->mlen != 0);
1444
1445 brw_push_insn_state(p);
1446 brw_set_default_exec_size(p, cvt(lower_size) - 1);
1447 brw_set_default_compression(p, lower_size > 8);
1448
1449 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1450 brw_set_default_group(p, inst->group + lower_size * i);
1451
1452 brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
1453 retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
1454
1455 brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
1456 block_size,
1457 inst->offset + block_size * REG_SIZE * i);
1458 }
1459
1460 brw_pop_insn_state(p);
1461 }
1462
1463 void
1464 fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
1465 {
1466 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1467 assert(inst->mlen != 0);
1468
1469 brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
1470 inst->exec_size / 8, inst->offset);
1471 }
1472
1473 void
1474 fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst)
1475 {
1476 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1477
1478 gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
1479 }
1480
1481 void
1482 fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
1483 struct brw_reg dst,
1484 struct brw_reg index,
1485 struct brw_reg offset)
1486 {
1487 assert(type_sz(dst.type) == 4);
1488 assert(inst->mlen != 0);
1489
1490 assert(index.file == BRW_IMMEDIATE_VALUE &&
1491 index.type == BRW_REGISTER_TYPE_UD);
1492 uint32_t surf_index = index.ud;
1493
1494 assert(offset.file == BRW_IMMEDIATE_VALUE &&
1495 offset.type == BRW_REGISTER_TYPE_UD);
1496 uint32_t read_offset = offset.ud;
1497
1498 brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
1499 read_offset, surf_index);
1500 }
1501
1502 void
1503 fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
1504 struct brw_reg dst,
1505 struct brw_reg index,
1506 struct brw_reg payload)
1507 {
1508 assert(index.type == BRW_REGISTER_TYPE_UD);
1509 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1510 assert(type_sz(dst.type) == 4);
1511
1512 if (index.file == BRW_IMMEDIATE_VALUE) {
1513 const uint32_t surf_index = index.ud;
1514
1515 brw_push_insn_state(p);
1516 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1517 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1518 brw_pop_insn_state(p);
1519
1520 brw_inst_set_sfid(devinfo, send, GEN6_SFID_DATAPORT_CONSTANT_CACHE);
1521 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
1522 brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
1523 brw_set_desc(p, send,
1524 brw_message_desc(devinfo, 1, DIV_ROUND_UP(inst->size_written,
1525 REG_SIZE), true) |
1526 brw_dp_read_desc(devinfo, surf_index,
1527 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1528 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1529 BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1530
1531 } else {
1532 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1533
1534 brw_push_insn_state(p);
1535 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1536
1537 /* a0.0 = surf_index & 0xff */
1538 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1539 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1540 brw_set_dest(p, insn_and, addr);
1541 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1542 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1543
1544 /* dst = send(payload, a0.0 | <descriptor>) */
1545 brw_send_indirect_message(
1546 p, GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1547 retype(dst, BRW_REGISTER_TYPE_UD),
1548 retype(payload, BRW_REGISTER_TYPE_UD), addr,
1549 brw_message_desc(devinfo, 1,
1550 DIV_ROUND_UP(inst->size_written, REG_SIZE), true) |
1551 brw_dp_read_desc(devinfo, 0 /* surface */,
1552 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1553 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1554 BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1555
1556 brw_pop_insn_state(p);
1557 }
1558 }
1559
1560 void
1561 fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst,
1562 struct brw_reg dst,
1563 struct brw_reg index)
1564 {
1565 assert(devinfo->gen < 7); /* Should use the gen7 variant. */
1566 assert(inst->header_size != 0);
1567 assert(inst->mlen);
1568
1569 assert(index.file == BRW_IMMEDIATE_VALUE &&
1570 index.type == BRW_REGISTER_TYPE_UD);
1571 uint32_t surf_index = index.ud;
1572
1573 uint32_t simd_mode, rlen, msg_type;
1574 if (inst->exec_size == 16) {
1575 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1576 rlen = 8;
1577 } else {
1578 assert(inst->exec_size == 8);
1579 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1580 rlen = 4;
1581 }
1582
1583 if (devinfo->gen >= 5)
1584 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1585 else {
1586 /* We always use the SIMD16 message so that we only have to load U, and
1587 * not V or R.
1588 */
1589 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1590 assert(inst->mlen == 3);
1591 assert(inst->size_written == 8 * REG_SIZE);
1592 rlen = 8;
1593 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1594 }
1595
1596 struct brw_reg header = brw_vec8_grf(0, 0);
1597 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1598
1599 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1600 brw_inst_set_compression(devinfo, send, false);
1601 brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1602 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1603 brw_set_src0(p, send, header);
1604 if (devinfo->gen < 6)
1605 brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
1606
1607 /* Our surface is set up as floats, regardless of what actual data is
1608 * stored in it.
1609 */
1610 uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1611 brw_set_desc(p, send,
1612 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size) |
1613 brw_sampler_desc(devinfo, surf_index,
1614 0, /* sampler (unused) */
1615 msg_type, simd_mode, return_format));
1616 }
1617
1618 void
1619 fs_generator::generate_varying_pull_constant_load_gen7(fs_inst *inst,
1620 struct brw_reg dst,
1621 struct brw_reg index,
1622 struct brw_reg offset)
1623 {
1624 assert(devinfo->gen >= 7);
1625 /* Varying-offset pull constant loads are treated as a normal expression on
1626 * gen7, so the fact that it's a send message is hidden at the IR level.
1627 */
1628 assert(inst->header_size == 0);
1629 assert(inst->mlen);
1630 assert(index.type == BRW_REGISTER_TYPE_UD);
1631
1632 uint32_t simd_mode, rlen;
1633 if (inst->exec_size == 16) {
1634 rlen = 8;
1635 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1636 } else {
1637 assert(inst->exec_size == 8);
1638 rlen = 4;
1639 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1640 }
1641
1642 if (index.file == BRW_IMMEDIATE_VALUE) {
1643
1644 uint32_t surf_index = index.ud;
1645
1646 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1647 brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1648 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1649 brw_set_src0(p, send, offset);
1650 brw_set_desc(p, send,
1651 brw_message_desc(devinfo, inst->mlen, rlen, false) |
1652 brw_sampler_desc(devinfo, surf_index,
1653 0, /* LD message ignores sampler unit */
1654 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1655 simd_mode, 0));
1656
1657 } else {
1658
1659 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1660
1661 brw_push_insn_state(p);
1662 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1663
1664 /* a0.0 = surf_index & 0xff */
1665 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1666 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1667 brw_set_dest(p, insn_and, addr);
1668 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1669 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1670
1671 brw_pop_insn_state(p);
1672
1673 /* dst = send(offset, a0.0 | <descriptor>) */
1674 brw_send_indirect_message(
1675 p, BRW_SFID_SAMPLER, retype(dst, BRW_REGISTER_TYPE_UW),
1676 offset, addr,
1677 brw_message_desc(devinfo, inst->mlen, rlen, false) |
1678 brw_sampler_desc(devinfo,
1679 0 /* surface */,
1680 0 /* sampler */,
1681 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1682 simd_mode,
1683 0));
1684 }
1685 }
1686
1687 void
1688 fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
1689 struct brw_reg dst,
1690 struct brw_reg src,
1691 struct brw_reg msg_data,
1692 unsigned msg_type)
1693 {
1694 const bool has_payload = inst->src[0].file != BAD_FILE;
1695 assert(msg_data.type == BRW_REGISTER_TYPE_UD);
1696 assert(inst->size_written % REG_SIZE == 0);
1697
1698 brw_pixel_interpolator_query(p,
1699 retype(dst, BRW_REGISTER_TYPE_UW),
1700 /* If we don't have a payload, what we send doesn't matter */
1701 has_payload ? src : brw_vec8_grf(0, 0),
1702 inst->pi_noperspective,
1703 msg_type,
1704 msg_data,
1705 has_payload ? 2 * inst->exec_size / 8 : 1,
1706 inst->size_written / REG_SIZE);
1707 }
1708
1709 /* Sets vstride=1, width=4, hstride=0 of register src1 during
1710 * the ADD instruction.
1711 */
1712 void
1713 fs_generator::generate_set_sample_id(fs_inst *inst,
1714 struct brw_reg dst,
1715 struct brw_reg src0,
1716 struct brw_reg src1)
1717 {
1718 assert(dst.type == BRW_REGISTER_TYPE_D ||
1719 dst.type == BRW_REGISTER_TYPE_UD);
1720 assert(src0.type == BRW_REGISTER_TYPE_D ||
1721 src0.type == BRW_REGISTER_TYPE_UD);
1722
1723 const struct brw_reg reg = stride(src1, 1, 4, 0);
1724 const unsigned lower_size = MIN2(inst->exec_size,
1725 devinfo->gen >= 8 ? 16 : 8);
1726
1727 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1728 brw_inst *insn = brw_ADD(p, offset(dst, i * lower_size / 8),
1729 offset(src0, (src0.vstride == 0 ? 0 : (1 << (src0.vstride - 1)) *
1730 (i * lower_size / (1 << src0.width))) *
1731 type_sz(src0.type) / REG_SIZE),
1732 suboffset(reg, i * lower_size / 4));
1733 brw_inst_set_exec_size(devinfo, insn, cvt(lower_size) - 1);
1734 brw_inst_set_group(devinfo, insn, inst->group + lower_size * i);
1735 brw_inst_set_compression(devinfo, insn, lower_size > 8);
1736 }
1737 }
1738
1739 void
1740 fs_generator::generate_pack_half_2x16_split(fs_inst *,
1741 struct brw_reg dst,
1742 struct brw_reg x,
1743 struct brw_reg y)
1744 {
1745 assert(devinfo->gen >= 7);
1746 assert(dst.type == BRW_REGISTER_TYPE_UD);
1747 assert(x.type == BRW_REGISTER_TYPE_F);
1748 assert(y.type == BRW_REGISTER_TYPE_F);
1749
1750 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
1751 *
1752 * Because this instruction does not have a 16-bit floating-point type,
1753 * the destination data type must be Word (W).
1754 *
1755 * The destination must be DWord-aligned and specify a horizontal stride
1756 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
1757 * each destination channel and the upper word is not modified.
1758 */
1759 struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
1760
1761 /* Give each 32-bit channel of dst the form below, where "." means
1762 * unchanged.
1763 * 0x....hhhh
1764 */
1765 brw_F32TO16(p, dst_w, y);
1766
1767 /* Now the form:
1768 * 0xhhhh0000
1769 */
1770 brw_SHL(p, dst, dst, brw_imm_ud(16u));
1771
1772 /* And, finally the form of packHalf2x16's output:
1773 * 0xhhhhllll
1774 */
1775 brw_F32TO16(p, dst_w, x);
1776 }
1777
1778 void
1779 fs_generator::generate_shader_time_add(fs_inst *,
1780 struct brw_reg payload,
1781 struct brw_reg offset,
1782 struct brw_reg value)
1783 {
1784 assert(devinfo->gen >= 7);
1785 brw_push_insn_state(p);
1786 brw_set_default_mask_control(p, true);
1787
1788 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1789 struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
1790 offset.type);
1791 struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
1792 value.type);
1793
1794 assert(offset.file == BRW_IMMEDIATE_VALUE);
1795 if (value.file == BRW_GENERAL_REGISTER_FILE) {
1796 value.width = BRW_WIDTH_1;
1797 value.hstride = BRW_HORIZONTAL_STRIDE_0;
1798 value.vstride = BRW_VERTICAL_STRIDE_0;
1799 } else {
1800 assert(value.file == BRW_IMMEDIATE_VALUE);
1801 }
1802
1803 /* Trying to deal with setup of the params from the IR is crazy in the FS8
1804 * case, and we don't really care about squeezing every bit of performance
1805 * out of this path, so we just emit the MOVs from here.
1806 */
1807 brw_MOV(p, payload_offset, offset);
1808 brw_MOV(p, payload_value, value);
1809 brw_shader_time_add(p, payload,
1810 prog_data->binding_table.shader_time_start);
1811 brw_pop_insn_state(p);
1812 }
1813
1814 void
1815 fs_generator::enable_debug(const char *shader_name)
1816 {
1817 debug_flag = true;
1818 this->shader_name = shader_name;
1819 }
1820
1821 int
1822 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width)
1823 {
1824 /* align to 64 byte boundary. */
1825 while (p->next_insn_offset % 64)
1826 brw_NOP(p);
1827
1828 this->dispatch_width = dispatch_width;
1829
1830 int start_offset = p->next_insn_offset;
1831 int spill_count = 0, fill_count = 0;
1832 int loop_count = 0;
1833
1834 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1835
1836 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1837 struct brw_reg src[4], dst;
1838 unsigned int last_insn_offset = p->next_insn_offset;
1839 bool multiple_instructions_emitted = false;
1840
1841 /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
1842 * "Register Region Restrictions" section: for BDW, SKL:
1843 *
1844 * "A POW/FDIV operation must not be followed by an instruction
1845 * that requires two destination registers."
1846 *
1847 * The documentation is often lacking annotations for Atom parts,
1848 * and empirically this affects CHV as well.
1849 */
1850 if (devinfo->gen >= 8 &&
1851 devinfo->gen <= 9 &&
1852 p->nr_insn > 1 &&
1853 brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
1854 brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
1855 inst->dst.component_size(inst->exec_size) > REG_SIZE) {
1856 brw_NOP(p);
1857 last_insn_offset = p->next_insn_offset;
1858 }
1859
1860 if (unlikely(debug_flag))
1861 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1862
1863 /* If the instruction writes to more than one register, it needs to be
1864 * explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
1865 * hardware figures out by itself what the right compression mode is,
1866 * but we still need to know whether the instruction is compressed to
1867 * set up the source register regions appropriately.
1868 *
1869 * XXX - This is wrong for instructions that write a single register but
1870 * read more than one which should strictly speaking be treated as
1871 * compressed. For instructions that don't write any registers it
1872 * relies on the destination being a null register of the correct
1873 * type and regioning so the instruction is considered compressed
1874 * or not accordingly.
1875 */
1876 const bool compressed =
1877 inst->dst.component_size(inst->exec_size) > REG_SIZE;
1878 brw_set_default_compression(p, compressed);
1879 brw_set_default_group(p, inst->group);
1880
1881 for (unsigned int i = 0; i < inst->sources; i++) {
1882 src[i] = brw_reg_from_fs_reg(devinfo, inst,
1883 &inst->src[i], compressed);
1884 /* The accumulator result appears to get used for the
1885 * conditional modifier generation. When negating a UD
1886 * value, there is a 33rd bit generated for the sign in the
1887 * accumulator value, so now you can't check, for example,
1888 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
1889 */
1890 assert(!inst->conditional_mod ||
1891 inst->src[i].type != BRW_REGISTER_TYPE_UD ||
1892 !inst->src[i].negate);
1893 }
1894 dst = brw_reg_from_fs_reg(devinfo, inst,
1895 &inst->dst, compressed);
1896
1897 brw_set_default_access_mode(p, BRW_ALIGN_1);
1898 brw_set_default_predicate_control(p, inst->predicate);
1899 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1900 /* On gen7 and above, hardware automatically adds the group onto the
1901 * flag subregister number. On Sandy Bridge and older, we have to do it
1902 * ourselves.
1903 */
1904 const unsigned flag_subreg = inst->flag_subreg +
1905 (devinfo->gen >= 7 ? 0 : inst->group / 16);
1906 brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2);
1907 brw_set_default_saturate(p, inst->saturate);
1908 brw_set_default_mask_control(p, inst->force_writemask_all);
1909 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1910
1911 unsigned exec_size = inst->exec_size;
1912 if (devinfo->gen == 7 && !devinfo->is_haswell &&
1913 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
1914 exec_size *= 2;
1915 }
1916
1917 brw_set_default_exec_size(p, cvt(exec_size) - 1);
1918
1919 assert(inst->force_writemask_all || inst->exec_size >= 4);
1920 assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
1921 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1922 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1923
1924 switch (inst->opcode) {
1925 case BRW_OPCODE_MOV:
1926 brw_MOV(p, dst, src[0]);
1927 break;
1928 case BRW_OPCODE_ADD:
1929 brw_ADD(p, dst, src[0], src[1]);
1930 break;
1931 case BRW_OPCODE_MUL:
1932 brw_MUL(p, dst, src[0], src[1]);
1933 break;
1934 case BRW_OPCODE_AVG:
1935 brw_AVG(p, dst, src[0], src[1]);
1936 break;
1937 case BRW_OPCODE_MACH:
1938 brw_MACH(p, dst, src[0], src[1]);
1939 break;
1940
1941 case BRW_OPCODE_LINE:
1942 brw_LINE(p, dst, src[0], src[1]);
1943 break;
1944
1945 case BRW_OPCODE_MAD:
1946 assert(devinfo->gen >= 6);
1947 if (devinfo->gen < 10)
1948 brw_set_default_access_mode(p, BRW_ALIGN_16);
1949 brw_MAD(p, dst, src[0], src[1], src[2]);
1950 break;
1951
1952 case BRW_OPCODE_LRP:
1953 assert(devinfo->gen >= 6 && devinfo->gen <= 10);
1954 if (devinfo->gen < 10)
1955 brw_set_default_access_mode(p, BRW_ALIGN_16);
1956 brw_LRP(p, dst, src[0], src[1], src[2]);
1957 break;
1958
1959 case BRW_OPCODE_FRC:
1960 brw_FRC(p, dst, src[0]);
1961 break;
1962 case BRW_OPCODE_RNDD:
1963 brw_RNDD(p, dst, src[0]);
1964 break;
1965 case BRW_OPCODE_RNDE:
1966 brw_RNDE(p, dst, src[0]);
1967 break;
1968 case BRW_OPCODE_RNDZ:
1969 brw_RNDZ(p, dst, src[0]);
1970 break;
1971
1972 case BRW_OPCODE_AND:
1973 brw_AND(p, dst, src[0], src[1]);
1974 break;
1975 case BRW_OPCODE_OR:
1976 brw_OR(p, dst, src[0], src[1]);
1977 break;
1978 case BRW_OPCODE_XOR:
1979 brw_XOR(p, dst, src[0], src[1]);
1980 break;
1981 case BRW_OPCODE_NOT:
1982 brw_NOT(p, dst, src[0]);
1983 break;
1984 case BRW_OPCODE_ASR:
1985 brw_ASR(p, dst, src[0], src[1]);
1986 break;
1987 case BRW_OPCODE_SHR:
1988 brw_SHR(p, dst, src[0], src[1]);
1989 break;
1990 case BRW_OPCODE_SHL:
1991 brw_SHL(p, dst, src[0], src[1]);
1992 break;
1993 case BRW_OPCODE_F32TO16:
1994 assert(devinfo->gen >= 7);
1995 brw_F32TO16(p, dst, src[0]);
1996 break;
1997 case BRW_OPCODE_F16TO32:
1998 assert(devinfo->gen >= 7);
1999 brw_F16TO32(p, dst, src[0]);
2000 break;
2001 case BRW_OPCODE_CMP:
2002 if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell &&
2003 dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
2004 /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
2005 * implemented in the compiler is not sufficient. Overriding the
2006 * type when the destination is the null register is necessary but
2007 * not sufficient by itself.
2008 */
2009 assert(dst.nr == BRW_ARF_NULL);
2010 dst.type = BRW_REGISTER_TYPE_D;
2011 }
2012 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
2013 break;
2014 case BRW_OPCODE_SEL:
2015 brw_SEL(p, dst, src[0], src[1]);
2016 break;
2017 case BRW_OPCODE_CSEL:
2018 assert(devinfo->gen >= 8);
2019 if (devinfo->gen < 10)
2020 brw_set_default_access_mode(p, BRW_ALIGN_16);
2021 brw_CSEL(p, dst, src[0], src[1], src[2]);
2022 break;
2023 case BRW_OPCODE_BFREV:
2024 assert(devinfo->gen >= 7);
2025 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
2026 retype(src[0], BRW_REGISTER_TYPE_UD));
2027 break;
2028 case BRW_OPCODE_FBH:
2029 assert(devinfo->gen >= 7);
2030 brw_FBH(p, retype(dst, src[0].type), src[0]);
2031 break;
2032 case BRW_OPCODE_FBL:
2033 assert(devinfo->gen >= 7);
2034 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
2035 retype(src[0], BRW_REGISTER_TYPE_UD));
2036 break;
2037 case BRW_OPCODE_LZD:
2038 brw_LZD(p, dst, src[0]);
2039 break;
2040 case BRW_OPCODE_CBIT:
2041 assert(devinfo->gen >= 7);
2042 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
2043 retype(src[0], BRW_REGISTER_TYPE_UD));
2044 break;
2045 case BRW_OPCODE_ADDC:
2046 assert(devinfo->gen >= 7);
2047 brw_ADDC(p, dst, src[0], src[1]);
2048 break;
2049 case BRW_OPCODE_SUBB:
2050 assert(devinfo->gen >= 7);
2051 brw_SUBB(p, dst, src[0], src[1]);
2052 break;
2053 case BRW_OPCODE_MAC:
2054 brw_MAC(p, dst, src[0], src[1]);
2055 break;
2056
2057 case BRW_OPCODE_BFE:
2058 assert(devinfo->gen >= 7);
2059 if (devinfo->gen < 10)
2060 brw_set_default_access_mode(p, BRW_ALIGN_16);
2061 brw_BFE(p, dst, src[0], src[1], src[2]);
2062 break;
2063
2064 case BRW_OPCODE_BFI1:
2065 assert(devinfo->gen >= 7);
2066 brw_BFI1(p, dst, src[0], src[1]);
2067 break;
2068 case BRW_OPCODE_BFI2:
2069 assert(devinfo->gen >= 7);
2070 if (devinfo->gen < 10)
2071 brw_set_default_access_mode(p, BRW_ALIGN_16);
2072 brw_BFI2(p, dst, src[0], src[1], src[2]);
2073 break;
2074
2075 case BRW_OPCODE_IF:
2076 if (inst->src[0].file != BAD_FILE) {
2077 /* The instruction has an embedded compare (only allowed on gen6) */
2078 assert(devinfo->gen == 6);
2079 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
2080 } else {
2081 brw_IF(p, brw_get_default_exec_size(p));
2082 }
2083 break;
2084
2085 case BRW_OPCODE_ELSE:
2086 brw_ELSE(p);
2087 break;
2088 case BRW_OPCODE_ENDIF:
2089 brw_ENDIF(p);
2090 break;
2091
2092 case BRW_OPCODE_DO:
2093 brw_DO(p, brw_get_default_exec_size(p));
2094 break;
2095
2096 case BRW_OPCODE_BREAK:
2097 brw_BREAK(p);
2098 break;
2099 case BRW_OPCODE_CONTINUE:
2100 brw_CONT(p);
2101 break;
2102
2103 case BRW_OPCODE_WHILE:
2104 brw_WHILE(p);
2105 loop_count++;
2106 break;
2107
2108 case SHADER_OPCODE_RCP:
2109 case SHADER_OPCODE_RSQ:
2110 case SHADER_OPCODE_SQRT:
2111 case SHADER_OPCODE_EXP2:
2112 case SHADER_OPCODE_LOG2:
2113 case SHADER_OPCODE_SIN:
2114 case SHADER_OPCODE_COS:
2115 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2116 if (devinfo->gen >= 6) {
2117 assert(inst->mlen == 0);
2118 assert(devinfo->gen >= 7 || inst->exec_size == 8);
2119 gen6_math(p, dst, brw_math_function(inst->opcode),
2120 src[0], brw_null_reg());
2121 } else {
2122 assert(inst->mlen >= 1);
2123 assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8);
2124 gen4_math(p, dst,
2125 brw_math_function(inst->opcode),
2126 inst->base_mrf, src[0],
2127 BRW_MATH_PRECISION_FULL);
2128 }
2129 break;
2130 case SHADER_OPCODE_INT_QUOTIENT:
2131 case SHADER_OPCODE_INT_REMAINDER:
2132 case SHADER_OPCODE_POW:
2133 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2134 if (devinfo->gen >= 6) {
2135 assert(inst->mlen == 0);
2136 assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
2137 inst->exec_size == 8);
2138 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
2139 } else {
2140 assert(inst->mlen >= 1);
2141 assert(inst->exec_size == 8);
2142 gen4_math(p, dst, brw_math_function(inst->opcode),
2143 inst->base_mrf, src[0],
2144 BRW_MATH_PRECISION_FULL);
2145 }
2146 break;
2147 case FS_OPCODE_LINTERP:
2148 multiple_instructions_emitted = generate_linterp(inst, dst, src);
2149 break;
2150 case FS_OPCODE_PIXEL_X:
2151 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2152 src[0].subnr = 0 * type_sz(src[0].type);
2153 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2154 break;
2155 case FS_OPCODE_PIXEL_Y:
2156 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2157 src[0].subnr = 4 * type_sz(src[0].type);
2158 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2159 break;
2160
2161 case SHADER_OPCODE_SEND:
2162 generate_send(inst, dst, src[0], src[1], src[2],
2163 inst->ex_mlen > 0 ? src[3] : brw_null_reg());
2164 break;
2165
2166 case SHADER_OPCODE_GET_BUFFER_SIZE:
2167 generate_get_buffer_size(inst, dst, src[0], src[1]);
2168 break;
2169 case SHADER_OPCODE_TEX:
2170 case FS_OPCODE_TXB:
2171 case SHADER_OPCODE_TXD:
2172 case SHADER_OPCODE_TXF:
2173 case SHADER_OPCODE_TXF_LZ:
2174 case SHADER_OPCODE_TXF_CMS:
2175 case SHADER_OPCODE_TXF_CMS_W:
2176 case SHADER_OPCODE_TXF_UMS:
2177 case SHADER_OPCODE_TXF_MCS:
2178 case SHADER_OPCODE_TXL:
2179 case SHADER_OPCODE_TXL_LZ:
2180 case SHADER_OPCODE_TXS:
2181 case SHADER_OPCODE_LOD:
2182 case SHADER_OPCODE_TG4:
2183 case SHADER_OPCODE_TG4_OFFSET:
2184 case SHADER_OPCODE_SAMPLEINFO:
2185 generate_tex(inst, dst, src[0], src[1], src[2]);
2186 break;
2187
2188 case SHADER_OPCODE_IMAGE_SIZE:
2189 generate_tex(inst, dst, src[0], src[1], brw_imm_ud(0));
2190 break;
2191
2192 case FS_OPCODE_DDX_COARSE:
2193 case FS_OPCODE_DDX_FINE:
2194 generate_ddx(inst, dst, src[0]);
2195 break;
2196 case FS_OPCODE_DDY_COARSE:
2197 case FS_OPCODE_DDY_FINE:
2198 generate_ddy(inst, dst, src[0]);
2199 break;
2200
2201 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2202 generate_scratch_write(inst, src[0]);
2203 spill_count++;
2204 break;
2205
2206 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2207 generate_scratch_read(inst, dst);
2208 fill_count++;
2209 break;
2210
2211 case SHADER_OPCODE_GEN7_SCRATCH_READ:
2212 generate_scratch_read_gen7(inst, dst);
2213 fill_count++;
2214 break;
2215
2216 case SHADER_OPCODE_MOV_INDIRECT:
2217 generate_mov_indirect(inst, dst, src[0], src[1]);
2218 break;
2219
2220 case SHADER_OPCODE_URB_READ_SIMD8:
2221 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
2222 generate_urb_read(inst, dst, src[0]);
2223 break;
2224
2225 case SHADER_OPCODE_URB_WRITE_SIMD8:
2226 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
2227 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
2228 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
2229 generate_urb_write(inst, src[0]);
2230 break;
2231
2232 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
2233 assert(inst->force_writemask_all);
2234 generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
2235 break;
2236
2237 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
2238 assert(inst->force_writemask_all);
2239 generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2240 break;
2241
2242 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
2243 generate_varying_pull_constant_load_gen4(inst, dst, src[0]);
2244 break;
2245
2246 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
2247 generate_varying_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2248 break;
2249
2250 case FS_OPCODE_REP_FB_WRITE:
2251 case FS_OPCODE_FB_WRITE:
2252 generate_fb_write(inst, src[0]);
2253 break;
2254
2255 case FS_OPCODE_FB_READ:
2256 generate_fb_read(inst, dst, src[0]);
2257 break;
2258
2259 case FS_OPCODE_DISCARD_JUMP:
2260 generate_discard_jump(inst);
2261 break;
2262
2263 case SHADER_OPCODE_SHADER_TIME_ADD:
2264 generate_shader_time_add(inst, src[0], src[1], src[2]);
2265 break;
2266
2267 case SHADER_OPCODE_MEMORY_FENCE:
2268 brw_memory_fence(p, dst, BRW_OPCODE_SEND);
2269 break;
2270
2271 case SHADER_OPCODE_INTERLOCK:
2272 /* The interlock is basically a memory fence issued via sendc */
2273 brw_memory_fence(p, dst, BRW_OPCODE_SENDC);
2274 break;
2275
2276 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
2277 const struct brw_reg mask =
2278 brw_stage_has_packed_dispatch(devinfo, stage,
2279 prog_data) ? brw_imm_ud(~0u) :
2280 stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
2281 brw_dmask_reg();
2282 brw_find_live_channel(p, dst, mask);
2283 break;
2284 }
2285
2286 case SHADER_OPCODE_BROADCAST:
2287 assert(inst->force_writemask_all);
2288 brw_broadcast(p, dst, src[0], src[1]);
2289 break;
2290
2291 case SHADER_OPCODE_SHUFFLE:
2292 generate_shuffle(inst, dst, src[0], src[1]);
2293 break;
2294
2295 case SHADER_OPCODE_SEL_EXEC:
2296 assert(inst->force_writemask_all);
2297 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2298 brw_MOV(p, dst, src[1]);
2299 brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2300 brw_MOV(p, dst, src[0]);
2301 break;
2302
2303 case SHADER_OPCODE_QUAD_SWIZZLE:
2304 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2305 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2306 generate_quad_swizzle(inst, dst, src[0], src[1].ud);
2307 break;
2308
2309 case SHADER_OPCODE_CLUSTER_BROADCAST: {
2310 assert(src[0].type == dst.type);
2311 assert(!src[0].negate && !src[0].abs);
2312 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2313 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2314 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2315 assert(src[2].type == BRW_REGISTER_TYPE_UD);
2316 const unsigned component = src[1].ud;
2317 const unsigned cluster_size = src[2].ud;
2318 struct brw_reg strided = stride(suboffset(src[0], component),
2319 cluster_size, cluster_size, 0);
2320 if (type_sz(src[0].type) > 4 &&
2321 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
2322 /* IVB has an issue (which we found empirically) where it reads
2323 * two address register components per channel for indirectly
2324 * addressed 64-bit sources.
2325 *
2326 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
2327 *
2328 * "When source or destination datatype is 64b or operation is
2329 * integer DWord multiply, indirect addressing must not be
2330 * used."
2331 *
2332 * To work around both of these, we do two integer MOVs insead of
2333 * one 64-bit MOV. Because no double value should ever cross a
2334 * register boundary, it's safe to use the immediate offset in the
2335 * indirect here to handle adding 4 bytes to the offset and avoid
2336 * the extra ADD to the register file.
2337 */
2338 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
2339 subscript(strided, BRW_REGISTER_TYPE_D, 0));
2340 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
2341 subscript(strided, BRW_REGISTER_TYPE_D, 1));
2342 } else {
2343 brw_MOV(p, dst, strided);
2344 }
2345 break;
2346 }
2347
2348 case FS_OPCODE_SET_SAMPLE_ID:
2349 generate_set_sample_id(inst, dst, src[0], src[1]);
2350 break;
2351
2352 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
2353 generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
2354 break;
2355
2356 case FS_OPCODE_PLACEHOLDER_HALT:
2357 /* This is the place where the final HALT needs to be inserted if
2358 * we've emitted any discards. If not, this will emit no code.
2359 */
2360 if (!patch_discard_jumps_to_fb_writes()) {
2361 if (unlikely(debug_flag)) {
2362 disasm_info->use_tail = true;
2363 }
2364 }
2365 break;
2366
2367 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
2368 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2369 GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
2370 break;
2371
2372 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
2373 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2374 GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
2375 break;
2376
2377 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
2378 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2379 GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
2380 break;
2381
2382 case CS_OPCODE_CS_TERMINATE:
2383 generate_cs_terminate(inst, src[0]);
2384 break;
2385
2386 case SHADER_OPCODE_BARRIER:
2387 generate_barrier(inst, src[0]);
2388 break;
2389
2390 case BRW_OPCODE_DIM:
2391 assert(devinfo->is_haswell);
2392 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2393 assert(dst.type == BRW_REGISTER_TYPE_DF);
2394 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2395 break;
2396
2397 case SHADER_OPCODE_RND_MODE:
2398 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2399 brw_rounding_mode(p, (brw_rnd_mode) src[0].d);
2400 break;
2401
2402 default:
2403 unreachable("Unsupported opcode");
2404
2405 case SHADER_OPCODE_LOAD_PAYLOAD:
2406 unreachable("Should be lowered by lower_load_payload()");
2407 }
2408
2409 if (multiple_instructions_emitted)
2410 continue;
2411
2412 if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2413 assert(p->next_insn_offset == last_insn_offset + 16 ||
2414 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2415 "emitting more than 1 instruction");
2416
2417 brw_inst *last = &p->store[last_insn_offset / 16];
2418
2419 if (inst->conditional_mod)
2420 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2421 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2422 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2423 }
2424 }
2425
2426 brw_set_uip_jip(p, start_offset);
2427
2428 /* end of program sentinel */
2429 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2430
2431 #ifndef NDEBUG
2432 bool validated =
2433 #else
2434 if (unlikely(debug_flag))
2435 #endif
2436 brw_validate_instructions(devinfo, p->store,
2437 start_offset,
2438 p->next_insn_offset,
2439 disasm_info);
2440
2441 int before_size = p->next_insn_offset - start_offset;
2442 brw_compact_instructions(p, start_offset, disasm_info);
2443 int after_size = p->next_insn_offset - start_offset;
2444
2445 if (unlikely(debug_flag)) {
2446 fprintf(stderr, "Native code for %s\n"
2447 "SIMD%d shader: %d instructions. %d loops. %u cycles. %d:%d spills:fills. Promoted %u constants. Compacted %d to %d"
2448 " bytes (%.0f%%)\n",
2449 shader_name, dispatch_width, before_size / 16, loop_count, cfg->cycle_count,
2450 spill_count, fill_count, promoted_constants, before_size, after_size,
2451 100.0f * (before_size - after_size) / before_size);
2452
2453 dump_assembly(p->store, disasm_info);
2454 }
2455 ralloc_free(disasm_info);
2456 assert(validated);
2457
2458 compiler->shader_debug_log(log_data,
2459 "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
2460 "%d:%d spills:fills, Promoted %u constants, "
2461 "compacted %d to %d bytes.",
2462 _mesa_shader_stage_to_abbrev(stage),
2463 dispatch_width, before_size / 16,
2464 loop_count, cfg->cycle_count, spill_count,
2465 fill_count, promoted_constants, before_size,
2466 after_size);
2467
2468 return start_offset;
2469 }
2470
2471 const unsigned *
2472 fs_generator::get_assembly()
2473 {
2474 return brw_get_program(p, &prog_data->program_size);
2475 }