intel/fs: Implement scoped_memory_barrier
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "brw_eu.h"
28 #include "nir_search_helpers.h"
29 #include "util/u_math.h"
30 #include "util/bitscan.h"
31
32 using namespace brw;
33
34 void
35 fs_visitor::emit_nir_code()
36 {
37 emit_shader_float_controls_execution_mode();
38
39 /* emit the arrays used for inputs and outputs - load/store intrinsics will
40 * be converted to reads/writes of these arrays
41 */
42 nir_setup_outputs();
43 nir_setup_uniforms();
44 nir_emit_system_values();
45
46 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
47 }
48
49 void
50 fs_visitor::nir_setup_outputs()
51 {
52 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
53 return;
54
55 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
56
57 /* Calculate the size of output registers in a separate pass, before
58 * allocating them. With ARB_enhanced_layouts, multiple output variables
59 * may occupy the same slot, but have different type sizes.
60 */
61 nir_foreach_variable(var, &nir->outputs) {
62 const int loc = var->data.driver_location;
63 const unsigned var_vec4s =
64 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
65 : type_size_vec4(var->type, true);
66 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
67 }
68
69 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
70 if (vec4s[loc] == 0) {
71 loc++;
72 continue;
73 }
74
75 unsigned reg_size = vec4s[loc];
76
77 /* Check if there are any ranges that start within this range and extend
78 * past it. If so, include them in this allocation.
79 */
80 for (unsigned i = 1; i < reg_size; i++)
81 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
82
83 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
84 for (unsigned i = 0; i < reg_size; i++)
85 outputs[loc + i] = offset(reg, bld, 4 * i);
86
87 loc += reg_size;
88 }
89 }
90
91 void
92 fs_visitor::nir_setup_uniforms()
93 {
94 /* Only the first compile gets to set up uniforms. */
95 if (push_constant_loc) {
96 assert(pull_constant_loc);
97 return;
98 }
99
100 uniforms = nir->num_uniforms / 4;
101
102 if (stage == MESA_SHADER_COMPUTE) {
103 /* Add a uniform for the thread local id. It must be the last uniform
104 * on the list.
105 */
106 assert(uniforms == prog_data->nr_params);
107 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
108 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
109 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
110 }
111 }
112
113 static bool
114 emit_system_values_block(nir_block *block, fs_visitor *v)
115 {
116 fs_reg *reg;
117
118 nir_foreach_instr(instr, block) {
119 if (instr->type != nir_instr_type_intrinsic)
120 continue;
121
122 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
123 switch (intrin->intrinsic) {
124 case nir_intrinsic_load_vertex_id:
125 case nir_intrinsic_load_base_vertex:
126 unreachable("should be lowered by nir_lower_system_values().");
127
128 case nir_intrinsic_load_vertex_id_zero_base:
129 case nir_intrinsic_load_is_indexed_draw:
130 case nir_intrinsic_load_first_vertex:
131 case nir_intrinsic_load_instance_id:
132 case nir_intrinsic_load_base_instance:
133 case nir_intrinsic_load_draw_id:
134 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
135
136 case nir_intrinsic_load_invocation_id:
137 if (v->stage == MESA_SHADER_TESS_CTRL)
138 break;
139 assert(v->stage == MESA_SHADER_GEOMETRY);
140 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
141 if (reg->file == BAD_FILE) {
142 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
143 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
144 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
145 abld.SHR(iid, g1, brw_imm_ud(27u));
146 *reg = iid;
147 }
148 break;
149
150 case nir_intrinsic_load_sample_pos:
151 assert(v->stage == MESA_SHADER_FRAGMENT);
152 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
153 if (reg->file == BAD_FILE)
154 *reg = *v->emit_samplepos_setup();
155 break;
156
157 case nir_intrinsic_load_sample_id:
158 assert(v->stage == MESA_SHADER_FRAGMENT);
159 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
160 if (reg->file == BAD_FILE)
161 *reg = *v->emit_sampleid_setup();
162 break;
163
164 case nir_intrinsic_load_sample_mask_in:
165 assert(v->stage == MESA_SHADER_FRAGMENT);
166 assert(v->devinfo->gen >= 7);
167 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
168 if (reg->file == BAD_FILE)
169 *reg = *v->emit_samplemaskin_setup();
170 break;
171
172 case nir_intrinsic_load_work_group_id:
173 assert(v->stage == MESA_SHADER_COMPUTE);
174 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
175 if (reg->file == BAD_FILE)
176 *reg = *v->emit_cs_work_group_id_setup();
177 break;
178
179 case nir_intrinsic_load_helper_invocation:
180 assert(v->stage == MESA_SHADER_FRAGMENT);
181 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
182 if (reg->file == BAD_FILE) {
183 const fs_builder abld =
184 v->bld.annotate("gl_HelperInvocation", NULL);
185
186 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
187 * pixel mask is in g1.7 of the thread payload.
188 *
189 * We move the per-channel pixel enable bit to the low bit of each
190 * channel by shifting the byte containing the pixel mask by the
191 * vector immediate 0x76543210UV.
192 *
193 * The region of <1,8,0> reads only 1 byte (the pixel masks for
194 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
195 * masks for 2 and 3) in SIMD16.
196 */
197 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
198
199 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
200 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
201 hbld.SHR(offset(shifted, hbld, i),
202 stride(retype(brw_vec1_grf(1 + i, 7),
203 BRW_REGISTER_TYPE_UB),
204 1, 8, 0),
205 brw_imm_v(0x76543210));
206 }
207
208 /* A set bit in the pixel mask means the channel is enabled, but
209 * that is the opposite of gl_HelperInvocation so we need to invert
210 * the mask.
211 *
212 * The negate source-modifier bit of logical instructions on Gen8+
213 * performs 1's complement negation, so we can use that instead of
214 * a NOT instruction.
215 */
216 fs_reg inverted = negate(shifted);
217 if (v->devinfo->gen < 8) {
218 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
219 abld.NOT(inverted, shifted);
220 }
221
222 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
223 * with 1 and negating.
224 */
225 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
226 abld.AND(anded, inverted, brw_imm_uw(1));
227
228 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
229 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
230 *reg = dst;
231 }
232 break;
233
234 default:
235 break;
236 }
237 }
238
239 return true;
240 }
241
242 void
243 fs_visitor::nir_emit_system_values()
244 {
245 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
246 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
247 nir_system_values[i] = fs_reg();
248 }
249
250 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
251 * never end up using it.
252 */
253 {
254 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
255 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
256 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
257
258 const fs_builder allbld8 = abld.group(8, 0).exec_all();
259 allbld8.MOV(reg, brw_imm_v(0x76543210));
260 if (dispatch_width > 8)
261 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
262 if (dispatch_width > 16) {
263 const fs_builder allbld16 = abld.group(16, 0).exec_all();
264 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
265 }
266 }
267
268 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
269 nir_foreach_block(block, impl)
270 emit_system_values_block(block, this);
271 }
272
273 /*
274 * Returns a type based on a reference_type (word, float, half-float) and a
275 * given bit_size.
276 *
277 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
278 *
279 * @FIXME: 64-bit return types are always DF on integer types to maintain
280 * compability with uses of DF previously to the introduction of int64
281 * support.
282 */
283 static brw_reg_type
284 brw_reg_type_from_bit_size(const unsigned bit_size,
285 const brw_reg_type reference_type)
286 {
287 switch(reference_type) {
288 case BRW_REGISTER_TYPE_HF:
289 case BRW_REGISTER_TYPE_F:
290 case BRW_REGISTER_TYPE_DF:
291 switch(bit_size) {
292 case 16:
293 return BRW_REGISTER_TYPE_HF;
294 case 32:
295 return BRW_REGISTER_TYPE_F;
296 case 64:
297 return BRW_REGISTER_TYPE_DF;
298 default:
299 unreachable("Invalid bit size");
300 }
301 case BRW_REGISTER_TYPE_B:
302 case BRW_REGISTER_TYPE_W:
303 case BRW_REGISTER_TYPE_D:
304 case BRW_REGISTER_TYPE_Q:
305 switch(bit_size) {
306 case 8:
307 return BRW_REGISTER_TYPE_B;
308 case 16:
309 return BRW_REGISTER_TYPE_W;
310 case 32:
311 return BRW_REGISTER_TYPE_D;
312 case 64:
313 return BRW_REGISTER_TYPE_Q;
314 default:
315 unreachable("Invalid bit size");
316 }
317 case BRW_REGISTER_TYPE_UB:
318 case BRW_REGISTER_TYPE_UW:
319 case BRW_REGISTER_TYPE_UD:
320 case BRW_REGISTER_TYPE_UQ:
321 switch(bit_size) {
322 case 8:
323 return BRW_REGISTER_TYPE_UB;
324 case 16:
325 return BRW_REGISTER_TYPE_UW;
326 case 32:
327 return BRW_REGISTER_TYPE_UD;
328 case 64:
329 return BRW_REGISTER_TYPE_UQ;
330 default:
331 unreachable("Invalid bit size");
332 }
333 default:
334 unreachable("Unknown type");
335 }
336 }
337
338 void
339 fs_visitor::nir_emit_impl(nir_function_impl *impl)
340 {
341 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
342 for (unsigned i = 0; i < impl->reg_alloc; i++) {
343 nir_locals[i] = fs_reg();
344 }
345
346 foreach_list_typed(nir_register, reg, node, &impl->registers) {
347 unsigned array_elems =
348 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
349 unsigned size = array_elems * reg->num_components;
350 const brw_reg_type reg_type = reg->bit_size == 8 ? BRW_REGISTER_TYPE_B :
351 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
352 nir_locals[reg->index] = bld.vgrf(reg_type, size);
353 }
354
355 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
356 impl->ssa_alloc);
357
358 nir_emit_cf_list(&impl->body);
359 }
360
361 void
362 fs_visitor::nir_emit_cf_list(exec_list *list)
363 {
364 exec_list_validate(list);
365 foreach_list_typed(nir_cf_node, node, node, list) {
366 switch (node->type) {
367 case nir_cf_node_if:
368 nir_emit_if(nir_cf_node_as_if(node));
369 break;
370
371 case nir_cf_node_loop:
372 nir_emit_loop(nir_cf_node_as_loop(node));
373 break;
374
375 case nir_cf_node_block:
376 nir_emit_block(nir_cf_node_as_block(node));
377 break;
378
379 default:
380 unreachable("Invalid CFG node block");
381 }
382 }
383 }
384
385 void
386 fs_visitor::nir_emit_if(nir_if *if_stmt)
387 {
388 bool invert;
389 fs_reg cond_reg;
390
391 /* If the condition has the form !other_condition, use other_condition as
392 * the source, but invert the predicate on the if instruction.
393 */
394 nir_alu_instr *cond = nir_src_as_alu_instr(if_stmt->condition);
395 if (cond != NULL && cond->op == nir_op_inot) {
396 assert(!cond->src[0].negate);
397 assert(!cond->src[0].abs);
398
399 invert = true;
400 cond_reg = get_nir_src(cond->src[0].src);
401 } else {
402 invert = false;
403 cond_reg = get_nir_src(if_stmt->condition);
404 }
405
406 /* first, put the condition into f0 */
407 fs_inst *inst = bld.MOV(bld.null_reg_d(),
408 retype(cond_reg, BRW_REGISTER_TYPE_D));
409 inst->conditional_mod = BRW_CONDITIONAL_NZ;
410
411 bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
412
413 nir_emit_cf_list(&if_stmt->then_list);
414
415 if (!nir_cf_list_is_empty_block(&if_stmt->else_list)) {
416 bld.emit(BRW_OPCODE_ELSE);
417 nir_emit_cf_list(&if_stmt->else_list);
418 }
419
420 bld.emit(BRW_OPCODE_ENDIF);
421
422 if (devinfo->gen < 7)
423 limit_dispatch_width(16, "Non-uniform control flow unsupported "
424 "in SIMD32 mode.");
425 }
426
427 void
428 fs_visitor::nir_emit_loop(nir_loop *loop)
429 {
430 bld.emit(BRW_OPCODE_DO);
431
432 nir_emit_cf_list(&loop->body);
433
434 bld.emit(BRW_OPCODE_WHILE);
435
436 if (devinfo->gen < 7)
437 limit_dispatch_width(16, "Non-uniform control flow unsupported "
438 "in SIMD32 mode.");
439 }
440
441 void
442 fs_visitor::nir_emit_block(nir_block *block)
443 {
444 nir_foreach_instr(instr, block) {
445 nir_emit_instr(instr);
446 }
447 }
448
449 void
450 fs_visitor::nir_emit_instr(nir_instr *instr)
451 {
452 const fs_builder abld = bld.annotate(NULL, instr);
453
454 switch (instr->type) {
455 case nir_instr_type_alu:
456 nir_emit_alu(abld, nir_instr_as_alu(instr), true);
457 break;
458
459 case nir_instr_type_deref:
460 unreachable("All derefs should've been lowered");
461 break;
462
463 case nir_instr_type_intrinsic:
464 switch (stage) {
465 case MESA_SHADER_VERTEX:
466 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
467 break;
468 case MESA_SHADER_TESS_CTRL:
469 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
470 break;
471 case MESA_SHADER_TESS_EVAL:
472 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
473 break;
474 case MESA_SHADER_GEOMETRY:
475 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
476 break;
477 case MESA_SHADER_FRAGMENT:
478 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
479 break;
480 case MESA_SHADER_COMPUTE:
481 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
482 break;
483 default:
484 unreachable("unsupported shader stage");
485 }
486 break;
487
488 case nir_instr_type_tex:
489 nir_emit_texture(abld, nir_instr_as_tex(instr));
490 break;
491
492 case nir_instr_type_load_const:
493 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
494 break;
495
496 case nir_instr_type_ssa_undef:
497 /* We create a new VGRF for undefs on every use (by handling
498 * them in get_nir_src()), rather than for each definition.
499 * This helps register coalescing eliminate MOVs from undef.
500 */
501 break;
502
503 case nir_instr_type_jump:
504 nir_emit_jump(abld, nir_instr_as_jump(instr));
505 break;
506
507 default:
508 unreachable("unknown instruction type");
509 }
510 }
511
512 /**
513 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
514 * match instr.
515 */
516 bool
517 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
518 const fs_reg &result)
519 {
520 if (!instr->src[0].src.is_ssa ||
521 !instr->src[0].src.ssa->parent_instr)
522 return false;
523
524 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
525 return false;
526
527 nir_alu_instr *src0 =
528 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
529
530 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
531 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
532 return false;
533
534 /* If either opcode has source modifiers, bail.
535 *
536 * TODO: We can potentially handle source modifiers if both of the opcodes
537 * we're combining are signed integers.
538 */
539 if (instr->src[0].abs || instr->src[0].negate ||
540 src0->src[0].abs || src0->src[0].negate)
541 return false;
542
543 unsigned element = nir_src_as_uint(src0->src[1].src);
544
545 /* Element type to extract.*/
546 const brw_reg_type type = brw_int_type(
547 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
548 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
549
550 fs_reg op0 = get_nir_src(src0->src[0].src);
551 op0.type = brw_type_for_nir_type(devinfo,
552 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
553 nir_src_bit_size(src0->src[0].src)));
554 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
555
556 set_saturate(instr->dest.saturate,
557 bld.MOV(result, subscript(op0, type, element)));
558 return true;
559 }
560
561 bool
562 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
563 const fs_reg &result)
564 {
565 nir_intrinsic_instr *src0 = nir_src_as_intrinsic(instr->src[0].src);
566 if (src0 == NULL || src0->intrinsic != nir_intrinsic_load_front_face)
567 return false;
568
569 if (!nir_src_is_const(instr->src[1].src) ||
570 !nir_src_is_const(instr->src[2].src))
571 return false;
572
573 const float value1 = nir_src_as_float(instr->src[1].src);
574 const float value2 = nir_src_as_float(instr->src[2].src);
575 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
576 return false;
577
578 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
579 assert(value1 == -value2);
580
581 fs_reg tmp = vgrf(glsl_type::int_type);
582
583 if (devinfo->gen >= 12) {
584 /* Bit 15 of g1.1 is 0 if the polygon is front facing. */
585 fs_reg g1 = fs_reg(retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_W));
586
587 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
588 *
589 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
590 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
591 *
592 * and negate the result for (gl_FrontFacing ? -1.0 : 1.0).
593 */
594 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
595 g1, brw_imm_uw(0x3f80));
596
597 if (value1 == -1.0f)
598 bld.MOV(tmp, negate(tmp));
599
600 } else if (devinfo->gen >= 6) {
601 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
602 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
603
604 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
605 *
606 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
607 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
608 *
609 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
610 *
611 * This negation looks like it's safe in practice, because bits 0:4 will
612 * surely be TRIANGLES
613 */
614
615 if (value1 == -1.0f) {
616 g0.negate = true;
617 }
618
619 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
620 g0, brw_imm_uw(0x3f80));
621 } else {
622 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
623 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
624
625 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
626 *
627 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
628 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
629 *
630 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
631 *
632 * This negation looks like it's safe in practice, because bits 0:4 will
633 * surely be TRIANGLES
634 */
635
636 if (value1 == -1.0f) {
637 g1_6.negate = true;
638 }
639
640 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
641 }
642 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
643
644 return true;
645 }
646
647 static void
648 emit_find_msb_using_lzd(const fs_builder &bld,
649 const fs_reg &result,
650 const fs_reg &src,
651 bool is_signed)
652 {
653 fs_inst *inst;
654 fs_reg temp = src;
655
656 if (is_signed) {
657 /* LZD of an absolute value source almost always does the right
658 * thing. There are two problem values:
659 *
660 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
661 * 0. However, findMSB(int(0x80000000)) == 30.
662 *
663 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
664 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
665 *
666 * For a value of zero or negative one, -1 will be returned.
667 *
668 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
669 * findMSB(-(1<<x)) should return x-1.
670 *
671 * For all negative number cases, including 0x80000000 and
672 * 0xffffffff, the correct value is obtained from LZD if instead of
673 * negating the (already negative) value the logical-not is used. A
674 * conditonal logical-not can be achieved in two instructions.
675 */
676 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
677
678 bld.ASR(temp, src, brw_imm_d(31));
679 bld.XOR(temp, temp, src);
680 }
681
682 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
683 retype(temp, BRW_REGISTER_TYPE_UD));
684
685 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
686 * from the LSB side. Subtract the result from 31 to convert the MSB
687 * count into an LSB count. If no bits are set, LZD will return 32.
688 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
689 */
690 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
691 inst->src[0].negate = true;
692 }
693
694 static brw_rnd_mode
695 brw_rnd_mode_from_nir_op (const nir_op op) {
696 switch (op) {
697 case nir_op_f2f16_rtz:
698 return BRW_RND_MODE_RTZ;
699 case nir_op_f2f16_rtne:
700 return BRW_RND_MODE_RTNE;
701 default:
702 unreachable("Operation doesn't support rounding mode");
703 }
704 }
705
706 static brw_rnd_mode
707 brw_rnd_mode_from_execution_mode(unsigned execution_mode)
708 {
709 if (nir_has_any_rounding_mode_rtne(execution_mode))
710 return BRW_RND_MODE_RTNE;
711 if (nir_has_any_rounding_mode_rtz(execution_mode))
712 return BRW_RND_MODE_RTZ;
713 return BRW_RND_MODE_UNSPECIFIED;
714 }
715
716 fs_reg
717 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
718 nir_alu_instr *instr,
719 fs_reg *op,
720 bool need_dest)
721 {
722 fs_reg result =
723 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
724
725 result.type = brw_type_for_nir_type(devinfo,
726 (nir_alu_type)(nir_op_infos[instr->op].output_type |
727 nir_dest_bit_size(instr->dest.dest)));
728
729 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
730 op[i] = get_nir_src(instr->src[i].src);
731 op[i].type = brw_type_for_nir_type(devinfo,
732 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
733 nir_src_bit_size(instr->src[i].src)));
734 op[i].abs = instr->src[i].abs;
735 op[i].negate = instr->src[i].negate;
736 }
737
738 /* Move and vecN instrutions may still be vectored. Return the raw,
739 * vectored source and destination so that fs_visitor::nir_emit_alu can
740 * handle it. Other callers should not have to handle these kinds of
741 * instructions.
742 */
743 switch (instr->op) {
744 case nir_op_mov:
745 case nir_op_vec2:
746 case nir_op_vec3:
747 case nir_op_vec4:
748 return result;
749 default:
750 break;
751 }
752
753 /* At this point, we have dealt with any instruction that operates on
754 * more than a single channel. Therefore, we can just adjust the source
755 * and destination registers for that channel and emit the instruction.
756 */
757 unsigned channel = 0;
758 if (nir_op_infos[instr->op].output_size == 0) {
759 /* Since NIR is doing the scalarizing for us, we should only ever see
760 * vectorized operations with a single channel.
761 */
762 assert(util_bitcount(instr->dest.write_mask) == 1);
763 channel = ffs(instr->dest.write_mask) - 1;
764
765 result = offset(result, bld, channel);
766 }
767
768 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
769 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
770 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
771 }
772
773 return result;
774 }
775
776 void
777 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
778 fs_reg *op)
779 {
780 for (unsigned i = 0; i < 2; i++) {
781 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[i].src);
782
783 if (inot_instr != NULL && inot_instr->op == nir_op_inot &&
784 !inot_instr->src[0].abs && !inot_instr->src[0].negate) {
785 /* The source of the inot is now the source of instr. */
786 prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
787
788 assert(!op[i].negate);
789 op[i].negate = true;
790 } else {
791 op[i] = resolve_source_modifiers(op[i]);
792 }
793 }
794 }
795
796 bool
797 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
798 fs_reg result,
799 nir_alu_instr *instr)
800 {
801 if (devinfo->gen < 6 || devinfo->gen >= 12)
802 return false;
803
804 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[0].src);
805
806 if (inot_instr == NULL || inot_instr->op != nir_op_inot)
807 return false;
808
809 /* HF is also possible as a destination on BDW+. For nir_op_b2i, the set
810 * of valid size-changing combinations is a bit more complex.
811 *
812 * The source restriction is just because I was lazy about generating the
813 * constant below.
814 */
815 if (nir_dest_bit_size(instr->dest.dest) != 32 ||
816 nir_src_bit_size(inot_instr->src[0].src) != 32)
817 return false;
818
819 /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1,
820 * this is float(1 + a).
821 */
822 fs_reg op;
823
824 prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
825
826 /* Ignore the saturate modifier, if there is one. The result of the
827 * arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
828 */
829 bld.ADD(result, op, brw_imm_d(1));
830
831 return true;
832 }
833
834 /**
835 * Emit code for nir_op_fsign possibly fused with a nir_op_fmul
836 *
837 * If \c instr is not the \c nir_op_fsign, then \c fsign_src is the index of
838 * the source of \c instr that is a \c nir_op_fsign.
839 */
840 void
841 fs_visitor::emit_fsign(const fs_builder &bld, const nir_alu_instr *instr,
842 fs_reg result, fs_reg *op, unsigned fsign_src)
843 {
844 fs_inst *inst;
845
846 assert(instr->op == nir_op_fsign || instr->op == nir_op_fmul);
847 assert(fsign_src < nir_op_infos[instr->op].num_inputs);
848
849 if (instr->op != nir_op_fsign) {
850 const nir_alu_instr *const fsign_instr =
851 nir_src_as_alu_instr(instr->src[fsign_src].src);
852
853 assert(!fsign_instr->dest.saturate);
854
855 /* op[fsign_src] has the nominal result of the fsign, and op[1 -
856 * fsign_src] has the other multiply source. This must be rearranged so
857 * that op[0] is the source of the fsign op[1] is the other multiply
858 * source.
859 */
860 if (fsign_src != 0)
861 op[1] = op[0];
862
863 op[0] = get_nir_src(fsign_instr->src[0].src);
864
865 const nir_alu_type t =
866 (nir_alu_type)(nir_op_infos[instr->op].input_types[0] |
867 nir_src_bit_size(fsign_instr->src[0].src));
868
869 op[0].type = brw_type_for_nir_type(devinfo, t);
870 op[0].abs = fsign_instr->src[0].abs;
871 op[0].negate = fsign_instr->src[0].negate;
872
873 unsigned channel = 0;
874 if (nir_op_infos[instr->op].output_size == 0) {
875 /* Since NIR is doing the scalarizing for us, we should only ever see
876 * vectorized operations with a single channel.
877 */
878 assert(util_bitcount(instr->dest.write_mask) == 1);
879 channel = ffs(instr->dest.write_mask) - 1;
880 }
881
882 op[0] = offset(op[0], bld, fsign_instr->src[0].swizzle[channel]);
883 } else {
884 assert(!instr->dest.saturate);
885 }
886
887 if (op[0].abs) {
888 /* Straightforward since the source can be assumed to be either strictly
889 * >= 0 or strictly <= 0 depending on the setting of the negate flag.
890 */
891 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
892
893 if (instr->op == nir_op_fsign) {
894 inst = (op[0].negate)
895 ? bld.MOV(result, brw_imm_f(-1.0f))
896 : bld.MOV(result, brw_imm_f(1.0f));
897 } else {
898 op[1].negate = (op[0].negate != op[1].negate);
899 inst = bld.MOV(result, op[1]);
900 }
901
902 set_predicate(BRW_PREDICATE_NORMAL, inst);
903 } else if (type_sz(op[0].type) == 2) {
904 /* AND(val, 0x8000) gives the sign bit.
905 *
906 * Predicated OR ORs 1.0 (0x3c00) with the sign bit if val is not zero.
907 */
908 fs_reg zero = retype(brw_imm_uw(0), BRW_REGISTER_TYPE_HF);
909 bld.CMP(bld.null_reg_f(), op[0], zero, BRW_CONDITIONAL_NZ);
910
911 op[0].type = BRW_REGISTER_TYPE_UW;
912 result.type = BRW_REGISTER_TYPE_UW;
913 bld.AND(result, op[0], brw_imm_uw(0x8000u));
914
915 if (instr->op == nir_op_fsign)
916 inst = bld.OR(result, result, brw_imm_uw(0x3c00u));
917 else {
918 /* Use XOR here to get the result sign correct. */
919 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UW));
920 }
921
922 inst->predicate = BRW_PREDICATE_NORMAL;
923 } else if (type_sz(op[0].type) == 4) {
924 /* AND(val, 0x80000000) gives the sign bit.
925 *
926 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
927 * zero.
928 */
929 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
930
931 op[0].type = BRW_REGISTER_TYPE_UD;
932 result.type = BRW_REGISTER_TYPE_UD;
933 bld.AND(result, op[0], brw_imm_ud(0x80000000u));
934
935 if (instr->op == nir_op_fsign)
936 inst = bld.OR(result, result, brw_imm_ud(0x3f800000u));
937 else {
938 /* Use XOR here to get the result sign correct. */
939 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UD));
940 }
941
942 inst->predicate = BRW_PREDICATE_NORMAL;
943 } else {
944 /* For doubles we do the same but we need to consider:
945 *
946 * - 2-src instructions can't operate with 64-bit immediates
947 * - The sign is encoded in the high 32-bit of each DF
948 * - We need to produce a DF result.
949 */
950
951 fs_reg zero = vgrf(glsl_type::double_type);
952 bld.MOV(zero, setup_imm_df(bld, 0.0));
953 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
954
955 bld.MOV(result, zero);
956
957 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
958 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
959 brw_imm_ud(0x80000000u));
960
961 if (instr->op == nir_op_fsign) {
962 set_predicate(BRW_PREDICATE_NORMAL,
963 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
964 } else {
965 /* This could be done better in some cases. If the scale is an
966 * immediate with the low 32-bits all 0, emitting a separate XOR and
967 * OR would allow an algebraic optimization to remove the OR. There
968 * are currently zero instances of fsign(double(x))*IMM in shader-db
969 * or any test suite, so it is hard to care at this time.
970 */
971 fs_reg result_int64 = retype(result, BRW_REGISTER_TYPE_UQ);
972 inst = bld.XOR(result_int64, result_int64,
973 retype(op[1], BRW_REGISTER_TYPE_UQ));
974 }
975 }
976 }
977
978 /**
979 * Deteremine whether sources of a nir_op_fmul can be fused with a nir_op_fsign
980 *
981 * Checks the operands of a \c nir_op_fmul to determine whether or not
982 * \c emit_fsign could fuse the multiplication with the \c sign() calculation.
983 *
984 * \param instr The multiplication instruction
985 *
986 * \param fsign_src The source of \c instr that may or may not be a
987 * \c nir_op_fsign
988 */
989 static bool
990 can_fuse_fmul_fsign(nir_alu_instr *instr, unsigned fsign_src)
991 {
992 assert(instr->op == nir_op_fmul);
993
994 nir_alu_instr *const fsign_instr =
995 nir_src_as_alu_instr(instr->src[fsign_src].src);
996
997 /* Rules:
998 *
999 * 1. instr->src[fsign_src] must be a nir_op_fsign.
1000 * 2. The nir_op_fsign can only be used by this multiplication.
1001 * 3. The source that is the nir_op_fsign does not have source modifiers.
1002 * \c emit_fsign only examines the source modifiers of the source of the
1003 * \c nir_op_fsign.
1004 *
1005 * The nir_op_fsign must also not have the saturate modifier, but steps
1006 * have already been taken (in nir_opt_algebraic) to ensure that.
1007 */
1008 return fsign_instr != NULL && fsign_instr->op == nir_op_fsign &&
1009 is_used_once(fsign_instr) &&
1010 !instr->src[fsign_src].abs && !instr->src[fsign_src].negate;
1011 }
1012
1013 void
1014 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr,
1015 bool need_dest)
1016 {
1017 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
1018 fs_inst *inst;
1019 unsigned execution_mode =
1020 bld.shader->nir->info.float_controls_execution_mode;
1021
1022 fs_reg op[4];
1023 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, need_dest);
1024
1025 switch (instr->op) {
1026 case nir_op_mov:
1027 case nir_op_vec2:
1028 case nir_op_vec3:
1029 case nir_op_vec4: {
1030 fs_reg temp = result;
1031 bool need_extra_copy = false;
1032 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1033 if (!instr->src[i].src.is_ssa &&
1034 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
1035 need_extra_copy = true;
1036 temp = bld.vgrf(result.type, 4);
1037 break;
1038 }
1039 }
1040
1041 for (unsigned i = 0; i < 4; i++) {
1042 if (!(instr->dest.write_mask & (1 << i)))
1043 continue;
1044
1045 if (instr->op == nir_op_mov) {
1046 inst = bld.MOV(offset(temp, bld, i),
1047 offset(op[0], bld, instr->src[0].swizzle[i]));
1048 } else {
1049 inst = bld.MOV(offset(temp, bld, i),
1050 offset(op[i], bld, instr->src[i].swizzle[0]));
1051 }
1052 inst->saturate = instr->dest.saturate;
1053 }
1054
1055 /* In this case the source and destination registers were the same,
1056 * so we need to insert an extra set of moves in order to deal with
1057 * any swizzling.
1058 */
1059 if (need_extra_copy) {
1060 for (unsigned i = 0; i < 4; i++) {
1061 if (!(instr->dest.write_mask & (1 << i)))
1062 continue;
1063
1064 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
1065 }
1066 }
1067 return;
1068 }
1069
1070 case nir_op_i2f32:
1071 case nir_op_u2f32:
1072 if (optimize_extract_to_float(instr, result))
1073 return;
1074 inst = bld.MOV(result, op[0]);
1075 inst->saturate = instr->dest.saturate;
1076 break;
1077
1078 case nir_op_f2f16_rtne:
1079 case nir_op_f2f16_rtz:
1080 case nir_op_f2f16: {
1081 brw_rnd_mode rnd = BRW_RND_MODE_UNSPECIFIED;
1082
1083 if (nir_op_f2f16 == instr->op)
1084 rnd = brw_rnd_mode_from_execution_mode(execution_mode);
1085 else
1086 rnd = brw_rnd_mode_from_nir_op(instr->op);
1087
1088 if (BRW_RND_MODE_UNSPECIFIED != rnd)
1089 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(), brw_imm_d(rnd));
1090
1091 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
1092 * on the HW gen, it is a special hw opcode or just a MOV, and
1093 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
1094 *
1095 * But if we want to use that opcode, we need to provide support on
1096 * different optimizations and lowerings. As right now HF support is
1097 * only for gen8+, it will be better to use directly the MOV, and use
1098 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
1099 */
1100 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1101 inst = bld.MOV(result, op[0]);
1102 inst->saturate = instr->dest.saturate;
1103 break;
1104 }
1105
1106 case nir_op_b2i8:
1107 case nir_op_b2i16:
1108 case nir_op_b2i32:
1109 case nir_op_b2i64:
1110 case nir_op_b2f16:
1111 case nir_op_b2f32:
1112 case nir_op_b2f64:
1113 if (try_emit_b2fi_of_inot(bld, result, instr))
1114 break;
1115 op[0].type = BRW_REGISTER_TYPE_D;
1116 op[0].negate = !op[0].negate;
1117 /* fallthrough */
1118 case nir_op_i2f64:
1119 case nir_op_i2i64:
1120 case nir_op_u2f64:
1121 case nir_op_u2u64:
1122 case nir_op_f2f64:
1123 case nir_op_f2i64:
1124 case nir_op_f2u64:
1125 case nir_op_i2i32:
1126 case nir_op_u2u32:
1127 case nir_op_f2i32:
1128 case nir_op_f2u32:
1129 case nir_op_i2f16:
1130 case nir_op_i2i16:
1131 case nir_op_u2f16:
1132 case nir_op_u2u16:
1133 case nir_op_f2i16:
1134 case nir_op_f2u16:
1135 case nir_op_i2i8:
1136 case nir_op_u2u8:
1137 case nir_op_f2i8:
1138 case nir_op_f2u8:
1139 if (result.type == BRW_REGISTER_TYPE_B ||
1140 result.type == BRW_REGISTER_TYPE_UB ||
1141 result.type == BRW_REGISTER_TYPE_HF)
1142 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1143
1144 if (op[0].type == BRW_REGISTER_TYPE_B ||
1145 op[0].type == BRW_REGISTER_TYPE_UB ||
1146 op[0].type == BRW_REGISTER_TYPE_HF)
1147 assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1148
1149 inst = bld.MOV(result, op[0]);
1150 inst->saturate = instr->dest.saturate;
1151 break;
1152
1153 case nir_op_fsat:
1154 inst = bld.MOV(result, op[0]);
1155 inst->saturate = true;
1156 break;
1157
1158 case nir_op_fneg:
1159 case nir_op_ineg:
1160 op[0].negate = true;
1161 inst = bld.MOV(result, op[0]);
1162 if (instr->op == nir_op_fneg)
1163 inst->saturate = instr->dest.saturate;
1164 break;
1165
1166 case nir_op_fabs:
1167 case nir_op_iabs:
1168 op[0].negate = false;
1169 op[0].abs = true;
1170 inst = bld.MOV(result, op[0]);
1171 if (instr->op == nir_op_fabs)
1172 inst->saturate = instr->dest.saturate;
1173 break;
1174
1175 case nir_op_f2f32:
1176 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1177 brw_rnd_mode rnd =
1178 brw_rnd_mode_from_execution_mode(execution_mode);
1179 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1180 brw_imm_d(rnd));
1181 }
1182
1183 if (op[0].type == BRW_REGISTER_TYPE_HF)
1184 assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1185
1186 inst = bld.MOV(result, op[0]);
1187 inst->saturate = instr->dest.saturate;
1188 break;
1189
1190 case nir_op_fsign:
1191 emit_fsign(bld, instr, result, op, 0);
1192 break;
1193
1194 case nir_op_frcp:
1195 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
1196 inst->saturate = instr->dest.saturate;
1197 break;
1198
1199 case nir_op_fexp2:
1200 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
1201 inst->saturate = instr->dest.saturate;
1202 break;
1203
1204 case nir_op_flog2:
1205 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
1206 inst->saturate = instr->dest.saturate;
1207 break;
1208
1209 case nir_op_fsin:
1210 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
1211 inst->saturate = instr->dest.saturate;
1212 break;
1213
1214 case nir_op_fcos:
1215 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
1216 inst->saturate = instr->dest.saturate;
1217 break;
1218
1219 case nir_op_fddx:
1220 if (fs_key->high_quality_derivatives) {
1221 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1222 } else {
1223 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1224 }
1225 inst->saturate = instr->dest.saturate;
1226 break;
1227 case nir_op_fddx_fine:
1228 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1229 inst->saturate = instr->dest.saturate;
1230 break;
1231 case nir_op_fddx_coarse:
1232 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1233 inst->saturate = instr->dest.saturate;
1234 break;
1235 case nir_op_fddy:
1236 if (fs_key->high_quality_derivatives) {
1237 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1238 } else {
1239 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1240 }
1241 inst->saturate = instr->dest.saturate;
1242 break;
1243 case nir_op_fddy_fine:
1244 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1245 inst->saturate = instr->dest.saturate;
1246 break;
1247 case nir_op_fddy_coarse:
1248 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1249 inst->saturate = instr->dest.saturate;
1250 break;
1251
1252 case nir_op_fadd:
1253 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1254 brw_rnd_mode rnd =
1255 brw_rnd_mode_from_execution_mode(execution_mode);
1256 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1257 brw_imm_d(rnd));
1258 }
1259 /* fallthrough */
1260 case nir_op_iadd:
1261 inst = bld.ADD(result, op[0], op[1]);
1262 inst->saturate = instr->dest.saturate;
1263 break;
1264
1265 case nir_op_uadd_sat:
1266 inst = bld.ADD(result, op[0], op[1]);
1267 inst->saturate = true;
1268 break;
1269
1270 case nir_op_fmul:
1271 for (unsigned i = 0; i < 2; i++) {
1272 if (can_fuse_fmul_fsign(instr, i)) {
1273 emit_fsign(bld, instr, result, op, i);
1274 return;
1275 }
1276 }
1277
1278 /* We emit the rounding mode after the previous fsign optimization since
1279 * it won't result in a MUL, but will try to negate the value by other
1280 * means.
1281 */
1282 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1283 brw_rnd_mode rnd =
1284 brw_rnd_mode_from_execution_mode(execution_mode);
1285 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1286 brw_imm_d(rnd));
1287 }
1288
1289 inst = bld.MUL(result, op[0], op[1]);
1290 inst->saturate = instr->dest.saturate;
1291 break;
1292
1293 case nir_op_imul_2x32_64:
1294 case nir_op_umul_2x32_64:
1295 bld.MUL(result, op[0], op[1]);
1296 break;
1297
1298 case nir_op_imul:
1299 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1300 bld.MUL(result, op[0], op[1]);
1301 break;
1302
1303 case nir_op_imul_high:
1304 case nir_op_umul_high:
1305 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1306 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1307 break;
1308
1309 case nir_op_idiv:
1310 case nir_op_udiv:
1311 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1312 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1313 break;
1314
1315 case nir_op_uadd_carry:
1316 unreachable("Should have been lowered by carry_to_arith().");
1317
1318 case nir_op_usub_borrow:
1319 unreachable("Should have been lowered by borrow_to_arith().");
1320
1321 case nir_op_umod:
1322 case nir_op_irem:
1323 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1324 * appears that our hardware just does the right thing for signed
1325 * remainder.
1326 */
1327 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1328 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1329 break;
1330
1331 case nir_op_imod: {
1332 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1333 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1334
1335 /* Math instructions don't support conditional mod */
1336 inst = bld.MOV(bld.null_reg_d(), result);
1337 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1338
1339 /* Now, we need to determine if signs of the sources are different.
1340 * When we XOR the sources, the top bit is 0 if they are the same and 1
1341 * if they are different. We can then use a conditional modifier to
1342 * turn that into a predicate. This leads us to an XOR.l instruction.
1343 *
1344 * Technically, according to the PRM, you're not allowed to use .l on a
1345 * XOR instruction. However, emperical experiments and Curro's reading
1346 * of the simulator source both indicate that it's safe.
1347 */
1348 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1349 inst = bld.XOR(tmp, op[0], op[1]);
1350 inst->predicate = BRW_PREDICATE_NORMAL;
1351 inst->conditional_mod = BRW_CONDITIONAL_L;
1352
1353 /* If the result of the initial remainder operation is non-zero and the
1354 * two sources have different signs, add in a copy of op[1] to get the
1355 * final integer modulus value.
1356 */
1357 inst = bld.ADD(result, result, op[1]);
1358 inst->predicate = BRW_PREDICATE_NORMAL;
1359 break;
1360 }
1361
1362 case nir_op_flt32:
1363 case nir_op_fge32:
1364 case nir_op_feq32:
1365 case nir_op_fne32: {
1366 fs_reg dest = result;
1367
1368 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1369 if (bit_size != 32)
1370 dest = bld.vgrf(op[0].type, 1);
1371
1372 bld.CMP(dest, op[0], op[1], brw_cmod_for_nir_comparison(instr->op));
1373
1374 if (bit_size > 32) {
1375 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1376 } else if(bit_size < 32) {
1377 /* When we convert the result to 32-bit we need to be careful and do
1378 * it as a signed conversion to get sign extension (for 32-bit true)
1379 */
1380 const brw_reg_type src_type =
1381 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1382
1383 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1384 }
1385 break;
1386 }
1387
1388 case nir_op_ilt32:
1389 case nir_op_ult32:
1390 case nir_op_ige32:
1391 case nir_op_uge32:
1392 case nir_op_ieq32:
1393 case nir_op_ine32: {
1394 fs_reg dest = result;
1395
1396 /* On Gen11 we have an additional issue being that src1 cannot be a byte
1397 * type. So we convert both operands for the comparison.
1398 */
1399 fs_reg temp_op[2];
1400 temp_op[0] = bld.fix_byte_src(op[0]);
1401 temp_op[1] = bld.fix_byte_src(op[1]);
1402
1403 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1404 if (bit_size != 32)
1405 dest = bld.vgrf(temp_op[0].type, 1);
1406
1407 bld.CMP(dest, temp_op[0], temp_op[1],
1408 brw_cmod_for_nir_comparison(instr->op));
1409
1410 if (bit_size > 32) {
1411 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1412 } else if (bit_size < 32) {
1413 /* When we convert the result to 32-bit we need to be careful and do
1414 * it as a signed conversion to get sign extension (for 32-bit true)
1415 */
1416 const brw_reg_type src_type =
1417 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1418
1419 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1420 }
1421 break;
1422 }
1423
1424 case nir_op_inot:
1425 if (devinfo->gen >= 8) {
1426 nir_alu_instr *inot_src_instr = nir_src_as_alu_instr(instr->src[0].src);
1427
1428 if (inot_src_instr != NULL &&
1429 (inot_src_instr->op == nir_op_ior ||
1430 inot_src_instr->op == nir_op_ixor ||
1431 inot_src_instr->op == nir_op_iand) &&
1432 !inot_src_instr->src[0].abs &&
1433 !inot_src_instr->src[0].negate &&
1434 !inot_src_instr->src[1].abs &&
1435 !inot_src_instr->src[1].negate) {
1436 /* The sources of the source logical instruction are now the
1437 * sources of the instruction that will be generated.
1438 */
1439 prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1440 resolve_inot_sources(bld, inot_src_instr, op);
1441
1442 /* Smash all of the sources and destination to be signed. This
1443 * doesn't matter for the operation of the instruction, but cmod
1444 * propagation fails on unsigned sources with negation (due to
1445 * fs_inst::can_do_cmod returning false).
1446 */
1447 result.type =
1448 brw_type_for_nir_type(devinfo,
1449 (nir_alu_type)(nir_type_int |
1450 nir_dest_bit_size(instr->dest.dest)));
1451 op[0].type =
1452 brw_type_for_nir_type(devinfo,
1453 (nir_alu_type)(nir_type_int |
1454 nir_src_bit_size(inot_src_instr->src[0].src)));
1455 op[1].type =
1456 brw_type_for_nir_type(devinfo,
1457 (nir_alu_type)(nir_type_int |
1458 nir_src_bit_size(inot_src_instr->src[1].src)));
1459
1460 /* For XOR, only invert one of the sources. Arbitrarily choose
1461 * the first source.
1462 */
1463 op[0].negate = !op[0].negate;
1464 if (inot_src_instr->op != nir_op_ixor)
1465 op[1].negate = !op[1].negate;
1466
1467 switch (inot_src_instr->op) {
1468 case nir_op_ior:
1469 bld.AND(result, op[0], op[1]);
1470 return;
1471
1472 case nir_op_iand:
1473 bld.OR(result, op[0], op[1]);
1474 return;
1475
1476 case nir_op_ixor:
1477 bld.XOR(result, op[0], op[1]);
1478 return;
1479
1480 default:
1481 unreachable("impossible opcode");
1482 }
1483 }
1484 op[0] = resolve_source_modifiers(op[0]);
1485 }
1486 bld.NOT(result, op[0]);
1487 break;
1488 case nir_op_ixor:
1489 if (devinfo->gen >= 8) {
1490 resolve_inot_sources(bld, instr, op);
1491 }
1492 bld.XOR(result, op[0], op[1]);
1493 break;
1494 case nir_op_ior:
1495 if (devinfo->gen >= 8) {
1496 resolve_inot_sources(bld, instr, op);
1497 }
1498 bld.OR(result, op[0], op[1]);
1499 break;
1500 case nir_op_iand:
1501 if (devinfo->gen >= 8) {
1502 resolve_inot_sources(bld, instr, op);
1503 }
1504 bld.AND(result, op[0], op[1]);
1505 break;
1506
1507 case nir_op_fdot2:
1508 case nir_op_fdot3:
1509 case nir_op_fdot4:
1510 case nir_op_b32all_fequal2:
1511 case nir_op_b32all_iequal2:
1512 case nir_op_b32all_fequal3:
1513 case nir_op_b32all_iequal3:
1514 case nir_op_b32all_fequal4:
1515 case nir_op_b32all_iequal4:
1516 case nir_op_b32any_fnequal2:
1517 case nir_op_b32any_inequal2:
1518 case nir_op_b32any_fnequal3:
1519 case nir_op_b32any_inequal3:
1520 case nir_op_b32any_fnequal4:
1521 case nir_op_b32any_inequal4:
1522 unreachable("Lowered by nir_lower_alu_reductions");
1523
1524 case nir_op_fnoise1_1:
1525 case nir_op_fnoise1_2:
1526 case nir_op_fnoise1_3:
1527 case nir_op_fnoise1_4:
1528 case nir_op_fnoise2_1:
1529 case nir_op_fnoise2_2:
1530 case nir_op_fnoise2_3:
1531 case nir_op_fnoise2_4:
1532 case nir_op_fnoise3_1:
1533 case nir_op_fnoise3_2:
1534 case nir_op_fnoise3_3:
1535 case nir_op_fnoise3_4:
1536 case nir_op_fnoise4_1:
1537 case nir_op_fnoise4_2:
1538 case nir_op_fnoise4_3:
1539 case nir_op_fnoise4_4:
1540 unreachable("not reached: should be handled by lower_noise");
1541
1542 case nir_op_ldexp:
1543 unreachable("not reached: should be handled by ldexp_to_arith()");
1544
1545 case nir_op_fsqrt:
1546 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1547 inst->saturate = instr->dest.saturate;
1548 break;
1549
1550 case nir_op_frsq:
1551 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1552 inst->saturate = instr->dest.saturate;
1553 break;
1554
1555 case nir_op_i2b32:
1556 case nir_op_f2b32: {
1557 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1558 if (bit_size == 64) {
1559 /* two-argument instructions can't take 64-bit immediates */
1560 fs_reg zero;
1561 fs_reg tmp;
1562
1563 if (instr->op == nir_op_f2b32) {
1564 zero = vgrf(glsl_type::double_type);
1565 tmp = vgrf(glsl_type::double_type);
1566 bld.MOV(zero, setup_imm_df(bld, 0.0));
1567 } else {
1568 zero = vgrf(glsl_type::int64_t_type);
1569 tmp = vgrf(glsl_type::int64_t_type);
1570 bld.MOV(zero, brw_imm_q(0));
1571 }
1572
1573 /* A SIMD16 execution needs to be split in two instructions, so use
1574 * a vgrf instead of the flag register as dst so instruction splitting
1575 * works
1576 */
1577 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1578 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1579 } else {
1580 fs_reg zero;
1581 if (bit_size == 32) {
1582 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1583 } else {
1584 assert(bit_size == 16);
1585 zero = instr->op == nir_op_f2b32 ?
1586 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1587 }
1588 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1589 }
1590 break;
1591 }
1592
1593 case nir_op_ftrunc:
1594 inst = bld.RNDZ(result, op[0]);
1595 inst->saturate = instr->dest.saturate;
1596 break;
1597
1598 case nir_op_fceil: {
1599 op[0].negate = !op[0].negate;
1600 fs_reg temp = vgrf(glsl_type::float_type);
1601 bld.RNDD(temp, op[0]);
1602 temp.negate = true;
1603 inst = bld.MOV(result, temp);
1604 inst->saturate = instr->dest.saturate;
1605 break;
1606 }
1607 case nir_op_ffloor:
1608 inst = bld.RNDD(result, op[0]);
1609 inst->saturate = instr->dest.saturate;
1610 break;
1611 case nir_op_ffract:
1612 inst = bld.FRC(result, op[0]);
1613 inst->saturate = instr->dest.saturate;
1614 break;
1615 case nir_op_fround_even:
1616 inst = bld.RNDE(result, op[0]);
1617 inst->saturate = instr->dest.saturate;
1618 break;
1619
1620 case nir_op_fquantize2f16: {
1621 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1622 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1623 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1624
1625 /* The destination stride must be at least as big as the source stride. */
1626 tmp16.type = BRW_REGISTER_TYPE_W;
1627 tmp16.stride = 2;
1628
1629 /* Check for denormal */
1630 fs_reg abs_src0 = op[0];
1631 abs_src0.abs = true;
1632 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1633 BRW_CONDITIONAL_L);
1634 /* Get the appropriately signed zero */
1635 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1636 retype(op[0], BRW_REGISTER_TYPE_UD),
1637 brw_imm_ud(0x80000000));
1638 /* Do the actual F32 -> F16 -> F32 conversion */
1639 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1640 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1641 /* Select that or zero based on normal status */
1642 inst = bld.SEL(result, zero, tmp32);
1643 inst->predicate = BRW_PREDICATE_NORMAL;
1644 inst->saturate = instr->dest.saturate;
1645 break;
1646 }
1647
1648 case nir_op_imin:
1649 case nir_op_umin:
1650 case nir_op_fmin:
1651 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1652 inst->saturate = instr->dest.saturate;
1653 break;
1654
1655 case nir_op_imax:
1656 case nir_op_umax:
1657 case nir_op_fmax:
1658 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1659 inst->saturate = instr->dest.saturate;
1660 break;
1661
1662 case nir_op_pack_snorm_2x16:
1663 case nir_op_pack_snorm_4x8:
1664 case nir_op_pack_unorm_2x16:
1665 case nir_op_pack_unorm_4x8:
1666 case nir_op_unpack_snorm_2x16:
1667 case nir_op_unpack_snorm_4x8:
1668 case nir_op_unpack_unorm_2x16:
1669 case nir_op_unpack_unorm_4x8:
1670 case nir_op_unpack_half_2x16:
1671 case nir_op_pack_half_2x16:
1672 unreachable("not reached: should be handled by lower_packing_builtins");
1673
1674 case nir_op_unpack_half_2x16_split_x_flush_to_zero:
1675 assert(FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 & execution_mode);
1676 /* Fall-through */
1677 case nir_op_unpack_half_2x16_split_x:
1678 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1679 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1680 inst->saturate = instr->dest.saturate;
1681 break;
1682
1683 case nir_op_unpack_half_2x16_split_y_flush_to_zero:
1684 assert(FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 & execution_mode);
1685 /* Fall-through */
1686 case nir_op_unpack_half_2x16_split_y:
1687 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1688 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1689 inst->saturate = instr->dest.saturate;
1690 break;
1691
1692 case nir_op_pack_64_2x32_split:
1693 case nir_op_pack_32_2x16_split:
1694 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1695 break;
1696
1697 case nir_op_unpack_64_2x32_split_x:
1698 case nir_op_unpack_64_2x32_split_y: {
1699 if (instr->op == nir_op_unpack_64_2x32_split_x)
1700 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1701 else
1702 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1703 break;
1704 }
1705
1706 case nir_op_unpack_32_2x16_split_x:
1707 case nir_op_unpack_32_2x16_split_y: {
1708 if (instr->op == nir_op_unpack_32_2x16_split_x)
1709 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1710 else
1711 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1712 break;
1713 }
1714
1715 case nir_op_fpow:
1716 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1717 inst->saturate = instr->dest.saturate;
1718 break;
1719
1720 case nir_op_bitfield_reverse:
1721 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1722 bld.BFREV(result, op[0]);
1723 break;
1724
1725 case nir_op_bit_count:
1726 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1727 bld.CBIT(result, op[0]);
1728 break;
1729
1730 case nir_op_ufind_msb: {
1731 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1732 emit_find_msb_using_lzd(bld, result, op[0], false);
1733 break;
1734 }
1735
1736 case nir_op_ifind_msb: {
1737 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1738
1739 if (devinfo->gen < 7) {
1740 emit_find_msb_using_lzd(bld, result, op[0], true);
1741 } else {
1742 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1743
1744 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1745 * count from the LSB side. If FBH didn't return an error
1746 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1747 * count into an LSB count.
1748 */
1749 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1750
1751 inst = bld.ADD(result, result, brw_imm_d(31));
1752 inst->predicate = BRW_PREDICATE_NORMAL;
1753 inst->src[0].negate = true;
1754 }
1755 break;
1756 }
1757
1758 case nir_op_find_lsb:
1759 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1760
1761 if (devinfo->gen < 7) {
1762 fs_reg temp = vgrf(glsl_type::int_type);
1763
1764 /* (x & -x) generates a value that consists of only the LSB of x.
1765 * For all powers of 2, findMSB(y) == findLSB(y).
1766 */
1767 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1768 fs_reg negated_src = src;
1769
1770 /* One must be negated, and the other must be non-negated. It
1771 * doesn't matter which is which.
1772 */
1773 negated_src.negate = true;
1774 src.negate = false;
1775
1776 bld.AND(temp, src, negated_src);
1777 emit_find_msb_using_lzd(bld, result, temp, false);
1778 } else {
1779 bld.FBL(result, op[0]);
1780 }
1781 break;
1782
1783 case nir_op_ubitfield_extract:
1784 case nir_op_ibitfield_extract:
1785 unreachable("should have been lowered");
1786 case nir_op_ubfe:
1787 case nir_op_ibfe:
1788 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1789 bld.BFE(result, op[2], op[1], op[0]);
1790 break;
1791 case nir_op_bfm:
1792 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1793 bld.BFI1(result, op[0], op[1]);
1794 break;
1795 case nir_op_bfi:
1796 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1797 bld.BFI2(result, op[0], op[1], op[2]);
1798 break;
1799
1800 case nir_op_bitfield_insert:
1801 unreachable("not reached: should have been lowered");
1802
1803 case nir_op_ishl:
1804 bld.SHL(result, op[0], op[1]);
1805 break;
1806 case nir_op_ishr:
1807 bld.ASR(result, op[0], op[1]);
1808 break;
1809 case nir_op_ushr:
1810 bld.SHR(result, op[0], op[1]);
1811 break;
1812
1813 case nir_op_urol:
1814 bld.ROL(result, op[0], op[1]);
1815 break;
1816 case nir_op_uror:
1817 bld.ROR(result, op[0], op[1]);
1818 break;
1819
1820 case nir_op_pack_half_2x16_split:
1821 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1822 break;
1823
1824 case nir_op_ffma:
1825 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1826 brw_rnd_mode rnd =
1827 brw_rnd_mode_from_execution_mode(execution_mode);
1828 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1829 brw_imm_d(rnd));
1830 }
1831
1832 inst = bld.MAD(result, op[2], op[1], op[0]);
1833 inst->saturate = instr->dest.saturate;
1834 break;
1835
1836 case nir_op_flrp:
1837 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1838 brw_rnd_mode rnd =
1839 brw_rnd_mode_from_execution_mode(execution_mode);
1840 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1841 brw_imm_d(rnd));
1842 }
1843
1844 inst = bld.LRP(result, op[0], op[1], op[2]);
1845 inst->saturate = instr->dest.saturate;
1846 break;
1847
1848 case nir_op_b32csel:
1849 if (optimize_frontfacing_ternary(instr, result))
1850 return;
1851
1852 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1853 inst = bld.SEL(result, op[1], op[2]);
1854 inst->predicate = BRW_PREDICATE_NORMAL;
1855 break;
1856
1857 case nir_op_extract_u8:
1858 case nir_op_extract_i8: {
1859 unsigned byte = nir_src_as_uint(instr->src[1].src);
1860
1861 /* The PRMs say:
1862 *
1863 * BDW+
1864 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1865 * Use two instructions and a word or DWord intermediate integer type.
1866 */
1867 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1868 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1869
1870 if (instr->op == nir_op_extract_i8) {
1871 /* If we need to sign extend, extract to a word first */
1872 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1873 bld.MOV(w_temp, subscript(op[0], type, byte));
1874 bld.MOV(result, w_temp);
1875 } else if (byte & 1) {
1876 /* Extract the high byte from the word containing the desired byte
1877 * offset.
1878 */
1879 bld.SHR(result,
1880 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1881 brw_imm_uw(8));
1882 } else {
1883 /* Otherwise use an AND with 0xff and a word type */
1884 bld.AND(result,
1885 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1886 brw_imm_uw(0xff));
1887 }
1888 } else {
1889 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1890 bld.MOV(result, subscript(op[0], type, byte));
1891 }
1892 break;
1893 }
1894
1895 case nir_op_extract_u16:
1896 case nir_op_extract_i16: {
1897 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1898 unsigned word = nir_src_as_uint(instr->src[1].src);
1899 bld.MOV(result, subscript(op[0], type, word));
1900 break;
1901 }
1902
1903 default:
1904 unreachable("unhandled instruction");
1905 }
1906
1907 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1908 * to sign extend the low bit to 0/~0
1909 */
1910 if (devinfo->gen <= 5 &&
1911 !result.is_null() &&
1912 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1913 fs_reg masked = vgrf(glsl_type::int_type);
1914 bld.AND(masked, result, brw_imm_d(1));
1915 masked.negate = true;
1916 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1917 }
1918 }
1919
1920 void
1921 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1922 nir_load_const_instr *instr)
1923 {
1924 const brw_reg_type reg_type =
1925 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1926 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1927
1928 switch (instr->def.bit_size) {
1929 case 8:
1930 for (unsigned i = 0; i < instr->def.num_components; i++)
1931 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value[i].i8));
1932 break;
1933
1934 case 16:
1935 for (unsigned i = 0; i < instr->def.num_components; i++)
1936 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value[i].i16));
1937 break;
1938
1939 case 32:
1940 for (unsigned i = 0; i < instr->def.num_components; i++)
1941 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value[i].i32));
1942 break;
1943
1944 case 64:
1945 assert(devinfo->gen >= 7);
1946 if (devinfo->gen == 7) {
1947 /* We don't get 64-bit integer types until gen8 */
1948 for (unsigned i = 0; i < instr->def.num_components; i++) {
1949 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1950 setup_imm_df(bld, instr->value[i].f64));
1951 }
1952 } else {
1953 for (unsigned i = 0; i < instr->def.num_components; i++)
1954 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value[i].i64));
1955 }
1956 break;
1957
1958 default:
1959 unreachable("Invalid bit size");
1960 }
1961
1962 nir_ssa_values[instr->def.index] = reg;
1963 }
1964
1965 fs_reg
1966 fs_visitor::get_nir_src(const nir_src &src)
1967 {
1968 fs_reg reg;
1969 if (src.is_ssa) {
1970 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1971 const brw_reg_type reg_type =
1972 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1973 reg = bld.vgrf(reg_type, src.ssa->num_components);
1974 } else {
1975 reg = nir_ssa_values[src.ssa->index];
1976 }
1977 } else {
1978 /* We don't handle indirects on locals */
1979 assert(src.reg.indirect == NULL);
1980 reg = offset(nir_locals[src.reg.reg->index], bld,
1981 src.reg.base_offset * src.reg.reg->num_components);
1982 }
1983
1984 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1985 /* The only 64-bit type available on gen7 is DF, so use that. */
1986 reg.type = BRW_REGISTER_TYPE_DF;
1987 } else {
1988 /* To avoid floating-point denorm flushing problems, set the type by
1989 * default to an integer type - instructions that need floating point
1990 * semantics will set this to F if they need to
1991 */
1992 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1993 BRW_REGISTER_TYPE_D);
1994 }
1995
1996 return reg;
1997 }
1998
1999 /**
2000 * Return an IMM for constants; otherwise call get_nir_src() as normal.
2001 *
2002 * This function should not be called on any value which may be 64 bits.
2003 * We could theoretically support 64-bit on gen8+ but we choose not to
2004 * because it wouldn't work in general (no gen7 support) and there are
2005 * enough restrictions in 64-bit immediates that you can't take the return
2006 * value and treat it the same as the result of get_nir_src().
2007 */
2008 fs_reg
2009 fs_visitor::get_nir_src_imm(const nir_src &src)
2010 {
2011 assert(nir_src_bit_size(src) == 32);
2012 return nir_src_is_const(src) ?
2013 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
2014 }
2015
2016 fs_reg
2017 fs_visitor::get_nir_dest(const nir_dest &dest)
2018 {
2019 if (dest.is_ssa) {
2020 const brw_reg_type reg_type =
2021 brw_reg_type_from_bit_size(dest.ssa.bit_size,
2022 dest.ssa.bit_size == 8 ?
2023 BRW_REGISTER_TYPE_D :
2024 BRW_REGISTER_TYPE_F);
2025 nir_ssa_values[dest.ssa.index] =
2026 bld.vgrf(reg_type, dest.ssa.num_components);
2027 bld.UNDEF(nir_ssa_values[dest.ssa.index]);
2028 return nir_ssa_values[dest.ssa.index];
2029 } else {
2030 /* We don't handle indirects on locals */
2031 assert(dest.reg.indirect == NULL);
2032 return offset(nir_locals[dest.reg.reg->index], bld,
2033 dest.reg.base_offset * dest.reg.reg->num_components);
2034 }
2035 }
2036
2037 void
2038 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
2039 unsigned wr_mask)
2040 {
2041 for (unsigned i = 0; i < 4; i++) {
2042 if (!((wr_mask >> i) & 1))
2043 continue;
2044
2045 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
2046 new_inst->dst = offset(new_inst->dst, bld, i);
2047 for (unsigned j = 0; j < new_inst->sources; j++)
2048 if (new_inst->src[j].file == VGRF)
2049 new_inst->src[j] = offset(new_inst->src[j], bld, i);
2050
2051 bld.emit(new_inst);
2052 }
2053 }
2054
2055 static fs_inst *
2056 emit_pixel_interpolater_send(const fs_builder &bld,
2057 enum opcode opcode,
2058 const fs_reg &dst,
2059 const fs_reg &src,
2060 const fs_reg &desc,
2061 glsl_interp_mode interpolation)
2062 {
2063 struct brw_wm_prog_data *wm_prog_data =
2064 brw_wm_prog_data(bld.shader->stage_prog_data);
2065
2066 fs_inst *inst = bld.emit(opcode, dst, src, desc);
2067 /* 2 floats per slot returned */
2068 inst->size_written = 2 * dst.component_size(inst->exec_size);
2069 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
2070
2071 wm_prog_data->pulls_bary = true;
2072
2073 return inst;
2074 }
2075
2076 /**
2077 * Computes 1 << x, given a D/UD register containing some value x.
2078 */
2079 static fs_reg
2080 intexp2(const fs_builder &bld, const fs_reg &x)
2081 {
2082 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
2083
2084 fs_reg result = bld.vgrf(x.type, 1);
2085 fs_reg one = bld.vgrf(x.type, 1);
2086
2087 bld.MOV(one, retype(brw_imm_d(1), one.type));
2088 bld.SHL(result, one, x);
2089 return result;
2090 }
2091
2092 void
2093 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
2094 {
2095 assert(stage == MESA_SHADER_GEOMETRY);
2096
2097 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2098
2099 if (gs_compile->control_data_header_size_bits == 0)
2100 return;
2101
2102 /* We can only do EndPrimitive() functionality when the control data
2103 * consists of cut bits. Fortunately, the only time it isn't is when the
2104 * output type is points, in which case EndPrimitive() is a no-op.
2105 */
2106 if (gs_prog_data->control_data_format !=
2107 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
2108 return;
2109 }
2110
2111 /* Cut bits use one bit per vertex. */
2112 assert(gs_compile->control_data_bits_per_vertex == 1);
2113
2114 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2115 vertex_count.type = BRW_REGISTER_TYPE_UD;
2116
2117 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
2118 * vertex n, 0 otherwise. So all we need to do here is mark bit
2119 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
2120 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
2121 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
2122 *
2123 * Note that if EndPrimitive() is called before emitting any vertices, this
2124 * will cause us to set bit 31 of the control_data_bits register to 1.
2125 * That's fine because:
2126 *
2127 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
2128 * output, so the hardware will ignore cut bit 31.
2129 *
2130 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
2131 * last vertex, so setting cut bit 31 has no effect (since the primitive
2132 * is automatically ended when the GS terminates).
2133 *
2134 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
2135 * control_data_bits register to 0 when the first vertex is emitted.
2136 */
2137
2138 const fs_builder abld = bld.annotate("end primitive");
2139
2140 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
2141 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2142 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2143 fs_reg mask = intexp2(abld, prev_count);
2144 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2145 * attention to the lower 5 bits of its second source argument, so on this
2146 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
2147 * ((vertex_count - 1) % 32).
2148 */
2149 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2150 }
2151
2152 void
2153 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
2154 {
2155 assert(stage == MESA_SHADER_GEOMETRY);
2156 assert(gs_compile->control_data_bits_per_vertex != 0);
2157
2158 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2159
2160 const fs_builder abld = bld.annotate("emit control data bits");
2161 const fs_builder fwa_bld = bld.exec_all();
2162
2163 /* We use a single UD register to accumulate control data bits (32 bits
2164 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
2165 * at a time.
2166 *
2167 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
2168 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
2169 * use the Channel Mask phase to enable/disable which DWord within that
2170 * group to write. (Remember, different SIMD8 channels may have emitted
2171 * different numbers of vertices, so we may need per-slot offsets.)
2172 *
2173 * Channel masking presents an annoying problem: we may have to replicate
2174 * the data up to 4 times:
2175 *
2176 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
2177 *
2178 * To avoid penalizing shaders that emit a small number of vertices, we
2179 * can avoid these sometimes: if the size of the control data header is
2180 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
2181 * land in the same 128-bit group, so we can skip per-slot offsets.
2182 *
2183 * Similarly, if the control data header is <= 32 bits, there is only one
2184 * DWord, so we can skip channel masks.
2185 */
2186 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
2187
2188 fs_reg channel_mask, per_slot_offset;
2189
2190 if (gs_compile->control_data_header_size_bits > 32) {
2191 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2192 channel_mask = vgrf(glsl_type::uint_type);
2193 }
2194
2195 if (gs_compile->control_data_header_size_bits > 128) {
2196 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
2197 per_slot_offset = vgrf(glsl_type::uint_type);
2198 }
2199
2200 /* Figure out which DWord we're trying to write to using the formula:
2201 *
2202 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
2203 *
2204 * Since bits_per_vertex is a power of two, and is known at compile
2205 * time, this can be optimized to:
2206 *
2207 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
2208 */
2209 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
2210 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2211 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2212 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2213 unsigned log2_bits_per_vertex =
2214 util_last_bit(gs_compile->control_data_bits_per_vertex);
2215 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
2216
2217 if (per_slot_offset.file != BAD_FILE) {
2218 /* Set the per-slot offset to dword_index / 4, so that we'll write to
2219 * the appropriate OWord within the control data header.
2220 */
2221 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
2222 }
2223
2224 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
2225 * write to the appropriate DWORD within the OWORD.
2226 */
2227 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2228 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
2229 channel_mask = intexp2(fwa_bld, channel);
2230 /* Then the channel masks need to be in bits 23:16. */
2231 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2232 }
2233
2234 /* Store the control data bits in the message payload and send it. */
2235 unsigned mlen = 2;
2236 if (channel_mask.file != BAD_FILE)
2237 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2238 if (per_slot_offset.file != BAD_FILE)
2239 mlen++;
2240
2241 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2242 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2243 unsigned i = 0;
2244 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2245 if (per_slot_offset.file != BAD_FILE)
2246 sources[i++] = per_slot_offset;
2247 if (channel_mask.file != BAD_FILE)
2248 sources[i++] = channel_mask;
2249 while (i < mlen) {
2250 sources[i++] = this->control_data_bits;
2251 }
2252
2253 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2254 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2255 inst->mlen = mlen;
2256 /* We need to increment Global Offset by 256-bits to make room for
2257 * Broadwell's extra "Vertex Count" payload at the beginning of the
2258 * URB entry. Since this is an OWord message, Global Offset is counted
2259 * in 128-bit units, so we must set it to 2.
2260 */
2261 if (gs_prog_data->static_vertex_count == -1)
2262 inst->offset = 2;
2263 }
2264
2265 void
2266 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2267 unsigned stream_id)
2268 {
2269 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2270
2271 /* Note: we are calling this *before* increasing vertex_count, so
2272 * this->vertex_count == vertex_count - 1 in the formula above.
2273 */
2274
2275 /* Stream mode uses 2 bits per vertex */
2276 assert(gs_compile->control_data_bits_per_vertex == 2);
2277
2278 /* Must be a valid stream */
2279 assert(stream_id < MAX_VERTEX_STREAMS);
2280
2281 /* Control data bits are initialized to 0 so we don't have to set any
2282 * bits when sending vertices to stream 0.
2283 */
2284 if (stream_id == 0)
2285 return;
2286
2287 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2288
2289 /* reg::sid = stream_id */
2290 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2291 abld.MOV(sid, brw_imm_ud(stream_id));
2292
2293 /* reg:shift_count = 2 * (vertex_count - 1) */
2294 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2295 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2296
2297 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2298 * attention to the lower 5 bits of its second source argument, so on this
2299 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2300 * stream_id << ((2 * (vertex_count - 1)) % 32).
2301 */
2302 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2303 abld.SHL(mask, sid, shift_count);
2304 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2305 }
2306
2307 void
2308 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2309 unsigned stream_id)
2310 {
2311 assert(stage == MESA_SHADER_GEOMETRY);
2312
2313 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2314
2315 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2316 vertex_count.type = BRW_REGISTER_TYPE_UD;
2317
2318 /* Haswell and later hardware ignores the "Render Stream Select" bits
2319 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2320 * and instead sends all primitives down the pipeline for rasterization.
2321 * If the SOL stage is enabled, "Render Stream Select" is honored and
2322 * primitives bound to non-zero streams are discarded after stream output.
2323 *
2324 * Since the only purpose of primives sent to non-zero streams is to
2325 * be recorded by transform feedback, we can simply discard all geometry
2326 * bound to these streams when transform feedback is disabled.
2327 */
2328 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2329 return;
2330
2331 /* If we're outputting 32 control data bits or less, then we can wait
2332 * until the shader is over to output them all. Otherwise we need to
2333 * output them as we go. Now is the time to do it, since we're about to
2334 * output the vertex_count'th vertex, so it's guaranteed that the
2335 * control data bits associated with the (vertex_count - 1)th vertex are
2336 * correct.
2337 */
2338 if (gs_compile->control_data_header_size_bits > 32) {
2339 const fs_builder abld =
2340 bld.annotate("emit vertex: emit control data bits");
2341
2342 /* Only emit control data bits if we've finished accumulating a batch
2343 * of 32 bits. This is the case when:
2344 *
2345 * (vertex_count * bits_per_vertex) % 32 == 0
2346 *
2347 * (in other words, when the last 5 bits of vertex_count *
2348 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2349 * integer n (which is always the case, since bits_per_vertex is
2350 * always 1 or 2), this is equivalent to requiring that the last 5-n
2351 * bits of vertex_count are 0:
2352 *
2353 * vertex_count & (2^(5-n) - 1) == 0
2354 *
2355 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2356 * equivalent to:
2357 *
2358 * vertex_count & (32 / bits_per_vertex - 1) == 0
2359 *
2360 * TODO: If vertex_count is an immediate, we could do some of this math
2361 * at compile time...
2362 */
2363 fs_inst *inst =
2364 abld.AND(bld.null_reg_d(), vertex_count,
2365 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2366 inst->conditional_mod = BRW_CONDITIONAL_Z;
2367
2368 abld.IF(BRW_PREDICATE_NORMAL);
2369 /* If vertex_count is 0, then no control data bits have been
2370 * accumulated yet, so we can skip emitting them.
2371 */
2372 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2373 BRW_CONDITIONAL_NEQ);
2374 abld.IF(BRW_PREDICATE_NORMAL);
2375 emit_gs_control_data_bits(vertex_count);
2376 abld.emit(BRW_OPCODE_ENDIF);
2377
2378 /* Reset control_data_bits to 0 so we can start accumulating a new
2379 * batch.
2380 *
2381 * Note: in the case where vertex_count == 0, this neutralizes the
2382 * effect of any call to EndPrimitive() that the shader may have
2383 * made before outputting its first vertex.
2384 */
2385 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2386 inst->force_writemask_all = true;
2387 abld.emit(BRW_OPCODE_ENDIF);
2388 }
2389
2390 emit_urb_writes(vertex_count);
2391
2392 /* In stream mode we have to set control data bits for all vertices
2393 * unless we have disabled control data bits completely (which we do
2394 * do for GL_POINTS outputs that don't use streams).
2395 */
2396 if (gs_compile->control_data_header_size_bits > 0 &&
2397 gs_prog_data->control_data_format ==
2398 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2399 set_gs_stream_control_data_bits(vertex_count, stream_id);
2400 }
2401 }
2402
2403 void
2404 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2405 const nir_src &vertex_src,
2406 unsigned base_offset,
2407 const nir_src &offset_src,
2408 unsigned num_components,
2409 unsigned first_component)
2410 {
2411 assert(type_sz(dst.type) == 4);
2412 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2413 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2414
2415 /* TODO: figure out push input layout for invocations == 1 */
2416 if (gs_prog_data->invocations == 1 &&
2417 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2418 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2419 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2420 nir_src_as_uint(vertex_src) * push_reg_count;
2421 for (unsigned i = 0; i < num_components; i++) {
2422 bld.MOV(offset(dst, bld, i),
2423 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2424 }
2425 return;
2426 }
2427
2428 /* Resort to the pull model. Ensure the VUE handles are provided. */
2429 assert(gs_prog_data->base.include_vue_handles);
2430
2431 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2432 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2433
2434 if (gs_prog_data->invocations == 1) {
2435 if (nir_src_is_const(vertex_src)) {
2436 /* The vertex index is constant; just select the proper URB handle. */
2437 icp_handle =
2438 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2439 BRW_REGISTER_TYPE_UD);
2440 } else {
2441 /* The vertex index is non-constant. We need to use indirect
2442 * addressing to fetch the proper URB handle.
2443 *
2444 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2445 * indicating that channel <n> should read the handle from
2446 * DWord <n>. We convert that to bytes by multiplying by 4.
2447 *
2448 * Next, we convert the vertex index to bytes by multiplying
2449 * by 32 (shifting by 5), and add the two together. This is
2450 * the final indirect byte offset.
2451 */
2452 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2453 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2454 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2455 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2456
2457 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2458 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2459 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2460 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2461 /* Convert vertex_index to bytes (multiply by 32) */
2462 bld.SHL(vertex_offset_bytes,
2463 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2464 brw_imm_ud(5u));
2465 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2466
2467 /* Use first_icp_handle as the base offset. There is one register
2468 * of URB handles per vertex, so inform the register allocator that
2469 * we might read up to nir->info.gs.vertices_in registers.
2470 */
2471 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2472 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2473 fs_reg(icp_offset_bytes),
2474 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2475 }
2476 } else {
2477 assert(gs_prog_data->invocations > 1);
2478
2479 if (nir_src_is_const(vertex_src)) {
2480 unsigned vertex = nir_src_as_uint(vertex_src);
2481 assert(devinfo->gen >= 9 || vertex <= 5);
2482 bld.MOV(icp_handle,
2483 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2484 BRW_REGISTER_TYPE_UD));
2485 } else {
2486 /* The vertex index is non-constant. We need to use indirect
2487 * addressing to fetch the proper URB handle.
2488 *
2489 */
2490 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2491
2492 /* Convert vertex_index to bytes (multiply by 4) */
2493 bld.SHL(icp_offset_bytes,
2494 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2495 brw_imm_ud(2u));
2496
2497 /* Use first_icp_handle as the base offset. There is one DWord
2498 * of URB handles per vertex, so inform the register allocator that
2499 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2500 */
2501 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2502 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2503 fs_reg(icp_offset_bytes),
2504 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2505 REG_SIZE));
2506 }
2507 }
2508
2509 fs_inst *inst;
2510 fs_reg indirect_offset = get_nir_src(offset_src);
2511
2512 if (nir_src_is_const(offset_src)) {
2513 /* Constant indexing - use global offset. */
2514 if (first_component != 0) {
2515 unsigned read_components = num_components + first_component;
2516 fs_reg tmp = bld.vgrf(dst.type, read_components);
2517 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2518 inst->size_written = read_components *
2519 tmp.component_size(inst->exec_size);
2520 for (unsigned i = 0; i < num_components; i++) {
2521 bld.MOV(offset(dst, bld, i),
2522 offset(tmp, bld, i + first_component));
2523 }
2524 } else {
2525 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2526 inst->size_written = num_components *
2527 dst.component_size(inst->exec_size);
2528 }
2529 inst->offset = base_offset + nir_src_as_uint(offset_src);
2530 inst->mlen = 1;
2531 } else {
2532 /* Indirect indexing - use per-slot offsets as well. */
2533 const fs_reg srcs[] = { icp_handle, indirect_offset };
2534 unsigned read_components = num_components + first_component;
2535 fs_reg tmp = bld.vgrf(dst.type, read_components);
2536 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2537 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2538 if (first_component != 0) {
2539 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2540 payload);
2541 inst->size_written = read_components *
2542 tmp.component_size(inst->exec_size);
2543 for (unsigned i = 0; i < num_components; i++) {
2544 bld.MOV(offset(dst, bld, i),
2545 offset(tmp, bld, i + first_component));
2546 }
2547 } else {
2548 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
2549 inst->size_written = num_components *
2550 dst.component_size(inst->exec_size);
2551 }
2552 inst->offset = base_offset;
2553 inst->mlen = 2;
2554 }
2555 }
2556
2557 fs_reg
2558 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2559 {
2560 nir_src *offset_src = nir_get_io_offset_src(instr);
2561
2562 if (nir_src_is_const(*offset_src)) {
2563 /* The only constant offset we should find is 0. brw_nir.c's
2564 * add_const_offset_to_base() will fold other constant offsets
2565 * into instr->const_index[0].
2566 */
2567 assert(nir_src_as_uint(*offset_src) == 0);
2568 return fs_reg();
2569 }
2570
2571 return get_nir_src(*offset_src);
2572 }
2573
2574 void
2575 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2576 nir_intrinsic_instr *instr)
2577 {
2578 assert(stage == MESA_SHADER_VERTEX);
2579
2580 fs_reg dest;
2581 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2582 dest = get_nir_dest(instr->dest);
2583
2584 switch (instr->intrinsic) {
2585 case nir_intrinsic_load_vertex_id:
2586 case nir_intrinsic_load_base_vertex:
2587 unreachable("should be lowered by nir_lower_system_values()");
2588
2589 case nir_intrinsic_load_input: {
2590 assert(nir_dest_bit_size(instr->dest) == 32);
2591 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2592 src = offset(src, bld, nir_intrinsic_component(instr));
2593 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2594
2595 for (unsigned i = 0; i < instr->num_components; i++)
2596 bld.MOV(offset(dest, bld, i), offset(src, bld, i));
2597 break;
2598 }
2599
2600 case nir_intrinsic_load_vertex_id_zero_base:
2601 case nir_intrinsic_load_instance_id:
2602 case nir_intrinsic_load_base_instance:
2603 case nir_intrinsic_load_draw_id:
2604 case nir_intrinsic_load_first_vertex:
2605 case nir_intrinsic_load_is_indexed_draw:
2606 unreachable("lowered by brw_nir_lower_vs_inputs");
2607
2608 default:
2609 nir_emit_intrinsic(bld, instr);
2610 break;
2611 }
2612 }
2613
2614 fs_reg
2615 fs_visitor::get_tcs_single_patch_icp_handle(const fs_builder &bld,
2616 nir_intrinsic_instr *instr)
2617 {
2618 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2619 const nir_src &vertex_src = instr->src[0];
2620 nir_intrinsic_instr *vertex_intrin = nir_src_as_intrinsic(vertex_src);
2621 fs_reg icp_handle;
2622
2623 if (nir_src_is_const(vertex_src)) {
2624 /* Emit a MOV to resolve <0,1,0> regioning. */
2625 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2626 unsigned vertex = nir_src_as_uint(vertex_src);
2627 bld.MOV(icp_handle,
2628 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2629 BRW_REGISTER_TYPE_UD));
2630 } else if (tcs_prog_data->instances == 1 && vertex_intrin &&
2631 vertex_intrin->intrinsic == nir_intrinsic_load_invocation_id) {
2632 /* For the common case of only 1 instance, an array index of
2633 * gl_InvocationID means reading g1. Skip all the indirect work.
2634 */
2635 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2636 } else {
2637 /* The vertex index is non-constant. We need to use indirect
2638 * addressing to fetch the proper URB handle.
2639 */
2640 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2641
2642 /* Each ICP handle is a single DWord (4 bytes) */
2643 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2644 bld.SHL(vertex_offset_bytes,
2645 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2646 brw_imm_ud(2u));
2647
2648 /* Start at g1. We might read up to 4 registers. */
2649 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2650 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2651 brw_imm_ud(4 * REG_SIZE));
2652 }
2653
2654 return icp_handle;
2655 }
2656
2657 fs_reg
2658 fs_visitor::get_tcs_eight_patch_icp_handle(const fs_builder &bld,
2659 nir_intrinsic_instr *instr)
2660 {
2661 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2662 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2663 const nir_src &vertex_src = instr->src[0];
2664
2665 unsigned first_icp_handle = tcs_prog_data->include_primitive_id ? 3 : 2;
2666
2667 if (nir_src_is_const(vertex_src)) {
2668 return fs_reg(retype(brw_vec8_grf(first_icp_handle +
2669 nir_src_as_uint(vertex_src), 0),
2670 BRW_REGISTER_TYPE_UD));
2671 }
2672
2673 /* The vertex index is non-constant. We need to use indirect
2674 * addressing to fetch the proper URB handle.
2675 *
2676 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2677 * indicating that channel <n> should read the handle from
2678 * DWord <n>. We convert that to bytes by multiplying by 4.
2679 *
2680 * Next, we convert the vertex index to bytes by multiplying
2681 * by 32 (shifting by 5), and add the two together. This is
2682 * the final indirect byte offset.
2683 */
2684 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2685 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2686 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2687 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2688 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2689
2690 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2691 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2692 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2693 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2694 /* Convert vertex_index to bytes (multiply by 32) */
2695 bld.SHL(vertex_offset_bytes,
2696 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2697 brw_imm_ud(5u));
2698 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2699
2700 /* Use first_icp_handle as the base offset. There is one register
2701 * of URB handles per vertex, so inform the register allocator that
2702 * we might read up to nir->info.gs.vertices_in registers.
2703 */
2704 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2705 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2706 icp_offset_bytes, brw_imm_ud(tcs_key->input_vertices * REG_SIZE));
2707
2708 return icp_handle;
2709 }
2710
2711 struct brw_reg
2712 fs_visitor::get_tcs_output_urb_handle()
2713 {
2714 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
2715
2716 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
2717 return retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2718 } else {
2719 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
2720 return retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2721 }
2722 }
2723
2724 void
2725 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2726 nir_intrinsic_instr *instr)
2727 {
2728 assert(stage == MESA_SHADER_TESS_CTRL);
2729 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2730 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2731 struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
2732
2733 bool eight_patch =
2734 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH;
2735
2736 fs_reg dst;
2737 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2738 dst = get_nir_dest(instr->dest);
2739
2740 switch (instr->intrinsic) {
2741 case nir_intrinsic_load_primitive_id:
2742 bld.MOV(dst, fs_reg(eight_patch ? brw_vec8_grf(2, 0)
2743 : brw_vec1_grf(0, 1)));
2744 break;
2745 case nir_intrinsic_load_invocation_id:
2746 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2747 break;
2748 case nir_intrinsic_load_patch_vertices_in:
2749 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2750 brw_imm_d(tcs_key->input_vertices));
2751 break;
2752
2753 case nir_intrinsic_barrier: {
2754 if (tcs_prog_data->instances == 1)
2755 break;
2756
2757 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2758 fs_reg m0_2 = component(m0, 2);
2759
2760 const fs_builder chanbld = bld.exec_all().group(1, 0);
2761
2762 /* Zero the message header */
2763 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2764
2765 if (devinfo->gen < 11) {
2766 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2767 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2768 brw_imm_ud(INTEL_MASK(16, 13)));
2769
2770 /* Shift it up to bits 27:24. */
2771 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2772 } else {
2773 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2774 brw_imm_ud(INTEL_MASK(30, 24)));
2775 }
2776
2777 /* Set the Barrier Count and the enable bit */
2778 if (devinfo->gen < 11) {
2779 chanbld.OR(m0_2, m0_2,
2780 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2781 } else {
2782 chanbld.OR(m0_2, m0_2,
2783 brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
2784 }
2785
2786 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2787 break;
2788 }
2789
2790 case nir_intrinsic_load_input:
2791 unreachable("nir_lower_io should never give us these.");
2792 break;
2793
2794 case nir_intrinsic_load_per_vertex_input: {
2795 assert(nir_dest_bit_size(instr->dest) == 32);
2796 fs_reg indirect_offset = get_indirect_offset(instr);
2797 unsigned imm_offset = instr->const_index[0];
2798 fs_inst *inst;
2799
2800 fs_reg icp_handle =
2801 eight_patch ? get_tcs_eight_patch_icp_handle(bld, instr)
2802 : get_tcs_single_patch_icp_handle(bld, instr);
2803
2804 /* We can only read two double components with each URB read, so
2805 * we send two read messages in that case, each one loading up to
2806 * two double components.
2807 */
2808 unsigned num_components = instr->num_components;
2809 unsigned first_component = nir_intrinsic_component(instr);
2810
2811 if (indirect_offset.file == BAD_FILE) {
2812 /* Constant indexing - use global offset. */
2813 if (first_component != 0) {
2814 unsigned read_components = num_components + first_component;
2815 fs_reg tmp = bld.vgrf(dst.type, read_components);
2816 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2817 for (unsigned i = 0; i < num_components; i++) {
2818 bld.MOV(offset(dst, bld, i),
2819 offset(tmp, bld, i + first_component));
2820 }
2821 } else {
2822 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2823 }
2824 inst->offset = imm_offset;
2825 inst->mlen = 1;
2826 } else {
2827 /* Indirect indexing - use per-slot offsets as well. */
2828 const fs_reg srcs[] = { icp_handle, indirect_offset };
2829 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2830 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2831 if (first_component != 0) {
2832 unsigned read_components = num_components + first_component;
2833 fs_reg tmp = bld.vgrf(dst.type, read_components);
2834 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2835 payload);
2836 for (unsigned i = 0; i < num_components; i++) {
2837 bld.MOV(offset(dst, bld, i),
2838 offset(tmp, bld, i + first_component));
2839 }
2840 } else {
2841 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2842 payload);
2843 }
2844 inst->offset = imm_offset;
2845 inst->mlen = 2;
2846 }
2847 inst->size_written = (num_components + first_component) *
2848 inst->dst.component_size(inst->exec_size);
2849
2850 /* Copy the temporary to the destination to deal with writemasking.
2851 *
2852 * Also attempt to deal with gl_PointSize being in the .w component.
2853 */
2854 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2855 assert(type_sz(dst.type) == 4);
2856 inst->dst = bld.vgrf(dst.type, 4);
2857 inst->size_written = 4 * REG_SIZE;
2858 bld.MOV(dst, offset(inst->dst, bld, 3));
2859 }
2860 break;
2861 }
2862
2863 case nir_intrinsic_load_output:
2864 case nir_intrinsic_load_per_vertex_output: {
2865 assert(nir_dest_bit_size(instr->dest) == 32);
2866 fs_reg indirect_offset = get_indirect_offset(instr);
2867 unsigned imm_offset = instr->const_index[0];
2868 unsigned first_component = nir_intrinsic_component(instr);
2869
2870 struct brw_reg output_handles = get_tcs_output_urb_handle();
2871
2872 fs_inst *inst;
2873 if (indirect_offset.file == BAD_FILE) {
2874 /* This MOV replicates the output handle to all enabled channels
2875 * is SINGLE_PATCH mode.
2876 */
2877 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2878 bld.MOV(patch_handle, output_handles);
2879
2880 {
2881 if (first_component != 0) {
2882 unsigned read_components =
2883 instr->num_components + first_component;
2884 fs_reg tmp = bld.vgrf(dst.type, read_components);
2885 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2886 patch_handle);
2887 inst->size_written = read_components * REG_SIZE;
2888 for (unsigned i = 0; i < instr->num_components; i++) {
2889 bld.MOV(offset(dst, bld, i),
2890 offset(tmp, bld, i + first_component));
2891 }
2892 } else {
2893 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2894 patch_handle);
2895 inst->size_written = instr->num_components * REG_SIZE;
2896 }
2897 inst->offset = imm_offset;
2898 inst->mlen = 1;
2899 }
2900 } else {
2901 /* Indirect indexing - use per-slot offsets as well. */
2902 const fs_reg srcs[] = { output_handles, indirect_offset };
2903 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2904 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2905 if (first_component != 0) {
2906 unsigned read_components =
2907 instr->num_components + first_component;
2908 fs_reg tmp = bld.vgrf(dst.type, read_components);
2909 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2910 payload);
2911 inst->size_written = read_components * REG_SIZE;
2912 for (unsigned i = 0; i < instr->num_components; i++) {
2913 bld.MOV(offset(dst, bld, i),
2914 offset(tmp, bld, i + first_component));
2915 }
2916 } else {
2917 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2918 payload);
2919 inst->size_written = instr->num_components * REG_SIZE;
2920 }
2921 inst->offset = imm_offset;
2922 inst->mlen = 2;
2923 }
2924 break;
2925 }
2926
2927 case nir_intrinsic_store_output:
2928 case nir_intrinsic_store_per_vertex_output: {
2929 assert(nir_src_bit_size(instr->src[0]) == 32);
2930 fs_reg value = get_nir_src(instr->src[0]);
2931 fs_reg indirect_offset = get_indirect_offset(instr);
2932 unsigned imm_offset = instr->const_index[0];
2933 unsigned mask = instr->const_index[1];
2934 unsigned header_regs = 0;
2935 struct brw_reg output_handles = get_tcs_output_urb_handle();
2936
2937 fs_reg srcs[7];
2938 srcs[header_regs++] = output_handles;
2939
2940 if (indirect_offset.file != BAD_FILE) {
2941 srcs[header_regs++] = indirect_offset;
2942 }
2943
2944 if (mask == 0)
2945 break;
2946
2947 unsigned num_components = util_last_bit(mask);
2948 enum opcode opcode;
2949
2950 /* We can only pack two 64-bit components in a single message, so send
2951 * 2 messages if we have more components
2952 */
2953 unsigned first_component = nir_intrinsic_component(instr);
2954 mask = mask << first_component;
2955
2956 if (mask != WRITEMASK_XYZW) {
2957 srcs[header_regs++] = brw_imm_ud(mask << 16);
2958 opcode = indirect_offset.file != BAD_FILE ?
2959 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2960 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2961 } else {
2962 opcode = indirect_offset.file != BAD_FILE ?
2963 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2964 SHADER_OPCODE_URB_WRITE_SIMD8;
2965 }
2966
2967 for (unsigned i = 0; i < num_components; i++) {
2968 if (!(mask & (1 << (i + first_component))))
2969 continue;
2970
2971 srcs[header_regs + i + first_component] = offset(value, bld, i);
2972 }
2973
2974 unsigned mlen = header_regs + num_components + first_component;
2975 fs_reg payload =
2976 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2977 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2978
2979 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2980 inst->offset = imm_offset;
2981 inst->mlen = mlen;
2982 break;
2983 }
2984
2985 default:
2986 nir_emit_intrinsic(bld, instr);
2987 break;
2988 }
2989 }
2990
2991 void
2992 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2993 nir_intrinsic_instr *instr)
2994 {
2995 assert(stage == MESA_SHADER_TESS_EVAL);
2996 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2997
2998 fs_reg dest;
2999 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3000 dest = get_nir_dest(instr->dest);
3001
3002 switch (instr->intrinsic) {
3003 case nir_intrinsic_load_primitive_id:
3004 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
3005 break;
3006 case nir_intrinsic_load_tess_coord:
3007 /* gl_TessCoord is part of the payload in g1-3 */
3008 for (unsigned i = 0; i < 3; i++) {
3009 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
3010 }
3011 break;
3012
3013 case nir_intrinsic_load_input:
3014 case nir_intrinsic_load_per_vertex_input: {
3015 assert(nir_dest_bit_size(instr->dest) == 32);
3016 fs_reg indirect_offset = get_indirect_offset(instr);
3017 unsigned imm_offset = instr->const_index[0];
3018 unsigned first_component = nir_intrinsic_component(instr);
3019
3020 fs_inst *inst;
3021 if (indirect_offset.file == BAD_FILE) {
3022 /* Arbitrarily only push up to 32 vec4 slots worth of data,
3023 * which is 16 registers (since each holds 2 vec4 slots).
3024 */
3025 const unsigned max_push_slots = 32;
3026 if (imm_offset < max_push_slots) {
3027 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
3028 for (int i = 0; i < instr->num_components; i++) {
3029 unsigned comp = 4 * (imm_offset % 2) + i + first_component;
3030 bld.MOV(offset(dest, bld, i), component(src, comp));
3031 }
3032
3033 tes_prog_data->base.urb_read_length =
3034 MAX2(tes_prog_data->base.urb_read_length,
3035 (imm_offset / 2) + 1);
3036 } else {
3037 /* Replicate the patch handle to all enabled channels */
3038 const fs_reg srcs[] = {
3039 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
3040 };
3041 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
3042 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
3043
3044 if (first_component != 0) {
3045 unsigned read_components =
3046 instr->num_components + first_component;
3047 fs_reg tmp = bld.vgrf(dest.type, read_components);
3048 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
3049 patch_handle);
3050 inst->size_written = read_components * REG_SIZE;
3051 for (unsigned i = 0; i < instr->num_components; i++) {
3052 bld.MOV(offset(dest, bld, i),
3053 offset(tmp, bld, i + first_component));
3054 }
3055 } else {
3056 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
3057 patch_handle);
3058 inst->size_written = instr->num_components * REG_SIZE;
3059 }
3060 inst->mlen = 1;
3061 inst->offset = imm_offset;
3062 }
3063 } else {
3064 /* Indirect indexing - use per-slot offsets as well. */
3065
3066 /* We can only read two double components with each URB read, so
3067 * we send two read messages in that case, each one loading up to
3068 * two double components.
3069 */
3070 unsigned num_components = instr->num_components;
3071 const fs_reg srcs[] = {
3072 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3073 indirect_offset
3074 };
3075 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3076 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3077
3078 if (first_component != 0) {
3079 unsigned read_components =
3080 num_components + first_component;
3081 fs_reg tmp = bld.vgrf(dest.type, read_components);
3082 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3083 payload);
3084 for (unsigned i = 0; i < num_components; i++) {
3085 bld.MOV(offset(dest, bld, i),
3086 offset(tmp, bld, i + first_component));
3087 }
3088 } else {
3089 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3090 payload);
3091 }
3092 inst->mlen = 2;
3093 inst->offset = imm_offset;
3094 inst->size_written = (num_components + first_component) *
3095 inst->dst.component_size(inst->exec_size);
3096 }
3097 break;
3098 }
3099 default:
3100 nir_emit_intrinsic(bld, instr);
3101 break;
3102 }
3103 }
3104
3105 void
3106 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3107 nir_intrinsic_instr *instr)
3108 {
3109 assert(stage == MESA_SHADER_GEOMETRY);
3110 fs_reg indirect_offset;
3111
3112 fs_reg dest;
3113 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3114 dest = get_nir_dest(instr->dest);
3115
3116 switch (instr->intrinsic) {
3117 case nir_intrinsic_load_primitive_id:
3118 assert(stage == MESA_SHADER_GEOMETRY);
3119 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3120 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3121 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3122 break;
3123
3124 case nir_intrinsic_load_input:
3125 unreachable("load_input intrinsics are invalid for the GS stage");
3126
3127 case nir_intrinsic_load_per_vertex_input:
3128 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3129 instr->src[1], instr->num_components,
3130 nir_intrinsic_component(instr));
3131 break;
3132
3133 case nir_intrinsic_emit_vertex_with_counter:
3134 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3135 break;
3136
3137 case nir_intrinsic_end_primitive_with_counter:
3138 emit_gs_end_primitive(instr->src[0]);
3139 break;
3140
3141 case nir_intrinsic_set_vertex_count:
3142 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3143 break;
3144
3145 case nir_intrinsic_load_invocation_id: {
3146 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3147 assert(val.file != BAD_FILE);
3148 dest.type = val.type;
3149 bld.MOV(dest, val);
3150 break;
3151 }
3152
3153 default:
3154 nir_emit_intrinsic(bld, instr);
3155 break;
3156 }
3157 }
3158
3159 /**
3160 * Fetch the current render target layer index.
3161 */
3162 static fs_reg
3163 fetch_render_target_array_index(const fs_builder &bld)
3164 {
3165 if (bld.shader->devinfo->gen >= 6) {
3166 /* The render target array index is provided in the thread payload as
3167 * bits 26:16 of r0.0.
3168 */
3169 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3170 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3171 brw_imm_uw(0x7ff));
3172 return idx;
3173 } else {
3174 /* Pre-SNB we only ever render into the first layer of the framebuffer
3175 * since layered rendering is not implemented.
3176 */
3177 return brw_imm_ud(0);
3178 }
3179 }
3180
3181 /**
3182 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3183 * framebuffer at the current fragment coordinates and sample index.
3184 */
3185 fs_inst *
3186 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3187 unsigned target)
3188 {
3189 const struct gen_device_info *devinfo = bld.shader->devinfo;
3190
3191 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3192 const brw_wm_prog_key *wm_key =
3193 reinterpret_cast<const brw_wm_prog_key *>(key);
3194 assert(!wm_key->coherent_fb_fetch);
3195 const struct brw_wm_prog_data *wm_prog_data =
3196 brw_wm_prog_data(stage_prog_data);
3197
3198 /* Calculate the surface index relative to the start of the texture binding
3199 * table block, since that's what the texturing messages expect.
3200 */
3201 const unsigned surface = target +
3202 wm_prog_data->binding_table.render_target_read_start -
3203 wm_prog_data->base.binding_table.texture_start;
3204
3205 /* Calculate the fragment coordinates. */
3206 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3207 bld.MOV(offset(coords, bld, 0), pixel_x);
3208 bld.MOV(offset(coords, bld, 1), pixel_y);
3209 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3210
3211 /* Calculate the sample index and MCS payload when multisampling. Luckily
3212 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3213 * shouldn't be necessary to recompile based on whether the framebuffer is
3214 * CMS or UMS.
3215 */
3216 if (wm_key->multisample_fbo &&
3217 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3218 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3219
3220 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3221 const fs_reg mcs = wm_key->multisample_fbo ?
3222 emit_mcs_fetch(coords, 3, brw_imm_ud(surface), fs_reg()) : fs_reg();
3223
3224 /* Use either a normal or a CMS texel fetch message depending on whether
3225 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3226 * message just in case the framebuffer uses 16x multisampling, it should
3227 * be equivalent to the normal CMS fetch for lower multisampling modes.
3228 */
3229 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3230 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3231 SHADER_OPCODE_TXF_CMS_LOGICAL;
3232
3233 /* Emit the instruction. */
3234 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3235 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
3236 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
3237 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
3238 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
3239 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3240 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
3241 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3242 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
3243
3244 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3245 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3246
3247 return inst;
3248 }
3249
3250 /**
3251 * Actual coherent framebuffer read implemented using the native render target
3252 * read message. Requires SKL+.
3253 */
3254 static fs_inst *
3255 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3256 {
3257 assert(bld.shader->devinfo->gen >= 9);
3258 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3259 inst->target = target;
3260 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3261
3262 return inst;
3263 }
3264
3265 static fs_reg
3266 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3267 {
3268 if (n && regs[0].file != BAD_FILE) {
3269 return regs[0];
3270
3271 } else {
3272 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3273
3274 for (unsigned i = 0; i < n; i++)
3275 regs[i] = tmp;
3276
3277 return tmp;
3278 }
3279 }
3280
3281 static fs_reg
3282 alloc_frag_output(fs_visitor *v, unsigned location)
3283 {
3284 assert(v->stage == MESA_SHADER_FRAGMENT);
3285 const brw_wm_prog_key *const key =
3286 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3287 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3288 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3289
3290 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3291 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3292
3293 else if (l == FRAG_RESULT_COLOR)
3294 return alloc_temporary(v->bld, 4, v->outputs,
3295 MAX2(key->nr_color_regions, 1));
3296
3297 else if (l == FRAG_RESULT_DEPTH)
3298 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3299
3300 else if (l == FRAG_RESULT_STENCIL)
3301 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3302
3303 else if (l == FRAG_RESULT_SAMPLE_MASK)
3304 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3305
3306 else if (l >= FRAG_RESULT_DATA0 &&
3307 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3308 return alloc_temporary(v->bld, 4,
3309 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3310
3311 else
3312 unreachable("Invalid location");
3313 }
3314
3315 /* Annoyingly, we get the barycentrics into the shader in a layout that's
3316 * optimized for PLN but it doesn't work nearly as well as one would like for
3317 * manual interpolation.
3318 */
3319 static void
3320 shuffle_from_pln_layout(const fs_builder &bld, fs_reg dest, fs_reg pln_data)
3321 {
3322 dest.type = BRW_REGISTER_TYPE_F;
3323 pln_data.type = BRW_REGISTER_TYPE_F;
3324 const fs_reg dest_u = offset(dest, bld, 0);
3325 const fs_reg dest_v = offset(dest, bld, 1);
3326
3327 for (unsigned g = 0; g < bld.dispatch_width() / 8; g++) {
3328 const fs_builder gbld = bld.group(8, g);
3329 gbld.MOV(horiz_offset(dest_u, g * 8),
3330 byte_offset(pln_data, (g * 2 + 0) * REG_SIZE));
3331 gbld.MOV(horiz_offset(dest_v, g * 8),
3332 byte_offset(pln_data, (g * 2 + 1) * REG_SIZE));
3333 }
3334 }
3335
3336 static void
3337 shuffle_to_pln_layout(const fs_builder &bld, fs_reg pln_data, fs_reg src)
3338 {
3339 pln_data.type = BRW_REGISTER_TYPE_F;
3340 src.type = BRW_REGISTER_TYPE_F;
3341 const fs_reg src_u = offset(src, bld, 0);
3342 const fs_reg src_v = offset(src, bld, 1);
3343
3344 for (unsigned g = 0; g < bld.dispatch_width() / 8; g++) {
3345 const fs_builder gbld = bld.group(8, g);
3346 gbld.MOV(byte_offset(pln_data, (g * 2 + 0) * REG_SIZE),
3347 horiz_offset(src_u, g * 8));
3348 gbld.MOV(byte_offset(pln_data, (g * 2 + 1) * REG_SIZE),
3349 horiz_offset(src_v, g * 8));
3350 }
3351 }
3352
3353 void
3354 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3355 nir_intrinsic_instr *instr)
3356 {
3357 assert(stage == MESA_SHADER_FRAGMENT);
3358
3359 fs_reg dest;
3360 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3361 dest = get_nir_dest(instr->dest);
3362
3363 switch (instr->intrinsic) {
3364 case nir_intrinsic_load_front_face:
3365 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3366 *emit_frontfacing_interpolation());
3367 break;
3368
3369 case nir_intrinsic_load_sample_pos: {
3370 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3371 assert(sample_pos.file != BAD_FILE);
3372 dest.type = sample_pos.type;
3373 bld.MOV(dest, sample_pos);
3374 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3375 break;
3376 }
3377
3378 case nir_intrinsic_load_layer_id:
3379 dest.type = BRW_REGISTER_TYPE_UD;
3380 bld.MOV(dest, fetch_render_target_array_index(bld));
3381 break;
3382
3383 case nir_intrinsic_is_helper_invocation: {
3384 /* Unlike the regular gl_HelperInvocation, that is defined at dispatch,
3385 * the helperInvocationEXT() (aka SpvOpIsHelperInvocationEXT) takes into
3386 * consideration demoted invocations. That information is stored in
3387 * f0.1.
3388 */
3389 dest.type = BRW_REGISTER_TYPE_UD;
3390
3391 bld.MOV(dest, brw_imm_ud(0));
3392
3393 fs_inst *mov = bld.MOV(dest, brw_imm_ud(~0));
3394 mov->predicate = BRW_PREDICATE_NORMAL;
3395 mov->predicate_inverse = true;
3396 mov->flag_subreg = 1;
3397 break;
3398 }
3399
3400 case nir_intrinsic_load_helper_invocation:
3401 case nir_intrinsic_load_sample_mask_in:
3402 case nir_intrinsic_load_sample_id: {
3403 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3404 fs_reg val = nir_system_values[sv];
3405 assert(val.file != BAD_FILE);
3406 dest.type = val.type;
3407 bld.MOV(dest, val);
3408 break;
3409 }
3410
3411 case nir_intrinsic_store_output: {
3412 const fs_reg src = get_nir_src(instr->src[0]);
3413 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3414 const unsigned location = nir_intrinsic_base(instr) +
3415 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3416 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3417 src.type);
3418
3419 for (unsigned j = 0; j < instr->num_components; j++)
3420 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3421 offset(src, bld, j));
3422
3423 break;
3424 }
3425
3426 case nir_intrinsic_load_output: {
3427 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3428 BRW_NIR_FRAG_OUTPUT_LOCATION);
3429 assert(l >= FRAG_RESULT_DATA0);
3430 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3431 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3432 const fs_reg tmp = bld.vgrf(dest.type, 4);
3433
3434 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3435 emit_coherent_fb_read(bld, tmp, target);
3436 else
3437 emit_non_coherent_fb_read(bld, tmp, target);
3438
3439 for (unsigned j = 0; j < instr->num_components; j++) {
3440 bld.MOV(offset(dest, bld, j),
3441 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3442 }
3443
3444 break;
3445 }
3446
3447 case nir_intrinsic_demote:
3448 case nir_intrinsic_discard:
3449 case nir_intrinsic_demote_if:
3450 case nir_intrinsic_discard_if: {
3451 /* We track our discarded pixels in f0.1. By predicating on it, we can
3452 * update just the flag bits that aren't yet discarded. If there's no
3453 * condition, we emit a CMP of g0 != g0, so all currently executing
3454 * channels will get turned off.
3455 */
3456 fs_inst *cmp = NULL;
3457 if (instr->intrinsic == nir_intrinsic_demote_if ||
3458 instr->intrinsic == nir_intrinsic_discard_if) {
3459 nir_alu_instr *alu = nir_src_as_alu_instr(instr->src[0]);
3460
3461 if (alu != NULL &&
3462 alu->op != nir_op_bcsel &&
3463 alu->op != nir_op_inot) {
3464 /* Re-emit the instruction that generated the Boolean value, but
3465 * do not store it. Since this instruction will be conditional,
3466 * other instructions that want to use the real Boolean value may
3467 * get garbage. This was a problem for piglit's fs-discard-exit-2
3468 * test.
3469 *
3470 * Ideally we'd detect that the instruction cannot have a
3471 * conditional modifier before emitting the instructions. Alas,
3472 * that is nigh impossible. Instead, we're going to assume the
3473 * instruction (or last instruction) generated can have a
3474 * conditional modifier. If it cannot, fallback to the old-style
3475 * compare, and hope dead code elimination will clean up the
3476 * extra instructions generated.
3477 */
3478 nir_emit_alu(bld, alu, false);
3479
3480 cmp = (fs_inst *) instructions.get_tail();
3481 if (cmp->conditional_mod == BRW_CONDITIONAL_NONE) {
3482 if (cmp->can_do_cmod())
3483 cmp->conditional_mod = BRW_CONDITIONAL_Z;
3484 else
3485 cmp = NULL;
3486 } else {
3487 /* The old sequence that would have been generated is,
3488 * basically, bool_result == false. This is equivalent to
3489 * !bool_result, so negate the old modifier.
3490 */
3491 cmp->conditional_mod = brw_negate_cmod(cmp->conditional_mod);
3492 }
3493 }
3494
3495 if (cmp == NULL) {
3496 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3497 brw_imm_d(0), BRW_CONDITIONAL_Z);
3498 }
3499 } else {
3500 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3501 BRW_REGISTER_TYPE_UW));
3502 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3503 }
3504
3505 cmp->predicate = BRW_PREDICATE_NORMAL;
3506 cmp->flag_subreg = 1;
3507
3508 if (devinfo->gen >= 6) {
3509 /* Due to the way we implement discard, the jump will only happen
3510 * when the whole quad is discarded. So we can do this even for
3511 * demote as it won't break its uniformity promises.
3512 */
3513 emit_discard_jump();
3514 }
3515
3516 limit_dispatch_width(16, "Fragment discard/demote not implemented in SIMD32 mode.");
3517 break;
3518 }
3519
3520 case nir_intrinsic_load_input: {
3521 /* load_input is only used for flat inputs */
3522 assert(nir_dest_bit_size(instr->dest) == 32);
3523 unsigned base = nir_intrinsic_base(instr);
3524 unsigned comp = nir_intrinsic_component(instr);
3525 unsigned num_components = instr->num_components;
3526
3527 /* Special case fields in the VUE header */
3528 if (base == VARYING_SLOT_LAYER)
3529 comp = 1;
3530 else if (base == VARYING_SLOT_VIEWPORT)
3531 comp = 2;
3532
3533 for (unsigned int i = 0; i < num_components; i++) {
3534 bld.MOV(offset(dest, bld, i),
3535 retype(component(interp_reg(base, comp + i), 3), dest.type));
3536 }
3537 break;
3538 }
3539
3540 case nir_intrinsic_load_fs_input_interp_deltas: {
3541 assert(stage == MESA_SHADER_FRAGMENT);
3542 assert(nir_src_as_uint(instr->src[0]) == 0);
3543 fs_reg interp = interp_reg(nir_intrinsic_base(instr),
3544 nir_intrinsic_component(instr));
3545 dest.type = BRW_REGISTER_TYPE_F;
3546 bld.MOV(offset(dest, bld, 0), component(interp, 3));
3547 bld.MOV(offset(dest, bld, 1), component(interp, 1));
3548 bld.MOV(offset(dest, bld, 2), component(interp, 0));
3549 break;
3550 }
3551
3552 case nir_intrinsic_load_barycentric_pixel:
3553 case nir_intrinsic_load_barycentric_centroid:
3554 case nir_intrinsic_load_barycentric_sample: {
3555 /* Use the delta_xy values computed from the payload */
3556 const glsl_interp_mode interp_mode =
3557 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3558 enum brw_barycentric_mode bary =
3559 brw_barycentric_mode(interp_mode, instr->intrinsic);
3560
3561 shuffle_from_pln_layout(bld, dest, this->delta_xy[bary]);
3562 break;
3563 }
3564
3565 case nir_intrinsic_load_barycentric_at_sample: {
3566 const glsl_interp_mode interpolation =
3567 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3568
3569 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3570 if (nir_src_is_const(instr->src[0])) {
3571 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3572
3573 emit_pixel_interpolater_send(bld,
3574 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3575 tmp,
3576 fs_reg(), /* src */
3577 brw_imm_ud(msg_data),
3578 interpolation);
3579 } else {
3580 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3581 BRW_REGISTER_TYPE_UD);
3582
3583 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3584 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3585 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3586 bld.exec_all().group(1, 0)
3587 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3588 emit_pixel_interpolater_send(bld,
3589 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3590 tmp,
3591 fs_reg(), /* src */
3592 msg_data,
3593 interpolation);
3594 } else {
3595 /* Make a loop that sends a message to the pixel interpolater
3596 * for the sample number in each live channel. If there are
3597 * multiple channels with the same sample number then these
3598 * will be handled simultaneously with a single interation of
3599 * the loop.
3600 */
3601 bld.emit(BRW_OPCODE_DO);
3602
3603 /* Get the next live sample number into sample_id_reg */
3604 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3605
3606 /* Set the flag register so that we can perform the send
3607 * message on all channels that have the same sample number
3608 */
3609 bld.CMP(bld.null_reg_ud(),
3610 sample_src, sample_id,
3611 BRW_CONDITIONAL_EQ);
3612 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3613 bld.exec_all().group(1, 0)
3614 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3615 fs_inst *inst =
3616 emit_pixel_interpolater_send(bld,
3617 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3618 tmp,
3619 fs_reg(), /* src */
3620 component(msg_data, 0),
3621 interpolation);
3622 set_predicate(BRW_PREDICATE_NORMAL, inst);
3623
3624 /* Continue the loop if there are any live channels left */
3625 set_predicate_inv(BRW_PREDICATE_NORMAL,
3626 true, /* inverse */
3627 bld.emit(BRW_OPCODE_WHILE));
3628 }
3629 }
3630 shuffle_from_pln_layout(bld, dest, tmp);
3631 break;
3632 }
3633
3634 case nir_intrinsic_load_barycentric_at_offset: {
3635 const glsl_interp_mode interpolation =
3636 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3637
3638 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3639
3640 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3641 if (const_offset) {
3642 assert(nir_src_bit_size(instr->src[0]) == 32);
3643 unsigned off_x = MIN2((int)(const_offset[0].f32 * 16), 7) & 0xf;
3644 unsigned off_y = MIN2((int)(const_offset[1].f32 * 16), 7) & 0xf;
3645
3646 emit_pixel_interpolater_send(bld,
3647 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3648 tmp,
3649 fs_reg(), /* src */
3650 brw_imm_ud(off_x | (off_y << 4)),
3651 interpolation);
3652 } else {
3653 fs_reg src = vgrf(glsl_type::ivec2_type);
3654 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3655 BRW_REGISTER_TYPE_F);
3656 for (int i = 0; i < 2; i++) {
3657 fs_reg temp = vgrf(glsl_type::float_type);
3658 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3659 fs_reg itemp = vgrf(glsl_type::int_type);
3660 /* float to int */
3661 bld.MOV(itemp, temp);
3662
3663 /* Clamp the upper end of the range to +7/16.
3664 * ARB_gpu_shader5 requires that we support a maximum offset
3665 * of +0.5, which isn't representable in a S0.4 value -- if
3666 * we didn't clamp it, we'd end up with -8/16, which is the
3667 * opposite of what the shader author wanted.
3668 *
3669 * This is legal due to ARB_gpu_shader5's quantization
3670 * rules:
3671 *
3672 * "Not all values of <offset> may be supported; x and y
3673 * offsets may be rounded to fixed-point values with the
3674 * number of fraction bits given by the
3675 * implementation-dependent constant
3676 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3677 */
3678 set_condmod(BRW_CONDITIONAL_L,
3679 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3680 }
3681
3682 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3683 emit_pixel_interpolater_send(bld,
3684 opcode,
3685 tmp,
3686 src,
3687 brw_imm_ud(0u),
3688 interpolation);
3689 }
3690 shuffle_from_pln_layout(bld, dest, tmp);
3691 break;
3692 }
3693
3694 case nir_intrinsic_load_frag_coord:
3695 emit_fragcoord_interpolation(dest);
3696 break;
3697
3698 case nir_intrinsic_load_interpolated_input: {
3699 assert(instr->src[0].ssa &&
3700 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3701 nir_intrinsic_instr *bary_intrinsic =
3702 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3703 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3704 enum glsl_interp_mode interp_mode =
3705 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3706 fs_reg dst_xy;
3707
3708 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3709 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3710 /* Use the result of the PI message. Because the load_barycentric
3711 * intrinsics return a regular vec2 and we need it in PLN layout, we
3712 * have to do a translation. Fortunately, copy-prop cleans this up
3713 * reliably.
3714 */
3715 dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3716 shuffle_to_pln_layout(bld, dst_xy, get_nir_src(instr->src[0]));
3717 } else {
3718 /* Use the delta_xy values computed from the payload */
3719 enum brw_barycentric_mode bary =
3720 brw_barycentric_mode(interp_mode, bary_intrin);
3721
3722 dst_xy = this->delta_xy[bary];
3723 }
3724
3725 for (unsigned int i = 0; i < instr->num_components; i++) {
3726 fs_reg interp =
3727 component(interp_reg(nir_intrinsic_base(instr),
3728 nir_intrinsic_component(instr) + i), 0);
3729 interp.type = BRW_REGISTER_TYPE_F;
3730 dest.type = BRW_REGISTER_TYPE_F;
3731
3732 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3733 fs_reg tmp = vgrf(glsl_type::float_type);
3734 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3735 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3736 } else {
3737 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3738 }
3739 }
3740 break;
3741 }
3742
3743 default:
3744 nir_emit_intrinsic(bld, instr);
3745 break;
3746 }
3747 }
3748
3749 void
3750 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3751 nir_intrinsic_instr *instr)
3752 {
3753 assert(stage == MESA_SHADER_COMPUTE);
3754 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3755
3756 fs_reg dest;
3757 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3758 dest = get_nir_dest(instr->dest);
3759
3760 switch (instr->intrinsic) {
3761 case nir_intrinsic_barrier:
3762 emit_barrier();
3763 cs_prog_data->uses_barrier = true;
3764 break;
3765
3766 case nir_intrinsic_load_subgroup_id:
3767 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3768 break;
3769
3770 case nir_intrinsic_load_local_invocation_id:
3771 case nir_intrinsic_load_work_group_id: {
3772 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3773 fs_reg val = nir_system_values[sv];
3774 assert(val.file != BAD_FILE);
3775 dest.type = val.type;
3776 for (unsigned i = 0; i < 3; i++)
3777 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3778 break;
3779 }
3780
3781 case nir_intrinsic_load_num_work_groups: {
3782 const unsigned surface =
3783 cs_prog_data->binding_table.work_groups_start;
3784
3785 cs_prog_data->uses_num_work_groups = true;
3786
3787 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3788 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3789 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3790 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1); /* num components */
3791
3792 /* Read the 3 GLuint components of gl_NumWorkGroups */
3793 for (unsigned i = 0; i < 3; i++) {
3794 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(i << 2);
3795 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3796 offset(dest, bld, i), srcs, SURFACE_LOGICAL_NUM_SRCS);
3797 }
3798 break;
3799 }
3800
3801 case nir_intrinsic_shared_atomic_add:
3802 case nir_intrinsic_shared_atomic_imin:
3803 case nir_intrinsic_shared_atomic_umin:
3804 case nir_intrinsic_shared_atomic_imax:
3805 case nir_intrinsic_shared_atomic_umax:
3806 case nir_intrinsic_shared_atomic_and:
3807 case nir_intrinsic_shared_atomic_or:
3808 case nir_intrinsic_shared_atomic_xor:
3809 case nir_intrinsic_shared_atomic_exchange:
3810 case nir_intrinsic_shared_atomic_comp_swap:
3811 nir_emit_shared_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
3812 break;
3813 case nir_intrinsic_shared_atomic_fmin:
3814 case nir_intrinsic_shared_atomic_fmax:
3815 case nir_intrinsic_shared_atomic_fcomp_swap:
3816 nir_emit_shared_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
3817 break;
3818
3819 case nir_intrinsic_load_shared: {
3820 assert(devinfo->gen >= 7);
3821 assert(stage == MESA_SHADER_COMPUTE);
3822
3823 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3824 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3825 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3826 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3827 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3828
3829 /* Make dest unsigned because that's what the temporary will be */
3830 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3831
3832 /* Read the vector */
3833 if (nir_intrinsic_align(instr) >= 4) {
3834 assert(nir_dest_bit_size(instr->dest) == 32);
3835 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3836 fs_inst *inst =
3837 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3838 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3839 inst->size_written = instr->num_components * dispatch_width * 4;
3840 } else {
3841 assert(nir_dest_bit_size(instr->dest) <= 32);
3842 assert(nir_dest_num_components(instr->dest) == 1);
3843 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3844
3845 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3846 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3847 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3848 bld.MOV(dest, subscript(read_result, dest.type, 0));
3849 }
3850 break;
3851 }
3852
3853 case nir_intrinsic_store_shared: {
3854 assert(devinfo->gen >= 7);
3855 assert(stage == MESA_SHADER_COMPUTE);
3856
3857 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3858 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3859 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3860 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3861 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3862
3863 fs_reg data = get_nir_src(instr->src[0]);
3864 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3865
3866 assert(nir_intrinsic_write_mask(instr) ==
3867 (1u << instr->num_components) - 1);
3868 if (nir_intrinsic_align(instr) >= 4) {
3869 assert(nir_src_bit_size(instr->src[0]) == 32);
3870 assert(nir_src_num_components(instr->src[0]) <= 4);
3871 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3872 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3873 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3874 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3875 } else {
3876 assert(nir_src_bit_size(instr->src[0]) <= 32);
3877 assert(nir_src_num_components(instr->src[0]) == 1);
3878 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3879
3880 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3881 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3882
3883 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3884 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3885 }
3886 break;
3887 }
3888
3889 default:
3890 nir_emit_intrinsic(bld, instr);
3891 break;
3892 }
3893 }
3894
3895 static fs_reg
3896 brw_nir_reduction_op_identity(const fs_builder &bld,
3897 nir_op op, brw_reg_type type)
3898 {
3899 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3900 switch (type_sz(type)) {
3901 case 1:
3902 if (type == BRW_REGISTER_TYPE_UB) {
3903 return brw_imm_uw(value.u8);
3904 } else {
3905 assert(type == BRW_REGISTER_TYPE_B);
3906 return brw_imm_w(value.i8);
3907 }
3908 case 2:
3909 return retype(brw_imm_uw(value.u16), type);
3910 case 4:
3911 return retype(brw_imm_ud(value.u32), type);
3912 case 8:
3913 if (type == BRW_REGISTER_TYPE_DF)
3914 return setup_imm_df(bld, value.f64);
3915 else
3916 return retype(brw_imm_u64(value.u64), type);
3917 default:
3918 unreachable("Invalid type size");
3919 }
3920 }
3921
3922 static opcode
3923 brw_op_for_nir_reduction_op(nir_op op)
3924 {
3925 switch (op) {
3926 case nir_op_iadd: return BRW_OPCODE_ADD;
3927 case nir_op_fadd: return BRW_OPCODE_ADD;
3928 case nir_op_imul: return BRW_OPCODE_MUL;
3929 case nir_op_fmul: return BRW_OPCODE_MUL;
3930 case nir_op_imin: return BRW_OPCODE_SEL;
3931 case nir_op_umin: return BRW_OPCODE_SEL;
3932 case nir_op_fmin: return BRW_OPCODE_SEL;
3933 case nir_op_imax: return BRW_OPCODE_SEL;
3934 case nir_op_umax: return BRW_OPCODE_SEL;
3935 case nir_op_fmax: return BRW_OPCODE_SEL;
3936 case nir_op_iand: return BRW_OPCODE_AND;
3937 case nir_op_ior: return BRW_OPCODE_OR;
3938 case nir_op_ixor: return BRW_OPCODE_XOR;
3939 default:
3940 unreachable("Invalid reduction operation");
3941 }
3942 }
3943
3944 static brw_conditional_mod
3945 brw_cond_mod_for_nir_reduction_op(nir_op op)
3946 {
3947 switch (op) {
3948 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3949 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3950 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3951 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3952 case nir_op_imin: return BRW_CONDITIONAL_L;
3953 case nir_op_umin: return BRW_CONDITIONAL_L;
3954 case nir_op_fmin: return BRW_CONDITIONAL_L;
3955 case nir_op_imax: return BRW_CONDITIONAL_GE;
3956 case nir_op_umax: return BRW_CONDITIONAL_GE;
3957 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3958 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3959 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3960 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3961 default:
3962 unreachable("Invalid reduction operation");
3963 }
3964 }
3965
3966 fs_reg
3967 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3968 nir_intrinsic_instr *instr)
3969 {
3970 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3971
3972 if (stage_prog_data->binding_table.image_start > 0) {
3973 if (image.file == BRW_IMMEDIATE_VALUE) {
3974 image.d += stage_prog_data->binding_table.image_start;
3975 } else {
3976 bld.ADD(image, image,
3977 brw_imm_d(stage_prog_data->binding_table.image_start));
3978 }
3979 }
3980
3981 return bld.emit_uniformize(image);
3982 }
3983
3984 fs_reg
3985 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
3986 nir_intrinsic_instr *instr)
3987 {
3988 /* SSBO stores are weird in that their index is in src[1] */
3989 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
3990
3991 fs_reg surf_index;
3992 if (nir_src_is_const(instr->src[src])) {
3993 unsigned index = stage_prog_data->binding_table.ssbo_start +
3994 nir_src_as_uint(instr->src[src]);
3995 surf_index = brw_imm_ud(index);
3996 } else {
3997 surf_index = vgrf(glsl_type::uint_type);
3998 bld.ADD(surf_index, get_nir_src(instr->src[src]),
3999 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4000 }
4001
4002 return bld.emit_uniformize(surf_index);
4003 }
4004
4005 static unsigned
4006 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
4007 {
4008 switch (nir_intrinsic_image_dim(instr)) {
4009 case GLSL_SAMPLER_DIM_1D:
4010 return 1 + nir_intrinsic_image_array(instr);
4011 case GLSL_SAMPLER_DIM_2D:
4012 case GLSL_SAMPLER_DIM_RECT:
4013 return 2 + nir_intrinsic_image_array(instr);
4014 case GLSL_SAMPLER_DIM_3D:
4015 case GLSL_SAMPLER_DIM_CUBE:
4016 return 3;
4017 case GLSL_SAMPLER_DIM_BUF:
4018 return 1;
4019 case GLSL_SAMPLER_DIM_MS:
4020 return 2 + nir_intrinsic_image_array(instr);
4021 default:
4022 unreachable("Invalid image dimension");
4023 }
4024 }
4025
4026 void
4027 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
4028 {
4029 fs_reg dest;
4030 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4031 dest = get_nir_dest(instr->dest);
4032
4033 switch (instr->intrinsic) {
4034 case nir_intrinsic_image_load:
4035 case nir_intrinsic_image_store:
4036 case nir_intrinsic_image_atomic_add:
4037 case nir_intrinsic_image_atomic_imin:
4038 case nir_intrinsic_image_atomic_umin:
4039 case nir_intrinsic_image_atomic_imax:
4040 case nir_intrinsic_image_atomic_umax:
4041 case nir_intrinsic_image_atomic_and:
4042 case nir_intrinsic_image_atomic_or:
4043 case nir_intrinsic_image_atomic_xor:
4044 case nir_intrinsic_image_atomic_exchange:
4045 case nir_intrinsic_image_atomic_comp_swap:
4046 case nir_intrinsic_bindless_image_load:
4047 case nir_intrinsic_bindless_image_store:
4048 case nir_intrinsic_bindless_image_atomic_add:
4049 case nir_intrinsic_bindless_image_atomic_imin:
4050 case nir_intrinsic_bindless_image_atomic_umin:
4051 case nir_intrinsic_bindless_image_atomic_imax:
4052 case nir_intrinsic_bindless_image_atomic_umax:
4053 case nir_intrinsic_bindless_image_atomic_and:
4054 case nir_intrinsic_bindless_image_atomic_or:
4055 case nir_intrinsic_bindless_image_atomic_xor:
4056 case nir_intrinsic_bindless_image_atomic_exchange:
4057 case nir_intrinsic_bindless_image_atomic_comp_swap: {
4058 if (stage == MESA_SHADER_FRAGMENT &&
4059 instr->intrinsic != nir_intrinsic_image_load)
4060 brw_wm_prog_data(prog_data)->has_side_effects = true;
4061
4062 /* Get some metadata from the image intrinsic. */
4063 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
4064
4065 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4066
4067 switch (instr->intrinsic) {
4068 case nir_intrinsic_image_load:
4069 case nir_intrinsic_image_store:
4070 case nir_intrinsic_image_atomic_add:
4071 case nir_intrinsic_image_atomic_imin:
4072 case nir_intrinsic_image_atomic_umin:
4073 case nir_intrinsic_image_atomic_imax:
4074 case nir_intrinsic_image_atomic_umax:
4075 case nir_intrinsic_image_atomic_and:
4076 case nir_intrinsic_image_atomic_or:
4077 case nir_intrinsic_image_atomic_xor:
4078 case nir_intrinsic_image_atomic_exchange:
4079 case nir_intrinsic_image_atomic_comp_swap:
4080 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4081 get_nir_image_intrinsic_image(bld, instr);
4082 break;
4083
4084 default:
4085 /* Bindless */
4086 srcs[SURFACE_LOGICAL_SRC_SURFACE_HANDLE] =
4087 bld.emit_uniformize(get_nir_src(instr->src[0]));
4088 break;
4089 }
4090
4091 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4092 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
4093 brw_imm_ud(image_intrinsic_coord_components(instr));
4094
4095 /* Emit an image load, store or atomic op. */
4096 if (instr->intrinsic == nir_intrinsic_image_load ||
4097 instr->intrinsic == nir_intrinsic_bindless_image_load) {
4098 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4099 fs_inst *inst =
4100 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
4101 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4102 inst->size_written = instr->num_components * dispatch_width * 4;
4103 } else if (instr->intrinsic == nir_intrinsic_image_store ||
4104 instr->intrinsic == nir_intrinsic_bindless_image_store) {
4105 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4106 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
4107 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
4108 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4109 } else {
4110 unsigned num_srcs = info->num_srcs;
4111 int op = brw_aop_for_nir_intrinsic(instr);
4112 if (op == BRW_AOP_INC || op == BRW_AOP_DEC) {
4113 assert(num_srcs == 4);
4114 num_srcs = 3;
4115 }
4116
4117 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4118
4119 fs_reg data;
4120 if (num_srcs >= 4)
4121 data = get_nir_src(instr->src[3]);
4122 if (num_srcs >= 5) {
4123 fs_reg tmp = bld.vgrf(data.type, 2);
4124 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
4125 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4126 data = tmp;
4127 }
4128 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4129
4130 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
4131 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4132 }
4133 break;
4134 }
4135
4136 case nir_intrinsic_image_size:
4137 case nir_intrinsic_bindless_image_size: {
4138 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
4139 * into will handle the binding table index for us in the geneerator.
4140 * Incidentally, this means that we can handle bindless with exactly the
4141 * same code.
4142 */
4143 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
4144 BRW_REGISTER_TYPE_UD);
4145 image = bld.emit_uniformize(image);
4146
4147 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4148 if (instr->intrinsic == nir_intrinsic_image_size)
4149 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
4150 else
4151 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = image;
4152 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
4153 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
4154 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
4155
4156 /* Since the image size is always uniform, we can just emit a SIMD8
4157 * query instruction and splat the result out.
4158 */
4159 const fs_builder ubld = bld.exec_all().group(8, 0);
4160
4161 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4162 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
4163 tmp, srcs, ARRAY_SIZE(srcs));
4164 inst->size_written = 4 * REG_SIZE;
4165
4166 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
4167 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
4168 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
4169 offset(retype(dest, tmp.type), bld, c),
4170 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
4171 } else {
4172 bld.MOV(offset(retype(dest, tmp.type), bld, c),
4173 component(offset(tmp, ubld, c), 0));
4174 }
4175 }
4176 break;
4177 }
4178
4179 case nir_intrinsic_image_load_raw_intel: {
4180 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4181 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4182 get_nir_image_intrinsic_image(bld, instr);
4183 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4184 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4185 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4186
4187 fs_inst *inst =
4188 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4189 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4190 inst->size_written = instr->num_components * dispatch_width * 4;
4191 break;
4192 }
4193
4194 case nir_intrinsic_image_store_raw_intel: {
4195 if (stage == MESA_SHADER_FRAGMENT)
4196 brw_wm_prog_data(prog_data)->has_side_effects = true;
4197
4198 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4199 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4200 get_nir_image_intrinsic_image(bld, instr);
4201 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4202 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
4203 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4204 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4205
4206 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4207 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4208 break;
4209 }
4210
4211 case nir_intrinsic_scoped_memory_barrier:
4212 case nir_intrinsic_group_memory_barrier:
4213 case nir_intrinsic_memory_barrier_shared:
4214 case nir_intrinsic_memory_barrier_atomic_counter:
4215 case nir_intrinsic_memory_barrier_buffer:
4216 case nir_intrinsic_memory_barrier_image:
4217 case nir_intrinsic_memory_barrier: {
4218 bool l3_fence, slm_fence;
4219 if (instr->intrinsic == nir_intrinsic_scoped_memory_barrier) {
4220 nir_variable_mode modes = nir_intrinsic_memory_modes(instr);
4221 l3_fence = modes & (nir_var_shader_out |
4222 nir_var_mem_ssbo |
4223 nir_var_mem_global);
4224 /* Prior to gen11, we only have one kind of fence. */
4225 slm_fence = devinfo->gen >= 11 && (modes & nir_var_mem_shared);
4226 l3_fence |= devinfo->gen < 11 && (modes & nir_var_mem_shared);
4227 } else {
4228 if (devinfo->gen >= 11) {
4229 l3_fence = instr->intrinsic != nir_intrinsic_memory_barrier_shared;
4230 slm_fence = instr->intrinsic == nir_intrinsic_group_memory_barrier ||
4231 instr->intrinsic == nir_intrinsic_memory_barrier ||
4232 instr->intrinsic == nir_intrinsic_memory_barrier_shared;
4233 } else {
4234 /* Prior to gen11, we only have one kind of fence. */
4235 l3_fence = true;
4236 slm_fence = false;
4237 }
4238 }
4239
4240 /* Be conservative in Gen11+ and always stall in a fence. Since there
4241 * are two different fences, and shader might want to synchronize
4242 * between them.
4243 *
4244 * TODO: Improve NIR so that scope and visibility information for the
4245 * barriers is available here to make a better decision.
4246 *
4247 * TODO: When emitting more than one fence, it might help emit all
4248 * the fences first and then generate the stall moves.
4249 */
4250 const bool stall = devinfo->gen >= 11;
4251
4252 const fs_builder ubld = bld.group(8, 0);
4253 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4254
4255 if (l3_fence) {
4256 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
4257 brw_vec8_grf(0, 0), brw_imm_ud(stall),
4258 /* bti */ brw_imm_ud(0))
4259 ->size_written = 2 * REG_SIZE;
4260 }
4261
4262 if (slm_fence) {
4263 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
4264 brw_vec8_grf(0, 0), brw_imm_ud(stall),
4265 brw_imm_ud(GEN7_BTI_SLM))
4266 ->size_written = 2 * REG_SIZE;
4267 }
4268
4269 break;
4270 }
4271
4272 case nir_intrinsic_shader_clock: {
4273 /* We cannot do anything if there is an event, so ignore it for now */
4274 const fs_reg shader_clock = get_timestamp(bld);
4275 const fs_reg srcs[] = { component(shader_clock, 0),
4276 component(shader_clock, 1) };
4277 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
4278 break;
4279 }
4280
4281 case nir_intrinsic_image_samples:
4282 /* The driver does not support multi-sampled images. */
4283 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4284 break;
4285
4286 case nir_intrinsic_load_uniform: {
4287 /* Offsets are in bytes but they should always aligned to
4288 * the type size
4289 */
4290 assert(instr->const_index[0] % 4 == 0 ||
4291 instr->const_index[0] % type_sz(dest.type) == 0);
4292
4293 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4294
4295 if (nir_src_is_const(instr->src[0])) {
4296 unsigned load_offset = nir_src_as_uint(instr->src[0]);
4297 assert(load_offset % type_sz(dest.type) == 0);
4298 /* For 16-bit types we add the module of the const_index[0]
4299 * offset to access to not 32-bit aligned element
4300 */
4301 src.offset = load_offset + instr->const_index[0] % 4;
4302
4303 for (unsigned j = 0; j < instr->num_components; j++) {
4304 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4305 }
4306 } else {
4307 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4308 BRW_REGISTER_TYPE_UD);
4309
4310 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4311 * go past the end of the uniform. In order to keep the n'th
4312 * component from running past, we subtract off the size of all but
4313 * one component of the vector.
4314 */
4315 assert(instr->const_index[1] >=
4316 instr->num_components * (int) type_sz(dest.type));
4317 unsigned read_size = instr->const_index[1] -
4318 (instr->num_components - 1) * type_sz(dest.type);
4319
4320 bool supports_64bit_indirects =
4321 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4322
4323 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4324 for (unsigned j = 0; j < instr->num_components; j++) {
4325 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4326 offset(dest, bld, j), offset(src, bld, j),
4327 indirect, brw_imm_ud(read_size));
4328 }
4329 } else {
4330 const unsigned num_mov_indirects =
4331 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4332 /* We read a little bit less per MOV INDIRECT, as they are now
4333 * 32-bits ones instead of 64-bit. Fix read_size then.
4334 */
4335 const unsigned read_size_32bit = read_size -
4336 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4337 for (unsigned j = 0; j < instr->num_components; j++) {
4338 for (unsigned i = 0; i < num_mov_indirects; i++) {
4339 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4340 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4341 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4342 indirect, brw_imm_ud(read_size_32bit));
4343 }
4344 }
4345 }
4346 }
4347 break;
4348 }
4349
4350 case nir_intrinsic_load_ubo: {
4351 fs_reg surf_index;
4352 if (nir_src_is_const(instr->src[0])) {
4353 const unsigned index = stage_prog_data->binding_table.ubo_start +
4354 nir_src_as_uint(instr->src[0]);
4355 surf_index = brw_imm_ud(index);
4356 } else {
4357 /* The block index is not a constant. Evaluate the index expression
4358 * per-channel and add the base UBO index; we have to select a value
4359 * from any live channel.
4360 */
4361 surf_index = vgrf(glsl_type::uint_type);
4362 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4363 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4364 surf_index = bld.emit_uniformize(surf_index);
4365 }
4366
4367 if (!nir_src_is_const(instr->src[1])) {
4368 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4369 BRW_REGISTER_TYPE_UD);
4370
4371 for (int i = 0; i < instr->num_components; i++)
4372 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4373 base_offset, i * type_sz(dest.type));
4374
4375 prog_data->has_ubo_pull = true;
4376 } else {
4377 /* Even if we are loading doubles, a pull constant load will load
4378 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4379 * need to load a full dvec4 we will have to emit 2 loads. This is
4380 * similar to demote_pull_constants(), except that in that case we
4381 * see individual accesses to each component of the vector and then
4382 * we let CSE deal with duplicate loads. Here we see a vector access
4383 * and we have to split it if necessary.
4384 */
4385 const unsigned type_size = type_sz(dest.type);
4386 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4387
4388 /* See if we've selected this as a push constant candidate */
4389 if (nir_src_is_const(instr->src[0])) {
4390 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4391 const unsigned offset_256b = load_offset / 32;
4392
4393 fs_reg push_reg;
4394 for (int i = 0; i < 4; i++) {
4395 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4396 if (range->block == ubo_block &&
4397 offset_256b >= range->start &&
4398 offset_256b < range->start + range->length) {
4399
4400 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4401 push_reg.offset = load_offset - 32 * range->start;
4402 break;
4403 }
4404 }
4405
4406 if (push_reg.file != BAD_FILE) {
4407 for (unsigned i = 0; i < instr->num_components; i++) {
4408 bld.MOV(offset(dest, bld, i),
4409 byte_offset(push_reg, i * type_size));
4410 }
4411 break;
4412 }
4413 }
4414
4415 prog_data->has_ubo_pull = true;
4416
4417 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4418 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4419 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4420
4421 for (unsigned c = 0; c < instr->num_components;) {
4422 const unsigned base = load_offset + c * type_size;
4423 /* Number of usable components in the next block-aligned load. */
4424 const unsigned count = MIN2(instr->num_components - c,
4425 (block_sz - base % block_sz) / type_size);
4426
4427 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4428 packed_consts, surf_index,
4429 brw_imm_ud(base & ~(block_sz - 1)));
4430
4431 const fs_reg consts =
4432 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4433 dest.type);
4434
4435 for (unsigned d = 0; d < count; d++)
4436 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4437
4438 c += count;
4439 }
4440 }
4441 break;
4442 }
4443
4444 case nir_intrinsic_load_global: {
4445 assert(devinfo->gen >= 8);
4446
4447 if (nir_intrinsic_align(instr) >= 4) {
4448 assert(nir_dest_bit_size(instr->dest) == 32);
4449 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4450 dest,
4451 get_nir_src(instr->src[0]), /* Address */
4452 fs_reg(), /* No source data */
4453 brw_imm_ud(instr->num_components));
4454 inst->size_written = instr->num_components *
4455 inst->dst.component_size(inst->exec_size);
4456 } else {
4457 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4458 assert(bit_size <= 32);
4459 assert(nir_dest_num_components(instr->dest) == 1);
4460 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4461 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4462 tmp,
4463 get_nir_src(instr->src[0]), /* Address */
4464 fs_reg(), /* No source data */
4465 brw_imm_ud(bit_size));
4466 bld.MOV(dest, subscript(tmp, dest.type, 0));
4467 }
4468 break;
4469 }
4470
4471 case nir_intrinsic_store_global:
4472 assert(devinfo->gen >= 8);
4473
4474 if (stage == MESA_SHADER_FRAGMENT)
4475 brw_wm_prog_data(prog_data)->has_side_effects = true;
4476
4477 if (nir_intrinsic_align(instr) >= 4) {
4478 assert(nir_src_bit_size(instr->src[0]) == 32);
4479 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4480 fs_reg(),
4481 get_nir_src(instr->src[1]), /* Address */
4482 get_nir_src(instr->src[0]), /* Data */
4483 brw_imm_ud(instr->num_components));
4484 } else {
4485 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4486 assert(bit_size <= 32);
4487 assert(nir_src_num_components(instr->src[0]) == 1);
4488 brw_reg_type data_type =
4489 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4490 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4491 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4492 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4493 fs_reg(),
4494 get_nir_src(instr->src[1]), /* Address */
4495 tmp, /* Data */
4496 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4497 }
4498 break;
4499
4500 case nir_intrinsic_global_atomic_add:
4501 case nir_intrinsic_global_atomic_imin:
4502 case nir_intrinsic_global_atomic_umin:
4503 case nir_intrinsic_global_atomic_imax:
4504 case nir_intrinsic_global_atomic_umax:
4505 case nir_intrinsic_global_atomic_and:
4506 case nir_intrinsic_global_atomic_or:
4507 case nir_intrinsic_global_atomic_xor:
4508 case nir_intrinsic_global_atomic_exchange:
4509 case nir_intrinsic_global_atomic_comp_swap:
4510 nir_emit_global_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
4511 break;
4512 case nir_intrinsic_global_atomic_fmin:
4513 case nir_intrinsic_global_atomic_fmax:
4514 case nir_intrinsic_global_atomic_fcomp_swap:
4515 nir_emit_global_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
4516 break;
4517
4518 case nir_intrinsic_load_ssbo: {
4519 assert(devinfo->gen >= 7);
4520
4521 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4522 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4523 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4524 get_nir_ssbo_intrinsic_index(bld, instr);
4525 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4526 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4527
4528 /* Make dest unsigned because that's what the temporary will be */
4529 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4530
4531 /* Read the vector */
4532 if (nir_intrinsic_align(instr) >= 4) {
4533 assert(nir_dest_bit_size(instr->dest) == 32);
4534 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4535 fs_inst *inst =
4536 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4537 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4538 inst->size_written = instr->num_components * dispatch_width * 4;
4539 } else {
4540 assert(nir_dest_bit_size(instr->dest) <= 32);
4541 assert(nir_dest_num_components(instr->dest) == 1);
4542 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4543
4544 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4545 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4546 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4547 bld.MOV(dest, subscript(read_result, dest.type, 0));
4548 }
4549 break;
4550 }
4551
4552 case nir_intrinsic_store_ssbo: {
4553 assert(devinfo->gen >= 7);
4554
4555 if (stage == MESA_SHADER_FRAGMENT)
4556 brw_wm_prog_data(prog_data)->has_side_effects = true;
4557
4558 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4559 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4560 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4561 get_nir_ssbo_intrinsic_index(bld, instr);
4562 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4563 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4564
4565 fs_reg data = get_nir_src(instr->src[0]);
4566 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4567
4568 assert(nir_intrinsic_write_mask(instr) ==
4569 (1u << instr->num_components) - 1);
4570 if (nir_intrinsic_align(instr) >= 4) {
4571 assert(nir_src_bit_size(instr->src[0]) == 32);
4572 assert(nir_src_num_components(instr->src[0]) <= 4);
4573 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4574 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4575 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4576 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4577 } else {
4578 assert(nir_src_bit_size(instr->src[0]) <= 32);
4579 assert(nir_src_num_components(instr->src[0]) == 1);
4580 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4581
4582 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4583 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4584
4585 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4586 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4587 }
4588 break;
4589 }
4590
4591 case nir_intrinsic_store_output: {
4592 assert(nir_src_bit_size(instr->src[0]) == 32);
4593 fs_reg src = get_nir_src(instr->src[0]);
4594
4595 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4596 unsigned num_components = instr->num_components;
4597 unsigned first_component = nir_intrinsic_component(instr);
4598
4599 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4600 4 * store_offset), src.type);
4601 for (unsigned j = 0; j < num_components; j++) {
4602 bld.MOV(offset(new_dest, bld, j + first_component),
4603 offset(src, bld, j));
4604 }
4605 break;
4606 }
4607
4608 case nir_intrinsic_ssbo_atomic_add:
4609 case nir_intrinsic_ssbo_atomic_imin:
4610 case nir_intrinsic_ssbo_atomic_umin:
4611 case nir_intrinsic_ssbo_atomic_imax:
4612 case nir_intrinsic_ssbo_atomic_umax:
4613 case nir_intrinsic_ssbo_atomic_and:
4614 case nir_intrinsic_ssbo_atomic_or:
4615 case nir_intrinsic_ssbo_atomic_xor:
4616 case nir_intrinsic_ssbo_atomic_exchange:
4617 case nir_intrinsic_ssbo_atomic_comp_swap:
4618 nir_emit_ssbo_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
4619 break;
4620 case nir_intrinsic_ssbo_atomic_fmin:
4621 case nir_intrinsic_ssbo_atomic_fmax:
4622 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4623 nir_emit_ssbo_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
4624 break;
4625
4626 case nir_intrinsic_get_buffer_size: {
4627 assert(nir_src_num_components(instr->src[0]) == 1);
4628 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4629 nir_src_as_uint(instr->src[0]) : 0;
4630
4631 /* A resinfo's sampler message is used to get the buffer size. The
4632 * SIMD8's writeback message consists of four registers and SIMD16's
4633 * writeback message consists of 8 destination registers (two per each
4634 * component). Because we are only interested on the first channel of
4635 * the first returned component, where resinfo returns the buffer size
4636 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4637 * the dispatch width.
4638 */
4639 const fs_builder ubld = bld.exec_all().group(8, 0);
4640 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4641 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4642
4643 /* Set LOD = 0 */
4644 ubld.MOV(src_payload, brw_imm_d(0));
4645
4646 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4647 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4648 src_payload, brw_imm_ud(index));
4649 inst->header_size = 0;
4650 inst->mlen = 1;
4651 inst->size_written = 4 * REG_SIZE;
4652
4653 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4654 *
4655 * "Out-of-bounds checking is always performed at a DWord granularity. If
4656 * any part of the DWord is out-of-bounds then the whole DWord is
4657 * considered out-of-bounds."
4658 *
4659 * This implies that types with size smaller than 4-bytes need to be
4660 * padded if they don't complete the last dword of the buffer. But as we
4661 * need to maintain the original size we need to reverse the padding
4662 * calculation to return the correct size to know the number of elements
4663 * of an unsized array. As we stored in the last two bits of the surface
4664 * size the needed padding for the buffer, we calculate here the
4665 * original buffer_size reversing the surface_size calculation:
4666 *
4667 * surface_size = isl_align(buffer_size, 4) +
4668 * (isl_align(buffer_size) - buffer_size)
4669 *
4670 * buffer_size = surface_size & ~3 - surface_size & 3
4671 */
4672
4673 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4674 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4675 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4676
4677 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4678 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4679 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4680
4681 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4682 break;
4683 }
4684
4685 case nir_intrinsic_load_subgroup_size:
4686 /* This should only happen for fragment shaders because every other case
4687 * is lowered in NIR so we can optimize on it.
4688 */
4689 assert(stage == MESA_SHADER_FRAGMENT);
4690 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(dispatch_width));
4691 break;
4692
4693 case nir_intrinsic_load_subgroup_invocation:
4694 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4695 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4696 break;
4697
4698 case nir_intrinsic_load_subgroup_eq_mask:
4699 case nir_intrinsic_load_subgroup_ge_mask:
4700 case nir_intrinsic_load_subgroup_gt_mask:
4701 case nir_intrinsic_load_subgroup_le_mask:
4702 case nir_intrinsic_load_subgroup_lt_mask:
4703 unreachable("not reached");
4704
4705 case nir_intrinsic_vote_any: {
4706 const fs_builder ubld = bld.exec_all().group(1, 0);
4707
4708 /* The any/all predicates do not consider channel enables. To prevent
4709 * dead channels from affecting the result, we initialize the flag with
4710 * with the identity value for the logical operation.
4711 */
4712 if (dispatch_width == 32) {
4713 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4714 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4715 brw_imm_ud(0));
4716 } else {
4717 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4718 }
4719 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4720
4721 /* For some reason, the any/all predicates don't work properly with
4722 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4723 * doesn't read the correct subset of the flag register and you end up
4724 * getting garbage in the second half. Work around this by using a pair
4725 * of 1-wide MOVs and scattering the result.
4726 */
4727 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4728 ubld.MOV(res1, brw_imm_d(0));
4729 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4730 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4731 BRW_PREDICATE_ALIGN1_ANY32H,
4732 ubld.MOV(res1, brw_imm_d(-1)));
4733
4734 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4735 break;
4736 }
4737 case nir_intrinsic_vote_all: {
4738 const fs_builder ubld = bld.exec_all().group(1, 0);
4739
4740 /* The any/all predicates do not consider channel enables. To prevent
4741 * dead channels from affecting the result, we initialize the flag with
4742 * with the identity value for the logical operation.
4743 */
4744 if (dispatch_width == 32) {
4745 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4746 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4747 brw_imm_ud(0xffffffff));
4748 } else {
4749 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4750 }
4751 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4752
4753 /* For some reason, the any/all predicates don't work properly with
4754 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4755 * doesn't read the correct subset of the flag register and you end up
4756 * getting garbage in the second half. Work around this by using a pair
4757 * of 1-wide MOVs and scattering the result.
4758 */
4759 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4760 ubld.MOV(res1, brw_imm_d(0));
4761 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4762 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4763 BRW_PREDICATE_ALIGN1_ALL32H,
4764 ubld.MOV(res1, brw_imm_d(-1)));
4765
4766 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4767 break;
4768 }
4769 case nir_intrinsic_vote_feq:
4770 case nir_intrinsic_vote_ieq: {
4771 fs_reg value = get_nir_src(instr->src[0]);
4772 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4773 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4774 value.type = bit_size == 8 ? BRW_REGISTER_TYPE_B :
4775 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4776 }
4777
4778 fs_reg uniformized = bld.emit_uniformize(value);
4779 const fs_builder ubld = bld.exec_all().group(1, 0);
4780
4781 /* The any/all predicates do not consider channel enables. To prevent
4782 * dead channels from affecting the result, we initialize the flag with
4783 * with the identity value for the logical operation.
4784 */
4785 if (dispatch_width == 32) {
4786 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4787 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4788 brw_imm_ud(0xffffffff));
4789 } else {
4790 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4791 }
4792 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4793
4794 /* For some reason, the any/all predicates don't work properly with
4795 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4796 * doesn't read the correct subset of the flag register and you end up
4797 * getting garbage in the second half. Work around this by using a pair
4798 * of 1-wide MOVs and scattering the result.
4799 */
4800 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4801 ubld.MOV(res1, brw_imm_d(0));
4802 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4803 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4804 BRW_PREDICATE_ALIGN1_ALL32H,
4805 ubld.MOV(res1, brw_imm_d(-1)));
4806
4807 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4808 break;
4809 }
4810
4811 case nir_intrinsic_ballot: {
4812 const fs_reg value = retype(get_nir_src(instr->src[0]),
4813 BRW_REGISTER_TYPE_UD);
4814 struct brw_reg flag = brw_flag_reg(0, 0);
4815 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4816 * as f0.0. This is a problem for fragment programs as we currently use
4817 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4818 * programs yet so this isn't a problem. When we do, something will
4819 * have to change.
4820 */
4821 if (dispatch_width == 32)
4822 flag.type = BRW_REGISTER_TYPE_UD;
4823
4824 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4825 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4826
4827 if (instr->dest.ssa.bit_size > 32) {
4828 dest.type = BRW_REGISTER_TYPE_UQ;
4829 } else {
4830 dest.type = BRW_REGISTER_TYPE_UD;
4831 }
4832 bld.MOV(dest, flag);
4833 break;
4834 }
4835
4836 case nir_intrinsic_read_invocation: {
4837 const fs_reg value = get_nir_src(instr->src[0]);
4838 const fs_reg invocation = get_nir_src(instr->src[1]);
4839 fs_reg tmp = bld.vgrf(value.type);
4840
4841 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4842 bld.emit_uniformize(invocation));
4843
4844 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4845 break;
4846 }
4847
4848 case nir_intrinsic_read_first_invocation: {
4849 const fs_reg value = get_nir_src(instr->src[0]);
4850 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4851 break;
4852 }
4853
4854 case nir_intrinsic_shuffle: {
4855 const fs_reg value = get_nir_src(instr->src[0]);
4856 const fs_reg index = get_nir_src(instr->src[1]);
4857
4858 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4859 break;
4860 }
4861
4862 case nir_intrinsic_first_invocation: {
4863 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4864 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4865 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4866 fs_reg(component(tmp, 0)));
4867 break;
4868 }
4869
4870 case nir_intrinsic_quad_broadcast: {
4871 const fs_reg value = get_nir_src(instr->src[0]);
4872 const unsigned index = nir_src_as_uint(instr->src[1]);
4873
4874 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4875 value, brw_imm_ud(index), brw_imm_ud(4));
4876 break;
4877 }
4878
4879 case nir_intrinsic_quad_swap_horizontal: {
4880 const fs_reg value = get_nir_src(instr->src[0]);
4881 const fs_reg tmp = bld.vgrf(value.type);
4882 if (devinfo->gen <= 7) {
4883 /* The hardware doesn't seem to support these crazy regions with
4884 * compressed instructions on gen7 and earlier so we fall back to
4885 * using quad swizzles. Fortunately, we don't support 64-bit
4886 * anything in Vulkan on gen7.
4887 */
4888 assert(nir_src_bit_size(instr->src[0]) == 32);
4889 const fs_builder ubld = bld.exec_all();
4890 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4891 brw_imm_ud(BRW_SWIZZLE4(1,0,3,2)));
4892 bld.MOV(retype(dest, value.type), tmp);
4893 } else {
4894 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4895
4896 const fs_reg src_left = horiz_stride(value, 2);
4897 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4898 const fs_reg tmp_left = horiz_stride(tmp, 2);
4899 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4900
4901 ubld.MOV(tmp_left, src_right);
4902 ubld.MOV(tmp_right, src_left);
4903
4904 }
4905 bld.MOV(retype(dest, value.type), tmp);
4906 break;
4907 }
4908
4909 case nir_intrinsic_quad_swap_vertical: {
4910 const fs_reg value = get_nir_src(instr->src[0]);
4911 if (nir_src_bit_size(instr->src[0]) == 32) {
4912 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4913 const fs_reg tmp = bld.vgrf(value.type);
4914 const fs_builder ubld = bld.exec_all();
4915 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4916 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4917 bld.MOV(retype(dest, value.type), tmp);
4918 } else {
4919 /* For larger data types, we have to either emit dispatch_width many
4920 * MOVs or else fall back to doing indirects.
4921 */
4922 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4923 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4924 brw_imm_w(0x2));
4925 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4926 }
4927 break;
4928 }
4929
4930 case nir_intrinsic_quad_swap_diagonal: {
4931 const fs_reg value = get_nir_src(instr->src[0]);
4932 if (nir_src_bit_size(instr->src[0]) == 32) {
4933 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4934 const fs_reg tmp = bld.vgrf(value.type);
4935 const fs_builder ubld = bld.exec_all();
4936 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4937 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4938 bld.MOV(retype(dest, value.type), tmp);
4939 } else {
4940 /* For larger data types, we have to either emit dispatch_width many
4941 * MOVs or else fall back to doing indirects.
4942 */
4943 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4944 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4945 brw_imm_w(0x3));
4946 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4947 }
4948 break;
4949 }
4950
4951 case nir_intrinsic_reduce: {
4952 fs_reg src = get_nir_src(instr->src[0]);
4953 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4954 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4955 if (cluster_size == 0 || cluster_size > dispatch_width)
4956 cluster_size = dispatch_width;
4957
4958 /* Figure out the source type */
4959 src.type = brw_type_for_nir_type(devinfo,
4960 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4961 nir_src_bit_size(instr->src[0])));
4962
4963 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4964 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4965 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4966
4967 /* There are a couple of register region issues that make things
4968 * complicated for 8-bit types:
4969 *
4970 * 1. Only raw moves are allowed to write to a packed 8-bit
4971 * destination.
4972 * 2. If we use a strided destination, the efficient way to do scan
4973 * operations ends up using strides that are too big to encode in
4974 * an instruction.
4975 *
4976 * To get around these issues, we just do all 8-bit scan operations in
4977 * 16 bits. It's actually fewer instructions than what we'd have to do
4978 * if we were trying to do it in native 8-bit types and the results are
4979 * the same once we truncate to 8 bits at the end.
4980 */
4981 brw_reg_type scan_type = src.type;
4982 if (type_sz(scan_type) == 1)
4983 scan_type = brw_reg_type_from_bit_size(16, src.type);
4984
4985 /* Set up a register for all of our scratching around and initialize it
4986 * to reduction operation's identity value.
4987 */
4988 fs_reg scan = bld.vgrf(scan_type);
4989 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4990
4991 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4992
4993 dest.type = src.type;
4994 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4995 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4996 * the distance between clusters is at least 2 GRFs. In this case,
4997 * we don't need the weird striding of the CLUSTER_BROADCAST
4998 * instruction and can just do regular MOVs.
4999 */
5000 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
5001 const unsigned groups =
5002 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
5003 const unsigned group_size = dispatch_width / groups;
5004 for (unsigned i = 0; i < groups; i++) {
5005 const unsigned cluster = (i * group_size) / cluster_size;
5006 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
5007 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
5008 component(scan, comp));
5009 }
5010 } else {
5011 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
5012 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
5013 }
5014 break;
5015 }
5016
5017 case nir_intrinsic_inclusive_scan:
5018 case nir_intrinsic_exclusive_scan: {
5019 fs_reg src = get_nir_src(instr->src[0]);
5020 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
5021
5022 /* Figure out the source type */
5023 src.type = brw_type_for_nir_type(devinfo,
5024 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
5025 nir_src_bit_size(instr->src[0])));
5026
5027 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
5028 opcode brw_op = brw_op_for_nir_reduction_op(redop);
5029 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
5030
5031 /* There are a couple of register region issues that make things
5032 * complicated for 8-bit types:
5033 *
5034 * 1. Only raw moves are allowed to write to a packed 8-bit
5035 * destination.
5036 * 2. If we use a strided destination, the efficient way to do scan
5037 * operations ends up using strides that are too big to encode in
5038 * an instruction.
5039 *
5040 * To get around these issues, we just do all 8-bit scan operations in
5041 * 16 bits. It's actually fewer instructions than what we'd have to do
5042 * if we were trying to do it in native 8-bit types and the results are
5043 * the same once we truncate to 8 bits at the end.
5044 */
5045 brw_reg_type scan_type = src.type;
5046 if (type_sz(scan_type) == 1)
5047 scan_type = brw_reg_type_from_bit_size(16, src.type);
5048
5049 /* Set up a register for all of our scratching around and initialize it
5050 * to reduction operation's identity value.
5051 */
5052 fs_reg scan = bld.vgrf(scan_type);
5053 const fs_builder allbld = bld.exec_all();
5054 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5055
5056 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
5057 /* Exclusive scan is a bit harder because we have to do an annoying
5058 * shift of the contents before we can begin. To make things worse,
5059 * we can't do this with a normal stride; we have to use indirects.
5060 */
5061 fs_reg shifted = bld.vgrf(scan_type);
5062 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5063 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5064 brw_imm_w(-1));
5065 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
5066 allbld.group(1, 0).MOV(component(shifted, 0), identity);
5067 scan = shifted;
5068 }
5069
5070 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
5071
5072 bld.MOV(retype(dest, src.type), scan);
5073 break;
5074 }
5075
5076 case nir_intrinsic_begin_invocation_interlock: {
5077 const fs_builder ubld = bld.group(8, 0);
5078 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5079
5080 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp, brw_vec8_grf(0, 0))
5081 ->size_written = 2 * REG_SIZE;
5082 break;
5083 }
5084
5085 case nir_intrinsic_end_invocation_interlock: {
5086 /* For endInvocationInterlock(), we need to insert a memory fence which
5087 * stalls in the shader until the memory transactions prior to that
5088 * fence are complete. This ensures that the shader does not end before
5089 * any writes from its critical section have landed. Otherwise, you can
5090 * end up with a case where the next invocation on that pixel properly
5091 * stalls for previous FS invocation on its pixel to complete but
5092 * doesn't actually wait for the dataport memory transactions from that
5093 * thread to land before submitting its own.
5094 */
5095 const fs_builder ubld = bld.group(8, 0);
5096 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5097 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
5098 brw_vec8_grf(0, 0), brw_imm_ud(1), brw_imm_ud(0))
5099 ->size_written = 2 * REG_SIZE;
5100 break;
5101 }
5102
5103 default:
5104 unreachable("unknown intrinsic");
5105 }
5106 }
5107
5108 void
5109 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
5110 int op, nir_intrinsic_instr *instr)
5111 {
5112 if (stage == MESA_SHADER_FRAGMENT)
5113 brw_wm_prog_data(prog_data)->has_side_effects = true;
5114
5115 /* The BTI untyped atomic messages only support 32-bit atomics. If you
5116 * just look at the big table of messages in the Vol 7 of the SKL PRM, they
5117 * appear to exist. However, if you look at Vol 2a, there are no message
5118 * descriptors provided for Qword atomic ops except for A64 messages.
5119 */
5120 assert(nir_dest_bit_size(instr->dest) == 32);
5121
5122 fs_reg dest;
5123 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5124 dest = get_nir_dest(instr->dest);
5125
5126 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5127 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5128 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5129 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5130 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5131
5132 fs_reg data;
5133 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5134 data = get_nir_src(instr->src[2]);
5135
5136 if (op == BRW_AOP_CMPWR) {
5137 fs_reg tmp = bld.vgrf(data.type, 2);
5138 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5139 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5140 data = tmp;
5141 }
5142 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5143
5144 /* Emit the actual atomic operation */
5145
5146 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5147 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5148 }
5149
5150 void
5151 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
5152 int op, nir_intrinsic_instr *instr)
5153 {
5154 if (stage == MESA_SHADER_FRAGMENT)
5155 brw_wm_prog_data(prog_data)->has_side_effects = true;
5156
5157 fs_reg dest;
5158 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5159 dest = get_nir_dest(instr->dest);
5160
5161 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5162 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5163 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5164 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5165 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5166
5167 fs_reg data = get_nir_src(instr->src[2]);
5168 if (op == BRW_AOP_FCMPWR) {
5169 fs_reg tmp = bld.vgrf(data.type, 2);
5170 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5171 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5172 data = tmp;
5173 }
5174 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5175
5176 /* Emit the actual atomic operation */
5177
5178 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5179 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5180 }
5181
5182 void
5183 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
5184 int op, nir_intrinsic_instr *instr)
5185 {
5186 fs_reg dest;
5187 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5188 dest = get_nir_dest(instr->dest);
5189
5190 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5191 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5192 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5193 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5194
5195 fs_reg data;
5196 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5197 data = get_nir_src(instr->src[1]);
5198 if (op == BRW_AOP_CMPWR) {
5199 fs_reg tmp = bld.vgrf(data.type, 2);
5200 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5201 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5202 data = tmp;
5203 }
5204 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5205
5206 /* Get the offset */
5207 if (nir_src_is_const(instr->src[0])) {
5208 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5209 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5210 } else {
5211 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5212 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5213 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5214 brw_imm_ud(instr->const_index[0]));
5215 }
5216
5217 /* Emit the actual atomic operation operation */
5218
5219 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5220 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5221 }
5222
5223 void
5224 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
5225 int op, nir_intrinsic_instr *instr)
5226 {
5227 fs_reg dest;
5228 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5229 dest = get_nir_dest(instr->dest);
5230
5231 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5232 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5233 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5234 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5235
5236 fs_reg data = get_nir_src(instr->src[1]);
5237 if (op == BRW_AOP_FCMPWR) {
5238 fs_reg tmp = bld.vgrf(data.type, 2);
5239 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5240 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5241 data = tmp;
5242 }
5243 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5244
5245 /* Get the offset */
5246 if (nir_src_is_const(instr->src[0])) {
5247 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5248 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5249 } else {
5250 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5251 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5252 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5253 brw_imm_ud(instr->const_index[0]));
5254 }
5255
5256 /* Emit the actual atomic operation operation */
5257
5258 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5259 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5260 }
5261
5262 void
5263 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
5264 int op, nir_intrinsic_instr *instr)
5265 {
5266 if (stage == MESA_SHADER_FRAGMENT)
5267 brw_wm_prog_data(prog_data)->has_side_effects = true;
5268
5269 fs_reg dest;
5270 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5271 dest = get_nir_dest(instr->dest);
5272
5273 fs_reg addr = get_nir_src(instr->src[0]);
5274
5275 fs_reg data;
5276 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5277 data = get_nir_src(instr->src[1]);
5278
5279 if (op == BRW_AOP_CMPWR) {
5280 fs_reg tmp = bld.vgrf(data.type, 2);
5281 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5282 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5283 data = tmp;
5284 }
5285
5286 if (nir_dest_bit_size(instr->dest) == 64) {
5287 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL,
5288 dest, addr, data, brw_imm_ud(op));
5289 } else {
5290 assert(nir_dest_bit_size(instr->dest) == 32);
5291 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5292 dest, addr, data, brw_imm_ud(op));
5293 }
5294 }
5295
5296 void
5297 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
5298 int op, nir_intrinsic_instr *instr)
5299 {
5300 if (stage == MESA_SHADER_FRAGMENT)
5301 brw_wm_prog_data(prog_data)->has_side_effects = true;
5302
5303 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
5304 fs_reg dest = get_nir_dest(instr->dest);
5305
5306 fs_reg addr = get_nir_src(instr->src[0]);
5307
5308 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
5309 fs_reg data = get_nir_src(instr->src[1]);
5310
5311 if (op == BRW_AOP_FCMPWR) {
5312 fs_reg tmp = bld.vgrf(data.type, 2);
5313 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5314 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5315 data = tmp;
5316 }
5317
5318 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5319 dest, addr, data, brw_imm_ud(op));
5320 }
5321
5322 void
5323 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5324 {
5325 unsigned texture = instr->texture_index;
5326 unsigned sampler = instr->sampler_index;
5327
5328 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5329
5330 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5331 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5332
5333 int lod_components = 0;
5334
5335 /* The hardware requires a LOD for buffer textures */
5336 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5337 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5338
5339 uint32_t header_bits = 0;
5340 for (unsigned i = 0; i < instr->num_srcs; i++) {
5341 fs_reg src = get_nir_src(instr->src[i].src);
5342 switch (instr->src[i].src_type) {
5343 case nir_tex_src_bias:
5344 srcs[TEX_LOGICAL_SRC_LOD] =
5345 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5346 break;
5347 case nir_tex_src_comparator:
5348 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5349 break;
5350 case nir_tex_src_coord:
5351 switch (instr->op) {
5352 case nir_texop_txf:
5353 case nir_texop_txf_ms:
5354 case nir_texop_txf_ms_mcs:
5355 case nir_texop_samples_identical:
5356 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5357 break;
5358 default:
5359 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5360 break;
5361 }
5362 break;
5363 case nir_tex_src_ddx:
5364 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5365 lod_components = nir_tex_instr_src_size(instr, i);
5366 break;
5367 case nir_tex_src_ddy:
5368 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5369 break;
5370 case nir_tex_src_lod:
5371 switch (instr->op) {
5372 case nir_texop_txs:
5373 srcs[TEX_LOGICAL_SRC_LOD] =
5374 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5375 break;
5376 case nir_texop_txf:
5377 srcs[TEX_LOGICAL_SRC_LOD] =
5378 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5379 break;
5380 default:
5381 srcs[TEX_LOGICAL_SRC_LOD] =
5382 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5383 break;
5384 }
5385 break;
5386 case nir_tex_src_min_lod:
5387 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
5388 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5389 break;
5390 case nir_tex_src_ms_index:
5391 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5392 break;
5393
5394 case nir_tex_src_offset: {
5395 uint32_t offset_bits = 0;
5396 if (brw_texture_offset(instr, i, &offset_bits)) {
5397 header_bits |= offset_bits;
5398 } else {
5399 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5400 retype(src, BRW_REGISTER_TYPE_D);
5401 }
5402 break;
5403 }
5404
5405 case nir_tex_src_projector:
5406 unreachable("should be lowered");
5407
5408 case nir_tex_src_texture_offset: {
5409 /* Emit code to evaluate the actual indexing expression */
5410 fs_reg tmp = vgrf(glsl_type::uint_type);
5411 bld.ADD(tmp, src, brw_imm_ud(texture));
5412 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5413 break;
5414 }
5415
5416 case nir_tex_src_sampler_offset: {
5417 /* Emit code to evaluate the actual indexing expression */
5418 fs_reg tmp = vgrf(glsl_type::uint_type);
5419 bld.ADD(tmp, src, brw_imm_ud(sampler));
5420 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5421 break;
5422 }
5423
5424 case nir_tex_src_texture_handle:
5425 assert(nir_tex_instr_src_index(instr, nir_tex_src_texture_offset) == -1);
5426 srcs[TEX_LOGICAL_SRC_SURFACE] = fs_reg();
5427 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = bld.emit_uniformize(src);
5428 break;
5429
5430 case nir_tex_src_sampler_handle:
5431 assert(nir_tex_instr_src_index(instr, nir_tex_src_sampler_offset) == -1);
5432 srcs[TEX_LOGICAL_SRC_SAMPLER] = fs_reg();
5433 srcs[TEX_LOGICAL_SRC_SAMPLER_HANDLE] = bld.emit_uniformize(src);
5434 break;
5435
5436 case nir_tex_src_ms_mcs:
5437 assert(instr->op == nir_texop_txf_ms);
5438 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5439 break;
5440
5441 case nir_tex_src_plane: {
5442 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5443 const uint32_t texture_index =
5444 instr->texture_index +
5445 stage_prog_data->binding_table.plane_start[plane] -
5446 stage_prog_data->binding_table.texture_start;
5447
5448 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5449 break;
5450 }
5451
5452 default:
5453 unreachable("unknown texture source");
5454 }
5455 }
5456
5457 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5458 (instr->op == nir_texop_txf_ms ||
5459 instr->op == nir_texop_samples_identical)) {
5460 if (devinfo->gen >= 7 &&
5461 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5462 srcs[TEX_LOGICAL_SRC_MCS] =
5463 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5464 instr->coord_components,
5465 srcs[TEX_LOGICAL_SRC_SURFACE],
5466 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE]);
5467 } else {
5468 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5469 }
5470 }
5471
5472 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5473 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5474
5475 enum opcode opcode;
5476 switch (instr->op) {
5477 case nir_texop_tex:
5478 opcode = SHADER_OPCODE_TEX_LOGICAL;
5479 break;
5480 case nir_texop_txb:
5481 opcode = FS_OPCODE_TXB_LOGICAL;
5482 break;
5483 case nir_texop_txl:
5484 opcode = SHADER_OPCODE_TXL_LOGICAL;
5485 break;
5486 case nir_texop_txd:
5487 opcode = SHADER_OPCODE_TXD_LOGICAL;
5488 break;
5489 case nir_texop_txf:
5490 opcode = SHADER_OPCODE_TXF_LOGICAL;
5491 break;
5492 case nir_texop_txf_ms:
5493 if ((key_tex->msaa_16 & (1 << sampler)))
5494 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5495 else
5496 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5497 break;
5498 case nir_texop_txf_ms_mcs:
5499 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5500 break;
5501 case nir_texop_query_levels:
5502 case nir_texop_txs:
5503 opcode = SHADER_OPCODE_TXS_LOGICAL;
5504 break;
5505 case nir_texop_lod:
5506 opcode = SHADER_OPCODE_LOD_LOGICAL;
5507 break;
5508 case nir_texop_tg4:
5509 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5510 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5511 else
5512 opcode = SHADER_OPCODE_TG4_LOGICAL;
5513 break;
5514 case nir_texop_texture_samples:
5515 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5516 break;
5517 case nir_texop_samples_identical: {
5518 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5519
5520 /* If mcs is an immediate value, it means there is no MCS. In that case
5521 * just return false.
5522 */
5523 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5524 bld.MOV(dst, brw_imm_ud(0u));
5525 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5526 fs_reg tmp = vgrf(glsl_type::uint_type);
5527 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5528 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5529 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5530 } else {
5531 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5532 BRW_CONDITIONAL_EQ);
5533 }
5534 return;
5535 }
5536 default:
5537 unreachable("unknown texture opcode");
5538 }
5539
5540 if (instr->op == nir_texop_tg4) {
5541 if (instr->component == 1 &&
5542 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5543 /* gather4 sampler is broken for green channel on RG32F --
5544 * we must ask for blue instead.
5545 */
5546 header_bits |= 2 << 16;
5547 } else {
5548 header_bits |= instr->component << 16;
5549 }
5550 }
5551
5552 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5553 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5554 inst->offset = header_bits;
5555
5556 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5557 if (devinfo->gen >= 9 &&
5558 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5559 unsigned write_mask = instr->dest.is_ssa ?
5560 nir_ssa_def_components_read(&instr->dest.ssa):
5561 (1 << dest_size) - 1;
5562 assert(write_mask != 0); /* dead code should have been eliminated */
5563 inst->size_written = util_last_bit(write_mask) *
5564 inst->dst.component_size(inst->exec_size);
5565 } else {
5566 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5567 }
5568
5569 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5570 inst->shadow_compare = true;
5571
5572 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5573 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5574
5575 fs_reg nir_dest[4];
5576 for (unsigned i = 0; i < dest_size; i++)
5577 nir_dest[i] = offset(dst, bld, i);
5578
5579 if (instr->op == nir_texop_query_levels) {
5580 /* # levels is in .w */
5581 nir_dest[0] = offset(dst, bld, 3);
5582 } else if (instr->op == nir_texop_txs &&
5583 dest_size >= 3 && devinfo->gen < 7) {
5584 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5585 fs_reg depth = offset(dst, bld, 2);
5586 nir_dest[2] = vgrf(glsl_type::int_type);
5587 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5588 }
5589
5590 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5591 }
5592
5593 void
5594 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5595 {
5596 switch (instr->type) {
5597 case nir_jump_break:
5598 bld.emit(BRW_OPCODE_BREAK);
5599 break;
5600 case nir_jump_continue:
5601 bld.emit(BRW_OPCODE_CONTINUE);
5602 break;
5603 case nir_jump_return:
5604 default:
5605 unreachable("unknown jump");
5606 }
5607 }
5608
5609 /*
5610 * This helper takes a source register and un/shuffles it into the destination
5611 * register.
5612 *
5613 * If source type size is smaller than destination type size the operation
5614 * needed is a component shuffle. The opposite case would be an unshuffle. If
5615 * source/destination type size is equal a shuffle is done that would be
5616 * equivalent to a simple MOV.
5617 *
5618 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5619 * components .xyz 16-bit vector on SIMD8 would be.
5620 *
5621 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5622 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5623 *
5624 * This helper will return the following 2 32-bit components with the 16-bit
5625 * values shuffled:
5626 *
5627 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5628 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5629 *
5630 * For unshuffle, the example would be the opposite, a 64-bit type source
5631 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5632 * would be:
5633 *
5634 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5635 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5636 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5637 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5638 *
5639 * The returned result would be the following 4 32-bit components unshuffled:
5640 *
5641 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5642 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5643 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5644 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5645 *
5646 * - Source and destination register must not be overlapped.
5647 * - components units are measured in terms of the smaller type between
5648 * source and destination because we are un/shuffling the smaller
5649 * components from/into the bigger ones.
5650 * - first_component parameter allows skipping source components.
5651 */
5652 void
5653 shuffle_src_to_dst(const fs_builder &bld,
5654 const fs_reg &dst,
5655 const fs_reg &src,
5656 uint32_t first_component,
5657 uint32_t components)
5658 {
5659 if (type_sz(src.type) == type_sz(dst.type)) {
5660 assert(!regions_overlap(dst,
5661 type_sz(dst.type) * bld.dispatch_width() * components,
5662 offset(src, bld, first_component),
5663 type_sz(src.type) * bld.dispatch_width() * components));
5664 for (unsigned i = 0; i < components; i++) {
5665 bld.MOV(retype(offset(dst, bld, i), src.type),
5666 offset(src, bld, i + first_component));
5667 }
5668 } else if (type_sz(src.type) < type_sz(dst.type)) {
5669 /* Source is shuffled into destination */
5670 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5671 assert(!regions_overlap(dst,
5672 type_sz(dst.type) * bld.dispatch_width() *
5673 DIV_ROUND_UP(components, size_ratio),
5674 offset(src, bld, first_component),
5675 type_sz(src.type) * bld.dispatch_width() * components));
5676
5677 brw_reg_type shuffle_type =
5678 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5679 BRW_REGISTER_TYPE_D);
5680 for (unsigned i = 0; i < components; i++) {
5681 fs_reg shuffle_component_i =
5682 subscript(offset(dst, bld, i / size_ratio),
5683 shuffle_type, i % size_ratio);
5684 bld.MOV(shuffle_component_i,
5685 retype(offset(src, bld, i + first_component), shuffle_type));
5686 }
5687 } else {
5688 /* Source is unshuffled into destination */
5689 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5690 assert(!regions_overlap(dst,
5691 type_sz(dst.type) * bld.dispatch_width() * components,
5692 offset(src, bld, first_component / size_ratio),
5693 type_sz(src.type) * bld.dispatch_width() *
5694 DIV_ROUND_UP(components + (first_component % size_ratio),
5695 size_ratio)));
5696
5697 brw_reg_type shuffle_type =
5698 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5699 BRW_REGISTER_TYPE_D);
5700 for (unsigned i = 0; i < components; i++) {
5701 fs_reg shuffle_component_i =
5702 subscript(offset(src, bld, (first_component + i) / size_ratio),
5703 shuffle_type, (first_component + i) % size_ratio);
5704 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5705 shuffle_component_i);
5706 }
5707 }
5708 }
5709
5710 void
5711 shuffle_from_32bit_read(const fs_builder &bld,
5712 const fs_reg &dst,
5713 const fs_reg &src,
5714 uint32_t first_component,
5715 uint32_t components)
5716 {
5717 assert(type_sz(src.type) == 4);
5718
5719 /* This function takes components in units of the destination type while
5720 * shuffle_src_to_dst takes components in units of the smallest type
5721 */
5722 if (type_sz(dst.type) > 4) {
5723 assert(type_sz(dst.type) == 8);
5724 first_component *= 2;
5725 components *= 2;
5726 }
5727
5728 shuffle_src_to_dst(bld, dst, src, first_component, components);
5729 }
5730
5731 fs_reg
5732 setup_imm_df(const fs_builder &bld, double v)
5733 {
5734 const struct gen_device_info *devinfo = bld.shader->devinfo;
5735 assert(devinfo->gen >= 7);
5736
5737 if (devinfo->gen >= 8)
5738 return brw_imm_df(v);
5739
5740 /* gen7.5 does not support DF immediates straighforward but the DIM
5741 * instruction allows to set the 64-bit immediate value.
5742 */
5743 if (devinfo->is_haswell) {
5744 const fs_builder ubld = bld.exec_all().group(1, 0);
5745 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5746 ubld.DIM(dst, brw_imm_df(v));
5747 return component(dst, 0);
5748 }
5749
5750 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5751 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5752 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5753 *
5754 * Alternatively, we could also produce a normal VGRF (without stride 0)
5755 * by writing to all the channels in the VGRF, however, that would hit the
5756 * gen7 bug where we have to split writes that span more than 1 register
5757 * into instructions with a width of 4 (otherwise the write to the second
5758 * register written runs into an execmask hardware bug) which isn't very
5759 * nice.
5760 */
5761 union {
5762 double d;
5763 struct {
5764 uint32_t i1;
5765 uint32_t i2;
5766 };
5767 } di;
5768
5769 di.d = v;
5770
5771 const fs_builder ubld = bld.exec_all().group(1, 0);
5772 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5773 ubld.MOV(tmp, brw_imm_ud(di.i1));
5774 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5775
5776 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5777 }
5778
5779 fs_reg
5780 setup_imm_b(const fs_builder &bld, int8_t v)
5781 {
5782 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5783 bld.MOV(tmp, brw_imm_w(v));
5784 return tmp;
5785 }
5786
5787 fs_reg
5788 setup_imm_ub(const fs_builder &bld, uint8_t v)
5789 {
5790 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5791 bld.MOV(tmp, brw_imm_uw(v));
5792 return tmp;
5793 }