intel/fs: Replace the CINTERP opcode with a simple MOV
[mesa.git] / src / intel / compiler / brw_fs_generator.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_generator.cpp
25 *
26 * This file supports generating code from the FS LIR to the actual
27 * native instructions.
28 */
29
30 #include "brw_eu.h"
31 #include "brw_fs.h"
32 #include "brw_cfg.h"
33
34 static enum brw_reg_file
35 brw_file_from_reg(fs_reg *reg)
36 {
37 switch (reg->file) {
38 case ARF:
39 return BRW_ARCHITECTURE_REGISTER_FILE;
40 case FIXED_GRF:
41 case VGRF:
42 return BRW_GENERAL_REGISTER_FILE;
43 case MRF:
44 return BRW_MESSAGE_REGISTER_FILE;
45 case IMM:
46 return BRW_IMMEDIATE_VALUE;
47 case BAD_FILE:
48 case ATTR:
49 case UNIFORM:
50 unreachable("not reached");
51 }
52 return BRW_ARCHITECTURE_REGISTER_FILE;
53 }
54
55 static struct brw_reg
56 brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst,
57 fs_reg *reg, bool compressed)
58 {
59 struct brw_reg brw_reg;
60
61 switch (reg->file) {
62 case MRF:
63 assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
64 /* Fallthrough */
65 case VGRF:
66 if (reg->stride == 0) {
67 brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
68 } else {
69 /* From the Haswell PRM:
70 *
71 * "VertStride must be used to cross GRF register boundaries. This
72 * rule implies that elements within a 'Width' cannot cross GRF
73 * boundaries."
74 *
75 * The maximum width value that could satisfy this restriction is:
76 */
77 const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
78
79 /* Because the hardware can only split source regions at a whole
80 * multiple of width during decompression (i.e. vertically), clamp
81 * the value obtained above to the physical execution size of a
82 * single decompressed chunk of the instruction:
83 */
84 const unsigned phys_width = compressed ? inst->exec_size / 2 :
85 inst->exec_size;
86
87 /* XXX - The equation above is strictly speaking not correct on
88 * hardware that supports unbalanced GRF writes -- On Gen9+
89 * each decompressed chunk of the instruction may have a
90 * different execution size when the number of components
91 * written to each destination GRF is not the same.
92 */
93 const unsigned width = MIN2(reg_width, phys_width);
94 brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
95 brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
96
97 if (devinfo->gen == 7 && !devinfo->is_haswell) {
98 /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
99 * "Each DF (Double Float) operand uses an element size of 4 rather
100 * than 8 and all regioning parameters are twice what the values
101 * would be based on the true element size: ExecSize, Width,
102 * HorzStride, and VertStride. Each DF operand uses a pair of
103 * channels and all masking and swizzing should be adjusted
104 * appropriately."
105 *
106 * From the IvyBridge PRM (Special Requirements for Handling Double
107 * Precision Data Types, page 71):
108 * "In Align1 mode, all regioning parameters like stride, execution
109 * size, and width must use the syntax of a pair of packed
110 * floats. The offsets for these data types must be 64-bit
111 * aligned. The execution size and regioning parameters are in terms
112 * of floats."
113 *
114 * Summarized: when handling DF-typed arguments, ExecSize,
115 * VertStride, and Width must be doubled.
116 *
117 * It applies to BayTrail too.
118 */
119 if (type_sz(reg->type) == 8) {
120 brw_reg.width++;
121 if (brw_reg.vstride > 0)
122 brw_reg.vstride++;
123 assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
124 }
125
126 /* When converting from DF->F, we set the destination stride to 2
127 * because each d2f conversion implicitly writes 2 floats, being
128 * the first one the converted value. IVB/BYT actually writes two
129 * F components per SIMD channel, and every other component is
130 * filled with garbage.
131 */
132 if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
133 type_sz(inst->dst.type) < 8) {
134 assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
135 brw_reg.hstride--;
136 }
137 }
138 }
139
140 brw_reg = retype(brw_reg, reg->type);
141 brw_reg = byte_offset(brw_reg, reg->offset);
142 brw_reg.abs = reg->abs;
143 brw_reg.negate = reg->negate;
144 break;
145 case ARF:
146 case FIXED_GRF:
147 case IMM:
148 assert(reg->offset == 0);
149 brw_reg = reg->as_brw_reg();
150 break;
151 case BAD_FILE:
152 /* Probably unused. */
153 brw_reg = brw_null_reg();
154 break;
155 case ATTR:
156 case UNIFORM:
157 unreachable("not reached");
158 }
159
160 /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
161 * region, but on IVB and BYT DF regions must be programmed in terms of
162 * floats. A <0,2,1> region accomplishes this.
163 */
164 if (devinfo->gen == 7 && !devinfo->is_haswell &&
165 type_sz(reg->type) == 8 &&
166 brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
167 brw_reg.width == BRW_WIDTH_1 &&
168 brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
169 brw_reg.width = BRW_WIDTH_2;
170 brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
171 }
172
173 return brw_reg;
174 }
175
176 fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
177 void *mem_ctx,
178 const void *key,
179 struct brw_stage_prog_data *prog_data,
180 unsigned promoted_constants,
181 bool runtime_check_aads_emit,
182 gl_shader_stage stage)
183
184 : compiler(compiler), log_data(log_data),
185 devinfo(compiler->devinfo), key(key),
186 prog_data(prog_data),
187 promoted_constants(promoted_constants),
188 runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
189 stage(stage), mem_ctx(mem_ctx)
190 {
191 p = rzalloc(mem_ctx, struct brw_codegen);
192 brw_init_codegen(devinfo, p, mem_ctx);
193
194 /* In the FS code generator, we are very careful to ensure that we always
195 * set the right execution size so we don't need the EU code to "help" us
196 * by trying to infer it. Sometimes, it infers the wrong thing.
197 */
198 p->automatic_exec_sizes = false;
199 }
200
201 fs_generator::~fs_generator()
202 {
203 }
204
205 class ip_record : public exec_node {
206 public:
207 DECLARE_RALLOC_CXX_OPERATORS(ip_record)
208
209 ip_record(int ip)
210 {
211 this->ip = ip;
212 }
213
214 int ip;
215 };
216
217 bool
218 fs_generator::patch_discard_jumps_to_fb_writes()
219 {
220 if (devinfo->gen < 6 || this->discard_halt_patches.is_empty())
221 return false;
222
223 int scale = brw_jump_scale(p->devinfo);
224
225 /* There is a somewhat strange undocumented requirement of using
226 * HALT, according to the simulator. If some channel has HALTed to
227 * a particular UIP, then by the end of the program, every channel
228 * must have HALTed to that UIP. Furthermore, the tracking is a
229 * stack, so you can't do the final halt of a UIP after starting
230 * halting to a new UIP.
231 *
232 * Symptoms of not emitting this instruction on actual hardware
233 * included GPU hangs and sparkly rendering on the piglit discard
234 * tests.
235 */
236 brw_inst *last_halt = gen6_HALT(p);
237 brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
238 brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
239
240 int ip = p->nr_insn;
241
242 foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
243 brw_inst *patch = &p->store[patch_ip->ip];
244
245 assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
246 /* HALT takes a half-instruction distance from the pre-incremented IP. */
247 brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
248 }
249
250 this->discard_halt_patches.make_empty();
251 return true;
252 }
253
254 void
255 fs_generator::fire_fb_write(fs_inst *inst,
256 struct brw_reg payload,
257 struct brw_reg implied_header,
258 GLuint nr)
259 {
260 uint32_t msg_control;
261
262 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
263
264 if (devinfo->gen < 6) {
265 brw_push_insn_state(p);
266 brw_set_default_exec_size(p, BRW_EXECUTE_8);
267 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
268 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
269 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
270 brw_MOV(p, offset(payload, 1), brw_vec8_grf(1, 0));
271 brw_pop_insn_state(p);
272 }
273
274 if (inst->opcode == FS_OPCODE_REP_FB_WRITE)
275 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
276 else if (prog_data->dual_src_blend) {
277 if (!inst->group)
278 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
279 else
280 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
281 } else if (inst->exec_size == 16)
282 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
283 else
284 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
285
286 /* We assume render targets start at 0, because headerless FB write
287 * messages set "Render Target Index" to 0. Using a different binding
288 * table index would make it impossible to use headerless messages.
289 */
290 const uint32_t surf_index = inst->target;
291
292 bool last_render_target = inst->eot ||
293 (prog_data->dual_src_blend && dispatch_width == 16);
294
295
296 brw_fb_WRITE(p,
297 payload,
298 implied_header,
299 msg_control,
300 surf_index,
301 nr,
302 0,
303 inst->eot,
304 last_render_target,
305 inst->header_size != 0);
306
307 brw_mark_surface_used(&prog_data->base, surf_index);
308 }
309
310 void
311 fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
312 {
313 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
314 const brw_wm_prog_key * const key = (brw_wm_prog_key * const) this->key;
315 struct brw_reg implied_header;
316
317 if (devinfo->gen < 8 && !devinfo->is_haswell) {
318 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
319 }
320
321 if (inst->base_mrf >= 0)
322 payload = brw_message_reg(inst->base_mrf);
323
324 /* Header is 2 regs, g0 and g1 are the contents. g0 will be implied
325 * move, here's g1.
326 */
327 if (inst->header_size != 0) {
328 brw_push_insn_state(p);
329 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
330 brw_set_default_exec_size(p, BRW_EXECUTE_1);
331 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
332 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
333 brw_set_default_flag_reg(p, 0, 0);
334
335 /* On HSW, the GPU will use the predicate on SENDC, unless the header is
336 * present.
337 */
338 if (prog_data->uses_kill) {
339 struct brw_reg pixel_mask;
340
341 if (devinfo->gen >= 6)
342 pixel_mask = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW);
343 else
344 pixel_mask = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
345
346 brw_MOV(p, pixel_mask, brw_flag_reg(0, 1));
347 }
348
349 if (devinfo->gen >= 6) {
350 brw_push_insn_state(p);
351 brw_set_default_exec_size(p, BRW_EXECUTE_16);
352 brw_set_default_compression_control(p, BRW_COMPRESSION_COMPRESSED);
353 brw_MOV(p,
354 retype(payload, BRW_REGISTER_TYPE_UD),
355 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
356 brw_pop_insn_state(p);
357
358 if (inst->target > 0 && key->replicate_alpha) {
359 /* Set "Source0 Alpha Present to RenderTarget" bit in message
360 * header.
361 */
362 brw_OR(p,
363 vec1(retype(payload, BRW_REGISTER_TYPE_UD)),
364 vec1(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)),
365 brw_imm_ud(0x1 << 11));
366 }
367
368 if (inst->target > 0) {
369 /* Set the render target index for choosing BLEND_STATE. */
370 brw_MOV(p, retype(vec1(suboffset(payload, 2)),
371 BRW_REGISTER_TYPE_UD),
372 brw_imm_ud(inst->target));
373 }
374
375 /* Set computes stencil to render target */
376 if (prog_data->computed_stencil) {
377 brw_OR(p,
378 vec1(retype(payload, BRW_REGISTER_TYPE_UD)),
379 vec1(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)),
380 brw_imm_ud(0x1 << 14));
381 }
382
383 implied_header = brw_null_reg();
384 } else {
385 implied_header = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
386 }
387
388 brw_pop_insn_state(p);
389 } else {
390 implied_header = brw_null_reg();
391 }
392
393 if (!runtime_check_aads_emit) {
394 fire_fb_write(inst, payload, implied_header, inst->mlen);
395 } else {
396 /* This can only happen in gen < 6 */
397 assert(devinfo->gen < 6);
398
399 struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
400
401 /* Check runtime bit to detect if we have to send AA data or not */
402 brw_push_insn_state(p);
403 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
404 brw_set_default_exec_size(p, BRW_EXECUTE_1);
405 brw_AND(p,
406 v1_null_ud,
407 retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
408 brw_imm_ud(1<<26));
409 brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
410
411 int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
412 brw_pop_insn_state(p);
413 {
414 /* Don't send AA data */
415 fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
416 }
417 brw_land_fwd_jump(p, jmp);
418 fire_fb_write(inst, payload, implied_header, inst->mlen);
419 }
420 }
421
422 void
423 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
424 struct brw_reg payload)
425 {
426 assert(inst->size_written % REG_SIZE == 0);
427 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
428 /* We assume that render targets start at binding table index 0. */
429 const unsigned surf_index = inst->target;
430
431 gen9_fb_READ(p, dst, payload, surf_index,
432 inst->header_size, inst->size_written / REG_SIZE,
433 prog_data->persample_dispatch);
434
435 brw_mark_surface_used(&prog_data->base, surf_index);
436 }
437
438 void
439 fs_generator::generate_mov_indirect(fs_inst *inst,
440 struct brw_reg dst,
441 struct brw_reg reg,
442 struct brw_reg indirect_byte_offset)
443 {
444 assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
445 assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
446 assert(!reg.abs && !reg.negate);
447 assert(reg.type == dst.type);
448
449 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
450
451 if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
452 imm_byte_offset += indirect_byte_offset.ud;
453
454 reg.nr = imm_byte_offset / REG_SIZE;
455 reg.subnr = imm_byte_offset % REG_SIZE;
456 brw_MOV(p, dst, reg);
457 } else {
458 /* Prior to Broadwell, there are only 8 address registers. */
459 assert(inst->exec_size <= 8 || devinfo->gen >= 8);
460
461 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
462 struct brw_reg addr = vec8(brw_address_reg(0));
463
464 /* The destination stride of an instruction (in bytes) must be greater
465 * than or equal to the size of the rest of the instruction. Since the
466 * address register is of type UW, we can't use a D-type instruction.
467 * In order to get around this, re retype to UW and use a stride.
468 */
469 indirect_byte_offset =
470 retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
471
472 /* There are a number of reasons why we don't use the base offset here.
473 * One reason is that the field is only 9 bits which means we can only
474 * use it to access the first 16 GRFs. Also, from the Haswell PRM
475 * section "Register Region Restrictions":
476 *
477 * "The lower bits of the AddressImmediate must not overflow to
478 * change the register address. The lower 5 bits of Address
479 * Immediate when added to lower 5 bits of address register gives
480 * the sub-register offset. The upper bits of Address Immediate
481 * when added to upper bits of address register gives the register
482 * address. Any overflow from sub-register offset is dropped."
483 *
484 * Since the indirect may cause us to cross a register boundary, this
485 * makes the base offset almost useless. We could try and do something
486 * clever where we use a actual base offset if base_offset % 32 == 0 but
487 * that would mean we were generating different code depending on the
488 * base offset. Instead, for the sake of consistency, we'll just do the
489 * add ourselves. This restriction is only listed in the Haswell PRM
490 * but empirical testing indicates that it applies on all older
491 * generations and is lifted on Broadwell.
492 *
493 * In the end, while base_offset is nice to look at in the generated
494 * code, using it saves us 0 instructions and would require quite a bit
495 * of case-by-case work. It's just not worth it.
496 */
497 brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
498
499 if (type_sz(reg.type) > 4 &&
500 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
501 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
502 /* IVB has an issue (which we found empirically) where it reads two
503 * address register components per channel for indirectly addressed
504 * 64-bit sources.
505 *
506 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
507 *
508 * "When source or destination datatype is 64b or operation is
509 * integer DWord multiply, indirect addressing must not be used."
510 *
511 * To work around both of these, we do two integer MOVs insead of one
512 * 64-bit MOV. Because no double value should ever cross a register
513 * boundary, it's safe to use the immediate offset in the indirect
514 * here to handle adding 4 bytes to the offset and avoid the extra
515 * ADD to the register file.
516 */
517 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
518 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
519 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
520 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
521 } else {
522 struct brw_reg ind_src = brw_VxH_indirect(0, 0);
523
524 brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
525
526 if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
527 !inst->get_next()->is_tail_sentinel() &&
528 ((fs_inst *)inst->get_next())->mlen > 0) {
529 /* From the Sandybridge PRM:
530 *
531 * "[Errata: DevSNB(SNB)] If MRF register is updated by any
532 * instruction that “indexed/indirect” source AND is followed
533 * by a send, the instruction requires a “Switch”. This is to
534 * avoid race condition where send may dispatch before MRF is
535 * updated."
536 */
537 brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
538 }
539 }
540 }
541 }
542
543 void
544 fs_generator::generate_shuffle(fs_inst *inst,
545 struct brw_reg dst,
546 struct brw_reg src,
547 struct brw_reg idx)
548 {
549 /* Ivy bridge has some strange behavior that makes this a real pain to
550 * implement for 64-bit values so we just don't bother.
551 */
552 assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4);
553
554 /* Because we're using the address register, we're limited to 8-wide
555 * execution on gen7. On gen8, we're limited to 16-wide by the address
556 * register file and 8-wide for 64-bit types. We could try and make this
557 * instruction splittable higher up in the compiler but that gets weird
558 * because it reads all of the channels regardless of execution size. It's
559 * easier just to split it here.
560 */
561 const unsigned lower_width =
562 (devinfo->gen <= 7 || type_sz(src.type) > 4) ?
563 8 : MIN2(16, inst->exec_size);
564
565 brw_set_default_exec_size(p, cvt(lower_width) - 1);
566 for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
567 brw_set_default_group(p, group);
568
569 if ((src.vstride == 0 && src.hstride == 0) ||
570 idx.file == BRW_IMMEDIATE_VALUE) {
571 /* Trivial, the source is already uniform or the index is a constant.
572 * We will typically not get here if the optimizer is doing its job,
573 * but asserting would be mean.
574 */
575 const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
576 brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0));
577 } else {
578 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
579 struct brw_reg addr = vec8(brw_address_reg(0));
580
581 struct brw_reg group_idx = suboffset(idx, group);
582
583 if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
584 /* Things get grumpy if the register is too wide. */
585 group_idx.width--;
586 group_idx.vstride--;
587 }
588
589 assert(type_sz(group_idx.type) <= 4);
590 if (type_sz(group_idx.type) == 4) {
591 /* The destination stride of an instruction (in bytes) must be
592 * greater than or equal to the size of the rest of the
593 * instruction. Since the address register is of type UW, we
594 * can't use a D-type instruction. In order to get around this,
595 * re retype to UW and use a stride.
596 */
597 group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
598 }
599
600 /* Take into account the component size and horizontal stride. */
601 assert(src.vstride == src.hstride + src.width);
602 brw_SHL(p, addr, group_idx,
603 brw_imm_uw(_mesa_logbase2(type_sz(src.type)) +
604 src.hstride - 1));
605
606 /* Add on the register start offset */
607 brw_ADD(p, addr, addr, brw_imm_uw(src.nr * REG_SIZE + src.subnr));
608
609 if (type_sz(src.type) > 4 &&
610 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
611 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
612 /* IVB has an issue (which we found empirically) where it reads
613 * two address register components per channel for indirectly
614 * addressed 64-bit sources.
615 *
616 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
617 *
618 * "When source or destination datatype is 64b or operation is
619 * integer DWord multiply, indirect addressing must not be
620 * used."
621 *
622 * To work around both of these, we do two integer MOVs insead of
623 * one 64-bit MOV. Because no double value should ever cross a
624 * register boundary, it's safe to use the immediate offset in the
625 * indirect here to handle adding 4 bytes to the offset and avoid
626 * the extra ADD to the register file.
627 */
628 struct brw_reg gdst = suboffset(dst, group);
629 struct brw_reg dst_d = retype(spread(gdst, 2),
630 BRW_REGISTER_TYPE_D);
631 brw_MOV(p, dst_d,
632 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
633 brw_MOV(p, byte_offset(dst_d, 4),
634 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
635 } else {
636 brw_MOV(p, suboffset(dst, group),
637 retype(brw_VxH_indirect(0, 0), src.type));
638 }
639 }
640 }
641 }
642
643 void
644 fs_generator::generate_urb_read(fs_inst *inst,
645 struct brw_reg dst,
646 struct brw_reg header)
647 {
648 assert(inst->size_written % REG_SIZE == 0);
649 assert(header.file == BRW_GENERAL_REGISTER_FILE);
650 assert(header.type == BRW_REGISTER_TYPE_UD);
651
652 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
653 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
654 brw_set_src0(p, send, header);
655 brw_set_src1(p, send, brw_imm_ud(0u));
656
657 brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
658 brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ);
659
660 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
661 brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
662
663 brw_inst_set_mlen(p->devinfo, send, inst->mlen);
664 brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
665 brw_inst_set_header_present(p->devinfo, send, true);
666 brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
667 }
668
669 void
670 fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
671 {
672 brw_inst *insn;
673
674 /* WaClearTDRRegBeforeEOTForNonPS.
675 *
676 * WA: Clear tdr register before send EOT in all non-PS shader kernels
677 *
678 * mov(8) tdr0:ud 0x0:ud {NoMask}"
679 */
680 if (inst->eot && p->devinfo->gen == 10) {
681 brw_push_insn_state(p);
682 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
683 brw_MOV(p, brw_tdr_reg(), brw_imm_uw(0));
684 brw_pop_insn_state(p);
685 }
686
687 insn = brw_next_insn(p, BRW_OPCODE_SEND);
688
689 brw_set_dest(p, insn, brw_null_reg());
690 brw_set_src0(p, insn, payload);
691 brw_set_src1(p, insn, brw_imm_d(0));
692
693 brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
694 brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE);
695
696 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
697 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
698 brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
699
700 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
701 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
702 brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
703
704 brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
705 brw_inst_set_rlen(p->devinfo, insn, 0);
706 brw_inst_set_eot(p->devinfo, insn, inst->eot);
707 brw_inst_set_header_present(p->devinfo, insn, true);
708 brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
709 }
710
711 void
712 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
713 {
714 struct brw_inst *insn;
715
716 insn = brw_next_insn(p, BRW_OPCODE_SEND);
717
718 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
719 brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
720 brw_set_src1(p, insn, brw_imm_d(0));
721
722 /* Terminate a compute shader by sending a message to the thread spawner.
723 */
724 brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
725 brw_inst_set_mlen(devinfo, insn, 1);
726 brw_inst_set_rlen(devinfo, insn, 0);
727 brw_inst_set_eot(devinfo, insn, inst->eot);
728 brw_inst_set_header_present(devinfo, insn, false);
729
730 brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
731 brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
732
733 /* Note that even though the thread has a URB resource associated with it,
734 * we set the "do not dereference URB" bit, because the URB resource is
735 * managed by the fixed-function unit, so it will free it automatically.
736 */
737 brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
738
739 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
740 }
741
742 void
743 fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
744 {
745 brw_barrier(p, src);
746 brw_WAIT(p);
747 }
748
749 bool
750 fs_generator::generate_linterp(fs_inst *inst,
751 struct brw_reg dst, struct brw_reg *src)
752 {
753 /* PLN reads:
754 * / in SIMD16 \
755 * -----------------------------------
756 * | src1+0 | src1+1 | src1+2 | src1+3 |
757 * |-----------------------------------|
758 * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
759 * -----------------------------------
760 *
761 * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
762 *
763 * -----------------------------------
764 * | src1+0 | src1+1 | src1+2 | src1+3 |
765 * |-----------------------------------|
766 * |(x0, x1)|(y0, y1)| | | in SIMD8
767 * |-----------------------------------|
768 * |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
769 * -----------------------------------
770 *
771 * See also: emit_interpolation_setup_gen4().
772 */
773 struct brw_reg delta_x = src[0];
774 struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
775 struct brw_reg interp = src[1];
776 brw_inst *i[4];
777
778 if (devinfo->gen >= 11) {
779 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_NF);
780 struct brw_reg dwP = suboffset(interp, 0);
781 struct brw_reg dwQ = suboffset(interp, 1);
782 struct brw_reg dwR = suboffset(interp, 3);
783
784 brw_push_insn_state(p);
785 brw_set_default_exec_size(p, BRW_EXECUTE_8);
786
787 if (inst->exec_size == 8) {
788 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
789 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_y, 0), dwQ);
790
791 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
792
793 /* brw_set_default_saturate() is called before emitting instructions,
794 * so the saturate bit is set in each instruction, so we need to unset
795 * it on the first instruction of each pair.
796 */
797 brw_inst_set_saturate(p->devinfo, i[0], false);
798 } else {
799 brw_set_default_group(p, inst->group);
800 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
801 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_x, 1), dwQ);
802
803 brw_set_default_group(p, inst->group + 8);
804 i[2] = brw_MAD(p, acc, dwR, offset(delta_y, 0), dwP);
805 i[3] = brw_MAD(p, offset(dst, 1), acc, offset(delta_y, 1), dwQ);
806
807 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
808 brw_inst_set_cond_modifier(p->devinfo, i[3], inst->conditional_mod);
809
810 /* brw_set_default_saturate() is called before emitting instructions,
811 * so the saturate bit is set in each instruction, so we need to unset
812 * it on the first instruction of each pair.
813 */
814 brw_inst_set_saturate(p->devinfo, i[0], false);
815 brw_inst_set_saturate(p->devinfo, i[2], false);
816 }
817
818 brw_pop_insn_state(p);
819
820 return true;
821 } else if (devinfo->has_pln) {
822 /* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane":
823 *
824 * "[DevSNB]:<src1> must be even register aligned.
825 *
826 * This restriction is lifted on Ivy Bridge.
827 */
828 assert(devinfo->gen >= 7 || (delta_x.nr & 1) == 0);
829 brw_PLN(p, dst, interp, delta_x);
830
831 return false;
832 } else {
833 i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
834 i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
835
836 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
837
838 /* brw_set_default_saturate() is called before emitting instructions, so
839 * the saturate bit is set in each instruction, so we need to unset it on
840 * the first instruction.
841 */
842 brw_inst_set_saturate(p->devinfo, i[0], false);
843
844 return true;
845 }
846 }
847
848 void
849 fs_generator::generate_get_buffer_size(fs_inst *inst,
850 struct brw_reg dst,
851 struct brw_reg src,
852 struct brw_reg surf_index)
853 {
854 assert(devinfo->gen >= 7);
855 assert(surf_index.file == BRW_IMMEDIATE_VALUE);
856
857 uint32_t simd_mode;
858 int rlen = 4;
859
860 switch (inst->exec_size) {
861 case 8:
862 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
863 break;
864 case 16:
865 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
866 break;
867 default:
868 unreachable("Invalid width for texture instruction");
869 }
870
871 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
872 rlen = 8;
873 dst = vec16(dst);
874 }
875
876 brw_SAMPLE(p,
877 retype(dst, BRW_REGISTER_TYPE_UW),
878 inst->base_mrf,
879 src,
880 surf_index.ud,
881 0,
882 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
883 rlen, /* response length */
884 inst->mlen,
885 inst->header_size > 0,
886 simd_mode,
887 BRW_SAMPLER_RETURN_FORMAT_SINT32);
888
889 brw_mark_surface_used(prog_data, surf_index.ud);
890 }
891
892 void
893 fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src,
894 struct brw_reg surface_index,
895 struct brw_reg sampler_index)
896 {
897 assert(inst->size_written % REG_SIZE == 0);
898 int msg_type = -1;
899 uint32_t simd_mode;
900 uint32_t return_format;
901 bool is_combined_send = inst->eot;
902
903 switch (dst.type) {
904 case BRW_REGISTER_TYPE_D:
905 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
906 break;
907 case BRW_REGISTER_TYPE_UD:
908 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
909 break;
910 default:
911 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
912 break;
913 }
914
915 /* Stomp the resinfo output type to UINT32. On gens 4-5, the output type
916 * is set as part of the message descriptor. On gen4, the PRM seems to
917 * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
918 * later gens UINT32 is required. Once you hit Sandy Bridge, the bit is
919 * gone from the message descriptor entirely and you just get UINT32 all
920 * the time regasrdless. Since we can really only do non-UINT32 on gen4,
921 * just stomp it to UINT32 all the time.
922 */
923 if (inst->opcode == SHADER_OPCODE_TXS)
924 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
925
926 switch (inst->exec_size) {
927 case 8:
928 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
929 break;
930 case 16:
931 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
932 break;
933 default:
934 unreachable("Invalid width for texture instruction");
935 }
936
937 if (devinfo->gen >= 5) {
938 switch (inst->opcode) {
939 case SHADER_OPCODE_TEX:
940 if (inst->shadow_compare) {
941 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
942 } else {
943 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
944 }
945 break;
946 case FS_OPCODE_TXB:
947 if (inst->shadow_compare) {
948 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
949 } else {
950 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
951 }
952 break;
953 case SHADER_OPCODE_TXL:
954 if (inst->shadow_compare) {
955 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
956 } else {
957 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
958 }
959 break;
960 case SHADER_OPCODE_TXL_LZ:
961 assert(devinfo->gen >= 9);
962 if (inst->shadow_compare) {
963 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_C_LZ;
964 } else {
965 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LZ;
966 }
967 break;
968 case SHADER_OPCODE_TXS:
969 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
970 break;
971 case SHADER_OPCODE_TXD:
972 if (inst->shadow_compare) {
973 /* Gen7.5+. Otherwise, lowered in NIR */
974 assert(devinfo->gen >= 8 || devinfo->is_haswell);
975 msg_type = HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE;
976 } else {
977 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
978 }
979 break;
980 case SHADER_OPCODE_TXF:
981 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
982 break;
983 case SHADER_OPCODE_TXF_LZ:
984 assert(devinfo->gen >= 9);
985 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD_LZ;
986 break;
987 case SHADER_OPCODE_TXF_CMS_W:
988 assert(devinfo->gen >= 9);
989 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
990 break;
991 case SHADER_OPCODE_TXF_CMS:
992 if (devinfo->gen >= 7)
993 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS;
994 else
995 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
996 break;
997 case SHADER_OPCODE_TXF_UMS:
998 assert(devinfo->gen >= 7);
999 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS;
1000 break;
1001 case SHADER_OPCODE_TXF_MCS:
1002 assert(devinfo->gen >= 7);
1003 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
1004 break;
1005 case SHADER_OPCODE_LOD:
1006 msg_type = GEN5_SAMPLER_MESSAGE_LOD;
1007 break;
1008 case SHADER_OPCODE_TG4:
1009 if (inst->shadow_compare) {
1010 assert(devinfo->gen >= 7);
1011 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C;
1012 } else {
1013 assert(devinfo->gen >= 6);
1014 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
1015 }
1016 break;
1017 case SHADER_OPCODE_TG4_OFFSET:
1018 assert(devinfo->gen >= 7);
1019 if (inst->shadow_compare) {
1020 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C;
1021 } else {
1022 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
1023 }
1024 break;
1025 case SHADER_OPCODE_SAMPLEINFO:
1026 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
1027 break;
1028 default:
1029 unreachable("not reached");
1030 }
1031 } else {
1032 switch (inst->opcode) {
1033 case SHADER_OPCODE_TEX:
1034 /* Note that G45 and older determines shadow compare and dispatch width
1035 * from message length for most messages.
1036 */
1037 if (inst->exec_size == 8) {
1038 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
1039 if (inst->shadow_compare) {
1040 assert(inst->mlen == 6);
1041 } else {
1042 assert(inst->mlen <= 4);
1043 }
1044 } else {
1045 if (inst->shadow_compare) {
1046 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1047 assert(inst->mlen == 9);
1048 } else {
1049 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1050 assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
1051 }
1052 }
1053 break;
1054 case FS_OPCODE_TXB:
1055 if (inst->shadow_compare) {
1056 assert(inst->exec_size == 8);
1057 assert(inst->mlen == 6);
1058 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
1059 } else {
1060 assert(inst->mlen == 9);
1061 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1062 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1063 }
1064 break;
1065 case SHADER_OPCODE_TXL:
1066 if (inst->shadow_compare) {
1067 assert(inst->exec_size == 8);
1068 assert(inst->mlen == 6);
1069 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
1070 } else {
1071 assert(inst->mlen == 9);
1072 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
1073 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1074 }
1075 break;
1076 case SHADER_OPCODE_TXD:
1077 /* There is no sample_d_c message; comparisons are done manually */
1078 assert(inst->exec_size == 8);
1079 assert(inst->mlen == 7 || inst->mlen == 10);
1080 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
1081 break;
1082 case SHADER_OPCODE_TXF:
1083 assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
1084 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1085 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1086 break;
1087 case SHADER_OPCODE_TXS:
1088 assert(inst->mlen == 3);
1089 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
1090 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1091 break;
1092 default:
1093 unreachable("not reached");
1094 }
1095 }
1096 assert(msg_type != -1);
1097
1098 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1099 dst = vec16(dst);
1100 }
1101
1102 assert(devinfo->gen < 7 || inst->header_size == 0 ||
1103 src.file == BRW_GENERAL_REGISTER_FILE);
1104
1105 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
1106
1107 /* Load the message header if present. If there's a texture offset,
1108 * we need to set it up explicitly and load the offset bitfield.
1109 * Otherwise, we can use an implied move from g0 to the first message reg.
1110 */
1111 if (inst->header_size != 0 && devinfo->gen < 7) {
1112 if (devinfo->gen < 6 && !inst->offset) {
1113 /* Set up an implied move from g0 to the MRF. */
1114 src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1115 } else {
1116 assert(inst->base_mrf != -1);
1117 struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
1118
1119 brw_push_insn_state(p);
1120 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1121 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1122 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1123 /* Explicitly set up the message header by copying g0 to the MRF. */
1124 brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
1125
1126 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1127 if (inst->offset) {
1128 /* Set the offset bits in DWord 2. */
1129 brw_MOV(p, get_element_ud(header_reg, 2),
1130 brw_imm_ud(inst->offset));
1131 }
1132
1133 brw_pop_insn_state(p);
1134 }
1135 }
1136
1137 uint32_t base_binding_table_index = (inst->opcode == SHADER_OPCODE_TG4 ||
1138 inst->opcode == SHADER_OPCODE_TG4_OFFSET)
1139 ? prog_data->binding_table.gather_texture_start
1140 : prog_data->binding_table.texture_start;
1141
1142 if (surface_index.file == BRW_IMMEDIATE_VALUE &&
1143 sampler_index.file == BRW_IMMEDIATE_VALUE) {
1144 uint32_t surface = surface_index.ud;
1145 uint32_t sampler = sampler_index.ud;
1146
1147 brw_SAMPLE(p,
1148 retype(dst, BRW_REGISTER_TYPE_UW),
1149 inst->base_mrf,
1150 src,
1151 surface + base_binding_table_index,
1152 sampler % 16,
1153 msg_type,
1154 inst->size_written / REG_SIZE,
1155 inst->mlen,
1156 inst->header_size != 0,
1157 simd_mode,
1158 return_format);
1159
1160 brw_mark_surface_used(prog_data, surface + base_binding_table_index);
1161 } else {
1162 /* Non-const sampler index */
1163
1164 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1165 struct brw_reg surface_reg = vec1(retype(surface_index, BRW_REGISTER_TYPE_UD));
1166 struct brw_reg sampler_reg = vec1(retype(sampler_index, BRW_REGISTER_TYPE_UD));
1167
1168 brw_push_insn_state(p);
1169 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1170 brw_set_default_access_mode(p, BRW_ALIGN_1);
1171 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1172
1173 if (brw_regs_equal(&surface_reg, &sampler_reg)) {
1174 brw_MUL(p, addr, sampler_reg, brw_imm_uw(0x101));
1175 } else {
1176 if (sampler_reg.file == BRW_IMMEDIATE_VALUE) {
1177 brw_OR(p, addr, surface_reg, brw_imm_ud(sampler_reg.ud << 8));
1178 } else {
1179 brw_SHL(p, addr, sampler_reg, brw_imm_ud(8));
1180 brw_OR(p, addr, addr, surface_reg);
1181 }
1182 }
1183 if (base_binding_table_index)
1184 brw_ADD(p, addr, addr, brw_imm_ud(base_binding_table_index));
1185 brw_AND(p, addr, addr, brw_imm_ud(0xfff));
1186
1187 brw_pop_insn_state(p);
1188
1189 /* dst = send(offset, a0.0 | <descriptor>) */
1190 brw_inst *insn = brw_send_indirect_message(
1191 p, BRW_SFID_SAMPLER, dst, src, addr);
1192 brw_set_sampler_message(p, insn,
1193 0 /* surface */,
1194 0 /* sampler */,
1195 msg_type,
1196 inst->size_written / REG_SIZE,
1197 inst->mlen /* mlen */,
1198 inst->header_size != 0 /* header */,
1199 simd_mode,
1200 return_format);
1201
1202 /* visitor knows more than we do about the surface limit required,
1203 * so has already done marking.
1204 */
1205 }
1206
1207 if (is_combined_send) {
1208 brw_inst_set_eot(p->devinfo, brw_last_inst, true);
1209 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
1210 }
1211 }
1212
1213
1214 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
1215 * looking like:
1216 *
1217 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
1218 *
1219 * Ideally, we want to produce:
1220 *
1221 * DDX DDY
1222 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
1223 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
1224 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
1225 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
1226 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
1227 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
1228 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
1229 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
1230 *
1231 * and add another set of two more subspans if in 16-pixel dispatch mode.
1232 *
1233 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
1234 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
1235 * pair. But the ideal approximation may impose a huge performance cost on
1236 * sample_d. On at least Haswell, sample_d instruction does some
1237 * optimizations if the same LOD is used for all pixels in the subspan.
1238 *
1239 * For DDY, we need to use ALIGN16 mode since it's capable of doing the
1240 * appropriate swizzling.
1241 */
1242 void
1243 fs_generator::generate_ddx(const fs_inst *inst,
1244 struct brw_reg dst, struct brw_reg src)
1245 {
1246 unsigned vstride, width;
1247
1248 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1249 /* produce accurate derivatives */
1250 vstride = BRW_VERTICAL_STRIDE_2;
1251 width = BRW_WIDTH_2;
1252 } else {
1253 /* replicate the derivative at the top-left pixel to other pixels */
1254 vstride = BRW_VERTICAL_STRIDE_4;
1255 width = BRW_WIDTH_4;
1256 }
1257
1258 struct brw_reg src0 = src;
1259 struct brw_reg src1 = src;
1260
1261 src0.subnr = sizeof(float);
1262 src0.vstride = vstride;
1263 src0.width = width;
1264 src0.hstride = BRW_HORIZONTAL_STRIDE_0;
1265 src1.vstride = vstride;
1266 src1.width = width;
1267 src1.hstride = BRW_HORIZONTAL_STRIDE_0;
1268
1269 brw_ADD(p, dst, src0, negate(src1));
1270 }
1271
1272 /* The negate_value boolean is used to negate the derivative computation for
1273 * FBOs, since they place the origin at the upper left instead of the lower
1274 * left.
1275 */
1276 void
1277 fs_generator::generate_ddy(const fs_inst *inst,
1278 struct brw_reg dst, struct brw_reg src)
1279 {
1280 if (inst->opcode == FS_OPCODE_DDY_FINE) {
1281 /* produce accurate derivatives */
1282 if (devinfo->gen >= 11) {
1283 src = stride(src, 0, 2, 1);
1284 struct brw_reg src_0 = byte_offset(src, 0 * sizeof(float));
1285 struct brw_reg src_2 = byte_offset(src, 2 * sizeof(float));
1286 struct brw_reg src_4 = byte_offset(src, 4 * sizeof(float));
1287 struct brw_reg src_6 = byte_offset(src, 6 * sizeof(float));
1288 struct brw_reg src_8 = byte_offset(src, 8 * sizeof(float));
1289 struct brw_reg src_10 = byte_offset(src, 10 * sizeof(float));
1290 struct brw_reg src_12 = byte_offset(src, 12 * sizeof(float));
1291 struct brw_reg src_14 = byte_offset(src, 14 * sizeof(float));
1292
1293 struct brw_reg dst_0 = byte_offset(dst, 0 * sizeof(float));
1294 struct brw_reg dst_4 = byte_offset(dst, 4 * sizeof(float));
1295 struct brw_reg dst_8 = byte_offset(dst, 8 * sizeof(float));
1296 struct brw_reg dst_12 = byte_offset(dst, 12 * sizeof(float));
1297
1298 brw_push_insn_state(p);
1299 brw_set_default_exec_size(p, BRW_EXECUTE_4);
1300
1301 brw_ADD(p, dst_0, negate(src_0), src_2);
1302 brw_ADD(p, dst_4, negate(src_4), src_6);
1303
1304 if (inst->exec_size == 16) {
1305 brw_ADD(p, dst_8, negate(src_8), src_10);
1306 brw_ADD(p, dst_12, negate(src_12), src_14);
1307 }
1308
1309 brw_pop_insn_state(p);
1310 } else {
1311 struct brw_reg src0 = stride(src, 4, 4, 1);
1312 struct brw_reg src1 = stride(src, 4, 4, 1);
1313 src0.swizzle = BRW_SWIZZLE_XYXY;
1314 src1.swizzle = BRW_SWIZZLE_ZWZW;
1315
1316 brw_push_insn_state(p);
1317 brw_set_default_access_mode(p, BRW_ALIGN_16);
1318 brw_ADD(p, dst, negate(src0), src1);
1319 brw_pop_insn_state(p);
1320 }
1321 } else {
1322 /* replicate the derivative at the top-left pixel to other pixels */
1323 struct brw_reg src0 = stride(src, 4, 4, 0);
1324 struct brw_reg src1 = stride(src, 4, 4, 0);
1325 src0.subnr = 0 * sizeof(float);
1326 src1.subnr = 2 * sizeof(float);
1327
1328 brw_ADD(p, dst, negate(src0), src1);
1329 }
1330 }
1331
1332 void
1333 fs_generator::generate_discard_jump(fs_inst *)
1334 {
1335 assert(devinfo->gen >= 6);
1336
1337 /* This HALT will be patched up at FB write time to point UIP at the end of
1338 * the program, and at brw_uip_jip() JIP will be set to the end of the
1339 * current block (or the program).
1340 */
1341 this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
1342 gen6_HALT(p);
1343 }
1344
1345 void
1346 fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
1347 {
1348 /* The 32-wide messages only respect the first 16-wide half of the channel
1349 * enable signals which are replicated identically for the second group of
1350 * 16 channels, so we cannot use them unless the write is marked
1351 * force_writemask_all.
1352 */
1353 const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
1354 MIN2(16, inst->exec_size);
1355 const unsigned block_size = 4 * lower_size / REG_SIZE;
1356 assert(inst->mlen != 0);
1357
1358 brw_push_insn_state(p);
1359 brw_set_default_exec_size(p, cvt(lower_size) - 1);
1360 brw_set_default_compression(p, lower_size > 8);
1361
1362 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1363 brw_set_default_group(p, inst->group + lower_size * i);
1364
1365 brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
1366 retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
1367
1368 brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
1369 block_size,
1370 inst->offset + block_size * REG_SIZE * i);
1371 }
1372
1373 brw_pop_insn_state(p);
1374 }
1375
1376 void
1377 fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
1378 {
1379 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1380 assert(inst->mlen != 0);
1381
1382 brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
1383 inst->exec_size / 8, inst->offset);
1384 }
1385
1386 void
1387 fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst)
1388 {
1389 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1390
1391 gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
1392 }
1393
1394 void
1395 fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
1396 struct brw_reg dst,
1397 struct brw_reg index,
1398 struct brw_reg offset)
1399 {
1400 assert(type_sz(dst.type) == 4);
1401 assert(inst->mlen != 0);
1402
1403 assert(index.file == BRW_IMMEDIATE_VALUE &&
1404 index.type == BRW_REGISTER_TYPE_UD);
1405 uint32_t surf_index = index.ud;
1406
1407 assert(offset.file == BRW_IMMEDIATE_VALUE &&
1408 offset.type == BRW_REGISTER_TYPE_UD);
1409 uint32_t read_offset = offset.ud;
1410
1411 brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
1412 read_offset, surf_index);
1413 }
1414
1415 void
1416 fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
1417 struct brw_reg dst,
1418 struct brw_reg index,
1419 struct brw_reg payload)
1420 {
1421 assert(index.type == BRW_REGISTER_TYPE_UD);
1422 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1423 assert(type_sz(dst.type) == 4);
1424
1425 if (index.file == BRW_IMMEDIATE_VALUE) {
1426 const uint32_t surf_index = index.ud;
1427
1428 brw_push_insn_state(p);
1429 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1430 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1431 brw_pop_insn_state(p);
1432
1433 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
1434 brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
1435 brw_set_dp_read_message(p, send, surf_index,
1436 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1437 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1438 GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1439 1, /* mlen */
1440 true, /* header */
1441 DIV_ROUND_UP(inst->size_written, REG_SIZE));
1442
1443 } else {
1444 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1445
1446 brw_push_insn_state(p);
1447 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1448
1449 /* a0.0 = surf_index & 0xff */
1450 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1451 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1452 brw_set_dest(p, insn_and, addr);
1453 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1454 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1455
1456 /* dst = send(payload, a0.0 | <descriptor>) */
1457 brw_inst *insn = brw_send_indirect_message(
1458 p, GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1459 retype(dst, BRW_REGISTER_TYPE_UD),
1460 retype(payload, BRW_REGISTER_TYPE_UD), addr);
1461 brw_set_dp_read_message(p, insn, 0 /* surface */,
1462 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1463 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1464 GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1465 1, /* mlen */
1466 true, /* header */
1467 DIV_ROUND_UP(inst->size_written, REG_SIZE));
1468
1469 brw_pop_insn_state(p);
1470 }
1471 }
1472
1473 void
1474 fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst,
1475 struct brw_reg dst,
1476 struct brw_reg index)
1477 {
1478 assert(devinfo->gen < 7); /* Should use the gen7 variant. */
1479 assert(inst->header_size != 0);
1480 assert(inst->mlen);
1481
1482 assert(index.file == BRW_IMMEDIATE_VALUE &&
1483 index.type == BRW_REGISTER_TYPE_UD);
1484 uint32_t surf_index = index.ud;
1485
1486 uint32_t simd_mode, rlen, msg_type;
1487 if (inst->exec_size == 16) {
1488 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1489 rlen = 8;
1490 } else {
1491 assert(inst->exec_size == 8);
1492 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1493 rlen = 4;
1494 }
1495
1496 if (devinfo->gen >= 5)
1497 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1498 else {
1499 /* We always use the SIMD16 message so that we only have to load U, and
1500 * not V or R.
1501 */
1502 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1503 assert(inst->mlen == 3);
1504 assert(inst->size_written == 8 * REG_SIZE);
1505 rlen = 8;
1506 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1507 }
1508
1509 struct brw_reg header = brw_vec8_grf(0, 0);
1510 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1511
1512 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1513 brw_inst_set_compression(devinfo, send, false);
1514 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1515 brw_set_src0(p, send, header);
1516 if (devinfo->gen < 6)
1517 brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
1518
1519 /* Our surface is set up as floats, regardless of what actual data is
1520 * stored in it.
1521 */
1522 uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1523 brw_set_sampler_message(p, send,
1524 surf_index,
1525 0, /* sampler (unused) */
1526 msg_type,
1527 rlen,
1528 inst->mlen,
1529 inst->header_size != 0,
1530 simd_mode,
1531 return_format);
1532 }
1533
1534 void
1535 fs_generator::generate_varying_pull_constant_load_gen7(fs_inst *inst,
1536 struct brw_reg dst,
1537 struct brw_reg index,
1538 struct brw_reg offset)
1539 {
1540 assert(devinfo->gen >= 7);
1541 /* Varying-offset pull constant loads are treated as a normal expression on
1542 * gen7, so the fact that it's a send message is hidden at the IR level.
1543 */
1544 assert(inst->header_size == 0);
1545 assert(!inst->mlen);
1546 assert(index.type == BRW_REGISTER_TYPE_UD);
1547
1548 uint32_t simd_mode, rlen, mlen;
1549 if (inst->exec_size == 16) {
1550 mlen = 2;
1551 rlen = 8;
1552 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1553 } else {
1554 assert(inst->exec_size == 8);
1555 mlen = 1;
1556 rlen = 4;
1557 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1558 }
1559
1560 if (index.file == BRW_IMMEDIATE_VALUE) {
1561
1562 uint32_t surf_index = index.ud;
1563
1564 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1565 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1566 brw_set_src0(p, send, offset);
1567 brw_set_sampler_message(p, send,
1568 surf_index,
1569 0, /* LD message ignores sampler unit */
1570 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1571 rlen,
1572 mlen,
1573 false, /* no header */
1574 simd_mode,
1575 0);
1576
1577 } else {
1578
1579 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1580
1581 brw_push_insn_state(p);
1582 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1583
1584 /* a0.0 = surf_index & 0xff */
1585 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1586 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1587 brw_set_dest(p, insn_and, addr);
1588 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1589 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1590
1591 brw_pop_insn_state(p);
1592
1593 /* dst = send(offset, a0.0 | <descriptor>) */
1594 brw_inst *insn = brw_send_indirect_message(
1595 p, BRW_SFID_SAMPLER, retype(dst, BRW_REGISTER_TYPE_UW),
1596 offset, addr);
1597 brw_set_sampler_message(p, insn,
1598 0 /* surface */,
1599 0 /* sampler */,
1600 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1601 rlen /* rlen */,
1602 mlen /* mlen */,
1603 false /* header */,
1604 simd_mode,
1605 0);
1606 }
1607 }
1608
1609 /**
1610 * Cause the current pixel/sample mask (from R1.7 bits 15:0) to be transferred
1611 * into the flags register (f0.0).
1612 *
1613 * Used only on Gen6 and above.
1614 */
1615 void
1616 fs_generator::generate_mov_dispatch_to_flags(fs_inst *inst)
1617 {
1618 struct brw_reg flags = brw_flag_subreg(inst->flag_subreg);
1619 struct brw_reg dispatch_mask;
1620
1621 if (devinfo->gen >= 6)
1622 dispatch_mask = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW);
1623 else
1624 dispatch_mask = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
1625
1626 brw_push_insn_state(p);
1627 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1628 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1629 brw_MOV(p, flags, dispatch_mask);
1630 brw_pop_insn_state(p);
1631 }
1632
1633 void
1634 fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
1635 struct brw_reg dst,
1636 struct brw_reg src,
1637 struct brw_reg msg_data,
1638 unsigned msg_type)
1639 {
1640 assert(inst->size_written % REG_SIZE == 0);
1641 assert(msg_data.type == BRW_REGISTER_TYPE_UD);
1642
1643 brw_pixel_interpolator_query(p,
1644 retype(dst, BRW_REGISTER_TYPE_UW),
1645 src,
1646 inst->pi_noperspective,
1647 msg_type,
1648 msg_data,
1649 inst->mlen,
1650 inst->size_written / REG_SIZE);
1651 }
1652
1653 /* Sets vstride=1, width=4, hstride=0 of register src1 during
1654 * the ADD instruction.
1655 */
1656 void
1657 fs_generator::generate_set_sample_id(fs_inst *inst,
1658 struct brw_reg dst,
1659 struct brw_reg src0,
1660 struct brw_reg src1)
1661 {
1662 assert(dst.type == BRW_REGISTER_TYPE_D ||
1663 dst.type == BRW_REGISTER_TYPE_UD);
1664 assert(src0.type == BRW_REGISTER_TYPE_D ||
1665 src0.type == BRW_REGISTER_TYPE_UD);
1666
1667 struct brw_reg reg = stride(src1, 1, 4, 0);
1668 if (devinfo->gen >= 8 || inst->exec_size == 8) {
1669 brw_ADD(p, dst, src0, reg);
1670 } else if (inst->exec_size == 16) {
1671 brw_push_insn_state(p);
1672 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1673 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1674 brw_ADD(p, firsthalf(dst), firsthalf(src0), reg);
1675 brw_set_default_compression_control(p, BRW_COMPRESSION_2NDHALF);
1676 brw_ADD(p, sechalf(dst), sechalf(src0), suboffset(reg, 2));
1677 brw_pop_insn_state(p);
1678 }
1679 }
1680
1681 void
1682 fs_generator::generate_pack_half_2x16_split(fs_inst *,
1683 struct brw_reg dst,
1684 struct brw_reg x,
1685 struct brw_reg y)
1686 {
1687 assert(devinfo->gen >= 7);
1688 assert(dst.type == BRW_REGISTER_TYPE_UD);
1689 assert(x.type == BRW_REGISTER_TYPE_F);
1690 assert(y.type == BRW_REGISTER_TYPE_F);
1691
1692 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
1693 *
1694 * Because this instruction does not have a 16-bit floating-point type,
1695 * the destination data type must be Word (W).
1696 *
1697 * The destination must be DWord-aligned and specify a horizontal stride
1698 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
1699 * each destination channel and the upper word is not modified.
1700 */
1701 struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
1702
1703 /* Give each 32-bit channel of dst the form below, where "." means
1704 * unchanged.
1705 * 0x....hhhh
1706 */
1707 brw_F32TO16(p, dst_w, y);
1708
1709 /* Now the form:
1710 * 0xhhhh0000
1711 */
1712 brw_SHL(p, dst, dst, brw_imm_ud(16u));
1713
1714 /* And, finally the form of packHalf2x16's output:
1715 * 0xhhhhllll
1716 */
1717 brw_F32TO16(p, dst_w, x);
1718 }
1719
1720 void
1721 fs_generator::generate_unpack_half_2x16_split(fs_inst *inst,
1722 struct brw_reg dst,
1723 struct brw_reg src)
1724 {
1725 assert(devinfo->gen >= 7);
1726 assert(dst.type == BRW_REGISTER_TYPE_F);
1727 assert(src.type == BRW_REGISTER_TYPE_UD);
1728
1729 /* From the Ivybridge PRM, Vol4, Part3, Section 6.26 f16to32:
1730 *
1731 * Because this instruction does not have a 16-bit floating-point type,
1732 * the source data type must be Word (W). The destination type must be
1733 * F (Float).
1734 */
1735 struct brw_reg src_w = spread(retype(src, BRW_REGISTER_TYPE_W), 2);
1736
1737 /* Each channel of src has the form of unpackHalf2x16's input: 0xhhhhllll.
1738 * For the Y case, we wish to access only the upper word; therefore
1739 * a 16-bit subregister offset is needed.
1740 */
1741 assert(inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X ||
1742 inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y);
1743 if (inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y)
1744 src_w.subnr += 2;
1745
1746 brw_F16TO32(p, dst, src_w);
1747 }
1748
1749 void
1750 fs_generator::generate_shader_time_add(fs_inst *,
1751 struct brw_reg payload,
1752 struct brw_reg offset,
1753 struct brw_reg value)
1754 {
1755 assert(devinfo->gen >= 7);
1756 brw_push_insn_state(p);
1757 brw_set_default_mask_control(p, true);
1758
1759 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1760 struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
1761 offset.type);
1762 struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
1763 value.type);
1764
1765 assert(offset.file == BRW_IMMEDIATE_VALUE);
1766 if (value.file == BRW_GENERAL_REGISTER_FILE) {
1767 value.width = BRW_WIDTH_1;
1768 value.hstride = BRW_HORIZONTAL_STRIDE_0;
1769 value.vstride = BRW_VERTICAL_STRIDE_0;
1770 } else {
1771 assert(value.file == BRW_IMMEDIATE_VALUE);
1772 }
1773
1774 /* Trying to deal with setup of the params from the IR is crazy in the FS8
1775 * case, and we don't really care about squeezing every bit of performance
1776 * out of this path, so we just emit the MOVs from here.
1777 */
1778 brw_MOV(p, payload_offset, offset);
1779 brw_MOV(p, payload_value, value);
1780 brw_shader_time_add(p, payload,
1781 prog_data->binding_table.shader_time_start);
1782 brw_pop_insn_state(p);
1783
1784 brw_mark_surface_used(prog_data,
1785 prog_data->binding_table.shader_time_start);
1786 }
1787
1788 void
1789 fs_generator::enable_debug(const char *shader_name)
1790 {
1791 debug_flag = true;
1792 this->shader_name = shader_name;
1793 }
1794
1795 int
1796 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width)
1797 {
1798 /* align to 64 byte boundary. */
1799 while (p->next_insn_offset % 64)
1800 brw_NOP(p);
1801
1802 this->dispatch_width = dispatch_width;
1803
1804 int start_offset = p->next_insn_offset;
1805 int spill_count = 0, fill_count = 0;
1806 int loop_count = 0;
1807
1808 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1809
1810 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1811 struct brw_reg src[3], dst;
1812 unsigned int last_insn_offset = p->next_insn_offset;
1813 bool multiple_instructions_emitted = false;
1814
1815 /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
1816 * "Register Region Restrictions" section: for BDW, SKL:
1817 *
1818 * "A POW/FDIV operation must not be followed by an instruction
1819 * that requires two destination registers."
1820 *
1821 * The documentation is often lacking annotations for Atom parts,
1822 * and empirically this affects CHV as well.
1823 */
1824 if (devinfo->gen >= 8 &&
1825 devinfo->gen <= 9 &&
1826 p->nr_insn > 1 &&
1827 brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
1828 brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
1829 inst->dst.component_size(inst->exec_size) > REG_SIZE) {
1830 brw_NOP(p);
1831 last_insn_offset = p->next_insn_offset;
1832 }
1833
1834 if (unlikely(debug_flag))
1835 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1836
1837 /* If the instruction writes to more than one register, it needs to be
1838 * explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
1839 * hardware figures out by itself what the right compression mode is,
1840 * but we still need to know whether the instruction is compressed to
1841 * set up the source register regions appropriately.
1842 *
1843 * XXX - This is wrong for instructions that write a single register but
1844 * read more than one which should strictly speaking be treated as
1845 * compressed. For instructions that don't write any registers it
1846 * relies on the destination being a null register of the correct
1847 * type and regioning so the instruction is considered compressed
1848 * or not accordingly.
1849 */
1850 const bool compressed =
1851 inst->dst.component_size(inst->exec_size) > REG_SIZE;
1852 brw_set_default_compression(p, compressed);
1853 brw_set_default_group(p, inst->group);
1854
1855 for (unsigned int i = 0; i < inst->sources; i++) {
1856 src[i] = brw_reg_from_fs_reg(devinfo, inst,
1857 &inst->src[i], compressed);
1858 /* The accumulator result appears to get used for the
1859 * conditional modifier generation. When negating a UD
1860 * value, there is a 33rd bit generated for the sign in the
1861 * accumulator value, so now you can't check, for example,
1862 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
1863 */
1864 assert(!inst->conditional_mod ||
1865 inst->src[i].type != BRW_REGISTER_TYPE_UD ||
1866 !inst->src[i].negate);
1867 }
1868 dst = brw_reg_from_fs_reg(devinfo, inst,
1869 &inst->dst, compressed);
1870
1871 brw_set_default_access_mode(p, BRW_ALIGN_1);
1872 brw_set_default_predicate_control(p, inst->predicate);
1873 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1874 brw_set_default_flag_reg(p, inst->flag_subreg / 2, inst->flag_subreg % 2);
1875 brw_set_default_saturate(p, inst->saturate);
1876 brw_set_default_mask_control(p, inst->force_writemask_all);
1877 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1878
1879 unsigned exec_size = inst->exec_size;
1880 if (devinfo->gen == 7 && !devinfo->is_haswell &&
1881 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
1882 exec_size *= 2;
1883 }
1884
1885 brw_set_default_exec_size(p, cvt(exec_size) - 1);
1886
1887 assert(inst->force_writemask_all || inst->exec_size >= 4);
1888 assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
1889 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1890 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1891
1892 switch (inst->opcode) {
1893 case BRW_OPCODE_MOV:
1894 brw_MOV(p, dst, src[0]);
1895 break;
1896 case BRW_OPCODE_ADD:
1897 brw_ADD(p, dst, src[0], src[1]);
1898 break;
1899 case BRW_OPCODE_MUL:
1900 brw_MUL(p, dst, src[0], src[1]);
1901 break;
1902 case BRW_OPCODE_AVG:
1903 brw_AVG(p, dst, src[0], src[1]);
1904 break;
1905 case BRW_OPCODE_MACH:
1906 brw_MACH(p, dst, src[0], src[1]);
1907 break;
1908
1909 case BRW_OPCODE_LINE:
1910 brw_LINE(p, dst, src[0], src[1]);
1911 break;
1912
1913 case BRW_OPCODE_MAD:
1914 assert(devinfo->gen >= 6);
1915 if (devinfo->gen < 10)
1916 brw_set_default_access_mode(p, BRW_ALIGN_16);
1917 brw_MAD(p, dst, src[0], src[1], src[2]);
1918 break;
1919
1920 case BRW_OPCODE_LRP:
1921 assert(devinfo->gen >= 6 && devinfo->gen <= 10);
1922 if (devinfo->gen < 10)
1923 brw_set_default_access_mode(p, BRW_ALIGN_16);
1924 brw_LRP(p, dst, src[0], src[1], src[2]);
1925 break;
1926
1927 case BRW_OPCODE_FRC:
1928 brw_FRC(p, dst, src[0]);
1929 break;
1930 case BRW_OPCODE_RNDD:
1931 brw_RNDD(p, dst, src[0]);
1932 break;
1933 case BRW_OPCODE_RNDE:
1934 brw_RNDE(p, dst, src[0]);
1935 break;
1936 case BRW_OPCODE_RNDZ:
1937 brw_RNDZ(p, dst, src[0]);
1938 break;
1939
1940 case BRW_OPCODE_AND:
1941 brw_AND(p, dst, src[0], src[1]);
1942 break;
1943 case BRW_OPCODE_OR:
1944 brw_OR(p, dst, src[0], src[1]);
1945 break;
1946 case BRW_OPCODE_XOR:
1947 brw_XOR(p, dst, src[0], src[1]);
1948 break;
1949 case BRW_OPCODE_NOT:
1950 brw_NOT(p, dst, src[0]);
1951 break;
1952 case BRW_OPCODE_ASR:
1953 brw_ASR(p, dst, src[0], src[1]);
1954 break;
1955 case BRW_OPCODE_SHR:
1956 brw_SHR(p, dst, src[0], src[1]);
1957 break;
1958 case BRW_OPCODE_SHL:
1959 brw_SHL(p, dst, src[0], src[1]);
1960 break;
1961 case BRW_OPCODE_F32TO16:
1962 assert(devinfo->gen >= 7);
1963 brw_F32TO16(p, dst, src[0]);
1964 break;
1965 case BRW_OPCODE_F16TO32:
1966 assert(devinfo->gen >= 7);
1967 brw_F16TO32(p, dst, src[0]);
1968 break;
1969 case BRW_OPCODE_CMP:
1970 if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell &&
1971 dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1972 /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
1973 * implemented in the compiler is not sufficient. Overriding the
1974 * type when the destination is the null register is necessary but
1975 * not sufficient by itself.
1976 */
1977 assert(dst.nr == BRW_ARF_NULL);
1978 dst.type = BRW_REGISTER_TYPE_D;
1979 }
1980 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1981 break;
1982 case BRW_OPCODE_SEL:
1983 brw_SEL(p, dst, src[0], src[1]);
1984 break;
1985 case BRW_OPCODE_CSEL:
1986 assert(devinfo->gen >= 8);
1987 if (devinfo->gen < 10)
1988 brw_set_default_access_mode(p, BRW_ALIGN_16);
1989 brw_CSEL(p, dst, src[0], src[1], src[2]);
1990 break;
1991 case BRW_OPCODE_BFREV:
1992 assert(devinfo->gen >= 7);
1993 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1994 retype(src[0], BRW_REGISTER_TYPE_UD));
1995 break;
1996 case BRW_OPCODE_FBH:
1997 assert(devinfo->gen >= 7);
1998 brw_FBH(p, retype(dst, src[0].type), src[0]);
1999 break;
2000 case BRW_OPCODE_FBL:
2001 assert(devinfo->gen >= 7);
2002 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
2003 retype(src[0], BRW_REGISTER_TYPE_UD));
2004 break;
2005 case BRW_OPCODE_LZD:
2006 brw_LZD(p, dst, src[0]);
2007 break;
2008 case BRW_OPCODE_CBIT:
2009 assert(devinfo->gen >= 7);
2010 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
2011 retype(src[0], BRW_REGISTER_TYPE_UD));
2012 break;
2013 case BRW_OPCODE_ADDC:
2014 assert(devinfo->gen >= 7);
2015 brw_ADDC(p, dst, src[0], src[1]);
2016 break;
2017 case BRW_OPCODE_SUBB:
2018 assert(devinfo->gen >= 7);
2019 brw_SUBB(p, dst, src[0], src[1]);
2020 break;
2021 case BRW_OPCODE_MAC:
2022 brw_MAC(p, dst, src[0], src[1]);
2023 break;
2024
2025 case BRW_OPCODE_BFE:
2026 assert(devinfo->gen >= 7);
2027 if (devinfo->gen < 10)
2028 brw_set_default_access_mode(p, BRW_ALIGN_16);
2029 brw_BFE(p, dst, src[0], src[1], src[2]);
2030 break;
2031
2032 case BRW_OPCODE_BFI1:
2033 assert(devinfo->gen >= 7);
2034 brw_BFI1(p, dst, src[0], src[1]);
2035 break;
2036 case BRW_OPCODE_BFI2:
2037 assert(devinfo->gen >= 7);
2038 if (devinfo->gen < 10)
2039 brw_set_default_access_mode(p, BRW_ALIGN_16);
2040 brw_BFI2(p, dst, src[0], src[1], src[2]);
2041 break;
2042
2043 case BRW_OPCODE_IF:
2044 if (inst->src[0].file != BAD_FILE) {
2045 /* The instruction has an embedded compare (only allowed on gen6) */
2046 assert(devinfo->gen == 6);
2047 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
2048 } else {
2049 brw_IF(p, brw_inst_exec_size(devinfo, p->current));
2050 }
2051 break;
2052
2053 case BRW_OPCODE_ELSE:
2054 brw_ELSE(p);
2055 break;
2056 case BRW_OPCODE_ENDIF:
2057 brw_ENDIF(p);
2058 break;
2059
2060 case BRW_OPCODE_DO:
2061 brw_DO(p, brw_inst_exec_size(devinfo, p->current));
2062 break;
2063
2064 case BRW_OPCODE_BREAK:
2065 brw_BREAK(p);
2066 break;
2067 case BRW_OPCODE_CONTINUE:
2068 brw_CONT(p);
2069 break;
2070
2071 case BRW_OPCODE_WHILE:
2072 brw_WHILE(p);
2073 loop_count++;
2074 break;
2075
2076 case SHADER_OPCODE_RCP:
2077 case SHADER_OPCODE_RSQ:
2078 case SHADER_OPCODE_SQRT:
2079 case SHADER_OPCODE_EXP2:
2080 case SHADER_OPCODE_LOG2:
2081 case SHADER_OPCODE_SIN:
2082 case SHADER_OPCODE_COS:
2083 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2084 if (devinfo->gen >= 6) {
2085 assert(inst->mlen == 0);
2086 assert(devinfo->gen >= 7 || inst->exec_size == 8);
2087 gen6_math(p, dst, brw_math_function(inst->opcode),
2088 src[0], brw_null_reg());
2089 } else {
2090 assert(inst->mlen >= 1);
2091 assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8);
2092 gen4_math(p, dst,
2093 brw_math_function(inst->opcode),
2094 inst->base_mrf, src[0],
2095 BRW_MATH_PRECISION_FULL);
2096 }
2097 break;
2098 case SHADER_OPCODE_INT_QUOTIENT:
2099 case SHADER_OPCODE_INT_REMAINDER:
2100 case SHADER_OPCODE_POW:
2101 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2102 if (devinfo->gen >= 6) {
2103 assert(inst->mlen == 0);
2104 assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
2105 inst->exec_size == 8);
2106 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
2107 } else {
2108 assert(inst->mlen >= 1);
2109 assert(inst->exec_size == 8);
2110 gen4_math(p, dst, brw_math_function(inst->opcode),
2111 inst->base_mrf, src[0],
2112 BRW_MATH_PRECISION_FULL);
2113 }
2114 break;
2115 case FS_OPCODE_LINTERP:
2116 multiple_instructions_emitted = generate_linterp(inst, dst, src);
2117 break;
2118 case FS_OPCODE_PIXEL_X:
2119 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2120 src[0].subnr = 0 * type_sz(src[0].type);
2121 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2122 break;
2123 case FS_OPCODE_PIXEL_Y:
2124 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2125 src[0].subnr = 4 * type_sz(src[0].type);
2126 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2127 break;
2128 case SHADER_OPCODE_GET_BUFFER_SIZE:
2129 generate_get_buffer_size(inst, dst, src[0], src[1]);
2130 break;
2131 case SHADER_OPCODE_TEX:
2132 case FS_OPCODE_TXB:
2133 case SHADER_OPCODE_TXD:
2134 case SHADER_OPCODE_TXF:
2135 case SHADER_OPCODE_TXF_LZ:
2136 case SHADER_OPCODE_TXF_CMS:
2137 case SHADER_OPCODE_TXF_CMS_W:
2138 case SHADER_OPCODE_TXF_UMS:
2139 case SHADER_OPCODE_TXF_MCS:
2140 case SHADER_OPCODE_TXL:
2141 case SHADER_OPCODE_TXL_LZ:
2142 case SHADER_OPCODE_TXS:
2143 case SHADER_OPCODE_LOD:
2144 case SHADER_OPCODE_TG4:
2145 case SHADER_OPCODE_TG4_OFFSET:
2146 case SHADER_OPCODE_SAMPLEINFO:
2147 generate_tex(inst, dst, src[0], src[1], src[2]);
2148 break;
2149 case FS_OPCODE_DDX_COARSE:
2150 case FS_OPCODE_DDX_FINE:
2151 generate_ddx(inst, dst, src[0]);
2152 break;
2153 case FS_OPCODE_DDY_COARSE:
2154 case FS_OPCODE_DDY_FINE:
2155 generate_ddy(inst, dst, src[0]);
2156 break;
2157
2158 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2159 generate_scratch_write(inst, src[0]);
2160 spill_count++;
2161 break;
2162
2163 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2164 generate_scratch_read(inst, dst);
2165 fill_count++;
2166 break;
2167
2168 case SHADER_OPCODE_GEN7_SCRATCH_READ:
2169 generate_scratch_read_gen7(inst, dst);
2170 fill_count++;
2171 break;
2172
2173 case SHADER_OPCODE_MOV_INDIRECT:
2174 generate_mov_indirect(inst, dst, src[0], src[1]);
2175 break;
2176
2177 case SHADER_OPCODE_URB_READ_SIMD8:
2178 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
2179 generate_urb_read(inst, dst, src[0]);
2180 break;
2181
2182 case SHADER_OPCODE_URB_WRITE_SIMD8:
2183 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
2184 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
2185 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
2186 generate_urb_write(inst, src[0]);
2187 break;
2188
2189 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
2190 assert(inst->force_writemask_all);
2191 generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
2192 break;
2193
2194 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
2195 assert(inst->force_writemask_all);
2196 generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2197 break;
2198
2199 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
2200 generate_varying_pull_constant_load_gen4(inst, dst, src[0]);
2201 break;
2202
2203 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
2204 generate_varying_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2205 break;
2206
2207 case FS_OPCODE_REP_FB_WRITE:
2208 case FS_OPCODE_FB_WRITE:
2209 generate_fb_write(inst, src[0]);
2210 break;
2211
2212 case FS_OPCODE_FB_READ:
2213 generate_fb_read(inst, dst, src[0]);
2214 break;
2215
2216 case FS_OPCODE_MOV_DISPATCH_TO_FLAGS:
2217 generate_mov_dispatch_to_flags(inst);
2218 break;
2219
2220 case FS_OPCODE_DISCARD_JUMP:
2221 generate_discard_jump(inst);
2222 break;
2223
2224 case SHADER_OPCODE_SHADER_TIME_ADD:
2225 generate_shader_time_add(inst, src[0], src[1], src[2]);
2226 break;
2227
2228 case SHADER_OPCODE_UNTYPED_ATOMIC:
2229 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2230 brw_untyped_atomic(p, dst, src[0], src[1], src[2].ud,
2231 inst->mlen, !inst->dst.is_null(),
2232 inst->header_size);
2233 break;
2234
2235 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
2236 assert(!inst->header_size);
2237 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2238 brw_untyped_surface_read(p, dst, src[0], src[1],
2239 inst->mlen, src[2].ud);
2240 break;
2241
2242 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
2243 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2244 brw_untyped_surface_write(p, src[0], src[1],
2245 inst->mlen, src[2].ud,
2246 inst->header_size);
2247 break;
2248
2249 case SHADER_OPCODE_BYTE_SCATTERED_READ:
2250 assert(!inst->header_size);
2251 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2252 brw_byte_scattered_read(p, dst, src[0], src[1],
2253 inst->mlen, src[2].ud);
2254 break;
2255
2256 case SHADER_OPCODE_BYTE_SCATTERED_WRITE:
2257 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2258 brw_byte_scattered_write(p, src[0], src[1],
2259 inst->mlen, src[2].ud,
2260 inst->header_size);
2261 break;
2262
2263 case SHADER_OPCODE_TYPED_ATOMIC:
2264 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2265 brw_typed_atomic(p, dst, src[0], src[1],
2266 src[2].ud, inst->mlen, !inst->dst.is_null(),
2267 inst->header_size);
2268 break;
2269
2270 case SHADER_OPCODE_TYPED_SURFACE_READ:
2271 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2272 brw_typed_surface_read(p, dst, src[0], src[1],
2273 inst->mlen, src[2].ud,
2274 inst->header_size);
2275 break;
2276
2277 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
2278 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2279 brw_typed_surface_write(p, src[0], src[1], inst->mlen, src[2].ud,
2280 inst->header_size);
2281 break;
2282
2283 case SHADER_OPCODE_MEMORY_FENCE:
2284 brw_memory_fence(p, dst);
2285 break;
2286
2287 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
2288 const struct brw_reg mask =
2289 brw_stage_has_packed_dispatch(devinfo, stage,
2290 prog_data) ? brw_imm_ud(~0u) :
2291 stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
2292 brw_dmask_reg();
2293 brw_find_live_channel(p, dst, mask);
2294 break;
2295 }
2296
2297 case SHADER_OPCODE_BROADCAST:
2298 assert(inst->force_writemask_all);
2299 brw_broadcast(p, dst, src[0], src[1]);
2300 break;
2301
2302 case SHADER_OPCODE_SHUFFLE:
2303 generate_shuffle(inst, dst, src[0], src[1]);
2304 break;
2305
2306 case SHADER_OPCODE_SEL_EXEC:
2307 assert(inst->force_writemask_all);
2308 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2309 brw_MOV(p, dst, src[1]);
2310 brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2311 brw_MOV(p, dst, src[0]);
2312 break;
2313
2314 case SHADER_OPCODE_QUAD_SWIZZLE:
2315 /* This only works on 8-wide 32-bit values */
2316 assert(inst->exec_size == 8);
2317 assert(type_sz(src[0].type) == 4);
2318 assert(inst->force_writemask_all);
2319 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2320 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2321
2322 if (src[0].file == BRW_IMMEDIATE_VALUE ||
2323 (src[0].vstride == 0 && src[0].hstride == 0)) {
2324 /* The value is uniform across all channels */
2325 brw_MOV(p, dst, src[0]);
2326 } else {
2327 brw_set_default_access_mode(p, BRW_ALIGN_16);
2328 struct brw_reg swiz_src = stride(src[0], 4, 4, 1);
2329 swiz_src.swizzle = inst->src[1].ud;
2330 brw_MOV(p, dst, swiz_src);
2331 }
2332 break;
2333
2334 case SHADER_OPCODE_CLUSTER_BROADCAST: {
2335 assert(src[0].type == dst.type);
2336 assert(!src[0].negate && !src[0].abs);
2337 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2338 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2339 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2340 assert(src[2].type == BRW_REGISTER_TYPE_UD);
2341 const unsigned component = src[1].ud;
2342 const unsigned cluster_size = src[2].ud;
2343 struct brw_reg strided = stride(suboffset(src[0], component),
2344 cluster_size, cluster_size, 0);
2345 if (type_sz(src[0].type) > 4 &&
2346 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
2347 /* IVB has an issue (which we found empirically) where it reads
2348 * two address register components per channel for indirectly
2349 * addressed 64-bit sources.
2350 *
2351 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
2352 *
2353 * "When source or destination datatype is 64b or operation is
2354 * integer DWord multiply, indirect addressing must not be
2355 * used."
2356 *
2357 * To work around both of these, we do two integer MOVs insead of
2358 * one 64-bit MOV. Because no double value should ever cross a
2359 * register boundary, it's safe to use the immediate offset in the
2360 * indirect here to handle adding 4 bytes to the offset and avoid
2361 * the extra ADD to the register file.
2362 */
2363 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
2364 subscript(strided, BRW_REGISTER_TYPE_D, 0));
2365 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
2366 subscript(strided, BRW_REGISTER_TYPE_D, 1));
2367 } else {
2368 brw_MOV(p, dst, strided);
2369 }
2370 break;
2371 }
2372
2373 case FS_OPCODE_SET_SAMPLE_ID:
2374 generate_set_sample_id(inst, dst, src[0], src[1]);
2375 break;
2376
2377 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
2378 generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
2379 break;
2380
2381 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
2382 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
2383 generate_unpack_half_2x16_split(inst, dst, src[0]);
2384 break;
2385
2386 case FS_OPCODE_PLACEHOLDER_HALT:
2387 /* This is the place where the final HALT needs to be inserted if
2388 * we've emitted any discards. If not, this will emit no code.
2389 */
2390 if (!patch_discard_jumps_to_fb_writes()) {
2391 if (unlikely(debug_flag)) {
2392 disasm_info->use_tail = true;
2393 }
2394 }
2395 break;
2396
2397 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
2398 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2399 GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
2400 break;
2401
2402 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
2403 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2404 GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
2405 break;
2406
2407 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
2408 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2409 GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
2410 break;
2411
2412 case CS_OPCODE_CS_TERMINATE:
2413 generate_cs_terminate(inst, src[0]);
2414 break;
2415
2416 case SHADER_OPCODE_BARRIER:
2417 generate_barrier(inst, src[0]);
2418 break;
2419
2420 case BRW_OPCODE_DIM:
2421 assert(devinfo->is_haswell);
2422 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2423 assert(dst.type == BRW_REGISTER_TYPE_DF);
2424 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2425 break;
2426
2427 case SHADER_OPCODE_RND_MODE:
2428 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2429 brw_rounding_mode(p, (brw_rnd_mode) src[0].d);
2430 break;
2431
2432 default:
2433 unreachable("Unsupported opcode");
2434
2435 case SHADER_OPCODE_LOAD_PAYLOAD:
2436 unreachable("Should be lowered by lower_load_payload()");
2437 }
2438
2439 if (multiple_instructions_emitted)
2440 continue;
2441
2442 if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2443 assert(p->next_insn_offset == last_insn_offset + 16 ||
2444 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2445 "emitting more than 1 instruction");
2446
2447 brw_inst *last = &p->store[last_insn_offset / 16];
2448
2449 if (inst->conditional_mod)
2450 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2451 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2452 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2453 }
2454 }
2455
2456 brw_set_uip_jip(p, start_offset);
2457
2458 /* end of program sentinel */
2459 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2460
2461 #ifndef NDEBUG
2462 bool validated =
2463 #else
2464 if (unlikely(debug_flag))
2465 #endif
2466 brw_validate_instructions(devinfo, p->store,
2467 start_offset,
2468 p->next_insn_offset,
2469 disasm_info);
2470
2471 int before_size = p->next_insn_offset - start_offset;
2472 brw_compact_instructions(p, start_offset, disasm_info);
2473 int after_size = p->next_insn_offset - start_offset;
2474
2475 if (unlikely(debug_flag)) {
2476 fprintf(stderr, "Native code for %s\n"
2477 "SIMD%d shader: %d instructions. %d loops. %u cycles. %d:%d spills:fills. Promoted %u constants. Compacted %d to %d"
2478 " bytes (%.0f%%)\n",
2479 shader_name, dispatch_width, before_size / 16, loop_count, cfg->cycle_count,
2480 spill_count, fill_count, promoted_constants, before_size, after_size,
2481 100.0f * (before_size - after_size) / before_size);
2482
2483 dump_assembly(p->store, disasm_info);
2484 }
2485 ralloc_free(disasm_info);
2486 assert(validated);
2487
2488 compiler->shader_debug_log(log_data,
2489 "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
2490 "%d:%d spills:fills, Promoted %u constants, "
2491 "compacted %d to %d bytes.",
2492 _mesa_shader_stage_to_abbrev(stage),
2493 dispatch_width, before_size / 16,
2494 loop_count, cfg->cycle_count, spill_count,
2495 fill_count, promoted_constants, before_size,
2496 after_size);
2497
2498 return start_offset;
2499 }
2500
2501 const unsigned *
2502 fs_generator::get_assembly()
2503 {
2504 return brw_get_program(p, &prog_data->program_size);
2505 }