intel/fs: Drop all of the 64-bit varying code
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "brw_eu.h"
28 #include "nir_search_helpers.h"
29 #include "util/u_math.h"
30 #include "util/bitscan.h"
31
32 using namespace brw;
33
34 void
35 fs_visitor::emit_nir_code()
36 {
37 /* emit the arrays used for inputs and outputs - load/store intrinsics will
38 * be converted to reads/writes of these arrays
39 */
40 nir_setup_outputs();
41 nir_setup_uniforms();
42 nir_emit_system_values();
43
44 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
45 }
46
47 void
48 fs_visitor::nir_setup_outputs()
49 {
50 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
51 return;
52
53 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
54
55 /* Calculate the size of output registers in a separate pass, before
56 * allocating them. With ARB_enhanced_layouts, multiple output variables
57 * may occupy the same slot, but have different type sizes.
58 */
59 nir_foreach_variable(var, &nir->outputs) {
60 const int loc = var->data.driver_location;
61 const unsigned var_vec4s =
62 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
63 : type_size_vec4(var->type, true);
64 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
65 }
66
67 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
68 if (vec4s[loc] == 0) {
69 loc++;
70 continue;
71 }
72
73 unsigned reg_size = vec4s[loc];
74
75 /* Check if there are any ranges that start within this range and extend
76 * past it. If so, include them in this allocation.
77 */
78 for (unsigned i = 1; i < reg_size; i++)
79 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
80
81 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
82 for (unsigned i = 0; i < reg_size; i++)
83 outputs[loc + i] = offset(reg, bld, 4 * i);
84
85 loc += reg_size;
86 }
87 }
88
89 void
90 fs_visitor::nir_setup_uniforms()
91 {
92 /* Only the first compile gets to set up uniforms. */
93 if (push_constant_loc) {
94 assert(pull_constant_loc);
95 return;
96 }
97
98 uniforms = nir->num_uniforms / 4;
99
100 if (stage == MESA_SHADER_COMPUTE) {
101 /* Add a uniform for the thread local id. It must be the last uniform
102 * on the list.
103 */
104 assert(uniforms == prog_data->nr_params);
105 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
106 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
107 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
108 }
109 }
110
111 static bool
112 emit_system_values_block(nir_block *block, fs_visitor *v)
113 {
114 fs_reg *reg;
115
116 nir_foreach_instr(instr, block) {
117 if (instr->type != nir_instr_type_intrinsic)
118 continue;
119
120 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
121 switch (intrin->intrinsic) {
122 case nir_intrinsic_load_vertex_id:
123 case nir_intrinsic_load_base_vertex:
124 unreachable("should be lowered by nir_lower_system_values().");
125
126 case nir_intrinsic_load_vertex_id_zero_base:
127 case nir_intrinsic_load_is_indexed_draw:
128 case nir_intrinsic_load_first_vertex:
129 case nir_intrinsic_load_instance_id:
130 case nir_intrinsic_load_base_instance:
131 case nir_intrinsic_load_draw_id:
132 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
133
134 case nir_intrinsic_load_invocation_id:
135 if (v->stage == MESA_SHADER_TESS_CTRL)
136 break;
137 assert(v->stage == MESA_SHADER_GEOMETRY);
138 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
139 if (reg->file == BAD_FILE) {
140 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
141 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
142 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
143 abld.SHR(iid, g1, brw_imm_ud(27u));
144 *reg = iid;
145 }
146 break;
147
148 case nir_intrinsic_load_sample_pos:
149 assert(v->stage == MESA_SHADER_FRAGMENT);
150 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
151 if (reg->file == BAD_FILE)
152 *reg = *v->emit_samplepos_setup();
153 break;
154
155 case nir_intrinsic_load_sample_id:
156 assert(v->stage == MESA_SHADER_FRAGMENT);
157 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
158 if (reg->file == BAD_FILE)
159 *reg = *v->emit_sampleid_setup();
160 break;
161
162 case nir_intrinsic_load_sample_mask_in:
163 assert(v->stage == MESA_SHADER_FRAGMENT);
164 assert(v->devinfo->gen >= 7);
165 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
166 if (reg->file == BAD_FILE)
167 *reg = *v->emit_samplemaskin_setup();
168 break;
169
170 case nir_intrinsic_load_work_group_id:
171 assert(v->stage == MESA_SHADER_COMPUTE);
172 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
173 if (reg->file == BAD_FILE)
174 *reg = *v->emit_cs_work_group_id_setup();
175 break;
176
177 case nir_intrinsic_load_helper_invocation:
178 assert(v->stage == MESA_SHADER_FRAGMENT);
179 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
180 if (reg->file == BAD_FILE) {
181 const fs_builder abld =
182 v->bld.annotate("gl_HelperInvocation", NULL);
183
184 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
185 * pixel mask is in g1.7 of the thread payload.
186 *
187 * We move the per-channel pixel enable bit to the low bit of each
188 * channel by shifting the byte containing the pixel mask by the
189 * vector immediate 0x76543210UV.
190 *
191 * The region of <1,8,0> reads only 1 byte (the pixel masks for
192 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
193 * masks for 2 and 3) in SIMD16.
194 */
195 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
196
197 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
198 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
199 hbld.SHR(offset(shifted, hbld, i),
200 stride(retype(brw_vec1_grf(1 + i, 7),
201 BRW_REGISTER_TYPE_UB),
202 1, 8, 0),
203 brw_imm_v(0x76543210));
204 }
205
206 /* A set bit in the pixel mask means the channel is enabled, but
207 * that is the opposite of gl_HelperInvocation so we need to invert
208 * the mask.
209 *
210 * The negate source-modifier bit of logical instructions on Gen8+
211 * performs 1's complement negation, so we can use that instead of
212 * a NOT instruction.
213 */
214 fs_reg inverted = negate(shifted);
215 if (v->devinfo->gen < 8) {
216 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
217 abld.NOT(inverted, shifted);
218 }
219
220 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
221 * with 1 and negating.
222 */
223 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
224 abld.AND(anded, inverted, brw_imm_uw(1));
225
226 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
227 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
228 *reg = dst;
229 }
230 break;
231
232 default:
233 break;
234 }
235 }
236
237 return true;
238 }
239
240 void
241 fs_visitor::nir_emit_system_values()
242 {
243 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
244 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
245 nir_system_values[i] = fs_reg();
246 }
247
248 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
249 * never end up using it.
250 */
251 {
252 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
253 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
254 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
255
256 const fs_builder allbld8 = abld.group(8, 0).exec_all();
257 allbld8.MOV(reg, brw_imm_v(0x76543210));
258 if (dispatch_width > 8)
259 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
260 if (dispatch_width > 16) {
261 const fs_builder allbld16 = abld.group(16, 0).exec_all();
262 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
263 }
264 }
265
266 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
267 nir_foreach_block(block, impl)
268 emit_system_values_block(block, this);
269 }
270
271 /*
272 * Returns a type based on a reference_type (word, float, half-float) and a
273 * given bit_size.
274 *
275 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
276 *
277 * @FIXME: 64-bit return types are always DF on integer types to maintain
278 * compability with uses of DF previously to the introduction of int64
279 * support.
280 */
281 static brw_reg_type
282 brw_reg_type_from_bit_size(const unsigned bit_size,
283 const brw_reg_type reference_type)
284 {
285 switch(reference_type) {
286 case BRW_REGISTER_TYPE_HF:
287 case BRW_REGISTER_TYPE_F:
288 case BRW_REGISTER_TYPE_DF:
289 switch(bit_size) {
290 case 16:
291 return BRW_REGISTER_TYPE_HF;
292 case 32:
293 return BRW_REGISTER_TYPE_F;
294 case 64:
295 return BRW_REGISTER_TYPE_DF;
296 default:
297 unreachable("Invalid bit size");
298 }
299 case BRW_REGISTER_TYPE_B:
300 case BRW_REGISTER_TYPE_W:
301 case BRW_REGISTER_TYPE_D:
302 case BRW_REGISTER_TYPE_Q:
303 switch(bit_size) {
304 case 8:
305 return BRW_REGISTER_TYPE_B;
306 case 16:
307 return BRW_REGISTER_TYPE_W;
308 case 32:
309 return BRW_REGISTER_TYPE_D;
310 case 64:
311 return BRW_REGISTER_TYPE_Q;
312 default:
313 unreachable("Invalid bit size");
314 }
315 case BRW_REGISTER_TYPE_UB:
316 case BRW_REGISTER_TYPE_UW:
317 case BRW_REGISTER_TYPE_UD:
318 case BRW_REGISTER_TYPE_UQ:
319 switch(bit_size) {
320 case 8:
321 return BRW_REGISTER_TYPE_UB;
322 case 16:
323 return BRW_REGISTER_TYPE_UW;
324 case 32:
325 return BRW_REGISTER_TYPE_UD;
326 case 64:
327 return BRW_REGISTER_TYPE_UQ;
328 default:
329 unreachable("Invalid bit size");
330 }
331 default:
332 unreachable("Unknown type");
333 }
334 }
335
336 void
337 fs_visitor::nir_emit_impl(nir_function_impl *impl)
338 {
339 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
340 for (unsigned i = 0; i < impl->reg_alloc; i++) {
341 nir_locals[i] = fs_reg();
342 }
343
344 foreach_list_typed(nir_register, reg, node, &impl->registers) {
345 unsigned array_elems =
346 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
347 unsigned size = array_elems * reg->num_components;
348 const brw_reg_type reg_type = reg->bit_size == 8 ? BRW_REGISTER_TYPE_B :
349 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
350 nir_locals[reg->index] = bld.vgrf(reg_type, size);
351 }
352
353 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
354 impl->ssa_alloc);
355
356 nir_emit_cf_list(&impl->body);
357 }
358
359 void
360 fs_visitor::nir_emit_cf_list(exec_list *list)
361 {
362 exec_list_validate(list);
363 foreach_list_typed(nir_cf_node, node, node, list) {
364 switch (node->type) {
365 case nir_cf_node_if:
366 nir_emit_if(nir_cf_node_as_if(node));
367 break;
368
369 case nir_cf_node_loop:
370 nir_emit_loop(nir_cf_node_as_loop(node));
371 break;
372
373 case nir_cf_node_block:
374 nir_emit_block(nir_cf_node_as_block(node));
375 break;
376
377 default:
378 unreachable("Invalid CFG node block");
379 }
380 }
381 }
382
383 void
384 fs_visitor::nir_emit_if(nir_if *if_stmt)
385 {
386 bool invert;
387 fs_reg cond_reg;
388
389 /* If the condition has the form !other_condition, use other_condition as
390 * the source, but invert the predicate on the if instruction.
391 */
392 nir_alu_instr *cond = nir_src_as_alu_instr(if_stmt->condition);
393 if (cond != NULL && cond->op == nir_op_inot) {
394 assert(!cond->src[0].negate);
395 assert(!cond->src[0].abs);
396
397 invert = true;
398 cond_reg = get_nir_src(cond->src[0].src);
399 } else {
400 invert = false;
401 cond_reg = get_nir_src(if_stmt->condition);
402 }
403
404 /* first, put the condition into f0 */
405 fs_inst *inst = bld.MOV(bld.null_reg_d(),
406 retype(cond_reg, BRW_REGISTER_TYPE_D));
407 inst->conditional_mod = BRW_CONDITIONAL_NZ;
408
409 bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
410
411 nir_emit_cf_list(&if_stmt->then_list);
412
413 if (!nir_cf_list_is_empty_block(&if_stmt->else_list)) {
414 bld.emit(BRW_OPCODE_ELSE);
415 nir_emit_cf_list(&if_stmt->else_list);
416 }
417
418 bld.emit(BRW_OPCODE_ENDIF);
419
420 if (devinfo->gen < 7)
421 limit_dispatch_width(16, "Non-uniform control flow unsupported "
422 "in SIMD32 mode.");
423 }
424
425 void
426 fs_visitor::nir_emit_loop(nir_loop *loop)
427 {
428 bld.emit(BRW_OPCODE_DO);
429
430 nir_emit_cf_list(&loop->body);
431
432 bld.emit(BRW_OPCODE_WHILE);
433
434 if (devinfo->gen < 7)
435 limit_dispatch_width(16, "Non-uniform control flow unsupported "
436 "in SIMD32 mode.");
437 }
438
439 void
440 fs_visitor::nir_emit_block(nir_block *block)
441 {
442 nir_foreach_instr(instr, block) {
443 nir_emit_instr(instr);
444 }
445 }
446
447 void
448 fs_visitor::nir_emit_instr(nir_instr *instr)
449 {
450 const fs_builder abld = bld.annotate(NULL, instr);
451
452 switch (instr->type) {
453 case nir_instr_type_alu:
454 nir_emit_alu(abld, nir_instr_as_alu(instr), true);
455 break;
456
457 case nir_instr_type_deref:
458 unreachable("All derefs should've been lowered");
459 break;
460
461 case nir_instr_type_intrinsic:
462 switch (stage) {
463 case MESA_SHADER_VERTEX:
464 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
465 break;
466 case MESA_SHADER_TESS_CTRL:
467 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
468 break;
469 case MESA_SHADER_TESS_EVAL:
470 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
471 break;
472 case MESA_SHADER_GEOMETRY:
473 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
474 break;
475 case MESA_SHADER_FRAGMENT:
476 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
477 break;
478 case MESA_SHADER_COMPUTE:
479 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
480 break;
481 default:
482 unreachable("unsupported shader stage");
483 }
484 break;
485
486 case nir_instr_type_tex:
487 nir_emit_texture(abld, nir_instr_as_tex(instr));
488 break;
489
490 case nir_instr_type_load_const:
491 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
492 break;
493
494 case nir_instr_type_ssa_undef:
495 /* We create a new VGRF for undefs on every use (by handling
496 * them in get_nir_src()), rather than for each definition.
497 * This helps register coalescing eliminate MOVs from undef.
498 */
499 break;
500
501 case nir_instr_type_jump:
502 nir_emit_jump(abld, nir_instr_as_jump(instr));
503 break;
504
505 default:
506 unreachable("unknown instruction type");
507 }
508 }
509
510 /**
511 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
512 * match instr.
513 */
514 bool
515 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
516 const fs_reg &result)
517 {
518 if (!instr->src[0].src.is_ssa ||
519 !instr->src[0].src.ssa->parent_instr)
520 return false;
521
522 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
523 return false;
524
525 nir_alu_instr *src0 =
526 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
527
528 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
529 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
530 return false;
531
532 /* If either opcode has source modifiers, bail.
533 *
534 * TODO: We can potentially handle source modifiers if both of the opcodes
535 * we're combining are signed integers.
536 */
537 if (instr->src[0].abs || instr->src[0].negate ||
538 src0->src[0].abs || src0->src[0].negate)
539 return false;
540
541 unsigned element = nir_src_as_uint(src0->src[1].src);
542
543 /* Element type to extract.*/
544 const brw_reg_type type = brw_int_type(
545 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
546 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
547
548 fs_reg op0 = get_nir_src(src0->src[0].src);
549 op0.type = brw_type_for_nir_type(devinfo,
550 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
551 nir_src_bit_size(src0->src[0].src)));
552 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
553
554 set_saturate(instr->dest.saturate,
555 bld.MOV(result, subscript(op0, type, element)));
556 return true;
557 }
558
559 bool
560 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
561 const fs_reg &result)
562 {
563 nir_intrinsic_instr *src0 = nir_src_as_intrinsic(instr->src[0].src);
564 if (src0 == NULL || src0->intrinsic != nir_intrinsic_load_front_face)
565 return false;
566
567 if (!nir_src_is_const(instr->src[1].src) ||
568 !nir_src_is_const(instr->src[2].src))
569 return false;
570
571 const float value1 = nir_src_as_float(instr->src[1].src);
572 const float value2 = nir_src_as_float(instr->src[2].src);
573 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
574 return false;
575
576 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
577 assert(value1 == -value2);
578
579 fs_reg tmp = vgrf(glsl_type::int_type);
580
581 if (devinfo->gen >= 6) {
582 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
583 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
584
585 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
586 *
587 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
588 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
589 *
590 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
591 *
592 * This negation looks like it's safe in practice, because bits 0:4 will
593 * surely be TRIANGLES
594 */
595
596 if (value1 == -1.0f) {
597 g0.negate = true;
598 }
599
600 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
601 g0, brw_imm_uw(0x3f80));
602 } else {
603 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
604 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
605
606 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
607 *
608 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
609 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
610 *
611 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
612 *
613 * This negation looks like it's safe in practice, because bits 0:4 will
614 * surely be TRIANGLES
615 */
616
617 if (value1 == -1.0f) {
618 g1_6.negate = true;
619 }
620
621 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
622 }
623 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
624
625 return true;
626 }
627
628 static void
629 emit_find_msb_using_lzd(const fs_builder &bld,
630 const fs_reg &result,
631 const fs_reg &src,
632 bool is_signed)
633 {
634 fs_inst *inst;
635 fs_reg temp = src;
636
637 if (is_signed) {
638 /* LZD of an absolute value source almost always does the right
639 * thing. There are two problem values:
640 *
641 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
642 * 0. However, findMSB(int(0x80000000)) == 30.
643 *
644 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
645 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
646 *
647 * For a value of zero or negative one, -1 will be returned.
648 *
649 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
650 * findMSB(-(1<<x)) should return x-1.
651 *
652 * For all negative number cases, including 0x80000000 and
653 * 0xffffffff, the correct value is obtained from LZD if instead of
654 * negating the (already negative) value the logical-not is used. A
655 * conditonal logical-not can be achieved in two instructions.
656 */
657 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
658
659 bld.ASR(temp, src, brw_imm_d(31));
660 bld.XOR(temp, temp, src);
661 }
662
663 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
664 retype(temp, BRW_REGISTER_TYPE_UD));
665
666 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
667 * from the LSB side. Subtract the result from 31 to convert the MSB
668 * count into an LSB count. If no bits are set, LZD will return 32.
669 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
670 */
671 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
672 inst->src[0].negate = true;
673 }
674
675 static brw_rnd_mode
676 brw_rnd_mode_from_nir_op (const nir_op op) {
677 switch (op) {
678 case nir_op_f2f16_rtz:
679 return BRW_RND_MODE_RTZ;
680 case nir_op_f2f16_rtne:
681 return BRW_RND_MODE_RTNE;
682 default:
683 unreachable("Operation doesn't support rounding mode");
684 }
685 }
686
687 fs_reg
688 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
689 nir_alu_instr *instr,
690 fs_reg *op,
691 bool need_dest)
692 {
693 fs_reg result =
694 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
695
696 result.type = brw_type_for_nir_type(devinfo,
697 (nir_alu_type)(nir_op_infos[instr->op].output_type |
698 nir_dest_bit_size(instr->dest.dest)));
699
700 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
701 op[i] = get_nir_src(instr->src[i].src);
702 op[i].type = brw_type_for_nir_type(devinfo,
703 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
704 nir_src_bit_size(instr->src[i].src)));
705 op[i].abs = instr->src[i].abs;
706 op[i].negate = instr->src[i].negate;
707 }
708
709 /* Move and vecN instrutions may still be vectored. Return the raw,
710 * vectored source and destination so that fs_visitor::nir_emit_alu can
711 * handle it. Other callers should not have to handle these kinds of
712 * instructions.
713 */
714 switch (instr->op) {
715 case nir_op_mov:
716 case nir_op_vec2:
717 case nir_op_vec3:
718 case nir_op_vec4:
719 return result;
720 default:
721 break;
722 }
723
724 /* At this point, we have dealt with any instruction that operates on
725 * more than a single channel. Therefore, we can just adjust the source
726 * and destination registers for that channel and emit the instruction.
727 */
728 unsigned channel = 0;
729 if (nir_op_infos[instr->op].output_size == 0) {
730 /* Since NIR is doing the scalarizing for us, we should only ever see
731 * vectorized operations with a single channel.
732 */
733 assert(util_bitcount(instr->dest.write_mask) == 1);
734 channel = ffs(instr->dest.write_mask) - 1;
735
736 result = offset(result, bld, channel);
737 }
738
739 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
740 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
741 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
742 }
743
744 return result;
745 }
746
747 void
748 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
749 fs_reg *op)
750 {
751 for (unsigned i = 0; i < 2; i++) {
752 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[i].src);
753
754 if (inot_instr != NULL && inot_instr->op == nir_op_inot &&
755 !inot_instr->src[0].abs && !inot_instr->src[0].negate) {
756 /* The source of the inot is now the source of instr. */
757 prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
758
759 assert(!op[i].negate);
760 op[i].negate = true;
761 } else {
762 op[i] = resolve_source_modifiers(op[i]);
763 }
764 }
765 }
766
767 bool
768 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
769 fs_reg result,
770 nir_alu_instr *instr)
771 {
772 if (devinfo->gen < 6 || devinfo->gen >= 12)
773 return false;
774
775 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[0].src);
776
777 if (inot_instr == NULL || inot_instr->op != nir_op_inot)
778 return false;
779
780 /* HF is also possible as a destination on BDW+. For nir_op_b2i, the set
781 * of valid size-changing combinations is a bit more complex.
782 *
783 * The source restriction is just because I was lazy about generating the
784 * constant below.
785 */
786 if (nir_dest_bit_size(instr->dest.dest) != 32 ||
787 nir_src_bit_size(inot_instr->src[0].src) != 32)
788 return false;
789
790 /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1,
791 * this is float(1 + a).
792 */
793 fs_reg op;
794
795 prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
796
797 /* Ignore the saturate modifier, if there is one. The result of the
798 * arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
799 */
800 bld.ADD(result, op, brw_imm_d(1));
801
802 return true;
803 }
804
805 /**
806 * Emit code for nir_op_fsign possibly fused with a nir_op_fmul
807 *
808 * If \c instr is not the \c nir_op_fsign, then \c fsign_src is the index of
809 * the source of \c instr that is a \c nir_op_fsign.
810 */
811 void
812 fs_visitor::emit_fsign(const fs_builder &bld, const nir_alu_instr *instr,
813 fs_reg result, fs_reg *op, unsigned fsign_src)
814 {
815 fs_inst *inst;
816
817 assert(instr->op == nir_op_fsign || instr->op == nir_op_fmul);
818 assert(fsign_src < nir_op_infos[instr->op].num_inputs);
819
820 if (instr->op != nir_op_fsign) {
821 const nir_alu_instr *const fsign_instr =
822 nir_src_as_alu_instr(instr->src[fsign_src].src);
823
824 assert(!fsign_instr->dest.saturate);
825
826 /* op[fsign_src] has the nominal result of the fsign, and op[1 -
827 * fsign_src] has the other multiply source. This must be rearranged so
828 * that op[0] is the source of the fsign op[1] is the other multiply
829 * source.
830 */
831 if (fsign_src != 0)
832 op[1] = op[0];
833
834 op[0] = get_nir_src(fsign_instr->src[0].src);
835
836 const nir_alu_type t =
837 (nir_alu_type)(nir_op_infos[instr->op].input_types[0] |
838 nir_src_bit_size(fsign_instr->src[0].src));
839
840 op[0].type = brw_type_for_nir_type(devinfo, t);
841 op[0].abs = fsign_instr->src[0].abs;
842 op[0].negate = fsign_instr->src[0].negate;
843
844 unsigned channel = 0;
845 if (nir_op_infos[instr->op].output_size == 0) {
846 /* Since NIR is doing the scalarizing for us, we should only ever see
847 * vectorized operations with a single channel.
848 */
849 assert(util_bitcount(instr->dest.write_mask) == 1);
850 channel = ffs(instr->dest.write_mask) - 1;
851 }
852
853 op[0] = offset(op[0], bld, fsign_instr->src[0].swizzle[channel]);
854 } else {
855 assert(!instr->dest.saturate);
856 }
857
858 if (op[0].abs) {
859 /* Straightforward since the source can be assumed to be either strictly
860 * >= 0 or strictly <= 0 depending on the setting of the negate flag.
861 */
862 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
863
864 if (instr->op == nir_op_fsign) {
865 inst = (op[0].negate)
866 ? bld.MOV(result, brw_imm_f(-1.0f))
867 : bld.MOV(result, brw_imm_f(1.0f));
868 } else {
869 op[1].negate = (op[0].negate != op[1].negate);
870 inst = bld.MOV(result, op[1]);
871 }
872
873 set_predicate(BRW_PREDICATE_NORMAL, inst);
874 } else if (type_sz(op[0].type) == 2) {
875 /* AND(val, 0x8000) gives the sign bit.
876 *
877 * Predicated OR ORs 1.0 (0x3c00) with the sign bit if val is not zero.
878 */
879 fs_reg zero = retype(brw_imm_uw(0), BRW_REGISTER_TYPE_HF);
880 bld.CMP(bld.null_reg_f(), op[0], zero, BRW_CONDITIONAL_NZ);
881
882 op[0].type = BRW_REGISTER_TYPE_UW;
883 result.type = BRW_REGISTER_TYPE_UW;
884 bld.AND(result, op[0], brw_imm_uw(0x8000u));
885
886 if (instr->op == nir_op_fsign)
887 inst = bld.OR(result, result, brw_imm_uw(0x3c00u));
888 else {
889 /* Use XOR here to get the result sign correct. */
890 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UW));
891 }
892
893 inst->predicate = BRW_PREDICATE_NORMAL;
894 } else if (type_sz(op[0].type) == 4) {
895 /* AND(val, 0x80000000) gives the sign bit.
896 *
897 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
898 * zero.
899 */
900 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
901
902 op[0].type = BRW_REGISTER_TYPE_UD;
903 result.type = BRW_REGISTER_TYPE_UD;
904 bld.AND(result, op[0], brw_imm_ud(0x80000000u));
905
906 if (instr->op == nir_op_fsign)
907 inst = bld.OR(result, result, brw_imm_ud(0x3f800000u));
908 else {
909 /* Use XOR here to get the result sign correct. */
910 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UD));
911 }
912
913 inst->predicate = BRW_PREDICATE_NORMAL;
914 } else {
915 /* For doubles we do the same but we need to consider:
916 *
917 * - 2-src instructions can't operate with 64-bit immediates
918 * - The sign is encoded in the high 32-bit of each DF
919 * - We need to produce a DF result.
920 */
921
922 fs_reg zero = vgrf(glsl_type::double_type);
923 bld.MOV(zero, setup_imm_df(bld, 0.0));
924 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
925
926 bld.MOV(result, zero);
927
928 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
929 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
930 brw_imm_ud(0x80000000u));
931
932 if (instr->op == nir_op_fsign) {
933 set_predicate(BRW_PREDICATE_NORMAL,
934 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
935 } else {
936 /* This could be done better in some cases. If the scale is an
937 * immediate with the low 32-bits all 0, emitting a separate XOR and
938 * OR would allow an algebraic optimization to remove the OR. There
939 * are currently zero instances of fsign(double(x))*IMM in shader-db
940 * or any test suite, so it is hard to care at this time.
941 */
942 fs_reg result_int64 = retype(result, BRW_REGISTER_TYPE_UQ);
943 inst = bld.XOR(result_int64, result_int64,
944 retype(op[1], BRW_REGISTER_TYPE_UQ));
945 }
946 }
947 }
948
949 /**
950 * Deteremine whether sources of a nir_op_fmul can be fused with a nir_op_fsign
951 *
952 * Checks the operands of a \c nir_op_fmul to determine whether or not
953 * \c emit_fsign could fuse the multiplication with the \c sign() calculation.
954 *
955 * \param instr The multiplication instruction
956 *
957 * \param fsign_src The source of \c instr that may or may not be a
958 * \c nir_op_fsign
959 */
960 static bool
961 can_fuse_fmul_fsign(nir_alu_instr *instr, unsigned fsign_src)
962 {
963 assert(instr->op == nir_op_fmul);
964
965 nir_alu_instr *const fsign_instr =
966 nir_src_as_alu_instr(instr->src[fsign_src].src);
967
968 /* Rules:
969 *
970 * 1. instr->src[fsign_src] must be a nir_op_fsign.
971 * 2. The nir_op_fsign can only be used by this multiplication.
972 * 3. The source that is the nir_op_fsign does not have source modifiers.
973 * \c emit_fsign only examines the source modifiers of the source of the
974 * \c nir_op_fsign.
975 *
976 * The nir_op_fsign must also not have the saturate modifier, but steps
977 * have already been taken (in nir_opt_algebraic) to ensure that.
978 */
979 return fsign_instr != NULL && fsign_instr->op == nir_op_fsign &&
980 is_used_once(fsign_instr) &&
981 !instr->src[fsign_src].abs && !instr->src[fsign_src].negate;
982 }
983
984 void
985 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr,
986 bool need_dest)
987 {
988 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
989 fs_inst *inst;
990
991 fs_reg op[4];
992 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, need_dest);
993
994 switch (instr->op) {
995 case nir_op_mov:
996 case nir_op_vec2:
997 case nir_op_vec3:
998 case nir_op_vec4: {
999 fs_reg temp = result;
1000 bool need_extra_copy = false;
1001 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1002 if (!instr->src[i].src.is_ssa &&
1003 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
1004 need_extra_copy = true;
1005 temp = bld.vgrf(result.type, 4);
1006 break;
1007 }
1008 }
1009
1010 for (unsigned i = 0; i < 4; i++) {
1011 if (!(instr->dest.write_mask & (1 << i)))
1012 continue;
1013
1014 if (instr->op == nir_op_mov) {
1015 inst = bld.MOV(offset(temp, bld, i),
1016 offset(op[0], bld, instr->src[0].swizzle[i]));
1017 } else {
1018 inst = bld.MOV(offset(temp, bld, i),
1019 offset(op[i], bld, instr->src[i].swizzle[0]));
1020 }
1021 inst->saturate = instr->dest.saturate;
1022 }
1023
1024 /* In this case the source and destination registers were the same,
1025 * so we need to insert an extra set of moves in order to deal with
1026 * any swizzling.
1027 */
1028 if (need_extra_copy) {
1029 for (unsigned i = 0; i < 4; i++) {
1030 if (!(instr->dest.write_mask & (1 << i)))
1031 continue;
1032
1033 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
1034 }
1035 }
1036 return;
1037 }
1038
1039 case nir_op_i2f32:
1040 case nir_op_u2f32:
1041 if (optimize_extract_to_float(instr, result))
1042 return;
1043 inst = bld.MOV(result, op[0]);
1044 inst->saturate = instr->dest.saturate;
1045 break;
1046
1047 case nir_op_f2f16_rtne:
1048 case nir_op_f2f16_rtz:
1049 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1050 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
1051 /* fallthrough */
1052 case nir_op_f2f16:
1053 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
1054 * on the HW gen, it is a special hw opcode or just a MOV, and
1055 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
1056 *
1057 * But if we want to use that opcode, we need to provide support on
1058 * different optimizations and lowerings. As right now HF support is
1059 * only for gen8+, it will be better to use directly the MOV, and use
1060 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
1061 */
1062 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1063 inst = bld.MOV(result, op[0]);
1064 inst->saturate = instr->dest.saturate;
1065 break;
1066
1067 case nir_op_b2i8:
1068 case nir_op_b2i16:
1069 case nir_op_b2i32:
1070 case nir_op_b2i64:
1071 case nir_op_b2f16:
1072 case nir_op_b2f32:
1073 case nir_op_b2f64:
1074 if (try_emit_b2fi_of_inot(bld, result, instr))
1075 break;
1076 op[0].type = BRW_REGISTER_TYPE_D;
1077 op[0].negate = !op[0].negate;
1078 /* fallthrough */
1079 case nir_op_i2f64:
1080 case nir_op_i2i64:
1081 case nir_op_u2f64:
1082 case nir_op_u2u64:
1083 case nir_op_f2f64:
1084 case nir_op_f2i64:
1085 case nir_op_f2u64:
1086 case nir_op_i2i32:
1087 case nir_op_u2u32:
1088 case nir_op_f2f32:
1089 case nir_op_f2i32:
1090 case nir_op_f2u32:
1091 case nir_op_i2f16:
1092 case nir_op_i2i16:
1093 case nir_op_u2f16:
1094 case nir_op_u2u16:
1095 case nir_op_f2i16:
1096 case nir_op_f2u16:
1097 case nir_op_i2i8:
1098 case nir_op_u2u8:
1099 case nir_op_f2i8:
1100 case nir_op_f2u8:
1101 if (result.type == BRW_REGISTER_TYPE_B ||
1102 result.type == BRW_REGISTER_TYPE_UB ||
1103 result.type == BRW_REGISTER_TYPE_HF)
1104 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1105
1106 if (op[0].type == BRW_REGISTER_TYPE_B ||
1107 op[0].type == BRW_REGISTER_TYPE_UB ||
1108 op[0].type == BRW_REGISTER_TYPE_HF)
1109 assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1110
1111 inst = bld.MOV(result, op[0]);
1112 inst->saturate = instr->dest.saturate;
1113 break;
1114
1115 case nir_op_fsat:
1116 inst = bld.MOV(result, op[0]);
1117 inst->saturate = true;
1118 break;
1119
1120 case nir_op_fneg:
1121 case nir_op_ineg:
1122 op[0].negate = true;
1123 inst = bld.MOV(result, op[0]);
1124 if (instr->op == nir_op_fneg)
1125 inst->saturate = instr->dest.saturate;
1126 break;
1127
1128 case nir_op_fabs:
1129 case nir_op_iabs:
1130 op[0].negate = false;
1131 op[0].abs = true;
1132 inst = bld.MOV(result, op[0]);
1133 if (instr->op == nir_op_fabs)
1134 inst->saturate = instr->dest.saturate;
1135 break;
1136
1137 case nir_op_fsign:
1138 emit_fsign(bld, instr, result, op, 0);
1139 break;
1140
1141 case nir_op_frcp:
1142 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
1143 inst->saturate = instr->dest.saturate;
1144 break;
1145
1146 case nir_op_fexp2:
1147 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
1148 inst->saturate = instr->dest.saturate;
1149 break;
1150
1151 case nir_op_flog2:
1152 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
1153 inst->saturate = instr->dest.saturate;
1154 break;
1155
1156 case nir_op_fsin:
1157 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
1158 inst->saturate = instr->dest.saturate;
1159 break;
1160
1161 case nir_op_fcos:
1162 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
1163 inst->saturate = instr->dest.saturate;
1164 break;
1165
1166 case nir_op_fddx:
1167 if (fs_key->high_quality_derivatives) {
1168 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1169 } else {
1170 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1171 }
1172 inst->saturate = instr->dest.saturate;
1173 break;
1174 case nir_op_fddx_fine:
1175 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1176 inst->saturate = instr->dest.saturate;
1177 break;
1178 case nir_op_fddx_coarse:
1179 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1180 inst->saturate = instr->dest.saturate;
1181 break;
1182 case nir_op_fddy:
1183 if (fs_key->high_quality_derivatives) {
1184 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1185 } else {
1186 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1187 }
1188 inst->saturate = instr->dest.saturate;
1189 break;
1190 case nir_op_fddy_fine:
1191 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1192 inst->saturate = instr->dest.saturate;
1193 break;
1194 case nir_op_fddy_coarse:
1195 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1196 inst->saturate = instr->dest.saturate;
1197 break;
1198
1199 case nir_op_iadd:
1200 case nir_op_fadd:
1201 inst = bld.ADD(result, op[0], op[1]);
1202 inst->saturate = instr->dest.saturate;
1203 break;
1204
1205 case nir_op_uadd_sat:
1206 inst = bld.ADD(result, op[0], op[1]);
1207 inst->saturate = true;
1208 break;
1209
1210 case nir_op_fmul:
1211 for (unsigned i = 0; i < 2; i++) {
1212 if (can_fuse_fmul_fsign(instr, i)) {
1213 emit_fsign(bld, instr, result, op, i);
1214 return;
1215 }
1216 }
1217
1218 inst = bld.MUL(result, op[0], op[1]);
1219 inst->saturate = instr->dest.saturate;
1220 break;
1221
1222 case nir_op_imul_2x32_64:
1223 case nir_op_umul_2x32_64:
1224 bld.MUL(result, op[0], op[1]);
1225 break;
1226
1227 case nir_op_imul:
1228 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1229 bld.MUL(result, op[0], op[1]);
1230 break;
1231
1232 case nir_op_imul_high:
1233 case nir_op_umul_high:
1234 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1235 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1236 break;
1237
1238 case nir_op_idiv:
1239 case nir_op_udiv:
1240 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1241 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1242 break;
1243
1244 case nir_op_uadd_carry:
1245 unreachable("Should have been lowered by carry_to_arith().");
1246
1247 case nir_op_usub_borrow:
1248 unreachable("Should have been lowered by borrow_to_arith().");
1249
1250 case nir_op_umod:
1251 case nir_op_irem:
1252 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1253 * appears that our hardware just does the right thing for signed
1254 * remainder.
1255 */
1256 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1257 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1258 break;
1259
1260 case nir_op_imod: {
1261 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1262 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1263
1264 /* Math instructions don't support conditional mod */
1265 inst = bld.MOV(bld.null_reg_d(), result);
1266 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1267
1268 /* Now, we need to determine if signs of the sources are different.
1269 * When we XOR the sources, the top bit is 0 if they are the same and 1
1270 * if they are different. We can then use a conditional modifier to
1271 * turn that into a predicate. This leads us to an XOR.l instruction.
1272 *
1273 * Technically, according to the PRM, you're not allowed to use .l on a
1274 * XOR instruction. However, emperical experiments and Curro's reading
1275 * of the simulator source both indicate that it's safe.
1276 */
1277 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1278 inst = bld.XOR(tmp, op[0], op[1]);
1279 inst->predicate = BRW_PREDICATE_NORMAL;
1280 inst->conditional_mod = BRW_CONDITIONAL_L;
1281
1282 /* If the result of the initial remainder operation is non-zero and the
1283 * two sources have different signs, add in a copy of op[1] to get the
1284 * final integer modulus value.
1285 */
1286 inst = bld.ADD(result, result, op[1]);
1287 inst->predicate = BRW_PREDICATE_NORMAL;
1288 break;
1289 }
1290
1291 case nir_op_flt32:
1292 case nir_op_fge32:
1293 case nir_op_feq32:
1294 case nir_op_fne32: {
1295 fs_reg dest = result;
1296
1297 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1298 if (bit_size != 32)
1299 dest = bld.vgrf(op[0].type, 1);
1300
1301 brw_conditional_mod cond;
1302 switch (instr->op) {
1303 case nir_op_flt32:
1304 cond = BRW_CONDITIONAL_L;
1305 break;
1306 case nir_op_fge32:
1307 cond = BRW_CONDITIONAL_GE;
1308 break;
1309 case nir_op_feq32:
1310 cond = BRW_CONDITIONAL_Z;
1311 break;
1312 case nir_op_fne32:
1313 cond = BRW_CONDITIONAL_NZ;
1314 break;
1315 default:
1316 unreachable("bad opcode");
1317 }
1318
1319 bld.CMP(dest, op[0], op[1], cond);
1320
1321 if (bit_size > 32) {
1322 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1323 } else if(bit_size < 32) {
1324 /* When we convert the result to 32-bit we need to be careful and do
1325 * it as a signed conversion to get sign extension (for 32-bit true)
1326 */
1327 const brw_reg_type src_type =
1328 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1329
1330 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1331 }
1332 break;
1333 }
1334
1335 case nir_op_ilt32:
1336 case nir_op_ult32:
1337 case nir_op_ige32:
1338 case nir_op_uge32:
1339 case nir_op_ieq32:
1340 case nir_op_ine32: {
1341 fs_reg dest = result;
1342
1343 /* On Gen11 we have an additional issue being that src1 cannot be a byte
1344 * type. So we convert both operands for the comparison.
1345 */
1346 fs_reg temp_op[2];
1347 temp_op[0] = bld.fix_byte_src(op[0]);
1348 temp_op[1] = bld.fix_byte_src(op[1]);
1349
1350 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1351 if (bit_size != 32)
1352 dest = bld.vgrf(temp_op[0].type, 1);
1353
1354 brw_conditional_mod cond;
1355 switch (instr->op) {
1356 case nir_op_ilt32:
1357 case nir_op_ult32:
1358 cond = BRW_CONDITIONAL_L;
1359 break;
1360 case nir_op_ige32:
1361 case nir_op_uge32:
1362 cond = BRW_CONDITIONAL_GE;
1363 break;
1364 case nir_op_ieq32:
1365 cond = BRW_CONDITIONAL_Z;
1366 break;
1367 case nir_op_ine32:
1368 cond = BRW_CONDITIONAL_NZ;
1369 break;
1370 default:
1371 unreachable("bad opcode");
1372 }
1373 bld.CMP(dest, temp_op[0], temp_op[1], cond);
1374
1375 if (bit_size > 32) {
1376 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1377 } else if (bit_size < 32) {
1378 /* When we convert the result to 32-bit we need to be careful and do
1379 * it as a signed conversion to get sign extension (for 32-bit true)
1380 */
1381 const brw_reg_type src_type =
1382 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1383
1384 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1385 }
1386 break;
1387 }
1388
1389 case nir_op_inot:
1390 if (devinfo->gen >= 8) {
1391 nir_alu_instr *inot_src_instr = nir_src_as_alu_instr(instr->src[0].src);
1392
1393 if (inot_src_instr != NULL &&
1394 (inot_src_instr->op == nir_op_ior ||
1395 inot_src_instr->op == nir_op_ixor ||
1396 inot_src_instr->op == nir_op_iand) &&
1397 !inot_src_instr->src[0].abs &&
1398 !inot_src_instr->src[0].negate &&
1399 !inot_src_instr->src[1].abs &&
1400 !inot_src_instr->src[1].negate) {
1401 /* The sources of the source logical instruction are now the
1402 * sources of the instruction that will be generated.
1403 */
1404 prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1405 resolve_inot_sources(bld, inot_src_instr, op);
1406
1407 /* Smash all of the sources and destination to be signed. This
1408 * doesn't matter for the operation of the instruction, but cmod
1409 * propagation fails on unsigned sources with negation (due to
1410 * fs_inst::can_do_cmod returning false).
1411 */
1412 result.type =
1413 brw_type_for_nir_type(devinfo,
1414 (nir_alu_type)(nir_type_int |
1415 nir_dest_bit_size(instr->dest.dest)));
1416 op[0].type =
1417 brw_type_for_nir_type(devinfo,
1418 (nir_alu_type)(nir_type_int |
1419 nir_src_bit_size(inot_src_instr->src[0].src)));
1420 op[1].type =
1421 brw_type_for_nir_type(devinfo,
1422 (nir_alu_type)(nir_type_int |
1423 nir_src_bit_size(inot_src_instr->src[1].src)));
1424
1425 /* For XOR, only invert one of the sources. Arbitrarily choose
1426 * the first source.
1427 */
1428 op[0].negate = !op[0].negate;
1429 if (inot_src_instr->op != nir_op_ixor)
1430 op[1].negate = !op[1].negate;
1431
1432 switch (inot_src_instr->op) {
1433 case nir_op_ior:
1434 bld.AND(result, op[0], op[1]);
1435 return;
1436
1437 case nir_op_iand:
1438 bld.OR(result, op[0], op[1]);
1439 return;
1440
1441 case nir_op_ixor:
1442 bld.XOR(result, op[0], op[1]);
1443 return;
1444
1445 default:
1446 unreachable("impossible opcode");
1447 }
1448 }
1449 op[0] = resolve_source_modifiers(op[0]);
1450 }
1451 bld.NOT(result, op[0]);
1452 break;
1453 case nir_op_ixor:
1454 if (devinfo->gen >= 8) {
1455 resolve_inot_sources(bld, instr, op);
1456 }
1457 bld.XOR(result, op[0], op[1]);
1458 break;
1459 case nir_op_ior:
1460 if (devinfo->gen >= 8) {
1461 resolve_inot_sources(bld, instr, op);
1462 }
1463 bld.OR(result, op[0], op[1]);
1464 break;
1465 case nir_op_iand:
1466 if (devinfo->gen >= 8) {
1467 resolve_inot_sources(bld, instr, op);
1468 }
1469 bld.AND(result, op[0], op[1]);
1470 break;
1471
1472 case nir_op_fdot2:
1473 case nir_op_fdot3:
1474 case nir_op_fdot4:
1475 case nir_op_b32all_fequal2:
1476 case nir_op_b32all_iequal2:
1477 case nir_op_b32all_fequal3:
1478 case nir_op_b32all_iequal3:
1479 case nir_op_b32all_fequal4:
1480 case nir_op_b32all_iequal4:
1481 case nir_op_b32any_fnequal2:
1482 case nir_op_b32any_inequal2:
1483 case nir_op_b32any_fnequal3:
1484 case nir_op_b32any_inequal3:
1485 case nir_op_b32any_fnequal4:
1486 case nir_op_b32any_inequal4:
1487 unreachable("Lowered by nir_lower_alu_reductions");
1488
1489 case nir_op_fnoise1_1:
1490 case nir_op_fnoise1_2:
1491 case nir_op_fnoise1_3:
1492 case nir_op_fnoise1_4:
1493 case nir_op_fnoise2_1:
1494 case nir_op_fnoise2_2:
1495 case nir_op_fnoise2_3:
1496 case nir_op_fnoise2_4:
1497 case nir_op_fnoise3_1:
1498 case nir_op_fnoise3_2:
1499 case nir_op_fnoise3_3:
1500 case nir_op_fnoise3_4:
1501 case nir_op_fnoise4_1:
1502 case nir_op_fnoise4_2:
1503 case nir_op_fnoise4_3:
1504 case nir_op_fnoise4_4:
1505 unreachable("not reached: should be handled by lower_noise");
1506
1507 case nir_op_ldexp:
1508 unreachable("not reached: should be handled by ldexp_to_arith()");
1509
1510 case nir_op_fsqrt:
1511 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1512 inst->saturate = instr->dest.saturate;
1513 break;
1514
1515 case nir_op_frsq:
1516 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1517 inst->saturate = instr->dest.saturate;
1518 break;
1519
1520 case nir_op_i2b32:
1521 case nir_op_f2b32: {
1522 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1523 if (bit_size == 64) {
1524 /* two-argument instructions can't take 64-bit immediates */
1525 fs_reg zero;
1526 fs_reg tmp;
1527
1528 if (instr->op == nir_op_f2b32) {
1529 zero = vgrf(glsl_type::double_type);
1530 tmp = vgrf(glsl_type::double_type);
1531 bld.MOV(zero, setup_imm_df(bld, 0.0));
1532 } else {
1533 zero = vgrf(glsl_type::int64_t_type);
1534 tmp = vgrf(glsl_type::int64_t_type);
1535 bld.MOV(zero, brw_imm_q(0));
1536 }
1537
1538 /* A SIMD16 execution needs to be split in two instructions, so use
1539 * a vgrf instead of the flag register as dst so instruction splitting
1540 * works
1541 */
1542 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1543 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1544 } else {
1545 fs_reg zero;
1546 if (bit_size == 32) {
1547 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1548 } else {
1549 assert(bit_size == 16);
1550 zero = instr->op == nir_op_f2b32 ?
1551 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1552 }
1553 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1554 }
1555 break;
1556 }
1557
1558 case nir_op_ftrunc:
1559 inst = bld.RNDZ(result, op[0]);
1560 inst->saturate = instr->dest.saturate;
1561 break;
1562
1563 case nir_op_fceil: {
1564 op[0].negate = !op[0].negate;
1565 fs_reg temp = vgrf(glsl_type::float_type);
1566 bld.RNDD(temp, op[0]);
1567 temp.negate = true;
1568 inst = bld.MOV(result, temp);
1569 inst->saturate = instr->dest.saturate;
1570 break;
1571 }
1572 case nir_op_ffloor:
1573 inst = bld.RNDD(result, op[0]);
1574 inst->saturate = instr->dest.saturate;
1575 break;
1576 case nir_op_ffract:
1577 inst = bld.FRC(result, op[0]);
1578 inst->saturate = instr->dest.saturate;
1579 break;
1580 case nir_op_fround_even:
1581 inst = bld.RNDE(result, op[0]);
1582 inst->saturate = instr->dest.saturate;
1583 break;
1584
1585 case nir_op_fquantize2f16: {
1586 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1587 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1588 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1589
1590 /* The destination stride must be at least as big as the source stride. */
1591 tmp16.type = BRW_REGISTER_TYPE_W;
1592 tmp16.stride = 2;
1593
1594 /* Check for denormal */
1595 fs_reg abs_src0 = op[0];
1596 abs_src0.abs = true;
1597 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1598 BRW_CONDITIONAL_L);
1599 /* Get the appropriately signed zero */
1600 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1601 retype(op[0], BRW_REGISTER_TYPE_UD),
1602 brw_imm_ud(0x80000000));
1603 /* Do the actual F32 -> F16 -> F32 conversion */
1604 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1605 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1606 /* Select that or zero based on normal status */
1607 inst = bld.SEL(result, zero, tmp32);
1608 inst->predicate = BRW_PREDICATE_NORMAL;
1609 inst->saturate = instr->dest.saturate;
1610 break;
1611 }
1612
1613 case nir_op_imin:
1614 case nir_op_umin:
1615 case nir_op_fmin:
1616 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1617 inst->saturate = instr->dest.saturate;
1618 break;
1619
1620 case nir_op_imax:
1621 case nir_op_umax:
1622 case nir_op_fmax:
1623 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1624 inst->saturate = instr->dest.saturate;
1625 break;
1626
1627 case nir_op_pack_snorm_2x16:
1628 case nir_op_pack_snorm_4x8:
1629 case nir_op_pack_unorm_2x16:
1630 case nir_op_pack_unorm_4x8:
1631 case nir_op_unpack_snorm_2x16:
1632 case nir_op_unpack_snorm_4x8:
1633 case nir_op_unpack_unorm_2x16:
1634 case nir_op_unpack_unorm_4x8:
1635 case nir_op_unpack_half_2x16:
1636 case nir_op_pack_half_2x16:
1637 unreachable("not reached: should be handled by lower_packing_builtins");
1638
1639 case nir_op_unpack_half_2x16_split_x:
1640 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1641 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1642 inst->saturate = instr->dest.saturate;
1643 break;
1644 case nir_op_unpack_half_2x16_split_y:
1645 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1646 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1647 inst->saturate = instr->dest.saturate;
1648 break;
1649
1650 case nir_op_pack_64_2x32_split:
1651 case nir_op_pack_32_2x16_split:
1652 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1653 break;
1654
1655 case nir_op_unpack_64_2x32_split_x:
1656 case nir_op_unpack_64_2x32_split_y: {
1657 if (instr->op == nir_op_unpack_64_2x32_split_x)
1658 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1659 else
1660 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1661 break;
1662 }
1663
1664 case nir_op_unpack_32_2x16_split_x:
1665 case nir_op_unpack_32_2x16_split_y: {
1666 if (instr->op == nir_op_unpack_32_2x16_split_x)
1667 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1668 else
1669 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1670 break;
1671 }
1672
1673 case nir_op_fpow:
1674 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1675 inst->saturate = instr->dest.saturate;
1676 break;
1677
1678 case nir_op_bitfield_reverse:
1679 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1680 bld.BFREV(result, op[0]);
1681 break;
1682
1683 case nir_op_bit_count:
1684 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1685 bld.CBIT(result, op[0]);
1686 break;
1687
1688 case nir_op_ufind_msb: {
1689 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1690 emit_find_msb_using_lzd(bld, result, op[0], false);
1691 break;
1692 }
1693
1694 case nir_op_ifind_msb: {
1695 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1696
1697 if (devinfo->gen < 7) {
1698 emit_find_msb_using_lzd(bld, result, op[0], true);
1699 } else {
1700 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1701
1702 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1703 * count from the LSB side. If FBH didn't return an error
1704 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1705 * count into an LSB count.
1706 */
1707 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1708
1709 inst = bld.ADD(result, result, brw_imm_d(31));
1710 inst->predicate = BRW_PREDICATE_NORMAL;
1711 inst->src[0].negate = true;
1712 }
1713 break;
1714 }
1715
1716 case nir_op_find_lsb:
1717 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1718
1719 if (devinfo->gen < 7) {
1720 fs_reg temp = vgrf(glsl_type::int_type);
1721
1722 /* (x & -x) generates a value that consists of only the LSB of x.
1723 * For all powers of 2, findMSB(y) == findLSB(y).
1724 */
1725 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1726 fs_reg negated_src = src;
1727
1728 /* One must be negated, and the other must be non-negated. It
1729 * doesn't matter which is which.
1730 */
1731 negated_src.negate = true;
1732 src.negate = false;
1733
1734 bld.AND(temp, src, negated_src);
1735 emit_find_msb_using_lzd(bld, result, temp, false);
1736 } else {
1737 bld.FBL(result, op[0]);
1738 }
1739 break;
1740
1741 case nir_op_ubitfield_extract:
1742 case nir_op_ibitfield_extract:
1743 unreachable("should have been lowered");
1744 case nir_op_ubfe:
1745 case nir_op_ibfe:
1746 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1747 bld.BFE(result, op[2], op[1], op[0]);
1748 break;
1749 case nir_op_bfm:
1750 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1751 bld.BFI1(result, op[0], op[1]);
1752 break;
1753 case nir_op_bfi:
1754 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1755 bld.BFI2(result, op[0], op[1], op[2]);
1756 break;
1757
1758 case nir_op_bitfield_insert:
1759 unreachable("not reached: should have been lowered");
1760
1761 case nir_op_ishl:
1762 bld.SHL(result, op[0], op[1]);
1763 break;
1764 case nir_op_ishr:
1765 bld.ASR(result, op[0], op[1]);
1766 break;
1767 case nir_op_ushr:
1768 bld.SHR(result, op[0], op[1]);
1769 break;
1770
1771 case nir_op_urol:
1772 bld.ROL(result, op[0], op[1]);
1773 break;
1774 case nir_op_uror:
1775 bld.ROR(result, op[0], op[1]);
1776 break;
1777
1778 case nir_op_pack_half_2x16_split:
1779 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1780 break;
1781
1782 case nir_op_ffma:
1783 inst = bld.MAD(result, op[2], op[1], op[0]);
1784 inst->saturate = instr->dest.saturate;
1785 break;
1786
1787 case nir_op_flrp:
1788 inst = bld.LRP(result, op[0], op[1], op[2]);
1789 inst->saturate = instr->dest.saturate;
1790 break;
1791
1792 case nir_op_b32csel:
1793 if (optimize_frontfacing_ternary(instr, result))
1794 return;
1795
1796 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1797 inst = bld.SEL(result, op[1], op[2]);
1798 inst->predicate = BRW_PREDICATE_NORMAL;
1799 break;
1800
1801 case nir_op_extract_u8:
1802 case nir_op_extract_i8: {
1803 unsigned byte = nir_src_as_uint(instr->src[1].src);
1804
1805 /* The PRMs say:
1806 *
1807 * BDW+
1808 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1809 * Use two instructions and a word or DWord intermediate integer type.
1810 */
1811 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1812 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1813
1814 if (instr->op == nir_op_extract_i8) {
1815 /* If we need to sign extend, extract to a word first */
1816 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1817 bld.MOV(w_temp, subscript(op[0], type, byte));
1818 bld.MOV(result, w_temp);
1819 } else if (byte & 1) {
1820 /* Extract the high byte from the word containing the desired byte
1821 * offset.
1822 */
1823 bld.SHR(result,
1824 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1825 brw_imm_uw(8));
1826 } else {
1827 /* Otherwise use an AND with 0xff and a word type */
1828 bld.AND(result,
1829 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1830 brw_imm_uw(0xff));
1831 }
1832 } else {
1833 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1834 bld.MOV(result, subscript(op[0], type, byte));
1835 }
1836 break;
1837 }
1838
1839 case nir_op_extract_u16:
1840 case nir_op_extract_i16: {
1841 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1842 unsigned word = nir_src_as_uint(instr->src[1].src);
1843 bld.MOV(result, subscript(op[0], type, word));
1844 break;
1845 }
1846
1847 default:
1848 unreachable("unhandled instruction");
1849 }
1850
1851 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1852 * to sign extend the low bit to 0/~0
1853 */
1854 if (devinfo->gen <= 5 &&
1855 !result.is_null() &&
1856 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1857 fs_reg masked = vgrf(glsl_type::int_type);
1858 bld.AND(masked, result, brw_imm_d(1));
1859 masked.negate = true;
1860 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1861 }
1862 }
1863
1864 void
1865 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1866 nir_load_const_instr *instr)
1867 {
1868 const brw_reg_type reg_type =
1869 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1870 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1871
1872 switch (instr->def.bit_size) {
1873 case 8:
1874 for (unsigned i = 0; i < instr->def.num_components; i++)
1875 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value[i].i8));
1876 break;
1877
1878 case 16:
1879 for (unsigned i = 0; i < instr->def.num_components; i++)
1880 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value[i].i16));
1881 break;
1882
1883 case 32:
1884 for (unsigned i = 0; i < instr->def.num_components; i++)
1885 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value[i].i32));
1886 break;
1887
1888 case 64:
1889 assert(devinfo->gen >= 7);
1890 if (devinfo->gen == 7) {
1891 /* We don't get 64-bit integer types until gen8 */
1892 for (unsigned i = 0; i < instr->def.num_components; i++) {
1893 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1894 setup_imm_df(bld, instr->value[i].f64));
1895 }
1896 } else {
1897 for (unsigned i = 0; i < instr->def.num_components; i++)
1898 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value[i].i64));
1899 }
1900 break;
1901
1902 default:
1903 unreachable("Invalid bit size");
1904 }
1905
1906 nir_ssa_values[instr->def.index] = reg;
1907 }
1908
1909 fs_reg
1910 fs_visitor::get_nir_src(const nir_src &src)
1911 {
1912 fs_reg reg;
1913 if (src.is_ssa) {
1914 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1915 const brw_reg_type reg_type =
1916 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1917 reg = bld.vgrf(reg_type, src.ssa->num_components);
1918 } else {
1919 reg = nir_ssa_values[src.ssa->index];
1920 }
1921 } else {
1922 /* We don't handle indirects on locals */
1923 assert(src.reg.indirect == NULL);
1924 reg = offset(nir_locals[src.reg.reg->index], bld,
1925 src.reg.base_offset * src.reg.reg->num_components);
1926 }
1927
1928 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1929 /* The only 64-bit type available on gen7 is DF, so use that. */
1930 reg.type = BRW_REGISTER_TYPE_DF;
1931 } else {
1932 /* To avoid floating-point denorm flushing problems, set the type by
1933 * default to an integer type - instructions that need floating point
1934 * semantics will set this to F if they need to
1935 */
1936 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1937 BRW_REGISTER_TYPE_D);
1938 }
1939
1940 return reg;
1941 }
1942
1943 /**
1944 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1945 *
1946 * This function should not be called on any value which may be 64 bits.
1947 * We could theoretically support 64-bit on gen8+ but we choose not to
1948 * because it wouldn't work in general (no gen7 support) and there are
1949 * enough restrictions in 64-bit immediates that you can't take the return
1950 * value and treat it the same as the result of get_nir_src().
1951 */
1952 fs_reg
1953 fs_visitor::get_nir_src_imm(const nir_src &src)
1954 {
1955 assert(nir_src_bit_size(src) == 32);
1956 return nir_src_is_const(src) ?
1957 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
1958 }
1959
1960 fs_reg
1961 fs_visitor::get_nir_dest(const nir_dest &dest)
1962 {
1963 if (dest.is_ssa) {
1964 const brw_reg_type reg_type =
1965 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1966 dest.ssa.bit_size == 8 ?
1967 BRW_REGISTER_TYPE_D :
1968 BRW_REGISTER_TYPE_F);
1969 nir_ssa_values[dest.ssa.index] =
1970 bld.vgrf(reg_type, dest.ssa.num_components);
1971 bld.UNDEF(nir_ssa_values[dest.ssa.index]);
1972 return nir_ssa_values[dest.ssa.index];
1973 } else {
1974 /* We don't handle indirects on locals */
1975 assert(dest.reg.indirect == NULL);
1976 return offset(nir_locals[dest.reg.reg->index], bld,
1977 dest.reg.base_offset * dest.reg.reg->num_components);
1978 }
1979 }
1980
1981 void
1982 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1983 unsigned wr_mask)
1984 {
1985 for (unsigned i = 0; i < 4; i++) {
1986 if (!((wr_mask >> i) & 1))
1987 continue;
1988
1989 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1990 new_inst->dst = offset(new_inst->dst, bld, i);
1991 for (unsigned j = 0; j < new_inst->sources; j++)
1992 if (new_inst->src[j].file == VGRF)
1993 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1994
1995 bld.emit(new_inst);
1996 }
1997 }
1998
1999 static fs_inst *
2000 emit_pixel_interpolater_send(const fs_builder &bld,
2001 enum opcode opcode,
2002 const fs_reg &dst,
2003 const fs_reg &src,
2004 const fs_reg &desc,
2005 glsl_interp_mode interpolation)
2006 {
2007 struct brw_wm_prog_data *wm_prog_data =
2008 brw_wm_prog_data(bld.shader->stage_prog_data);
2009
2010 fs_inst *inst = bld.emit(opcode, dst, src, desc);
2011 /* 2 floats per slot returned */
2012 inst->size_written = 2 * dst.component_size(inst->exec_size);
2013 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
2014
2015 wm_prog_data->pulls_bary = true;
2016
2017 return inst;
2018 }
2019
2020 /**
2021 * Computes 1 << x, given a D/UD register containing some value x.
2022 */
2023 static fs_reg
2024 intexp2(const fs_builder &bld, const fs_reg &x)
2025 {
2026 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
2027
2028 fs_reg result = bld.vgrf(x.type, 1);
2029 fs_reg one = bld.vgrf(x.type, 1);
2030
2031 bld.MOV(one, retype(brw_imm_d(1), one.type));
2032 bld.SHL(result, one, x);
2033 return result;
2034 }
2035
2036 void
2037 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
2038 {
2039 assert(stage == MESA_SHADER_GEOMETRY);
2040
2041 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2042
2043 if (gs_compile->control_data_header_size_bits == 0)
2044 return;
2045
2046 /* We can only do EndPrimitive() functionality when the control data
2047 * consists of cut bits. Fortunately, the only time it isn't is when the
2048 * output type is points, in which case EndPrimitive() is a no-op.
2049 */
2050 if (gs_prog_data->control_data_format !=
2051 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
2052 return;
2053 }
2054
2055 /* Cut bits use one bit per vertex. */
2056 assert(gs_compile->control_data_bits_per_vertex == 1);
2057
2058 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2059 vertex_count.type = BRW_REGISTER_TYPE_UD;
2060
2061 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
2062 * vertex n, 0 otherwise. So all we need to do here is mark bit
2063 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
2064 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
2065 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
2066 *
2067 * Note that if EndPrimitive() is called before emitting any vertices, this
2068 * will cause us to set bit 31 of the control_data_bits register to 1.
2069 * That's fine because:
2070 *
2071 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
2072 * output, so the hardware will ignore cut bit 31.
2073 *
2074 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
2075 * last vertex, so setting cut bit 31 has no effect (since the primitive
2076 * is automatically ended when the GS terminates).
2077 *
2078 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
2079 * control_data_bits register to 0 when the first vertex is emitted.
2080 */
2081
2082 const fs_builder abld = bld.annotate("end primitive");
2083
2084 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
2085 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2086 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2087 fs_reg mask = intexp2(abld, prev_count);
2088 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2089 * attention to the lower 5 bits of its second source argument, so on this
2090 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
2091 * ((vertex_count - 1) % 32).
2092 */
2093 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2094 }
2095
2096 void
2097 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
2098 {
2099 assert(stage == MESA_SHADER_GEOMETRY);
2100 assert(gs_compile->control_data_bits_per_vertex != 0);
2101
2102 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2103
2104 const fs_builder abld = bld.annotate("emit control data bits");
2105 const fs_builder fwa_bld = bld.exec_all();
2106
2107 /* We use a single UD register to accumulate control data bits (32 bits
2108 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
2109 * at a time.
2110 *
2111 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
2112 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
2113 * use the Channel Mask phase to enable/disable which DWord within that
2114 * group to write. (Remember, different SIMD8 channels may have emitted
2115 * different numbers of vertices, so we may need per-slot offsets.)
2116 *
2117 * Channel masking presents an annoying problem: we may have to replicate
2118 * the data up to 4 times:
2119 *
2120 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
2121 *
2122 * To avoid penalizing shaders that emit a small number of vertices, we
2123 * can avoid these sometimes: if the size of the control data header is
2124 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
2125 * land in the same 128-bit group, so we can skip per-slot offsets.
2126 *
2127 * Similarly, if the control data header is <= 32 bits, there is only one
2128 * DWord, so we can skip channel masks.
2129 */
2130 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
2131
2132 fs_reg channel_mask, per_slot_offset;
2133
2134 if (gs_compile->control_data_header_size_bits > 32) {
2135 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2136 channel_mask = vgrf(glsl_type::uint_type);
2137 }
2138
2139 if (gs_compile->control_data_header_size_bits > 128) {
2140 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
2141 per_slot_offset = vgrf(glsl_type::uint_type);
2142 }
2143
2144 /* Figure out which DWord we're trying to write to using the formula:
2145 *
2146 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
2147 *
2148 * Since bits_per_vertex is a power of two, and is known at compile
2149 * time, this can be optimized to:
2150 *
2151 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
2152 */
2153 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
2154 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2155 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2156 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2157 unsigned log2_bits_per_vertex =
2158 util_last_bit(gs_compile->control_data_bits_per_vertex);
2159 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
2160
2161 if (per_slot_offset.file != BAD_FILE) {
2162 /* Set the per-slot offset to dword_index / 4, so that we'll write to
2163 * the appropriate OWord within the control data header.
2164 */
2165 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
2166 }
2167
2168 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
2169 * write to the appropriate DWORD within the OWORD.
2170 */
2171 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2172 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
2173 channel_mask = intexp2(fwa_bld, channel);
2174 /* Then the channel masks need to be in bits 23:16. */
2175 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2176 }
2177
2178 /* Store the control data bits in the message payload and send it. */
2179 unsigned mlen = 2;
2180 if (channel_mask.file != BAD_FILE)
2181 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2182 if (per_slot_offset.file != BAD_FILE)
2183 mlen++;
2184
2185 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2186 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2187 unsigned i = 0;
2188 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2189 if (per_slot_offset.file != BAD_FILE)
2190 sources[i++] = per_slot_offset;
2191 if (channel_mask.file != BAD_FILE)
2192 sources[i++] = channel_mask;
2193 while (i < mlen) {
2194 sources[i++] = this->control_data_bits;
2195 }
2196
2197 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2198 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2199 inst->mlen = mlen;
2200 /* We need to increment Global Offset by 256-bits to make room for
2201 * Broadwell's extra "Vertex Count" payload at the beginning of the
2202 * URB entry. Since this is an OWord message, Global Offset is counted
2203 * in 128-bit units, so we must set it to 2.
2204 */
2205 if (gs_prog_data->static_vertex_count == -1)
2206 inst->offset = 2;
2207 }
2208
2209 void
2210 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2211 unsigned stream_id)
2212 {
2213 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2214
2215 /* Note: we are calling this *before* increasing vertex_count, so
2216 * this->vertex_count == vertex_count - 1 in the formula above.
2217 */
2218
2219 /* Stream mode uses 2 bits per vertex */
2220 assert(gs_compile->control_data_bits_per_vertex == 2);
2221
2222 /* Must be a valid stream */
2223 assert(stream_id < MAX_VERTEX_STREAMS);
2224
2225 /* Control data bits are initialized to 0 so we don't have to set any
2226 * bits when sending vertices to stream 0.
2227 */
2228 if (stream_id == 0)
2229 return;
2230
2231 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2232
2233 /* reg::sid = stream_id */
2234 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2235 abld.MOV(sid, brw_imm_ud(stream_id));
2236
2237 /* reg:shift_count = 2 * (vertex_count - 1) */
2238 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2239 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2240
2241 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2242 * attention to the lower 5 bits of its second source argument, so on this
2243 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2244 * stream_id << ((2 * (vertex_count - 1)) % 32).
2245 */
2246 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2247 abld.SHL(mask, sid, shift_count);
2248 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2249 }
2250
2251 void
2252 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2253 unsigned stream_id)
2254 {
2255 assert(stage == MESA_SHADER_GEOMETRY);
2256
2257 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2258
2259 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2260 vertex_count.type = BRW_REGISTER_TYPE_UD;
2261
2262 /* Haswell and later hardware ignores the "Render Stream Select" bits
2263 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2264 * and instead sends all primitives down the pipeline for rasterization.
2265 * If the SOL stage is enabled, "Render Stream Select" is honored and
2266 * primitives bound to non-zero streams are discarded after stream output.
2267 *
2268 * Since the only purpose of primives sent to non-zero streams is to
2269 * be recorded by transform feedback, we can simply discard all geometry
2270 * bound to these streams when transform feedback is disabled.
2271 */
2272 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2273 return;
2274
2275 /* If we're outputting 32 control data bits or less, then we can wait
2276 * until the shader is over to output them all. Otherwise we need to
2277 * output them as we go. Now is the time to do it, since we're about to
2278 * output the vertex_count'th vertex, so it's guaranteed that the
2279 * control data bits associated with the (vertex_count - 1)th vertex are
2280 * correct.
2281 */
2282 if (gs_compile->control_data_header_size_bits > 32) {
2283 const fs_builder abld =
2284 bld.annotate("emit vertex: emit control data bits");
2285
2286 /* Only emit control data bits if we've finished accumulating a batch
2287 * of 32 bits. This is the case when:
2288 *
2289 * (vertex_count * bits_per_vertex) % 32 == 0
2290 *
2291 * (in other words, when the last 5 bits of vertex_count *
2292 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2293 * integer n (which is always the case, since bits_per_vertex is
2294 * always 1 or 2), this is equivalent to requiring that the last 5-n
2295 * bits of vertex_count are 0:
2296 *
2297 * vertex_count & (2^(5-n) - 1) == 0
2298 *
2299 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2300 * equivalent to:
2301 *
2302 * vertex_count & (32 / bits_per_vertex - 1) == 0
2303 *
2304 * TODO: If vertex_count is an immediate, we could do some of this math
2305 * at compile time...
2306 */
2307 fs_inst *inst =
2308 abld.AND(bld.null_reg_d(), vertex_count,
2309 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2310 inst->conditional_mod = BRW_CONDITIONAL_Z;
2311
2312 abld.IF(BRW_PREDICATE_NORMAL);
2313 /* If vertex_count is 0, then no control data bits have been
2314 * accumulated yet, so we can skip emitting them.
2315 */
2316 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2317 BRW_CONDITIONAL_NEQ);
2318 abld.IF(BRW_PREDICATE_NORMAL);
2319 emit_gs_control_data_bits(vertex_count);
2320 abld.emit(BRW_OPCODE_ENDIF);
2321
2322 /* Reset control_data_bits to 0 so we can start accumulating a new
2323 * batch.
2324 *
2325 * Note: in the case where vertex_count == 0, this neutralizes the
2326 * effect of any call to EndPrimitive() that the shader may have
2327 * made before outputting its first vertex.
2328 */
2329 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2330 inst->force_writemask_all = true;
2331 abld.emit(BRW_OPCODE_ENDIF);
2332 }
2333
2334 emit_urb_writes(vertex_count);
2335
2336 /* In stream mode we have to set control data bits for all vertices
2337 * unless we have disabled control data bits completely (which we do
2338 * do for GL_POINTS outputs that don't use streams).
2339 */
2340 if (gs_compile->control_data_header_size_bits > 0 &&
2341 gs_prog_data->control_data_format ==
2342 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2343 set_gs_stream_control_data_bits(vertex_count, stream_id);
2344 }
2345 }
2346
2347 void
2348 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2349 const nir_src &vertex_src,
2350 unsigned base_offset,
2351 const nir_src &offset_src,
2352 unsigned num_components,
2353 unsigned first_component)
2354 {
2355 assert(type_sz(dst.type) == 4);
2356 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2357 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2358
2359 /* TODO: figure out push input layout for invocations == 1 */
2360 if (gs_prog_data->invocations == 1 &&
2361 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2362 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2363 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2364 nir_src_as_uint(vertex_src) * push_reg_count;
2365 for (unsigned i = 0; i < num_components; i++) {
2366 bld.MOV(offset(dst, bld, i),
2367 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2368 }
2369 return;
2370 }
2371
2372 /* Resort to the pull model. Ensure the VUE handles are provided. */
2373 assert(gs_prog_data->base.include_vue_handles);
2374
2375 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2376 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2377
2378 if (gs_prog_data->invocations == 1) {
2379 if (nir_src_is_const(vertex_src)) {
2380 /* The vertex index is constant; just select the proper URB handle. */
2381 icp_handle =
2382 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2383 BRW_REGISTER_TYPE_UD);
2384 } else {
2385 /* The vertex index is non-constant. We need to use indirect
2386 * addressing to fetch the proper URB handle.
2387 *
2388 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2389 * indicating that channel <n> should read the handle from
2390 * DWord <n>. We convert that to bytes by multiplying by 4.
2391 *
2392 * Next, we convert the vertex index to bytes by multiplying
2393 * by 32 (shifting by 5), and add the two together. This is
2394 * the final indirect byte offset.
2395 */
2396 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2397 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2398 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2399 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2400
2401 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2402 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2403 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2404 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2405 /* Convert vertex_index to bytes (multiply by 32) */
2406 bld.SHL(vertex_offset_bytes,
2407 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2408 brw_imm_ud(5u));
2409 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2410
2411 /* Use first_icp_handle as the base offset. There is one register
2412 * of URB handles per vertex, so inform the register allocator that
2413 * we might read up to nir->info.gs.vertices_in registers.
2414 */
2415 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2416 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2417 fs_reg(icp_offset_bytes),
2418 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2419 }
2420 } else {
2421 assert(gs_prog_data->invocations > 1);
2422
2423 if (nir_src_is_const(vertex_src)) {
2424 unsigned vertex = nir_src_as_uint(vertex_src);
2425 assert(devinfo->gen >= 9 || vertex <= 5);
2426 bld.MOV(icp_handle,
2427 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2428 BRW_REGISTER_TYPE_UD));
2429 } else {
2430 /* The vertex index is non-constant. We need to use indirect
2431 * addressing to fetch the proper URB handle.
2432 *
2433 */
2434 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2435
2436 /* Convert vertex_index to bytes (multiply by 4) */
2437 bld.SHL(icp_offset_bytes,
2438 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2439 brw_imm_ud(2u));
2440
2441 /* Use first_icp_handle as the base offset. There is one DWord
2442 * of URB handles per vertex, so inform the register allocator that
2443 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2444 */
2445 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2446 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2447 fs_reg(icp_offset_bytes),
2448 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2449 REG_SIZE));
2450 }
2451 }
2452
2453 fs_inst *inst;
2454 fs_reg indirect_offset = get_nir_src(offset_src);
2455
2456 if (nir_src_is_const(offset_src)) {
2457 /* Constant indexing - use global offset. */
2458 if (first_component != 0) {
2459 unsigned read_components = num_components + first_component;
2460 fs_reg tmp = bld.vgrf(dst.type, read_components);
2461 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2462 inst->size_written = read_components *
2463 tmp.component_size(inst->exec_size);
2464 for (unsigned i = 0; i < num_components; i++) {
2465 bld.MOV(offset(dst, bld, i),
2466 offset(tmp, bld, i + first_component));
2467 }
2468 } else {
2469 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2470 inst->size_written = num_components *
2471 dst.component_size(inst->exec_size);
2472 }
2473 inst->offset = base_offset + nir_src_as_uint(offset_src);
2474 inst->mlen = 1;
2475 } else {
2476 /* Indirect indexing - use per-slot offsets as well. */
2477 const fs_reg srcs[] = { icp_handle, indirect_offset };
2478 unsigned read_components = num_components + first_component;
2479 fs_reg tmp = bld.vgrf(dst.type, read_components);
2480 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2481 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2482 if (first_component != 0) {
2483 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2484 payload);
2485 inst->size_written = read_components *
2486 tmp.component_size(inst->exec_size);
2487 for (unsigned i = 0; i < num_components; i++) {
2488 bld.MOV(offset(dst, bld, i),
2489 offset(tmp, bld, i + first_component));
2490 }
2491 } else {
2492 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
2493 inst->size_written = num_components *
2494 dst.component_size(inst->exec_size);
2495 }
2496 inst->offset = base_offset;
2497 inst->mlen = 2;
2498 }
2499 }
2500
2501 fs_reg
2502 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2503 {
2504 nir_src *offset_src = nir_get_io_offset_src(instr);
2505
2506 if (nir_src_is_const(*offset_src)) {
2507 /* The only constant offset we should find is 0. brw_nir.c's
2508 * add_const_offset_to_base() will fold other constant offsets
2509 * into instr->const_index[0].
2510 */
2511 assert(nir_src_as_uint(*offset_src) == 0);
2512 return fs_reg();
2513 }
2514
2515 return get_nir_src(*offset_src);
2516 }
2517
2518 void
2519 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2520 nir_intrinsic_instr *instr)
2521 {
2522 assert(stage == MESA_SHADER_VERTEX);
2523
2524 fs_reg dest;
2525 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2526 dest = get_nir_dest(instr->dest);
2527
2528 switch (instr->intrinsic) {
2529 case nir_intrinsic_load_vertex_id:
2530 case nir_intrinsic_load_base_vertex:
2531 unreachable("should be lowered by nir_lower_system_values()");
2532
2533 case nir_intrinsic_load_input: {
2534 assert(nir_dest_bit_size(instr->dest) == 32);
2535 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2536 src = offset(src, bld, nir_intrinsic_component(instr));
2537 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2538
2539 for (unsigned i = 0; i < instr->num_components; i++)
2540 bld.MOV(offset(dest, bld, i), offset(src, bld, i));
2541 break;
2542 }
2543
2544 case nir_intrinsic_load_vertex_id_zero_base:
2545 case nir_intrinsic_load_instance_id:
2546 case nir_intrinsic_load_base_instance:
2547 case nir_intrinsic_load_draw_id:
2548 case nir_intrinsic_load_first_vertex:
2549 case nir_intrinsic_load_is_indexed_draw:
2550 unreachable("lowered by brw_nir_lower_vs_inputs");
2551
2552 default:
2553 nir_emit_intrinsic(bld, instr);
2554 break;
2555 }
2556 }
2557
2558 fs_reg
2559 fs_visitor::get_tcs_single_patch_icp_handle(const fs_builder &bld,
2560 nir_intrinsic_instr *instr)
2561 {
2562 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2563 const nir_src &vertex_src = instr->src[0];
2564 nir_intrinsic_instr *vertex_intrin = nir_src_as_intrinsic(vertex_src);
2565 fs_reg icp_handle;
2566
2567 if (nir_src_is_const(vertex_src)) {
2568 /* Emit a MOV to resolve <0,1,0> regioning. */
2569 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2570 unsigned vertex = nir_src_as_uint(vertex_src);
2571 bld.MOV(icp_handle,
2572 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2573 BRW_REGISTER_TYPE_UD));
2574 } else if (tcs_prog_data->instances == 1 && vertex_intrin &&
2575 vertex_intrin->intrinsic == nir_intrinsic_load_invocation_id) {
2576 /* For the common case of only 1 instance, an array index of
2577 * gl_InvocationID means reading g1. Skip all the indirect work.
2578 */
2579 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2580 } else {
2581 /* The vertex index is non-constant. We need to use indirect
2582 * addressing to fetch the proper URB handle.
2583 */
2584 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2585
2586 /* Each ICP handle is a single DWord (4 bytes) */
2587 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2588 bld.SHL(vertex_offset_bytes,
2589 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2590 brw_imm_ud(2u));
2591
2592 /* Start at g1. We might read up to 4 registers. */
2593 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2594 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2595 brw_imm_ud(4 * REG_SIZE));
2596 }
2597
2598 return icp_handle;
2599 }
2600
2601 fs_reg
2602 fs_visitor::get_tcs_eight_patch_icp_handle(const fs_builder &bld,
2603 nir_intrinsic_instr *instr)
2604 {
2605 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2606 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2607 const nir_src &vertex_src = instr->src[0];
2608
2609 unsigned first_icp_handle = tcs_prog_data->include_primitive_id ? 3 : 2;
2610
2611 if (nir_src_is_const(vertex_src)) {
2612 return fs_reg(retype(brw_vec8_grf(first_icp_handle +
2613 nir_src_as_uint(vertex_src), 0),
2614 BRW_REGISTER_TYPE_UD));
2615 }
2616
2617 /* The vertex index is non-constant. We need to use indirect
2618 * addressing to fetch the proper URB handle.
2619 *
2620 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2621 * indicating that channel <n> should read the handle from
2622 * DWord <n>. We convert that to bytes by multiplying by 4.
2623 *
2624 * Next, we convert the vertex index to bytes by multiplying
2625 * by 32 (shifting by 5), and add the two together. This is
2626 * the final indirect byte offset.
2627 */
2628 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2629 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2630 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2631 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2632 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2633
2634 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2635 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2636 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2637 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2638 /* Convert vertex_index to bytes (multiply by 32) */
2639 bld.SHL(vertex_offset_bytes,
2640 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2641 brw_imm_ud(5u));
2642 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2643
2644 /* Use first_icp_handle as the base offset. There is one register
2645 * of URB handles per vertex, so inform the register allocator that
2646 * we might read up to nir->info.gs.vertices_in registers.
2647 */
2648 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2649 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2650 icp_offset_bytes, brw_imm_ud(tcs_key->input_vertices * REG_SIZE));
2651
2652 return icp_handle;
2653 }
2654
2655 struct brw_reg
2656 fs_visitor::get_tcs_output_urb_handle()
2657 {
2658 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
2659
2660 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
2661 return retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2662 } else {
2663 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
2664 return retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2665 }
2666 }
2667
2668 void
2669 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2670 nir_intrinsic_instr *instr)
2671 {
2672 assert(stage == MESA_SHADER_TESS_CTRL);
2673 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2674 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2675 struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
2676
2677 bool eight_patch =
2678 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH;
2679
2680 fs_reg dst;
2681 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2682 dst = get_nir_dest(instr->dest);
2683
2684 switch (instr->intrinsic) {
2685 case nir_intrinsic_load_primitive_id:
2686 bld.MOV(dst, fs_reg(eight_patch ? brw_vec8_grf(2, 0)
2687 : brw_vec1_grf(0, 1)));
2688 break;
2689 case nir_intrinsic_load_invocation_id:
2690 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2691 break;
2692 case nir_intrinsic_load_patch_vertices_in:
2693 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2694 brw_imm_d(tcs_key->input_vertices));
2695 break;
2696
2697 case nir_intrinsic_barrier: {
2698 if (tcs_prog_data->instances == 1)
2699 break;
2700
2701 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2702 fs_reg m0_2 = component(m0, 2);
2703
2704 const fs_builder chanbld = bld.exec_all().group(1, 0);
2705
2706 /* Zero the message header */
2707 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2708
2709 if (devinfo->gen < 11) {
2710 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2711 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2712 brw_imm_ud(INTEL_MASK(16, 13)));
2713
2714 /* Shift it up to bits 27:24. */
2715 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2716 } else {
2717 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2718 brw_imm_ud(INTEL_MASK(30, 24)));
2719 }
2720
2721 /* Set the Barrier Count and the enable bit */
2722 if (devinfo->gen < 11) {
2723 chanbld.OR(m0_2, m0_2,
2724 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2725 } else {
2726 chanbld.OR(m0_2, m0_2,
2727 brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
2728 }
2729
2730 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2731 break;
2732 }
2733
2734 case nir_intrinsic_load_input:
2735 unreachable("nir_lower_io should never give us these.");
2736 break;
2737
2738 case nir_intrinsic_load_per_vertex_input: {
2739 assert(nir_dest_bit_size(instr->dest) == 32);
2740 fs_reg indirect_offset = get_indirect_offset(instr);
2741 unsigned imm_offset = instr->const_index[0];
2742 fs_inst *inst;
2743
2744 fs_reg icp_handle =
2745 eight_patch ? get_tcs_eight_patch_icp_handle(bld, instr)
2746 : get_tcs_single_patch_icp_handle(bld, instr);
2747
2748 /* We can only read two double components with each URB read, so
2749 * we send two read messages in that case, each one loading up to
2750 * two double components.
2751 */
2752 unsigned num_components = instr->num_components;
2753 unsigned first_component = nir_intrinsic_component(instr);
2754
2755 if (indirect_offset.file == BAD_FILE) {
2756 /* Constant indexing - use global offset. */
2757 if (first_component != 0) {
2758 unsigned read_components = num_components + first_component;
2759 fs_reg tmp = bld.vgrf(dst.type, read_components);
2760 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2761 for (unsigned i = 0; i < num_components; i++) {
2762 bld.MOV(offset(dst, bld, i),
2763 offset(tmp, bld, i + first_component));
2764 }
2765 } else {
2766 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2767 }
2768 inst->offset = imm_offset;
2769 inst->mlen = 1;
2770 } else {
2771 /* Indirect indexing - use per-slot offsets as well. */
2772 const fs_reg srcs[] = { icp_handle, indirect_offset };
2773 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2774 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2775 if (first_component != 0) {
2776 unsigned read_components = num_components + first_component;
2777 fs_reg tmp = bld.vgrf(dst.type, read_components);
2778 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2779 payload);
2780 for (unsigned i = 0; i < num_components; i++) {
2781 bld.MOV(offset(dst, bld, i),
2782 offset(tmp, bld, i + first_component));
2783 }
2784 } else {
2785 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2786 payload);
2787 }
2788 inst->offset = imm_offset;
2789 inst->mlen = 2;
2790 }
2791 inst->size_written = (num_components + first_component) *
2792 inst->dst.component_size(inst->exec_size);
2793
2794 /* Copy the temporary to the destination to deal with writemasking.
2795 *
2796 * Also attempt to deal with gl_PointSize being in the .w component.
2797 */
2798 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2799 assert(type_sz(dst.type) == 4);
2800 inst->dst = bld.vgrf(dst.type, 4);
2801 inst->size_written = 4 * REG_SIZE;
2802 bld.MOV(dst, offset(inst->dst, bld, 3));
2803 }
2804 break;
2805 }
2806
2807 case nir_intrinsic_load_output:
2808 case nir_intrinsic_load_per_vertex_output: {
2809 assert(nir_dest_bit_size(instr->dest) == 32);
2810 fs_reg indirect_offset = get_indirect_offset(instr);
2811 unsigned imm_offset = instr->const_index[0];
2812 unsigned first_component = nir_intrinsic_component(instr);
2813
2814 struct brw_reg output_handles = get_tcs_output_urb_handle();
2815
2816 fs_inst *inst;
2817 if (indirect_offset.file == BAD_FILE) {
2818 /* This MOV replicates the output handle to all enabled channels
2819 * is SINGLE_PATCH mode.
2820 */
2821 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2822 bld.MOV(patch_handle, output_handles);
2823
2824 {
2825 if (first_component != 0) {
2826 unsigned read_components =
2827 instr->num_components + first_component;
2828 fs_reg tmp = bld.vgrf(dst.type, read_components);
2829 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2830 patch_handle);
2831 inst->size_written = read_components * REG_SIZE;
2832 for (unsigned i = 0; i < instr->num_components; i++) {
2833 bld.MOV(offset(dst, bld, i),
2834 offset(tmp, bld, i + first_component));
2835 }
2836 } else {
2837 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2838 patch_handle);
2839 inst->size_written = instr->num_components * REG_SIZE;
2840 }
2841 inst->offset = imm_offset;
2842 inst->mlen = 1;
2843 }
2844 } else {
2845 /* Indirect indexing - use per-slot offsets as well. */
2846 const fs_reg srcs[] = { output_handles, indirect_offset };
2847 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2848 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2849 if (first_component != 0) {
2850 unsigned read_components =
2851 instr->num_components + first_component;
2852 fs_reg tmp = bld.vgrf(dst.type, read_components);
2853 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2854 payload);
2855 inst->size_written = read_components * REG_SIZE;
2856 for (unsigned i = 0; i < instr->num_components; i++) {
2857 bld.MOV(offset(dst, bld, i),
2858 offset(tmp, bld, i + first_component));
2859 }
2860 } else {
2861 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2862 payload);
2863 inst->size_written = instr->num_components * REG_SIZE;
2864 }
2865 inst->offset = imm_offset;
2866 inst->mlen = 2;
2867 }
2868 break;
2869 }
2870
2871 case nir_intrinsic_store_output:
2872 case nir_intrinsic_store_per_vertex_output: {
2873 assert(nir_src_bit_size(instr->src[0]) == 32);
2874 fs_reg value = get_nir_src(instr->src[0]);
2875 fs_reg indirect_offset = get_indirect_offset(instr);
2876 unsigned imm_offset = instr->const_index[0];
2877 unsigned mask = instr->const_index[1];
2878 unsigned header_regs = 0;
2879 struct brw_reg output_handles = get_tcs_output_urb_handle();
2880
2881 fs_reg srcs[7];
2882 srcs[header_regs++] = output_handles;
2883
2884 if (indirect_offset.file != BAD_FILE) {
2885 srcs[header_regs++] = indirect_offset;
2886 }
2887
2888 if (mask == 0)
2889 break;
2890
2891 unsigned num_components = util_last_bit(mask);
2892 enum opcode opcode;
2893
2894 /* We can only pack two 64-bit components in a single message, so send
2895 * 2 messages if we have more components
2896 */
2897 unsigned first_component = nir_intrinsic_component(instr);
2898 mask = mask << first_component;
2899
2900 if (mask != WRITEMASK_XYZW) {
2901 srcs[header_regs++] = brw_imm_ud(mask << 16);
2902 opcode = indirect_offset.file != BAD_FILE ?
2903 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2904 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2905 } else {
2906 opcode = indirect_offset.file != BAD_FILE ?
2907 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2908 SHADER_OPCODE_URB_WRITE_SIMD8;
2909 }
2910
2911 for (unsigned i = 0; i < num_components; i++) {
2912 if (!(mask & (1 << (i + first_component))))
2913 continue;
2914
2915 srcs[header_regs + i + first_component] = offset(value, bld, i);
2916 }
2917
2918 unsigned mlen = header_regs + num_components + first_component;
2919 fs_reg payload =
2920 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2921 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2922
2923 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2924 inst->offset = imm_offset;
2925 inst->mlen = mlen;
2926 break;
2927 }
2928
2929 default:
2930 nir_emit_intrinsic(bld, instr);
2931 break;
2932 }
2933 }
2934
2935 void
2936 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2937 nir_intrinsic_instr *instr)
2938 {
2939 assert(stage == MESA_SHADER_TESS_EVAL);
2940 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2941
2942 fs_reg dest;
2943 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2944 dest = get_nir_dest(instr->dest);
2945
2946 switch (instr->intrinsic) {
2947 case nir_intrinsic_load_primitive_id:
2948 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2949 break;
2950 case nir_intrinsic_load_tess_coord:
2951 /* gl_TessCoord is part of the payload in g1-3 */
2952 for (unsigned i = 0; i < 3; i++) {
2953 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2954 }
2955 break;
2956
2957 case nir_intrinsic_load_input:
2958 case nir_intrinsic_load_per_vertex_input: {
2959 assert(nir_dest_bit_size(instr->dest) == 32);
2960 fs_reg indirect_offset = get_indirect_offset(instr);
2961 unsigned imm_offset = instr->const_index[0];
2962 unsigned first_component = nir_intrinsic_component(instr);
2963
2964 fs_inst *inst;
2965 if (indirect_offset.file == BAD_FILE) {
2966 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2967 * which is 16 registers (since each holds 2 vec4 slots).
2968 */
2969 const unsigned max_push_slots = 32;
2970 if (imm_offset < max_push_slots) {
2971 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2972 for (int i = 0; i < instr->num_components; i++) {
2973 unsigned comp = 4 * (imm_offset % 2) + i + first_component;
2974 bld.MOV(offset(dest, bld, i), component(src, comp));
2975 }
2976
2977 tes_prog_data->base.urb_read_length =
2978 MAX2(tes_prog_data->base.urb_read_length,
2979 (imm_offset / 2) + 1);
2980 } else {
2981 /* Replicate the patch handle to all enabled channels */
2982 const fs_reg srcs[] = {
2983 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2984 };
2985 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2986 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2987
2988 if (first_component != 0) {
2989 unsigned read_components =
2990 instr->num_components + first_component;
2991 fs_reg tmp = bld.vgrf(dest.type, read_components);
2992 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2993 patch_handle);
2994 inst->size_written = read_components * REG_SIZE;
2995 for (unsigned i = 0; i < instr->num_components; i++) {
2996 bld.MOV(offset(dest, bld, i),
2997 offset(tmp, bld, i + first_component));
2998 }
2999 } else {
3000 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
3001 patch_handle);
3002 inst->size_written = instr->num_components * REG_SIZE;
3003 }
3004 inst->mlen = 1;
3005 inst->offset = imm_offset;
3006 }
3007 } else {
3008 /* Indirect indexing - use per-slot offsets as well. */
3009
3010 /* We can only read two double components with each URB read, so
3011 * we send two read messages in that case, each one loading up to
3012 * two double components.
3013 */
3014 unsigned num_components = instr->num_components;
3015 const fs_reg srcs[] = {
3016 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3017 indirect_offset
3018 };
3019 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3020 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3021
3022 if (first_component != 0) {
3023 unsigned read_components =
3024 num_components + first_component;
3025 fs_reg tmp = bld.vgrf(dest.type, read_components);
3026 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3027 payload);
3028 for (unsigned i = 0; i < num_components; i++) {
3029 bld.MOV(offset(dest, bld, i),
3030 offset(tmp, bld, i + first_component));
3031 }
3032 } else {
3033 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3034 payload);
3035 }
3036 inst->mlen = 2;
3037 inst->offset = imm_offset;
3038 inst->size_written = (num_components + first_component) *
3039 inst->dst.component_size(inst->exec_size);
3040 }
3041 break;
3042 }
3043 default:
3044 nir_emit_intrinsic(bld, instr);
3045 break;
3046 }
3047 }
3048
3049 void
3050 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3051 nir_intrinsic_instr *instr)
3052 {
3053 assert(stage == MESA_SHADER_GEOMETRY);
3054 fs_reg indirect_offset;
3055
3056 fs_reg dest;
3057 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3058 dest = get_nir_dest(instr->dest);
3059
3060 switch (instr->intrinsic) {
3061 case nir_intrinsic_load_primitive_id:
3062 assert(stage == MESA_SHADER_GEOMETRY);
3063 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3064 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3065 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3066 break;
3067
3068 case nir_intrinsic_load_input:
3069 unreachable("load_input intrinsics are invalid for the GS stage");
3070
3071 case nir_intrinsic_load_per_vertex_input:
3072 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3073 instr->src[1], instr->num_components,
3074 nir_intrinsic_component(instr));
3075 break;
3076
3077 case nir_intrinsic_emit_vertex_with_counter:
3078 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3079 break;
3080
3081 case nir_intrinsic_end_primitive_with_counter:
3082 emit_gs_end_primitive(instr->src[0]);
3083 break;
3084
3085 case nir_intrinsic_set_vertex_count:
3086 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3087 break;
3088
3089 case nir_intrinsic_load_invocation_id: {
3090 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3091 assert(val.file != BAD_FILE);
3092 dest.type = val.type;
3093 bld.MOV(dest, val);
3094 break;
3095 }
3096
3097 default:
3098 nir_emit_intrinsic(bld, instr);
3099 break;
3100 }
3101 }
3102
3103 /**
3104 * Fetch the current render target layer index.
3105 */
3106 static fs_reg
3107 fetch_render_target_array_index(const fs_builder &bld)
3108 {
3109 if (bld.shader->devinfo->gen >= 6) {
3110 /* The render target array index is provided in the thread payload as
3111 * bits 26:16 of r0.0.
3112 */
3113 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3114 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3115 brw_imm_uw(0x7ff));
3116 return idx;
3117 } else {
3118 /* Pre-SNB we only ever render into the first layer of the framebuffer
3119 * since layered rendering is not implemented.
3120 */
3121 return brw_imm_ud(0);
3122 }
3123 }
3124
3125 /**
3126 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3127 * framebuffer at the current fragment coordinates and sample index.
3128 */
3129 fs_inst *
3130 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3131 unsigned target)
3132 {
3133 const struct gen_device_info *devinfo = bld.shader->devinfo;
3134
3135 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3136 const brw_wm_prog_key *wm_key =
3137 reinterpret_cast<const brw_wm_prog_key *>(key);
3138 assert(!wm_key->coherent_fb_fetch);
3139 const struct brw_wm_prog_data *wm_prog_data =
3140 brw_wm_prog_data(stage_prog_data);
3141
3142 /* Calculate the surface index relative to the start of the texture binding
3143 * table block, since that's what the texturing messages expect.
3144 */
3145 const unsigned surface = target +
3146 wm_prog_data->binding_table.render_target_read_start -
3147 wm_prog_data->base.binding_table.texture_start;
3148
3149 /* Calculate the fragment coordinates. */
3150 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3151 bld.MOV(offset(coords, bld, 0), pixel_x);
3152 bld.MOV(offset(coords, bld, 1), pixel_y);
3153 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3154
3155 /* Calculate the sample index and MCS payload when multisampling. Luckily
3156 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3157 * shouldn't be necessary to recompile based on whether the framebuffer is
3158 * CMS or UMS.
3159 */
3160 if (wm_key->multisample_fbo &&
3161 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3162 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3163
3164 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3165 const fs_reg mcs = wm_key->multisample_fbo ?
3166 emit_mcs_fetch(coords, 3, brw_imm_ud(surface), fs_reg()) : fs_reg();
3167
3168 /* Use either a normal or a CMS texel fetch message depending on whether
3169 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3170 * message just in case the framebuffer uses 16x multisampling, it should
3171 * be equivalent to the normal CMS fetch for lower multisampling modes.
3172 */
3173 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3174 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3175 SHADER_OPCODE_TXF_CMS_LOGICAL;
3176
3177 /* Emit the instruction. */
3178 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3179 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
3180 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
3181 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
3182 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
3183 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3184 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
3185 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3186 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
3187
3188 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3189 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3190
3191 return inst;
3192 }
3193
3194 /**
3195 * Actual coherent framebuffer read implemented using the native render target
3196 * read message. Requires SKL+.
3197 */
3198 static fs_inst *
3199 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3200 {
3201 assert(bld.shader->devinfo->gen >= 9);
3202 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3203 inst->target = target;
3204 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3205
3206 return inst;
3207 }
3208
3209 static fs_reg
3210 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3211 {
3212 if (n && regs[0].file != BAD_FILE) {
3213 return regs[0];
3214
3215 } else {
3216 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3217
3218 for (unsigned i = 0; i < n; i++)
3219 regs[i] = tmp;
3220
3221 return tmp;
3222 }
3223 }
3224
3225 static fs_reg
3226 alloc_frag_output(fs_visitor *v, unsigned location)
3227 {
3228 assert(v->stage == MESA_SHADER_FRAGMENT);
3229 const brw_wm_prog_key *const key =
3230 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3231 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3232 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3233
3234 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3235 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3236
3237 else if (l == FRAG_RESULT_COLOR)
3238 return alloc_temporary(v->bld, 4, v->outputs,
3239 MAX2(key->nr_color_regions, 1));
3240
3241 else if (l == FRAG_RESULT_DEPTH)
3242 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3243
3244 else if (l == FRAG_RESULT_STENCIL)
3245 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3246
3247 else if (l == FRAG_RESULT_SAMPLE_MASK)
3248 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3249
3250 else if (l >= FRAG_RESULT_DATA0 &&
3251 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3252 return alloc_temporary(v->bld, 4,
3253 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3254
3255 else
3256 unreachable("Invalid location");
3257 }
3258
3259 /* Annoyingly, we get the barycentrics into the shader in a layout that's
3260 * optimized for PLN but it doesn't work nearly as well as one would like for
3261 * manual interpolation.
3262 */
3263 static void
3264 shuffle_from_pln_layout(const fs_builder &bld, fs_reg dest, fs_reg pln_data)
3265 {
3266 dest.type = BRW_REGISTER_TYPE_F;
3267 pln_data.type = BRW_REGISTER_TYPE_F;
3268 const fs_reg dest_u = offset(dest, bld, 0);
3269 const fs_reg dest_v = offset(dest, bld, 1);
3270
3271 for (unsigned g = 0; g < bld.dispatch_width() / 8; g++) {
3272 const fs_builder gbld = bld.group(8, g);
3273 gbld.MOV(horiz_offset(dest_u, g * 8),
3274 byte_offset(pln_data, (g * 2 + 0) * REG_SIZE));
3275 gbld.MOV(horiz_offset(dest_v, g * 8),
3276 byte_offset(pln_data, (g * 2 + 1) * REG_SIZE));
3277 }
3278 }
3279
3280 static void
3281 shuffle_to_pln_layout(const fs_builder &bld, fs_reg pln_data, fs_reg src)
3282 {
3283 pln_data.type = BRW_REGISTER_TYPE_F;
3284 src.type = BRW_REGISTER_TYPE_F;
3285 const fs_reg src_u = offset(src, bld, 0);
3286 const fs_reg src_v = offset(src, bld, 1);
3287
3288 for (unsigned g = 0; g < bld.dispatch_width() / 8; g++) {
3289 const fs_builder gbld = bld.group(8, g);
3290 gbld.MOV(byte_offset(pln_data, (g * 2 + 0) * REG_SIZE),
3291 horiz_offset(src_u, g * 8));
3292 gbld.MOV(byte_offset(pln_data, (g * 2 + 1) * REG_SIZE),
3293 horiz_offset(src_v, g * 8));
3294 }
3295 }
3296
3297 void
3298 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3299 nir_intrinsic_instr *instr)
3300 {
3301 assert(stage == MESA_SHADER_FRAGMENT);
3302
3303 fs_reg dest;
3304 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3305 dest = get_nir_dest(instr->dest);
3306
3307 switch (instr->intrinsic) {
3308 case nir_intrinsic_load_front_face:
3309 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3310 *emit_frontfacing_interpolation());
3311 break;
3312
3313 case nir_intrinsic_load_sample_pos: {
3314 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3315 assert(sample_pos.file != BAD_FILE);
3316 dest.type = sample_pos.type;
3317 bld.MOV(dest, sample_pos);
3318 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3319 break;
3320 }
3321
3322 case nir_intrinsic_load_layer_id:
3323 dest.type = BRW_REGISTER_TYPE_UD;
3324 bld.MOV(dest, fetch_render_target_array_index(bld));
3325 break;
3326
3327 case nir_intrinsic_is_helper_invocation: {
3328 /* Unlike the regular gl_HelperInvocation, that is defined at dispatch,
3329 * the helperInvocationEXT() (aka SpvOpIsHelperInvocationEXT) takes into
3330 * consideration demoted invocations. That information is stored in
3331 * f0.1.
3332 */
3333 dest.type = BRW_REGISTER_TYPE_UD;
3334
3335 bld.MOV(dest, brw_imm_ud(0));
3336
3337 fs_inst *mov = bld.MOV(dest, brw_imm_ud(~0));
3338 mov->predicate = BRW_PREDICATE_NORMAL;
3339 mov->predicate_inverse = true;
3340 mov->flag_subreg = 1;
3341 break;
3342 }
3343
3344 case nir_intrinsic_load_helper_invocation:
3345 case nir_intrinsic_load_sample_mask_in:
3346 case nir_intrinsic_load_sample_id: {
3347 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3348 fs_reg val = nir_system_values[sv];
3349 assert(val.file != BAD_FILE);
3350 dest.type = val.type;
3351 bld.MOV(dest, val);
3352 break;
3353 }
3354
3355 case nir_intrinsic_store_output: {
3356 const fs_reg src = get_nir_src(instr->src[0]);
3357 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3358 const unsigned location = nir_intrinsic_base(instr) +
3359 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3360 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3361 src.type);
3362
3363 for (unsigned j = 0; j < instr->num_components; j++)
3364 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3365 offset(src, bld, j));
3366
3367 break;
3368 }
3369
3370 case nir_intrinsic_load_output: {
3371 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3372 BRW_NIR_FRAG_OUTPUT_LOCATION);
3373 assert(l >= FRAG_RESULT_DATA0);
3374 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3375 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3376 const fs_reg tmp = bld.vgrf(dest.type, 4);
3377
3378 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3379 emit_coherent_fb_read(bld, tmp, target);
3380 else
3381 emit_non_coherent_fb_read(bld, tmp, target);
3382
3383 for (unsigned j = 0; j < instr->num_components; j++) {
3384 bld.MOV(offset(dest, bld, j),
3385 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3386 }
3387
3388 break;
3389 }
3390
3391 case nir_intrinsic_demote:
3392 case nir_intrinsic_discard:
3393 case nir_intrinsic_demote_if:
3394 case nir_intrinsic_discard_if: {
3395 /* We track our discarded pixels in f0.1. By predicating on it, we can
3396 * update just the flag bits that aren't yet discarded. If there's no
3397 * condition, we emit a CMP of g0 != g0, so all currently executing
3398 * channels will get turned off.
3399 */
3400 fs_inst *cmp = NULL;
3401 if (instr->intrinsic == nir_intrinsic_demote_if ||
3402 instr->intrinsic == nir_intrinsic_discard_if) {
3403 nir_alu_instr *alu = nir_src_as_alu_instr(instr->src[0]);
3404
3405 if (alu != NULL &&
3406 alu->op != nir_op_bcsel &&
3407 alu->op != nir_op_inot) {
3408 /* Re-emit the instruction that generated the Boolean value, but
3409 * do not store it. Since this instruction will be conditional,
3410 * other instructions that want to use the real Boolean value may
3411 * get garbage. This was a problem for piglit's fs-discard-exit-2
3412 * test.
3413 *
3414 * Ideally we'd detect that the instruction cannot have a
3415 * conditional modifier before emitting the instructions. Alas,
3416 * that is nigh impossible. Instead, we're going to assume the
3417 * instruction (or last instruction) generated can have a
3418 * conditional modifier. If it cannot, fallback to the old-style
3419 * compare, and hope dead code elimination will clean up the
3420 * extra instructions generated.
3421 */
3422 nir_emit_alu(bld, alu, false);
3423
3424 cmp = (fs_inst *) instructions.get_tail();
3425 if (cmp->conditional_mod == BRW_CONDITIONAL_NONE) {
3426 if (cmp->can_do_cmod())
3427 cmp->conditional_mod = BRW_CONDITIONAL_Z;
3428 else
3429 cmp = NULL;
3430 } else {
3431 /* The old sequence that would have been generated is,
3432 * basically, bool_result == false. This is equivalent to
3433 * !bool_result, so negate the old modifier.
3434 */
3435 cmp->conditional_mod = brw_negate_cmod(cmp->conditional_mod);
3436 }
3437 }
3438
3439 if (cmp == NULL) {
3440 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3441 brw_imm_d(0), BRW_CONDITIONAL_Z);
3442 }
3443 } else {
3444 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3445 BRW_REGISTER_TYPE_UW));
3446 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3447 }
3448
3449 cmp->predicate = BRW_PREDICATE_NORMAL;
3450 cmp->flag_subreg = 1;
3451
3452 if (devinfo->gen >= 6) {
3453 /* Due to the way we implement discard, the jump will only happen
3454 * when the whole quad is discarded. So we can do this even for
3455 * demote as it won't break its uniformity promises.
3456 */
3457 emit_discard_jump();
3458 }
3459
3460 limit_dispatch_width(16, "Fragment discard/demote not implemented in SIMD32 mode.");
3461 break;
3462 }
3463
3464 case nir_intrinsic_load_input: {
3465 /* load_input is only used for flat inputs */
3466 assert(nir_dest_bit_size(instr->dest) == 32);
3467 unsigned base = nir_intrinsic_base(instr);
3468 unsigned comp = nir_intrinsic_component(instr);
3469 unsigned num_components = instr->num_components;
3470
3471 /* Special case fields in the VUE header */
3472 if (base == VARYING_SLOT_LAYER)
3473 comp = 1;
3474 else if (base == VARYING_SLOT_VIEWPORT)
3475 comp = 2;
3476
3477 for (unsigned int i = 0; i < num_components; i++) {
3478 bld.MOV(offset(dest, bld, i),
3479 retype(component(interp_reg(base, comp + i), 3), dest.type));
3480 }
3481 break;
3482 }
3483
3484 case nir_intrinsic_load_fs_input_interp_deltas: {
3485 assert(stage == MESA_SHADER_FRAGMENT);
3486 assert(nir_src_as_uint(instr->src[0]) == 0);
3487 fs_reg interp = interp_reg(nir_intrinsic_base(instr),
3488 nir_intrinsic_component(instr));
3489 dest.type = BRW_REGISTER_TYPE_F;
3490 bld.MOV(offset(dest, bld, 0), component(interp, 3));
3491 bld.MOV(offset(dest, bld, 1), component(interp, 1));
3492 bld.MOV(offset(dest, bld, 2), component(interp, 0));
3493 break;
3494 }
3495
3496 case nir_intrinsic_load_barycentric_pixel:
3497 case nir_intrinsic_load_barycentric_centroid:
3498 case nir_intrinsic_load_barycentric_sample: {
3499 /* Use the delta_xy values computed from the payload */
3500 const glsl_interp_mode interp_mode =
3501 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3502 enum brw_barycentric_mode bary =
3503 brw_barycentric_mode(interp_mode, instr->intrinsic);
3504
3505 shuffle_from_pln_layout(bld, dest, this->delta_xy[bary]);
3506 break;
3507 }
3508
3509 case nir_intrinsic_load_barycentric_at_sample: {
3510 const glsl_interp_mode interpolation =
3511 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3512
3513 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3514 if (nir_src_is_const(instr->src[0])) {
3515 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3516
3517 emit_pixel_interpolater_send(bld,
3518 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3519 tmp,
3520 fs_reg(), /* src */
3521 brw_imm_ud(msg_data),
3522 interpolation);
3523 } else {
3524 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3525 BRW_REGISTER_TYPE_UD);
3526
3527 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3528 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3529 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3530 bld.exec_all().group(1, 0)
3531 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3532 emit_pixel_interpolater_send(bld,
3533 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3534 tmp,
3535 fs_reg(), /* src */
3536 msg_data,
3537 interpolation);
3538 } else {
3539 /* Make a loop that sends a message to the pixel interpolater
3540 * for the sample number in each live channel. If there are
3541 * multiple channels with the same sample number then these
3542 * will be handled simultaneously with a single interation of
3543 * the loop.
3544 */
3545 bld.emit(BRW_OPCODE_DO);
3546
3547 /* Get the next live sample number into sample_id_reg */
3548 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3549
3550 /* Set the flag register so that we can perform the send
3551 * message on all channels that have the same sample number
3552 */
3553 bld.CMP(bld.null_reg_ud(),
3554 sample_src, sample_id,
3555 BRW_CONDITIONAL_EQ);
3556 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3557 bld.exec_all().group(1, 0)
3558 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3559 fs_inst *inst =
3560 emit_pixel_interpolater_send(bld,
3561 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3562 tmp,
3563 fs_reg(), /* src */
3564 component(msg_data, 0),
3565 interpolation);
3566 set_predicate(BRW_PREDICATE_NORMAL, inst);
3567
3568 /* Continue the loop if there are any live channels left */
3569 set_predicate_inv(BRW_PREDICATE_NORMAL,
3570 true, /* inverse */
3571 bld.emit(BRW_OPCODE_WHILE));
3572 }
3573 }
3574 shuffle_from_pln_layout(bld, dest, tmp);
3575 break;
3576 }
3577
3578 case nir_intrinsic_load_barycentric_at_offset: {
3579 const glsl_interp_mode interpolation =
3580 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3581
3582 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3583
3584 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3585 if (const_offset) {
3586 assert(nir_src_bit_size(instr->src[0]) == 32);
3587 unsigned off_x = MIN2((int)(const_offset[0].f32 * 16), 7) & 0xf;
3588 unsigned off_y = MIN2((int)(const_offset[1].f32 * 16), 7) & 0xf;
3589
3590 emit_pixel_interpolater_send(bld,
3591 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3592 tmp,
3593 fs_reg(), /* src */
3594 brw_imm_ud(off_x | (off_y << 4)),
3595 interpolation);
3596 } else {
3597 fs_reg src = vgrf(glsl_type::ivec2_type);
3598 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3599 BRW_REGISTER_TYPE_F);
3600 for (int i = 0; i < 2; i++) {
3601 fs_reg temp = vgrf(glsl_type::float_type);
3602 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3603 fs_reg itemp = vgrf(glsl_type::int_type);
3604 /* float to int */
3605 bld.MOV(itemp, temp);
3606
3607 /* Clamp the upper end of the range to +7/16.
3608 * ARB_gpu_shader5 requires that we support a maximum offset
3609 * of +0.5, which isn't representable in a S0.4 value -- if
3610 * we didn't clamp it, we'd end up with -8/16, which is the
3611 * opposite of what the shader author wanted.
3612 *
3613 * This is legal due to ARB_gpu_shader5's quantization
3614 * rules:
3615 *
3616 * "Not all values of <offset> may be supported; x and y
3617 * offsets may be rounded to fixed-point values with the
3618 * number of fraction bits given by the
3619 * implementation-dependent constant
3620 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3621 */
3622 set_condmod(BRW_CONDITIONAL_L,
3623 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3624 }
3625
3626 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3627 emit_pixel_interpolater_send(bld,
3628 opcode,
3629 tmp,
3630 src,
3631 brw_imm_ud(0u),
3632 interpolation);
3633 }
3634 shuffle_from_pln_layout(bld, dest, tmp);
3635 break;
3636 }
3637
3638 case nir_intrinsic_load_frag_coord:
3639 emit_fragcoord_interpolation(dest);
3640 break;
3641
3642 case nir_intrinsic_load_interpolated_input: {
3643 assert(instr->src[0].ssa &&
3644 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3645 nir_intrinsic_instr *bary_intrinsic =
3646 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3647 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3648 enum glsl_interp_mode interp_mode =
3649 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3650 fs_reg dst_xy;
3651
3652 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3653 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3654 /* Use the result of the PI message. Because the load_barycentric
3655 * intrinsics return a regular vec2 and we need it in PLN layout, we
3656 * have to do a translation. Fortunately, copy-prop cleans this up
3657 * reliably.
3658 */
3659 dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3660 shuffle_to_pln_layout(bld, dst_xy, get_nir_src(instr->src[0]));
3661 } else {
3662 /* Use the delta_xy values computed from the payload */
3663 enum brw_barycentric_mode bary =
3664 brw_barycentric_mode(interp_mode, bary_intrin);
3665
3666 dst_xy = this->delta_xy[bary];
3667 }
3668
3669 for (unsigned int i = 0; i < instr->num_components; i++) {
3670 fs_reg interp =
3671 interp_reg(nir_intrinsic_base(instr),
3672 nir_intrinsic_component(instr) + i);
3673 interp.type = BRW_REGISTER_TYPE_F;
3674 dest.type = BRW_REGISTER_TYPE_F;
3675
3676 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3677 fs_reg tmp = vgrf(glsl_type::float_type);
3678 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3679 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3680 } else {
3681 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3682 }
3683 }
3684 break;
3685 }
3686
3687 default:
3688 nir_emit_intrinsic(bld, instr);
3689 break;
3690 }
3691 }
3692
3693 static int
3694 get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
3695 {
3696 if (nir_src_is_const(instr->src[src])) {
3697 int64_t add_val = nir_src_as_int(instr->src[src]);
3698 if (add_val == 1)
3699 return BRW_AOP_INC;
3700 else if (add_val == -1)
3701 return BRW_AOP_DEC;
3702 }
3703
3704 return BRW_AOP_ADD;
3705 }
3706
3707 void
3708 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3709 nir_intrinsic_instr *instr)
3710 {
3711 assert(stage == MESA_SHADER_COMPUTE);
3712 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3713
3714 fs_reg dest;
3715 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3716 dest = get_nir_dest(instr->dest);
3717
3718 switch (instr->intrinsic) {
3719 case nir_intrinsic_barrier:
3720 emit_barrier();
3721 cs_prog_data->uses_barrier = true;
3722 break;
3723
3724 case nir_intrinsic_load_subgroup_id:
3725 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3726 break;
3727
3728 case nir_intrinsic_load_local_invocation_id:
3729 case nir_intrinsic_load_work_group_id: {
3730 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3731 fs_reg val = nir_system_values[sv];
3732 assert(val.file != BAD_FILE);
3733 dest.type = val.type;
3734 for (unsigned i = 0; i < 3; i++)
3735 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3736 break;
3737 }
3738
3739 case nir_intrinsic_load_num_work_groups: {
3740 const unsigned surface =
3741 cs_prog_data->binding_table.work_groups_start;
3742
3743 cs_prog_data->uses_num_work_groups = true;
3744
3745 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3746 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3747 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3748 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1); /* num components */
3749
3750 /* Read the 3 GLuint components of gl_NumWorkGroups */
3751 for (unsigned i = 0; i < 3; i++) {
3752 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(i << 2);
3753 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3754 offset(dest, bld, i), srcs, SURFACE_LOGICAL_NUM_SRCS);
3755 }
3756 break;
3757 }
3758
3759 case nir_intrinsic_shared_atomic_add:
3760 nir_emit_shared_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
3761 break;
3762 case nir_intrinsic_shared_atomic_imin:
3763 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3764 break;
3765 case nir_intrinsic_shared_atomic_umin:
3766 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3767 break;
3768 case nir_intrinsic_shared_atomic_imax:
3769 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3770 break;
3771 case nir_intrinsic_shared_atomic_umax:
3772 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3773 break;
3774 case nir_intrinsic_shared_atomic_and:
3775 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3776 break;
3777 case nir_intrinsic_shared_atomic_or:
3778 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3779 break;
3780 case nir_intrinsic_shared_atomic_xor:
3781 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3782 break;
3783 case nir_intrinsic_shared_atomic_exchange:
3784 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3785 break;
3786 case nir_intrinsic_shared_atomic_comp_swap:
3787 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3788 break;
3789 case nir_intrinsic_shared_atomic_fmin:
3790 nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3791 break;
3792 case nir_intrinsic_shared_atomic_fmax:
3793 nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3794 break;
3795 case nir_intrinsic_shared_atomic_fcomp_swap:
3796 nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3797 break;
3798
3799 case nir_intrinsic_load_shared: {
3800 assert(devinfo->gen >= 7);
3801 assert(stage == MESA_SHADER_COMPUTE);
3802
3803 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3804 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3805 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3806 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3807 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3808
3809 /* Make dest unsigned because that's what the temporary will be */
3810 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3811
3812 /* Read the vector */
3813 if (nir_intrinsic_align(instr) >= 4) {
3814 assert(nir_dest_bit_size(instr->dest) == 32);
3815 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3816 fs_inst *inst =
3817 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3818 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3819 inst->size_written = instr->num_components * dispatch_width * 4;
3820 } else {
3821 assert(nir_dest_bit_size(instr->dest) <= 32);
3822 assert(nir_dest_num_components(instr->dest) == 1);
3823 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3824
3825 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3826 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3827 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3828 bld.MOV(dest, subscript(read_result, dest.type, 0));
3829 }
3830 break;
3831 }
3832
3833 case nir_intrinsic_store_shared: {
3834 assert(devinfo->gen >= 7);
3835 assert(stage == MESA_SHADER_COMPUTE);
3836
3837 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3838 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3839 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3840 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3841 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3842
3843 fs_reg data = get_nir_src(instr->src[0]);
3844 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3845
3846 assert(nir_intrinsic_write_mask(instr) ==
3847 (1u << instr->num_components) - 1);
3848 if (nir_intrinsic_align(instr) >= 4) {
3849 assert(nir_src_bit_size(instr->src[0]) == 32);
3850 assert(nir_src_num_components(instr->src[0]) <= 4);
3851 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3852 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3853 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3854 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3855 } else {
3856 assert(nir_src_bit_size(instr->src[0]) <= 32);
3857 assert(nir_src_num_components(instr->src[0]) == 1);
3858 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3859
3860 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3861 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3862
3863 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3864 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3865 }
3866 break;
3867 }
3868
3869 default:
3870 nir_emit_intrinsic(bld, instr);
3871 break;
3872 }
3873 }
3874
3875 static fs_reg
3876 brw_nir_reduction_op_identity(const fs_builder &bld,
3877 nir_op op, brw_reg_type type)
3878 {
3879 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3880 switch (type_sz(type)) {
3881 case 2:
3882 assert(type != BRW_REGISTER_TYPE_HF);
3883 return retype(brw_imm_uw(value.u16), type);
3884 case 4:
3885 return retype(brw_imm_ud(value.u32), type);
3886 case 8:
3887 if (type == BRW_REGISTER_TYPE_DF)
3888 return setup_imm_df(bld, value.f64);
3889 else
3890 return retype(brw_imm_u64(value.u64), type);
3891 default:
3892 unreachable("Invalid type size");
3893 }
3894 }
3895
3896 static opcode
3897 brw_op_for_nir_reduction_op(nir_op op)
3898 {
3899 switch (op) {
3900 case nir_op_iadd: return BRW_OPCODE_ADD;
3901 case nir_op_fadd: return BRW_OPCODE_ADD;
3902 case nir_op_imul: return BRW_OPCODE_MUL;
3903 case nir_op_fmul: return BRW_OPCODE_MUL;
3904 case nir_op_imin: return BRW_OPCODE_SEL;
3905 case nir_op_umin: return BRW_OPCODE_SEL;
3906 case nir_op_fmin: return BRW_OPCODE_SEL;
3907 case nir_op_imax: return BRW_OPCODE_SEL;
3908 case nir_op_umax: return BRW_OPCODE_SEL;
3909 case nir_op_fmax: return BRW_OPCODE_SEL;
3910 case nir_op_iand: return BRW_OPCODE_AND;
3911 case nir_op_ior: return BRW_OPCODE_OR;
3912 case nir_op_ixor: return BRW_OPCODE_XOR;
3913 default:
3914 unreachable("Invalid reduction operation");
3915 }
3916 }
3917
3918 static brw_conditional_mod
3919 brw_cond_mod_for_nir_reduction_op(nir_op op)
3920 {
3921 switch (op) {
3922 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3923 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3924 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3925 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3926 case nir_op_imin: return BRW_CONDITIONAL_L;
3927 case nir_op_umin: return BRW_CONDITIONAL_L;
3928 case nir_op_fmin: return BRW_CONDITIONAL_L;
3929 case nir_op_imax: return BRW_CONDITIONAL_GE;
3930 case nir_op_umax: return BRW_CONDITIONAL_GE;
3931 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3932 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3933 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3934 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3935 default:
3936 unreachable("Invalid reduction operation");
3937 }
3938 }
3939
3940 fs_reg
3941 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3942 nir_intrinsic_instr *instr)
3943 {
3944 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3945
3946 if (stage_prog_data->binding_table.image_start > 0) {
3947 if (image.file == BRW_IMMEDIATE_VALUE) {
3948 image.d += stage_prog_data->binding_table.image_start;
3949 } else {
3950 bld.ADD(image, image,
3951 brw_imm_d(stage_prog_data->binding_table.image_start));
3952 }
3953 }
3954
3955 return bld.emit_uniformize(image);
3956 }
3957
3958 fs_reg
3959 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
3960 nir_intrinsic_instr *instr)
3961 {
3962 /* SSBO stores are weird in that their index is in src[1] */
3963 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
3964
3965 fs_reg surf_index;
3966 if (nir_src_is_const(instr->src[src])) {
3967 unsigned index = stage_prog_data->binding_table.ssbo_start +
3968 nir_src_as_uint(instr->src[src]);
3969 surf_index = brw_imm_ud(index);
3970 } else {
3971 surf_index = vgrf(glsl_type::uint_type);
3972 bld.ADD(surf_index, get_nir_src(instr->src[src]),
3973 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3974 }
3975
3976 return bld.emit_uniformize(surf_index);
3977 }
3978
3979 static unsigned
3980 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
3981 {
3982 switch (nir_intrinsic_image_dim(instr)) {
3983 case GLSL_SAMPLER_DIM_1D:
3984 return 1 + nir_intrinsic_image_array(instr);
3985 case GLSL_SAMPLER_DIM_2D:
3986 case GLSL_SAMPLER_DIM_RECT:
3987 return 2 + nir_intrinsic_image_array(instr);
3988 case GLSL_SAMPLER_DIM_3D:
3989 case GLSL_SAMPLER_DIM_CUBE:
3990 return 3;
3991 case GLSL_SAMPLER_DIM_BUF:
3992 return 1;
3993 case GLSL_SAMPLER_DIM_MS:
3994 return 2 + nir_intrinsic_image_array(instr);
3995 default:
3996 unreachable("Invalid image dimension");
3997 }
3998 }
3999
4000 void
4001 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
4002 {
4003 fs_reg dest;
4004 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4005 dest = get_nir_dest(instr->dest);
4006
4007 switch (instr->intrinsic) {
4008 case nir_intrinsic_image_load:
4009 case nir_intrinsic_image_store:
4010 case nir_intrinsic_image_atomic_add:
4011 case nir_intrinsic_image_atomic_min:
4012 case nir_intrinsic_image_atomic_max:
4013 case nir_intrinsic_image_atomic_and:
4014 case nir_intrinsic_image_atomic_or:
4015 case nir_intrinsic_image_atomic_xor:
4016 case nir_intrinsic_image_atomic_exchange:
4017 case nir_intrinsic_image_atomic_comp_swap:
4018 case nir_intrinsic_bindless_image_load:
4019 case nir_intrinsic_bindless_image_store:
4020 case nir_intrinsic_bindless_image_atomic_add:
4021 case nir_intrinsic_bindless_image_atomic_min:
4022 case nir_intrinsic_bindless_image_atomic_max:
4023 case nir_intrinsic_bindless_image_atomic_and:
4024 case nir_intrinsic_bindless_image_atomic_or:
4025 case nir_intrinsic_bindless_image_atomic_xor:
4026 case nir_intrinsic_bindless_image_atomic_exchange:
4027 case nir_intrinsic_bindless_image_atomic_comp_swap: {
4028 if (stage == MESA_SHADER_FRAGMENT &&
4029 instr->intrinsic != nir_intrinsic_image_load)
4030 brw_wm_prog_data(prog_data)->has_side_effects = true;
4031
4032 /* Get some metadata from the image intrinsic. */
4033 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
4034 const GLenum format = nir_intrinsic_format(instr);
4035
4036 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4037
4038 switch (instr->intrinsic) {
4039 case nir_intrinsic_image_load:
4040 case nir_intrinsic_image_store:
4041 case nir_intrinsic_image_atomic_add:
4042 case nir_intrinsic_image_atomic_min:
4043 case nir_intrinsic_image_atomic_max:
4044 case nir_intrinsic_image_atomic_and:
4045 case nir_intrinsic_image_atomic_or:
4046 case nir_intrinsic_image_atomic_xor:
4047 case nir_intrinsic_image_atomic_exchange:
4048 case nir_intrinsic_image_atomic_comp_swap:
4049 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4050 get_nir_image_intrinsic_image(bld, instr);
4051 break;
4052
4053 default:
4054 /* Bindless */
4055 srcs[SURFACE_LOGICAL_SRC_SURFACE_HANDLE] =
4056 bld.emit_uniformize(get_nir_src(instr->src[0]));
4057 break;
4058 }
4059
4060 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4061 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
4062 brw_imm_ud(image_intrinsic_coord_components(instr));
4063
4064 /* Emit an image load, store or atomic op. */
4065 if (instr->intrinsic == nir_intrinsic_image_load ||
4066 instr->intrinsic == nir_intrinsic_bindless_image_load) {
4067 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4068 fs_inst *inst =
4069 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
4070 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4071 inst->size_written = instr->num_components * dispatch_width * 4;
4072 } else if (instr->intrinsic == nir_intrinsic_image_store ||
4073 instr->intrinsic == nir_intrinsic_bindless_image_store) {
4074 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4075 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
4076 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
4077 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4078 } else {
4079 int op;
4080 unsigned num_srcs = info->num_srcs;
4081
4082 switch (instr->intrinsic) {
4083 case nir_intrinsic_image_atomic_add:
4084 case nir_intrinsic_bindless_image_atomic_add:
4085 assert(num_srcs == 4);
4086
4087 op = get_op_for_atomic_add(instr, 3);
4088
4089 if (op != BRW_AOP_ADD)
4090 num_srcs = 3;
4091 break;
4092 case nir_intrinsic_image_atomic_min:
4093 case nir_intrinsic_bindless_image_atomic_min:
4094 assert(format == GL_R32UI || format == GL_R32I);
4095 op = (format == GL_R32I) ? BRW_AOP_IMIN : BRW_AOP_UMIN;
4096 break;
4097 case nir_intrinsic_image_atomic_max:
4098 case nir_intrinsic_bindless_image_atomic_max:
4099 assert(format == GL_R32UI || format == GL_R32I);
4100 op = (format == GL_R32I) ? BRW_AOP_IMAX : BRW_AOP_UMAX;
4101 break;
4102 case nir_intrinsic_image_atomic_and:
4103 case nir_intrinsic_bindless_image_atomic_and:
4104 op = BRW_AOP_AND;
4105 break;
4106 case nir_intrinsic_image_atomic_or:
4107 case nir_intrinsic_bindless_image_atomic_or:
4108 op = BRW_AOP_OR;
4109 break;
4110 case nir_intrinsic_image_atomic_xor:
4111 case nir_intrinsic_bindless_image_atomic_xor:
4112 op = BRW_AOP_XOR;
4113 break;
4114 case nir_intrinsic_image_atomic_exchange:
4115 case nir_intrinsic_bindless_image_atomic_exchange:
4116 op = BRW_AOP_MOV;
4117 break;
4118 case nir_intrinsic_image_atomic_comp_swap:
4119 case nir_intrinsic_bindless_image_atomic_comp_swap:
4120 op = BRW_AOP_CMPWR;
4121 break;
4122 default:
4123 unreachable("Not reachable.");
4124 }
4125
4126 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4127
4128 fs_reg data;
4129 if (num_srcs >= 4)
4130 data = get_nir_src(instr->src[3]);
4131 if (num_srcs >= 5) {
4132 fs_reg tmp = bld.vgrf(data.type, 2);
4133 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
4134 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4135 data = tmp;
4136 }
4137 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4138
4139 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
4140 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4141 }
4142 break;
4143 }
4144
4145 case nir_intrinsic_image_size:
4146 case nir_intrinsic_bindless_image_size: {
4147 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
4148 * into will handle the binding table index for us in the geneerator.
4149 * Incidentally, this means that we can handle bindless with exactly the
4150 * same code.
4151 */
4152 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
4153 BRW_REGISTER_TYPE_UD);
4154 image = bld.emit_uniformize(image);
4155
4156 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4157 if (instr->intrinsic == nir_intrinsic_image_size)
4158 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
4159 else
4160 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = image;
4161 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
4162 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
4163 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
4164
4165 /* Since the image size is always uniform, we can just emit a SIMD8
4166 * query instruction and splat the result out.
4167 */
4168 const fs_builder ubld = bld.exec_all().group(8, 0);
4169
4170 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4171 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
4172 tmp, srcs, ARRAY_SIZE(srcs));
4173 inst->size_written = 4 * REG_SIZE;
4174
4175 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
4176 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
4177 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
4178 offset(retype(dest, tmp.type), bld, c),
4179 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
4180 } else {
4181 bld.MOV(offset(retype(dest, tmp.type), bld, c),
4182 component(offset(tmp, ubld, c), 0));
4183 }
4184 }
4185 break;
4186 }
4187
4188 case nir_intrinsic_image_load_raw_intel: {
4189 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4190 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4191 get_nir_image_intrinsic_image(bld, instr);
4192 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4193 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4194 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4195
4196 fs_inst *inst =
4197 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4198 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4199 inst->size_written = instr->num_components * dispatch_width * 4;
4200 break;
4201 }
4202
4203 case nir_intrinsic_image_store_raw_intel: {
4204 if (stage == MESA_SHADER_FRAGMENT)
4205 brw_wm_prog_data(prog_data)->has_side_effects = true;
4206
4207 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4208 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4209 get_nir_image_intrinsic_image(bld, instr);
4210 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4211 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
4212 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4213 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4214
4215 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4216 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4217 break;
4218 }
4219
4220 case nir_intrinsic_group_memory_barrier:
4221 case nir_intrinsic_memory_barrier_shared:
4222 case nir_intrinsic_memory_barrier_atomic_counter:
4223 case nir_intrinsic_memory_barrier_buffer:
4224 case nir_intrinsic_memory_barrier_image:
4225 case nir_intrinsic_memory_barrier: {
4226 bool l3_fence, slm_fence;
4227 if (devinfo->gen >= 11) {
4228 l3_fence = instr->intrinsic != nir_intrinsic_memory_barrier_shared;
4229 slm_fence = instr->intrinsic == nir_intrinsic_group_memory_barrier ||
4230 instr->intrinsic == nir_intrinsic_memory_barrier ||
4231 instr->intrinsic == nir_intrinsic_memory_barrier_shared;
4232 } else {
4233 /* Prior to gen11, we only have one kind of fence. */
4234 l3_fence = true;
4235 slm_fence = false;
4236 }
4237
4238 /* Be conservative in Gen11+ and always stall in a fence. Since there
4239 * are two different fences, and shader might want to synchronize
4240 * between them.
4241 *
4242 * TODO: Improve NIR so that scope and visibility information for the
4243 * barriers is available here to make a better decision.
4244 *
4245 * TODO: When emitting more than one fence, it might help emit all
4246 * the fences first and then generate the stall moves.
4247 */
4248 const bool stall = devinfo->gen >= 11;
4249
4250 const fs_builder ubld = bld.group(8, 0);
4251 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4252
4253 if (l3_fence) {
4254 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
4255 brw_vec8_grf(0, 0), brw_imm_ud(stall),
4256 /* bti */ brw_imm_ud(0))
4257 ->size_written = 2 * REG_SIZE;
4258 }
4259
4260 if (slm_fence) {
4261 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
4262 brw_vec8_grf(0, 0), brw_imm_ud(stall),
4263 brw_imm_ud(GEN7_BTI_SLM))
4264 ->size_written = 2 * REG_SIZE;
4265 }
4266
4267 break;
4268 }
4269
4270 case nir_intrinsic_shader_clock: {
4271 /* We cannot do anything if there is an event, so ignore it for now */
4272 const fs_reg shader_clock = get_timestamp(bld);
4273 const fs_reg srcs[] = { component(shader_clock, 0),
4274 component(shader_clock, 1) };
4275 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
4276 break;
4277 }
4278
4279 case nir_intrinsic_image_samples:
4280 /* The driver does not support multi-sampled images. */
4281 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4282 break;
4283
4284 case nir_intrinsic_load_uniform: {
4285 /* Offsets are in bytes but they should always aligned to
4286 * the type size
4287 */
4288 assert(instr->const_index[0] % 4 == 0 ||
4289 instr->const_index[0] % type_sz(dest.type) == 0);
4290
4291 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4292
4293 if (nir_src_is_const(instr->src[0])) {
4294 unsigned load_offset = nir_src_as_uint(instr->src[0]);
4295 assert(load_offset % type_sz(dest.type) == 0);
4296 /* For 16-bit types we add the module of the const_index[0]
4297 * offset to access to not 32-bit aligned element
4298 */
4299 src.offset = load_offset + instr->const_index[0] % 4;
4300
4301 for (unsigned j = 0; j < instr->num_components; j++) {
4302 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4303 }
4304 } else {
4305 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4306 BRW_REGISTER_TYPE_UD);
4307
4308 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4309 * go past the end of the uniform. In order to keep the n'th
4310 * component from running past, we subtract off the size of all but
4311 * one component of the vector.
4312 */
4313 assert(instr->const_index[1] >=
4314 instr->num_components * (int) type_sz(dest.type));
4315 unsigned read_size = instr->const_index[1] -
4316 (instr->num_components - 1) * type_sz(dest.type);
4317
4318 bool supports_64bit_indirects =
4319 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4320
4321 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4322 for (unsigned j = 0; j < instr->num_components; j++) {
4323 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4324 offset(dest, bld, j), offset(src, bld, j),
4325 indirect, brw_imm_ud(read_size));
4326 }
4327 } else {
4328 const unsigned num_mov_indirects =
4329 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4330 /* We read a little bit less per MOV INDIRECT, as they are now
4331 * 32-bits ones instead of 64-bit. Fix read_size then.
4332 */
4333 const unsigned read_size_32bit = read_size -
4334 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4335 for (unsigned j = 0; j < instr->num_components; j++) {
4336 for (unsigned i = 0; i < num_mov_indirects; i++) {
4337 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4338 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4339 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4340 indirect, brw_imm_ud(read_size_32bit));
4341 }
4342 }
4343 }
4344 }
4345 break;
4346 }
4347
4348 case nir_intrinsic_load_ubo: {
4349 fs_reg surf_index;
4350 if (nir_src_is_const(instr->src[0])) {
4351 const unsigned index = stage_prog_data->binding_table.ubo_start +
4352 nir_src_as_uint(instr->src[0]);
4353 surf_index = brw_imm_ud(index);
4354 } else {
4355 /* The block index is not a constant. Evaluate the index expression
4356 * per-channel and add the base UBO index; we have to select a value
4357 * from any live channel.
4358 */
4359 surf_index = vgrf(glsl_type::uint_type);
4360 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4361 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4362 surf_index = bld.emit_uniformize(surf_index);
4363 }
4364
4365 if (!nir_src_is_const(instr->src[1])) {
4366 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4367 BRW_REGISTER_TYPE_UD);
4368
4369 for (int i = 0; i < instr->num_components; i++)
4370 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4371 base_offset, i * type_sz(dest.type));
4372 } else {
4373 /* Even if we are loading doubles, a pull constant load will load
4374 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4375 * need to load a full dvec4 we will have to emit 2 loads. This is
4376 * similar to demote_pull_constants(), except that in that case we
4377 * see individual accesses to each component of the vector and then
4378 * we let CSE deal with duplicate loads. Here we see a vector access
4379 * and we have to split it if necessary.
4380 */
4381 const unsigned type_size = type_sz(dest.type);
4382 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4383
4384 /* See if we've selected this as a push constant candidate */
4385 if (nir_src_is_const(instr->src[0])) {
4386 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4387 const unsigned offset_256b = load_offset / 32;
4388
4389 fs_reg push_reg;
4390 for (int i = 0; i < 4; i++) {
4391 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4392 if (range->block == ubo_block &&
4393 offset_256b >= range->start &&
4394 offset_256b < range->start + range->length) {
4395
4396 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4397 push_reg.offset = load_offset - 32 * range->start;
4398 break;
4399 }
4400 }
4401
4402 if (push_reg.file != BAD_FILE) {
4403 for (unsigned i = 0; i < instr->num_components; i++) {
4404 bld.MOV(offset(dest, bld, i),
4405 byte_offset(push_reg, i * type_size));
4406 }
4407 break;
4408 }
4409 }
4410
4411 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4412 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4413 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4414
4415 for (unsigned c = 0; c < instr->num_components;) {
4416 const unsigned base = load_offset + c * type_size;
4417 /* Number of usable components in the next block-aligned load. */
4418 const unsigned count = MIN2(instr->num_components - c,
4419 (block_sz - base % block_sz) / type_size);
4420
4421 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4422 packed_consts, surf_index,
4423 brw_imm_ud(base & ~(block_sz - 1)));
4424
4425 const fs_reg consts =
4426 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4427 dest.type);
4428
4429 for (unsigned d = 0; d < count; d++)
4430 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4431
4432 c += count;
4433 }
4434 }
4435 break;
4436 }
4437
4438 case nir_intrinsic_load_global: {
4439 assert(devinfo->gen >= 8);
4440
4441 if (nir_intrinsic_align(instr) >= 4) {
4442 assert(nir_dest_bit_size(instr->dest) == 32);
4443 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4444 dest,
4445 get_nir_src(instr->src[0]), /* Address */
4446 fs_reg(), /* No source data */
4447 brw_imm_ud(instr->num_components));
4448 inst->size_written = instr->num_components *
4449 inst->dst.component_size(inst->exec_size);
4450 } else {
4451 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4452 assert(bit_size <= 32);
4453 assert(nir_dest_num_components(instr->dest) == 1);
4454 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4455 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4456 tmp,
4457 get_nir_src(instr->src[0]), /* Address */
4458 fs_reg(), /* No source data */
4459 brw_imm_ud(bit_size));
4460 bld.MOV(dest, subscript(tmp, dest.type, 0));
4461 }
4462 break;
4463 }
4464
4465 case nir_intrinsic_store_global:
4466 assert(devinfo->gen >= 8);
4467
4468 if (stage == MESA_SHADER_FRAGMENT)
4469 brw_wm_prog_data(prog_data)->has_side_effects = true;
4470
4471 if (nir_intrinsic_align(instr) >= 4) {
4472 assert(nir_src_bit_size(instr->src[0]) == 32);
4473 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4474 fs_reg(),
4475 get_nir_src(instr->src[1]), /* Address */
4476 get_nir_src(instr->src[0]), /* Data */
4477 brw_imm_ud(instr->num_components));
4478 } else {
4479 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4480 assert(bit_size <= 32);
4481 assert(nir_src_num_components(instr->src[0]) == 1);
4482 brw_reg_type data_type =
4483 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4484 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4485 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4486 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4487 fs_reg(),
4488 get_nir_src(instr->src[1]), /* Address */
4489 tmp, /* Data */
4490 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4491 }
4492 break;
4493
4494 case nir_intrinsic_global_atomic_add:
4495 nir_emit_global_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
4496 break;
4497 case nir_intrinsic_global_atomic_imin:
4498 nir_emit_global_atomic(bld, BRW_AOP_IMIN, instr);
4499 break;
4500 case nir_intrinsic_global_atomic_umin:
4501 nir_emit_global_atomic(bld, BRW_AOP_UMIN, instr);
4502 break;
4503 case nir_intrinsic_global_atomic_imax:
4504 nir_emit_global_atomic(bld, BRW_AOP_IMAX, instr);
4505 break;
4506 case nir_intrinsic_global_atomic_umax:
4507 nir_emit_global_atomic(bld, BRW_AOP_UMAX, instr);
4508 break;
4509 case nir_intrinsic_global_atomic_and:
4510 nir_emit_global_atomic(bld, BRW_AOP_AND, instr);
4511 break;
4512 case nir_intrinsic_global_atomic_or:
4513 nir_emit_global_atomic(bld, BRW_AOP_OR, instr);
4514 break;
4515 case nir_intrinsic_global_atomic_xor:
4516 nir_emit_global_atomic(bld, BRW_AOP_XOR, instr);
4517 break;
4518 case nir_intrinsic_global_atomic_exchange:
4519 nir_emit_global_atomic(bld, BRW_AOP_MOV, instr);
4520 break;
4521 case nir_intrinsic_global_atomic_comp_swap:
4522 nir_emit_global_atomic(bld, BRW_AOP_CMPWR, instr);
4523 break;
4524 case nir_intrinsic_global_atomic_fmin:
4525 nir_emit_global_atomic_float(bld, BRW_AOP_FMIN, instr);
4526 break;
4527 case nir_intrinsic_global_atomic_fmax:
4528 nir_emit_global_atomic_float(bld, BRW_AOP_FMAX, instr);
4529 break;
4530 case nir_intrinsic_global_atomic_fcomp_swap:
4531 nir_emit_global_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4532 break;
4533
4534 case nir_intrinsic_load_ssbo: {
4535 assert(devinfo->gen >= 7);
4536
4537 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4538 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4539 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4540 get_nir_ssbo_intrinsic_index(bld, instr);
4541 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4542 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4543
4544 /* Make dest unsigned because that's what the temporary will be */
4545 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4546
4547 /* Read the vector */
4548 if (nir_intrinsic_align(instr) >= 4) {
4549 assert(nir_dest_bit_size(instr->dest) == 32);
4550 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4551 fs_inst *inst =
4552 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4553 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4554 inst->size_written = instr->num_components * dispatch_width * 4;
4555 } else {
4556 assert(nir_dest_bit_size(instr->dest) <= 32);
4557 assert(nir_dest_num_components(instr->dest) == 1);
4558 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4559
4560 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4561 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4562 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4563 bld.MOV(dest, subscript(read_result, dest.type, 0));
4564 }
4565 break;
4566 }
4567
4568 case nir_intrinsic_store_ssbo: {
4569 assert(devinfo->gen >= 7);
4570
4571 if (stage == MESA_SHADER_FRAGMENT)
4572 brw_wm_prog_data(prog_data)->has_side_effects = true;
4573
4574 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4575 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4576 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4577 get_nir_ssbo_intrinsic_index(bld, instr);
4578 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4579 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4580
4581 fs_reg data = get_nir_src(instr->src[0]);
4582 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4583
4584 assert(nir_intrinsic_write_mask(instr) ==
4585 (1u << instr->num_components) - 1);
4586 if (nir_intrinsic_align(instr) >= 4) {
4587 assert(nir_src_bit_size(instr->src[0]) == 32);
4588 assert(nir_src_num_components(instr->src[0]) <= 4);
4589 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4590 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4591 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4592 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4593 } else {
4594 assert(nir_src_bit_size(instr->src[0]) <= 32);
4595 assert(nir_src_num_components(instr->src[0]) == 1);
4596 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4597
4598 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4599 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4600
4601 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4602 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4603 }
4604 break;
4605 }
4606
4607 case nir_intrinsic_store_output: {
4608 assert(nir_src_bit_size(instr->src[0]) == 32);
4609 fs_reg src = get_nir_src(instr->src[0]);
4610
4611 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4612 unsigned num_components = instr->num_components;
4613 unsigned first_component = nir_intrinsic_component(instr);
4614
4615 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4616 4 * store_offset), src.type);
4617 for (unsigned j = 0; j < num_components; j++) {
4618 bld.MOV(offset(new_dest, bld, j + first_component),
4619 offset(src, bld, j));
4620 }
4621 break;
4622 }
4623
4624 case nir_intrinsic_ssbo_atomic_add:
4625 nir_emit_ssbo_atomic(bld, get_op_for_atomic_add(instr, 2), instr);
4626 break;
4627 case nir_intrinsic_ssbo_atomic_imin:
4628 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4629 break;
4630 case nir_intrinsic_ssbo_atomic_umin:
4631 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4632 break;
4633 case nir_intrinsic_ssbo_atomic_imax:
4634 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4635 break;
4636 case nir_intrinsic_ssbo_atomic_umax:
4637 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4638 break;
4639 case nir_intrinsic_ssbo_atomic_and:
4640 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4641 break;
4642 case nir_intrinsic_ssbo_atomic_or:
4643 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4644 break;
4645 case nir_intrinsic_ssbo_atomic_xor:
4646 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4647 break;
4648 case nir_intrinsic_ssbo_atomic_exchange:
4649 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4650 break;
4651 case nir_intrinsic_ssbo_atomic_comp_swap:
4652 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4653 break;
4654 case nir_intrinsic_ssbo_atomic_fmin:
4655 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4656 break;
4657 case nir_intrinsic_ssbo_atomic_fmax:
4658 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4659 break;
4660 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4661 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4662 break;
4663
4664 case nir_intrinsic_get_buffer_size: {
4665 assert(nir_src_num_components(instr->src[0]) == 1);
4666 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4667 nir_src_as_uint(instr->src[0]) : 0;
4668
4669 /* A resinfo's sampler message is used to get the buffer size. The
4670 * SIMD8's writeback message consists of four registers and SIMD16's
4671 * writeback message consists of 8 destination registers (two per each
4672 * component). Because we are only interested on the first channel of
4673 * the first returned component, where resinfo returns the buffer size
4674 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4675 * the dispatch width.
4676 */
4677 const fs_builder ubld = bld.exec_all().group(8, 0);
4678 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4679 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4680
4681 /* Set LOD = 0 */
4682 ubld.MOV(src_payload, brw_imm_d(0));
4683
4684 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4685 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4686 src_payload, brw_imm_ud(index));
4687 inst->header_size = 0;
4688 inst->mlen = 1;
4689 inst->size_written = 4 * REG_SIZE;
4690
4691 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4692 *
4693 * "Out-of-bounds checking is always performed at a DWord granularity. If
4694 * any part of the DWord is out-of-bounds then the whole DWord is
4695 * considered out-of-bounds."
4696 *
4697 * This implies that types with size smaller than 4-bytes need to be
4698 * padded if they don't complete the last dword of the buffer. But as we
4699 * need to maintain the original size we need to reverse the padding
4700 * calculation to return the correct size to know the number of elements
4701 * of an unsized array. As we stored in the last two bits of the surface
4702 * size the needed padding for the buffer, we calculate here the
4703 * original buffer_size reversing the surface_size calculation:
4704 *
4705 * surface_size = isl_align(buffer_size, 4) +
4706 * (isl_align(buffer_size) - buffer_size)
4707 *
4708 * buffer_size = surface_size & ~3 - surface_size & 3
4709 */
4710
4711 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4712 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4713 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4714
4715 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4716 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4717 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4718
4719 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4720 break;
4721 }
4722
4723 case nir_intrinsic_load_subgroup_size:
4724 /* This should only happen for fragment shaders because every other case
4725 * is lowered in NIR so we can optimize on it.
4726 */
4727 assert(stage == MESA_SHADER_FRAGMENT);
4728 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(dispatch_width));
4729 break;
4730
4731 case nir_intrinsic_load_subgroup_invocation:
4732 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4733 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4734 break;
4735
4736 case nir_intrinsic_load_subgroup_eq_mask:
4737 case nir_intrinsic_load_subgroup_ge_mask:
4738 case nir_intrinsic_load_subgroup_gt_mask:
4739 case nir_intrinsic_load_subgroup_le_mask:
4740 case nir_intrinsic_load_subgroup_lt_mask:
4741 unreachable("not reached");
4742
4743 case nir_intrinsic_vote_any: {
4744 const fs_builder ubld = bld.exec_all().group(1, 0);
4745
4746 /* The any/all predicates do not consider channel enables. To prevent
4747 * dead channels from affecting the result, we initialize the flag with
4748 * with the identity value for the logical operation.
4749 */
4750 if (dispatch_width == 32) {
4751 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4752 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4753 brw_imm_ud(0));
4754 } else {
4755 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4756 }
4757 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4758
4759 /* For some reason, the any/all predicates don't work properly with
4760 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4761 * doesn't read the correct subset of the flag register and you end up
4762 * getting garbage in the second half. Work around this by using a pair
4763 * of 1-wide MOVs and scattering the result.
4764 */
4765 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4766 ubld.MOV(res1, brw_imm_d(0));
4767 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4768 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4769 BRW_PREDICATE_ALIGN1_ANY32H,
4770 ubld.MOV(res1, brw_imm_d(-1)));
4771
4772 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4773 break;
4774 }
4775 case nir_intrinsic_vote_all: {
4776 const fs_builder ubld = bld.exec_all().group(1, 0);
4777
4778 /* The any/all predicates do not consider channel enables. To prevent
4779 * dead channels from affecting the result, we initialize the flag with
4780 * with the identity value for the logical operation.
4781 */
4782 if (dispatch_width == 32) {
4783 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4784 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4785 brw_imm_ud(0xffffffff));
4786 } else {
4787 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4788 }
4789 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4790
4791 /* For some reason, the any/all predicates don't work properly with
4792 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4793 * doesn't read the correct subset of the flag register and you end up
4794 * getting garbage in the second half. Work around this by using a pair
4795 * of 1-wide MOVs and scattering the result.
4796 */
4797 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4798 ubld.MOV(res1, brw_imm_d(0));
4799 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4800 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4801 BRW_PREDICATE_ALIGN1_ALL32H,
4802 ubld.MOV(res1, brw_imm_d(-1)));
4803
4804 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4805 break;
4806 }
4807 case nir_intrinsic_vote_feq:
4808 case nir_intrinsic_vote_ieq: {
4809 fs_reg value = get_nir_src(instr->src[0]);
4810 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4811 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4812 value.type = bit_size == 8 ? BRW_REGISTER_TYPE_B :
4813 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4814 }
4815
4816 fs_reg uniformized = bld.emit_uniformize(value);
4817 const fs_builder ubld = bld.exec_all().group(1, 0);
4818
4819 /* The any/all predicates do not consider channel enables. To prevent
4820 * dead channels from affecting the result, we initialize the flag with
4821 * with the identity value for the logical operation.
4822 */
4823 if (dispatch_width == 32) {
4824 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4825 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4826 brw_imm_ud(0xffffffff));
4827 } else {
4828 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4829 }
4830 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4831
4832 /* For some reason, the any/all predicates don't work properly with
4833 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4834 * doesn't read the correct subset of the flag register and you end up
4835 * getting garbage in the second half. Work around this by using a pair
4836 * of 1-wide MOVs and scattering the result.
4837 */
4838 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4839 ubld.MOV(res1, brw_imm_d(0));
4840 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4841 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4842 BRW_PREDICATE_ALIGN1_ALL32H,
4843 ubld.MOV(res1, brw_imm_d(-1)));
4844
4845 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4846 break;
4847 }
4848
4849 case nir_intrinsic_ballot: {
4850 const fs_reg value = retype(get_nir_src(instr->src[0]),
4851 BRW_REGISTER_TYPE_UD);
4852 struct brw_reg flag = brw_flag_reg(0, 0);
4853 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4854 * as f0.0. This is a problem for fragment programs as we currently use
4855 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4856 * programs yet so this isn't a problem. When we do, something will
4857 * have to change.
4858 */
4859 if (dispatch_width == 32)
4860 flag.type = BRW_REGISTER_TYPE_UD;
4861
4862 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4863 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4864
4865 if (instr->dest.ssa.bit_size > 32) {
4866 dest.type = BRW_REGISTER_TYPE_UQ;
4867 } else {
4868 dest.type = BRW_REGISTER_TYPE_UD;
4869 }
4870 bld.MOV(dest, flag);
4871 break;
4872 }
4873
4874 case nir_intrinsic_read_invocation: {
4875 const fs_reg value = get_nir_src(instr->src[0]);
4876 const fs_reg invocation = get_nir_src(instr->src[1]);
4877 fs_reg tmp = bld.vgrf(value.type);
4878
4879 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4880 bld.emit_uniformize(invocation));
4881
4882 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4883 break;
4884 }
4885
4886 case nir_intrinsic_read_first_invocation: {
4887 const fs_reg value = get_nir_src(instr->src[0]);
4888 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4889 break;
4890 }
4891
4892 case nir_intrinsic_shuffle: {
4893 const fs_reg value = get_nir_src(instr->src[0]);
4894 const fs_reg index = get_nir_src(instr->src[1]);
4895
4896 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4897 break;
4898 }
4899
4900 case nir_intrinsic_first_invocation: {
4901 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4902 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4903 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4904 fs_reg(component(tmp, 0)));
4905 break;
4906 }
4907
4908 case nir_intrinsic_quad_broadcast: {
4909 const fs_reg value = get_nir_src(instr->src[0]);
4910 const unsigned index = nir_src_as_uint(instr->src[1]);
4911
4912 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4913 value, brw_imm_ud(index), brw_imm_ud(4));
4914 break;
4915 }
4916
4917 case nir_intrinsic_quad_swap_horizontal: {
4918 const fs_reg value = get_nir_src(instr->src[0]);
4919 const fs_reg tmp = bld.vgrf(value.type);
4920 if (devinfo->gen <= 7) {
4921 /* The hardware doesn't seem to support these crazy regions with
4922 * compressed instructions on gen7 and earlier so we fall back to
4923 * using quad swizzles. Fortunately, we don't support 64-bit
4924 * anything in Vulkan on gen7.
4925 */
4926 assert(nir_src_bit_size(instr->src[0]) == 32);
4927 const fs_builder ubld = bld.exec_all();
4928 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4929 brw_imm_ud(BRW_SWIZZLE4(1,0,3,2)));
4930 bld.MOV(retype(dest, value.type), tmp);
4931 } else {
4932 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4933
4934 const fs_reg src_left = horiz_stride(value, 2);
4935 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4936 const fs_reg tmp_left = horiz_stride(tmp, 2);
4937 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4938
4939 ubld.MOV(tmp_left, src_right);
4940 ubld.MOV(tmp_right, src_left);
4941
4942 }
4943 bld.MOV(retype(dest, value.type), tmp);
4944 break;
4945 }
4946
4947 case nir_intrinsic_quad_swap_vertical: {
4948 const fs_reg value = get_nir_src(instr->src[0]);
4949 if (nir_src_bit_size(instr->src[0]) == 32) {
4950 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4951 const fs_reg tmp = bld.vgrf(value.type);
4952 const fs_builder ubld = bld.exec_all();
4953 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4954 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4955 bld.MOV(retype(dest, value.type), tmp);
4956 } else {
4957 /* For larger data types, we have to either emit dispatch_width many
4958 * MOVs or else fall back to doing indirects.
4959 */
4960 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4961 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4962 brw_imm_w(0x2));
4963 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4964 }
4965 break;
4966 }
4967
4968 case nir_intrinsic_quad_swap_diagonal: {
4969 const fs_reg value = get_nir_src(instr->src[0]);
4970 if (nir_src_bit_size(instr->src[0]) == 32) {
4971 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4972 const fs_reg tmp = bld.vgrf(value.type);
4973 const fs_builder ubld = bld.exec_all();
4974 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4975 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4976 bld.MOV(retype(dest, value.type), tmp);
4977 } else {
4978 /* For larger data types, we have to either emit dispatch_width many
4979 * MOVs or else fall back to doing indirects.
4980 */
4981 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4982 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4983 brw_imm_w(0x3));
4984 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4985 }
4986 break;
4987 }
4988
4989 case nir_intrinsic_reduce: {
4990 fs_reg src = get_nir_src(instr->src[0]);
4991 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4992 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4993 if (cluster_size == 0 || cluster_size > dispatch_width)
4994 cluster_size = dispatch_width;
4995
4996 /* Figure out the source type */
4997 src.type = brw_type_for_nir_type(devinfo,
4998 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4999 nir_src_bit_size(instr->src[0])));
5000
5001 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
5002 opcode brw_op = brw_op_for_nir_reduction_op(redop);
5003 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
5004
5005 /* Set up a register for all of our scratching around and initialize it
5006 * to reduction operation's identity value.
5007 */
5008 fs_reg scan = bld.vgrf(src.type);
5009 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5010
5011 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
5012
5013 dest.type = src.type;
5014 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
5015 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
5016 * the distance between clusters is at least 2 GRFs. In this case,
5017 * we don't need the weird striding of the CLUSTER_BROADCAST
5018 * instruction and can just do regular MOVs.
5019 */
5020 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
5021 const unsigned groups =
5022 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
5023 const unsigned group_size = dispatch_width / groups;
5024 for (unsigned i = 0; i < groups; i++) {
5025 const unsigned cluster = (i * group_size) / cluster_size;
5026 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
5027 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
5028 component(scan, comp));
5029 }
5030 } else {
5031 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
5032 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
5033 }
5034 break;
5035 }
5036
5037 case nir_intrinsic_inclusive_scan:
5038 case nir_intrinsic_exclusive_scan: {
5039 fs_reg src = get_nir_src(instr->src[0]);
5040 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
5041
5042 /* Figure out the source type */
5043 src.type = brw_type_for_nir_type(devinfo,
5044 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
5045 nir_src_bit_size(instr->src[0])));
5046
5047 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
5048 opcode brw_op = brw_op_for_nir_reduction_op(redop);
5049 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
5050
5051 /* Set up a register for all of our scratching around and initialize it
5052 * to reduction operation's identity value.
5053 */
5054 fs_reg scan = bld.vgrf(src.type);
5055 const fs_builder allbld = bld.exec_all();
5056 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5057
5058 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
5059 /* Exclusive scan is a bit harder because we have to do an annoying
5060 * shift of the contents before we can begin. To make things worse,
5061 * we can't do this with a normal stride; we have to use indirects.
5062 */
5063 fs_reg shifted = bld.vgrf(src.type);
5064 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5065 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5066 brw_imm_w(-1));
5067 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
5068 allbld.group(1, 0).MOV(component(shifted, 0), identity);
5069 scan = shifted;
5070 }
5071
5072 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
5073
5074 bld.MOV(retype(dest, src.type), scan);
5075 break;
5076 }
5077
5078 case nir_intrinsic_begin_invocation_interlock: {
5079 const fs_builder ubld = bld.group(8, 0);
5080 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5081
5082 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp, brw_vec8_grf(0, 0))
5083 ->size_written = 2 * REG_SIZE;
5084 break;
5085 }
5086
5087 case nir_intrinsic_end_invocation_interlock: {
5088 /* For endInvocationInterlock(), we need to insert a memory fence which
5089 * stalls in the shader until the memory transactions prior to that
5090 * fence are complete. This ensures that the shader does not end before
5091 * any writes from its critical section have landed. Otherwise, you can
5092 * end up with a case where the next invocation on that pixel properly
5093 * stalls for previous FS invocation on its pixel to complete but
5094 * doesn't actually wait for the dataport memory transactions from that
5095 * thread to land before submitting its own.
5096 */
5097 const fs_builder ubld = bld.group(8, 0);
5098 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5099 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
5100 brw_vec8_grf(0, 0), brw_imm_ud(1), brw_imm_ud(0))
5101 ->size_written = 2 * REG_SIZE;
5102 break;
5103 }
5104
5105 default:
5106 unreachable("unknown intrinsic");
5107 }
5108 }
5109
5110 void
5111 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
5112 int op, nir_intrinsic_instr *instr)
5113 {
5114 if (stage == MESA_SHADER_FRAGMENT)
5115 brw_wm_prog_data(prog_data)->has_side_effects = true;
5116
5117 /* The BTI untyped atomic messages only support 32-bit atomics. If you
5118 * just look at the big table of messages in the Vol 7 of the SKL PRM, they
5119 * appear to exist. However, if you look at Vol 2a, there are no message
5120 * descriptors provided for Qword atomic ops except for A64 messages.
5121 */
5122 assert(nir_dest_bit_size(instr->dest) == 32);
5123
5124 fs_reg dest;
5125 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5126 dest = get_nir_dest(instr->dest);
5127
5128 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5129 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5130 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5131 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5132 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5133
5134 fs_reg data;
5135 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5136 data = get_nir_src(instr->src[2]);
5137
5138 if (op == BRW_AOP_CMPWR) {
5139 fs_reg tmp = bld.vgrf(data.type, 2);
5140 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5141 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5142 data = tmp;
5143 }
5144 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5145
5146 /* Emit the actual atomic operation */
5147
5148 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5149 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5150 }
5151
5152 void
5153 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
5154 int op, nir_intrinsic_instr *instr)
5155 {
5156 if (stage == MESA_SHADER_FRAGMENT)
5157 brw_wm_prog_data(prog_data)->has_side_effects = true;
5158
5159 fs_reg dest;
5160 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5161 dest = get_nir_dest(instr->dest);
5162
5163 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5164 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5165 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5166 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5167 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5168
5169 fs_reg data = get_nir_src(instr->src[2]);
5170 if (op == BRW_AOP_FCMPWR) {
5171 fs_reg tmp = bld.vgrf(data.type, 2);
5172 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5173 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5174 data = tmp;
5175 }
5176 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5177
5178 /* Emit the actual atomic operation */
5179
5180 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5181 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5182 }
5183
5184 void
5185 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
5186 int op, nir_intrinsic_instr *instr)
5187 {
5188 fs_reg dest;
5189 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5190 dest = get_nir_dest(instr->dest);
5191
5192 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5193 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5194 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5195 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5196
5197 fs_reg data;
5198 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5199 data = get_nir_src(instr->src[1]);
5200 if (op == BRW_AOP_CMPWR) {
5201 fs_reg tmp = bld.vgrf(data.type, 2);
5202 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5203 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5204 data = tmp;
5205 }
5206 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5207
5208 /* Get the offset */
5209 if (nir_src_is_const(instr->src[0])) {
5210 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5211 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5212 } else {
5213 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5214 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5215 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5216 brw_imm_ud(instr->const_index[0]));
5217 }
5218
5219 /* Emit the actual atomic operation operation */
5220
5221 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5222 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5223 }
5224
5225 void
5226 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
5227 int op, nir_intrinsic_instr *instr)
5228 {
5229 fs_reg dest;
5230 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5231 dest = get_nir_dest(instr->dest);
5232
5233 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5234 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5235 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5236 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5237
5238 fs_reg data = get_nir_src(instr->src[1]);
5239 if (op == BRW_AOP_FCMPWR) {
5240 fs_reg tmp = bld.vgrf(data.type, 2);
5241 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5242 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5243 data = tmp;
5244 }
5245 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5246
5247 /* Get the offset */
5248 if (nir_src_is_const(instr->src[0])) {
5249 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5250 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5251 } else {
5252 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5253 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5254 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5255 brw_imm_ud(instr->const_index[0]));
5256 }
5257
5258 /* Emit the actual atomic operation operation */
5259
5260 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5261 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5262 }
5263
5264 void
5265 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
5266 int op, nir_intrinsic_instr *instr)
5267 {
5268 if (stage == MESA_SHADER_FRAGMENT)
5269 brw_wm_prog_data(prog_data)->has_side_effects = true;
5270
5271 fs_reg dest;
5272 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5273 dest = get_nir_dest(instr->dest);
5274
5275 fs_reg addr = get_nir_src(instr->src[0]);
5276
5277 fs_reg data;
5278 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5279 data = get_nir_src(instr->src[1]);
5280
5281 if (op == BRW_AOP_CMPWR) {
5282 fs_reg tmp = bld.vgrf(data.type, 2);
5283 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5284 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5285 data = tmp;
5286 }
5287
5288 if (nir_dest_bit_size(instr->dest) == 64) {
5289 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL,
5290 dest, addr, data, brw_imm_ud(op));
5291 } else {
5292 assert(nir_dest_bit_size(instr->dest) == 32);
5293 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5294 dest, addr, data, brw_imm_ud(op));
5295 }
5296 }
5297
5298 void
5299 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
5300 int op, nir_intrinsic_instr *instr)
5301 {
5302 if (stage == MESA_SHADER_FRAGMENT)
5303 brw_wm_prog_data(prog_data)->has_side_effects = true;
5304
5305 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
5306 fs_reg dest = get_nir_dest(instr->dest);
5307
5308 fs_reg addr = get_nir_src(instr->src[0]);
5309
5310 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
5311 fs_reg data = get_nir_src(instr->src[1]);
5312
5313 if (op == BRW_AOP_FCMPWR) {
5314 fs_reg tmp = bld.vgrf(data.type, 2);
5315 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5316 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5317 data = tmp;
5318 }
5319
5320 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5321 dest, addr, data, brw_imm_ud(op));
5322 }
5323
5324 void
5325 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5326 {
5327 unsigned texture = instr->texture_index;
5328 unsigned sampler = instr->sampler_index;
5329
5330 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5331
5332 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5333 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5334
5335 int lod_components = 0;
5336
5337 /* The hardware requires a LOD for buffer textures */
5338 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5339 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5340
5341 uint32_t header_bits = 0;
5342 for (unsigned i = 0; i < instr->num_srcs; i++) {
5343 fs_reg src = get_nir_src(instr->src[i].src);
5344 switch (instr->src[i].src_type) {
5345 case nir_tex_src_bias:
5346 srcs[TEX_LOGICAL_SRC_LOD] =
5347 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5348 break;
5349 case nir_tex_src_comparator:
5350 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5351 break;
5352 case nir_tex_src_coord:
5353 switch (instr->op) {
5354 case nir_texop_txf:
5355 case nir_texop_txf_ms:
5356 case nir_texop_txf_ms_mcs:
5357 case nir_texop_samples_identical:
5358 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5359 break;
5360 default:
5361 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5362 break;
5363 }
5364 break;
5365 case nir_tex_src_ddx:
5366 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5367 lod_components = nir_tex_instr_src_size(instr, i);
5368 break;
5369 case nir_tex_src_ddy:
5370 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5371 break;
5372 case nir_tex_src_lod:
5373 switch (instr->op) {
5374 case nir_texop_txs:
5375 srcs[TEX_LOGICAL_SRC_LOD] =
5376 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5377 break;
5378 case nir_texop_txf:
5379 srcs[TEX_LOGICAL_SRC_LOD] =
5380 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5381 break;
5382 default:
5383 srcs[TEX_LOGICAL_SRC_LOD] =
5384 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5385 break;
5386 }
5387 break;
5388 case nir_tex_src_min_lod:
5389 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
5390 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5391 break;
5392 case nir_tex_src_ms_index:
5393 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5394 break;
5395
5396 case nir_tex_src_offset: {
5397 uint32_t offset_bits = 0;
5398 if (brw_texture_offset(instr, i, &offset_bits)) {
5399 header_bits |= offset_bits;
5400 } else {
5401 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5402 retype(src, BRW_REGISTER_TYPE_D);
5403 }
5404 break;
5405 }
5406
5407 case nir_tex_src_projector:
5408 unreachable("should be lowered");
5409
5410 case nir_tex_src_texture_offset: {
5411 /* Emit code to evaluate the actual indexing expression */
5412 fs_reg tmp = vgrf(glsl_type::uint_type);
5413 bld.ADD(tmp, src, brw_imm_ud(texture));
5414 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5415 break;
5416 }
5417
5418 case nir_tex_src_sampler_offset: {
5419 /* Emit code to evaluate the actual indexing expression */
5420 fs_reg tmp = vgrf(glsl_type::uint_type);
5421 bld.ADD(tmp, src, brw_imm_ud(sampler));
5422 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5423 break;
5424 }
5425
5426 case nir_tex_src_texture_handle:
5427 assert(nir_tex_instr_src_index(instr, nir_tex_src_texture_offset) == -1);
5428 srcs[TEX_LOGICAL_SRC_SURFACE] = fs_reg();
5429 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = bld.emit_uniformize(src);
5430 break;
5431
5432 case nir_tex_src_sampler_handle:
5433 assert(nir_tex_instr_src_index(instr, nir_tex_src_sampler_offset) == -1);
5434 srcs[TEX_LOGICAL_SRC_SAMPLER] = fs_reg();
5435 srcs[TEX_LOGICAL_SRC_SAMPLER_HANDLE] = bld.emit_uniformize(src);
5436 break;
5437
5438 case nir_tex_src_ms_mcs:
5439 assert(instr->op == nir_texop_txf_ms);
5440 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5441 break;
5442
5443 case nir_tex_src_plane: {
5444 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5445 const uint32_t texture_index =
5446 instr->texture_index +
5447 stage_prog_data->binding_table.plane_start[plane] -
5448 stage_prog_data->binding_table.texture_start;
5449
5450 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5451 break;
5452 }
5453
5454 default:
5455 unreachable("unknown texture source");
5456 }
5457 }
5458
5459 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5460 (instr->op == nir_texop_txf_ms ||
5461 instr->op == nir_texop_samples_identical)) {
5462 if (devinfo->gen >= 7 &&
5463 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5464 srcs[TEX_LOGICAL_SRC_MCS] =
5465 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5466 instr->coord_components,
5467 srcs[TEX_LOGICAL_SRC_SURFACE],
5468 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE]);
5469 } else {
5470 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5471 }
5472 }
5473
5474 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5475 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5476
5477 enum opcode opcode;
5478 switch (instr->op) {
5479 case nir_texop_tex:
5480 opcode = SHADER_OPCODE_TEX_LOGICAL;
5481 break;
5482 case nir_texop_txb:
5483 opcode = FS_OPCODE_TXB_LOGICAL;
5484 break;
5485 case nir_texop_txl:
5486 opcode = SHADER_OPCODE_TXL_LOGICAL;
5487 break;
5488 case nir_texop_txd:
5489 opcode = SHADER_OPCODE_TXD_LOGICAL;
5490 break;
5491 case nir_texop_txf:
5492 opcode = SHADER_OPCODE_TXF_LOGICAL;
5493 break;
5494 case nir_texop_txf_ms:
5495 if ((key_tex->msaa_16 & (1 << sampler)))
5496 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5497 else
5498 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5499 break;
5500 case nir_texop_txf_ms_mcs:
5501 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5502 break;
5503 case nir_texop_query_levels:
5504 case nir_texop_txs:
5505 opcode = SHADER_OPCODE_TXS_LOGICAL;
5506 break;
5507 case nir_texop_lod:
5508 opcode = SHADER_OPCODE_LOD_LOGICAL;
5509 break;
5510 case nir_texop_tg4:
5511 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5512 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5513 else
5514 opcode = SHADER_OPCODE_TG4_LOGICAL;
5515 break;
5516 case nir_texop_texture_samples:
5517 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5518 break;
5519 case nir_texop_samples_identical: {
5520 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5521
5522 /* If mcs is an immediate value, it means there is no MCS. In that case
5523 * just return false.
5524 */
5525 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5526 bld.MOV(dst, brw_imm_ud(0u));
5527 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5528 fs_reg tmp = vgrf(glsl_type::uint_type);
5529 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5530 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5531 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5532 } else {
5533 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5534 BRW_CONDITIONAL_EQ);
5535 }
5536 return;
5537 }
5538 default:
5539 unreachable("unknown texture opcode");
5540 }
5541
5542 if (instr->op == nir_texop_tg4) {
5543 if (instr->component == 1 &&
5544 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5545 /* gather4 sampler is broken for green channel on RG32F --
5546 * we must ask for blue instead.
5547 */
5548 header_bits |= 2 << 16;
5549 } else {
5550 header_bits |= instr->component << 16;
5551 }
5552 }
5553
5554 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5555 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5556 inst->offset = header_bits;
5557
5558 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5559 if (devinfo->gen >= 9 &&
5560 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5561 unsigned write_mask = instr->dest.is_ssa ?
5562 nir_ssa_def_components_read(&instr->dest.ssa):
5563 (1 << dest_size) - 1;
5564 assert(write_mask != 0); /* dead code should have been eliminated */
5565 inst->size_written = util_last_bit(write_mask) *
5566 inst->dst.component_size(inst->exec_size);
5567 } else {
5568 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5569 }
5570
5571 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5572 inst->shadow_compare = true;
5573
5574 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5575 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5576
5577 fs_reg nir_dest[4];
5578 for (unsigned i = 0; i < dest_size; i++)
5579 nir_dest[i] = offset(dst, bld, i);
5580
5581 if (instr->op == nir_texop_query_levels) {
5582 /* # levels is in .w */
5583 nir_dest[0] = offset(dst, bld, 3);
5584 } else if (instr->op == nir_texop_txs &&
5585 dest_size >= 3 && devinfo->gen < 7) {
5586 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5587 fs_reg depth = offset(dst, bld, 2);
5588 nir_dest[2] = vgrf(glsl_type::int_type);
5589 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5590 }
5591
5592 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5593 }
5594
5595 void
5596 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5597 {
5598 switch (instr->type) {
5599 case nir_jump_break:
5600 bld.emit(BRW_OPCODE_BREAK);
5601 break;
5602 case nir_jump_continue:
5603 bld.emit(BRW_OPCODE_CONTINUE);
5604 break;
5605 case nir_jump_return:
5606 default:
5607 unreachable("unknown jump");
5608 }
5609 }
5610
5611 /*
5612 * This helper takes a source register and un/shuffles it into the destination
5613 * register.
5614 *
5615 * If source type size is smaller than destination type size the operation
5616 * needed is a component shuffle. The opposite case would be an unshuffle. If
5617 * source/destination type size is equal a shuffle is done that would be
5618 * equivalent to a simple MOV.
5619 *
5620 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5621 * components .xyz 16-bit vector on SIMD8 would be.
5622 *
5623 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5624 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5625 *
5626 * This helper will return the following 2 32-bit components with the 16-bit
5627 * values shuffled:
5628 *
5629 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5630 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5631 *
5632 * For unshuffle, the example would be the opposite, a 64-bit type source
5633 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5634 * would be:
5635 *
5636 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5637 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5638 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5639 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5640 *
5641 * The returned result would be the following 4 32-bit components unshuffled:
5642 *
5643 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5644 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5645 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5646 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5647 *
5648 * - Source and destination register must not be overlapped.
5649 * - components units are measured in terms of the smaller type between
5650 * source and destination because we are un/shuffling the smaller
5651 * components from/into the bigger ones.
5652 * - first_component parameter allows skipping source components.
5653 */
5654 void
5655 shuffle_src_to_dst(const fs_builder &bld,
5656 const fs_reg &dst,
5657 const fs_reg &src,
5658 uint32_t first_component,
5659 uint32_t components)
5660 {
5661 if (type_sz(src.type) == type_sz(dst.type)) {
5662 assert(!regions_overlap(dst,
5663 type_sz(dst.type) * bld.dispatch_width() * components,
5664 offset(src, bld, first_component),
5665 type_sz(src.type) * bld.dispatch_width() * components));
5666 for (unsigned i = 0; i < components; i++) {
5667 bld.MOV(retype(offset(dst, bld, i), src.type),
5668 offset(src, bld, i + first_component));
5669 }
5670 } else if (type_sz(src.type) < type_sz(dst.type)) {
5671 /* Source is shuffled into destination */
5672 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5673 assert(!regions_overlap(dst,
5674 type_sz(dst.type) * bld.dispatch_width() *
5675 DIV_ROUND_UP(components, size_ratio),
5676 offset(src, bld, first_component),
5677 type_sz(src.type) * bld.dispatch_width() * components));
5678
5679 brw_reg_type shuffle_type =
5680 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5681 BRW_REGISTER_TYPE_D);
5682 for (unsigned i = 0; i < components; i++) {
5683 fs_reg shuffle_component_i =
5684 subscript(offset(dst, bld, i / size_ratio),
5685 shuffle_type, i % size_ratio);
5686 bld.MOV(shuffle_component_i,
5687 retype(offset(src, bld, i + first_component), shuffle_type));
5688 }
5689 } else {
5690 /* Source is unshuffled into destination */
5691 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5692 assert(!regions_overlap(dst,
5693 type_sz(dst.type) * bld.dispatch_width() * components,
5694 offset(src, bld, first_component / size_ratio),
5695 type_sz(src.type) * bld.dispatch_width() *
5696 DIV_ROUND_UP(components + (first_component % size_ratio),
5697 size_ratio)));
5698
5699 brw_reg_type shuffle_type =
5700 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5701 BRW_REGISTER_TYPE_D);
5702 for (unsigned i = 0; i < components; i++) {
5703 fs_reg shuffle_component_i =
5704 subscript(offset(src, bld, (first_component + i) / size_ratio),
5705 shuffle_type, (first_component + i) % size_ratio);
5706 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5707 shuffle_component_i);
5708 }
5709 }
5710 }
5711
5712 void
5713 shuffle_from_32bit_read(const fs_builder &bld,
5714 const fs_reg &dst,
5715 const fs_reg &src,
5716 uint32_t first_component,
5717 uint32_t components)
5718 {
5719 assert(type_sz(src.type) == 4);
5720
5721 /* This function takes components in units of the destination type while
5722 * shuffle_src_to_dst takes components in units of the smallest type
5723 */
5724 if (type_sz(dst.type) > 4) {
5725 assert(type_sz(dst.type) == 8);
5726 first_component *= 2;
5727 components *= 2;
5728 }
5729
5730 shuffle_src_to_dst(bld, dst, src, first_component, components);
5731 }
5732
5733 fs_reg
5734 setup_imm_df(const fs_builder &bld, double v)
5735 {
5736 const struct gen_device_info *devinfo = bld.shader->devinfo;
5737 assert(devinfo->gen >= 7);
5738
5739 if (devinfo->gen >= 8)
5740 return brw_imm_df(v);
5741
5742 /* gen7.5 does not support DF immediates straighforward but the DIM
5743 * instruction allows to set the 64-bit immediate value.
5744 */
5745 if (devinfo->is_haswell) {
5746 const fs_builder ubld = bld.exec_all().group(1, 0);
5747 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5748 ubld.DIM(dst, brw_imm_df(v));
5749 return component(dst, 0);
5750 }
5751
5752 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5753 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5754 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5755 *
5756 * Alternatively, we could also produce a normal VGRF (without stride 0)
5757 * by writing to all the channels in the VGRF, however, that would hit the
5758 * gen7 bug where we have to split writes that span more than 1 register
5759 * into instructions with a width of 4 (otherwise the write to the second
5760 * register written runs into an execmask hardware bug) which isn't very
5761 * nice.
5762 */
5763 union {
5764 double d;
5765 struct {
5766 uint32_t i1;
5767 uint32_t i2;
5768 };
5769 } di;
5770
5771 di.d = v;
5772
5773 const fs_builder ubld = bld.exec_all().group(1, 0);
5774 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5775 ubld.MOV(tmp, brw_imm_ud(di.i1));
5776 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5777
5778 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5779 }
5780
5781 fs_reg
5782 setup_imm_b(const fs_builder &bld, int8_t v)
5783 {
5784 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5785 bld.MOV(tmp, brw_imm_w(v));
5786 return tmp;
5787 }
5788
5789 fs_reg
5790 setup_imm_ub(const fs_builder &bld, uint8_t v)
5791 {
5792 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5793 bld.MOV(tmp, brw_imm_uw(v));
5794 return tmp;
5795 }