i965/fs: set rounding mode when emitting nir_op_f2f32 or nir_op_f2f16
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "brw_eu.h"
28 #include "nir_search_helpers.h"
29 #include "util/u_math.h"
30 #include "util/bitscan.h"
31
32 using namespace brw;
33
34 void
35 fs_visitor::emit_nir_code()
36 {
37 emit_shader_float_controls_execution_mode();
38
39 /* emit the arrays used for inputs and outputs - load/store intrinsics will
40 * be converted to reads/writes of these arrays
41 */
42 nir_setup_outputs();
43 nir_setup_uniforms();
44 nir_emit_system_values();
45
46 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
47 }
48
49 void
50 fs_visitor::nir_setup_outputs()
51 {
52 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
53 return;
54
55 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
56
57 /* Calculate the size of output registers in a separate pass, before
58 * allocating them. With ARB_enhanced_layouts, multiple output variables
59 * may occupy the same slot, but have different type sizes.
60 */
61 nir_foreach_variable(var, &nir->outputs) {
62 const int loc = var->data.driver_location;
63 const unsigned var_vec4s =
64 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
65 : type_size_vec4(var->type, true);
66 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
67 }
68
69 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
70 if (vec4s[loc] == 0) {
71 loc++;
72 continue;
73 }
74
75 unsigned reg_size = vec4s[loc];
76
77 /* Check if there are any ranges that start within this range and extend
78 * past it. If so, include them in this allocation.
79 */
80 for (unsigned i = 1; i < reg_size; i++)
81 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
82
83 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
84 for (unsigned i = 0; i < reg_size; i++)
85 outputs[loc + i] = offset(reg, bld, 4 * i);
86
87 loc += reg_size;
88 }
89 }
90
91 void
92 fs_visitor::nir_setup_uniforms()
93 {
94 /* Only the first compile gets to set up uniforms. */
95 if (push_constant_loc) {
96 assert(pull_constant_loc);
97 return;
98 }
99
100 uniforms = nir->num_uniforms / 4;
101
102 if (stage == MESA_SHADER_COMPUTE) {
103 /* Add a uniform for the thread local id. It must be the last uniform
104 * on the list.
105 */
106 assert(uniforms == prog_data->nr_params);
107 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
108 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
109 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
110 }
111 }
112
113 static bool
114 emit_system_values_block(nir_block *block, fs_visitor *v)
115 {
116 fs_reg *reg;
117
118 nir_foreach_instr(instr, block) {
119 if (instr->type != nir_instr_type_intrinsic)
120 continue;
121
122 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
123 switch (intrin->intrinsic) {
124 case nir_intrinsic_load_vertex_id:
125 case nir_intrinsic_load_base_vertex:
126 unreachable("should be lowered by nir_lower_system_values().");
127
128 case nir_intrinsic_load_vertex_id_zero_base:
129 case nir_intrinsic_load_is_indexed_draw:
130 case nir_intrinsic_load_first_vertex:
131 case nir_intrinsic_load_instance_id:
132 case nir_intrinsic_load_base_instance:
133 case nir_intrinsic_load_draw_id:
134 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
135
136 case nir_intrinsic_load_invocation_id:
137 if (v->stage == MESA_SHADER_TESS_CTRL)
138 break;
139 assert(v->stage == MESA_SHADER_GEOMETRY);
140 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
141 if (reg->file == BAD_FILE) {
142 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
143 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
144 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
145 abld.SHR(iid, g1, brw_imm_ud(27u));
146 *reg = iid;
147 }
148 break;
149
150 case nir_intrinsic_load_sample_pos:
151 assert(v->stage == MESA_SHADER_FRAGMENT);
152 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
153 if (reg->file == BAD_FILE)
154 *reg = *v->emit_samplepos_setup();
155 break;
156
157 case nir_intrinsic_load_sample_id:
158 assert(v->stage == MESA_SHADER_FRAGMENT);
159 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
160 if (reg->file == BAD_FILE)
161 *reg = *v->emit_sampleid_setup();
162 break;
163
164 case nir_intrinsic_load_sample_mask_in:
165 assert(v->stage == MESA_SHADER_FRAGMENT);
166 assert(v->devinfo->gen >= 7);
167 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
168 if (reg->file == BAD_FILE)
169 *reg = *v->emit_samplemaskin_setup();
170 break;
171
172 case nir_intrinsic_load_work_group_id:
173 assert(v->stage == MESA_SHADER_COMPUTE);
174 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
175 if (reg->file == BAD_FILE)
176 *reg = *v->emit_cs_work_group_id_setup();
177 break;
178
179 case nir_intrinsic_load_helper_invocation:
180 assert(v->stage == MESA_SHADER_FRAGMENT);
181 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
182 if (reg->file == BAD_FILE) {
183 const fs_builder abld =
184 v->bld.annotate("gl_HelperInvocation", NULL);
185
186 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
187 * pixel mask is in g1.7 of the thread payload.
188 *
189 * We move the per-channel pixel enable bit to the low bit of each
190 * channel by shifting the byte containing the pixel mask by the
191 * vector immediate 0x76543210UV.
192 *
193 * The region of <1,8,0> reads only 1 byte (the pixel masks for
194 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
195 * masks for 2 and 3) in SIMD16.
196 */
197 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
198
199 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
200 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
201 hbld.SHR(offset(shifted, hbld, i),
202 stride(retype(brw_vec1_grf(1 + i, 7),
203 BRW_REGISTER_TYPE_UB),
204 1, 8, 0),
205 brw_imm_v(0x76543210));
206 }
207
208 /* A set bit in the pixel mask means the channel is enabled, but
209 * that is the opposite of gl_HelperInvocation so we need to invert
210 * the mask.
211 *
212 * The negate source-modifier bit of logical instructions on Gen8+
213 * performs 1's complement negation, so we can use that instead of
214 * a NOT instruction.
215 */
216 fs_reg inverted = negate(shifted);
217 if (v->devinfo->gen < 8) {
218 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
219 abld.NOT(inverted, shifted);
220 }
221
222 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
223 * with 1 and negating.
224 */
225 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
226 abld.AND(anded, inverted, brw_imm_uw(1));
227
228 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
229 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
230 *reg = dst;
231 }
232 break;
233
234 default:
235 break;
236 }
237 }
238
239 return true;
240 }
241
242 void
243 fs_visitor::nir_emit_system_values()
244 {
245 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
246 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
247 nir_system_values[i] = fs_reg();
248 }
249
250 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
251 * never end up using it.
252 */
253 {
254 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
255 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
256 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
257
258 const fs_builder allbld8 = abld.group(8, 0).exec_all();
259 allbld8.MOV(reg, brw_imm_v(0x76543210));
260 if (dispatch_width > 8)
261 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
262 if (dispatch_width > 16) {
263 const fs_builder allbld16 = abld.group(16, 0).exec_all();
264 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
265 }
266 }
267
268 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
269 nir_foreach_block(block, impl)
270 emit_system_values_block(block, this);
271 }
272
273 /*
274 * Returns a type based on a reference_type (word, float, half-float) and a
275 * given bit_size.
276 *
277 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
278 *
279 * @FIXME: 64-bit return types are always DF on integer types to maintain
280 * compability with uses of DF previously to the introduction of int64
281 * support.
282 */
283 static brw_reg_type
284 brw_reg_type_from_bit_size(const unsigned bit_size,
285 const brw_reg_type reference_type)
286 {
287 switch(reference_type) {
288 case BRW_REGISTER_TYPE_HF:
289 case BRW_REGISTER_TYPE_F:
290 case BRW_REGISTER_TYPE_DF:
291 switch(bit_size) {
292 case 16:
293 return BRW_REGISTER_TYPE_HF;
294 case 32:
295 return BRW_REGISTER_TYPE_F;
296 case 64:
297 return BRW_REGISTER_TYPE_DF;
298 default:
299 unreachable("Invalid bit size");
300 }
301 case BRW_REGISTER_TYPE_B:
302 case BRW_REGISTER_TYPE_W:
303 case BRW_REGISTER_TYPE_D:
304 case BRW_REGISTER_TYPE_Q:
305 switch(bit_size) {
306 case 8:
307 return BRW_REGISTER_TYPE_B;
308 case 16:
309 return BRW_REGISTER_TYPE_W;
310 case 32:
311 return BRW_REGISTER_TYPE_D;
312 case 64:
313 return BRW_REGISTER_TYPE_Q;
314 default:
315 unreachable("Invalid bit size");
316 }
317 case BRW_REGISTER_TYPE_UB:
318 case BRW_REGISTER_TYPE_UW:
319 case BRW_REGISTER_TYPE_UD:
320 case BRW_REGISTER_TYPE_UQ:
321 switch(bit_size) {
322 case 8:
323 return BRW_REGISTER_TYPE_UB;
324 case 16:
325 return BRW_REGISTER_TYPE_UW;
326 case 32:
327 return BRW_REGISTER_TYPE_UD;
328 case 64:
329 return BRW_REGISTER_TYPE_UQ;
330 default:
331 unreachable("Invalid bit size");
332 }
333 default:
334 unreachable("Unknown type");
335 }
336 }
337
338 void
339 fs_visitor::nir_emit_impl(nir_function_impl *impl)
340 {
341 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
342 for (unsigned i = 0; i < impl->reg_alloc; i++) {
343 nir_locals[i] = fs_reg();
344 }
345
346 foreach_list_typed(nir_register, reg, node, &impl->registers) {
347 unsigned array_elems =
348 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
349 unsigned size = array_elems * reg->num_components;
350 const brw_reg_type reg_type = reg->bit_size == 8 ? BRW_REGISTER_TYPE_B :
351 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
352 nir_locals[reg->index] = bld.vgrf(reg_type, size);
353 }
354
355 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
356 impl->ssa_alloc);
357
358 nir_emit_cf_list(&impl->body);
359 }
360
361 void
362 fs_visitor::nir_emit_cf_list(exec_list *list)
363 {
364 exec_list_validate(list);
365 foreach_list_typed(nir_cf_node, node, node, list) {
366 switch (node->type) {
367 case nir_cf_node_if:
368 nir_emit_if(nir_cf_node_as_if(node));
369 break;
370
371 case nir_cf_node_loop:
372 nir_emit_loop(nir_cf_node_as_loop(node));
373 break;
374
375 case nir_cf_node_block:
376 nir_emit_block(nir_cf_node_as_block(node));
377 break;
378
379 default:
380 unreachable("Invalid CFG node block");
381 }
382 }
383 }
384
385 void
386 fs_visitor::nir_emit_if(nir_if *if_stmt)
387 {
388 bool invert;
389 fs_reg cond_reg;
390
391 /* If the condition has the form !other_condition, use other_condition as
392 * the source, but invert the predicate on the if instruction.
393 */
394 nir_alu_instr *cond = nir_src_as_alu_instr(if_stmt->condition);
395 if (cond != NULL && cond->op == nir_op_inot) {
396 assert(!cond->src[0].negate);
397 assert(!cond->src[0].abs);
398
399 invert = true;
400 cond_reg = get_nir_src(cond->src[0].src);
401 } else {
402 invert = false;
403 cond_reg = get_nir_src(if_stmt->condition);
404 }
405
406 /* first, put the condition into f0 */
407 fs_inst *inst = bld.MOV(bld.null_reg_d(),
408 retype(cond_reg, BRW_REGISTER_TYPE_D));
409 inst->conditional_mod = BRW_CONDITIONAL_NZ;
410
411 bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
412
413 nir_emit_cf_list(&if_stmt->then_list);
414
415 if (!nir_cf_list_is_empty_block(&if_stmt->else_list)) {
416 bld.emit(BRW_OPCODE_ELSE);
417 nir_emit_cf_list(&if_stmt->else_list);
418 }
419
420 bld.emit(BRW_OPCODE_ENDIF);
421
422 if (devinfo->gen < 7)
423 limit_dispatch_width(16, "Non-uniform control flow unsupported "
424 "in SIMD32 mode.");
425 }
426
427 void
428 fs_visitor::nir_emit_loop(nir_loop *loop)
429 {
430 bld.emit(BRW_OPCODE_DO);
431
432 nir_emit_cf_list(&loop->body);
433
434 bld.emit(BRW_OPCODE_WHILE);
435
436 if (devinfo->gen < 7)
437 limit_dispatch_width(16, "Non-uniform control flow unsupported "
438 "in SIMD32 mode.");
439 }
440
441 void
442 fs_visitor::nir_emit_block(nir_block *block)
443 {
444 nir_foreach_instr(instr, block) {
445 nir_emit_instr(instr);
446 }
447 }
448
449 void
450 fs_visitor::nir_emit_instr(nir_instr *instr)
451 {
452 const fs_builder abld = bld.annotate(NULL, instr);
453
454 switch (instr->type) {
455 case nir_instr_type_alu:
456 nir_emit_alu(abld, nir_instr_as_alu(instr), true);
457 break;
458
459 case nir_instr_type_deref:
460 unreachable("All derefs should've been lowered");
461 break;
462
463 case nir_instr_type_intrinsic:
464 switch (stage) {
465 case MESA_SHADER_VERTEX:
466 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
467 break;
468 case MESA_SHADER_TESS_CTRL:
469 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
470 break;
471 case MESA_SHADER_TESS_EVAL:
472 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
473 break;
474 case MESA_SHADER_GEOMETRY:
475 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
476 break;
477 case MESA_SHADER_FRAGMENT:
478 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
479 break;
480 case MESA_SHADER_COMPUTE:
481 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
482 break;
483 default:
484 unreachable("unsupported shader stage");
485 }
486 break;
487
488 case nir_instr_type_tex:
489 nir_emit_texture(abld, nir_instr_as_tex(instr));
490 break;
491
492 case nir_instr_type_load_const:
493 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
494 break;
495
496 case nir_instr_type_ssa_undef:
497 /* We create a new VGRF for undefs on every use (by handling
498 * them in get_nir_src()), rather than for each definition.
499 * This helps register coalescing eliminate MOVs from undef.
500 */
501 break;
502
503 case nir_instr_type_jump:
504 nir_emit_jump(abld, nir_instr_as_jump(instr));
505 break;
506
507 default:
508 unreachable("unknown instruction type");
509 }
510 }
511
512 /**
513 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
514 * match instr.
515 */
516 bool
517 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
518 const fs_reg &result)
519 {
520 if (!instr->src[0].src.is_ssa ||
521 !instr->src[0].src.ssa->parent_instr)
522 return false;
523
524 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
525 return false;
526
527 nir_alu_instr *src0 =
528 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
529
530 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
531 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
532 return false;
533
534 /* If either opcode has source modifiers, bail.
535 *
536 * TODO: We can potentially handle source modifiers if both of the opcodes
537 * we're combining are signed integers.
538 */
539 if (instr->src[0].abs || instr->src[0].negate ||
540 src0->src[0].abs || src0->src[0].negate)
541 return false;
542
543 unsigned element = nir_src_as_uint(src0->src[1].src);
544
545 /* Element type to extract.*/
546 const brw_reg_type type = brw_int_type(
547 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
548 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
549
550 fs_reg op0 = get_nir_src(src0->src[0].src);
551 op0.type = brw_type_for_nir_type(devinfo,
552 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
553 nir_src_bit_size(src0->src[0].src)));
554 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
555
556 set_saturate(instr->dest.saturate,
557 bld.MOV(result, subscript(op0, type, element)));
558 return true;
559 }
560
561 bool
562 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
563 const fs_reg &result)
564 {
565 nir_intrinsic_instr *src0 = nir_src_as_intrinsic(instr->src[0].src);
566 if (src0 == NULL || src0->intrinsic != nir_intrinsic_load_front_face)
567 return false;
568
569 if (!nir_src_is_const(instr->src[1].src) ||
570 !nir_src_is_const(instr->src[2].src))
571 return false;
572
573 const float value1 = nir_src_as_float(instr->src[1].src);
574 const float value2 = nir_src_as_float(instr->src[2].src);
575 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
576 return false;
577
578 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
579 assert(value1 == -value2);
580
581 fs_reg tmp = vgrf(glsl_type::int_type);
582
583 if (devinfo->gen >= 6) {
584 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
585 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
586
587 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
588 *
589 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
590 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
591 *
592 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
593 *
594 * This negation looks like it's safe in practice, because bits 0:4 will
595 * surely be TRIANGLES
596 */
597
598 if (value1 == -1.0f) {
599 g0.negate = true;
600 }
601
602 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
603 g0, brw_imm_uw(0x3f80));
604 } else {
605 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
606 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
607
608 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
609 *
610 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
611 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
612 *
613 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
614 *
615 * This negation looks like it's safe in practice, because bits 0:4 will
616 * surely be TRIANGLES
617 */
618
619 if (value1 == -1.0f) {
620 g1_6.negate = true;
621 }
622
623 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
624 }
625 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
626
627 return true;
628 }
629
630 static void
631 emit_find_msb_using_lzd(const fs_builder &bld,
632 const fs_reg &result,
633 const fs_reg &src,
634 bool is_signed)
635 {
636 fs_inst *inst;
637 fs_reg temp = src;
638
639 if (is_signed) {
640 /* LZD of an absolute value source almost always does the right
641 * thing. There are two problem values:
642 *
643 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
644 * 0. However, findMSB(int(0x80000000)) == 30.
645 *
646 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
647 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
648 *
649 * For a value of zero or negative one, -1 will be returned.
650 *
651 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
652 * findMSB(-(1<<x)) should return x-1.
653 *
654 * For all negative number cases, including 0x80000000 and
655 * 0xffffffff, the correct value is obtained from LZD if instead of
656 * negating the (already negative) value the logical-not is used. A
657 * conditonal logical-not can be achieved in two instructions.
658 */
659 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
660
661 bld.ASR(temp, src, brw_imm_d(31));
662 bld.XOR(temp, temp, src);
663 }
664
665 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
666 retype(temp, BRW_REGISTER_TYPE_UD));
667
668 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
669 * from the LSB side. Subtract the result from 31 to convert the MSB
670 * count into an LSB count. If no bits are set, LZD will return 32.
671 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
672 */
673 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
674 inst->src[0].negate = true;
675 }
676
677 static brw_rnd_mode
678 brw_rnd_mode_from_nir_op (const nir_op op) {
679 switch (op) {
680 case nir_op_f2f16_rtz:
681 return BRW_RND_MODE_RTZ;
682 case nir_op_f2f16_rtne:
683 return BRW_RND_MODE_RTNE;
684 default:
685 unreachable("Operation doesn't support rounding mode");
686 }
687 }
688
689 static brw_rnd_mode
690 brw_rnd_mode_from_execution_mode(unsigned execution_mode)
691 {
692 if (nir_has_any_rounding_mode_rtne(execution_mode))
693 return BRW_RND_MODE_RTNE;
694 if (nir_has_any_rounding_mode_rtz(execution_mode))
695 return BRW_RND_MODE_RTZ;
696 return BRW_RND_MODE_UNSPECIFIED;
697 }
698
699 fs_reg
700 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
701 nir_alu_instr *instr,
702 fs_reg *op,
703 bool need_dest)
704 {
705 fs_reg result =
706 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
707
708 result.type = brw_type_for_nir_type(devinfo,
709 (nir_alu_type)(nir_op_infos[instr->op].output_type |
710 nir_dest_bit_size(instr->dest.dest)));
711
712 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
713 op[i] = get_nir_src(instr->src[i].src);
714 op[i].type = brw_type_for_nir_type(devinfo,
715 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
716 nir_src_bit_size(instr->src[i].src)));
717 op[i].abs = instr->src[i].abs;
718 op[i].negate = instr->src[i].negate;
719 }
720
721 /* Move and vecN instrutions may still be vectored. Return the raw,
722 * vectored source and destination so that fs_visitor::nir_emit_alu can
723 * handle it. Other callers should not have to handle these kinds of
724 * instructions.
725 */
726 switch (instr->op) {
727 case nir_op_mov:
728 case nir_op_vec2:
729 case nir_op_vec3:
730 case nir_op_vec4:
731 return result;
732 default:
733 break;
734 }
735
736 /* At this point, we have dealt with any instruction that operates on
737 * more than a single channel. Therefore, we can just adjust the source
738 * and destination registers for that channel and emit the instruction.
739 */
740 unsigned channel = 0;
741 if (nir_op_infos[instr->op].output_size == 0) {
742 /* Since NIR is doing the scalarizing for us, we should only ever see
743 * vectorized operations with a single channel.
744 */
745 assert(util_bitcount(instr->dest.write_mask) == 1);
746 channel = ffs(instr->dest.write_mask) - 1;
747
748 result = offset(result, bld, channel);
749 }
750
751 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
752 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
753 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
754 }
755
756 return result;
757 }
758
759 void
760 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
761 fs_reg *op)
762 {
763 for (unsigned i = 0; i < 2; i++) {
764 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[i].src);
765
766 if (inot_instr != NULL && inot_instr->op == nir_op_inot &&
767 !inot_instr->src[0].abs && !inot_instr->src[0].negate) {
768 /* The source of the inot is now the source of instr. */
769 prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
770
771 assert(!op[i].negate);
772 op[i].negate = true;
773 } else {
774 op[i] = resolve_source_modifiers(op[i]);
775 }
776 }
777 }
778
779 bool
780 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
781 fs_reg result,
782 nir_alu_instr *instr)
783 {
784 if (devinfo->gen < 6 || devinfo->gen >= 12)
785 return false;
786
787 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[0].src);
788
789 if (inot_instr == NULL || inot_instr->op != nir_op_inot)
790 return false;
791
792 /* HF is also possible as a destination on BDW+. For nir_op_b2i, the set
793 * of valid size-changing combinations is a bit more complex.
794 *
795 * The source restriction is just because I was lazy about generating the
796 * constant below.
797 */
798 if (nir_dest_bit_size(instr->dest.dest) != 32 ||
799 nir_src_bit_size(inot_instr->src[0].src) != 32)
800 return false;
801
802 /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1,
803 * this is float(1 + a).
804 */
805 fs_reg op;
806
807 prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
808
809 /* Ignore the saturate modifier, if there is one. The result of the
810 * arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
811 */
812 bld.ADD(result, op, brw_imm_d(1));
813
814 return true;
815 }
816
817 /**
818 * Emit code for nir_op_fsign possibly fused with a nir_op_fmul
819 *
820 * If \c instr is not the \c nir_op_fsign, then \c fsign_src is the index of
821 * the source of \c instr that is a \c nir_op_fsign.
822 */
823 void
824 fs_visitor::emit_fsign(const fs_builder &bld, const nir_alu_instr *instr,
825 fs_reg result, fs_reg *op, unsigned fsign_src)
826 {
827 fs_inst *inst;
828
829 assert(instr->op == nir_op_fsign || instr->op == nir_op_fmul);
830 assert(fsign_src < nir_op_infos[instr->op].num_inputs);
831
832 if (instr->op != nir_op_fsign) {
833 const nir_alu_instr *const fsign_instr =
834 nir_src_as_alu_instr(instr->src[fsign_src].src);
835
836 assert(!fsign_instr->dest.saturate);
837
838 /* op[fsign_src] has the nominal result of the fsign, and op[1 -
839 * fsign_src] has the other multiply source. This must be rearranged so
840 * that op[0] is the source of the fsign op[1] is the other multiply
841 * source.
842 */
843 if (fsign_src != 0)
844 op[1] = op[0];
845
846 op[0] = get_nir_src(fsign_instr->src[0].src);
847
848 const nir_alu_type t =
849 (nir_alu_type)(nir_op_infos[instr->op].input_types[0] |
850 nir_src_bit_size(fsign_instr->src[0].src));
851
852 op[0].type = brw_type_for_nir_type(devinfo, t);
853 op[0].abs = fsign_instr->src[0].abs;
854 op[0].negate = fsign_instr->src[0].negate;
855
856 unsigned channel = 0;
857 if (nir_op_infos[instr->op].output_size == 0) {
858 /* Since NIR is doing the scalarizing for us, we should only ever see
859 * vectorized operations with a single channel.
860 */
861 assert(util_bitcount(instr->dest.write_mask) == 1);
862 channel = ffs(instr->dest.write_mask) - 1;
863 }
864
865 op[0] = offset(op[0], bld, fsign_instr->src[0].swizzle[channel]);
866 } else {
867 assert(!instr->dest.saturate);
868 }
869
870 if (op[0].abs) {
871 /* Straightforward since the source can be assumed to be either strictly
872 * >= 0 or strictly <= 0 depending on the setting of the negate flag.
873 */
874 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
875
876 if (instr->op == nir_op_fsign) {
877 inst = (op[0].negate)
878 ? bld.MOV(result, brw_imm_f(-1.0f))
879 : bld.MOV(result, brw_imm_f(1.0f));
880 } else {
881 op[1].negate = (op[0].negate != op[1].negate);
882 inst = bld.MOV(result, op[1]);
883 }
884
885 set_predicate(BRW_PREDICATE_NORMAL, inst);
886 } else if (type_sz(op[0].type) == 2) {
887 /* AND(val, 0x8000) gives the sign bit.
888 *
889 * Predicated OR ORs 1.0 (0x3c00) with the sign bit if val is not zero.
890 */
891 fs_reg zero = retype(brw_imm_uw(0), BRW_REGISTER_TYPE_HF);
892 bld.CMP(bld.null_reg_f(), op[0], zero, BRW_CONDITIONAL_NZ);
893
894 op[0].type = BRW_REGISTER_TYPE_UW;
895 result.type = BRW_REGISTER_TYPE_UW;
896 bld.AND(result, op[0], brw_imm_uw(0x8000u));
897
898 if (instr->op == nir_op_fsign)
899 inst = bld.OR(result, result, brw_imm_uw(0x3c00u));
900 else {
901 /* Use XOR here to get the result sign correct. */
902 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UW));
903 }
904
905 inst->predicate = BRW_PREDICATE_NORMAL;
906 } else if (type_sz(op[0].type) == 4) {
907 /* AND(val, 0x80000000) gives the sign bit.
908 *
909 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
910 * zero.
911 */
912 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
913
914 op[0].type = BRW_REGISTER_TYPE_UD;
915 result.type = BRW_REGISTER_TYPE_UD;
916 bld.AND(result, op[0], brw_imm_ud(0x80000000u));
917
918 if (instr->op == nir_op_fsign)
919 inst = bld.OR(result, result, brw_imm_ud(0x3f800000u));
920 else {
921 /* Use XOR here to get the result sign correct. */
922 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UD));
923 }
924
925 inst->predicate = BRW_PREDICATE_NORMAL;
926 } else {
927 /* For doubles we do the same but we need to consider:
928 *
929 * - 2-src instructions can't operate with 64-bit immediates
930 * - The sign is encoded in the high 32-bit of each DF
931 * - We need to produce a DF result.
932 */
933
934 fs_reg zero = vgrf(glsl_type::double_type);
935 bld.MOV(zero, setup_imm_df(bld, 0.0));
936 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
937
938 bld.MOV(result, zero);
939
940 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
941 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
942 brw_imm_ud(0x80000000u));
943
944 if (instr->op == nir_op_fsign) {
945 set_predicate(BRW_PREDICATE_NORMAL,
946 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
947 } else {
948 /* This could be done better in some cases. If the scale is an
949 * immediate with the low 32-bits all 0, emitting a separate XOR and
950 * OR would allow an algebraic optimization to remove the OR. There
951 * are currently zero instances of fsign(double(x))*IMM in shader-db
952 * or any test suite, so it is hard to care at this time.
953 */
954 fs_reg result_int64 = retype(result, BRW_REGISTER_TYPE_UQ);
955 inst = bld.XOR(result_int64, result_int64,
956 retype(op[1], BRW_REGISTER_TYPE_UQ));
957 }
958 }
959 }
960
961 /**
962 * Deteremine whether sources of a nir_op_fmul can be fused with a nir_op_fsign
963 *
964 * Checks the operands of a \c nir_op_fmul to determine whether or not
965 * \c emit_fsign could fuse the multiplication with the \c sign() calculation.
966 *
967 * \param instr The multiplication instruction
968 *
969 * \param fsign_src The source of \c instr that may or may not be a
970 * \c nir_op_fsign
971 */
972 static bool
973 can_fuse_fmul_fsign(nir_alu_instr *instr, unsigned fsign_src)
974 {
975 assert(instr->op == nir_op_fmul);
976
977 nir_alu_instr *const fsign_instr =
978 nir_src_as_alu_instr(instr->src[fsign_src].src);
979
980 /* Rules:
981 *
982 * 1. instr->src[fsign_src] must be a nir_op_fsign.
983 * 2. The nir_op_fsign can only be used by this multiplication.
984 * 3. The source that is the nir_op_fsign does not have source modifiers.
985 * \c emit_fsign only examines the source modifiers of the source of the
986 * \c nir_op_fsign.
987 *
988 * The nir_op_fsign must also not have the saturate modifier, but steps
989 * have already been taken (in nir_opt_algebraic) to ensure that.
990 */
991 return fsign_instr != NULL && fsign_instr->op == nir_op_fsign &&
992 is_used_once(fsign_instr) &&
993 !instr->src[fsign_src].abs && !instr->src[fsign_src].negate;
994 }
995
996 void
997 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr,
998 bool need_dest)
999 {
1000 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
1001 fs_inst *inst;
1002 unsigned execution_mode =
1003 bld.shader->nir->info.float_controls_execution_mode;
1004
1005 fs_reg op[4];
1006 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, need_dest);
1007
1008 switch (instr->op) {
1009 case nir_op_mov:
1010 case nir_op_vec2:
1011 case nir_op_vec3:
1012 case nir_op_vec4: {
1013 fs_reg temp = result;
1014 bool need_extra_copy = false;
1015 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1016 if (!instr->src[i].src.is_ssa &&
1017 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
1018 need_extra_copy = true;
1019 temp = bld.vgrf(result.type, 4);
1020 break;
1021 }
1022 }
1023
1024 for (unsigned i = 0; i < 4; i++) {
1025 if (!(instr->dest.write_mask & (1 << i)))
1026 continue;
1027
1028 if (instr->op == nir_op_mov) {
1029 inst = bld.MOV(offset(temp, bld, i),
1030 offset(op[0], bld, instr->src[0].swizzle[i]));
1031 } else {
1032 inst = bld.MOV(offset(temp, bld, i),
1033 offset(op[i], bld, instr->src[i].swizzle[0]));
1034 }
1035 inst->saturate = instr->dest.saturate;
1036 }
1037
1038 /* In this case the source and destination registers were the same,
1039 * so we need to insert an extra set of moves in order to deal with
1040 * any swizzling.
1041 */
1042 if (need_extra_copy) {
1043 for (unsigned i = 0; i < 4; i++) {
1044 if (!(instr->dest.write_mask & (1 << i)))
1045 continue;
1046
1047 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
1048 }
1049 }
1050 return;
1051 }
1052
1053 case nir_op_i2f32:
1054 case nir_op_u2f32:
1055 if (optimize_extract_to_float(instr, result))
1056 return;
1057 inst = bld.MOV(result, op[0]);
1058 inst->saturate = instr->dest.saturate;
1059 break;
1060
1061 case nir_op_f2f16_rtne:
1062 case nir_op_f2f16_rtz:
1063 case nir_op_f2f16: {
1064 brw_rnd_mode rnd = BRW_RND_MODE_UNSPECIFIED;
1065
1066 if (nir_op_f2f16 == instr->op)
1067 rnd = brw_rnd_mode_from_execution_mode(execution_mode);
1068 else
1069 rnd = brw_rnd_mode_from_nir_op(instr->op);
1070
1071 if (BRW_RND_MODE_UNSPECIFIED != rnd)
1072 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(), brw_imm_d(rnd));
1073
1074 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
1075 * on the HW gen, it is a special hw opcode or just a MOV, and
1076 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
1077 *
1078 * But if we want to use that opcode, we need to provide support on
1079 * different optimizations and lowerings. As right now HF support is
1080 * only for gen8+, it will be better to use directly the MOV, and use
1081 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
1082 */
1083 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1084 inst = bld.MOV(result, op[0]);
1085 inst->saturate = instr->dest.saturate;
1086 break;
1087 }
1088
1089 case nir_op_b2i8:
1090 case nir_op_b2i16:
1091 case nir_op_b2i32:
1092 case nir_op_b2i64:
1093 case nir_op_b2f16:
1094 case nir_op_b2f32:
1095 case nir_op_b2f64:
1096 if (try_emit_b2fi_of_inot(bld, result, instr))
1097 break;
1098 op[0].type = BRW_REGISTER_TYPE_D;
1099 op[0].negate = !op[0].negate;
1100 /* fallthrough */
1101 case nir_op_i2f64:
1102 case nir_op_i2i64:
1103 case nir_op_u2f64:
1104 case nir_op_u2u64:
1105 case nir_op_f2f64:
1106 case nir_op_f2i64:
1107 case nir_op_f2u64:
1108 case nir_op_i2i32:
1109 case nir_op_u2u32:
1110 case nir_op_f2i32:
1111 case nir_op_f2u32:
1112 case nir_op_i2f16:
1113 case nir_op_i2i16:
1114 case nir_op_u2f16:
1115 case nir_op_u2u16:
1116 case nir_op_f2i16:
1117 case nir_op_f2u16:
1118 case nir_op_i2i8:
1119 case nir_op_u2u8:
1120 case nir_op_f2i8:
1121 case nir_op_f2u8:
1122 if (result.type == BRW_REGISTER_TYPE_B ||
1123 result.type == BRW_REGISTER_TYPE_UB ||
1124 result.type == BRW_REGISTER_TYPE_HF)
1125 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1126
1127 if (op[0].type == BRW_REGISTER_TYPE_B ||
1128 op[0].type == BRW_REGISTER_TYPE_UB ||
1129 op[0].type == BRW_REGISTER_TYPE_HF)
1130 assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1131
1132 inst = bld.MOV(result, op[0]);
1133 inst->saturate = instr->dest.saturate;
1134 break;
1135
1136 case nir_op_fsat:
1137 inst = bld.MOV(result, op[0]);
1138 inst->saturate = true;
1139 break;
1140
1141 case nir_op_fneg:
1142 case nir_op_ineg:
1143 op[0].negate = true;
1144 inst = bld.MOV(result, op[0]);
1145 if (instr->op == nir_op_fneg)
1146 inst->saturate = instr->dest.saturate;
1147 break;
1148
1149 case nir_op_fabs:
1150 case nir_op_iabs:
1151 op[0].negate = false;
1152 op[0].abs = true;
1153 inst = bld.MOV(result, op[0]);
1154 if (instr->op == nir_op_fabs)
1155 inst->saturate = instr->dest.saturate;
1156 break;
1157
1158 case nir_op_f2f32:
1159 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1160 brw_rnd_mode rnd =
1161 brw_rnd_mode_from_execution_mode(execution_mode);
1162 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1163 brw_imm_d(rnd));
1164 }
1165
1166 if (op[0].type == BRW_REGISTER_TYPE_HF)
1167 assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1168
1169 inst = bld.MOV(result, op[0]);
1170 inst->saturate = instr->dest.saturate;
1171 break;
1172
1173 case nir_op_fsign:
1174 emit_fsign(bld, instr, result, op, 0);
1175 break;
1176
1177 case nir_op_frcp:
1178 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
1179 inst->saturate = instr->dest.saturate;
1180 break;
1181
1182 case nir_op_fexp2:
1183 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
1184 inst->saturate = instr->dest.saturate;
1185 break;
1186
1187 case nir_op_flog2:
1188 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
1189 inst->saturate = instr->dest.saturate;
1190 break;
1191
1192 case nir_op_fsin:
1193 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
1194 inst->saturate = instr->dest.saturate;
1195 break;
1196
1197 case nir_op_fcos:
1198 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
1199 inst->saturate = instr->dest.saturate;
1200 break;
1201
1202 case nir_op_fddx:
1203 if (fs_key->high_quality_derivatives) {
1204 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1205 } else {
1206 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1207 }
1208 inst->saturate = instr->dest.saturate;
1209 break;
1210 case nir_op_fddx_fine:
1211 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1212 inst->saturate = instr->dest.saturate;
1213 break;
1214 case nir_op_fddx_coarse:
1215 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1216 inst->saturate = instr->dest.saturate;
1217 break;
1218 case nir_op_fddy:
1219 if (fs_key->high_quality_derivatives) {
1220 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1221 } else {
1222 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1223 }
1224 inst->saturate = instr->dest.saturate;
1225 break;
1226 case nir_op_fddy_fine:
1227 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1228 inst->saturate = instr->dest.saturate;
1229 break;
1230 case nir_op_fddy_coarse:
1231 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1232 inst->saturate = instr->dest.saturate;
1233 break;
1234
1235 case nir_op_fadd:
1236 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1237 brw_rnd_mode rnd =
1238 brw_rnd_mode_from_execution_mode(execution_mode);
1239 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1240 brw_imm_d(rnd));
1241 }
1242 /* fallthrough */
1243 case nir_op_iadd:
1244 inst = bld.ADD(result, op[0], op[1]);
1245 inst->saturate = instr->dest.saturate;
1246 break;
1247
1248 case nir_op_uadd_sat:
1249 inst = bld.ADD(result, op[0], op[1]);
1250 inst->saturate = true;
1251 break;
1252
1253 case nir_op_fmul:
1254 for (unsigned i = 0; i < 2; i++) {
1255 if (can_fuse_fmul_fsign(instr, i)) {
1256 emit_fsign(bld, instr, result, op, i);
1257 return;
1258 }
1259 }
1260
1261 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1262 brw_rnd_mode rnd =
1263 brw_rnd_mode_from_execution_mode(execution_mode);
1264 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1265 brw_imm_d(rnd));
1266 }
1267
1268 inst = bld.MUL(result, op[0], op[1]);
1269 inst->saturate = instr->dest.saturate;
1270 break;
1271
1272 case nir_op_imul_2x32_64:
1273 case nir_op_umul_2x32_64:
1274 bld.MUL(result, op[0], op[1]);
1275 break;
1276
1277 case nir_op_imul:
1278 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1279 bld.MUL(result, op[0], op[1]);
1280 break;
1281
1282 case nir_op_imul_high:
1283 case nir_op_umul_high:
1284 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1285 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1286 break;
1287
1288 case nir_op_idiv:
1289 case nir_op_udiv:
1290 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1291 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1292 break;
1293
1294 case nir_op_uadd_carry:
1295 unreachable("Should have been lowered by carry_to_arith().");
1296
1297 case nir_op_usub_borrow:
1298 unreachable("Should have been lowered by borrow_to_arith().");
1299
1300 case nir_op_umod:
1301 case nir_op_irem:
1302 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1303 * appears that our hardware just does the right thing for signed
1304 * remainder.
1305 */
1306 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1307 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1308 break;
1309
1310 case nir_op_imod: {
1311 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1312 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1313
1314 /* Math instructions don't support conditional mod */
1315 inst = bld.MOV(bld.null_reg_d(), result);
1316 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1317
1318 /* Now, we need to determine if signs of the sources are different.
1319 * When we XOR the sources, the top bit is 0 if they are the same and 1
1320 * if they are different. We can then use a conditional modifier to
1321 * turn that into a predicate. This leads us to an XOR.l instruction.
1322 *
1323 * Technically, according to the PRM, you're not allowed to use .l on a
1324 * XOR instruction. However, emperical experiments and Curro's reading
1325 * of the simulator source both indicate that it's safe.
1326 */
1327 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1328 inst = bld.XOR(tmp, op[0], op[1]);
1329 inst->predicate = BRW_PREDICATE_NORMAL;
1330 inst->conditional_mod = BRW_CONDITIONAL_L;
1331
1332 /* If the result of the initial remainder operation is non-zero and the
1333 * two sources have different signs, add in a copy of op[1] to get the
1334 * final integer modulus value.
1335 */
1336 inst = bld.ADD(result, result, op[1]);
1337 inst->predicate = BRW_PREDICATE_NORMAL;
1338 break;
1339 }
1340
1341 case nir_op_flt32:
1342 case nir_op_fge32:
1343 case nir_op_feq32:
1344 case nir_op_fne32: {
1345 fs_reg dest = result;
1346
1347 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1348 if (bit_size != 32)
1349 dest = bld.vgrf(op[0].type, 1);
1350
1351 bld.CMP(dest, op[0], op[1], brw_cmod_for_nir_comparison(instr->op));
1352
1353 if (bit_size > 32) {
1354 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1355 } else if(bit_size < 32) {
1356 /* When we convert the result to 32-bit we need to be careful and do
1357 * it as a signed conversion to get sign extension (for 32-bit true)
1358 */
1359 const brw_reg_type src_type =
1360 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1361
1362 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1363 }
1364 break;
1365 }
1366
1367 case nir_op_ilt32:
1368 case nir_op_ult32:
1369 case nir_op_ige32:
1370 case nir_op_uge32:
1371 case nir_op_ieq32:
1372 case nir_op_ine32: {
1373 fs_reg dest = result;
1374
1375 /* On Gen11 we have an additional issue being that src1 cannot be a byte
1376 * type. So we convert both operands for the comparison.
1377 */
1378 fs_reg temp_op[2];
1379 temp_op[0] = bld.fix_byte_src(op[0]);
1380 temp_op[1] = bld.fix_byte_src(op[1]);
1381
1382 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1383 if (bit_size != 32)
1384 dest = bld.vgrf(temp_op[0].type, 1);
1385
1386 bld.CMP(dest, temp_op[0], temp_op[1],
1387 brw_cmod_for_nir_comparison(instr->op));
1388
1389 if (bit_size > 32) {
1390 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1391 } else if (bit_size < 32) {
1392 /* When we convert the result to 32-bit we need to be careful and do
1393 * it as a signed conversion to get sign extension (for 32-bit true)
1394 */
1395 const brw_reg_type src_type =
1396 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1397
1398 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1399 }
1400 break;
1401 }
1402
1403 case nir_op_inot:
1404 if (devinfo->gen >= 8) {
1405 nir_alu_instr *inot_src_instr = nir_src_as_alu_instr(instr->src[0].src);
1406
1407 if (inot_src_instr != NULL &&
1408 (inot_src_instr->op == nir_op_ior ||
1409 inot_src_instr->op == nir_op_ixor ||
1410 inot_src_instr->op == nir_op_iand) &&
1411 !inot_src_instr->src[0].abs &&
1412 !inot_src_instr->src[0].negate &&
1413 !inot_src_instr->src[1].abs &&
1414 !inot_src_instr->src[1].negate) {
1415 /* The sources of the source logical instruction are now the
1416 * sources of the instruction that will be generated.
1417 */
1418 prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1419 resolve_inot_sources(bld, inot_src_instr, op);
1420
1421 /* Smash all of the sources and destination to be signed. This
1422 * doesn't matter for the operation of the instruction, but cmod
1423 * propagation fails on unsigned sources with negation (due to
1424 * fs_inst::can_do_cmod returning false).
1425 */
1426 result.type =
1427 brw_type_for_nir_type(devinfo,
1428 (nir_alu_type)(nir_type_int |
1429 nir_dest_bit_size(instr->dest.dest)));
1430 op[0].type =
1431 brw_type_for_nir_type(devinfo,
1432 (nir_alu_type)(nir_type_int |
1433 nir_src_bit_size(inot_src_instr->src[0].src)));
1434 op[1].type =
1435 brw_type_for_nir_type(devinfo,
1436 (nir_alu_type)(nir_type_int |
1437 nir_src_bit_size(inot_src_instr->src[1].src)));
1438
1439 /* For XOR, only invert one of the sources. Arbitrarily choose
1440 * the first source.
1441 */
1442 op[0].negate = !op[0].negate;
1443 if (inot_src_instr->op != nir_op_ixor)
1444 op[1].negate = !op[1].negate;
1445
1446 switch (inot_src_instr->op) {
1447 case nir_op_ior:
1448 bld.AND(result, op[0], op[1]);
1449 return;
1450
1451 case nir_op_iand:
1452 bld.OR(result, op[0], op[1]);
1453 return;
1454
1455 case nir_op_ixor:
1456 bld.XOR(result, op[0], op[1]);
1457 return;
1458
1459 default:
1460 unreachable("impossible opcode");
1461 }
1462 }
1463 op[0] = resolve_source_modifiers(op[0]);
1464 }
1465 bld.NOT(result, op[0]);
1466 break;
1467 case nir_op_ixor:
1468 if (devinfo->gen >= 8) {
1469 resolve_inot_sources(bld, instr, op);
1470 }
1471 bld.XOR(result, op[0], op[1]);
1472 break;
1473 case nir_op_ior:
1474 if (devinfo->gen >= 8) {
1475 resolve_inot_sources(bld, instr, op);
1476 }
1477 bld.OR(result, op[0], op[1]);
1478 break;
1479 case nir_op_iand:
1480 if (devinfo->gen >= 8) {
1481 resolve_inot_sources(bld, instr, op);
1482 }
1483 bld.AND(result, op[0], op[1]);
1484 break;
1485
1486 case nir_op_fdot2:
1487 case nir_op_fdot3:
1488 case nir_op_fdot4:
1489 case nir_op_b32all_fequal2:
1490 case nir_op_b32all_iequal2:
1491 case nir_op_b32all_fequal3:
1492 case nir_op_b32all_iequal3:
1493 case nir_op_b32all_fequal4:
1494 case nir_op_b32all_iequal4:
1495 case nir_op_b32any_fnequal2:
1496 case nir_op_b32any_inequal2:
1497 case nir_op_b32any_fnequal3:
1498 case nir_op_b32any_inequal3:
1499 case nir_op_b32any_fnequal4:
1500 case nir_op_b32any_inequal4:
1501 unreachable("Lowered by nir_lower_alu_reductions");
1502
1503 case nir_op_fnoise1_1:
1504 case nir_op_fnoise1_2:
1505 case nir_op_fnoise1_3:
1506 case nir_op_fnoise1_4:
1507 case nir_op_fnoise2_1:
1508 case nir_op_fnoise2_2:
1509 case nir_op_fnoise2_3:
1510 case nir_op_fnoise2_4:
1511 case nir_op_fnoise3_1:
1512 case nir_op_fnoise3_2:
1513 case nir_op_fnoise3_3:
1514 case nir_op_fnoise3_4:
1515 case nir_op_fnoise4_1:
1516 case nir_op_fnoise4_2:
1517 case nir_op_fnoise4_3:
1518 case nir_op_fnoise4_4:
1519 unreachable("not reached: should be handled by lower_noise");
1520
1521 case nir_op_ldexp:
1522 unreachable("not reached: should be handled by ldexp_to_arith()");
1523
1524 case nir_op_fsqrt:
1525 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1526 inst->saturate = instr->dest.saturate;
1527 break;
1528
1529 case nir_op_frsq:
1530 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1531 inst->saturate = instr->dest.saturate;
1532 break;
1533
1534 case nir_op_i2b32:
1535 case nir_op_f2b32: {
1536 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1537 if (bit_size == 64) {
1538 /* two-argument instructions can't take 64-bit immediates */
1539 fs_reg zero;
1540 fs_reg tmp;
1541
1542 if (instr->op == nir_op_f2b32) {
1543 zero = vgrf(glsl_type::double_type);
1544 tmp = vgrf(glsl_type::double_type);
1545 bld.MOV(zero, setup_imm_df(bld, 0.0));
1546 } else {
1547 zero = vgrf(glsl_type::int64_t_type);
1548 tmp = vgrf(glsl_type::int64_t_type);
1549 bld.MOV(zero, brw_imm_q(0));
1550 }
1551
1552 /* A SIMD16 execution needs to be split in two instructions, so use
1553 * a vgrf instead of the flag register as dst so instruction splitting
1554 * works
1555 */
1556 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1557 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1558 } else {
1559 fs_reg zero;
1560 if (bit_size == 32) {
1561 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1562 } else {
1563 assert(bit_size == 16);
1564 zero = instr->op == nir_op_f2b32 ?
1565 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1566 }
1567 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1568 }
1569 break;
1570 }
1571
1572 case nir_op_ftrunc:
1573 inst = bld.RNDZ(result, op[0]);
1574 inst->saturate = instr->dest.saturate;
1575 break;
1576
1577 case nir_op_fceil: {
1578 op[0].negate = !op[0].negate;
1579 fs_reg temp = vgrf(glsl_type::float_type);
1580 bld.RNDD(temp, op[0]);
1581 temp.negate = true;
1582 inst = bld.MOV(result, temp);
1583 inst->saturate = instr->dest.saturate;
1584 break;
1585 }
1586 case nir_op_ffloor:
1587 inst = bld.RNDD(result, op[0]);
1588 inst->saturate = instr->dest.saturate;
1589 break;
1590 case nir_op_ffract:
1591 inst = bld.FRC(result, op[0]);
1592 inst->saturate = instr->dest.saturate;
1593 break;
1594 case nir_op_fround_even:
1595 inst = bld.RNDE(result, op[0]);
1596 inst->saturate = instr->dest.saturate;
1597 break;
1598
1599 case nir_op_fquantize2f16: {
1600 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1601 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1602 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1603
1604 /* The destination stride must be at least as big as the source stride. */
1605 tmp16.type = BRW_REGISTER_TYPE_W;
1606 tmp16.stride = 2;
1607
1608 /* Check for denormal */
1609 fs_reg abs_src0 = op[0];
1610 abs_src0.abs = true;
1611 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1612 BRW_CONDITIONAL_L);
1613 /* Get the appropriately signed zero */
1614 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1615 retype(op[0], BRW_REGISTER_TYPE_UD),
1616 brw_imm_ud(0x80000000));
1617 /* Do the actual F32 -> F16 -> F32 conversion */
1618 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1619 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1620 /* Select that or zero based on normal status */
1621 inst = bld.SEL(result, zero, tmp32);
1622 inst->predicate = BRW_PREDICATE_NORMAL;
1623 inst->saturate = instr->dest.saturate;
1624 break;
1625 }
1626
1627 case nir_op_imin:
1628 case nir_op_umin:
1629 case nir_op_fmin:
1630 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1631 inst->saturate = instr->dest.saturate;
1632 break;
1633
1634 case nir_op_imax:
1635 case nir_op_umax:
1636 case nir_op_fmax:
1637 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1638 inst->saturate = instr->dest.saturate;
1639 break;
1640
1641 case nir_op_pack_snorm_2x16:
1642 case nir_op_pack_snorm_4x8:
1643 case nir_op_pack_unorm_2x16:
1644 case nir_op_pack_unorm_4x8:
1645 case nir_op_unpack_snorm_2x16:
1646 case nir_op_unpack_snorm_4x8:
1647 case nir_op_unpack_unorm_2x16:
1648 case nir_op_unpack_unorm_4x8:
1649 case nir_op_unpack_half_2x16:
1650 case nir_op_pack_half_2x16:
1651 unreachable("not reached: should be handled by lower_packing_builtins");
1652
1653 case nir_op_unpack_half_2x16_split_x_flush_to_zero:
1654 assert(FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 & execution_mode);
1655 case nir_op_unpack_half_2x16_split_x:
1656 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1657 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1658 inst->saturate = instr->dest.saturate;
1659 break;
1660 case nir_op_unpack_half_2x16_split_y_flush_to_zero:
1661 assert(FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 & execution_mode);
1662 case nir_op_unpack_half_2x16_split_y:
1663 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1664 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1665 inst->saturate = instr->dest.saturate;
1666 break;
1667
1668 case nir_op_pack_64_2x32_split:
1669 case nir_op_pack_32_2x16_split:
1670 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1671 break;
1672
1673 case nir_op_unpack_64_2x32_split_x:
1674 case nir_op_unpack_64_2x32_split_y: {
1675 if (instr->op == nir_op_unpack_64_2x32_split_x)
1676 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1677 else
1678 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1679 break;
1680 }
1681
1682 case nir_op_unpack_32_2x16_split_x:
1683 case nir_op_unpack_32_2x16_split_y: {
1684 if (instr->op == nir_op_unpack_32_2x16_split_x)
1685 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1686 else
1687 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1688 break;
1689 }
1690
1691 case nir_op_fpow:
1692 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1693 inst->saturate = instr->dest.saturate;
1694 break;
1695
1696 case nir_op_bitfield_reverse:
1697 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1698 bld.BFREV(result, op[0]);
1699 break;
1700
1701 case nir_op_bit_count:
1702 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1703 bld.CBIT(result, op[0]);
1704 break;
1705
1706 case nir_op_ufind_msb: {
1707 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1708 emit_find_msb_using_lzd(bld, result, op[0], false);
1709 break;
1710 }
1711
1712 case nir_op_ifind_msb: {
1713 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1714
1715 if (devinfo->gen < 7) {
1716 emit_find_msb_using_lzd(bld, result, op[0], true);
1717 } else {
1718 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1719
1720 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1721 * count from the LSB side. If FBH didn't return an error
1722 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1723 * count into an LSB count.
1724 */
1725 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1726
1727 inst = bld.ADD(result, result, brw_imm_d(31));
1728 inst->predicate = BRW_PREDICATE_NORMAL;
1729 inst->src[0].negate = true;
1730 }
1731 break;
1732 }
1733
1734 case nir_op_find_lsb:
1735 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1736
1737 if (devinfo->gen < 7) {
1738 fs_reg temp = vgrf(glsl_type::int_type);
1739
1740 /* (x & -x) generates a value that consists of only the LSB of x.
1741 * For all powers of 2, findMSB(y) == findLSB(y).
1742 */
1743 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1744 fs_reg negated_src = src;
1745
1746 /* One must be negated, and the other must be non-negated. It
1747 * doesn't matter which is which.
1748 */
1749 negated_src.negate = true;
1750 src.negate = false;
1751
1752 bld.AND(temp, src, negated_src);
1753 emit_find_msb_using_lzd(bld, result, temp, false);
1754 } else {
1755 bld.FBL(result, op[0]);
1756 }
1757 break;
1758
1759 case nir_op_ubitfield_extract:
1760 case nir_op_ibitfield_extract:
1761 unreachable("should have been lowered");
1762 case nir_op_ubfe:
1763 case nir_op_ibfe:
1764 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1765 bld.BFE(result, op[2], op[1], op[0]);
1766 break;
1767 case nir_op_bfm:
1768 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1769 bld.BFI1(result, op[0], op[1]);
1770 break;
1771 case nir_op_bfi:
1772 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1773 bld.BFI2(result, op[0], op[1], op[2]);
1774 break;
1775
1776 case nir_op_bitfield_insert:
1777 unreachable("not reached: should have been lowered");
1778
1779 case nir_op_ishl:
1780 bld.SHL(result, op[0], op[1]);
1781 break;
1782 case nir_op_ishr:
1783 bld.ASR(result, op[0], op[1]);
1784 break;
1785 case nir_op_ushr:
1786 bld.SHR(result, op[0], op[1]);
1787 break;
1788
1789 case nir_op_urol:
1790 bld.ROL(result, op[0], op[1]);
1791 break;
1792 case nir_op_uror:
1793 bld.ROR(result, op[0], op[1]);
1794 break;
1795
1796 case nir_op_pack_half_2x16_split:
1797 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1798 break;
1799
1800 case nir_op_ffma:
1801 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1802 brw_rnd_mode rnd =
1803 brw_rnd_mode_from_execution_mode(execution_mode);
1804 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1805 brw_imm_d(rnd));
1806 }
1807
1808 inst = bld.MAD(result, op[2], op[1], op[0]);
1809 inst->saturate = instr->dest.saturate;
1810 break;
1811
1812 case nir_op_flrp:
1813 inst = bld.LRP(result, op[0], op[1], op[2]);
1814 inst->saturate = instr->dest.saturate;
1815 break;
1816
1817 case nir_op_b32csel:
1818 if (optimize_frontfacing_ternary(instr, result))
1819 return;
1820
1821 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1822 inst = bld.SEL(result, op[1], op[2]);
1823 inst->predicate = BRW_PREDICATE_NORMAL;
1824 break;
1825
1826 case nir_op_extract_u8:
1827 case nir_op_extract_i8: {
1828 unsigned byte = nir_src_as_uint(instr->src[1].src);
1829
1830 /* The PRMs say:
1831 *
1832 * BDW+
1833 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1834 * Use two instructions and a word or DWord intermediate integer type.
1835 */
1836 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1837 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1838
1839 if (instr->op == nir_op_extract_i8) {
1840 /* If we need to sign extend, extract to a word first */
1841 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1842 bld.MOV(w_temp, subscript(op[0], type, byte));
1843 bld.MOV(result, w_temp);
1844 } else if (byte & 1) {
1845 /* Extract the high byte from the word containing the desired byte
1846 * offset.
1847 */
1848 bld.SHR(result,
1849 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1850 brw_imm_uw(8));
1851 } else {
1852 /* Otherwise use an AND with 0xff and a word type */
1853 bld.AND(result,
1854 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1855 brw_imm_uw(0xff));
1856 }
1857 } else {
1858 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1859 bld.MOV(result, subscript(op[0], type, byte));
1860 }
1861 break;
1862 }
1863
1864 case nir_op_extract_u16:
1865 case nir_op_extract_i16: {
1866 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1867 unsigned word = nir_src_as_uint(instr->src[1].src);
1868 bld.MOV(result, subscript(op[0], type, word));
1869 break;
1870 }
1871
1872 default:
1873 unreachable("unhandled instruction");
1874 }
1875
1876 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1877 * to sign extend the low bit to 0/~0
1878 */
1879 if (devinfo->gen <= 5 &&
1880 !result.is_null() &&
1881 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1882 fs_reg masked = vgrf(glsl_type::int_type);
1883 bld.AND(masked, result, brw_imm_d(1));
1884 masked.negate = true;
1885 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1886 }
1887 }
1888
1889 void
1890 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1891 nir_load_const_instr *instr)
1892 {
1893 const brw_reg_type reg_type =
1894 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1895 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1896
1897 switch (instr->def.bit_size) {
1898 case 8:
1899 for (unsigned i = 0; i < instr->def.num_components; i++)
1900 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value[i].i8));
1901 break;
1902
1903 case 16:
1904 for (unsigned i = 0; i < instr->def.num_components; i++)
1905 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value[i].i16));
1906 break;
1907
1908 case 32:
1909 for (unsigned i = 0; i < instr->def.num_components; i++)
1910 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value[i].i32));
1911 break;
1912
1913 case 64:
1914 assert(devinfo->gen >= 7);
1915 if (devinfo->gen == 7) {
1916 /* We don't get 64-bit integer types until gen8 */
1917 for (unsigned i = 0; i < instr->def.num_components; i++) {
1918 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1919 setup_imm_df(bld, instr->value[i].f64));
1920 }
1921 } else {
1922 for (unsigned i = 0; i < instr->def.num_components; i++)
1923 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value[i].i64));
1924 }
1925 break;
1926
1927 default:
1928 unreachable("Invalid bit size");
1929 }
1930
1931 nir_ssa_values[instr->def.index] = reg;
1932 }
1933
1934 fs_reg
1935 fs_visitor::get_nir_src(const nir_src &src)
1936 {
1937 fs_reg reg;
1938 if (src.is_ssa) {
1939 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1940 const brw_reg_type reg_type =
1941 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1942 reg = bld.vgrf(reg_type, src.ssa->num_components);
1943 } else {
1944 reg = nir_ssa_values[src.ssa->index];
1945 }
1946 } else {
1947 /* We don't handle indirects on locals */
1948 assert(src.reg.indirect == NULL);
1949 reg = offset(nir_locals[src.reg.reg->index], bld,
1950 src.reg.base_offset * src.reg.reg->num_components);
1951 }
1952
1953 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1954 /* The only 64-bit type available on gen7 is DF, so use that. */
1955 reg.type = BRW_REGISTER_TYPE_DF;
1956 } else {
1957 /* To avoid floating-point denorm flushing problems, set the type by
1958 * default to an integer type - instructions that need floating point
1959 * semantics will set this to F if they need to
1960 */
1961 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1962 BRW_REGISTER_TYPE_D);
1963 }
1964
1965 return reg;
1966 }
1967
1968 /**
1969 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1970 *
1971 * This function should not be called on any value which may be 64 bits.
1972 * We could theoretically support 64-bit on gen8+ but we choose not to
1973 * because it wouldn't work in general (no gen7 support) and there are
1974 * enough restrictions in 64-bit immediates that you can't take the return
1975 * value and treat it the same as the result of get_nir_src().
1976 */
1977 fs_reg
1978 fs_visitor::get_nir_src_imm(const nir_src &src)
1979 {
1980 assert(nir_src_bit_size(src) == 32);
1981 return nir_src_is_const(src) ?
1982 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
1983 }
1984
1985 fs_reg
1986 fs_visitor::get_nir_dest(const nir_dest &dest)
1987 {
1988 if (dest.is_ssa) {
1989 const brw_reg_type reg_type =
1990 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1991 dest.ssa.bit_size == 8 ?
1992 BRW_REGISTER_TYPE_D :
1993 BRW_REGISTER_TYPE_F);
1994 nir_ssa_values[dest.ssa.index] =
1995 bld.vgrf(reg_type, dest.ssa.num_components);
1996 bld.UNDEF(nir_ssa_values[dest.ssa.index]);
1997 return nir_ssa_values[dest.ssa.index];
1998 } else {
1999 /* We don't handle indirects on locals */
2000 assert(dest.reg.indirect == NULL);
2001 return offset(nir_locals[dest.reg.reg->index], bld,
2002 dest.reg.base_offset * dest.reg.reg->num_components);
2003 }
2004 }
2005
2006 void
2007 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
2008 unsigned wr_mask)
2009 {
2010 for (unsigned i = 0; i < 4; i++) {
2011 if (!((wr_mask >> i) & 1))
2012 continue;
2013
2014 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
2015 new_inst->dst = offset(new_inst->dst, bld, i);
2016 for (unsigned j = 0; j < new_inst->sources; j++)
2017 if (new_inst->src[j].file == VGRF)
2018 new_inst->src[j] = offset(new_inst->src[j], bld, i);
2019
2020 bld.emit(new_inst);
2021 }
2022 }
2023
2024 static fs_inst *
2025 emit_pixel_interpolater_send(const fs_builder &bld,
2026 enum opcode opcode,
2027 const fs_reg &dst,
2028 const fs_reg &src,
2029 const fs_reg &desc,
2030 glsl_interp_mode interpolation)
2031 {
2032 struct brw_wm_prog_data *wm_prog_data =
2033 brw_wm_prog_data(bld.shader->stage_prog_data);
2034
2035 fs_inst *inst = bld.emit(opcode, dst, src, desc);
2036 /* 2 floats per slot returned */
2037 inst->size_written = 2 * dst.component_size(inst->exec_size);
2038 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
2039
2040 wm_prog_data->pulls_bary = true;
2041
2042 return inst;
2043 }
2044
2045 /**
2046 * Computes 1 << x, given a D/UD register containing some value x.
2047 */
2048 static fs_reg
2049 intexp2(const fs_builder &bld, const fs_reg &x)
2050 {
2051 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
2052
2053 fs_reg result = bld.vgrf(x.type, 1);
2054 fs_reg one = bld.vgrf(x.type, 1);
2055
2056 bld.MOV(one, retype(brw_imm_d(1), one.type));
2057 bld.SHL(result, one, x);
2058 return result;
2059 }
2060
2061 void
2062 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
2063 {
2064 assert(stage == MESA_SHADER_GEOMETRY);
2065
2066 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2067
2068 if (gs_compile->control_data_header_size_bits == 0)
2069 return;
2070
2071 /* We can only do EndPrimitive() functionality when the control data
2072 * consists of cut bits. Fortunately, the only time it isn't is when the
2073 * output type is points, in which case EndPrimitive() is a no-op.
2074 */
2075 if (gs_prog_data->control_data_format !=
2076 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
2077 return;
2078 }
2079
2080 /* Cut bits use one bit per vertex. */
2081 assert(gs_compile->control_data_bits_per_vertex == 1);
2082
2083 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2084 vertex_count.type = BRW_REGISTER_TYPE_UD;
2085
2086 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
2087 * vertex n, 0 otherwise. So all we need to do here is mark bit
2088 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
2089 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
2090 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
2091 *
2092 * Note that if EndPrimitive() is called before emitting any vertices, this
2093 * will cause us to set bit 31 of the control_data_bits register to 1.
2094 * That's fine because:
2095 *
2096 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
2097 * output, so the hardware will ignore cut bit 31.
2098 *
2099 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
2100 * last vertex, so setting cut bit 31 has no effect (since the primitive
2101 * is automatically ended when the GS terminates).
2102 *
2103 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
2104 * control_data_bits register to 0 when the first vertex is emitted.
2105 */
2106
2107 const fs_builder abld = bld.annotate("end primitive");
2108
2109 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
2110 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2111 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2112 fs_reg mask = intexp2(abld, prev_count);
2113 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2114 * attention to the lower 5 bits of its second source argument, so on this
2115 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
2116 * ((vertex_count - 1) % 32).
2117 */
2118 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2119 }
2120
2121 void
2122 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
2123 {
2124 assert(stage == MESA_SHADER_GEOMETRY);
2125 assert(gs_compile->control_data_bits_per_vertex != 0);
2126
2127 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2128
2129 const fs_builder abld = bld.annotate("emit control data bits");
2130 const fs_builder fwa_bld = bld.exec_all();
2131
2132 /* We use a single UD register to accumulate control data bits (32 bits
2133 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
2134 * at a time.
2135 *
2136 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
2137 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
2138 * use the Channel Mask phase to enable/disable which DWord within that
2139 * group to write. (Remember, different SIMD8 channels may have emitted
2140 * different numbers of vertices, so we may need per-slot offsets.)
2141 *
2142 * Channel masking presents an annoying problem: we may have to replicate
2143 * the data up to 4 times:
2144 *
2145 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
2146 *
2147 * To avoid penalizing shaders that emit a small number of vertices, we
2148 * can avoid these sometimes: if the size of the control data header is
2149 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
2150 * land in the same 128-bit group, so we can skip per-slot offsets.
2151 *
2152 * Similarly, if the control data header is <= 32 bits, there is only one
2153 * DWord, so we can skip channel masks.
2154 */
2155 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
2156
2157 fs_reg channel_mask, per_slot_offset;
2158
2159 if (gs_compile->control_data_header_size_bits > 32) {
2160 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2161 channel_mask = vgrf(glsl_type::uint_type);
2162 }
2163
2164 if (gs_compile->control_data_header_size_bits > 128) {
2165 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
2166 per_slot_offset = vgrf(glsl_type::uint_type);
2167 }
2168
2169 /* Figure out which DWord we're trying to write to using the formula:
2170 *
2171 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
2172 *
2173 * Since bits_per_vertex is a power of two, and is known at compile
2174 * time, this can be optimized to:
2175 *
2176 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
2177 */
2178 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
2179 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2180 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2181 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2182 unsigned log2_bits_per_vertex =
2183 util_last_bit(gs_compile->control_data_bits_per_vertex);
2184 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
2185
2186 if (per_slot_offset.file != BAD_FILE) {
2187 /* Set the per-slot offset to dword_index / 4, so that we'll write to
2188 * the appropriate OWord within the control data header.
2189 */
2190 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
2191 }
2192
2193 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
2194 * write to the appropriate DWORD within the OWORD.
2195 */
2196 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2197 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
2198 channel_mask = intexp2(fwa_bld, channel);
2199 /* Then the channel masks need to be in bits 23:16. */
2200 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2201 }
2202
2203 /* Store the control data bits in the message payload and send it. */
2204 unsigned mlen = 2;
2205 if (channel_mask.file != BAD_FILE)
2206 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2207 if (per_slot_offset.file != BAD_FILE)
2208 mlen++;
2209
2210 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2211 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2212 unsigned i = 0;
2213 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2214 if (per_slot_offset.file != BAD_FILE)
2215 sources[i++] = per_slot_offset;
2216 if (channel_mask.file != BAD_FILE)
2217 sources[i++] = channel_mask;
2218 while (i < mlen) {
2219 sources[i++] = this->control_data_bits;
2220 }
2221
2222 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2223 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2224 inst->mlen = mlen;
2225 /* We need to increment Global Offset by 256-bits to make room for
2226 * Broadwell's extra "Vertex Count" payload at the beginning of the
2227 * URB entry. Since this is an OWord message, Global Offset is counted
2228 * in 128-bit units, so we must set it to 2.
2229 */
2230 if (gs_prog_data->static_vertex_count == -1)
2231 inst->offset = 2;
2232 }
2233
2234 void
2235 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2236 unsigned stream_id)
2237 {
2238 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2239
2240 /* Note: we are calling this *before* increasing vertex_count, so
2241 * this->vertex_count == vertex_count - 1 in the formula above.
2242 */
2243
2244 /* Stream mode uses 2 bits per vertex */
2245 assert(gs_compile->control_data_bits_per_vertex == 2);
2246
2247 /* Must be a valid stream */
2248 assert(stream_id < MAX_VERTEX_STREAMS);
2249
2250 /* Control data bits are initialized to 0 so we don't have to set any
2251 * bits when sending vertices to stream 0.
2252 */
2253 if (stream_id == 0)
2254 return;
2255
2256 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2257
2258 /* reg::sid = stream_id */
2259 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2260 abld.MOV(sid, brw_imm_ud(stream_id));
2261
2262 /* reg:shift_count = 2 * (vertex_count - 1) */
2263 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2264 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2265
2266 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2267 * attention to the lower 5 bits of its second source argument, so on this
2268 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2269 * stream_id << ((2 * (vertex_count - 1)) % 32).
2270 */
2271 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2272 abld.SHL(mask, sid, shift_count);
2273 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2274 }
2275
2276 void
2277 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2278 unsigned stream_id)
2279 {
2280 assert(stage == MESA_SHADER_GEOMETRY);
2281
2282 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2283
2284 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2285 vertex_count.type = BRW_REGISTER_TYPE_UD;
2286
2287 /* Haswell and later hardware ignores the "Render Stream Select" bits
2288 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2289 * and instead sends all primitives down the pipeline for rasterization.
2290 * If the SOL stage is enabled, "Render Stream Select" is honored and
2291 * primitives bound to non-zero streams are discarded after stream output.
2292 *
2293 * Since the only purpose of primives sent to non-zero streams is to
2294 * be recorded by transform feedback, we can simply discard all geometry
2295 * bound to these streams when transform feedback is disabled.
2296 */
2297 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2298 return;
2299
2300 /* If we're outputting 32 control data bits or less, then we can wait
2301 * until the shader is over to output them all. Otherwise we need to
2302 * output them as we go. Now is the time to do it, since we're about to
2303 * output the vertex_count'th vertex, so it's guaranteed that the
2304 * control data bits associated with the (vertex_count - 1)th vertex are
2305 * correct.
2306 */
2307 if (gs_compile->control_data_header_size_bits > 32) {
2308 const fs_builder abld =
2309 bld.annotate("emit vertex: emit control data bits");
2310
2311 /* Only emit control data bits if we've finished accumulating a batch
2312 * of 32 bits. This is the case when:
2313 *
2314 * (vertex_count * bits_per_vertex) % 32 == 0
2315 *
2316 * (in other words, when the last 5 bits of vertex_count *
2317 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2318 * integer n (which is always the case, since bits_per_vertex is
2319 * always 1 or 2), this is equivalent to requiring that the last 5-n
2320 * bits of vertex_count are 0:
2321 *
2322 * vertex_count & (2^(5-n) - 1) == 0
2323 *
2324 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2325 * equivalent to:
2326 *
2327 * vertex_count & (32 / bits_per_vertex - 1) == 0
2328 *
2329 * TODO: If vertex_count is an immediate, we could do some of this math
2330 * at compile time...
2331 */
2332 fs_inst *inst =
2333 abld.AND(bld.null_reg_d(), vertex_count,
2334 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2335 inst->conditional_mod = BRW_CONDITIONAL_Z;
2336
2337 abld.IF(BRW_PREDICATE_NORMAL);
2338 /* If vertex_count is 0, then no control data bits have been
2339 * accumulated yet, so we can skip emitting them.
2340 */
2341 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2342 BRW_CONDITIONAL_NEQ);
2343 abld.IF(BRW_PREDICATE_NORMAL);
2344 emit_gs_control_data_bits(vertex_count);
2345 abld.emit(BRW_OPCODE_ENDIF);
2346
2347 /* Reset control_data_bits to 0 so we can start accumulating a new
2348 * batch.
2349 *
2350 * Note: in the case where vertex_count == 0, this neutralizes the
2351 * effect of any call to EndPrimitive() that the shader may have
2352 * made before outputting its first vertex.
2353 */
2354 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2355 inst->force_writemask_all = true;
2356 abld.emit(BRW_OPCODE_ENDIF);
2357 }
2358
2359 emit_urb_writes(vertex_count);
2360
2361 /* In stream mode we have to set control data bits for all vertices
2362 * unless we have disabled control data bits completely (which we do
2363 * do for GL_POINTS outputs that don't use streams).
2364 */
2365 if (gs_compile->control_data_header_size_bits > 0 &&
2366 gs_prog_data->control_data_format ==
2367 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2368 set_gs_stream_control_data_bits(vertex_count, stream_id);
2369 }
2370 }
2371
2372 void
2373 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2374 const nir_src &vertex_src,
2375 unsigned base_offset,
2376 const nir_src &offset_src,
2377 unsigned num_components,
2378 unsigned first_component)
2379 {
2380 assert(type_sz(dst.type) == 4);
2381 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2382 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2383
2384 /* TODO: figure out push input layout for invocations == 1 */
2385 if (gs_prog_data->invocations == 1 &&
2386 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2387 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2388 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2389 nir_src_as_uint(vertex_src) * push_reg_count;
2390 for (unsigned i = 0; i < num_components; i++) {
2391 bld.MOV(offset(dst, bld, i),
2392 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2393 }
2394 return;
2395 }
2396
2397 /* Resort to the pull model. Ensure the VUE handles are provided. */
2398 assert(gs_prog_data->base.include_vue_handles);
2399
2400 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2401 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2402
2403 if (gs_prog_data->invocations == 1) {
2404 if (nir_src_is_const(vertex_src)) {
2405 /* The vertex index is constant; just select the proper URB handle. */
2406 icp_handle =
2407 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2408 BRW_REGISTER_TYPE_UD);
2409 } else {
2410 /* The vertex index is non-constant. We need to use indirect
2411 * addressing to fetch the proper URB handle.
2412 *
2413 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2414 * indicating that channel <n> should read the handle from
2415 * DWord <n>. We convert that to bytes by multiplying by 4.
2416 *
2417 * Next, we convert the vertex index to bytes by multiplying
2418 * by 32 (shifting by 5), and add the two together. This is
2419 * the final indirect byte offset.
2420 */
2421 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2422 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2423 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2424 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2425
2426 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2427 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2428 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2429 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2430 /* Convert vertex_index to bytes (multiply by 32) */
2431 bld.SHL(vertex_offset_bytes,
2432 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2433 brw_imm_ud(5u));
2434 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2435
2436 /* Use first_icp_handle as the base offset. There is one register
2437 * of URB handles per vertex, so inform the register allocator that
2438 * we might read up to nir->info.gs.vertices_in registers.
2439 */
2440 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2441 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2442 fs_reg(icp_offset_bytes),
2443 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2444 }
2445 } else {
2446 assert(gs_prog_data->invocations > 1);
2447
2448 if (nir_src_is_const(vertex_src)) {
2449 unsigned vertex = nir_src_as_uint(vertex_src);
2450 assert(devinfo->gen >= 9 || vertex <= 5);
2451 bld.MOV(icp_handle,
2452 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2453 BRW_REGISTER_TYPE_UD));
2454 } else {
2455 /* The vertex index is non-constant. We need to use indirect
2456 * addressing to fetch the proper URB handle.
2457 *
2458 */
2459 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2460
2461 /* Convert vertex_index to bytes (multiply by 4) */
2462 bld.SHL(icp_offset_bytes,
2463 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2464 brw_imm_ud(2u));
2465
2466 /* Use first_icp_handle as the base offset. There is one DWord
2467 * of URB handles per vertex, so inform the register allocator that
2468 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2469 */
2470 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2471 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2472 fs_reg(icp_offset_bytes),
2473 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2474 REG_SIZE));
2475 }
2476 }
2477
2478 fs_inst *inst;
2479 fs_reg indirect_offset = get_nir_src(offset_src);
2480
2481 if (nir_src_is_const(offset_src)) {
2482 /* Constant indexing - use global offset. */
2483 if (first_component != 0) {
2484 unsigned read_components = num_components + first_component;
2485 fs_reg tmp = bld.vgrf(dst.type, read_components);
2486 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2487 inst->size_written = read_components *
2488 tmp.component_size(inst->exec_size);
2489 for (unsigned i = 0; i < num_components; i++) {
2490 bld.MOV(offset(dst, bld, i),
2491 offset(tmp, bld, i + first_component));
2492 }
2493 } else {
2494 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2495 inst->size_written = num_components *
2496 dst.component_size(inst->exec_size);
2497 }
2498 inst->offset = base_offset + nir_src_as_uint(offset_src);
2499 inst->mlen = 1;
2500 } else {
2501 /* Indirect indexing - use per-slot offsets as well. */
2502 const fs_reg srcs[] = { icp_handle, indirect_offset };
2503 unsigned read_components = num_components + first_component;
2504 fs_reg tmp = bld.vgrf(dst.type, read_components);
2505 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2506 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2507 if (first_component != 0) {
2508 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2509 payload);
2510 inst->size_written = read_components *
2511 tmp.component_size(inst->exec_size);
2512 for (unsigned i = 0; i < num_components; i++) {
2513 bld.MOV(offset(dst, bld, i),
2514 offset(tmp, bld, i + first_component));
2515 }
2516 } else {
2517 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
2518 inst->size_written = num_components *
2519 dst.component_size(inst->exec_size);
2520 }
2521 inst->offset = base_offset;
2522 inst->mlen = 2;
2523 }
2524 }
2525
2526 fs_reg
2527 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2528 {
2529 nir_src *offset_src = nir_get_io_offset_src(instr);
2530
2531 if (nir_src_is_const(*offset_src)) {
2532 /* The only constant offset we should find is 0. brw_nir.c's
2533 * add_const_offset_to_base() will fold other constant offsets
2534 * into instr->const_index[0].
2535 */
2536 assert(nir_src_as_uint(*offset_src) == 0);
2537 return fs_reg();
2538 }
2539
2540 return get_nir_src(*offset_src);
2541 }
2542
2543 void
2544 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2545 nir_intrinsic_instr *instr)
2546 {
2547 assert(stage == MESA_SHADER_VERTEX);
2548
2549 fs_reg dest;
2550 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2551 dest = get_nir_dest(instr->dest);
2552
2553 switch (instr->intrinsic) {
2554 case nir_intrinsic_load_vertex_id:
2555 case nir_intrinsic_load_base_vertex:
2556 unreachable("should be lowered by nir_lower_system_values()");
2557
2558 case nir_intrinsic_load_input: {
2559 assert(nir_dest_bit_size(instr->dest) == 32);
2560 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2561 src = offset(src, bld, nir_intrinsic_component(instr));
2562 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2563
2564 for (unsigned i = 0; i < instr->num_components; i++)
2565 bld.MOV(offset(dest, bld, i), offset(src, bld, i));
2566 break;
2567 }
2568
2569 case nir_intrinsic_load_vertex_id_zero_base:
2570 case nir_intrinsic_load_instance_id:
2571 case nir_intrinsic_load_base_instance:
2572 case nir_intrinsic_load_draw_id:
2573 case nir_intrinsic_load_first_vertex:
2574 case nir_intrinsic_load_is_indexed_draw:
2575 unreachable("lowered by brw_nir_lower_vs_inputs");
2576
2577 default:
2578 nir_emit_intrinsic(bld, instr);
2579 break;
2580 }
2581 }
2582
2583 fs_reg
2584 fs_visitor::get_tcs_single_patch_icp_handle(const fs_builder &bld,
2585 nir_intrinsic_instr *instr)
2586 {
2587 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2588 const nir_src &vertex_src = instr->src[0];
2589 nir_intrinsic_instr *vertex_intrin = nir_src_as_intrinsic(vertex_src);
2590 fs_reg icp_handle;
2591
2592 if (nir_src_is_const(vertex_src)) {
2593 /* Emit a MOV to resolve <0,1,0> regioning. */
2594 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2595 unsigned vertex = nir_src_as_uint(vertex_src);
2596 bld.MOV(icp_handle,
2597 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2598 BRW_REGISTER_TYPE_UD));
2599 } else if (tcs_prog_data->instances == 1 && vertex_intrin &&
2600 vertex_intrin->intrinsic == nir_intrinsic_load_invocation_id) {
2601 /* For the common case of only 1 instance, an array index of
2602 * gl_InvocationID means reading g1. Skip all the indirect work.
2603 */
2604 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2605 } else {
2606 /* The vertex index is non-constant. We need to use indirect
2607 * addressing to fetch the proper URB handle.
2608 */
2609 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2610
2611 /* Each ICP handle is a single DWord (4 bytes) */
2612 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2613 bld.SHL(vertex_offset_bytes,
2614 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2615 brw_imm_ud(2u));
2616
2617 /* Start at g1. We might read up to 4 registers. */
2618 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2619 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2620 brw_imm_ud(4 * REG_SIZE));
2621 }
2622
2623 return icp_handle;
2624 }
2625
2626 fs_reg
2627 fs_visitor::get_tcs_eight_patch_icp_handle(const fs_builder &bld,
2628 nir_intrinsic_instr *instr)
2629 {
2630 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2631 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2632 const nir_src &vertex_src = instr->src[0];
2633
2634 unsigned first_icp_handle = tcs_prog_data->include_primitive_id ? 3 : 2;
2635
2636 if (nir_src_is_const(vertex_src)) {
2637 return fs_reg(retype(brw_vec8_grf(first_icp_handle +
2638 nir_src_as_uint(vertex_src), 0),
2639 BRW_REGISTER_TYPE_UD));
2640 }
2641
2642 /* The vertex index is non-constant. We need to use indirect
2643 * addressing to fetch the proper URB handle.
2644 *
2645 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2646 * indicating that channel <n> should read the handle from
2647 * DWord <n>. We convert that to bytes by multiplying by 4.
2648 *
2649 * Next, we convert the vertex index to bytes by multiplying
2650 * by 32 (shifting by 5), and add the two together. This is
2651 * the final indirect byte offset.
2652 */
2653 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2654 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2655 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2656 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2657 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2658
2659 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2660 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2661 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2662 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2663 /* Convert vertex_index to bytes (multiply by 32) */
2664 bld.SHL(vertex_offset_bytes,
2665 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2666 brw_imm_ud(5u));
2667 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2668
2669 /* Use first_icp_handle as the base offset. There is one register
2670 * of URB handles per vertex, so inform the register allocator that
2671 * we might read up to nir->info.gs.vertices_in registers.
2672 */
2673 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2674 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2675 icp_offset_bytes, brw_imm_ud(tcs_key->input_vertices * REG_SIZE));
2676
2677 return icp_handle;
2678 }
2679
2680 struct brw_reg
2681 fs_visitor::get_tcs_output_urb_handle()
2682 {
2683 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
2684
2685 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
2686 return retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2687 } else {
2688 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
2689 return retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2690 }
2691 }
2692
2693 void
2694 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2695 nir_intrinsic_instr *instr)
2696 {
2697 assert(stage == MESA_SHADER_TESS_CTRL);
2698 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2699 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2700 struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
2701
2702 bool eight_patch =
2703 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH;
2704
2705 fs_reg dst;
2706 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2707 dst = get_nir_dest(instr->dest);
2708
2709 switch (instr->intrinsic) {
2710 case nir_intrinsic_load_primitive_id:
2711 bld.MOV(dst, fs_reg(eight_patch ? brw_vec8_grf(2, 0)
2712 : brw_vec1_grf(0, 1)));
2713 break;
2714 case nir_intrinsic_load_invocation_id:
2715 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2716 break;
2717 case nir_intrinsic_load_patch_vertices_in:
2718 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2719 brw_imm_d(tcs_key->input_vertices));
2720 break;
2721
2722 case nir_intrinsic_barrier: {
2723 if (tcs_prog_data->instances == 1)
2724 break;
2725
2726 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2727 fs_reg m0_2 = component(m0, 2);
2728
2729 const fs_builder chanbld = bld.exec_all().group(1, 0);
2730
2731 /* Zero the message header */
2732 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2733
2734 if (devinfo->gen < 11) {
2735 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2736 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2737 brw_imm_ud(INTEL_MASK(16, 13)));
2738
2739 /* Shift it up to bits 27:24. */
2740 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2741 } else {
2742 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2743 brw_imm_ud(INTEL_MASK(30, 24)));
2744 }
2745
2746 /* Set the Barrier Count and the enable bit */
2747 if (devinfo->gen < 11) {
2748 chanbld.OR(m0_2, m0_2,
2749 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2750 } else {
2751 chanbld.OR(m0_2, m0_2,
2752 brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
2753 }
2754
2755 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2756 break;
2757 }
2758
2759 case nir_intrinsic_load_input:
2760 unreachable("nir_lower_io should never give us these.");
2761 break;
2762
2763 case nir_intrinsic_load_per_vertex_input: {
2764 assert(nir_dest_bit_size(instr->dest) == 32);
2765 fs_reg indirect_offset = get_indirect_offset(instr);
2766 unsigned imm_offset = instr->const_index[0];
2767 fs_inst *inst;
2768
2769 fs_reg icp_handle =
2770 eight_patch ? get_tcs_eight_patch_icp_handle(bld, instr)
2771 : get_tcs_single_patch_icp_handle(bld, instr);
2772
2773 /* We can only read two double components with each URB read, so
2774 * we send two read messages in that case, each one loading up to
2775 * two double components.
2776 */
2777 unsigned num_components = instr->num_components;
2778 unsigned first_component = nir_intrinsic_component(instr);
2779
2780 if (indirect_offset.file == BAD_FILE) {
2781 /* Constant indexing - use global offset. */
2782 if (first_component != 0) {
2783 unsigned read_components = num_components + first_component;
2784 fs_reg tmp = bld.vgrf(dst.type, read_components);
2785 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2786 for (unsigned i = 0; i < num_components; i++) {
2787 bld.MOV(offset(dst, bld, i),
2788 offset(tmp, bld, i + first_component));
2789 }
2790 } else {
2791 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2792 }
2793 inst->offset = imm_offset;
2794 inst->mlen = 1;
2795 } else {
2796 /* Indirect indexing - use per-slot offsets as well. */
2797 const fs_reg srcs[] = { icp_handle, indirect_offset };
2798 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2799 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2800 if (first_component != 0) {
2801 unsigned read_components = num_components + first_component;
2802 fs_reg tmp = bld.vgrf(dst.type, read_components);
2803 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2804 payload);
2805 for (unsigned i = 0; i < num_components; i++) {
2806 bld.MOV(offset(dst, bld, i),
2807 offset(tmp, bld, i + first_component));
2808 }
2809 } else {
2810 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2811 payload);
2812 }
2813 inst->offset = imm_offset;
2814 inst->mlen = 2;
2815 }
2816 inst->size_written = (num_components + first_component) *
2817 inst->dst.component_size(inst->exec_size);
2818
2819 /* Copy the temporary to the destination to deal with writemasking.
2820 *
2821 * Also attempt to deal with gl_PointSize being in the .w component.
2822 */
2823 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2824 assert(type_sz(dst.type) == 4);
2825 inst->dst = bld.vgrf(dst.type, 4);
2826 inst->size_written = 4 * REG_SIZE;
2827 bld.MOV(dst, offset(inst->dst, bld, 3));
2828 }
2829 break;
2830 }
2831
2832 case nir_intrinsic_load_output:
2833 case nir_intrinsic_load_per_vertex_output: {
2834 assert(nir_dest_bit_size(instr->dest) == 32);
2835 fs_reg indirect_offset = get_indirect_offset(instr);
2836 unsigned imm_offset = instr->const_index[0];
2837 unsigned first_component = nir_intrinsic_component(instr);
2838
2839 struct brw_reg output_handles = get_tcs_output_urb_handle();
2840
2841 fs_inst *inst;
2842 if (indirect_offset.file == BAD_FILE) {
2843 /* This MOV replicates the output handle to all enabled channels
2844 * is SINGLE_PATCH mode.
2845 */
2846 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2847 bld.MOV(patch_handle, output_handles);
2848
2849 {
2850 if (first_component != 0) {
2851 unsigned read_components =
2852 instr->num_components + first_component;
2853 fs_reg tmp = bld.vgrf(dst.type, read_components);
2854 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2855 patch_handle);
2856 inst->size_written = read_components * REG_SIZE;
2857 for (unsigned i = 0; i < instr->num_components; i++) {
2858 bld.MOV(offset(dst, bld, i),
2859 offset(tmp, bld, i + first_component));
2860 }
2861 } else {
2862 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2863 patch_handle);
2864 inst->size_written = instr->num_components * REG_SIZE;
2865 }
2866 inst->offset = imm_offset;
2867 inst->mlen = 1;
2868 }
2869 } else {
2870 /* Indirect indexing - use per-slot offsets as well. */
2871 const fs_reg srcs[] = { output_handles, indirect_offset };
2872 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2873 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2874 if (first_component != 0) {
2875 unsigned read_components =
2876 instr->num_components + first_component;
2877 fs_reg tmp = bld.vgrf(dst.type, read_components);
2878 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2879 payload);
2880 inst->size_written = read_components * REG_SIZE;
2881 for (unsigned i = 0; i < instr->num_components; i++) {
2882 bld.MOV(offset(dst, bld, i),
2883 offset(tmp, bld, i + first_component));
2884 }
2885 } else {
2886 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2887 payload);
2888 inst->size_written = instr->num_components * REG_SIZE;
2889 }
2890 inst->offset = imm_offset;
2891 inst->mlen = 2;
2892 }
2893 break;
2894 }
2895
2896 case nir_intrinsic_store_output:
2897 case nir_intrinsic_store_per_vertex_output: {
2898 assert(nir_src_bit_size(instr->src[0]) == 32);
2899 fs_reg value = get_nir_src(instr->src[0]);
2900 fs_reg indirect_offset = get_indirect_offset(instr);
2901 unsigned imm_offset = instr->const_index[0];
2902 unsigned mask = instr->const_index[1];
2903 unsigned header_regs = 0;
2904 struct brw_reg output_handles = get_tcs_output_urb_handle();
2905
2906 fs_reg srcs[7];
2907 srcs[header_regs++] = output_handles;
2908
2909 if (indirect_offset.file != BAD_FILE) {
2910 srcs[header_regs++] = indirect_offset;
2911 }
2912
2913 if (mask == 0)
2914 break;
2915
2916 unsigned num_components = util_last_bit(mask);
2917 enum opcode opcode;
2918
2919 /* We can only pack two 64-bit components in a single message, so send
2920 * 2 messages if we have more components
2921 */
2922 unsigned first_component = nir_intrinsic_component(instr);
2923 mask = mask << first_component;
2924
2925 if (mask != WRITEMASK_XYZW) {
2926 srcs[header_regs++] = brw_imm_ud(mask << 16);
2927 opcode = indirect_offset.file != BAD_FILE ?
2928 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2929 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2930 } else {
2931 opcode = indirect_offset.file != BAD_FILE ?
2932 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2933 SHADER_OPCODE_URB_WRITE_SIMD8;
2934 }
2935
2936 for (unsigned i = 0; i < num_components; i++) {
2937 if (!(mask & (1 << (i + first_component))))
2938 continue;
2939
2940 srcs[header_regs + i + first_component] = offset(value, bld, i);
2941 }
2942
2943 unsigned mlen = header_regs + num_components + first_component;
2944 fs_reg payload =
2945 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2946 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2947
2948 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2949 inst->offset = imm_offset;
2950 inst->mlen = mlen;
2951 break;
2952 }
2953
2954 default:
2955 nir_emit_intrinsic(bld, instr);
2956 break;
2957 }
2958 }
2959
2960 void
2961 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2962 nir_intrinsic_instr *instr)
2963 {
2964 assert(stage == MESA_SHADER_TESS_EVAL);
2965 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2966
2967 fs_reg dest;
2968 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2969 dest = get_nir_dest(instr->dest);
2970
2971 switch (instr->intrinsic) {
2972 case nir_intrinsic_load_primitive_id:
2973 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2974 break;
2975 case nir_intrinsic_load_tess_coord:
2976 /* gl_TessCoord is part of the payload in g1-3 */
2977 for (unsigned i = 0; i < 3; i++) {
2978 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2979 }
2980 break;
2981
2982 case nir_intrinsic_load_input:
2983 case nir_intrinsic_load_per_vertex_input: {
2984 assert(nir_dest_bit_size(instr->dest) == 32);
2985 fs_reg indirect_offset = get_indirect_offset(instr);
2986 unsigned imm_offset = instr->const_index[0];
2987 unsigned first_component = nir_intrinsic_component(instr);
2988
2989 fs_inst *inst;
2990 if (indirect_offset.file == BAD_FILE) {
2991 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2992 * which is 16 registers (since each holds 2 vec4 slots).
2993 */
2994 const unsigned max_push_slots = 32;
2995 if (imm_offset < max_push_slots) {
2996 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2997 for (int i = 0; i < instr->num_components; i++) {
2998 unsigned comp = 4 * (imm_offset % 2) + i + first_component;
2999 bld.MOV(offset(dest, bld, i), component(src, comp));
3000 }
3001
3002 tes_prog_data->base.urb_read_length =
3003 MAX2(tes_prog_data->base.urb_read_length,
3004 (imm_offset / 2) + 1);
3005 } else {
3006 /* Replicate the patch handle to all enabled channels */
3007 const fs_reg srcs[] = {
3008 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
3009 };
3010 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
3011 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
3012
3013 if (first_component != 0) {
3014 unsigned read_components =
3015 instr->num_components + first_component;
3016 fs_reg tmp = bld.vgrf(dest.type, read_components);
3017 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
3018 patch_handle);
3019 inst->size_written = read_components * REG_SIZE;
3020 for (unsigned i = 0; i < instr->num_components; i++) {
3021 bld.MOV(offset(dest, bld, i),
3022 offset(tmp, bld, i + first_component));
3023 }
3024 } else {
3025 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
3026 patch_handle);
3027 inst->size_written = instr->num_components * REG_SIZE;
3028 }
3029 inst->mlen = 1;
3030 inst->offset = imm_offset;
3031 }
3032 } else {
3033 /* Indirect indexing - use per-slot offsets as well. */
3034
3035 /* We can only read two double components with each URB read, so
3036 * we send two read messages in that case, each one loading up to
3037 * two double components.
3038 */
3039 unsigned num_components = instr->num_components;
3040 const fs_reg srcs[] = {
3041 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3042 indirect_offset
3043 };
3044 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3045 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3046
3047 if (first_component != 0) {
3048 unsigned read_components =
3049 num_components + first_component;
3050 fs_reg tmp = bld.vgrf(dest.type, read_components);
3051 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3052 payload);
3053 for (unsigned i = 0; i < num_components; i++) {
3054 bld.MOV(offset(dest, bld, i),
3055 offset(tmp, bld, i + first_component));
3056 }
3057 } else {
3058 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3059 payload);
3060 }
3061 inst->mlen = 2;
3062 inst->offset = imm_offset;
3063 inst->size_written = (num_components + first_component) *
3064 inst->dst.component_size(inst->exec_size);
3065 }
3066 break;
3067 }
3068 default:
3069 nir_emit_intrinsic(bld, instr);
3070 break;
3071 }
3072 }
3073
3074 void
3075 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3076 nir_intrinsic_instr *instr)
3077 {
3078 assert(stage == MESA_SHADER_GEOMETRY);
3079 fs_reg indirect_offset;
3080
3081 fs_reg dest;
3082 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3083 dest = get_nir_dest(instr->dest);
3084
3085 switch (instr->intrinsic) {
3086 case nir_intrinsic_load_primitive_id:
3087 assert(stage == MESA_SHADER_GEOMETRY);
3088 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3089 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3090 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3091 break;
3092
3093 case nir_intrinsic_load_input:
3094 unreachable("load_input intrinsics are invalid for the GS stage");
3095
3096 case nir_intrinsic_load_per_vertex_input:
3097 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3098 instr->src[1], instr->num_components,
3099 nir_intrinsic_component(instr));
3100 break;
3101
3102 case nir_intrinsic_emit_vertex_with_counter:
3103 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3104 break;
3105
3106 case nir_intrinsic_end_primitive_with_counter:
3107 emit_gs_end_primitive(instr->src[0]);
3108 break;
3109
3110 case nir_intrinsic_set_vertex_count:
3111 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3112 break;
3113
3114 case nir_intrinsic_load_invocation_id: {
3115 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3116 assert(val.file != BAD_FILE);
3117 dest.type = val.type;
3118 bld.MOV(dest, val);
3119 break;
3120 }
3121
3122 default:
3123 nir_emit_intrinsic(bld, instr);
3124 break;
3125 }
3126 }
3127
3128 /**
3129 * Fetch the current render target layer index.
3130 */
3131 static fs_reg
3132 fetch_render_target_array_index(const fs_builder &bld)
3133 {
3134 if (bld.shader->devinfo->gen >= 6) {
3135 /* The render target array index is provided in the thread payload as
3136 * bits 26:16 of r0.0.
3137 */
3138 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3139 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3140 brw_imm_uw(0x7ff));
3141 return idx;
3142 } else {
3143 /* Pre-SNB we only ever render into the first layer of the framebuffer
3144 * since layered rendering is not implemented.
3145 */
3146 return brw_imm_ud(0);
3147 }
3148 }
3149
3150 /**
3151 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3152 * framebuffer at the current fragment coordinates and sample index.
3153 */
3154 fs_inst *
3155 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3156 unsigned target)
3157 {
3158 const struct gen_device_info *devinfo = bld.shader->devinfo;
3159
3160 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3161 const brw_wm_prog_key *wm_key =
3162 reinterpret_cast<const brw_wm_prog_key *>(key);
3163 assert(!wm_key->coherent_fb_fetch);
3164 const struct brw_wm_prog_data *wm_prog_data =
3165 brw_wm_prog_data(stage_prog_data);
3166
3167 /* Calculate the surface index relative to the start of the texture binding
3168 * table block, since that's what the texturing messages expect.
3169 */
3170 const unsigned surface = target +
3171 wm_prog_data->binding_table.render_target_read_start -
3172 wm_prog_data->base.binding_table.texture_start;
3173
3174 /* Calculate the fragment coordinates. */
3175 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3176 bld.MOV(offset(coords, bld, 0), pixel_x);
3177 bld.MOV(offset(coords, bld, 1), pixel_y);
3178 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3179
3180 /* Calculate the sample index and MCS payload when multisampling. Luckily
3181 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3182 * shouldn't be necessary to recompile based on whether the framebuffer is
3183 * CMS or UMS.
3184 */
3185 if (wm_key->multisample_fbo &&
3186 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3187 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3188
3189 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3190 const fs_reg mcs = wm_key->multisample_fbo ?
3191 emit_mcs_fetch(coords, 3, brw_imm_ud(surface), fs_reg()) : fs_reg();
3192
3193 /* Use either a normal or a CMS texel fetch message depending on whether
3194 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3195 * message just in case the framebuffer uses 16x multisampling, it should
3196 * be equivalent to the normal CMS fetch for lower multisampling modes.
3197 */
3198 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3199 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3200 SHADER_OPCODE_TXF_CMS_LOGICAL;
3201
3202 /* Emit the instruction. */
3203 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3204 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
3205 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
3206 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
3207 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
3208 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3209 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
3210 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3211 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
3212
3213 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3214 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3215
3216 return inst;
3217 }
3218
3219 /**
3220 * Actual coherent framebuffer read implemented using the native render target
3221 * read message. Requires SKL+.
3222 */
3223 static fs_inst *
3224 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3225 {
3226 assert(bld.shader->devinfo->gen >= 9);
3227 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3228 inst->target = target;
3229 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3230
3231 return inst;
3232 }
3233
3234 static fs_reg
3235 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3236 {
3237 if (n && regs[0].file != BAD_FILE) {
3238 return regs[0];
3239
3240 } else {
3241 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3242
3243 for (unsigned i = 0; i < n; i++)
3244 regs[i] = tmp;
3245
3246 return tmp;
3247 }
3248 }
3249
3250 static fs_reg
3251 alloc_frag_output(fs_visitor *v, unsigned location)
3252 {
3253 assert(v->stage == MESA_SHADER_FRAGMENT);
3254 const brw_wm_prog_key *const key =
3255 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3256 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3257 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3258
3259 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3260 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3261
3262 else if (l == FRAG_RESULT_COLOR)
3263 return alloc_temporary(v->bld, 4, v->outputs,
3264 MAX2(key->nr_color_regions, 1));
3265
3266 else if (l == FRAG_RESULT_DEPTH)
3267 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3268
3269 else if (l == FRAG_RESULT_STENCIL)
3270 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3271
3272 else if (l == FRAG_RESULT_SAMPLE_MASK)
3273 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3274
3275 else if (l >= FRAG_RESULT_DATA0 &&
3276 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3277 return alloc_temporary(v->bld, 4,
3278 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3279
3280 else
3281 unreachable("Invalid location");
3282 }
3283
3284 /* Annoyingly, we get the barycentrics into the shader in a layout that's
3285 * optimized for PLN but it doesn't work nearly as well as one would like for
3286 * manual interpolation.
3287 */
3288 static void
3289 shuffle_from_pln_layout(const fs_builder &bld, fs_reg dest, fs_reg pln_data)
3290 {
3291 dest.type = BRW_REGISTER_TYPE_F;
3292 pln_data.type = BRW_REGISTER_TYPE_F;
3293 const fs_reg dest_u = offset(dest, bld, 0);
3294 const fs_reg dest_v = offset(dest, bld, 1);
3295
3296 for (unsigned g = 0; g < bld.dispatch_width() / 8; g++) {
3297 const fs_builder gbld = bld.group(8, g);
3298 gbld.MOV(horiz_offset(dest_u, g * 8),
3299 byte_offset(pln_data, (g * 2 + 0) * REG_SIZE));
3300 gbld.MOV(horiz_offset(dest_v, g * 8),
3301 byte_offset(pln_data, (g * 2 + 1) * REG_SIZE));
3302 }
3303 }
3304
3305 static void
3306 shuffle_to_pln_layout(const fs_builder &bld, fs_reg pln_data, fs_reg src)
3307 {
3308 pln_data.type = BRW_REGISTER_TYPE_F;
3309 src.type = BRW_REGISTER_TYPE_F;
3310 const fs_reg src_u = offset(src, bld, 0);
3311 const fs_reg src_v = offset(src, bld, 1);
3312
3313 for (unsigned g = 0; g < bld.dispatch_width() / 8; g++) {
3314 const fs_builder gbld = bld.group(8, g);
3315 gbld.MOV(byte_offset(pln_data, (g * 2 + 0) * REG_SIZE),
3316 horiz_offset(src_u, g * 8));
3317 gbld.MOV(byte_offset(pln_data, (g * 2 + 1) * REG_SIZE),
3318 horiz_offset(src_v, g * 8));
3319 }
3320 }
3321
3322 void
3323 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3324 nir_intrinsic_instr *instr)
3325 {
3326 assert(stage == MESA_SHADER_FRAGMENT);
3327
3328 fs_reg dest;
3329 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3330 dest = get_nir_dest(instr->dest);
3331
3332 switch (instr->intrinsic) {
3333 case nir_intrinsic_load_front_face:
3334 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3335 *emit_frontfacing_interpolation());
3336 break;
3337
3338 case nir_intrinsic_load_sample_pos: {
3339 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3340 assert(sample_pos.file != BAD_FILE);
3341 dest.type = sample_pos.type;
3342 bld.MOV(dest, sample_pos);
3343 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3344 break;
3345 }
3346
3347 case nir_intrinsic_load_layer_id:
3348 dest.type = BRW_REGISTER_TYPE_UD;
3349 bld.MOV(dest, fetch_render_target_array_index(bld));
3350 break;
3351
3352 case nir_intrinsic_is_helper_invocation: {
3353 /* Unlike the regular gl_HelperInvocation, that is defined at dispatch,
3354 * the helperInvocationEXT() (aka SpvOpIsHelperInvocationEXT) takes into
3355 * consideration demoted invocations. That information is stored in
3356 * f0.1.
3357 */
3358 dest.type = BRW_REGISTER_TYPE_UD;
3359
3360 bld.MOV(dest, brw_imm_ud(0));
3361
3362 fs_inst *mov = bld.MOV(dest, brw_imm_ud(~0));
3363 mov->predicate = BRW_PREDICATE_NORMAL;
3364 mov->predicate_inverse = true;
3365 mov->flag_subreg = 1;
3366 break;
3367 }
3368
3369 case nir_intrinsic_load_helper_invocation:
3370 case nir_intrinsic_load_sample_mask_in:
3371 case nir_intrinsic_load_sample_id: {
3372 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3373 fs_reg val = nir_system_values[sv];
3374 assert(val.file != BAD_FILE);
3375 dest.type = val.type;
3376 bld.MOV(dest, val);
3377 break;
3378 }
3379
3380 case nir_intrinsic_store_output: {
3381 const fs_reg src = get_nir_src(instr->src[0]);
3382 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3383 const unsigned location = nir_intrinsic_base(instr) +
3384 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3385 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3386 src.type);
3387
3388 for (unsigned j = 0; j < instr->num_components; j++)
3389 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3390 offset(src, bld, j));
3391
3392 break;
3393 }
3394
3395 case nir_intrinsic_load_output: {
3396 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3397 BRW_NIR_FRAG_OUTPUT_LOCATION);
3398 assert(l >= FRAG_RESULT_DATA0);
3399 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3400 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3401 const fs_reg tmp = bld.vgrf(dest.type, 4);
3402
3403 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3404 emit_coherent_fb_read(bld, tmp, target);
3405 else
3406 emit_non_coherent_fb_read(bld, tmp, target);
3407
3408 for (unsigned j = 0; j < instr->num_components; j++) {
3409 bld.MOV(offset(dest, bld, j),
3410 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3411 }
3412
3413 break;
3414 }
3415
3416 case nir_intrinsic_demote:
3417 case nir_intrinsic_discard:
3418 case nir_intrinsic_demote_if:
3419 case nir_intrinsic_discard_if: {
3420 /* We track our discarded pixels in f0.1. By predicating on it, we can
3421 * update just the flag bits that aren't yet discarded. If there's no
3422 * condition, we emit a CMP of g0 != g0, so all currently executing
3423 * channels will get turned off.
3424 */
3425 fs_inst *cmp = NULL;
3426 if (instr->intrinsic == nir_intrinsic_demote_if ||
3427 instr->intrinsic == nir_intrinsic_discard_if) {
3428 nir_alu_instr *alu = nir_src_as_alu_instr(instr->src[0]);
3429
3430 if (alu != NULL &&
3431 alu->op != nir_op_bcsel &&
3432 alu->op != nir_op_inot) {
3433 /* Re-emit the instruction that generated the Boolean value, but
3434 * do not store it. Since this instruction will be conditional,
3435 * other instructions that want to use the real Boolean value may
3436 * get garbage. This was a problem for piglit's fs-discard-exit-2
3437 * test.
3438 *
3439 * Ideally we'd detect that the instruction cannot have a
3440 * conditional modifier before emitting the instructions. Alas,
3441 * that is nigh impossible. Instead, we're going to assume the
3442 * instruction (or last instruction) generated can have a
3443 * conditional modifier. If it cannot, fallback to the old-style
3444 * compare, and hope dead code elimination will clean up the
3445 * extra instructions generated.
3446 */
3447 nir_emit_alu(bld, alu, false);
3448
3449 cmp = (fs_inst *) instructions.get_tail();
3450 if (cmp->conditional_mod == BRW_CONDITIONAL_NONE) {
3451 if (cmp->can_do_cmod())
3452 cmp->conditional_mod = BRW_CONDITIONAL_Z;
3453 else
3454 cmp = NULL;
3455 } else {
3456 /* The old sequence that would have been generated is,
3457 * basically, bool_result == false. This is equivalent to
3458 * !bool_result, so negate the old modifier.
3459 */
3460 cmp->conditional_mod = brw_negate_cmod(cmp->conditional_mod);
3461 }
3462 }
3463
3464 if (cmp == NULL) {
3465 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3466 brw_imm_d(0), BRW_CONDITIONAL_Z);
3467 }
3468 } else {
3469 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3470 BRW_REGISTER_TYPE_UW));
3471 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3472 }
3473
3474 cmp->predicate = BRW_PREDICATE_NORMAL;
3475 cmp->flag_subreg = 1;
3476
3477 if (devinfo->gen >= 6) {
3478 /* Due to the way we implement discard, the jump will only happen
3479 * when the whole quad is discarded. So we can do this even for
3480 * demote as it won't break its uniformity promises.
3481 */
3482 emit_discard_jump();
3483 }
3484
3485 limit_dispatch_width(16, "Fragment discard/demote not implemented in SIMD32 mode.");
3486 break;
3487 }
3488
3489 case nir_intrinsic_load_input: {
3490 /* load_input is only used for flat inputs */
3491 assert(nir_dest_bit_size(instr->dest) == 32);
3492 unsigned base = nir_intrinsic_base(instr);
3493 unsigned comp = nir_intrinsic_component(instr);
3494 unsigned num_components = instr->num_components;
3495
3496 /* Special case fields in the VUE header */
3497 if (base == VARYING_SLOT_LAYER)
3498 comp = 1;
3499 else if (base == VARYING_SLOT_VIEWPORT)
3500 comp = 2;
3501
3502 for (unsigned int i = 0; i < num_components; i++) {
3503 bld.MOV(offset(dest, bld, i),
3504 retype(component(interp_reg(base, comp + i), 3), dest.type));
3505 }
3506 break;
3507 }
3508
3509 case nir_intrinsic_load_fs_input_interp_deltas: {
3510 assert(stage == MESA_SHADER_FRAGMENT);
3511 assert(nir_src_as_uint(instr->src[0]) == 0);
3512 fs_reg interp = interp_reg(nir_intrinsic_base(instr),
3513 nir_intrinsic_component(instr));
3514 dest.type = BRW_REGISTER_TYPE_F;
3515 bld.MOV(offset(dest, bld, 0), component(interp, 3));
3516 bld.MOV(offset(dest, bld, 1), component(interp, 1));
3517 bld.MOV(offset(dest, bld, 2), component(interp, 0));
3518 break;
3519 }
3520
3521 case nir_intrinsic_load_barycentric_pixel:
3522 case nir_intrinsic_load_barycentric_centroid:
3523 case nir_intrinsic_load_barycentric_sample: {
3524 /* Use the delta_xy values computed from the payload */
3525 const glsl_interp_mode interp_mode =
3526 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3527 enum brw_barycentric_mode bary =
3528 brw_barycentric_mode(interp_mode, instr->intrinsic);
3529
3530 shuffle_from_pln_layout(bld, dest, this->delta_xy[bary]);
3531 break;
3532 }
3533
3534 case nir_intrinsic_load_barycentric_at_sample: {
3535 const glsl_interp_mode interpolation =
3536 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3537
3538 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3539 if (nir_src_is_const(instr->src[0])) {
3540 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3541
3542 emit_pixel_interpolater_send(bld,
3543 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3544 tmp,
3545 fs_reg(), /* src */
3546 brw_imm_ud(msg_data),
3547 interpolation);
3548 } else {
3549 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3550 BRW_REGISTER_TYPE_UD);
3551
3552 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3553 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3554 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3555 bld.exec_all().group(1, 0)
3556 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3557 emit_pixel_interpolater_send(bld,
3558 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3559 tmp,
3560 fs_reg(), /* src */
3561 msg_data,
3562 interpolation);
3563 } else {
3564 /* Make a loop that sends a message to the pixel interpolater
3565 * for the sample number in each live channel. If there are
3566 * multiple channels with the same sample number then these
3567 * will be handled simultaneously with a single interation of
3568 * the loop.
3569 */
3570 bld.emit(BRW_OPCODE_DO);
3571
3572 /* Get the next live sample number into sample_id_reg */
3573 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3574
3575 /* Set the flag register so that we can perform the send
3576 * message on all channels that have the same sample number
3577 */
3578 bld.CMP(bld.null_reg_ud(),
3579 sample_src, sample_id,
3580 BRW_CONDITIONAL_EQ);
3581 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3582 bld.exec_all().group(1, 0)
3583 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3584 fs_inst *inst =
3585 emit_pixel_interpolater_send(bld,
3586 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3587 tmp,
3588 fs_reg(), /* src */
3589 component(msg_data, 0),
3590 interpolation);
3591 set_predicate(BRW_PREDICATE_NORMAL, inst);
3592
3593 /* Continue the loop if there are any live channels left */
3594 set_predicate_inv(BRW_PREDICATE_NORMAL,
3595 true, /* inverse */
3596 bld.emit(BRW_OPCODE_WHILE));
3597 }
3598 }
3599 shuffle_from_pln_layout(bld, dest, tmp);
3600 break;
3601 }
3602
3603 case nir_intrinsic_load_barycentric_at_offset: {
3604 const glsl_interp_mode interpolation =
3605 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3606
3607 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3608
3609 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3610 if (const_offset) {
3611 assert(nir_src_bit_size(instr->src[0]) == 32);
3612 unsigned off_x = MIN2((int)(const_offset[0].f32 * 16), 7) & 0xf;
3613 unsigned off_y = MIN2((int)(const_offset[1].f32 * 16), 7) & 0xf;
3614
3615 emit_pixel_interpolater_send(bld,
3616 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3617 tmp,
3618 fs_reg(), /* src */
3619 brw_imm_ud(off_x | (off_y << 4)),
3620 interpolation);
3621 } else {
3622 fs_reg src = vgrf(glsl_type::ivec2_type);
3623 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3624 BRW_REGISTER_TYPE_F);
3625 for (int i = 0; i < 2; i++) {
3626 fs_reg temp = vgrf(glsl_type::float_type);
3627 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3628 fs_reg itemp = vgrf(glsl_type::int_type);
3629 /* float to int */
3630 bld.MOV(itemp, temp);
3631
3632 /* Clamp the upper end of the range to +7/16.
3633 * ARB_gpu_shader5 requires that we support a maximum offset
3634 * of +0.5, which isn't representable in a S0.4 value -- if
3635 * we didn't clamp it, we'd end up with -8/16, which is the
3636 * opposite of what the shader author wanted.
3637 *
3638 * This is legal due to ARB_gpu_shader5's quantization
3639 * rules:
3640 *
3641 * "Not all values of <offset> may be supported; x and y
3642 * offsets may be rounded to fixed-point values with the
3643 * number of fraction bits given by the
3644 * implementation-dependent constant
3645 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3646 */
3647 set_condmod(BRW_CONDITIONAL_L,
3648 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3649 }
3650
3651 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3652 emit_pixel_interpolater_send(bld,
3653 opcode,
3654 tmp,
3655 src,
3656 brw_imm_ud(0u),
3657 interpolation);
3658 }
3659 shuffle_from_pln_layout(bld, dest, tmp);
3660 break;
3661 }
3662
3663 case nir_intrinsic_load_frag_coord:
3664 emit_fragcoord_interpolation(dest);
3665 break;
3666
3667 case nir_intrinsic_load_interpolated_input: {
3668 assert(instr->src[0].ssa &&
3669 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3670 nir_intrinsic_instr *bary_intrinsic =
3671 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3672 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3673 enum glsl_interp_mode interp_mode =
3674 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3675 fs_reg dst_xy;
3676
3677 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3678 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3679 /* Use the result of the PI message. Because the load_barycentric
3680 * intrinsics return a regular vec2 and we need it in PLN layout, we
3681 * have to do a translation. Fortunately, copy-prop cleans this up
3682 * reliably.
3683 */
3684 dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3685 shuffle_to_pln_layout(bld, dst_xy, get_nir_src(instr->src[0]));
3686 } else {
3687 /* Use the delta_xy values computed from the payload */
3688 enum brw_barycentric_mode bary =
3689 brw_barycentric_mode(interp_mode, bary_intrin);
3690
3691 dst_xy = this->delta_xy[bary];
3692 }
3693
3694 for (unsigned int i = 0; i < instr->num_components; i++) {
3695 fs_reg interp =
3696 component(interp_reg(nir_intrinsic_base(instr),
3697 nir_intrinsic_component(instr) + i), 0);
3698 interp.type = BRW_REGISTER_TYPE_F;
3699 dest.type = BRW_REGISTER_TYPE_F;
3700
3701 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3702 fs_reg tmp = vgrf(glsl_type::float_type);
3703 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3704 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3705 } else {
3706 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3707 }
3708 }
3709 break;
3710 }
3711
3712 default:
3713 nir_emit_intrinsic(bld, instr);
3714 break;
3715 }
3716 }
3717
3718 void
3719 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3720 nir_intrinsic_instr *instr)
3721 {
3722 assert(stage == MESA_SHADER_COMPUTE);
3723 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3724
3725 fs_reg dest;
3726 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3727 dest = get_nir_dest(instr->dest);
3728
3729 switch (instr->intrinsic) {
3730 case nir_intrinsic_barrier:
3731 emit_barrier();
3732 cs_prog_data->uses_barrier = true;
3733 break;
3734
3735 case nir_intrinsic_load_subgroup_id:
3736 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3737 break;
3738
3739 case nir_intrinsic_load_local_invocation_id:
3740 case nir_intrinsic_load_work_group_id: {
3741 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3742 fs_reg val = nir_system_values[sv];
3743 assert(val.file != BAD_FILE);
3744 dest.type = val.type;
3745 for (unsigned i = 0; i < 3; i++)
3746 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3747 break;
3748 }
3749
3750 case nir_intrinsic_load_num_work_groups: {
3751 const unsigned surface =
3752 cs_prog_data->binding_table.work_groups_start;
3753
3754 cs_prog_data->uses_num_work_groups = true;
3755
3756 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3757 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3758 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3759 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1); /* num components */
3760
3761 /* Read the 3 GLuint components of gl_NumWorkGroups */
3762 for (unsigned i = 0; i < 3; i++) {
3763 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(i << 2);
3764 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3765 offset(dest, bld, i), srcs, SURFACE_LOGICAL_NUM_SRCS);
3766 }
3767 break;
3768 }
3769
3770 case nir_intrinsic_shared_atomic_add:
3771 case nir_intrinsic_shared_atomic_imin:
3772 case nir_intrinsic_shared_atomic_umin:
3773 case nir_intrinsic_shared_atomic_imax:
3774 case nir_intrinsic_shared_atomic_umax:
3775 case nir_intrinsic_shared_atomic_and:
3776 case nir_intrinsic_shared_atomic_or:
3777 case nir_intrinsic_shared_atomic_xor:
3778 case nir_intrinsic_shared_atomic_exchange:
3779 case nir_intrinsic_shared_atomic_comp_swap:
3780 nir_emit_shared_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
3781 break;
3782 case nir_intrinsic_shared_atomic_fmin:
3783 case nir_intrinsic_shared_atomic_fmax:
3784 case nir_intrinsic_shared_atomic_fcomp_swap:
3785 nir_emit_shared_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
3786 break;
3787
3788 case nir_intrinsic_load_shared: {
3789 assert(devinfo->gen >= 7);
3790 assert(stage == MESA_SHADER_COMPUTE);
3791
3792 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3793 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3794 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3795 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3796 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3797
3798 /* Make dest unsigned because that's what the temporary will be */
3799 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3800
3801 /* Read the vector */
3802 if (nir_intrinsic_align(instr) >= 4) {
3803 assert(nir_dest_bit_size(instr->dest) == 32);
3804 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3805 fs_inst *inst =
3806 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3807 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3808 inst->size_written = instr->num_components * dispatch_width * 4;
3809 } else {
3810 assert(nir_dest_bit_size(instr->dest) <= 32);
3811 assert(nir_dest_num_components(instr->dest) == 1);
3812 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3813
3814 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3815 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3816 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3817 bld.MOV(dest, subscript(read_result, dest.type, 0));
3818 }
3819 break;
3820 }
3821
3822 case nir_intrinsic_store_shared: {
3823 assert(devinfo->gen >= 7);
3824 assert(stage == MESA_SHADER_COMPUTE);
3825
3826 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3827 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3828 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3829 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3830 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3831
3832 fs_reg data = get_nir_src(instr->src[0]);
3833 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3834
3835 assert(nir_intrinsic_write_mask(instr) ==
3836 (1u << instr->num_components) - 1);
3837 if (nir_intrinsic_align(instr) >= 4) {
3838 assert(nir_src_bit_size(instr->src[0]) == 32);
3839 assert(nir_src_num_components(instr->src[0]) <= 4);
3840 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3841 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3842 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3843 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3844 } else {
3845 assert(nir_src_bit_size(instr->src[0]) <= 32);
3846 assert(nir_src_num_components(instr->src[0]) == 1);
3847 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3848
3849 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3850 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3851
3852 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3853 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3854 }
3855 break;
3856 }
3857
3858 default:
3859 nir_emit_intrinsic(bld, instr);
3860 break;
3861 }
3862 }
3863
3864 static fs_reg
3865 brw_nir_reduction_op_identity(const fs_builder &bld,
3866 nir_op op, brw_reg_type type)
3867 {
3868 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3869 switch (type_sz(type)) {
3870 case 2:
3871 assert(type != BRW_REGISTER_TYPE_HF);
3872 return retype(brw_imm_uw(value.u16), type);
3873 case 4:
3874 return retype(brw_imm_ud(value.u32), type);
3875 case 8:
3876 if (type == BRW_REGISTER_TYPE_DF)
3877 return setup_imm_df(bld, value.f64);
3878 else
3879 return retype(brw_imm_u64(value.u64), type);
3880 default:
3881 unreachable("Invalid type size");
3882 }
3883 }
3884
3885 static opcode
3886 brw_op_for_nir_reduction_op(nir_op op)
3887 {
3888 switch (op) {
3889 case nir_op_iadd: return BRW_OPCODE_ADD;
3890 case nir_op_fadd: return BRW_OPCODE_ADD;
3891 case nir_op_imul: return BRW_OPCODE_MUL;
3892 case nir_op_fmul: return BRW_OPCODE_MUL;
3893 case nir_op_imin: return BRW_OPCODE_SEL;
3894 case nir_op_umin: return BRW_OPCODE_SEL;
3895 case nir_op_fmin: return BRW_OPCODE_SEL;
3896 case nir_op_imax: return BRW_OPCODE_SEL;
3897 case nir_op_umax: return BRW_OPCODE_SEL;
3898 case nir_op_fmax: return BRW_OPCODE_SEL;
3899 case nir_op_iand: return BRW_OPCODE_AND;
3900 case nir_op_ior: return BRW_OPCODE_OR;
3901 case nir_op_ixor: return BRW_OPCODE_XOR;
3902 default:
3903 unreachable("Invalid reduction operation");
3904 }
3905 }
3906
3907 static brw_conditional_mod
3908 brw_cond_mod_for_nir_reduction_op(nir_op op)
3909 {
3910 switch (op) {
3911 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3912 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3913 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3914 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3915 case nir_op_imin: return BRW_CONDITIONAL_L;
3916 case nir_op_umin: return BRW_CONDITIONAL_L;
3917 case nir_op_fmin: return BRW_CONDITIONAL_L;
3918 case nir_op_imax: return BRW_CONDITIONAL_GE;
3919 case nir_op_umax: return BRW_CONDITIONAL_GE;
3920 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3921 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3922 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3923 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3924 default:
3925 unreachable("Invalid reduction operation");
3926 }
3927 }
3928
3929 fs_reg
3930 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3931 nir_intrinsic_instr *instr)
3932 {
3933 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3934
3935 if (stage_prog_data->binding_table.image_start > 0) {
3936 if (image.file == BRW_IMMEDIATE_VALUE) {
3937 image.d += stage_prog_data->binding_table.image_start;
3938 } else {
3939 bld.ADD(image, image,
3940 brw_imm_d(stage_prog_data->binding_table.image_start));
3941 }
3942 }
3943
3944 return bld.emit_uniformize(image);
3945 }
3946
3947 fs_reg
3948 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
3949 nir_intrinsic_instr *instr)
3950 {
3951 /* SSBO stores are weird in that their index is in src[1] */
3952 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
3953
3954 fs_reg surf_index;
3955 if (nir_src_is_const(instr->src[src])) {
3956 unsigned index = stage_prog_data->binding_table.ssbo_start +
3957 nir_src_as_uint(instr->src[src]);
3958 surf_index = brw_imm_ud(index);
3959 } else {
3960 surf_index = vgrf(glsl_type::uint_type);
3961 bld.ADD(surf_index, get_nir_src(instr->src[src]),
3962 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3963 }
3964
3965 return bld.emit_uniformize(surf_index);
3966 }
3967
3968 static unsigned
3969 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
3970 {
3971 switch (nir_intrinsic_image_dim(instr)) {
3972 case GLSL_SAMPLER_DIM_1D:
3973 return 1 + nir_intrinsic_image_array(instr);
3974 case GLSL_SAMPLER_DIM_2D:
3975 case GLSL_SAMPLER_DIM_RECT:
3976 return 2 + nir_intrinsic_image_array(instr);
3977 case GLSL_SAMPLER_DIM_3D:
3978 case GLSL_SAMPLER_DIM_CUBE:
3979 return 3;
3980 case GLSL_SAMPLER_DIM_BUF:
3981 return 1;
3982 case GLSL_SAMPLER_DIM_MS:
3983 return 2 + nir_intrinsic_image_array(instr);
3984 default:
3985 unreachable("Invalid image dimension");
3986 }
3987 }
3988
3989 void
3990 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3991 {
3992 fs_reg dest;
3993 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3994 dest = get_nir_dest(instr->dest);
3995
3996 switch (instr->intrinsic) {
3997 case nir_intrinsic_image_load:
3998 case nir_intrinsic_image_store:
3999 case nir_intrinsic_image_atomic_add:
4000 case nir_intrinsic_image_atomic_imin:
4001 case nir_intrinsic_image_atomic_umin:
4002 case nir_intrinsic_image_atomic_imax:
4003 case nir_intrinsic_image_atomic_umax:
4004 case nir_intrinsic_image_atomic_and:
4005 case nir_intrinsic_image_atomic_or:
4006 case nir_intrinsic_image_atomic_xor:
4007 case nir_intrinsic_image_atomic_exchange:
4008 case nir_intrinsic_image_atomic_comp_swap:
4009 case nir_intrinsic_bindless_image_load:
4010 case nir_intrinsic_bindless_image_store:
4011 case nir_intrinsic_bindless_image_atomic_add:
4012 case nir_intrinsic_bindless_image_atomic_imin:
4013 case nir_intrinsic_bindless_image_atomic_umin:
4014 case nir_intrinsic_bindless_image_atomic_imax:
4015 case nir_intrinsic_bindless_image_atomic_umax:
4016 case nir_intrinsic_bindless_image_atomic_and:
4017 case nir_intrinsic_bindless_image_atomic_or:
4018 case nir_intrinsic_bindless_image_atomic_xor:
4019 case nir_intrinsic_bindless_image_atomic_exchange:
4020 case nir_intrinsic_bindless_image_atomic_comp_swap: {
4021 if (stage == MESA_SHADER_FRAGMENT &&
4022 instr->intrinsic != nir_intrinsic_image_load)
4023 brw_wm_prog_data(prog_data)->has_side_effects = true;
4024
4025 /* Get some metadata from the image intrinsic. */
4026 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
4027
4028 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4029
4030 switch (instr->intrinsic) {
4031 case nir_intrinsic_image_load:
4032 case nir_intrinsic_image_store:
4033 case nir_intrinsic_image_atomic_add:
4034 case nir_intrinsic_image_atomic_imin:
4035 case nir_intrinsic_image_atomic_umin:
4036 case nir_intrinsic_image_atomic_imax:
4037 case nir_intrinsic_image_atomic_umax:
4038 case nir_intrinsic_image_atomic_and:
4039 case nir_intrinsic_image_atomic_or:
4040 case nir_intrinsic_image_atomic_xor:
4041 case nir_intrinsic_image_atomic_exchange:
4042 case nir_intrinsic_image_atomic_comp_swap:
4043 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4044 get_nir_image_intrinsic_image(bld, instr);
4045 break;
4046
4047 default:
4048 /* Bindless */
4049 srcs[SURFACE_LOGICAL_SRC_SURFACE_HANDLE] =
4050 bld.emit_uniformize(get_nir_src(instr->src[0]));
4051 break;
4052 }
4053
4054 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4055 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
4056 brw_imm_ud(image_intrinsic_coord_components(instr));
4057
4058 /* Emit an image load, store or atomic op. */
4059 if (instr->intrinsic == nir_intrinsic_image_load ||
4060 instr->intrinsic == nir_intrinsic_bindless_image_load) {
4061 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4062 fs_inst *inst =
4063 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
4064 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4065 inst->size_written = instr->num_components * dispatch_width * 4;
4066 } else if (instr->intrinsic == nir_intrinsic_image_store ||
4067 instr->intrinsic == nir_intrinsic_bindless_image_store) {
4068 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4069 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
4070 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
4071 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4072 } else {
4073 unsigned num_srcs = info->num_srcs;
4074 int op = brw_aop_for_nir_intrinsic(instr);
4075 if (op == BRW_AOP_INC || op == BRW_AOP_DEC) {
4076 assert(num_srcs == 4);
4077 num_srcs = 3;
4078 }
4079
4080 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4081
4082 fs_reg data;
4083 if (num_srcs >= 4)
4084 data = get_nir_src(instr->src[3]);
4085 if (num_srcs >= 5) {
4086 fs_reg tmp = bld.vgrf(data.type, 2);
4087 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
4088 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4089 data = tmp;
4090 }
4091 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4092
4093 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
4094 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4095 }
4096 break;
4097 }
4098
4099 case nir_intrinsic_image_size:
4100 case nir_intrinsic_bindless_image_size: {
4101 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
4102 * into will handle the binding table index for us in the geneerator.
4103 * Incidentally, this means that we can handle bindless with exactly the
4104 * same code.
4105 */
4106 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
4107 BRW_REGISTER_TYPE_UD);
4108 image = bld.emit_uniformize(image);
4109
4110 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4111 if (instr->intrinsic == nir_intrinsic_image_size)
4112 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
4113 else
4114 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = image;
4115 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
4116 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
4117 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
4118
4119 /* Since the image size is always uniform, we can just emit a SIMD8
4120 * query instruction and splat the result out.
4121 */
4122 const fs_builder ubld = bld.exec_all().group(8, 0);
4123
4124 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4125 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
4126 tmp, srcs, ARRAY_SIZE(srcs));
4127 inst->size_written = 4 * REG_SIZE;
4128
4129 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
4130 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
4131 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
4132 offset(retype(dest, tmp.type), bld, c),
4133 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
4134 } else {
4135 bld.MOV(offset(retype(dest, tmp.type), bld, c),
4136 component(offset(tmp, ubld, c), 0));
4137 }
4138 }
4139 break;
4140 }
4141
4142 case nir_intrinsic_image_load_raw_intel: {
4143 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4144 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4145 get_nir_image_intrinsic_image(bld, instr);
4146 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4147 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4148 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4149
4150 fs_inst *inst =
4151 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4152 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4153 inst->size_written = instr->num_components * dispatch_width * 4;
4154 break;
4155 }
4156
4157 case nir_intrinsic_image_store_raw_intel: {
4158 if (stage == MESA_SHADER_FRAGMENT)
4159 brw_wm_prog_data(prog_data)->has_side_effects = true;
4160
4161 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4162 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4163 get_nir_image_intrinsic_image(bld, instr);
4164 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4165 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
4166 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4167 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4168
4169 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4170 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4171 break;
4172 }
4173
4174 case nir_intrinsic_group_memory_barrier:
4175 case nir_intrinsic_memory_barrier_shared:
4176 case nir_intrinsic_memory_barrier_atomic_counter:
4177 case nir_intrinsic_memory_barrier_buffer:
4178 case nir_intrinsic_memory_barrier_image:
4179 case nir_intrinsic_memory_barrier: {
4180 bool l3_fence, slm_fence;
4181 if (devinfo->gen >= 11) {
4182 l3_fence = instr->intrinsic != nir_intrinsic_memory_barrier_shared;
4183 slm_fence = instr->intrinsic == nir_intrinsic_group_memory_barrier ||
4184 instr->intrinsic == nir_intrinsic_memory_barrier ||
4185 instr->intrinsic == nir_intrinsic_memory_barrier_shared;
4186 } else {
4187 /* Prior to gen11, we only have one kind of fence. */
4188 l3_fence = true;
4189 slm_fence = false;
4190 }
4191
4192 /* Be conservative in Gen11+ and always stall in a fence. Since there
4193 * are two different fences, and shader might want to synchronize
4194 * between them.
4195 *
4196 * TODO: Improve NIR so that scope and visibility information for the
4197 * barriers is available here to make a better decision.
4198 *
4199 * TODO: When emitting more than one fence, it might help emit all
4200 * the fences first and then generate the stall moves.
4201 */
4202 const bool stall = devinfo->gen >= 11;
4203
4204 const fs_builder ubld = bld.group(8, 0);
4205 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4206
4207 if (l3_fence) {
4208 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
4209 brw_vec8_grf(0, 0), brw_imm_ud(stall),
4210 /* bti */ brw_imm_ud(0))
4211 ->size_written = 2 * REG_SIZE;
4212 }
4213
4214 if (slm_fence) {
4215 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
4216 brw_vec8_grf(0, 0), brw_imm_ud(stall),
4217 brw_imm_ud(GEN7_BTI_SLM))
4218 ->size_written = 2 * REG_SIZE;
4219 }
4220
4221 break;
4222 }
4223
4224 case nir_intrinsic_shader_clock: {
4225 /* We cannot do anything if there is an event, so ignore it for now */
4226 const fs_reg shader_clock = get_timestamp(bld);
4227 const fs_reg srcs[] = { component(shader_clock, 0),
4228 component(shader_clock, 1) };
4229 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
4230 break;
4231 }
4232
4233 case nir_intrinsic_image_samples:
4234 /* The driver does not support multi-sampled images. */
4235 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4236 break;
4237
4238 case nir_intrinsic_load_uniform: {
4239 /* Offsets are in bytes but they should always aligned to
4240 * the type size
4241 */
4242 assert(instr->const_index[0] % 4 == 0 ||
4243 instr->const_index[0] % type_sz(dest.type) == 0);
4244
4245 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4246
4247 if (nir_src_is_const(instr->src[0])) {
4248 unsigned load_offset = nir_src_as_uint(instr->src[0]);
4249 assert(load_offset % type_sz(dest.type) == 0);
4250 /* For 16-bit types we add the module of the const_index[0]
4251 * offset to access to not 32-bit aligned element
4252 */
4253 src.offset = load_offset + instr->const_index[0] % 4;
4254
4255 for (unsigned j = 0; j < instr->num_components; j++) {
4256 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4257 }
4258 } else {
4259 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4260 BRW_REGISTER_TYPE_UD);
4261
4262 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4263 * go past the end of the uniform. In order to keep the n'th
4264 * component from running past, we subtract off the size of all but
4265 * one component of the vector.
4266 */
4267 assert(instr->const_index[1] >=
4268 instr->num_components * (int) type_sz(dest.type));
4269 unsigned read_size = instr->const_index[1] -
4270 (instr->num_components - 1) * type_sz(dest.type);
4271
4272 bool supports_64bit_indirects =
4273 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4274
4275 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4276 for (unsigned j = 0; j < instr->num_components; j++) {
4277 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4278 offset(dest, bld, j), offset(src, bld, j),
4279 indirect, brw_imm_ud(read_size));
4280 }
4281 } else {
4282 const unsigned num_mov_indirects =
4283 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4284 /* We read a little bit less per MOV INDIRECT, as they are now
4285 * 32-bits ones instead of 64-bit. Fix read_size then.
4286 */
4287 const unsigned read_size_32bit = read_size -
4288 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4289 for (unsigned j = 0; j < instr->num_components; j++) {
4290 for (unsigned i = 0; i < num_mov_indirects; i++) {
4291 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4292 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4293 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4294 indirect, brw_imm_ud(read_size_32bit));
4295 }
4296 }
4297 }
4298 }
4299 break;
4300 }
4301
4302 case nir_intrinsic_load_ubo: {
4303 fs_reg surf_index;
4304 if (nir_src_is_const(instr->src[0])) {
4305 const unsigned index = stage_prog_data->binding_table.ubo_start +
4306 nir_src_as_uint(instr->src[0]);
4307 surf_index = brw_imm_ud(index);
4308 } else {
4309 /* The block index is not a constant. Evaluate the index expression
4310 * per-channel and add the base UBO index; we have to select a value
4311 * from any live channel.
4312 */
4313 surf_index = vgrf(glsl_type::uint_type);
4314 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4315 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4316 surf_index = bld.emit_uniformize(surf_index);
4317 }
4318
4319 if (!nir_src_is_const(instr->src[1])) {
4320 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4321 BRW_REGISTER_TYPE_UD);
4322
4323 for (int i = 0; i < instr->num_components; i++)
4324 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4325 base_offset, i * type_sz(dest.type));
4326 } else {
4327 /* Even if we are loading doubles, a pull constant load will load
4328 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4329 * need to load a full dvec4 we will have to emit 2 loads. This is
4330 * similar to demote_pull_constants(), except that in that case we
4331 * see individual accesses to each component of the vector and then
4332 * we let CSE deal with duplicate loads. Here we see a vector access
4333 * and we have to split it if necessary.
4334 */
4335 const unsigned type_size = type_sz(dest.type);
4336 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4337
4338 /* See if we've selected this as a push constant candidate */
4339 if (nir_src_is_const(instr->src[0])) {
4340 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4341 const unsigned offset_256b = load_offset / 32;
4342
4343 fs_reg push_reg;
4344 for (int i = 0; i < 4; i++) {
4345 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4346 if (range->block == ubo_block &&
4347 offset_256b >= range->start &&
4348 offset_256b < range->start + range->length) {
4349
4350 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4351 push_reg.offset = load_offset - 32 * range->start;
4352 break;
4353 }
4354 }
4355
4356 if (push_reg.file != BAD_FILE) {
4357 for (unsigned i = 0; i < instr->num_components; i++) {
4358 bld.MOV(offset(dest, bld, i),
4359 byte_offset(push_reg, i * type_size));
4360 }
4361 break;
4362 }
4363 }
4364
4365 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4366 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4367 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4368
4369 for (unsigned c = 0; c < instr->num_components;) {
4370 const unsigned base = load_offset + c * type_size;
4371 /* Number of usable components in the next block-aligned load. */
4372 const unsigned count = MIN2(instr->num_components - c,
4373 (block_sz - base % block_sz) / type_size);
4374
4375 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4376 packed_consts, surf_index,
4377 brw_imm_ud(base & ~(block_sz - 1)));
4378
4379 const fs_reg consts =
4380 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4381 dest.type);
4382
4383 for (unsigned d = 0; d < count; d++)
4384 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4385
4386 c += count;
4387 }
4388 }
4389 break;
4390 }
4391
4392 case nir_intrinsic_load_global: {
4393 assert(devinfo->gen >= 8);
4394
4395 if (nir_intrinsic_align(instr) >= 4) {
4396 assert(nir_dest_bit_size(instr->dest) == 32);
4397 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4398 dest,
4399 get_nir_src(instr->src[0]), /* Address */
4400 fs_reg(), /* No source data */
4401 brw_imm_ud(instr->num_components));
4402 inst->size_written = instr->num_components *
4403 inst->dst.component_size(inst->exec_size);
4404 } else {
4405 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4406 assert(bit_size <= 32);
4407 assert(nir_dest_num_components(instr->dest) == 1);
4408 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4409 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4410 tmp,
4411 get_nir_src(instr->src[0]), /* Address */
4412 fs_reg(), /* No source data */
4413 brw_imm_ud(bit_size));
4414 bld.MOV(dest, subscript(tmp, dest.type, 0));
4415 }
4416 break;
4417 }
4418
4419 case nir_intrinsic_store_global:
4420 assert(devinfo->gen >= 8);
4421
4422 if (stage == MESA_SHADER_FRAGMENT)
4423 brw_wm_prog_data(prog_data)->has_side_effects = true;
4424
4425 if (nir_intrinsic_align(instr) >= 4) {
4426 assert(nir_src_bit_size(instr->src[0]) == 32);
4427 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4428 fs_reg(),
4429 get_nir_src(instr->src[1]), /* Address */
4430 get_nir_src(instr->src[0]), /* Data */
4431 brw_imm_ud(instr->num_components));
4432 } else {
4433 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4434 assert(bit_size <= 32);
4435 assert(nir_src_num_components(instr->src[0]) == 1);
4436 brw_reg_type data_type =
4437 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4438 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4439 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4440 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4441 fs_reg(),
4442 get_nir_src(instr->src[1]), /* Address */
4443 tmp, /* Data */
4444 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4445 }
4446 break;
4447
4448 case nir_intrinsic_global_atomic_add:
4449 case nir_intrinsic_global_atomic_imin:
4450 case nir_intrinsic_global_atomic_umin:
4451 case nir_intrinsic_global_atomic_imax:
4452 case nir_intrinsic_global_atomic_umax:
4453 case nir_intrinsic_global_atomic_and:
4454 case nir_intrinsic_global_atomic_or:
4455 case nir_intrinsic_global_atomic_xor:
4456 case nir_intrinsic_global_atomic_exchange:
4457 case nir_intrinsic_global_atomic_comp_swap:
4458 nir_emit_global_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
4459 break;
4460 case nir_intrinsic_global_atomic_fmin:
4461 case nir_intrinsic_global_atomic_fmax:
4462 case nir_intrinsic_global_atomic_fcomp_swap:
4463 nir_emit_global_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
4464 break;
4465
4466 case nir_intrinsic_load_ssbo: {
4467 assert(devinfo->gen >= 7);
4468
4469 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4470 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4471 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4472 get_nir_ssbo_intrinsic_index(bld, instr);
4473 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4474 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4475
4476 /* Make dest unsigned because that's what the temporary will be */
4477 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4478
4479 /* Read the vector */
4480 if (nir_intrinsic_align(instr) >= 4) {
4481 assert(nir_dest_bit_size(instr->dest) == 32);
4482 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4483 fs_inst *inst =
4484 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4485 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4486 inst->size_written = instr->num_components * dispatch_width * 4;
4487 } else {
4488 assert(nir_dest_bit_size(instr->dest) <= 32);
4489 assert(nir_dest_num_components(instr->dest) == 1);
4490 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4491
4492 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4493 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4494 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4495 bld.MOV(dest, subscript(read_result, dest.type, 0));
4496 }
4497 break;
4498 }
4499
4500 case nir_intrinsic_store_ssbo: {
4501 assert(devinfo->gen >= 7);
4502
4503 if (stage == MESA_SHADER_FRAGMENT)
4504 brw_wm_prog_data(prog_data)->has_side_effects = true;
4505
4506 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4507 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4508 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4509 get_nir_ssbo_intrinsic_index(bld, instr);
4510 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4511 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4512
4513 fs_reg data = get_nir_src(instr->src[0]);
4514 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4515
4516 assert(nir_intrinsic_write_mask(instr) ==
4517 (1u << instr->num_components) - 1);
4518 if (nir_intrinsic_align(instr) >= 4) {
4519 assert(nir_src_bit_size(instr->src[0]) == 32);
4520 assert(nir_src_num_components(instr->src[0]) <= 4);
4521 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4522 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4523 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4524 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4525 } else {
4526 assert(nir_src_bit_size(instr->src[0]) <= 32);
4527 assert(nir_src_num_components(instr->src[0]) == 1);
4528 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4529
4530 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4531 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4532
4533 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4534 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4535 }
4536 break;
4537 }
4538
4539 case nir_intrinsic_store_output: {
4540 assert(nir_src_bit_size(instr->src[0]) == 32);
4541 fs_reg src = get_nir_src(instr->src[0]);
4542
4543 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4544 unsigned num_components = instr->num_components;
4545 unsigned first_component = nir_intrinsic_component(instr);
4546
4547 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4548 4 * store_offset), src.type);
4549 for (unsigned j = 0; j < num_components; j++) {
4550 bld.MOV(offset(new_dest, bld, j + first_component),
4551 offset(src, bld, j));
4552 }
4553 break;
4554 }
4555
4556 case nir_intrinsic_ssbo_atomic_add:
4557 case nir_intrinsic_ssbo_atomic_imin:
4558 case nir_intrinsic_ssbo_atomic_umin:
4559 case nir_intrinsic_ssbo_atomic_imax:
4560 case nir_intrinsic_ssbo_atomic_umax:
4561 case nir_intrinsic_ssbo_atomic_and:
4562 case nir_intrinsic_ssbo_atomic_or:
4563 case nir_intrinsic_ssbo_atomic_xor:
4564 case nir_intrinsic_ssbo_atomic_exchange:
4565 case nir_intrinsic_ssbo_atomic_comp_swap:
4566 nir_emit_ssbo_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
4567 break;
4568 case nir_intrinsic_ssbo_atomic_fmin:
4569 case nir_intrinsic_ssbo_atomic_fmax:
4570 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4571 nir_emit_ssbo_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
4572 break;
4573
4574 case nir_intrinsic_get_buffer_size: {
4575 assert(nir_src_num_components(instr->src[0]) == 1);
4576 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4577 nir_src_as_uint(instr->src[0]) : 0;
4578
4579 /* A resinfo's sampler message is used to get the buffer size. The
4580 * SIMD8's writeback message consists of four registers and SIMD16's
4581 * writeback message consists of 8 destination registers (two per each
4582 * component). Because we are only interested on the first channel of
4583 * the first returned component, where resinfo returns the buffer size
4584 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4585 * the dispatch width.
4586 */
4587 const fs_builder ubld = bld.exec_all().group(8, 0);
4588 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4589 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4590
4591 /* Set LOD = 0 */
4592 ubld.MOV(src_payload, brw_imm_d(0));
4593
4594 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4595 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4596 src_payload, brw_imm_ud(index));
4597 inst->header_size = 0;
4598 inst->mlen = 1;
4599 inst->size_written = 4 * REG_SIZE;
4600
4601 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4602 *
4603 * "Out-of-bounds checking is always performed at a DWord granularity. If
4604 * any part of the DWord is out-of-bounds then the whole DWord is
4605 * considered out-of-bounds."
4606 *
4607 * This implies that types with size smaller than 4-bytes need to be
4608 * padded if they don't complete the last dword of the buffer. But as we
4609 * need to maintain the original size we need to reverse the padding
4610 * calculation to return the correct size to know the number of elements
4611 * of an unsized array. As we stored in the last two bits of the surface
4612 * size the needed padding for the buffer, we calculate here the
4613 * original buffer_size reversing the surface_size calculation:
4614 *
4615 * surface_size = isl_align(buffer_size, 4) +
4616 * (isl_align(buffer_size) - buffer_size)
4617 *
4618 * buffer_size = surface_size & ~3 - surface_size & 3
4619 */
4620
4621 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4622 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4623 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4624
4625 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4626 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4627 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4628
4629 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4630 break;
4631 }
4632
4633 case nir_intrinsic_load_subgroup_size:
4634 /* This should only happen for fragment shaders because every other case
4635 * is lowered in NIR so we can optimize on it.
4636 */
4637 assert(stage == MESA_SHADER_FRAGMENT);
4638 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(dispatch_width));
4639 break;
4640
4641 case nir_intrinsic_load_subgroup_invocation:
4642 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4643 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4644 break;
4645
4646 case nir_intrinsic_load_subgroup_eq_mask:
4647 case nir_intrinsic_load_subgroup_ge_mask:
4648 case nir_intrinsic_load_subgroup_gt_mask:
4649 case nir_intrinsic_load_subgroup_le_mask:
4650 case nir_intrinsic_load_subgroup_lt_mask:
4651 unreachable("not reached");
4652
4653 case nir_intrinsic_vote_any: {
4654 const fs_builder ubld = bld.exec_all().group(1, 0);
4655
4656 /* The any/all predicates do not consider channel enables. To prevent
4657 * dead channels from affecting the result, we initialize the flag with
4658 * with the identity value for the logical operation.
4659 */
4660 if (dispatch_width == 32) {
4661 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4662 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4663 brw_imm_ud(0));
4664 } else {
4665 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4666 }
4667 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4668
4669 /* For some reason, the any/all predicates don't work properly with
4670 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4671 * doesn't read the correct subset of the flag register and you end up
4672 * getting garbage in the second half. Work around this by using a pair
4673 * of 1-wide MOVs and scattering the result.
4674 */
4675 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4676 ubld.MOV(res1, brw_imm_d(0));
4677 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4678 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4679 BRW_PREDICATE_ALIGN1_ANY32H,
4680 ubld.MOV(res1, brw_imm_d(-1)));
4681
4682 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4683 break;
4684 }
4685 case nir_intrinsic_vote_all: {
4686 const fs_builder ubld = bld.exec_all().group(1, 0);
4687
4688 /* The any/all predicates do not consider channel enables. To prevent
4689 * dead channels from affecting the result, we initialize the flag with
4690 * with the identity value for the logical operation.
4691 */
4692 if (dispatch_width == 32) {
4693 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4694 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4695 brw_imm_ud(0xffffffff));
4696 } else {
4697 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4698 }
4699 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4700
4701 /* For some reason, the any/all predicates don't work properly with
4702 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4703 * doesn't read the correct subset of the flag register and you end up
4704 * getting garbage in the second half. Work around this by using a pair
4705 * of 1-wide MOVs and scattering the result.
4706 */
4707 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4708 ubld.MOV(res1, brw_imm_d(0));
4709 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4710 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4711 BRW_PREDICATE_ALIGN1_ALL32H,
4712 ubld.MOV(res1, brw_imm_d(-1)));
4713
4714 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4715 break;
4716 }
4717 case nir_intrinsic_vote_feq:
4718 case nir_intrinsic_vote_ieq: {
4719 fs_reg value = get_nir_src(instr->src[0]);
4720 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4721 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4722 value.type = bit_size == 8 ? BRW_REGISTER_TYPE_B :
4723 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4724 }
4725
4726 fs_reg uniformized = bld.emit_uniformize(value);
4727 const fs_builder ubld = bld.exec_all().group(1, 0);
4728
4729 /* The any/all predicates do not consider channel enables. To prevent
4730 * dead channels from affecting the result, we initialize the flag with
4731 * with the identity value for the logical operation.
4732 */
4733 if (dispatch_width == 32) {
4734 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4735 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4736 brw_imm_ud(0xffffffff));
4737 } else {
4738 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4739 }
4740 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4741
4742 /* For some reason, the any/all predicates don't work properly with
4743 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4744 * doesn't read the correct subset of the flag register and you end up
4745 * getting garbage in the second half. Work around this by using a pair
4746 * of 1-wide MOVs and scattering the result.
4747 */
4748 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4749 ubld.MOV(res1, brw_imm_d(0));
4750 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4751 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4752 BRW_PREDICATE_ALIGN1_ALL32H,
4753 ubld.MOV(res1, brw_imm_d(-1)));
4754
4755 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4756 break;
4757 }
4758
4759 case nir_intrinsic_ballot: {
4760 const fs_reg value = retype(get_nir_src(instr->src[0]),
4761 BRW_REGISTER_TYPE_UD);
4762 struct brw_reg flag = brw_flag_reg(0, 0);
4763 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4764 * as f0.0. This is a problem for fragment programs as we currently use
4765 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4766 * programs yet so this isn't a problem. When we do, something will
4767 * have to change.
4768 */
4769 if (dispatch_width == 32)
4770 flag.type = BRW_REGISTER_TYPE_UD;
4771
4772 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4773 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4774
4775 if (instr->dest.ssa.bit_size > 32) {
4776 dest.type = BRW_REGISTER_TYPE_UQ;
4777 } else {
4778 dest.type = BRW_REGISTER_TYPE_UD;
4779 }
4780 bld.MOV(dest, flag);
4781 break;
4782 }
4783
4784 case nir_intrinsic_read_invocation: {
4785 const fs_reg value = get_nir_src(instr->src[0]);
4786 const fs_reg invocation = get_nir_src(instr->src[1]);
4787 fs_reg tmp = bld.vgrf(value.type);
4788
4789 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4790 bld.emit_uniformize(invocation));
4791
4792 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4793 break;
4794 }
4795
4796 case nir_intrinsic_read_first_invocation: {
4797 const fs_reg value = get_nir_src(instr->src[0]);
4798 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4799 break;
4800 }
4801
4802 case nir_intrinsic_shuffle: {
4803 const fs_reg value = get_nir_src(instr->src[0]);
4804 const fs_reg index = get_nir_src(instr->src[1]);
4805
4806 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4807 break;
4808 }
4809
4810 case nir_intrinsic_first_invocation: {
4811 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4812 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4813 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4814 fs_reg(component(tmp, 0)));
4815 break;
4816 }
4817
4818 case nir_intrinsic_quad_broadcast: {
4819 const fs_reg value = get_nir_src(instr->src[0]);
4820 const unsigned index = nir_src_as_uint(instr->src[1]);
4821
4822 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4823 value, brw_imm_ud(index), brw_imm_ud(4));
4824 break;
4825 }
4826
4827 case nir_intrinsic_quad_swap_horizontal: {
4828 const fs_reg value = get_nir_src(instr->src[0]);
4829 const fs_reg tmp = bld.vgrf(value.type);
4830 if (devinfo->gen <= 7) {
4831 /* The hardware doesn't seem to support these crazy regions with
4832 * compressed instructions on gen7 and earlier so we fall back to
4833 * using quad swizzles. Fortunately, we don't support 64-bit
4834 * anything in Vulkan on gen7.
4835 */
4836 assert(nir_src_bit_size(instr->src[0]) == 32);
4837 const fs_builder ubld = bld.exec_all();
4838 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4839 brw_imm_ud(BRW_SWIZZLE4(1,0,3,2)));
4840 bld.MOV(retype(dest, value.type), tmp);
4841 } else {
4842 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4843
4844 const fs_reg src_left = horiz_stride(value, 2);
4845 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4846 const fs_reg tmp_left = horiz_stride(tmp, 2);
4847 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4848
4849 ubld.MOV(tmp_left, src_right);
4850 ubld.MOV(tmp_right, src_left);
4851
4852 }
4853 bld.MOV(retype(dest, value.type), tmp);
4854 break;
4855 }
4856
4857 case nir_intrinsic_quad_swap_vertical: {
4858 const fs_reg value = get_nir_src(instr->src[0]);
4859 if (nir_src_bit_size(instr->src[0]) == 32) {
4860 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4861 const fs_reg tmp = bld.vgrf(value.type);
4862 const fs_builder ubld = bld.exec_all();
4863 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4864 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4865 bld.MOV(retype(dest, value.type), tmp);
4866 } else {
4867 /* For larger data types, we have to either emit dispatch_width many
4868 * MOVs or else fall back to doing indirects.
4869 */
4870 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4871 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4872 brw_imm_w(0x2));
4873 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4874 }
4875 break;
4876 }
4877
4878 case nir_intrinsic_quad_swap_diagonal: {
4879 const fs_reg value = get_nir_src(instr->src[0]);
4880 if (nir_src_bit_size(instr->src[0]) == 32) {
4881 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4882 const fs_reg tmp = bld.vgrf(value.type);
4883 const fs_builder ubld = bld.exec_all();
4884 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4885 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4886 bld.MOV(retype(dest, value.type), tmp);
4887 } else {
4888 /* For larger data types, we have to either emit dispatch_width many
4889 * MOVs or else fall back to doing indirects.
4890 */
4891 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4892 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4893 brw_imm_w(0x3));
4894 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4895 }
4896 break;
4897 }
4898
4899 case nir_intrinsic_reduce: {
4900 fs_reg src = get_nir_src(instr->src[0]);
4901 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4902 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4903 if (cluster_size == 0 || cluster_size > dispatch_width)
4904 cluster_size = dispatch_width;
4905
4906 /* Figure out the source type */
4907 src.type = brw_type_for_nir_type(devinfo,
4908 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4909 nir_src_bit_size(instr->src[0])));
4910
4911 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4912 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4913 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4914
4915 /* Set up a register for all of our scratching around and initialize it
4916 * to reduction operation's identity value.
4917 */
4918 fs_reg scan = bld.vgrf(src.type);
4919 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4920
4921 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4922
4923 dest.type = src.type;
4924 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4925 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4926 * the distance between clusters is at least 2 GRFs. In this case,
4927 * we don't need the weird striding of the CLUSTER_BROADCAST
4928 * instruction and can just do regular MOVs.
4929 */
4930 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4931 const unsigned groups =
4932 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4933 const unsigned group_size = dispatch_width / groups;
4934 for (unsigned i = 0; i < groups; i++) {
4935 const unsigned cluster = (i * group_size) / cluster_size;
4936 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4937 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4938 component(scan, comp));
4939 }
4940 } else {
4941 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4942 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4943 }
4944 break;
4945 }
4946
4947 case nir_intrinsic_inclusive_scan:
4948 case nir_intrinsic_exclusive_scan: {
4949 fs_reg src = get_nir_src(instr->src[0]);
4950 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4951
4952 /* Figure out the source type */
4953 src.type = brw_type_for_nir_type(devinfo,
4954 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4955 nir_src_bit_size(instr->src[0])));
4956
4957 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4958 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4959 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4960
4961 /* Set up a register for all of our scratching around and initialize it
4962 * to reduction operation's identity value.
4963 */
4964 fs_reg scan = bld.vgrf(src.type);
4965 const fs_builder allbld = bld.exec_all();
4966 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4967
4968 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4969 /* Exclusive scan is a bit harder because we have to do an annoying
4970 * shift of the contents before we can begin. To make things worse,
4971 * we can't do this with a normal stride; we have to use indirects.
4972 */
4973 fs_reg shifted = bld.vgrf(src.type);
4974 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4975 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4976 brw_imm_w(-1));
4977 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4978 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4979 scan = shifted;
4980 }
4981
4982 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4983
4984 bld.MOV(retype(dest, src.type), scan);
4985 break;
4986 }
4987
4988 case nir_intrinsic_begin_invocation_interlock: {
4989 const fs_builder ubld = bld.group(8, 0);
4990 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4991
4992 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp, brw_vec8_grf(0, 0))
4993 ->size_written = 2 * REG_SIZE;
4994 break;
4995 }
4996
4997 case nir_intrinsic_end_invocation_interlock: {
4998 /* For endInvocationInterlock(), we need to insert a memory fence which
4999 * stalls in the shader until the memory transactions prior to that
5000 * fence are complete. This ensures that the shader does not end before
5001 * any writes from its critical section have landed. Otherwise, you can
5002 * end up with a case where the next invocation on that pixel properly
5003 * stalls for previous FS invocation on its pixel to complete but
5004 * doesn't actually wait for the dataport memory transactions from that
5005 * thread to land before submitting its own.
5006 */
5007 const fs_builder ubld = bld.group(8, 0);
5008 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5009 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
5010 brw_vec8_grf(0, 0), brw_imm_ud(1), brw_imm_ud(0))
5011 ->size_written = 2 * REG_SIZE;
5012 break;
5013 }
5014
5015 default:
5016 unreachable("unknown intrinsic");
5017 }
5018 }
5019
5020 void
5021 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
5022 int op, nir_intrinsic_instr *instr)
5023 {
5024 if (stage == MESA_SHADER_FRAGMENT)
5025 brw_wm_prog_data(prog_data)->has_side_effects = true;
5026
5027 /* The BTI untyped atomic messages only support 32-bit atomics. If you
5028 * just look at the big table of messages in the Vol 7 of the SKL PRM, they
5029 * appear to exist. However, if you look at Vol 2a, there are no message
5030 * descriptors provided for Qword atomic ops except for A64 messages.
5031 */
5032 assert(nir_dest_bit_size(instr->dest) == 32);
5033
5034 fs_reg dest;
5035 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5036 dest = get_nir_dest(instr->dest);
5037
5038 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5039 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5040 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5041 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5042 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5043
5044 fs_reg data;
5045 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5046 data = get_nir_src(instr->src[2]);
5047
5048 if (op == BRW_AOP_CMPWR) {
5049 fs_reg tmp = bld.vgrf(data.type, 2);
5050 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5051 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5052 data = tmp;
5053 }
5054 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5055
5056 /* Emit the actual atomic operation */
5057
5058 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5059 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5060 }
5061
5062 void
5063 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
5064 int op, nir_intrinsic_instr *instr)
5065 {
5066 if (stage == MESA_SHADER_FRAGMENT)
5067 brw_wm_prog_data(prog_data)->has_side_effects = true;
5068
5069 fs_reg dest;
5070 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5071 dest = get_nir_dest(instr->dest);
5072
5073 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5074 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5075 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5076 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5077 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5078
5079 fs_reg data = get_nir_src(instr->src[2]);
5080 if (op == BRW_AOP_FCMPWR) {
5081 fs_reg tmp = bld.vgrf(data.type, 2);
5082 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5083 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5084 data = tmp;
5085 }
5086 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5087
5088 /* Emit the actual atomic operation */
5089
5090 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5091 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5092 }
5093
5094 void
5095 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
5096 int op, nir_intrinsic_instr *instr)
5097 {
5098 fs_reg dest;
5099 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5100 dest = get_nir_dest(instr->dest);
5101
5102 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5103 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5104 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5105 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5106
5107 fs_reg data;
5108 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5109 data = get_nir_src(instr->src[1]);
5110 if (op == BRW_AOP_CMPWR) {
5111 fs_reg tmp = bld.vgrf(data.type, 2);
5112 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5113 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5114 data = tmp;
5115 }
5116 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5117
5118 /* Get the offset */
5119 if (nir_src_is_const(instr->src[0])) {
5120 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5121 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5122 } else {
5123 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5124 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5125 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5126 brw_imm_ud(instr->const_index[0]));
5127 }
5128
5129 /* Emit the actual atomic operation operation */
5130
5131 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5132 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5133 }
5134
5135 void
5136 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
5137 int op, nir_intrinsic_instr *instr)
5138 {
5139 fs_reg dest;
5140 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5141 dest = get_nir_dest(instr->dest);
5142
5143 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5144 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5145 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5146 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5147
5148 fs_reg data = get_nir_src(instr->src[1]);
5149 if (op == BRW_AOP_FCMPWR) {
5150 fs_reg tmp = bld.vgrf(data.type, 2);
5151 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5152 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5153 data = tmp;
5154 }
5155 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5156
5157 /* Get the offset */
5158 if (nir_src_is_const(instr->src[0])) {
5159 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5160 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5161 } else {
5162 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5163 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5164 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5165 brw_imm_ud(instr->const_index[0]));
5166 }
5167
5168 /* Emit the actual atomic operation operation */
5169
5170 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5171 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5172 }
5173
5174 void
5175 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
5176 int op, nir_intrinsic_instr *instr)
5177 {
5178 if (stage == MESA_SHADER_FRAGMENT)
5179 brw_wm_prog_data(prog_data)->has_side_effects = true;
5180
5181 fs_reg dest;
5182 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5183 dest = get_nir_dest(instr->dest);
5184
5185 fs_reg addr = get_nir_src(instr->src[0]);
5186
5187 fs_reg data;
5188 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5189 data = get_nir_src(instr->src[1]);
5190
5191 if (op == BRW_AOP_CMPWR) {
5192 fs_reg tmp = bld.vgrf(data.type, 2);
5193 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5194 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5195 data = tmp;
5196 }
5197
5198 if (nir_dest_bit_size(instr->dest) == 64) {
5199 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL,
5200 dest, addr, data, brw_imm_ud(op));
5201 } else {
5202 assert(nir_dest_bit_size(instr->dest) == 32);
5203 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5204 dest, addr, data, brw_imm_ud(op));
5205 }
5206 }
5207
5208 void
5209 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
5210 int op, nir_intrinsic_instr *instr)
5211 {
5212 if (stage == MESA_SHADER_FRAGMENT)
5213 brw_wm_prog_data(prog_data)->has_side_effects = true;
5214
5215 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
5216 fs_reg dest = get_nir_dest(instr->dest);
5217
5218 fs_reg addr = get_nir_src(instr->src[0]);
5219
5220 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
5221 fs_reg data = get_nir_src(instr->src[1]);
5222
5223 if (op == BRW_AOP_FCMPWR) {
5224 fs_reg tmp = bld.vgrf(data.type, 2);
5225 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5226 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5227 data = tmp;
5228 }
5229
5230 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5231 dest, addr, data, brw_imm_ud(op));
5232 }
5233
5234 void
5235 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5236 {
5237 unsigned texture = instr->texture_index;
5238 unsigned sampler = instr->sampler_index;
5239
5240 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5241
5242 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5243 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5244
5245 int lod_components = 0;
5246
5247 /* The hardware requires a LOD for buffer textures */
5248 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5249 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5250
5251 uint32_t header_bits = 0;
5252 for (unsigned i = 0; i < instr->num_srcs; i++) {
5253 fs_reg src = get_nir_src(instr->src[i].src);
5254 switch (instr->src[i].src_type) {
5255 case nir_tex_src_bias:
5256 srcs[TEX_LOGICAL_SRC_LOD] =
5257 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5258 break;
5259 case nir_tex_src_comparator:
5260 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5261 break;
5262 case nir_tex_src_coord:
5263 switch (instr->op) {
5264 case nir_texop_txf:
5265 case nir_texop_txf_ms:
5266 case nir_texop_txf_ms_mcs:
5267 case nir_texop_samples_identical:
5268 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5269 break;
5270 default:
5271 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5272 break;
5273 }
5274 break;
5275 case nir_tex_src_ddx:
5276 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5277 lod_components = nir_tex_instr_src_size(instr, i);
5278 break;
5279 case nir_tex_src_ddy:
5280 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5281 break;
5282 case nir_tex_src_lod:
5283 switch (instr->op) {
5284 case nir_texop_txs:
5285 srcs[TEX_LOGICAL_SRC_LOD] =
5286 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5287 break;
5288 case nir_texop_txf:
5289 srcs[TEX_LOGICAL_SRC_LOD] =
5290 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5291 break;
5292 default:
5293 srcs[TEX_LOGICAL_SRC_LOD] =
5294 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5295 break;
5296 }
5297 break;
5298 case nir_tex_src_min_lod:
5299 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
5300 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5301 break;
5302 case nir_tex_src_ms_index:
5303 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5304 break;
5305
5306 case nir_tex_src_offset: {
5307 uint32_t offset_bits = 0;
5308 if (brw_texture_offset(instr, i, &offset_bits)) {
5309 header_bits |= offset_bits;
5310 } else {
5311 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5312 retype(src, BRW_REGISTER_TYPE_D);
5313 }
5314 break;
5315 }
5316
5317 case nir_tex_src_projector:
5318 unreachable("should be lowered");
5319
5320 case nir_tex_src_texture_offset: {
5321 /* Emit code to evaluate the actual indexing expression */
5322 fs_reg tmp = vgrf(glsl_type::uint_type);
5323 bld.ADD(tmp, src, brw_imm_ud(texture));
5324 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5325 break;
5326 }
5327
5328 case nir_tex_src_sampler_offset: {
5329 /* Emit code to evaluate the actual indexing expression */
5330 fs_reg tmp = vgrf(glsl_type::uint_type);
5331 bld.ADD(tmp, src, brw_imm_ud(sampler));
5332 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5333 break;
5334 }
5335
5336 case nir_tex_src_texture_handle:
5337 assert(nir_tex_instr_src_index(instr, nir_tex_src_texture_offset) == -1);
5338 srcs[TEX_LOGICAL_SRC_SURFACE] = fs_reg();
5339 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = bld.emit_uniformize(src);
5340 break;
5341
5342 case nir_tex_src_sampler_handle:
5343 assert(nir_tex_instr_src_index(instr, nir_tex_src_sampler_offset) == -1);
5344 srcs[TEX_LOGICAL_SRC_SAMPLER] = fs_reg();
5345 srcs[TEX_LOGICAL_SRC_SAMPLER_HANDLE] = bld.emit_uniformize(src);
5346 break;
5347
5348 case nir_tex_src_ms_mcs:
5349 assert(instr->op == nir_texop_txf_ms);
5350 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5351 break;
5352
5353 case nir_tex_src_plane: {
5354 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5355 const uint32_t texture_index =
5356 instr->texture_index +
5357 stage_prog_data->binding_table.plane_start[plane] -
5358 stage_prog_data->binding_table.texture_start;
5359
5360 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5361 break;
5362 }
5363
5364 default:
5365 unreachable("unknown texture source");
5366 }
5367 }
5368
5369 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5370 (instr->op == nir_texop_txf_ms ||
5371 instr->op == nir_texop_samples_identical)) {
5372 if (devinfo->gen >= 7 &&
5373 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5374 srcs[TEX_LOGICAL_SRC_MCS] =
5375 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5376 instr->coord_components,
5377 srcs[TEX_LOGICAL_SRC_SURFACE],
5378 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE]);
5379 } else {
5380 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5381 }
5382 }
5383
5384 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5385 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5386
5387 enum opcode opcode;
5388 switch (instr->op) {
5389 case nir_texop_tex:
5390 opcode = SHADER_OPCODE_TEX_LOGICAL;
5391 break;
5392 case nir_texop_txb:
5393 opcode = FS_OPCODE_TXB_LOGICAL;
5394 break;
5395 case nir_texop_txl:
5396 opcode = SHADER_OPCODE_TXL_LOGICAL;
5397 break;
5398 case nir_texop_txd:
5399 opcode = SHADER_OPCODE_TXD_LOGICAL;
5400 break;
5401 case nir_texop_txf:
5402 opcode = SHADER_OPCODE_TXF_LOGICAL;
5403 break;
5404 case nir_texop_txf_ms:
5405 if ((key_tex->msaa_16 & (1 << sampler)))
5406 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5407 else
5408 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5409 break;
5410 case nir_texop_txf_ms_mcs:
5411 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5412 break;
5413 case nir_texop_query_levels:
5414 case nir_texop_txs:
5415 opcode = SHADER_OPCODE_TXS_LOGICAL;
5416 break;
5417 case nir_texop_lod:
5418 opcode = SHADER_OPCODE_LOD_LOGICAL;
5419 break;
5420 case nir_texop_tg4:
5421 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5422 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5423 else
5424 opcode = SHADER_OPCODE_TG4_LOGICAL;
5425 break;
5426 case nir_texop_texture_samples:
5427 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5428 break;
5429 case nir_texop_samples_identical: {
5430 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5431
5432 /* If mcs is an immediate value, it means there is no MCS. In that case
5433 * just return false.
5434 */
5435 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5436 bld.MOV(dst, brw_imm_ud(0u));
5437 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5438 fs_reg tmp = vgrf(glsl_type::uint_type);
5439 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5440 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5441 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5442 } else {
5443 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5444 BRW_CONDITIONAL_EQ);
5445 }
5446 return;
5447 }
5448 default:
5449 unreachable("unknown texture opcode");
5450 }
5451
5452 if (instr->op == nir_texop_tg4) {
5453 if (instr->component == 1 &&
5454 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5455 /* gather4 sampler is broken for green channel on RG32F --
5456 * we must ask for blue instead.
5457 */
5458 header_bits |= 2 << 16;
5459 } else {
5460 header_bits |= instr->component << 16;
5461 }
5462 }
5463
5464 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5465 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5466 inst->offset = header_bits;
5467
5468 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5469 if (devinfo->gen >= 9 &&
5470 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5471 unsigned write_mask = instr->dest.is_ssa ?
5472 nir_ssa_def_components_read(&instr->dest.ssa):
5473 (1 << dest_size) - 1;
5474 assert(write_mask != 0); /* dead code should have been eliminated */
5475 inst->size_written = util_last_bit(write_mask) *
5476 inst->dst.component_size(inst->exec_size);
5477 } else {
5478 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5479 }
5480
5481 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5482 inst->shadow_compare = true;
5483
5484 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5485 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5486
5487 fs_reg nir_dest[4];
5488 for (unsigned i = 0; i < dest_size; i++)
5489 nir_dest[i] = offset(dst, bld, i);
5490
5491 if (instr->op == nir_texop_query_levels) {
5492 /* # levels is in .w */
5493 nir_dest[0] = offset(dst, bld, 3);
5494 } else if (instr->op == nir_texop_txs &&
5495 dest_size >= 3 && devinfo->gen < 7) {
5496 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5497 fs_reg depth = offset(dst, bld, 2);
5498 nir_dest[2] = vgrf(glsl_type::int_type);
5499 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5500 }
5501
5502 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5503 }
5504
5505 void
5506 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5507 {
5508 switch (instr->type) {
5509 case nir_jump_break:
5510 bld.emit(BRW_OPCODE_BREAK);
5511 break;
5512 case nir_jump_continue:
5513 bld.emit(BRW_OPCODE_CONTINUE);
5514 break;
5515 case nir_jump_return:
5516 default:
5517 unreachable("unknown jump");
5518 }
5519 }
5520
5521 /*
5522 * This helper takes a source register and un/shuffles it into the destination
5523 * register.
5524 *
5525 * If source type size is smaller than destination type size the operation
5526 * needed is a component shuffle. The opposite case would be an unshuffle. If
5527 * source/destination type size is equal a shuffle is done that would be
5528 * equivalent to a simple MOV.
5529 *
5530 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5531 * components .xyz 16-bit vector on SIMD8 would be.
5532 *
5533 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5534 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5535 *
5536 * This helper will return the following 2 32-bit components with the 16-bit
5537 * values shuffled:
5538 *
5539 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5540 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5541 *
5542 * For unshuffle, the example would be the opposite, a 64-bit type source
5543 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5544 * would be:
5545 *
5546 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5547 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5548 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5549 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5550 *
5551 * The returned result would be the following 4 32-bit components unshuffled:
5552 *
5553 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5554 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5555 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5556 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5557 *
5558 * - Source and destination register must not be overlapped.
5559 * - components units are measured in terms of the smaller type between
5560 * source and destination because we are un/shuffling the smaller
5561 * components from/into the bigger ones.
5562 * - first_component parameter allows skipping source components.
5563 */
5564 void
5565 shuffle_src_to_dst(const fs_builder &bld,
5566 const fs_reg &dst,
5567 const fs_reg &src,
5568 uint32_t first_component,
5569 uint32_t components)
5570 {
5571 if (type_sz(src.type) == type_sz(dst.type)) {
5572 assert(!regions_overlap(dst,
5573 type_sz(dst.type) * bld.dispatch_width() * components,
5574 offset(src, bld, first_component),
5575 type_sz(src.type) * bld.dispatch_width() * components));
5576 for (unsigned i = 0; i < components; i++) {
5577 bld.MOV(retype(offset(dst, bld, i), src.type),
5578 offset(src, bld, i + first_component));
5579 }
5580 } else if (type_sz(src.type) < type_sz(dst.type)) {
5581 /* Source is shuffled into destination */
5582 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5583 assert(!regions_overlap(dst,
5584 type_sz(dst.type) * bld.dispatch_width() *
5585 DIV_ROUND_UP(components, size_ratio),
5586 offset(src, bld, first_component),
5587 type_sz(src.type) * bld.dispatch_width() * components));
5588
5589 brw_reg_type shuffle_type =
5590 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5591 BRW_REGISTER_TYPE_D);
5592 for (unsigned i = 0; i < components; i++) {
5593 fs_reg shuffle_component_i =
5594 subscript(offset(dst, bld, i / size_ratio),
5595 shuffle_type, i % size_ratio);
5596 bld.MOV(shuffle_component_i,
5597 retype(offset(src, bld, i + first_component), shuffle_type));
5598 }
5599 } else {
5600 /* Source is unshuffled into destination */
5601 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5602 assert(!regions_overlap(dst,
5603 type_sz(dst.type) * bld.dispatch_width() * components,
5604 offset(src, bld, first_component / size_ratio),
5605 type_sz(src.type) * bld.dispatch_width() *
5606 DIV_ROUND_UP(components + (first_component % size_ratio),
5607 size_ratio)));
5608
5609 brw_reg_type shuffle_type =
5610 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5611 BRW_REGISTER_TYPE_D);
5612 for (unsigned i = 0; i < components; i++) {
5613 fs_reg shuffle_component_i =
5614 subscript(offset(src, bld, (first_component + i) / size_ratio),
5615 shuffle_type, (first_component + i) % size_ratio);
5616 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5617 shuffle_component_i);
5618 }
5619 }
5620 }
5621
5622 void
5623 shuffle_from_32bit_read(const fs_builder &bld,
5624 const fs_reg &dst,
5625 const fs_reg &src,
5626 uint32_t first_component,
5627 uint32_t components)
5628 {
5629 assert(type_sz(src.type) == 4);
5630
5631 /* This function takes components in units of the destination type while
5632 * shuffle_src_to_dst takes components in units of the smallest type
5633 */
5634 if (type_sz(dst.type) > 4) {
5635 assert(type_sz(dst.type) == 8);
5636 first_component *= 2;
5637 components *= 2;
5638 }
5639
5640 shuffle_src_to_dst(bld, dst, src, first_component, components);
5641 }
5642
5643 fs_reg
5644 setup_imm_df(const fs_builder &bld, double v)
5645 {
5646 const struct gen_device_info *devinfo = bld.shader->devinfo;
5647 assert(devinfo->gen >= 7);
5648
5649 if (devinfo->gen >= 8)
5650 return brw_imm_df(v);
5651
5652 /* gen7.5 does not support DF immediates straighforward but the DIM
5653 * instruction allows to set the 64-bit immediate value.
5654 */
5655 if (devinfo->is_haswell) {
5656 const fs_builder ubld = bld.exec_all().group(1, 0);
5657 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5658 ubld.DIM(dst, brw_imm_df(v));
5659 return component(dst, 0);
5660 }
5661
5662 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5663 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5664 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5665 *
5666 * Alternatively, we could also produce a normal VGRF (without stride 0)
5667 * by writing to all the channels in the VGRF, however, that would hit the
5668 * gen7 bug where we have to split writes that span more than 1 register
5669 * into instructions with a width of 4 (otherwise the write to the second
5670 * register written runs into an execmask hardware bug) which isn't very
5671 * nice.
5672 */
5673 union {
5674 double d;
5675 struct {
5676 uint32_t i1;
5677 uint32_t i2;
5678 };
5679 } di;
5680
5681 di.d = v;
5682
5683 const fs_builder ubld = bld.exec_all().group(1, 0);
5684 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5685 ubld.MOV(tmp, brw_imm_ud(di.i1));
5686 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5687
5688 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5689 }
5690
5691 fs_reg
5692 setup_imm_b(const fs_builder &bld, int8_t v)
5693 {
5694 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5695 bld.MOV(tmp, brw_imm_w(v));
5696 return tmp;
5697 }
5698
5699 fs_reg
5700 setup_imm_ub(const fs_builder &bld, uint8_t v)
5701 {
5702 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5703 bld.MOV(tmp, brw_imm_uw(v));
5704 return tmp;
5705 }