intel/compiler: Implement untyped atomic float min, max, and compare-swap dataport...
[mesa.git] / src / intel / compiler / brw_fs_generator.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_generator.cpp
25 *
26 * This file supports generating code from the FS LIR to the actual
27 * native instructions.
28 */
29
30 #include "brw_eu.h"
31 #include "brw_fs.h"
32 #include "brw_cfg.h"
33
34 static enum brw_reg_file
35 brw_file_from_reg(fs_reg *reg)
36 {
37 switch (reg->file) {
38 case ARF:
39 return BRW_ARCHITECTURE_REGISTER_FILE;
40 case FIXED_GRF:
41 case VGRF:
42 return BRW_GENERAL_REGISTER_FILE;
43 case MRF:
44 return BRW_MESSAGE_REGISTER_FILE;
45 case IMM:
46 return BRW_IMMEDIATE_VALUE;
47 case BAD_FILE:
48 case ATTR:
49 case UNIFORM:
50 unreachable("not reached");
51 }
52 return BRW_ARCHITECTURE_REGISTER_FILE;
53 }
54
55 static struct brw_reg
56 brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst,
57 fs_reg *reg, bool compressed)
58 {
59 struct brw_reg brw_reg;
60
61 switch (reg->file) {
62 case MRF:
63 assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
64 /* Fallthrough */
65 case VGRF:
66 if (reg->stride == 0) {
67 brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
68 } else {
69 /* From the Haswell PRM:
70 *
71 * "VertStride must be used to cross GRF register boundaries. This
72 * rule implies that elements within a 'Width' cannot cross GRF
73 * boundaries."
74 *
75 * The maximum width value that could satisfy this restriction is:
76 */
77 const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
78
79 /* Because the hardware can only split source regions at a whole
80 * multiple of width during decompression (i.e. vertically), clamp
81 * the value obtained above to the physical execution size of a
82 * single decompressed chunk of the instruction:
83 */
84 const unsigned phys_width = compressed ? inst->exec_size / 2 :
85 inst->exec_size;
86
87 /* XXX - The equation above is strictly speaking not correct on
88 * hardware that supports unbalanced GRF writes -- On Gen9+
89 * each decompressed chunk of the instruction may have a
90 * different execution size when the number of components
91 * written to each destination GRF is not the same.
92 */
93 const unsigned width = MIN2(reg_width, phys_width);
94 brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
95 brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
96
97 if (devinfo->gen == 7 && !devinfo->is_haswell) {
98 /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
99 * "Each DF (Double Float) operand uses an element size of 4 rather
100 * than 8 and all regioning parameters are twice what the values
101 * would be based on the true element size: ExecSize, Width,
102 * HorzStride, and VertStride. Each DF operand uses a pair of
103 * channels and all masking and swizzing should be adjusted
104 * appropriately."
105 *
106 * From the IvyBridge PRM (Special Requirements for Handling Double
107 * Precision Data Types, page 71):
108 * "In Align1 mode, all regioning parameters like stride, execution
109 * size, and width must use the syntax of a pair of packed
110 * floats. The offsets for these data types must be 64-bit
111 * aligned. The execution size and regioning parameters are in terms
112 * of floats."
113 *
114 * Summarized: when handling DF-typed arguments, ExecSize,
115 * VertStride, and Width must be doubled.
116 *
117 * It applies to BayTrail too.
118 */
119 if (type_sz(reg->type) == 8) {
120 brw_reg.width++;
121 if (brw_reg.vstride > 0)
122 brw_reg.vstride++;
123 assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
124 }
125
126 /* When converting from DF->F, we set the destination stride to 2
127 * because each d2f conversion implicitly writes 2 floats, being
128 * the first one the converted value. IVB/BYT actually writes two
129 * F components per SIMD channel, and every other component is
130 * filled with garbage.
131 */
132 if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
133 type_sz(inst->dst.type) < 8) {
134 assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
135 brw_reg.hstride--;
136 }
137 }
138 }
139
140 brw_reg = retype(brw_reg, reg->type);
141 brw_reg = byte_offset(brw_reg, reg->offset);
142 brw_reg.abs = reg->abs;
143 brw_reg.negate = reg->negate;
144 break;
145 case ARF:
146 case FIXED_GRF:
147 case IMM:
148 assert(reg->offset == 0);
149 brw_reg = reg->as_brw_reg();
150 break;
151 case BAD_FILE:
152 /* Probably unused. */
153 brw_reg = brw_null_reg();
154 break;
155 case ATTR:
156 case UNIFORM:
157 unreachable("not reached");
158 }
159
160 /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
161 * region, but on IVB and BYT DF regions must be programmed in terms of
162 * floats. A <0,2,1> region accomplishes this.
163 */
164 if (devinfo->gen == 7 && !devinfo->is_haswell &&
165 type_sz(reg->type) == 8 &&
166 brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
167 brw_reg.width == BRW_WIDTH_1 &&
168 brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
169 brw_reg.width = BRW_WIDTH_2;
170 brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
171 }
172
173 return brw_reg;
174 }
175
176 fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
177 void *mem_ctx,
178 struct brw_stage_prog_data *prog_data,
179 unsigned promoted_constants,
180 bool runtime_check_aads_emit,
181 gl_shader_stage stage)
182
183 : compiler(compiler), log_data(log_data),
184 devinfo(compiler->devinfo),
185 prog_data(prog_data),
186 promoted_constants(promoted_constants),
187 runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
188 stage(stage), mem_ctx(mem_ctx)
189 {
190 p = rzalloc(mem_ctx, struct brw_codegen);
191 brw_init_codegen(devinfo, p, mem_ctx);
192
193 /* In the FS code generator, we are very careful to ensure that we always
194 * set the right execution size so we don't need the EU code to "help" us
195 * by trying to infer it. Sometimes, it infers the wrong thing.
196 */
197 p->automatic_exec_sizes = false;
198 }
199
200 fs_generator::~fs_generator()
201 {
202 }
203
204 class ip_record : public exec_node {
205 public:
206 DECLARE_RALLOC_CXX_OPERATORS(ip_record)
207
208 ip_record(int ip)
209 {
210 this->ip = ip;
211 }
212
213 int ip;
214 };
215
216 bool
217 fs_generator::patch_discard_jumps_to_fb_writes()
218 {
219 if (devinfo->gen < 6 || this->discard_halt_patches.is_empty())
220 return false;
221
222 int scale = brw_jump_scale(p->devinfo);
223
224 /* There is a somewhat strange undocumented requirement of using
225 * HALT, according to the simulator. If some channel has HALTed to
226 * a particular UIP, then by the end of the program, every channel
227 * must have HALTed to that UIP. Furthermore, the tracking is a
228 * stack, so you can't do the final halt of a UIP after starting
229 * halting to a new UIP.
230 *
231 * Symptoms of not emitting this instruction on actual hardware
232 * included GPU hangs and sparkly rendering on the piglit discard
233 * tests.
234 */
235 brw_inst *last_halt = gen6_HALT(p);
236 brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
237 brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
238
239 int ip = p->nr_insn;
240
241 foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
242 brw_inst *patch = &p->store[patch_ip->ip];
243
244 assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
245 /* HALT takes a half-instruction distance from the pre-incremented IP. */
246 brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
247 }
248
249 this->discard_halt_patches.make_empty();
250 return true;
251 }
252
253 void
254 fs_generator::fire_fb_write(fs_inst *inst,
255 struct brw_reg payload,
256 struct brw_reg implied_header,
257 GLuint nr)
258 {
259 uint32_t msg_control;
260
261 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
262
263 if (devinfo->gen < 6) {
264 brw_push_insn_state(p);
265 brw_set_default_exec_size(p, BRW_EXECUTE_8);
266 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
267 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
268 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
269 brw_MOV(p, offset(retype(payload, BRW_REGISTER_TYPE_UD), 1),
270 offset(retype(implied_header, BRW_REGISTER_TYPE_UD), 1));
271 brw_pop_insn_state(p);
272 }
273
274 if (inst->opcode == FS_OPCODE_REP_FB_WRITE) {
275 assert(inst->group == 0 && inst->exec_size == 16);
276 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
277
278 } else if (prog_data->dual_src_blend) {
279 assert(inst->exec_size == 8);
280
281 if (inst->group % 16 == 0)
282 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
283 else if (inst->group % 16 == 8)
284 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
285 else
286 unreachable("Invalid dual-source FB write instruction group");
287
288 } else {
289 assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));
290
291 if (inst->exec_size == 16)
292 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
293 else if (inst->exec_size == 8)
294 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
295 else
296 unreachable("Invalid FB write execution size");
297 }
298
299 /* We assume render targets start at 0, because headerless FB write
300 * messages set "Render Target Index" to 0. Using a different binding
301 * table index would make it impossible to use headerless messages.
302 */
303 const uint32_t surf_index = inst->target;
304
305 brw_inst *insn = brw_fb_WRITE(p,
306 payload,
307 retype(implied_header, BRW_REGISTER_TYPE_UW),
308 msg_control,
309 surf_index,
310 nr,
311 0,
312 inst->eot,
313 inst->last_rt,
314 inst->header_size != 0);
315
316 if (devinfo->gen >= 6)
317 brw_inst_set_rt_slot_group(devinfo, insn, inst->group / 16);
318
319 brw_mark_surface_used(&prog_data->base, surf_index);
320 }
321
322 void
323 fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
324 {
325 if (devinfo->gen < 8 && !devinfo->is_haswell) {
326 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
327 }
328
329 const struct brw_reg implied_header =
330 devinfo->gen < 6 ? payload : brw_null_reg();
331
332 if (inst->base_mrf >= 0)
333 payload = brw_message_reg(inst->base_mrf);
334
335 if (!runtime_check_aads_emit) {
336 fire_fb_write(inst, payload, implied_header, inst->mlen);
337 } else {
338 /* This can only happen in gen < 6 */
339 assert(devinfo->gen < 6);
340
341 struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
342
343 /* Check runtime bit to detect if we have to send AA data or not */
344 brw_push_insn_state(p);
345 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
346 brw_set_default_exec_size(p, BRW_EXECUTE_1);
347 brw_AND(p,
348 v1_null_ud,
349 retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
350 brw_imm_ud(1<<26));
351 brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
352
353 int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
354 brw_pop_insn_state(p);
355 {
356 /* Don't send AA data */
357 fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
358 }
359 brw_land_fwd_jump(p, jmp);
360 fire_fb_write(inst, payload, implied_header, inst->mlen);
361 }
362 }
363
364 void
365 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
366 struct brw_reg payload)
367 {
368 assert(inst->size_written % REG_SIZE == 0);
369 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
370 /* We assume that render targets start at binding table index 0. */
371 const unsigned surf_index = inst->target;
372
373 gen9_fb_READ(p, dst, payload, surf_index,
374 inst->header_size, inst->size_written / REG_SIZE,
375 prog_data->persample_dispatch);
376
377 brw_mark_surface_used(&prog_data->base, surf_index);
378 }
379
380 void
381 fs_generator::generate_mov_indirect(fs_inst *inst,
382 struct brw_reg dst,
383 struct brw_reg reg,
384 struct brw_reg indirect_byte_offset)
385 {
386 assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
387 assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
388 assert(!reg.abs && !reg.negate);
389 assert(reg.type == dst.type);
390
391 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
392
393 if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
394 imm_byte_offset += indirect_byte_offset.ud;
395
396 reg.nr = imm_byte_offset / REG_SIZE;
397 reg.subnr = imm_byte_offset % REG_SIZE;
398 brw_MOV(p, dst, reg);
399 } else {
400 /* Prior to Broadwell, there are only 8 address registers. */
401 assert(inst->exec_size <= 8 || devinfo->gen >= 8);
402
403 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
404 struct brw_reg addr = vec8(brw_address_reg(0));
405
406 /* The destination stride of an instruction (in bytes) must be greater
407 * than or equal to the size of the rest of the instruction. Since the
408 * address register is of type UW, we can't use a D-type instruction.
409 * In order to get around this, re retype to UW and use a stride.
410 */
411 indirect_byte_offset =
412 retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
413
414 /* There are a number of reasons why we don't use the base offset here.
415 * One reason is that the field is only 9 bits which means we can only
416 * use it to access the first 16 GRFs. Also, from the Haswell PRM
417 * section "Register Region Restrictions":
418 *
419 * "The lower bits of the AddressImmediate must not overflow to
420 * change the register address. The lower 5 bits of Address
421 * Immediate when added to lower 5 bits of address register gives
422 * the sub-register offset. The upper bits of Address Immediate
423 * when added to upper bits of address register gives the register
424 * address. Any overflow from sub-register offset is dropped."
425 *
426 * Since the indirect may cause us to cross a register boundary, this
427 * makes the base offset almost useless. We could try and do something
428 * clever where we use a actual base offset if base_offset % 32 == 0 but
429 * that would mean we were generating different code depending on the
430 * base offset. Instead, for the sake of consistency, we'll just do the
431 * add ourselves. This restriction is only listed in the Haswell PRM
432 * but empirical testing indicates that it applies on all older
433 * generations and is lifted on Broadwell.
434 *
435 * In the end, while base_offset is nice to look at in the generated
436 * code, using it saves us 0 instructions and would require quite a bit
437 * of case-by-case work. It's just not worth it.
438 */
439 brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
440
441 if (type_sz(reg.type) > 4 &&
442 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
443 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
444 /* IVB has an issue (which we found empirically) where it reads two
445 * address register components per channel for indirectly addressed
446 * 64-bit sources.
447 *
448 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
449 *
450 * "When source or destination datatype is 64b or operation is
451 * integer DWord multiply, indirect addressing must not be used."
452 *
453 * To work around both of these, we do two integer MOVs insead of one
454 * 64-bit MOV. Because no double value should ever cross a register
455 * boundary, it's safe to use the immediate offset in the indirect
456 * here to handle adding 4 bytes to the offset and avoid the extra
457 * ADD to the register file.
458 */
459 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
460 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
461 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
462 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
463 } else {
464 struct brw_reg ind_src = brw_VxH_indirect(0, 0);
465
466 brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
467
468 if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
469 !inst->get_next()->is_tail_sentinel() &&
470 ((fs_inst *)inst->get_next())->mlen > 0) {
471 /* From the Sandybridge PRM:
472 *
473 * "[Errata: DevSNB(SNB)] If MRF register is updated by any
474 * instruction that “indexed/indirect” source AND is followed
475 * by a send, the instruction requires a “Switch”. This is to
476 * avoid race condition where send may dispatch before MRF is
477 * updated."
478 */
479 brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
480 }
481 }
482 }
483 }
484
485 void
486 fs_generator::generate_shuffle(fs_inst *inst,
487 struct brw_reg dst,
488 struct brw_reg src,
489 struct brw_reg idx)
490 {
491 /* Ivy bridge has some strange behavior that makes this a real pain to
492 * implement for 64-bit values so we just don't bother.
493 */
494 assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4);
495
496 /* Because we're using the address register, we're limited to 8-wide
497 * execution on gen7. On gen8, we're limited to 16-wide by the address
498 * register file and 8-wide for 64-bit types. We could try and make this
499 * instruction splittable higher up in the compiler but that gets weird
500 * because it reads all of the channels regardless of execution size. It's
501 * easier just to split it here.
502 */
503 const unsigned lower_width =
504 (devinfo->gen <= 7 || type_sz(src.type) > 4) ?
505 8 : MIN2(16, inst->exec_size);
506
507 brw_set_default_exec_size(p, cvt(lower_width) - 1);
508 for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
509 brw_set_default_group(p, group);
510
511 if ((src.vstride == 0 && src.hstride == 0) ||
512 idx.file == BRW_IMMEDIATE_VALUE) {
513 /* Trivial, the source is already uniform or the index is a constant.
514 * We will typically not get here if the optimizer is doing its job,
515 * but asserting would be mean.
516 */
517 const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
518 brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0));
519 } else {
520 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
521 struct brw_reg addr = vec8(brw_address_reg(0));
522
523 struct brw_reg group_idx = suboffset(idx, group);
524
525 if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
526 /* Things get grumpy if the register is too wide. */
527 group_idx.width--;
528 group_idx.vstride--;
529 }
530
531 assert(type_sz(group_idx.type) <= 4);
532 if (type_sz(group_idx.type) == 4) {
533 /* The destination stride of an instruction (in bytes) must be
534 * greater than or equal to the size of the rest of the
535 * instruction. Since the address register is of type UW, we
536 * can't use a D-type instruction. In order to get around this,
537 * re retype to UW and use a stride.
538 */
539 group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
540 }
541
542 /* Take into account the component size and horizontal stride. */
543 assert(src.vstride == src.hstride + src.width);
544 brw_SHL(p, addr, group_idx,
545 brw_imm_uw(_mesa_logbase2(type_sz(src.type)) +
546 src.hstride - 1));
547
548 /* Add on the register start offset */
549 brw_ADD(p, addr, addr, brw_imm_uw(src.nr * REG_SIZE + src.subnr));
550
551 if (type_sz(src.type) > 4 &&
552 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
553 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
554 /* IVB has an issue (which we found empirically) where it reads
555 * two address register components per channel for indirectly
556 * addressed 64-bit sources.
557 *
558 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
559 *
560 * "When source or destination datatype is 64b or operation is
561 * integer DWord multiply, indirect addressing must not be
562 * used."
563 *
564 * To work around both of these, we do two integer MOVs insead of
565 * one 64-bit MOV. Because no double value should ever cross a
566 * register boundary, it's safe to use the immediate offset in the
567 * indirect here to handle adding 4 bytes to the offset and avoid
568 * the extra ADD to the register file.
569 */
570 struct brw_reg gdst = suboffset(dst, group);
571 struct brw_reg dst_d = retype(spread(gdst, 2),
572 BRW_REGISTER_TYPE_D);
573 brw_MOV(p, dst_d,
574 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
575 brw_MOV(p, byte_offset(dst_d, 4),
576 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
577 } else {
578 brw_MOV(p, suboffset(dst, group),
579 retype(brw_VxH_indirect(0, 0), src.type));
580 }
581 }
582 }
583 }
584
585 void
586 fs_generator::generate_urb_read(fs_inst *inst,
587 struct brw_reg dst,
588 struct brw_reg header)
589 {
590 assert(inst->size_written % REG_SIZE == 0);
591 assert(header.file == BRW_GENERAL_REGISTER_FILE);
592 assert(header.type == BRW_REGISTER_TYPE_UD);
593
594 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
595 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
596 brw_set_src0(p, send, header);
597 brw_set_src1(p, send, brw_imm_ud(0u));
598
599 brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
600 brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ);
601
602 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
603 brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
604
605 brw_inst_set_mlen(p->devinfo, send, inst->mlen);
606 brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
607 brw_inst_set_header_present(p->devinfo, send, true);
608 brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
609 }
610
611 void
612 fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
613 {
614 brw_inst *insn;
615
616 /* WaClearTDRRegBeforeEOTForNonPS.
617 *
618 * WA: Clear tdr register before send EOT in all non-PS shader kernels
619 *
620 * mov(8) tdr0:ud 0x0:ud {NoMask}"
621 */
622 if (inst->eot && p->devinfo->gen == 10) {
623 brw_push_insn_state(p);
624 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
625 brw_MOV(p, brw_tdr_reg(), brw_imm_uw(0));
626 brw_pop_insn_state(p);
627 }
628
629 insn = brw_next_insn(p, BRW_OPCODE_SEND);
630
631 brw_set_dest(p, insn, brw_null_reg());
632 brw_set_src0(p, insn, payload);
633 brw_set_src1(p, insn, brw_imm_d(0));
634
635 brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
636 brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE);
637
638 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
639 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
640 brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
641
642 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
643 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
644 brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
645
646 brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
647 brw_inst_set_rlen(p->devinfo, insn, 0);
648 brw_inst_set_eot(p->devinfo, insn, inst->eot);
649 brw_inst_set_header_present(p->devinfo, insn, true);
650 brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
651 }
652
653 void
654 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
655 {
656 struct brw_inst *insn;
657
658 insn = brw_next_insn(p, BRW_OPCODE_SEND);
659
660 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
661 brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
662 brw_set_src1(p, insn, brw_imm_d(0));
663
664 /* Terminate a compute shader by sending a message to the thread spawner.
665 */
666 brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
667 brw_inst_set_mlen(devinfo, insn, 1);
668 brw_inst_set_rlen(devinfo, insn, 0);
669 brw_inst_set_eot(devinfo, insn, inst->eot);
670 brw_inst_set_header_present(devinfo, insn, false);
671
672 brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
673 brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
674
675 /* Note that even though the thread has a URB resource associated with it,
676 * we set the "do not dereference URB" bit, because the URB resource is
677 * managed by the fixed-function unit, so it will free it automatically.
678 */
679 brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
680
681 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
682 }
683
684 void
685 fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
686 {
687 brw_barrier(p, src);
688 brw_WAIT(p);
689 }
690
691 bool
692 fs_generator::generate_linterp(fs_inst *inst,
693 struct brw_reg dst, struct brw_reg *src)
694 {
695 /* PLN reads:
696 * / in SIMD16 \
697 * -----------------------------------
698 * | src1+0 | src1+1 | src1+2 | src1+3 |
699 * |-----------------------------------|
700 * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
701 * -----------------------------------
702 *
703 * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
704 *
705 * -----------------------------------
706 * | src1+0 | src1+1 | src1+2 | src1+3 |
707 * |-----------------------------------|
708 * |(x0, x1)|(y0, y1)| | | in SIMD8
709 * |-----------------------------------|
710 * |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
711 * -----------------------------------
712 *
713 * See also: emit_interpolation_setup_gen4().
714 */
715 struct brw_reg delta_x = src[0];
716 struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
717 struct brw_reg interp = src[1];
718 brw_inst *i[4];
719
720 if (devinfo->gen >= 11) {
721 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_NF);
722 struct brw_reg dwP = suboffset(interp, 0);
723 struct brw_reg dwQ = suboffset(interp, 1);
724 struct brw_reg dwR = suboffset(interp, 3);
725
726 brw_push_insn_state(p);
727 brw_set_default_exec_size(p, BRW_EXECUTE_8);
728
729 if (inst->exec_size == 8) {
730 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
731 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_y, 0), dwQ);
732
733 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
734
735 /* brw_set_default_saturate() is called before emitting instructions,
736 * so the saturate bit is set in each instruction, so we need to unset
737 * it on the first instruction of each pair.
738 */
739 brw_inst_set_saturate(p->devinfo, i[0], false);
740 } else {
741 brw_set_default_group(p, inst->group);
742 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
743 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_x, 1), dwQ);
744
745 brw_set_default_group(p, inst->group + 8);
746 i[2] = brw_MAD(p, acc, dwR, offset(delta_y, 0), dwP);
747 i[3] = brw_MAD(p, offset(dst, 1), acc, offset(delta_y, 1), dwQ);
748
749 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
750 brw_inst_set_cond_modifier(p->devinfo, i[3], inst->conditional_mod);
751
752 /* brw_set_default_saturate() is called before emitting instructions,
753 * so the saturate bit is set in each instruction, so we need to unset
754 * it on the first instruction of each pair.
755 */
756 brw_inst_set_saturate(p->devinfo, i[0], false);
757 brw_inst_set_saturate(p->devinfo, i[2], false);
758 }
759
760 brw_pop_insn_state(p);
761
762 return true;
763 } else if (devinfo->has_pln) {
764 if (devinfo->gen <= 6 && (delta_x.nr & 1) != 0) {
765 /* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane":
766 *
767 * "[DevSNB]:<src1> must be even register aligned.
768 *
769 * This restriction is lifted on Ivy Bridge.
770 *
771 * This means that we need to split PLN into LINE+MAC on-the-fly.
772 * Unfortunately, the inputs are laid out for PLN and not LINE+MAC so
773 * we have to split into SIMD8 pieces. For gen4 (!has_pln), the
774 * coordinate registers are laid out differently so we leave it as a
775 * SIMD16 instruction.
776 */
777 assert(inst->exec_size == 8 || inst->exec_size == 16);
778 assert(inst->group % 16 == 0);
779
780 brw_push_insn_state(p);
781 brw_set_default_exec_size(p, BRW_EXECUTE_8);
782
783 /* Thanks to two accumulators, we can emit all the LINEs and then all
784 * the MACs. This improves parallelism a bit.
785 */
786 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
787 brw_inst *line = brw_LINE(p, brw_null_reg(), interp,
788 offset(delta_x, g * 2));
789 brw_inst_set_group(devinfo, line, inst->group + g * 8);
790
791 /* LINE writes the accumulator automatically on gen4-5. On Sandy
792 * Bridge and later, we have to explicitly enable it.
793 */
794 if (devinfo->gen >= 6)
795 brw_inst_set_acc_wr_control(p->devinfo, line, true);
796
797 /* brw_set_default_saturate() is called before emitting
798 * instructions, so the saturate bit is set in each instruction,
799 * so we need to unset it on the LINE instructions.
800 */
801 brw_inst_set_saturate(p->devinfo, line, false);
802 }
803
804 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
805 brw_inst *mac = brw_MAC(p, offset(dst, g), suboffset(interp, 1),
806 offset(delta_x, g * 2 + 1));
807 brw_inst_set_group(devinfo, mac, inst->group + g * 8);
808 brw_inst_set_cond_modifier(p->devinfo, mac, inst->conditional_mod);
809 }
810
811 brw_pop_insn_state(p);
812
813 return true;
814 } else {
815 brw_PLN(p, dst, interp, delta_x);
816
817 return false;
818 }
819 } else {
820 i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
821 i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
822
823 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
824
825 /* brw_set_default_saturate() is called before emitting instructions, so
826 * the saturate bit is set in each instruction, so we need to unset it on
827 * the first instruction.
828 */
829 brw_inst_set_saturate(p->devinfo, i[0], false);
830
831 return true;
832 }
833 }
834
835 void
836 fs_generator::generate_get_buffer_size(fs_inst *inst,
837 struct brw_reg dst,
838 struct brw_reg src,
839 struct brw_reg surf_index)
840 {
841 assert(devinfo->gen >= 7);
842 assert(surf_index.file == BRW_IMMEDIATE_VALUE);
843
844 uint32_t simd_mode;
845 int rlen = 4;
846
847 switch (inst->exec_size) {
848 case 8:
849 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
850 break;
851 case 16:
852 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
853 break;
854 default:
855 unreachable("Invalid width for texture instruction");
856 }
857
858 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
859 rlen = 8;
860 dst = vec16(dst);
861 }
862
863 brw_SAMPLE(p,
864 retype(dst, BRW_REGISTER_TYPE_UW),
865 inst->base_mrf,
866 src,
867 surf_index.ud,
868 0,
869 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
870 rlen, /* response length */
871 inst->mlen,
872 inst->header_size > 0,
873 simd_mode,
874 BRW_SAMPLER_RETURN_FORMAT_SINT32);
875
876 brw_mark_surface_used(prog_data, surf_index.ud);
877 }
878
879 void
880 fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src,
881 struct brw_reg surface_index,
882 struct brw_reg sampler_index)
883 {
884 assert(inst->size_written % REG_SIZE == 0);
885 int msg_type = -1;
886 uint32_t simd_mode;
887 uint32_t return_format;
888 bool is_combined_send = inst->eot;
889
890 /* Sampler EOT message of less than the dispatch width would kill the
891 * thread prematurely.
892 */
893 assert(!is_combined_send || inst->exec_size == dispatch_width);
894
895 switch (dst.type) {
896 case BRW_REGISTER_TYPE_D:
897 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
898 break;
899 case BRW_REGISTER_TYPE_UD:
900 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
901 break;
902 default:
903 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
904 break;
905 }
906
907 /* Stomp the resinfo output type to UINT32. On gens 4-5, the output type
908 * is set as part of the message descriptor. On gen4, the PRM seems to
909 * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
910 * later gens UINT32 is required. Once you hit Sandy Bridge, the bit is
911 * gone from the message descriptor entirely and you just get UINT32 all
912 * the time regasrdless. Since we can really only do non-UINT32 on gen4,
913 * just stomp it to UINT32 all the time.
914 */
915 if (inst->opcode == SHADER_OPCODE_TXS)
916 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
917
918 switch (inst->exec_size) {
919 case 8:
920 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
921 break;
922 case 16:
923 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
924 break;
925 default:
926 unreachable("Invalid width for texture instruction");
927 }
928
929 if (devinfo->gen >= 5) {
930 switch (inst->opcode) {
931 case SHADER_OPCODE_TEX:
932 if (inst->shadow_compare) {
933 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
934 } else {
935 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
936 }
937 break;
938 case FS_OPCODE_TXB:
939 if (inst->shadow_compare) {
940 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
941 } else {
942 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
943 }
944 break;
945 case SHADER_OPCODE_TXL:
946 if (inst->shadow_compare) {
947 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
948 } else {
949 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
950 }
951 break;
952 case SHADER_OPCODE_TXL_LZ:
953 assert(devinfo->gen >= 9);
954 if (inst->shadow_compare) {
955 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_C_LZ;
956 } else {
957 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LZ;
958 }
959 break;
960 case SHADER_OPCODE_TXS:
961 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
962 break;
963 case SHADER_OPCODE_TXD:
964 if (inst->shadow_compare) {
965 /* Gen7.5+. Otherwise, lowered in NIR */
966 assert(devinfo->gen >= 8 || devinfo->is_haswell);
967 msg_type = HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE;
968 } else {
969 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
970 }
971 break;
972 case SHADER_OPCODE_TXF:
973 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
974 break;
975 case SHADER_OPCODE_TXF_LZ:
976 assert(devinfo->gen >= 9);
977 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD_LZ;
978 break;
979 case SHADER_OPCODE_TXF_CMS_W:
980 assert(devinfo->gen >= 9);
981 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
982 break;
983 case SHADER_OPCODE_TXF_CMS:
984 if (devinfo->gen >= 7)
985 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS;
986 else
987 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
988 break;
989 case SHADER_OPCODE_TXF_UMS:
990 assert(devinfo->gen >= 7);
991 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS;
992 break;
993 case SHADER_OPCODE_TXF_MCS:
994 assert(devinfo->gen >= 7);
995 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
996 break;
997 case SHADER_OPCODE_LOD:
998 msg_type = GEN5_SAMPLER_MESSAGE_LOD;
999 break;
1000 case SHADER_OPCODE_TG4:
1001 if (inst->shadow_compare) {
1002 assert(devinfo->gen >= 7);
1003 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C;
1004 } else {
1005 assert(devinfo->gen >= 6);
1006 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
1007 }
1008 break;
1009 case SHADER_OPCODE_TG4_OFFSET:
1010 assert(devinfo->gen >= 7);
1011 if (inst->shadow_compare) {
1012 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C;
1013 } else {
1014 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
1015 }
1016 break;
1017 case SHADER_OPCODE_SAMPLEINFO:
1018 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
1019 break;
1020 default:
1021 unreachable("not reached");
1022 }
1023 } else {
1024 switch (inst->opcode) {
1025 case SHADER_OPCODE_TEX:
1026 /* Note that G45 and older determines shadow compare and dispatch width
1027 * from message length for most messages.
1028 */
1029 if (inst->exec_size == 8) {
1030 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
1031 if (inst->shadow_compare) {
1032 assert(inst->mlen == 6);
1033 } else {
1034 assert(inst->mlen <= 4);
1035 }
1036 } else {
1037 if (inst->shadow_compare) {
1038 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1039 assert(inst->mlen == 9);
1040 } else {
1041 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1042 assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
1043 }
1044 }
1045 break;
1046 case FS_OPCODE_TXB:
1047 if (inst->shadow_compare) {
1048 assert(inst->exec_size == 8);
1049 assert(inst->mlen == 6);
1050 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
1051 } else {
1052 assert(inst->mlen == 9);
1053 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1054 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1055 }
1056 break;
1057 case SHADER_OPCODE_TXL:
1058 if (inst->shadow_compare) {
1059 assert(inst->exec_size == 8);
1060 assert(inst->mlen == 6);
1061 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
1062 } else {
1063 assert(inst->mlen == 9);
1064 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
1065 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1066 }
1067 break;
1068 case SHADER_OPCODE_TXD:
1069 /* There is no sample_d_c message; comparisons are done manually */
1070 assert(inst->exec_size == 8);
1071 assert(inst->mlen == 7 || inst->mlen == 10);
1072 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
1073 break;
1074 case SHADER_OPCODE_TXF:
1075 assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
1076 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1077 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1078 break;
1079 case SHADER_OPCODE_TXS:
1080 assert(inst->mlen == 3);
1081 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
1082 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1083 break;
1084 default:
1085 unreachable("not reached");
1086 }
1087 }
1088 assert(msg_type != -1);
1089
1090 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1091 dst = vec16(dst);
1092 }
1093
1094 assert(devinfo->gen < 7 || inst->header_size == 0 ||
1095 src.file == BRW_GENERAL_REGISTER_FILE);
1096
1097 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
1098
1099 /* Load the message header if present. If there's a texture offset,
1100 * we need to set it up explicitly and load the offset bitfield.
1101 * Otherwise, we can use an implied move from g0 to the first message reg.
1102 */
1103 if (inst->header_size != 0 && devinfo->gen < 7) {
1104 if (devinfo->gen < 6 && !inst->offset) {
1105 /* Set up an implied move from g0 to the MRF. */
1106 src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1107 } else {
1108 assert(inst->base_mrf != -1);
1109 struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
1110
1111 brw_push_insn_state(p);
1112 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1113 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1114 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1115 /* Explicitly set up the message header by copying g0 to the MRF. */
1116 brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
1117
1118 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1119 if (inst->offset) {
1120 /* Set the offset bits in DWord 2. */
1121 brw_MOV(p, get_element_ud(header_reg, 2),
1122 brw_imm_ud(inst->offset));
1123 }
1124
1125 brw_pop_insn_state(p);
1126 }
1127 }
1128
1129 uint32_t base_binding_table_index = (inst->opcode == SHADER_OPCODE_TG4 ||
1130 inst->opcode == SHADER_OPCODE_TG4_OFFSET)
1131 ? prog_data->binding_table.gather_texture_start
1132 : prog_data->binding_table.texture_start;
1133
1134 if (surface_index.file == BRW_IMMEDIATE_VALUE &&
1135 sampler_index.file == BRW_IMMEDIATE_VALUE) {
1136 uint32_t surface = surface_index.ud;
1137 uint32_t sampler = sampler_index.ud;
1138
1139 brw_SAMPLE(p,
1140 retype(dst, BRW_REGISTER_TYPE_UW),
1141 inst->base_mrf,
1142 src,
1143 surface + base_binding_table_index,
1144 sampler % 16,
1145 msg_type,
1146 inst->size_written / REG_SIZE,
1147 inst->mlen,
1148 inst->header_size != 0,
1149 simd_mode,
1150 return_format);
1151
1152 brw_mark_surface_used(prog_data, surface + base_binding_table_index);
1153 } else {
1154 /* Non-const sampler index */
1155
1156 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1157 struct brw_reg surface_reg = vec1(retype(surface_index, BRW_REGISTER_TYPE_UD));
1158 struct brw_reg sampler_reg = vec1(retype(sampler_index, BRW_REGISTER_TYPE_UD));
1159
1160 brw_push_insn_state(p);
1161 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1162 brw_set_default_access_mode(p, BRW_ALIGN_1);
1163 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1164
1165 if (brw_regs_equal(&surface_reg, &sampler_reg)) {
1166 brw_MUL(p, addr, sampler_reg, brw_imm_uw(0x101));
1167 } else {
1168 if (sampler_reg.file == BRW_IMMEDIATE_VALUE) {
1169 brw_OR(p, addr, surface_reg, brw_imm_ud(sampler_reg.ud << 8));
1170 } else {
1171 brw_SHL(p, addr, sampler_reg, brw_imm_ud(8));
1172 brw_OR(p, addr, addr, surface_reg);
1173 }
1174 }
1175 if (base_binding_table_index)
1176 brw_ADD(p, addr, addr, brw_imm_ud(base_binding_table_index));
1177 brw_AND(p, addr, addr, brw_imm_ud(0xfff));
1178
1179 brw_pop_insn_state(p);
1180
1181 /* dst = send(offset, a0.0 | <descriptor>) */
1182 brw_send_indirect_message(
1183 p, BRW_SFID_SAMPLER, dst, src, addr,
1184 brw_message_desc(devinfo, inst->mlen, inst->size_written / REG_SIZE,
1185 inst->header_size) |
1186 brw_sampler_desc(devinfo,
1187 0 /* surface */,
1188 0 /* sampler */,
1189 msg_type,
1190 simd_mode,
1191 return_format));
1192
1193 /* visitor knows more than we do about the surface limit required,
1194 * so has already done marking.
1195 */
1196 }
1197
1198 if (is_combined_send) {
1199 brw_inst_set_eot(p->devinfo, brw_last_inst, true);
1200 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
1201 }
1202 }
1203
1204
1205 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
1206 * looking like:
1207 *
1208 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
1209 *
1210 * Ideally, we want to produce:
1211 *
1212 * DDX DDY
1213 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
1214 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
1215 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
1216 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
1217 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
1218 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
1219 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
1220 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
1221 *
1222 * and add another set of two more subspans if in 16-pixel dispatch mode.
1223 *
1224 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
1225 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
1226 * pair. But the ideal approximation may impose a huge performance cost on
1227 * sample_d. On at least Haswell, sample_d instruction does some
1228 * optimizations if the same LOD is used for all pixels in the subspan.
1229 *
1230 * For DDY, we need to use ALIGN16 mode since it's capable of doing the
1231 * appropriate swizzling.
1232 */
1233 void
1234 fs_generator::generate_ddx(const fs_inst *inst,
1235 struct brw_reg dst, struct brw_reg src)
1236 {
1237 unsigned vstride, width;
1238
1239 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1240 /* produce accurate derivatives */
1241 vstride = BRW_VERTICAL_STRIDE_2;
1242 width = BRW_WIDTH_2;
1243 } else {
1244 /* replicate the derivative at the top-left pixel to other pixels */
1245 vstride = BRW_VERTICAL_STRIDE_4;
1246 width = BRW_WIDTH_4;
1247 }
1248
1249 struct brw_reg src0 = src;
1250 struct brw_reg src1 = src;
1251
1252 src0.subnr = sizeof(float);
1253 src0.vstride = vstride;
1254 src0.width = width;
1255 src0.hstride = BRW_HORIZONTAL_STRIDE_0;
1256 src1.vstride = vstride;
1257 src1.width = width;
1258 src1.hstride = BRW_HORIZONTAL_STRIDE_0;
1259
1260 brw_ADD(p, dst, src0, negate(src1));
1261 }
1262
1263 /* The negate_value boolean is used to negate the derivative computation for
1264 * FBOs, since they place the origin at the upper left instead of the lower
1265 * left.
1266 */
1267 void
1268 fs_generator::generate_ddy(const fs_inst *inst,
1269 struct brw_reg dst, struct brw_reg src)
1270 {
1271 if (inst->opcode == FS_OPCODE_DDY_FINE) {
1272 /* produce accurate derivatives */
1273 if (devinfo->gen >= 11) {
1274 src = stride(src, 0, 2, 1);
1275 struct brw_reg src_0 = byte_offset(src, 0 * sizeof(float));
1276 struct brw_reg src_2 = byte_offset(src, 2 * sizeof(float));
1277 struct brw_reg src_4 = byte_offset(src, 4 * sizeof(float));
1278 struct brw_reg src_6 = byte_offset(src, 6 * sizeof(float));
1279 struct brw_reg src_8 = byte_offset(src, 8 * sizeof(float));
1280 struct brw_reg src_10 = byte_offset(src, 10 * sizeof(float));
1281 struct brw_reg src_12 = byte_offset(src, 12 * sizeof(float));
1282 struct brw_reg src_14 = byte_offset(src, 14 * sizeof(float));
1283
1284 struct brw_reg dst_0 = byte_offset(dst, 0 * sizeof(float));
1285 struct brw_reg dst_4 = byte_offset(dst, 4 * sizeof(float));
1286 struct brw_reg dst_8 = byte_offset(dst, 8 * sizeof(float));
1287 struct brw_reg dst_12 = byte_offset(dst, 12 * sizeof(float));
1288
1289 brw_push_insn_state(p);
1290 brw_set_default_exec_size(p, BRW_EXECUTE_4);
1291
1292 brw_ADD(p, dst_0, negate(src_0), src_2);
1293 brw_ADD(p, dst_4, negate(src_4), src_6);
1294
1295 if (inst->exec_size == 16) {
1296 brw_ADD(p, dst_8, negate(src_8), src_10);
1297 brw_ADD(p, dst_12, negate(src_12), src_14);
1298 }
1299
1300 brw_pop_insn_state(p);
1301 } else {
1302 struct brw_reg src0 = stride(src, 4, 4, 1);
1303 struct brw_reg src1 = stride(src, 4, 4, 1);
1304 src0.swizzle = BRW_SWIZZLE_XYXY;
1305 src1.swizzle = BRW_SWIZZLE_ZWZW;
1306
1307 brw_push_insn_state(p);
1308 brw_set_default_access_mode(p, BRW_ALIGN_16);
1309 brw_ADD(p, dst, negate(src0), src1);
1310 brw_pop_insn_state(p);
1311 }
1312 } else {
1313 /* replicate the derivative at the top-left pixel to other pixels */
1314 struct brw_reg src0 = stride(src, 4, 4, 0);
1315 struct brw_reg src1 = stride(src, 4, 4, 0);
1316 src0.subnr = 0 * sizeof(float);
1317 src1.subnr = 2 * sizeof(float);
1318
1319 brw_ADD(p, dst, negate(src0), src1);
1320 }
1321 }
1322
1323 void
1324 fs_generator::generate_discard_jump(fs_inst *)
1325 {
1326 assert(devinfo->gen >= 6);
1327
1328 /* This HALT will be patched up at FB write time to point UIP at the end of
1329 * the program, and at brw_uip_jip() JIP will be set to the end of the
1330 * current block (or the program).
1331 */
1332 this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
1333 gen6_HALT(p);
1334 }
1335
1336 void
1337 fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
1338 {
1339 /* The 32-wide messages only respect the first 16-wide half of the channel
1340 * enable signals which are replicated identically for the second group of
1341 * 16 channels, so we cannot use them unless the write is marked
1342 * force_writemask_all.
1343 */
1344 const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
1345 MIN2(16, inst->exec_size);
1346 const unsigned block_size = 4 * lower_size / REG_SIZE;
1347 assert(inst->mlen != 0);
1348
1349 brw_push_insn_state(p);
1350 brw_set_default_exec_size(p, cvt(lower_size) - 1);
1351 brw_set_default_compression(p, lower_size > 8);
1352
1353 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1354 brw_set_default_group(p, inst->group + lower_size * i);
1355
1356 brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
1357 retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
1358
1359 brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
1360 block_size,
1361 inst->offset + block_size * REG_SIZE * i);
1362 }
1363
1364 brw_pop_insn_state(p);
1365 }
1366
1367 void
1368 fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
1369 {
1370 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1371 assert(inst->mlen != 0);
1372
1373 brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
1374 inst->exec_size / 8, inst->offset);
1375 }
1376
1377 void
1378 fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst)
1379 {
1380 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1381
1382 gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
1383 }
1384
1385 void
1386 fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
1387 struct brw_reg dst,
1388 struct brw_reg index,
1389 struct brw_reg offset)
1390 {
1391 assert(type_sz(dst.type) == 4);
1392 assert(inst->mlen != 0);
1393
1394 assert(index.file == BRW_IMMEDIATE_VALUE &&
1395 index.type == BRW_REGISTER_TYPE_UD);
1396 uint32_t surf_index = index.ud;
1397
1398 assert(offset.file == BRW_IMMEDIATE_VALUE &&
1399 offset.type == BRW_REGISTER_TYPE_UD);
1400 uint32_t read_offset = offset.ud;
1401
1402 brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
1403 read_offset, surf_index);
1404 }
1405
1406 void
1407 fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
1408 struct brw_reg dst,
1409 struct brw_reg index,
1410 struct brw_reg payload)
1411 {
1412 assert(index.type == BRW_REGISTER_TYPE_UD);
1413 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1414 assert(type_sz(dst.type) == 4);
1415
1416 if (index.file == BRW_IMMEDIATE_VALUE) {
1417 const uint32_t surf_index = index.ud;
1418
1419 brw_push_insn_state(p);
1420 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1421 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1422 brw_pop_insn_state(p);
1423
1424 brw_inst_set_sfid(devinfo, send, GEN6_SFID_DATAPORT_CONSTANT_CACHE);
1425 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
1426 brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
1427 brw_set_desc(p, send,
1428 brw_message_desc(devinfo, 1, DIV_ROUND_UP(inst->size_written,
1429 REG_SIZE), true) |
1430 brw_dp_read_desc(devinfo, surf_index,
1431 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1432 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1433 BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1434
1435 } else {
1436 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1437
1438 brw_push_insn_state(p);
1439 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1440
1441 /* a0.0 = surf_index & 0xff */
1442 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1443 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1444 brw_set_dest(p, insn_and, addr);
1445 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1446 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1447
1448 /* dst = send(payload, a0.0 | <descriptor>) */
1449 brw_send_indirect_message(
1450 p, GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1451 retype(dst, BRW_REGISTER_TYPE_UD),
1452 retype(payload, BRW_REGISTER_TYPE_UD), addr,
1453 brw_message_desc(devinfo, 1,
1454 DIV_ROUND_UP(inst->size_written, REG_SIZE), true) |
1455 brw_dp_read_desc(devinfo, 0 /* surface */,
1456 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1457 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1458 BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1459
1460 brw_pop_insn_state(p);
1461 }
1462 }
1463
1464 void
1465 fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst,
1466 struct brw_reg dst,
1467 struct brw_reg index)
1468 {
1469 assert(devinfo->gen < 7); /* Should use the gen7 variant. */
1470 assert(inst->header_size != 0);
1471 assert(inst->mlen);
1472
1473 assert(index.file == BRW_IMMEDIATE_VALUE &&
1474 index.type == BRW_REGISTER_TYPE_UD);
1475 uint32_t surf_index = index.ud;
1476
1477 uint32_t simd_mode, rlen, msg_type;
1478 if (inst->exec_size == 16) {
1479 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1480 rlen = 8;
1481 } else {
1482 assert(inst->exec_size == 8);
1483 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1484 rlen = 4;
1485 }
1486
1487 if (devinfo->gen >= 5)
1488 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1489 else {
1490 /* We always use the SIMD16 message so that we only have to load U, and
1491 * not V or R.
1492 */
1493 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1494 assert(inst->mlen == 3);
1495 assert(inst->size_written == 8 * REG_SIZE);
1496 rlen = 8;
1497 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1498 }
1499
1500 struct brw_reg header = brw_vec8_grf(0, 0);
1501 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1502
1503 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1504 brw_inst_set_compression(devinfo, send, false);
1505 brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1506 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1507 brw_set_src0(p, send, header);
1508 if (devinfo->gen < 6)
1509 brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
1510
1511 /* Our surface is set up as floats, regardless of what actual data is
1512 * stored in it.
1513 */
1514 uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1515 brw_set_desc(p, send,
1516 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size) |
1517 brw_sampler_desc(devinfo, surf_index,
1518 0, /* sampler (unused) */
1519 msg_type, simd_mode, return_format));
1520 }
1521
1522 void
1523 fs_generator::generate_varying_pull_constant_load_gen7(fs_inst *inst,
1524 struct brw_reg dst,
1525 struct brw_reg index,
1526 struct brw_reg offset)
1527 {
1528 assert(devinfo->gen >= 7);
1529 /* Varying-offset pull constant loads are treated as a normal expression on
1530 * gen7, so the fact that it's a send message is hidden at the IR level.
1531 */
1532 assert(inst->header_size == 0);
1533 assert(inst->mlen);
1534 assert(index.type == BRW_REGISTER_TYPE_UD);
1535
1536 uint32_t simd_mode, rlen;
1537 if (inst->exec_size == 16) {
1538 rlen = 8;
1539 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1540 } else {
1541 assert(inst->exec_size == 8);
1542 rlen = 4;
1543 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1544 }
1545
1546 if (index.file == BRW_IMMEDIATE_VALUE) {
1547
1548 uint32_t surf_index = index.ud;
1549
1550 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1551 brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1552 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1553 brw_set_src0(p, send, offset);
1554 brw_set_desc(p, send,
1555 brw_message_desc(devinfo, inst->mlen, rlen, false) |
1556 brw_sampler_desc(devinfo, surf_index,
1557 0, /* LD message ignores sampler unit */
1558 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1559 simd_mode, 0));
1560
1561 } else {
1562
1563 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1564
1565 brw_push_insn_state(p);
1566 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1567
1568 /* a0.0 = surf_index & 0xff */
1569 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1570 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1571 brw_set_dest(p, insn_and, addr);
1572 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1573 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1574
1575 brw_pop_insn_state(p);
1576
1577 /* dst = send(offset, a0.0 | <descriptor>) */
1578 brw_send_indirect_message(
1579 p, BRW_SFID_SAMPLER, retype(dst, BRW_REGISTER_TYPE_UW),
1580 offset, addr,
1581 brw_message_desc(devinfo, inst->mlen, rlen, false) |
1582 brw_sampler_desc(devinfo,
1583 0 /* surface */,
1584 0 /* sampler */,
1585 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1586 simd_mode,
1587 0));
1588 }
1589 }
1590
1591 void
1592 fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
1593 struct brw_reg dst,
1594 struct brw_reg src,
1595 struct brw_reg msg_data,
1596 unsigned msg_type)
1597 {
1598 const bool has_payload = inst->src[0].file != BAD_FILE;
1599 assert(msg_data.type == BRW_REGISTER_TYPE_UD);
1600 assert(inst->size_written % REG_SIZE == 0);
1601
1602 brw_pixel_interpolator_query(p,
1603 retype(dst, BRW_REGISTER_TYPE_UW),
1604 /* If we don't have a payload, what we send doesn't matter */
1605 has_payload ? src : brw_vec8_grf(0, 0),
1606 inst->pi_noperspective,
1607 msg_type,
1608 msg_data,
1609 has_payload ? 2 * inst->exec_size / 8 : 1,
1610 inst->size_written / REG_SIZE);
1611 }
1612
1613 /* Sets vstride=1, width=4, hstride=0 of register src1 during
1614 * the ADD instruction.
1615 */
1616 void
1617 fs_generator::generate_set_sample_id(fs_inst *inst,
1618 struct brw_reg dst,
1619 struct brw_reg src0,
1620 struct brw_reg src1)
1621 {
1622 assert(dst.type == BRW_REGISTER_TYPE_D ||
1623 dst.type == BRW_REGISTER_TYPE_UD);
1624 assert(src0.type == BRW_REGISTER_TYPE_D ||
1625 src0.type == BRW_REGISTER_TYPE_UD);
1626
1627 const struct brw_reg reg = stride(src1, 1, 4, 0);
1628 const unsigned lower_size = MIN2(inst->exec_size,
1629 devinfo->gen >= 8 ? 16 : 8);
1630
1631 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1632 brw_inst *insn = brw_ADD(p, offset(dst, i * lower_size / 8),
1633 offset(src0, (src0.vstride == 0 ? 0 : (1 << (src0.vstride - 1)) *
1634 (i * lower_size / (1 << src0.width))) *
1635 type_sz(src0.type) / REG_SIZE),
1636 suboffset(reg, i * lower_size / 4));
1637 brw_inst_set_exec_size(devinfo, insn, cvt(lower_size) - 1);
1638 brw_inst_set_group(devinfo, insn, inst->group + lower_size * i);
1639 brw_inst_set_compression(devinfo, insn, lower_size > 8);
1640 }
1641 }
1642
1643 void
1644 fs_generator::generate_pack_half_2x16_split(fs_inst *,
1645 struct brw_reg dst,
1646 struct brw_reg x,
1647 struct brw_reg y)
1648 {
1649 assert(devinfo->gen >= 7);
1650 assert(dst.type == BRW_REGISTER_TYPE_UD);
1651 assert(x.type == BRW_REGISTER_TYPE_F);
1652 assert(y.type == BRW_REGISTER_TYPE_F);
1653
1654 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
1655 *
1656 * Because this instruction does not have a 16-bit floating-point type,
1657 * the destination data type must be Word (W).
1658 *
1659 * The destination must be DWord-aligned and specify a horizontal stride
1660 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
1661 * each destination channel and the upper word is not modified.
1662 */
1663 struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
1664
1665 /* Give each 32-bit channel of dst the form below, where "." means
1666 * unchanged.
1667 * 0x....hhhh
1668 */
1669 brw_F32TO16(p, dst_w, y);
1670
1671 /* Now the form:
1672 * 0xhhhh0000
1673 */
1674 brw_SHL(p, dst, dst, brw_imm_ud(16u));
1675
1676 /* And, finally the form of packHalf2x16's output:
1677 * 0xhhhhllll
1678 */
1679 brw_F32TO16(p, dst_w, x);
1680 }
1681
1682 void
1683 fs_generator::generate_unpack_half_2x16_split(fs_inst *inst,
1684 struct brw_reg dst,
1685 struct brw_reg src)
1686 {
1687 assert(devinfo->gen >= 7);
1688 assert(dst.type == BRW_REGISTER_TYPE_F);
1689 assert(src.type == BRW_REGISTER_TYPE_UD);
1690
1691 /* From the Ivybridge PRM, Vol4, Part3, Section 6.26 f16to32:
1692 *
1693 * Because this instruction does not have a 16-bit floating-point type,
1694 * the source data type must be Word (W). The destination type must be
1695 * F (Float).
1696 */
1697 struct brw_reg src_w = spread(retype(src, BRW_REGISTER_TYPE_W), 2);
1698
1699 /* Each channel of src has the form of unpackHalf2x16's input: 0xhhhhllll.
1700 * For the Y case, we wish to access only the upper word; therefore
1701 * a 16-bit subregister offset is needed.
1702 */
1703 assert(inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X ||
1704 inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y);
1705 if (inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y)
1706 src_w.subnr += 2;
1707
1708 brw_F16TO32(p, dst, src_w);
1709 }
1710
1711 void
1712 fs_generator::generate_shader_time_add(fs_inst *,
1713 struct brw_reg payload,
1714 struct brw_reg offset,
1715 struct brw_reg value)
1716 {
1717 assert(devinfo->gen >= 7);
1718 brw_push_insn_state(p);
1719 brw_set_default_mask_control(p, true);
1720
1721 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1722 struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
1723 offset.type);
1724 struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
1725 value.type);
1726
1727 assert(offset.file == BRW_IMMEDIATE_VALUE);
1728 if (value.file == BRW_GENERAL_REGISTER_FILE) {
1729 value.width = BRW_WIDTH_1;
1730 value.hstride = BRW_HORIZONTAL_STRIDE_0;
1731 value.vstride = BRW_VERTICAL_STRIDE_0;
1732 } else {
1733 assert(value.file == BRW_IMMEDIATE_VALUE);
1734 }
1735
1736 /* Trying to deal with setup of the params from the IR is crazy in the FS8
1737 * case, and we don't really care about squeezing every bit of performance
1738 * out of this path, so we just emit the MOVs from here.
1739 */
1740 brw_MOV(p, payload_offset, offset);
1741 brw_MOV(p, payload_value, value);
1742 brw_shader_time_add(p, payload,
1743 prog_data->binding_table.shader_time_start);
1744 brw_pop_insn_state(p);
1745
1746 brw_mark_surface_used(prog_data,
1747 prog_data->binding_table.shader_time_start);
1748 }
1749
1750 void
1751 fs_generator::enable_debug(const char *shader_name)
1752 {
1753 debug_flag = true;
1754 this->shader_name = shader_name;
1755 }
1756
1757 int
1758 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width)
1759 {
1760 /* align to 64 byte boundary. */
1761 while (p->next_insn_offset % 64)
1762 brw_NOP(p);
1763
1764 this->dispatch_width = dispatch_width;
1765
1766 int start_offset = p->next_insn_offset;
1767 int spill_count = 0, fill_count = 0;
1768 int loop_count = 0;
1769
1770 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1771
1772 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1773 struct brw_reg src[3], dst;
1774 unsigned int last_insn_offset = p->next_insn_offset;
1775 bool multiple_instructions_emitted = false;
1776
1777 /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
1778 * "Register Region Restrictions" section: for BDW, SKL:
1779 *
1780 * "A POW/FDIV operation must not be followed by an instruction
1781 * that requires two destination registers."
1782 *
1783 * The documentation is often lacking annotations for Atom parts,
1784 * and empirically this affects CHV as well.
1785 */
1786 if (devinfo->gen >= 8 &&
1787 devinfo->gen <= 9 &&
1788 p->nr_insn > 1 &&
1789 brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
1790 brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
1791 inst->dst.component_size(inst->exec_size) > REG_SIZE) {
1792 brw_NOP(p);
1793 last_insn_offset = p->next_insn_offset;
1794 }
1795
1796 if (unlikely(debug_flag))
1797 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1798
1799 /* If the instruction writes to more than one register, it needs to be
1800 * explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
1801 * hardware figures out by itself what the right compression mode is,
1802 * but we still need to know whether the instruction is compressed to
1803 * set up the source register regions appropriately.
1804 *
1805 * XXX - This is wrong for instructions that write a single register but
1806 * read more than one which should strictly speaking be treated as
1807 * compressed. For instructions that don't write any registers it
1808 * relies on the destination being a null register of the correct
1809 * type and regioning so the instruction is considered compressed
1810 * or not accordingly.
1811 */
1812 const bool compressed =
1813 inst->dst.component_size(inst->exec_size) > REG_SIZE;
1814 brw_set_default_compression(p, compressed);
1815 brw_set_default_group(p, inst->group);
1816
1817 for (unsigned int i = 0; i < inst->sources; i++) {
1818 src[i] = brw_reg_from_fs_reg(devinfo, inst,
1819 &inst->src[i], compressed);
1820 /* The accumulator result appears to get used for the
1821 * conditional modifier generation. When negating a UD
1822 * value, there is a 33rd bit generated for the sign in the
1823 * accumulator value, so now you can't check, for example,
1824 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
1825 */
1826 assert(!inst->conditional_mod ||
1827 inst->src[i].type != BRW_REGISTER_TYPE_UD ||
1828 !inst->src[i].negate);
1829 }
1830 dst = brw_reg_from_fs_reg(devinfo, inst,
1831 &inst->dst, compressed);
1832
1833 brw_set_default_access_mode(p, BRW_ALIGN_1);
1834 brw_set_default_predicate_control(p, inst->predicate);
1835 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1836 /* On gen7 and above, hardware automatically adds the group onto the
1837 * flag subregister number. On Sandy Bridge and older, we have to do it
1838 * ourselves.
1839 */
1840 const unsigned flag_subreg = inst->flag_subreg +
1841 (devinfo->gen >= 7 ? 0 : inst->group / 16);
1842 brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2);
1843 brw_set_default_saturate(p, inst->saturate);
1844 brw_set_default_mask_control(p, inst->force_writemask_all);
1845 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1846
1847 unsigned exec_size = inst->exec_size;
1848 if (devinfo->gen == 7 && !devinfo->is_haswell &&
1849 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
1850 exec_size *= 2;
1851 }
1852
1853 brw_set_default_exec_size(p, cvt(exec_size) - 1);
1854
1855 assert(inst->force_writemask_all || inst->exec_size >= 4);
1856 assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
1857 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1858 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1859
1860 switch (inst->opcode) {
1861 case BRW_OPCODE_MOV:
1862 brw_MOV(p, dst, src[0]);
1863 break;
1864 case BRW_OPCODE_ADD:
1865 brw_ADD(p, dst, src[0], src[1]);
1866 break;
1867 case BRW_OPCODE_MUL:
1868 brw_MUL(p, dst, src[0], src[1]);
1869 break;
1870 case BRW_OPCODE_AVG:
1871 brw_AVG(p, dst, src[0], src[1]);
1872 break;
1873 case BRW_OPCODE_MACH:
1874 brw_MACH(p, dst, src[0], src[1]);
1875 break;
1876
1877 case BRW_OPCODE_LINE:
1878 brw_LINE(p, dst, src[0], src[1]);
1879 break;
1880
1881 case BRW_OPCODE_MAD:
1882 assert(devinfo->gen >= 6);
1883 if (devinfo->gen < 10)
1884 brw_set_default_access_mode(p, BRW_ALIGN_16);
1885 brw_MAD(p, dst, src[0], src[1], src[2]);
1886 break;
1887
1888 case BRW_OPCODE_LRP:
1889 assert(devinfo->gen >= 6 && devinfo->gen <= 10);
1890 if (devinfo->gen < 10)
1891 brw_set_default_access_mode(p, BRW_ALIGN_16);
1892 brw_LRP(p, dst, src[0], src[1], src[2]);
1893 break;
1894
1895 case BRW_OPCODE_FRC:
1896 brw_FRC(p, dst, src[0]);
1897 break;
1898 case BRW_OPCODE_RNDD:
1899 brw_RNDD(p, dst, src[0]);
1900 break;
1901 case BRW_OPCODE_RNDE:
1902 brw_RNDE(p, dst, src[0]);
1903 break;
1904 case BRW_OPCODE_RNDZ:
1905 brw_RNDZ(p, dst, src[0]);
1906 break;
1907
1908 case BRW_OPCODE_AND:
1909 brw_AND(p, dst, src[0], src[1]);
1910 break;
1911 case BRW_OPCODE_OR:
1912 brw_OR(p, dst, src[0], src[1]);
1913 break;
1914 case BRW_OPCODE_XOR:
1915 brw_XOR(p, dst, src[0], src[1]);
1916 break;
1917 case BRW_OPCODE_NOT:
1918 brw_NOT(p, dst, src[0]);
1919 break;
1920 case BRW_OPCODE_ASR:
1921 brw_ASR(p, dst, src[0], src[1]);
1922 break;
1923 case BRW_OPCODE_SHR:
1924 brw_SHR(p, dst, src[0], src[1]);
1925 break;
1926 case BRW_OPCODE_SHL:
1927 brw_SHL(p, dst, src[0], src[1]);
1928 break;
1929 case BRW_OPCODE_F32TO16:
1930 assert(devinfo->gen >= 7);
1931 brw_F32TO16(p, dst, src[0]);
1932 break;
1933 case BRW_OPCODE_F16TO32:
1934 assert(devinfo->gen >= 7);
1935 brw_F16TO32(p, dst, src[0]);
1936 break;
1937 case BRW_OPCODE_CMP:
1938 if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell &&
1939 dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1940 /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
1941 * implemented in the compiler is not sufficient. Overriding the
1942 * type when the destination is the null register is necessary but
1943 * not sufficient by itself.
1944 */
1945 assert(dst.nr == BRW_ARF_NULL);
1946 dst.type = BRW_REGISTER_TYPE_D;
1947 }
1948 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1949 break;
1950 case BRW_OPCODE_SEL:
1951 brw_SEL(p, dst, src[0], src[1]);
1952 break;
1953 case BRW_OPCODE_CSEL:
1954 assert(devinfo->gen >= 8);
1955 if (devinfo->gen < 10)
1956 brw_set_default_access_mode(p, BRW_ALIGN_16);
1957 brw_CSEL(p, dst, src[0], src[1], src[2]);
1958 break;
1959 case BRW_OPCODE_BFREV:
1960 assert(devinfo->gen >= 7);
1961 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1962 retype(src[0], BRW_REGISTER_TYPE_UD));
1963 break;
1964 case BRW_OPCODE_FBH:
1965 assert(devinfo->gen >= 7);
1966 brw_FBH(p, retype(dst, src[0].type), src[0]);
1967 break;
1968 case BRW_OPCODE_FBL:
1969 assert(devinfo->gen >= 7);
1970 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
1971 retype(src[0], BRW_REGISTER_TYPE_UD));
1972 break;
1973 case BRW_OPCODE_LZD:
1974 brw_LZD(p, dst, src[0]);
1975 break;
1976 case BRW_OPCODE_CBIT:
1977 assert(devinfo->gen >= 7);
1978 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
1979 retype(src[0], BRW_REGISTER_TYPE_UD));
1980 break;
1981 case BRW_OPCODE_ADDC:
1982 assert(devinfo->gen >= 7);
1983 brw_ADDC(p, dst, src[0], src[1]);
1984 break;
1985 case BRW_OPCODE_SUBB:
1986 assert(devinfo->gen >= 7);
1987 brw_SUBB(p, dst, src[0], src[1]);
1988 break;
1989 case BRW_OPCODE_MAC:
1990 brw_MAC(p, dst, src[0], src[1]);
1991 break;
1992
1993 case BRW_OPCODE_BFE:
1994 assert(devinfo->gen >= 7);
1995 if (devinfo->gen < 10)
1996 brw_set_default_access_mode(p, BRW_ALIGN_16);
1997 brw_BFE(p, dst, src[0], src[1], src[2]);
1998 break;
1999
2000 case BRW_OPCODE_BFI1:
2001 assert(devinfo->gen >= 7);
2002 brw_BFI1(p, dst, src[0], src[1]);
2003 break;
2004 case BRW_OPCODE_BFI2:
2005 assert(devinfo->gen >= 7);
2006 if (devinfo->gen < 10)
2007 brw_set_default_access_mode(p, BRW_ALIGN_16);
2008 brw_BFI2(p, dst, src[0], src[1], src[2]);
2009 break;
2010
2011 case BRW_OPCODE_IF:
2012 if (inst->src[0].file != BAD_FILE) {
2013 /* The instruction has an embedded compare (only allowed on gen6) */
2014 assert(devinfo->gen == 6);
2015 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
2016 } else {
2017 brw_IF(p, brw_get_default_exec_size(p));
2018 }
2019 break;
2020
2021 case BRW_OPCODE_ELSE:
2022 brw_ELSE(p);
2023 break;
2024 case BRW_OPCODE_ENDIF:
2025 brw_ENDIF(p);
2026 break;
2027
2028 case BRW_OPCODE_DO:
2029 brw_DO(p, brw_get_default_exec_size(p));
2030 break;
2031
2032 case BRW_OPCODE_BREAK:
2033 brw_BREAK(p);
2034 break;
2035 case BRW_OPCODE_CONTINUE:
2036 brw_CONT(p);
2037 break;
2038
2039 case BRW_OPCODE_WHILE:
2040 brw_WHILE(p);
2041 loop_count++;
2042 break;
2043
2044 case SHADER_OPCODE_RCP:
2045 case SHADER_OPCODE_RSQ:
2046 case SHADER_OPCODE_SQRT:
2047 case SHADER_OPCODE_EXP2:
2048 case SHADER_OPCODE_LOG2:
2049 case SHADER_OPCODE_SIN:
2050 case SHADER_OPCODE_COS:
2051 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2052 if (devinfo->gen >= 6) {
2053 assert(inst->mlen == 0);
2054 assert(devinfo->gen >= 7 || inst->exec_size == 8);
2055 gen6_math(p, dst, brw_math_function(inst->opcode),
2056 src[0], brw_null_reg());
2057 } else {
2058 assert(inst->mlen >= 1);
2059 assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8);
2060 gen4_math(p, dst,
2061 brw_math_function(inst->opcode),
2062 inst->base_mrf, src[0],
2063 BRW_MATH_PRECISION_FULL);
2064 }
2065 break;
2066 case SHADER_OPCODE_INT_QUOTIENT:
2067 case SHADER_OPCODE_INT_REMAINDER:
2068 case SHADER_OPCODE_POW:
2069 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2070 if (devinfo->gen >= 6) {
2071 assert(inst->mlen == 0);
2072 assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
2073 inst->exec_size == 8);
2074 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
2075 } else {
2076 assert(inst->mlen >= 1);
2077 assert(inst->exec_size == 8);
2078 gen4_math(p, dst, brw_math_function(inst->opcode),
2079 inst->base_mrf, src[0],
2080 BRW_MATH_PRECISION_FULL);
2081 }
2082 break;
2083 case FS_OPCODE_LINTERP:
2084 multiple_instructions_emitted = generate_linterp(inst, dst, src);
2085 break;
2086 case FS_OPCODE_PIXEL_X:
2087 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2088 src[0].subnr = 0 * type_sz(src[0].type);
2089 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2090 break;
2091 case FS_OPCODE_PIXEL_Y:
2092 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2093 src[0].subnr = 4 * type_sz(src[0].type);
2094 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2095 break;
2096 case SHADER_OPCODE_GET_BUFFER_SIZE:
2097 generate_get_buffer_size(inst, dst, src[0], src[1]);
2098 break;
2099 case SHADER_OPCODE_TEX:
2100 case FS_OPCODE_TXB:
2101 case SHADER_OPCODE_TXD:
2102 case SHADER_OPCODE_TXF:
2103 case SHADER_OPCODE_TXF_LZ:
2104 case SHADER_OPCODE_TXF_CMS:
2105 case SHADER_OPCODE_TXF_CMS_W:
2106 case SHADER_OPCODE_TXF_UMS:
2107 case SHADER_OPCODE_TXF_MCS:
2108 case SHADER_OPCODE_TXL:
2109 case SHADER_OPCODE_TXL_LZ:
2110 case SHADER_OPCODE_TXS:
2111 case SHADER_OPCODE_LOD:
2112 case SHADER_OPCODE_TG4:
2113 case SHADER_OPCODE_TG4_OFFSET:
2114 case SHADER_OPCODE_SAMPLEINFO:
2115 generate_tex(inst, dst, src[0], src[1], src[2]);
2116 break;
2117 case FS_OPCODE_DDX_COARSE:
2118 case FS_OPCODE_DDX_FINE:
2119 generate_ddx(inst, dst, src[0]);
2120 break;
2121 case FS_OPCODE_DDY_COARSE:
2122 case FS_OPCODE_DDY_FINE:
2123 generate_ddy(inst, dst, src[0]);
2124 break;
2125
2126 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2127 generate_scratch_write(inst, src[0]);
2128 spill_count++;
2129 break;
2130
2131 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2132 generate_scratch_read(inst, dst);
2133 fill_count++;
2134 break;
2135
2136 case SHADER_OPCODE_GEN7_SCRATCH_READ:
2137 generate_scratch_read_gen7(inst, dst);
2138 fill_count++;
2139 break;
2140
2141 case SHADER_OPCODE_MOV_INDIRECT:
2142 generate_mov_indirect(inst, dst, src[0], src[1]);
2143 break;
2144
2145 case SHADER_OPCODE_URB_READ_SIMD8:
2146 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
2147 generate_urb_read(inst, dst, src[0]);
2148 break;
2149
2150 case SHADER_OPCODE_URB_WRITE_SIMD8:
2151 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
2152 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
2153 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
2154 generate_urb_write(inst, src[0]);
2155 break;
2156
2157 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
2158 assert(inst->force_writemask_all);
2159 generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
2160 break;
2161
2162 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
2163 assert(inst->force_writemask_all);
2164 generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2165 break;
2166
2167 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
2168 generate_varying_pull_constant_load_gen4(inst, dst, src[0]);
2169 break;
2170
2171 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
2172 generate_varying_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2173 break;
2174
2175 case FS_OPCODE_REP_FB_WRITE:
2176 case FS_OPCODE_FB_WRITE:
2177 generate_fb_write(inst, src[0]);
2178 break;
2179
2180 case FS_OPCODE_FB_READ:
2181 generate_fb_read(inst, dst, src[0]);
2182 break;
2183
2184 case FS_OPCODE_DISCARD_JUMP:
2185 generate_discard_jump(inst);
2186 break;
2187
2188 case SHADER_OPCODE_SHADER_TIME_ADD:
2189 generate_shader_time_add(inst, src[0], src[1], src[2]);
2190 break;
2191
2192 case SHADER_OPCODE_UNTYPED_ATOMIC:
2193 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2194 brw_untyped_atomic(p, dst, src[0], src[1], src[2].ud,
2195 inst->mlen, !inst->dst.is_null(),
2196 inst->header_size);
2197 break;
2198
2199 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT:
2200 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2201 brw_untyped_atomic_float(p, dst, src[0], src[1], src[2].ud,
2202 inst->mlen, !inst->dst.is_null(),
2203 inst->header_size);
2204 break;
2205
2206 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
2207 assert(!inst->header_size);
2208 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2209 brw_untyped_surface_read(p, dst, src[0], src[1],
2210 inst->mlen, src[2].ud);
2211 break;
2212
2213 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
2214 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2215 brw_untyped_surface_write(p, src[0], src[1],
2216 inst->mlen, src[2].ud,
2217 inst->header_size);
2218 break;
2219
2220 case SHADER_OPCODE_BYTE_SCATTERED_READ:
2221 assert(!inst->header_size);
2222 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2223 brw_byte_scattered_read(p, dst, src[0], src[1],
2224 inst->mlen, src[2].ud);
2225 break;
2226
2227 case SHADER_OPCODE_BYTE_SCATTERED_WRITE:
2228 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2229 brw_byte_scattered_write(p, src[0], src[1],
2230 inst->mlen, src[2].ud,
2231 inst->header_size);
2232 break;
2233
2234 case SHADER_OPCODE_TYPED_ATOMIC:
2235 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2236 brw_typed_atomic(p, dst, src[0], src[1],
2237 src[2].ud, inst->mlen, !inst->dst.is_null(),
2238 inst->header_size);
2239 break;
2240
2241 case SHADER_OPCODE_TYPED_SURFACE_READ:
2242 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2243 brw_typed_surface_read(p, dst, src[0], src[1],
2244 inst->mlen, src[2].ud,
2245 inst->header_size);
2246 break;
2247
2248 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
2249 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2250 brw_typed_surface_write(p, src[0], src[1], inst->mlen, src[2].ud,
2251 inst->header_size);
2252 break;
2253
2254 case SHADER_OPCODE_MEMORY_FENCE:
2255 brw_memory_fence(p, dst, BRW_OPCODE_SEND);
2256 break;
2257
2258 case SHADER_OPCODE_INTERLOCK:
2259 /* The interlock is basically a memory fence issued via sendc */
2260 brw_memory_fence(p, dst, BRW_OPCODE_SENDC);
2261 break;
2262
2263 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
2264 const struct brw_reg mask =
2265 brw_stage_has_packed_dispatch(devinfo, stage,
2266 prog_data) ? brw_imm_ud(~0u) :
2267 stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
2268 brw_dmask_reg();
2269 brw_find_live_channel(p, dst, mask);
2270 break;
2271 }
2272
2273 case SHADER_OPCODE_BROADCAST:
2274 assert(inst->force_writemask_all);
2275 brw_broadcast(p, dst, src[0], src[1]);
2276 break;
2277
2278 case SHADER_OPCODE_SHUFFLE:
2279 generate_shuffle(inst, dst, src[0], src[1]);
2280 break;
2281
2282 case SHADER_OPCODE_SEL_EXEC:
2283 assert(inst->force_writemask_all);
2284 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2285 brw_MOV(p, dst, src[1]);
2286 brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2287 brw_MOV(p, dst, src[0]);
2288 break;
2289
2290 case SHADER_OPCODE_QUAD_SWIZZLE:
2291 /* This only works on 8-wide 32-bit values */
2292 assert(inst->exec_size == 8);
2293 assert(type_sz(src[0].type) == 4);
2294 assert(inst->force_writemask_all);
2295 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2296 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2297
2298 if (src[0].file == BRW_IMMEDIATE_VALUE ||
2299 (src[0].vstride == 0 && src[0].hstride == 0)) {
2300 /* The value is uniform across all channels */
2301 brw_MOV(p, dst, src[0]);
2302 } else {
2303 brw_set_default_access_mode(p, BRW_ALIGN_16);
2304 struct brw_reg swiz_src = stride(src[0], 4, 4, 1);
2305 swiz_src.swizzle = inst->src[1].ud;
2306 brw_MOV(p, dst, swiz_src);
2307 }
2308 break;
2309
2310 case SHADER_OPCODE_CLUSTER_BROADCAST: {
2311 assert(src[0].type == dst.type);
2312 assert(!src[0].negate && !src[0].abs);
2313 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2314 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2315 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2316 assert(src[2].type == BRW_REGISTER_TYPE_UD);
2317 const unsigned component = src[1].ud;
2318 const unsigned cluster_size = src[2].ud;
2319 struct brw_reg strided = stride(suboffset(src[0], component),
2320 cluster_size, cluster_size, 0);
2321 if (type_sz(src[0].type) > 4 &&
2322 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
2323 /* IVB has an issue (which we found empirically) where it reads
2324 * two address register components per channel for indirectly
2325 * addressed 64-bit sources.
2326 *
2327 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
2328 *
2329 * "When source or destination datatype is 64b or operation is
2330 * integer DWord multiply, indirect addressing must not be
2331 * used."
2332 *
2333 * To work around both of these, we do two integer MOVs insead of
2334 * one 64-bit MOV. Because no double value should ever cross a
2335 * register boundary, it's safe to use the immediate offset in the
2336 * indirect here to handle adding 4 bytes to the offset and avoid
2337 * the extra ADD to the register file.
2338 */
2339 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
2340 subscript(strided, BRW_REGISTER_TYPE_D, 0));
2341 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
2342 subscript(strided, BRW_REGISTER_TYPE_D, 1));
2343 } else {
2344 brw_MOV(p, dst, strided);
2345 }
2346 break;
2347 }
2348
2349 case FS_OPCODE_SET_SAMPLE_ID:
2350 generate_set_sample_id(inst, dst, src[0], src[1]);
2351 break;
2352
2353 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
2354 generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
2355 break;
2356
2357 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
2358 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
2359 generate_unpack_half_2x16_split(inst, dst, src[0]);
2360 break;
2361
2362 case FS_OPCODE_PLACEHOLDER_HALT:
2363 /* This is the place where the final HALT needs to be inserted if
2364 * we've emitted any discards. If not, this will emit no code.
2365 */
2366 if (!patch_discard_jumps_to_fb_writes()) {
2367 if (unlikely(debug_flag)) {
2368 disasm_info->use_tail = true;
2369 }
2370 }
2371 break;
2372
2373 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
2374 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2375 GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
2376 break;
2377
2378 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
2379 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2380 GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
2381 break;
2382
2383 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
2384 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2385 GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
2386 break;
2387
2388 case CS_OPCODE_CS_TERMINATE:
2389 generate_cs_terminate(inst, src[0]);
2390 break;
2391
2392 case SHADER_OPCODE_BARRIER:
2393 generate_barrier(inst, src[0]);
2394 break;
2395
2396 case BRW_OPCODE_DIM:
2397 assert(devinfo->is_haswell);
2398 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2399 assert(dst.type == BRW_REGISTER_TYPE_DF);
2400 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2401 break;
2402
2403 case SHADER_OPCODE_RND_MODE:
2404 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2405 brw_rounding_mode(p, (brw_rnd_mode) src[0].d);
2406 break;
2407
2408 default:
2409 unreachable("Unsupported opcode");
2410
2411 case SHADER_OPCODE_LOAD_PAYLOAD:
2412 unreachable("Should be lowered by lower_load_payload()");
2413 }
2414
2415 if (multiple_instructions_emitted)
2416 continue;
2417
2418 if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2419 assert(p->next_insn_offset == last_insn_offset + 16 ||
2420 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2421 "emitting more than 1 instruction");
2422
2423 brw_inst *last = &p->store[last_insn_offset / 16];
2424
2425 if (inst->conditional_mod)
2426 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2427 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2428 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2429 }
2430 }
2431
2432 brw_set_uip_jip(p, start_offset);
2433
2434 /* end of program sentinel */
2435 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2436
2437 #ifndef NDEBUG
2438 bool validated =
2439 #else
2440 if (unlikely(debug_flag))
2441 #endif
2442 brw_validate_instructions(devinfo, p->store,
2443 start_offset,
2444 p->next_insn_offset,
2445 disasm_info);
2446
2447 int before_size = p->next_insn_offset - start_offset;
2448 brw_compact_instructions(p, start_offset, disasm_info);
2449 int after_size = p->next_insn_offset - start_offset;
2450
2451 if (unlikely(debug_flag)) {
2452 fprintf(stderr, "Native code for %s\n"
2453 "SIMD%d shader: %d instructions. %d loops. %u cycles. %d:%d spills:fills. Promoted %u constants. Compacted %d to %d"
2454 " bytes (%.0f%%)\n",
2455 shader_name, dispatch_width, before_size / 16, loop_count, cfg->cycle_count,
2456 spill_count, fill_count, promoted_constants, before_size, after_size,
2457 100.0f * (before_size - after_size) / before_size);
2458
2459 dump_assembly(p->store, disasm_info);
2460 }
2461 ralloc_free(disasm_info);
2462 assert(validated);
2463
2464 compiler->shader_debug_log(log_data,
2465 "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
2466 "%d:%d spills:fills, Promoted %u constants, "
2467 "compacted %d to %d bytes.",
2468 _mesa_shader_stage_to_abbrev(stage),
2469 dispatch_width, before_size / 16,
2470 loop_count, cfg->cycle_count, spill_count,
2471 fill_count, promoted_constants, before_size,
2472 after_size);
2473
2474 return start_offset;
2475 }
2476
2477 const unsigned *
2478 fs_generator::get_assembly()
2479 {
2480 return brw_get_program(p, &prog_data->program_size);
2481 }