nir: Rename nir_intrinsic_barrier to control_barrier
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "brw_eu.h"
28 #include "nir_search_helpers.h"
29 #include "util/u_math.h"
30 #include "util/bitscan.h"
31
32 using namespace brw;
33
34 void
35 fs_visitor::emit_nir_code()
36 {
37 emit_shader_float_controls_execution_mode();
38
39 /* emit the arrays used for inputs and outputs - load/store intrinsics will
40 * be converted to reads/writes of these arrays
41 */
42 nir_setup_outputs();
43 nir_setup_uniforms();
44 nir_emit_system_values();
45 last_scratch = ALIGN(nir->scratch_size, 4) * dispatch_width;
46
47 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57
58 /* Calculate the size of output registers in a separate pass, before
59 * allocating them. With ARB_enhanced_layouts, multiple output variables
60 * may occupy the same slot, but have different type sizes.
61 */
62 nir_foreach_variable(var, &nir->outputs) {
63 const int loc = var->data.driver_location;
64 const unsigned var_vec4s =
65 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66 : type_size_vec4(var->type, true);
67 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68 }
69
70 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
71 if (vec4s[loc] == 0) {
72 loc++;
73 continue;
74 }
75
76 unsigned reg_size = vec4s[loc];
77
78 /* Check if there are any ranges that start within this range and extend
79 * past it. If so, include them in this allocation.
80 */
81 for (unsigned i = 1; i < reg_size; i++)
82 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
83
84 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
85 for (unsigned i = 0; i < reg_size; i++)
86 outputs[loc + i] = offset(reg, bld, 4 * i);
87
88 loc += reg_size;
89 }
90 }
91
92 void
93 fs_visitor::nir_setup_uniforms()
94 {
95 /* Only the first compile gets to set up uniforms. */
96 if (push_constant_loc) {
97 assert(pull_constant_loc);
98 return;
99 }
100
101 uniforms = nir->num_uniforms / 4;
102
103 if (stage == MESA_SHADER_COMPUTE) {
104 /* Add a uniform for the thread local id. It must be the last uniform
105 * on the list.
106 */
107 assert(uniforms == prog_data->nr_params);
108 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
109 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
110 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
111 }
112 }
113
114 static bool
115 emit_system_values_block(nir_block *block, fs_visitor *v)
116 {
117 fs_reg *reg;
118
119 nir_foreach_instr(instr, block) {
120 if (instr->type != nir_instr_type_intrinsic)
121 continue;
122
123 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
124 switch (intrin->intrinsic) {
125 case nir_intrinsic_load_vertex_id:
126 case nir_intrinsic_load_base_vertex:
127 unreachable("should be lowered by nir_lower_system_values().");
128
129 case nir_intrinsic_load_vertex_id_zero_base:
130 case nir_intrinsic_load_is_indexed_draw:
131 case nir_intrinsic_load_first_vertex:
132 case nir_intrinsic_load_instance_id:
133 case nir_intrinsic_load_base_instance:
134 case nir_intrinsic_load_draw_id:
135 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
136
137 case nir_intrinsic_load_invocation_id:
138 if (v->stage == MESA_SHADER_TESS_CTRL)
139 break;
140 assert(v->stage == MESA_SHADER_GEOMETRY);
141 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
142 if (reg->file == BAD_FILE) {
143 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
144 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
145 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
146 abld.SHR(iid, g1, brw_imm_ud(27u));
147 *reg = iid;
148 }
149 break;
150
151 case nir_intrinsic_load_sample_pos:
152 assert(v->stage == MESA_SHADER_FRAGMENT);
153 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
154 if (reg->file == BAD_FILE)
155 *reg = *v->emit_samplepos_setup();
156 break;
157
158 case nir_intrinsic_load_sample_id:
159 assert(v->stage == MESA_SHADER_FRAGMENT);
160 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
161 if (reg->file == BAD_FILE)
162 *reg = *v->emit_sampleid_setup();
163 break;
164
165 case nir_intrinsic_load_sample_mask_in:
166 assert(v->stage == MESA_SHADER_FRAGMENT);
167 assert(v->devinfo->gen >= 7);
168 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
169 if (reg->file == BAD_FILE)
170 *reg = *v->emit_samplemaskin_setup();
171 break;
172
173 case nir_intrinsic_load_work_group_id:
174 assert(v->stage == MESA_SHADER_COMPUTE);
175 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
176 if (reg->file == BAD_FILE)
177 *reg = *v->emit_cs_work_group_id_setup();
178 break;
179
180 case nir_intrinsic_load_helper_invocation:
181 assert(v->stage == MESA_SHADER_FRAGMENT);
182 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
183 if (reg->file == BAD_FILE) {
184 const fs_builder abld =
185 v->bld.annotate("gl_HelperInvocation", NULL);
186
187 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
188 * pixel mask is in g1.7 of the thread payload.
189 *
190 * We move the per-channel pixel enable bit to the low bit of each
191 * channel by shifting the byte containing the pixel mask by the
192 * vector immediate 0x76543210UV.
193 *
194 * The region of <1,8,0> reads only 1 byte (the pixel masks for
195 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
196 * masks for 2 and 3) in SIMD16.
197 */
198 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
199
200 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
201 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
202 hbld.SHR(offset(shifted, hbld, i),
203 stride(retype(brw_vec1_grf(1 + i, 7),
204 BRW_REGISTER_TYPE_UB),
205 1, 8, 0),
206 brw_imm_v(0x76543210));
207 }
208
209 /* A set bit in the pixel mask means the channel is enabled, but
210 * that is the opposite of gl_HelperInvocation so we need to invert
211 * the mask.
212 *
213 * The negate source-modifier bit of logical instructions on Gen8+
214 * performs 1's complement negation, so we can use that instead of
215 * a NOT instruction.
216 */
217 fs_reg inverted = negate(shifted);
218 if (v->devinfo->gen < 8) {
219 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
220 abld.NOT(inverted, shifted);
221 }
222
223 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
224 * with 1 and negating.
225 */
226 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
227 abld.AND(anded, inverted, brw_imm_uw(1));
228
229 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
230 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
231 *reg = dst;
232 }
233 break;
234
235 default:
236 break;
237 }
238 }
239
240 return true;
241 }
242
243 void
244 fs_visitor::nir_emit_system_values()
245 {
246 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
247 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
248 nir_system_values[i] = fs_reg();
249 }
250
251 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
252 * never end up using it.
253 */
254 {
255 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
256 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
257 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
258
259 const fs_builder allbld8 = abld.group(8, 0).exec_all();
260 allbld8.MOV(reg, brw_imm_v(0x76543210));
261 if (dispatch_width > 8)
262 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
263 if (dispatch_width > 16) {
264 const fs_builder allbld16 = abld.group(16, 0).exec_all();
265 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
266 }
267 }
268
269 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
270 nir_foreach_block(block, impl)
271 emit_system_values_block(block, this);
272 }
273
274 /*
275 * Returns a type based on a reference_type (word, float, half-float) and a
276 * given bit_size.
277 *
278 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
279 *
280 * @FIXME: 64-bit return types are always DF on integer types to maintain
281 * compability with uses of DF previously to the introduction of int64
282 * support.
283 */
284 static brw_reg_type
285 brw_reg_type_from_bit_size(const unsigned bit_size,
286 const brw_reg_type reference_type)
287 {
288 switch(reference_type) {
289 case BRW_REGISTER_TYPE_HF:
290 case BRW_REGISTER_TYPE_F:
291 case BRW_REGISTER_TYPE_DF:
292 switch(bit_size) {
293 case 16:
294 return BRW_REGISTER_TYPE_HF;
295 case 32:
296 return BRW_REGISTER_TYPE_F;
297 case 64:
298 return BRW_REGISTER_TYPE_DF;
299 default:
300 unreachable("Invalid bit size");
301 }
302 case BRW_REGISTER_TYPE_B:
303 case BRW_REGISTER_TYPE_W:
304 case BRW_REGISTER_TYPE_D:
305 case BRW_REGISTER_TYPE_Q:
306 switch(bit_size) {
307 case 8:
308 return BRW_REGISTER_TYPE_B;
309 case 16:
310 return BRW_REGISTER_TYPE_W;
311 case 32:
312 return BRW_REGISTER_TYPE_D;
313 case 64:
314 return BRW_REGISTER_TYPE_Q;
315 default:
316 unreachable("Invalid bit size");
317 }
318 case BRW_REGISTER_TYPE_UB:
319 case BRW_REGISTER_TYPE_UW:
320 case BRW_REGISTER_TYPE_UD:
321 case BRW_REGISTER_TYPE_UQ:
322 switch(bit_size) {
323 case 8:
324 return BRW_REGISTER_TYPE_UB;
325 case 16:
326 return BRW_REGISTER_TYPE_UW;
327 case 32:
328 return BRW_REGISTER_TYPE_UD;
329 case 64:
330 return BRW_REGISTER_TYPE_UQ;
331 default:
332 unreachable("Invalid bit size");
333 }
334 default:
335 unreachable("Unknown type");
336 }
337 }
338
339 void
340 fs_visitor::nir_emit_impl(nir_function_impl *impl)
341 {
342 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
343 for (unsigned i = 0; i < impl->reg_alloc; i++) {
344 nir_locals[i] = fs_reg();
345 }
346
347 foreach_list_typed(nir_register, reg, node, &impl->registers) {
348 unsigned array_elems =
349 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
350 unsigned size = array_elems * reg->num_components;
351 const brw_reg_type reg_type = reg->bit_size == 8 ? BRW_REGISTER_TYPE_B :
352 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
353 nir_locals[reg->index] = bld.vgrf(reg_type, size);
354 }
355
356 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
357 impl->ssa_alloc);
358
359 nir_emit_cf_list(&impl->body);
360 }
361
362 void
363 fs_visitor::nir_emit_cf_list(exec_list *list)
364 {
365 exec_list_validate(list);
366 foreach_list_typed(nir_cf_node, node, node, list) {
367 switch (node->type) {
368 case nir_cf_node_if:
369 nir_emit_if(nir_cf_node_as_if(node));
370 break;
371
372 case nir_cf_node_loop:
373 nir_emit_loop(nir_cf_node_as_loop(node));
374 break;
375
376 case nir_cf_node_block:
377 nir_emit_block(nir_cf_node_as_block(node));
378 break;
379
380 default:
381 unreachable("Invalid CFG node block");
382 }
383 }
384 }
385
386 void
387 fs_visitor::nir_emit_if(nir_if *if_stmt)
388 {
389 bool invert;
390 fs_reg cond_reg;
391
392 /* If the condition has the form !other_condition, use other_condition as
393 * the source, but invert the predicate on the if instruction.
394 */
395 nir_alu_instr *cond = nir_src_as_alu_instr(if_stmt->condition);
396 if (cond != NULL && cond->op == nir_op_inot) {
397 assert(!cond->src[0].negate);
398 assert(!cond->src[0].abs);
399
400 invert = true;
401 cond_reg = get_nir_src(cond->src[0].src);
402 } else {
403 invert = false;
404 cond_reg = get_nir_src(if_stmt->condition);
405 }
406
407 /* first, put the condition into f0 */
408 fs_inst *inst = bld.MOV(bld.null_reg_d(),
409 retype(cond_reg, BRW_REGISTER_TYPE_D));
410 inst->conditional_mod = BRW_CONDITIONAL_NZ;
411
412 bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
413
414 nir_emit_cf_list(&if_stmt->then_list);
415
416 if (!nir_cf_list_is_empty_block(&if_stmt->else_list)) {
417 bld.emit(BRW_OPCODE_ELSE);
418 nir_emit_cf_list(&if_stmt->else_list);
419 }
420
421 bld.emit(BRW_OPCODE_ENDIF);
422
423 if (devinfo->gen < 7)
424 limit_dispatch_width(16, "Non-uniform control flow unsupported "
425 "in SIMD32 mode.");
426 }
427
428 void
429 fs_visitor::nir_emit_loop(nir_loop *loop)
430 {
431 bld.emit(BRW_OPCODE_DO);
432
433 nir_emit_cf_list(&loop->body);
434
435 bld.emit(BRW_OPCODE_WHILE);
436
437 if (devinfo->gen < 7)
438 limit_dispatch_width(16, "Non-uniform control flow unsupported "
439 "in SIMD32 mode.");
440 }
441
442 void
443 fs_visitor::nir_emit_block(nir_block *block)
444 {
445 nir_foreach_instr(instr, block) {
446 nir_emit_instr(instr);
447 }
448 }
449
450 void
451 fs_visitor::nir_emit_instr(nir_instr *instr)
452 {
453 const fs_builder abld = bld.annotate(NULL, instr);
454
455 switch (instr->type) {
456 case nir_instr_type_alu:
457 nir_emit_alu(abld, nir_instr_as_alu(instr), true);
458 break;
459
460 case nir_instr_type_deref:
461 unreachable("All derefs should've been lowered");
462 break;
463
464 case nir_instr_type_intrinsic:
465 switch (stage) {
466 case MESA_SHADER_VERTEX:
467 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
468 break;
469 case MESA_SHADER_TESS_CTRL:
470 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
471 break;
472 case MESA_SHADER_TESS_EVAL:
473 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
474 break;
475 case MESA_SHADER_GEOMETRY:
476 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
477 break;
478 case MESA_SHADER_FRAGMENT:
479 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
480 break;
481 case MESA_SHADER_COMPUTE:
482 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
483 break;
484 default:
485 unreachable("unsupported shader stage");
486 }
487 break;
488
489 case nir_instr_type_tex:
490 nir_emit_texture(abld, nir_instr_as_tex(instr));
491 break;
492
493 case nir_instr_type_load_const:
494 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
495 break;
496
497 case nir_instr_type_ssa_undef:
498 /* We create a new VGRF for undefs on every use (by handling
499 * them in get_nir_src()), rather than for each definition.
500 * This helps register coalescing eliminate MOVs from undef.
501 */
502 break;
503
504 case nir_instr_type_jump:
505 nir_emit_jump(abld, nir_instr_as_jump(instr));
506 break;
507
508 default:
509 unreachable("unknown instruction type");
510 }
511 }
512
513 /**
514 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
515 * match instr.
516 */
517 bool
518 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
519 const fs_reg &result)
520 {
521 if (!instr->src[0].src.is_ssa ||
522 !instr->src[0].src.ssa->parent_instr)
523 return false;
524
525 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
526 return false;
527
528 nir_alu_instr *src0 =
529 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
530
531 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
532 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
533 return false;
534
535 /* If either opcode has source modifiers, bail.
536 *
537 * TODO: We can potentially handle source modifiers if both of the opcodes
538 * we're combining are signed integers.
539 */
540 if (instr->src[0].abs || instr->src[0].negate ||
541 src0->src[0].abs || src0->src[0].negate)
542 return false;
543
544 unsigned element = nir_src_as_uint(src0->src[1].src);
545
546 /* Element type to extract.*/
547 const brw_reg_type type = brw_int_type(
548 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
549 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
550
551 fs_reg op0 = get_nir_src(src0->src[0].src);
552 op0.type = brw_type_for_nir_type(devinfo,
553 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
554 nir_src_bit_size(src0->src[0].src)));
555 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
556
557 set_saturate(instr->dest.saturate,
558 bld.MOV(result, subscript(op0, type, element)));
559 return true;
560 }
561
562 bool
563 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
564 const fs_reg &result)
565 {
566 nir_intrinsic_instr *src0 = nir_src_as_intrinsic(instr->src[0].src);
567 if (src0 == NULL || src0->intrinsic != nir_intrinsic_load_front_face)
568 return false;
569
570 if (!nir_src_is_const(instr->src[1].src) ||
571 !nir_src_is_const(instr->src[2].src))
572 return false;
573
574 const float value1 = nir_src_as_float(instr->src[1].src);
575 const float value2 = nir_src_as_float(instr->src[2].src);
576 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
577 return false;
578
579 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
580 assert(value1 == -value2);
581
582 fs_reg tmp = vgrf(glsl_type::int_type);
583
584 if (devinfo->gen >= 12) {
585 /* Bit 15 of g1.1 is 0 if the polygon is front facing. */
586 fs_reg g1 = fs_reg(retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_W));
587
588 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
589 *
590 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
591 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
592 *
593 * and negate the result for (gl_FrontFacing ? -1.0 : 1.0).
594 */
595 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
596 g1, brw_imm_uw(0x3f80));
597
598 if (value1 == -1.0f)
599 bld.MOV(tmp, negate(tmp));
600
601 } else if (devinfo->gen >= 6) {
602 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
603 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
604
605 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
606 *
607 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
608 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
609 *
610 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
611 *
612 * This negation looks like it's safe in practice, because bits 0:4 will
613 * surely be TRIANGLES
614 */
615
616 if (value1 == -1.0f) {
617 g0.negate = true;
618 }
619
620 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
621 g0, brw_imm_uw(0x3f80));
622 } else {
623 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
624 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
625
626 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
627 *
628 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
629 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
630 *
631 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
632 *
633 * This negation looks like it's safe in practice, because bits 0:4 will
634 * surely be TRIANGLES
635 */
636
637 if (value1 == -1.0f) {
638 g1_6.negate = true;
639 }
640
641 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
642 }
643 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
644
645 return true;
646 }
647
648 static void
649 emit_find_msb_using_lzd(const fs_builder &bld,
650 const fs_reg &result,
651 const fs_reg &src,
652 bool is_signed)
653 {
654 fs_inst *inst;
655 fs_reg temp = src;
656
657 if (is_signed) {
658 /* LZD of an absolute value source almost always does the right
659 * thing. There are two problem values:
660 *
661 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
662 * 0. However, findMSB(int(0x80000000)) == 30.
663 *
664 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
665 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
666 *
667 * For a value of zero or negative one, -1 will be returned.
668 *
669 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
670 * findMSB(-(1<<x)) should return x-1.
671 *
672 * For all negative number cases, including 0x80000000 and
673 * 0xffffffff, the correct value is obtained from LZD if instead of
674 * negating the (already negative) value the logical-not is used. A
675 * conditonal logical-not can be achieved in two instructions.
676 */
677 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
678
679 bld.ASR(temp, src, brw_imm_d(31));
680 bld.XOR(temp, temp, src);
681 }
682
683 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
684 retype(temp, BRW_REGISTER_TYPE_UD));
685
686 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
687 * from the LSB side. Subtract the result from 31 to convert the MSB
688 * count into an LSB count. If no bits are set, LZD will return 32.
689 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
690 */
691 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
692 inst->src[0].negate = true;
693 }
694
695 static brw_rnd_mode
696 brw_rnd_mode_from_nir_op (const nir_op op) {
697 switch (op) {
698 case nir_op_f2f16_rtz:
699 return BRW_RND_MODE_RTZ;
700 case nir_op_f2f16_rtne:
701 return BRW_RND_MODE_RTNE;
702 default:
703 unreachable("Operation doesn't support rounding mode");
704 }
705 }
706
707 static brw_rnd_mode
708 brw_rnd_mode_from_execution_mode(unsigned execution_mode)
709 {
710 if (nir_has_any_rounding_mode_rtne(execution_mode))
711 return BRW_RND_MODE_RTNE;
712 if (nir_has_any_rounding_mode_rtz(execution_mode))
713 return BRW_RND_MODE_RTZ;
714 return BRW_RND_MODE_UNSPECIFIED;
715 }
716
717 fs_reg
718 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
719 nir_alu_instr *instr,
720 fs_reg *op,
721 bool need_dest)
722 {
723 fs_reg result =
724 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
725
726 result.type = brw_type_for_nir_type(devinfo,
727 (nir_alu_type)(nir_op_infos[instr->op].output_type |
728 nir_dest_bit_size(instr->dest.dest)));
729
730 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
731 op[i] = get_nir_src(instr->src[i].src);
732 op[i].type = brw_type_for_nir_type(devinfo,
733 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
734 nir_src_bit_size(instr->src[i].src)));
735 op[i].abs = instr->src[i].abs;
736 op[i].negate = instr->src[i].negate;
737 }
738
739 /* Move and vecN instrutions may still be vectored. Return the raw,
740 * vectored source and destination so that fs_visitor::nir_emit_alu can
741 * handle it. Other callers should not have to handle these kinds of
742 * instructions.
743 */
744 switch (instr->op) {
745 case nir_op_mov:
746 case nir_op_vec2:
747 case nir_op_vec3:
748 case nir_op_vec4:
749 return result;
750 default:
751 break;
752 }
753
754 /* At this point, we have dealt with any instruction that operates on
755 * more than a single channel. Therefore, we can just adjust the source
756 * and destination registers for that channel and emit the instruction.
757 */
758 unsigned channel = 0;
759 if (nir_op_infos[instr->op].output_size == 0) {
760 /* Since NIR is doing the scalarizing for us, we should only ever see
761 * vectorized operations with a single channel.
762 */
763 assert(util_bitcount(instr->dest.write_mask) == 1);
764 channel = ffs(instr->dest.write_mask) - 1;
765
766 result = offset(result, bld, channel);
767 }
768
769 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
770 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
771 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
772 }
773
774 return result;
775 }
776
777 void
778 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
779 fs_reg *op)
780 {
781 for (unsigned i = 0; i < 2; i++) {
782 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[i].src);
783
784 if (inot_instr != NULL && inot_instr->op == nir_op_inot &&
785 !inot_instr->src[0].abs && !inot_instr->src[0].negate) {
786 /* The source of the inot is now the source of instr. */
787 prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
788
789 assert(!op[i].negate);
790 op[i].negate = true;
791 } else {
792 op[i] = resolve_source_modifiers(op[i]);
793 }
794 }
795 }
796
797 bool
798 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
799 fs_reg result,
800 nir_alu_instr *instr)
801 {
802 if (devinfo->gen < 6 || devinfo->gen >= 12)
803 return false;
804
805 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[0].src);
806
807 if (inot_instr == NULL || inot_instr->op != nir_op_inot)
808 return false;
809
810 /* HF is also possible as a destination on BDW+. For nir_op_b2i, the set
811 * of valid size-changing combinations is a bit more complex.
812 *
813 * The source restriction is just because I was lazy about generating the
814 * constant below.
815 */
816 if (nir_dest_bit_size(instr->dest.dest) != 32 ||
817 nir_src_bit_size(inot_instr->src[0].src) != 32)
818 return false;
819
820 /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1,
821 * this is float(1 + a).
822 */
823 fs_reg op;
824
825 prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
826
827 /* Ignore the saturate modifier, if there is one. The result of the
828 * arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
829 */
830 bld.ADD(result, op, brw_imm_d(1));
831
832 return true;
833 }
834
835 /**
836 * Emit code for nir_op_fsign possibly fused with a nir_op_fmul
837 *
838 * If \c instr is not the \c nir_op_fsign, then \c fsign_src is the index of
839 * the source of \c instr that is a \c nir_op_fsign.
840 */
841 void
842 fs_visitor::emit_fsign(const fs_builder &bld, const nir_alu_instr *instr,
843 fs_reg result, fs_reg *op, unsigned fsign_src)
844 {
845 fs_inst *inst;
846
847 assert(instr->op == nir_op_fsign || instr->op == nir_op_fmul);
848 assert(fsign_src < nir_op_infos[instr->op].num_inputs);
849
850 if (instr->op != nir_op_fsign) {
851 const nir_alu_instr *const fsign_instr =
852 nir_src_as_alu_instr(instr->src[fsign_src].src);
853
854 assert(!fsign_instr->dest.saturate);
855
856 /* op[fsign_src] has the nominal result of the fsign, and op[1 -
857 * fsign_src] has the other multiply source. This must be rearranged so
858 * that op[0] is the source of the fsign op[1] is the other multiply
859 * source.
860 */
861 if (fsign_src != 0)
862 op[1] = op[0];
863
864 op[0] = get_nir_src(fsign_instr->src[0].src);
865
866 const nir_alu_type t =
867 (nir_alu_type)(nir_op_infos[instr->op].input_types[0] |
868 nir_src_bit_size(fsign_instr->src[0].src));
869
870 op[0].type = brw_type_for_nir_type(devinfo, t);
871 op[0].abs = fsign_instr->src[0].abs;
872 op[0].negate = fsign_instr->src[0].negate;
873
874 unsigned channel = 0;
875 if (nir_op_infos[instr->op].output_size == 0) {
876 /* Since NIR is doing the scalarizing for us, we should only ever see
877 * vectorized operations with a single channel.
878 */
879 assert(util_bitcount(instr->dest.write_mask) == 1);
880 channel = ffs(instr->dest.write_mask) - 1;
881 }
882
883 op[0] = offset(op[0], bld, fsign_instr->src[0].swizzle[channel]);
884 } else {
885 assert(!instr->dest.saturate);
886 }
887
888 if (op[0].abs) {
889 /* Straightforward since the source can be assumed to be either strictly
890 * >= 0 or strictly <= 0 depending on the setting of the negate flag.
891 */
892 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
893
894 if (instr->op == nir_op_fsign) {
895 inst = (op[0].negate)
896 ? bld.MOV(result, brw_imm_f(-1.0f))
897 : bld.MOV(result, brw_imm_f(1.0f));
898 } else {
899 op[1].negate = (op[0].negate != op[1].negate);
900 inst = bld.MOV(result, op[1]);
901 }
902
903 set_predicate(BRW_PREDICATE_NORMAL, inst);
904 } else if (type_sz(op[0].type) == 2) {
905 /* AND(val, 0x8000) gives the sign bit.
906 *
907 * Predicated OR ORs 1.0 (0x3c00) with the sign bit if val is not zero.
908 */
909 fs_reg zero = retype(brw_imm_uw(0), BRW_REGISTER_TYPE_HF);
910 bld.CMP(bld.null_reg_f(), op[0], zero, BRW_CONDITIONAL_NZ);
911
912 op[0].type = BRW_REGISTER_TYPE_UW;
913 result.type = BRW_REGISTER_TYPE_UW;
914 bld.AND(result, op[0], brw_imm_uw(0x8000u));
915
916 if (instr->op == nir_op_fsign)
917 inst = bld.OR(result, result, brw_imm_uw(0x3c00u));
918 else {
919 /* Use XOR here to get the result sign correct. */
920 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UW));
921 }
922
923 inst->predicate = BRW_PREDICATE_NORMAL;
924 } else if (type_sz(op[0].type) == 4) {
925 /* AND(val, 0x80000000) gives the sign bit.
926 *
927 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
928 * zero.
929 */
930 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
931
932 op[0].type = BRW_REGISTER_TYPE_UD;
933 result.type = BRW_REGISTER_TYPE_UD;
934 bld.AND(result, op[0], brw_imm_ud(0x80000000u));
935
936 if (instr->op == nir_op_fsign)
937 inst = bld.OR(result, result, brw_imm_ud(0x3f800000u));
938 else {
939 /* Use XOR here to get the result sign correct. */
940 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UD));
941 }
942
943 inst->predicate = BRW_PREDICATE_NORMAL;
944 } else {
945 /* For doubles we do the same but we need to consider:
946 *
947 * - 2-src instructions can't operate with 64-bit immediates
948 * - The sign is encoded in the high 32-bit of each DF
949 * - We need to produce a DF result.
950 */
951
952 fs_reg zero = vgrf(glsl_type::double_type);
953 bld.MOV(zero, setup_imm_df(bld, 0.0));
954 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
955
956 bld.MOV(result, zero);
957
958 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
959 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
960 brw_imm_ud(0x80000000u));
961
962 if (instr->op == nir_op_fsign) {
963 set_predicate(BRW_PREDICATE_NORMAL,
964 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
965 } else {
966 /* This could be done better in some cases. If the scale is an
967 * immediate with the low 32-bits all 0, emitting a separate XOR and
968 * OR would allow an algebraic optimization to remove the OR. There
969 * are currently zero instances of fsign(double(x))*IMM in shader-db
970 * or any test suite, so it is hard to care at this time.
971 */
972 fs_reg result_int64 = retype(result, BRW_REGISTER_TYPE_UQ);
973 inst = bld.XOR(result_int64, result_int64,
974 retype(op[1], BRW_REGISTER_TYPE_UQ));
975 }
976 }
977 }
978
979 /**
980 * Deteremine whether sources of a nir_op_fmul can be fused with a nir_op_fsign
981 *
982 * Checks the operands of a \c nir_op_fmul to determine whether or not
983 * \c emit_fsign could fuse the multiplication with the \c sign() calculation.
984 *
985 * \param instr The multiplication instruction
986 *
987 * \param fsign_src The source of \c instr that may or may not be a
988 * \c nir_op_fsign
989 */
990 static bool
991 can_fuse_fmul_fsign(nir_alu_instr *instr, unsigned fsign_src)
992 {
993 assert(instr->op == nir_op_fmul);
994
995 nir_alu_instr *const fsign_instr =
996 nir_src_as_alu_instr(instr->src[fsign_src].src);
997
998 /* Rules:
999 *
1000 * 1. instr->src[fsign_src] must be a nir_op_fsign.
1001 * 2. The nir_op_fsign can only be used by this multiplication.
1002 * 3. The source that is the nir_op_fsign does not have source modifiers.
1003 * \c emit_fsign only examines the source modifiers of the source of the
1004 * \c nir_op_fsign.
1005 *
1006 * The nir_op_fsign must also not have the saturate modifier, but steps
1007 * have already been taken (in nir_opt_algebraic) to ensure that.
1008 */
1009 return fsign_instr != NULL && fsign_instr->op == nir_op_fsign &&
1010 is_used_once(fsign_instr) &&
1011 !instr->src[fsign_src].abs && !instr->src[fsign_src].negate;
1012 }
1013
1014 void
1015 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr,
1016 bool need_dest)
1017 {
1018 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
1019 fs_inst *inst;
1020 unsigned execution_mode =
1021 bld.shader->nir->info.float_controls_execution_mode;
1022
1023 fs_reg op[4];
1024 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, need_dest);
1025
1026 switch (instr->op) {
1027 case nir_op_mov:
1028 case nir_op_vec2:
1029 case nir_op_vec3:
1030 case nir_op_vec4: {
1031 fs_reg temp = result;
1032 bool need_extra_copy = false;
1033 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1034 if (!instr->src[i].src.is_ssa &&
1035 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
1036 need_extra_copy = true;
1037 temp = bld.vgrf(result.type, 4);
1038 break;
1039 }
1040 }
1041
1042 for (unsigned i = 0; i < 4; i++) {
1043 if (!(instr->dest.write_mask & (1 << i)))
1044 continue;
1045
1046 if (instr->op == nir_op_mov) {
1047 inst = bld.MOV(offset(temp, bld, i),
1048 offset(op[0], bld, instr->src[0].swizzle[i]));
1049 } else {
1050 inst = bld.MOV(offset(temp, bld, i),
1051 offset(op[i], bld, instr->src[i].swizzle[0]));
1052 }
1053 inst->saturate = instr->dest.saturate;
1054 }
1055
1056 /* In this case the source and destination registers were the same,
1057 * so we need to insert an extra set of moves in order to deal with
1058 * any swizzling.
1059 */
1060 if (need_extra_copy) {
1061 for (unsigned i = 0; i < 4; i++) {
1062 if (!(instr->dest.write_mask & (1 << i)))
1063 continue;
1064
1065 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
1066 }
1067 }
1068 return;
1069 }
1070
1071 case nir_op_i2f32:
1072 case nir_op_u2f32:
1073 if (optimize_extract_to_float(instr, result))
1074 return;
1075 inst = bld.MOV(result, op[0]);
1076 inst->saturate = instr->dest.saturate;
1077 break;
1078
1079 case nir_op_f2f16_rtne:
1080 case nir_op_f2f16_rtz:
1081 case nir_op_f2f16: {
1082 brw_rnd_mode rnd = BRW_RND_MODE_UNSPECIFIED;
1083
1084 if (nir_op_f2f16 == instr->op)
1085 rnd = brw_rnd_mode_from_execution_mode(execution_mode);
1086 else
1087 rnd = brw_rnd_mode_from_nir_op(instr->op);
1088
1089 if (BRW_RND_MODE_UNSPECIFIED != rnd)
1090 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(), brw_imm_d(rnd));
1091
1092 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
1093 * on the HW gen, it is a special hw opcode or just a MOV, and
1094 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
1095 *
1096 * But if we want to use that opcode, we need to provide support on
1097 * different optimizations and lowerings. As right now HF support is
1098 * only for gen8+, it will be better to use directly the MOV, and use
1099 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
1100 */
1101 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1102 inst = bld.MOV(result, op[0]);
1103 inst->saturate = instr->dest.saturate;
1104 break;
1105 }
1106
1107 case nir_op_b2i8:
1108 case nir_op_b2i16:
1109 case nir_op_b2i32:
1110 case nir_op_b2i64:
1111 case nir_op_b2f16:
1112 case nir_op_b2f32:
1113 case nir_op_b2f64:
1114 if (try_emit_b2fi_of_inot(bld, result, instr))
1115 break;
1116 op[0].type = BRW_REGISTER_TYPE_D;
1117 op[0].negate = !op[0].negate;
1118 /* fallthrough */
1119 case nir_op_i2f64:
1120 case nir_op_i2i64:
1121 case nir_op_u2f64:
1122 case nir_op_u2u64:
1123 case nir_op_f2f64:
1124 case nir_op_f2i64:
1125 case nir_op_f2u64:
1126 case nir_op_i2i32:
1127 case nir_op_u2u32:
1128 case nir_op_f2i32:
1129 case nir_op_f2u32:
1130 case nir_op_i2f16:
1131 case nir_op_i2i16:
1132 case nir_op_u2f16:
1133 case nir_op_u2u16:
1134 case nir_op_f2i16:
1135 case nir_op_f2u16:
1136 case nir_op_i2i8:
1137 case nir_op_u2u8:
1138 case nir_op_f2i8:
1139 case nir_op_f2u8:
1140 if (result.type == BRW_REGISTER_TYPE_B ||
1141 result.type == BRW_REGISTER_TYPE_UB ||
1142 result.type == BRW_REGISTER_TYPE_HF)
1143 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1144
1145 if (op[0].type == BRW_REGISTER_TYPE_B ||
1146 op[0].type == BRW_REGISTER_TYPE_UB ||
1147 op[0].type == BRW_REGISTER_TYPE_HF)
1148 assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1149
1150 inst = bld.MOV(result, op[0]);
1151 inst->saturate = instr->dest.saturate;
1152 break;
1153
1154 case nir_op_fsat:
1155 inst = bld.MOV(result, op[0]);
1156 inst->saturate = true;
1157 break;
1158
1159 case nir_op_fneg:
1160 case nir_op_ineg:
1161 op[0].negate = true;
1162 inst = bld.MOV(result, op[0]);
1163 if (instr->op == nir_op_fneg)
1164 inst->saturate = instr->dest.saturate;
1165 break;
1166
1167 case nir_op_fabs:
1168 case nir_op_iabs:
1169 op[0].negate = false;
1170 op[0].abs = true;
1171 inst = bld.MOV(result, op[0]);
1172 if (instr->op == nir_op_fabs)
1173 inst->saturate = instr->dest.saturate;
1174 break;
1175
1176 case nir_op_f2f32:
1177 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1178 brw_rnd_mode rnd =
1179 brw_rnd_mode_from_execution_mode(execution_mode);
1180 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1181 brw_imm_d(rnd));
1182 }
1183
1184 if (op[0].type == BRW_REGISTER_TYPE_HF)
1185 assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1186
1187 inst = bld.MOV(result, op[0]);
1188 inst->saturate = instr->dest.saturate;
1189 break;
1190
1191 case nir_op_fsign:
1192 emit_fsign(bld, instr, result, op, 0);
1193 break;
1194
1195 case nir_op_frcp:
1196 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
1197 inst->saturate = instr->dest.saturate;
1198 break;
1199
1200 case nir_op_fexp2:
1201 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
1202 inst->saturate = instr->dest.saturate;
1203 break;
1204
1205 case nir_op_flog2:
1206 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
1207 inst->saturate = instr->dest.saturate;
1208 break;
1209
1210 case nir_op_fsin:
1211 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
1212 inst->saturate = instr->dest.saturate;
1213 break;
1214
1215 case nir_op_fcos:
1216 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
1217 inst->saturate = instr->dest.saturate;
1218 break;
1219
1220 case nir_op_fddx:
1221 if (fs_key->high_quality_derivatives) {
1222 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1223 } else {
1224 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1225 }
1226 inst->saturate = instr->dest.saturate;
1227 break;
1228 case nir_op_fddx_fine:
1229 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1230 inst->saturate = instr->dest.saturate;
1231 break;
1232 case nir_op_fddx_coarse:
1233 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1234 inst->saturate = instr->dest.saturate;
1235 break;
1236 case nir_op_fddy:
1237 if (fs_key->high_quality_derivatives) {
1238 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1239 } else {
1240 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1241 }
1242 inst->saturate = instr->dest.saturate;
1243 break;
1244 case nir_op_fddy_fine:
1245 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1246 inst->saturate = instr->dest.saturate;
1247 break;
1248 case nir_op_fddy_coarse:
1249 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1250 inst->saturate = instr->dest.saturate;
1251 break;
1252
1253 case nir_op_fadd:
1254 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1255 brw_rnd_mode rnd =
1256 brw_rnd_mode_from_execution_mode(execution_mode);
1257 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1258 brw_imm_d(rnd));
1259 }
1260 /* fallthrough */
1261 case nir_op_iadd:
1262 inst = bld.ADD(result, op[0], op[1]);
1263 inst->saturate = instr->dest.saturate;
1264 break;
1265
1266 case nir_op_uadd_sat:
1267 inst = bld.ADD(result, op[0], op[1]);
1268 inst->saturate = true;
1269 break;
1270
1271 case nir_op_fmul:
1272 for (unsigned i = 0; i < 2; i++) {
1273 if (can_fuse_fmul_fsign(instr, i)) {
1274 emit_fsign(bld, instr, result, op, i);
1275 return;
1276 }
1277 }
1278
1279 /* We emit the rounding mode after the previous fsign optimization since
1280 * it won't result in a MUL, but will try to negate the value by other
1281 * means.
1282 */
1283 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1284 brw_rnd_mode rnd =
1285 brw_rnd_mode_from_execution_mode(execution_mode);
1286 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1287 brw_imm_d(rnd));
1288 }
1289
1290 inst = bld.MUL(result, op[0], op[1]);
1291 inst->saturate = instr->dest.saturate;
1292 break;
1293
1294 case nir_op_imul_2x32_64:
1295 case nir_op_umul_2x32_64:
1296 bld.MUL(result, op[0], op[1]);
1297 break;
1298
1299 case nir_op_imul:
1300 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1301 bld.MUL(result, op[0], op[1]);
1302 break;
1303
1304 case nir_op_imul_high:
1305 case nir_op_umul_high:
1306 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1307 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1308 break;
1309
1310 case nir_op_idiv:
1311 case nir_op_udiv:
1312 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1313 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1314 break;
1315
1316 case nir_op_uadd_carry:
1317 unreachable("Should have been lowered by carry_to_arith().");
1318
1319 case nir_op_usub_borrow:
1320 unreachable("Should have been lowered by borrow_to_arith().");
1321
1322 case nir_op_umod:
1323 case nir_op_irem:
1324 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1325 * appears that our hardware just does the right thing for signed
1326 * remainder.
1327 */
1328 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1329 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1330 break;
1331
1332 case nir_op_imod: {
1333 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1334 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1335
1336 /* Math instructions don't support conditional mod */
1337 inst = bld.MOV(bld.null_reg_d(), result);
1338 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1339
1340 /* Now, we need to determine if signs of the sources are different.
1341 * When we XOR the sources, the top bit is 0 if they are the same and 1
1342 * if they are different. We can then use a conditional modifier to
1343 * turn that into a predicate. This leads us to an XOR.l instruction.
1344 *
1345 * Technically, according to the PRM, you're not allowed to use .l on a
1346 * XOR instruction. However, emperical experiments and Curro's reading
1347 * of the simulator source both indicate that it's safe.
1348 */
1349 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1350 inst = bld.XOR(tmp, op[0], op[1]);
1351 inst->predicate = BRW_PREDICATE_NORMAL;
1352 inst->conditional_mod = BRW_CONDITIONAL_L;
1353
1354 /* If the result of the initial remainder operation is non-zero and the
1355 * two sources have different signs, add in a copy of op[1] to get the
1356 * final integer modulus value.
1357 */
1358 inst = bld.ADD(result, result, op[1]);
1359 inst->predicate = BRW_PREDICATE_NORMAL;
1360 break;
1361 }
1362
1363 case nir_op_flt32:
1364 case nir_op_fge32:
1365 case nir_op_feq32:
1366 case nir_op_fne32: {
1367 fs_reg dest = result;
1368
1369 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1370 if (bit_size != 32)
1371 dest = bld.vgrf(op[0].type, 1);
1372
1373 bld.CMP(dest, op[0], op[1], brw_cmod_for_nir_comparison(instr->op));
1374
1375 if (bit_size > 32) {
1376 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1377 } else if(bit_size < 32) {
1378 /* When we convert the result to 32-bit we need to be careful and do
1379 * it as a signed conversion to get sign extension (for 32-bit true)
1380 */
1381 const brw_reg_type src_type =
1382 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1383
1384 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1385 }
1386 break;
1387 }
1388
1389 case nir_op_ilt32:
1390 case nir_op_ult32:
1391 case nir_op_ige32:
1392 case nir_op_uge32:
1393 case nir_op_ieq32:
1394 case nir_op_ine32: {
1395 fs_reg dest = result;
1396
1397 /* On Gen11 we have an additional issue being that src1 cannot be a byte
1398 * type. So we convert both operands for the comparison.
1399 */
1400 fs_reg temp_op[2];
1401 temp_op[0] = bld.fix_byte_src(op[0]);
1402 temp_op[1] = bld.fix_byte_src(op[1]);
1403
1404 const uint32_t bit_size = type_sz(temp_op[0].type) * 8;
1405 if (bit_size != 32)
1406 dest = bld.vgrf(temp_op[0].type, 1);
1407
1408 bld.CMP(dest, temp_op[0], temp_op[1],
1409 brw_cmod_for_nir_comparison(instr->op));
1410
1411 if (bit_size > 32) {
1412 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1413 } else if (bit_size < 32) {
1414 /* When we convert the result to 32-bit we need to be careful and do
1415 * it as a signed conversion to get sign extension (for 32-bit true)
1416 */
1417 const brw_reg_type src_type =
1418 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1419
1420 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1421 }
1422 break;
1423 }
1424
1425 case nir_op_inot:
1426 if (devinfo->gen >= 8) {
1427 nir_alu_instr *inot_src_instr = nir_src_as_alu_instr(instr->src[0].src);
1428
1429 if (inot_src_instr != NULL &&
1430 (inot_src_instr->op == nir_op_ior ||
1431 inot_src_instr->op == nir_op_ixor ||
1432 inot_src_instr->op == nir_op_iand) &&
1433 !inot_src_instr->src[0].abs &&
1434 !inot_src_instr->src[0].negate &&
1435 !inot_src_instr->src[1].abs &&
1436 !inot_src_instr->src[1].negate) {
1437 /* The sources of the source logical instruction are now the
1438 * sources of the instruction that will be generated.
1439 */
1440 prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1441 resolve_inot_sources(bld, inot_src_instr, op);
1442
1443 /* Smash all of the sources and destination to be signed. This
1444 * doesn't matter for the operation of the instruction, but cmod
1445 * propagation fails on unsigned sources with negation (due to
1446 * fs_inst::can_do_cmod returning false).
1447 */
1448 result.type =
1449 brw_type_for_nir_type(devinfo,
1450 (nir_alu_type)(nir_type_int |
1451 nir_dest_bit_size(instr->dest.dest)));
1452 op[0].type =
1453 brw_type_for_nir_type(devinfo,
1454 (nir_alu_type)(nir_type_int |
1455 nir_src_bit_size(inot_src_instr->src[0].src)));
1456 op[1].type =
1457 brw_type_for_nir_type(devinfo,
1458 (nir_alu_type)(nir_type_int |
1459 nir_src_bit_size(inot_src_instr->src[1].src)));
1460
1461 /* For XOR, only invert one of the sources. Arbitrarily choose
1462 * the first source.
1463 */
1464 op[0].negate = !op[0].negate;
1465 if (inot_src_instr->op != nir_op_ixor)
1466 op[1].negate = !op[1].negate;
1467
1468 switch (inot_src_instr->op) {
1469 case nir_op_ior:
1470 bld.AND(result, op[0], op[1]);
1471 return;
1472
1473 case nir_op_iand:
1474 bld.OR(result, op[0], op[1]);
1475 return;
1476
1477 case nir_op_ixor:
1478 bld.XOR(result, op[0], op[1]);
1479 return;
1480
1481 default:
1482 unreachable("impossible opcode");
1483 }
1484 }
1485 op[0] = resolve_source_modifiers(op[0]);
1486 }
1487 bld.NOT(result, op[0]);
1488 break;
1489 case nir_op_ixor:
1490 if (devinfo->gen >= 8) {
1491 resolve_inot_sources(bld, instr, op);
1492 }
1493 bld.XOR(result, op[0], op[1]);
1494 break;
1495 case nir_op_ior:
1496 if (devinfo->gen >= 8) {
1497 resolve_inot_sources(bld, instr, op);
1498 }
1499 bld.OR(result, op[0], op[1]);
1500 break;
1501 case nir_op_iand:
1502 if (devinfo->gen >= 8) {
1503 resolve_inot_sources(bld, instr, op);
1504 }
1505 bld.AND(result, op[0], op[1]);
1506 break;
1507
1508 case nir_op_fdot2:
1509 case nir_op_fdot3:
1510 case nir_op_fdot4:
1511 case nir_op_b32all_fequal2:
1512 case nir_op_b32all_iequal2:
1513 case nir_op_b32all_fequal3:
1514 case nir_op_b32all_iequal3:
1515 case nir_op_b32all_fequal4:
1516 case nir_op_b32all_iequal4:
1517 case nir_op_b32any_fnequal2:
1518 case nir_op_b32any_inequal2:
1519 case nir_op_b32any_fnequal3:
1520 case nir_op_b32any_inequal3:
1521 case nir_op_b32any_fnequal4:
1522 case nir_op_b32any_inequal4:
1523 unreachable("Lowered by nir_lower_alu_reductions");
1524
1525 case nir_op_fnoise1_1:
1526 case nir_op_fnoise1_2:
1527 case nir_op_fnoise1_3:
1528 case nir_op_fnoise1_4:
1529 case nir_op_fnoise2_1:
1530 case nir_op_fnoise2_2:
1531 case nir_op_fnoise2_3:
1532 case nir_op_fnoise2_4:
1533 case nir_op_fnoise3_1:
1534 case nir_op_fnoise3_2:
1535 case nir_op_fnoise3_3:
1536 case nir_op_fnoise3_4:
1537 case nir_op_fnoise4_1:
1538 case nir_op_fnoise4_2:
1539 case nir_op_fnoise4_3:
1540 case nir_op_fnoise4_4:
1541 unreachable("not reached: should be handled by lower_noise");
1542
1543 case nir_op_ldexp:
1544 unreachable("not reached: should be handled by ldexp_to_arith()");
1545
1546 case nir_op_fsqrt:
1547 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1548 inst->saturate = instr->dest.saturate;
1549 break;
1550
1551 case nir_op_frsq:
1552 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1553 inst->saturate = instr->dest.saturate;
1554 break;
1555
1556 case nir_op_i2b32:
1557 case nir_op_f2b32: {
1558 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1559 if (bit_size == 64) {
1560 /* two-argument instructions can't take 64-bit immediates */
1561 fs_reg zero;
1562 fs_reg tmp;
1563
1564 if (instr->op == nir_op_f2b32) {
1565 zero = vgrf(glsl_type::double_type);
1566 tmp = vgrf(glsl_type::double_type);
1567 bld.MOV(zero, setup_imm_df(bld, 0.0));
1568 } else {
1569 zero = vgrf(glsl_type::int64_t_type);
1570 tmp = vgrf(glsl_type::int64_t_type);
1571 bld.MOV(zero, brw_imm_q(0));
1572 }
1573
1574 /* A SIMD16 execution needs to be split in two instructions, so use
1575 * a vgrf instead of the flag register as dst so instruction splitting
1576 * works
1577 */
1578 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1579 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1580 } else {
1581 fs_reg zero;
1582 if (bit_size == 32) {
1583 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1584 } else {
1585 assert(bit_size == 16);
1586 zero = instr->op == nir_op_f2b32 ?
1587 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1588 }
1589 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1590 }
1591 break;
1592 }
1593
1594 case nir_op_ftrunc:
1595 inst = bld.RNDZ(result, op[0]);
1596 inst->saturate = instr->dest.saturate;
1597 break;
1598
1599 case nir_op_fceil: {
1600 op[0].negate = !op[0].negate;
1601 fs_reg temp = vgrf(glsl_type::float_type);
1602 bld.RNDD(temp, op[0]);
1603 temp.negate = true;
1604 inst = bld.MOV(result, temp);
1605 inst->saturate = instr->dest.saturate;
1606 break;
1607 }
1608 case nir_op_ffloor:
1609 inst = bld.RNDD(result, op[0]);
1610 inst->saturate = instr->dest.saturate;
1611 break;
1612 case nir_op_ffract:
1613 inst = bld.FRC(result, op[0]);
1614 inst->saturate = instr->dest.saturate;
1615 break;
1616 case nir_op_fround_even:
1617 inst = bld.RNDE(result, op[0]);
1618 inst->saturate = instr->dest.saturate;
1619 break;
1620
1621 case nir_op_fquantize2f16: {
1622 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1623 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1624 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1625
1626 /* The destination stride must be at least as big as the source stride. */
1627 tmp16.type = BRW_REGISTER_TYPE_W;
1628 tmp16.stride = 2;
1629
1630 /* Check for denormal */
1631 fs_reg abs_src0 = op[0];
1632 abs_src0.abs = true;
1633 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1634 BRW_CONDITIONAL_L);
1635 /* Get the appropriately signed zero */
1636 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1637 retype(op[0], BRW_REGISTER_TYPE_UD),
1638 brw_imm_ud(0x80000000));
1639 /* Do the actual F32 -> F16 -> F32 conversion */
1640 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1641 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1642 /* Select that or zero based on normal status */
1643 inst = bld.SEL(result, zero, tmp32);
1644 inst->predicate = BRW_PREDICATE_NORMAL;
1645 inst->saturate = instr->dest.saturate;
1646 break;
1647 }
1648
1649 case nir_op_imin:
1650 case nir_op_umin:
1651 case nir_op_fmin:
1652 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1653 inst->saturate = instr->dest.saturate;
1654 break;
1655
1656 case nir_op_imax:
1657 case nir_op_umax:
1658 case nir_op_fmax:
1659 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1660 inst->saturate = instr->dest.saturate;
1661 break;
1662
1663 case nir_op_pack_snorm_2x16:
1664 case nir_op_pack_snorm_4x8:
1665 case nir_op_pack_unorm_2x16:
1666 case nir_op_pack_unorm_4x8:
1667 case nir_op_unpack_snorm_2x16:
1668 case nir_op_unpack_snorm_4x8:
1669 case nir_op_unpack_unorm_2x16:
1670 case nir_op_unpack_unorm_4x8:
1671 case nir_op_unpack_half_2x16:
1672 case nir_op_pack_half_2x16:
1673 unreachable("not reached: should be handled by lower_packing_builtins");
1674
1675 case nir_op_unpack_half_2x16_split_x_flush_to_zero:
1676 assert(FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 & execution_mode);
1677 /* Fall-through */
1678 case nir_op_unpack_half_2x16_split_x:
1679 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1680 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1681 inst->saturate = instr->dest.saturate;
1682 break;
1683
1684 case nir_op_unpack_half_2x16_split_y_flush_to_zero:
1685 assert(FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 & execution_mode);
1686 /* Fall-through */
1687 case nir_op_unpack_half_2x16_split_y:
1688 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1689 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1690 inst->saturate = instr->dest.saturate;
1691 break;
1692
1693 case nir_op_pack_64_2x32_split:
1694 case nir_op_pack_32_2x16_split:
1695 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1696 break;
1697
1698 case nir_op_unpack_64_2x32_split_x:
1699 case nir_op_unpack_64_2x32_split_y: {
1700 if (instr->op == nir_op_unpack_64_2x32_split_x)
1701 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1702 else
1703 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1704 break;
1705 }
1706
1707 case nir_op_unpack_32_2x16_split_x:
1708 case nir_op_unpack_32_2x16_split_y: {
1709 if (instr->op == nir_op_unpack_32_2x16_split_x)
1710 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1711 else
1712 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1713 break;
1714 }
1715
1716 case nir_op_fpow:
1717 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1718 inst->saturate = instr->dest.saturate;
1719 break;
1720
1721 case nir_op_bitfield_reverse:
1722 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1723 bld.BFREV(result, op[0]);
1724 break;
1725
1726 case nir_op_bit_count:
1727 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1728 bld.CBIT(result, op[0]);
1729 break;
1730
1731 case nir_op_ufind_msb: {
1732 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1733 emit_find_msb_using_lzd(bld, result, op[0], false);
1734 break;
1735 }
1736
1737 case nir_op_ifind_msb: {
1738 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1739
1740 if (devinfo->gen < 7) {
1741 emit_find_msb_using_lzd(bld, result, op[0], true);
1742 } else {
1743 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1744
1745 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1746 * count from the LSB side. If FBH didn't return an error
1747 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1748 * count into an LSB count.
1749 */
1750 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1751
1752 inst = bld.ADD(result, result, brw_imm_d(31));
1753 inst->predicate = BRW_PREDICATE_NORMAL;
1754 inst->src[0].negate = true;
1755 }
1756 break;
1757 }
1758
1759 case nir_op_find_lsb:
1760 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1761
1762 if (devinfo->gen < 7) {
1763 fs_reg temp = vgrf(glsl_type::int_type);
1764
1765 /* (x & -x) generates a value that consists of only the LSB of x.
1766 * For all powers of 2, findMSB(y) == findLSB(y).
1767 */
1768 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1769 fs_reg negated_src = src;
1770
1771 /* One must be negated, and the other must be non-negated. It
1772 * doesn't matter which is which.
1773 */
1774 negated_src.negate = true;
1775 src.negate = false;
1776
1777 bld.AND(temp, src, negated_src);
1778 emit_find_msb_using_lzd(bld, result, temp, false);
1779 } else {
1780 bld.FBL(result, op[0]);
1781 }
1782 break;
1783
1784 case nir_op_ubitfield_extract:
1785 case nir_op_ibitfield_extract:
1786 unreachable("should have been lowered");
1787 case nir_op_ubfe:
1788 case nir_op_ibfe:
1789 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1790 bld.BFE(result, op[2], op[1], op[0]);
1791 break;
1792 case nir_op_bfm:
1793 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1794 bld.BFI1(result, op[0], op[1]);
1795 break;
1796 case nir_op_bfi:
1797 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1798 bld.BFI2(result, op[0], op[1], op[2]);
1799 break;
1800
1801 case nir_op_bitfield_insert:
1802 unreachable("not reached: should have been lowered");
1803
1804 case nir_op_ishl:
1805 bld.SHL(result, op[0], op[1]);
1806 break;
1807 case nir_op_ishr:
1808 bld.ASR(result, op[0], op[1]);
1809 break;
1810 case nir_op_ushr:
1811 bld.SHR(result, op[0], op[1]);
1812 break;
1813
1814 case nir_op_urol:
1815 bld.ROL(result, op[0], op[1]);
1816 break;
1817 case nir_op_uror:
1818 bld.ROR(result, op[0], op[1]);
1819 break;
1820
1821 case nir_op_pack_half_2x16_split:
1822 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1823 break;
1824
1825 case nir_op_ffma:
1826 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1827 brw_rnd_mode rnd =
1828 brw_rnd_mode_from_execution_mode(execution_mode);
1829 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1830 brw_imm_d(rnd));
1831 }
1832
1833 inst = bld.MAD(result, op[2], op[1], op[0]);
1834 inst->saturate = instr->dest.saturate;
1835 break;
1836
1837 case nir_op_flrp:
1838 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1839 brw_rnd_mode rnd =
1840 brw_rnd_mode_from_execution_mode(execution_mode);
1841 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1842 brw_imm_d(rnd));
1843 }
1844
1845 inst = bld.LRP(result, op[0], op[1], op[2]);
1846 inst->saturate = instr->dest.saturate;
1847 break;
1848
1849 case nir_op_b32csel:
1850 if (optimize_frontfacing_ternary(instr, result))
1851 return;
1852
1853 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1854 inst = bld.SEL(result, op[1], op[2]);
1855 inst->predicate = BRW_PREDICATE_NORMAL;
1856 break;
1857
1858 case nir_op_extract_u8:
1859 case nir_op_extract_i8: {
1860 unsigned byte = nir_src_as_uint(instr->src[1].src);
1861
1862 /* The PRMs say:
1863 *
1864 * BDW+
1865 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1866 * Use two instructions and a word or DWord intermediate integer type.
1867 */
1868 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1869 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1870
1871 if (instr->op == nir_op_extract_i8) {
1872 /* If we need to sign extend, extract to a word first */
1873 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1874 bld.MOV(w_temp, subscript(op[0], type, byte));
1875 bld.MOV(result, w_temp);
1876 } else if (byte & 1) {
1877 /* Extract the high byte from the word containing the desired byte
1878 * offset.
1879 */
1880 bld.SHR(result,
1881 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1882 brw_imm_uw(8));
1883 } else {
1884 /* Otherwise use an AND with 0xff and a word type */
1885 bld.AND(result,
1886 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1887 brw_imm_uw(0xff));
1888 }
1889 } else {
1890 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1891 bld.MOV(result, subscript(op[0], type, byte));
1892 }
1893 break;
1894 }
1895
1896 case nir_op_extract_u16:
1897 case nir_op_extract_i16: {
1898 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1899 unsigned word = nir_src_as_uint(instr->src[1].src);
1900 bld.MOV(result, subscript(op[0], type, word));
1901 break;
1902 }
1903
1904 default:
1905 unreachable("unhandled instruction");
1906 }
1907
1908 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1909 * to sign extend the low bit to 0/~0
1910 */
1911 if (devinfo->gen <= 5 &&
1912 !result.is_null() &&
1913 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1914 fs_reg masked = vgrf(glsl_type::int_type);
1915 bld.AND(masked, result, brw_imm_d(1));
1916 masked.negate = true;
1917 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1918 }
1919 }
1920
1921 void
1922 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1923 nir_load_const_instr *instr)
1924 {
1925 const brw_reg_type reg_type =
1926 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1927 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1928
1929 switch (instr->def.bit_size) {
1930 case 8:
1931 for (unsigned i = 0; i < instr->def.num_components; i++)
1932 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value[i].i8));
1933 break;
1934
1935 case 16:
1936 for (unsigned i = 0; i < instr->def.num_components; i++)
1937 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value[i].i16));
1938 break;
1939
1940 case 32:
1941 for (unsigned i = 0; i < instr->def.num_components; i++)
1942 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value[i].i32));
1943 break;
1944
1945 case 64:
1946 assert(devinfo->gen >= 7);
1947 if (devinfo->gen == 7) {
1948 /* We don't get 64-bit integer types until gen8 */
1949 for (unsigned i = 0; i < instr->def.num_components; i++) {
1950 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1951 setup_imm_df(bld, instr->value[i].f64));
1952 }
1953 } else {
1954 for (unsigned i = 0; i < instr->def.num_components; i++)
1955 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value[i].i64));
1956 }
1957 break;
1958
1959 default:
1960 unreachable("Invalid bit size");
1961 }
1962
1963 nir_ssa_values[instr->def.index] = reg;
1964 }
1965
1966 fs_reg
1967 fs_visitor::get_nir_src(const nir_src &src)
1968 {
1969 fs_reg reg;
1970 if (src.is_ssa) {
1971 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1972 const brw_reg_type reg_type =
1973 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1974 reg = bld.vgrf(reg_type, src.ssa->num_components);
1975 } else {
1976 reg = nir_ssa_values[src.ssa->index];
1977 }
1978 } else {
1979 /* We don't handle indirects on locals */
1980 assert(src.reg.indirect == NULL);
1981 reg = offset(nir_locals[src.reg.reg->index], bld,
1982 src.reg.base_offset * src.reg.reg->num_components);
1983 }
1984
1985 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1986 /* The only 64-bit type available on gen7 is DF, so use that. */
1987 reg.type = BRW_REGISTER_TYPE_DF;
1988 } else {
1989 /* To avoid floating-point denorm flushing problems, set the type by
1990 * default to an integer type - instructions that need floating point
1991 * semantics will set this to F if they need to
1992 */
1993 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1994 BRW_REGISTER_TYPE_D);
1995 }
1996
1997 return reg;
1998 }
1999
2000 /**
2001 * Return an IMM for constants; otherwise call get_nir_src() as normal.
2002 *
2003 * This function should not be called on any value which may be 64 bits.
2004 * We could theoretically support 64-bit on gen8+ but we choose not to
2005 * because it wouldn't work in general (no gen7 support) and there are
2006 * enough restrictions in 64-bit immediates that you can't take the return
2007 * value and treat it the same as the result of get_nir_src().
2008 */
2009 fs_reg
2010 fs_visitor::get_nir_src_imm(const nir_src &src)
2011 {
2012 assert(nir_src_bit_size(src) == 32);
2013 return nir_src_is_const(src) ?
2014 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
2015 }
2016
2017 fs_reg
2018 fs_visitor::get_nir_dest(const nir_dest &dest)
2019 {
2020 if (dest.is_ssa) {
2021 const brw_reg_type reg_type =
2022 brw_reg_type_from_bit_size(dest.ssa.bit_size,
2023 dest.ssa.bit_size == 8 ?
2024 BRW_REGISTER_TYPE_D :
2025 BRW_REGISTER_TYPE_F);
2026 nir_ssa_values[dest.ssa.index] =
2027 bld.vgrf(reg_type, dest.ssa.num_components);
2028 bld.UNDEF(nir_ssa_values[dest.ssa.index]);
2029 return nir_ssa_values[dest.ssa.index];
2030 } else {
2031 /* We don't handle indirects on locals */
2032 assert(dest.reg.indirect == NULL);
2033 return offset(nir_locals[dest.reg.reg->index], bld,
2034 dest.reg.base_offset * dest.reg.reg->num_components);
2035 }
2036 }
2037
2038 void
2039 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
2040 unsigned wr_mask)
2041 {
2042 for (unsigned i = 0; i < 4; i++) {
2043 if (!((wr_mask >> i) & 1))
2044 continue;
2045
2046 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
2047 new_inst->dst = offset(new_inst->dst, bld, i);
2048 for (unsigned j = 0; j < new_inst->sources; j++)
2049 if (new_inst->src[j].file == VGRF)
2050 new_inst->src[j] = offset(new_inst->src[j], bld, i);
2051
2052 bld.emit(new_inst);
2053 }
2054 }
2055
2056 static fs_inst *
2057 emit_pixel_interpolater_send(const fs_builder &bld,
2058 enum opcode opcode,
2059 const fs_reg &dst,
2060 const fs_reg &src,
2061 const fs_reg &desc,
2062 glsl_interp_mode interpolation)
2063 {
2064 struct brw_wm_prog_data *wm_prog_data =
2065 brw_wm_prog_data(bld.shader->stage_prog_data);
2066
2067 fs_inst *inst = bld.emit(opcode, dst, src, desc);
2068 /* 2 floats per slot returned */
2069 inst->size_written = 2 * dst.component_size(inst->exec_size);
2070 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
2071
2072 wm_prog_data->pulls_bary = true;
2073
2074 return inst;
2075 }
2076
2077 /**
2078 * Computes 1 << x, given a D/UD register containing some value x.
2079 */
2080 static fs_reg
2081 intexp2(const fs_builder &bld, const fs_reg &x)
2082 {
2083 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
2084
2085 fs_reg result = bld.vgrf(x.type, 1);
2086 fs_reg one = bld.vgrf(x.type, 1);
2087
2088 bld.MOV(one, retype(brw_imm_d(1), one.type));
2089 bld.SHL(result, one, x);
2090 return result;
2091 }
2092
2093 void
2094 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
2095 {
2096 assert(stage == MESA_SHADER_GEOMETRY);
2097
2098 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2099
2100 if (gs_compile->control_data_header_size_bits == 0)
2101 return;
2102
2103 /* We can only do EndPrimitive() functionality when the control data
2104 * consists of cut bits. Fortunately, the only time it isn't is when the
2105 * output type is points, in which case EndPrimitive() is a no-op.
2106 */
2107 if (gs_prog_data->control_data_format !=
2108 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
2109 return;
2110 }
2111
2112 /* Cut bits use one bit per vertex. */
2113 assert(gs_compile->control_data_bits_per_vertex == 1);
2114
2115 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2116 vertex_count.type = BRW_REGISTER_TYPE_UD;
2117
2118 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
2119 * vertex n, 0 otherwise. So all we need to do here is mark bit
2120 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
2121 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
2122 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
2123 *
2124 * Note that if EndPrimitive() is called before emitting any vertices, this
2125 * will cause us to set bit 31 of the control_data_bits register to 1.
2126 * That's fine because:
2127 *
2128 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
2129 * output, so the hardware will ignore cut bit 31.
2130 *
2131 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
2132 * last vertex, so setting cut bit 31 has no effect (since the primitive
2133 * is automatically ended when the GS terminates).
2134 *
2135 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
2136 * control_data_bits register to 0 when the first vertex is emitted.
2137 */
2138
2139 const fs_builder abld = bld.annotate("end primitive");
2140
2141 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
2142 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2143 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2144 fs_reg mask = intexp2(abld, prev_count);
2145 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2146 * attention to the lower 5 bits of its second source argument, so on this
2147 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
2148 * ((vertex_count - 1) % 32).
2149 */
2150 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2151 }
2152
2153 void
2154 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
2155 {
2156 assert(stage == MESA_SHADER_GEOMETRY);
2157 assert(gs_compile->control_data_bits_per_vertex != 0);
2158
2159 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2160
2161 const fs_builder abld = bld.annotate("emit control data bits");
2162 const fs_builder fwa_bld = bld.exec_all();
2163
2164 /* We use a single UD register to accumulate control data bits (32 bits
2165 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
2166 * at a time.
2167 *
2168 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
2169 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
2170 * use the Channel Mask phase to enable/disable which DWord within that
2171 * group to write. (Remember, different SIMD8 channels may have emitted
2172 * different numbers of vertices, so we may need per-slot offsets.)
2173 *
2174 * Channel masking presents an annoying problem: we may have to replicate
2175 * the data up to 4 times:
2176 *
2177 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
2178 *
2179 * To avoid penalizing shaders that emit a small number of vertices, we
2180 * can avoid these sometimes: if the size of the control data header is
2181 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
2182 * land in the same 128-bit group, so we can skip per-slot offsets.
2183 *
2184 * Similarly, if the control data header is <= 32 bits, there is only one
2185 * DWord, so we can skip channel masks.
2186 */
2187 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
2188
2189 fs_reg channel_mask, per_slot_offset;
2190
2191 if (gs_compile->control_data_header_size_bits > 32) {
2192 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2193 channel_mask = vgrf(glsl_type::uint_type);
2194 }
2195
2196 if (gs_compile->control_data_header_size_bits > 128) {
2197 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
2198 per_slot_offset = vgrf(glsl_type::uint_type);
2199 }
2200
2201 /* Figure out which DWord we're trying to write to using the formula:
2202 *
2203 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
2204 *
2205 * Since bits_per_vertex is a power of two, and is known at compile
2206 * time, this can be optimized to:
2207 *
2208 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
2209 */
2210 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
2211 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2212 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2213 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2214 unsigned log2_bits_per_vertex =
2215 util_last_bit(gs_compile->control_data_bits_per_vertex);
2216 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
2217
2218 if (per_slot_offset.file != BAD_FILE) {
2219 /* Set the per-slot offset to dword_index / 4, so that we'll write to
2220 * the appropriate OWord within the control data header.
2221 */
2222 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
2223 }
2224
2225 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
2226 * write to the appropriate DWORD within the OWORD.
2227 */
2228 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2229 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
2230 channel_mask = intexp2(fwa_bld, channel);
2231 /* Then the channel masks need to be in bits 23:16. */
2232 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2233 }
2234
2235 /* Store the control data bits in the message payload and send it. */
2236 unsigned mlen = 2;
2237 if (channel_mask.file != BAD_FILE)
2238 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2239 if (per_slot_offset.file != BAD_FILE)
2240 mlen++;
2241
2242 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2243 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2244 unsigned i = 0;
2245 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2246 if (per_slot_offset.file != BAD_FILE)
2247 sources[i++] = per_slot_offset;
2248 if (channel_mask.file != BAD_FILE)
2249 sources[i++] = channel_mask;
2250 while (i < mlen) {
2251 sources[i++] = this->control_data_bits;
2252 }
2253
2254 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2255 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2256 inst->mlen = mlen;
2257 /* We need to increment Global Offset by 256-bits to make room for
2258 * Broadwell's extra "Vertex Count" payload at the beginning of the
2259 * URB entry. Since this is an OWord message, Global Offset is counted
2260 * in 128-bit units, so we must set it to 2.
2261 */
2262 if (gs_prog_data->static_vertex_count == -1)
2263 inst->offset = 2;
2264 }
2265
2266 void
2267 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2268 unsigned stream_id)
2269 {
2270 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2271
2272 /* Note: we are calling this *before* increasing vertex_count, so
2273 * this->vertex_count == vertex_count - 1 in the formula above.
2274 */
2275
2276 /* Stream mode uses 2 bits per vertex */
2277 assert(gs_compile->control_data_bits_per_vertex == 2);
2278
2279 /* Must be a valid stream */
2280 assert(stream_id < MAX_VERTEX_STREAMS);
2281
2282 /* Control data bits are initialized to 0 so we don't have to set any
2283 * bits when sending vertices to stream 0.
2284 */
2285 if (stream_id == 0)
2286 return;
2287
2288 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2289
2290 /* reg::sid = stream_id */
2291 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2292 abld.MOV(sid, brw_imm_ud(stream_id));
2293
2294 /* reg:shift_count = 2 * (vertex_count - 1) */
2295 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2296 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2297
2298 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2299 * attention to the lower 5 bits of its second source argument, so on this
2300 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2301 * stream_id << ((2 * (vertex_count - 1)) % 32).
2302 */
2303 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2304 abld.SHL(mask, sid, shift_count);
2305 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2306 }
2307
2308 void
2309 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2310 unsigned stream_id)
2311 {
2312 assert(stage == MESA_SHADER_GEOMETRY);
2313
2314 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2315
2316 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2317 vertex_count.type = BRW_REGISTER_TYPE_UD;
2318
2319 /* Haswell and later hardware ignores the "Render Stream Select" bits
2320 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2321 * and instead sends all primitives down the pipeline for rasterization.
2322 * If the SOL stage is enabled, "Render Stream Select" is honored and
2323 * primitives bound to non-zero streams are discarded after stream output.
2324 *
2325 * Since the only purpose of primives sent to non-zero streams is to
2326 * be recorded by transform feedback, we can simply discard all geometry
2327 * bound to these streams when transform feedback is disabled.
2328 */
2329 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2330 return;
2331
2332 /* If we're outputting 32 control data bits or less, then we can wait
2333 * until the shader is over to output them all. Otherwise we need to
2334 * output them as we go. Now is the time to do it, since we're about to
2335 * output the vertex_count'th vertex, so it's guaranteed that the
2336 * control data bits associated with the (vertex_count - 1)th vertex are
2337 * correct.
2338 */
2339 if (gs_compile->control_data_header_size_bits > 32) {
2340 const fs_builder abld =
2341 bld.annotate("emit vertex: emit control data bits");
2342
2343 /* Only emit control data bits if we've finished accumulating a batch
2344 * of 32 bits. This is the case when:
2345 *
2346 * (vertex_count * bits_per_vertex) % 32 == 0
2347 *
2348 * (in other words, when the last 5 bits of vertex_count *
2349 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2350 * integer n (which is always the case, since bits_per_vertex is
2351 * always 1 or 2), this is equivalent to requiring that the last 5-n
2352 * bits of vertex_count are 0:
2353 *
2354 * vertex_count & (2^(5-n) - 1) == 0
2355 *
2356 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2357 * equivalent to:
2358 *
2359 * vertex_count & (32 / bits_per_vertex - 1) == 0
2360 *
2361 * TODO: If vertex_count is an immediate, we could do some of this math
2362 * at compile time...
2363 */
2364 fs_inst *inst =
2365 abld.AND(bld.null_reg_d(), vertex_count,
2366 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2367 inst->conditional_mod = BRW_CONDITIONAL_Z;
2368
2369 abld.IF(BRW_PREDICATE_NORMAL);
2370 /* If vertex_count is 0, then no control data bits have been
2371 * accumulated yet, so we can skip emitting them.
2372 */
2373 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2374 BRW_CONDITIONAL_NEQ);
2375 abld.IF(BRW_PREDICATE_NORMAL);
2376 emit_gs_control_data_bits(vertex_count);
2377 abld.emit(BRW_OPCODE_ENDIF);
2378
2379 /* Reset control_data_bits to 0 so we can start accumulating a new
2380 * batch.
2381 *
2382 * Note: in the case where vertex_count == 0, this neutralizes the
2383 * effect of any call to EndPrimitive() that the shader may have
2384 * made before outputting its first vertex.
2385 */
2386 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2387 inst->force_writemask_all = true;
2388 abld.emit(BRW_OPCODE_ENDIF);
2389 }
2390
2391 emit_urb_writes(vertex_count);
2392
2393 /* In stream mode we have to set control data bits for all vertices
2394 * unless we have disabled control data bits completely (which we do
2395 * do for GL_POINTS outputs that don't use streams).
2396 */
2397 if (gs_compile->control_data_header_size_bits > 0 &&
2398 gs_prog_data->control_data_format ==
2399 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2400 set_gs_stream_control_data_bits(vertex_count, stream_id);
2401 }
2402 }
2403
2404 void
2405 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2406 const nir_src &vertex_src,
2407 unsigned base_offset,
2408 const nir_src &offset_src,
2409 unsigned num_components,
2410 unsigned first_component)
2411 {
2412 assert(type_sz(dst.type) == 4);
2413 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2414 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2415
2416 /* TODO: figure out push input layout for invocations == 1 */
2417 if (gs_prog_data->invocations == 1 &&
2418 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2419 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2420 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2421 nir_src_as_uint(vertex_src) * push_reg_count;
2422 for (unsigned i = 0; i < num_components; i++) {
2423 bld.MOV(offset(dst, bld, i),
2424 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2425 }
2426 return;
2427 }
2428
2429 /* Resort to the pull model. Ensure the VUE handles are provided. */
2430 assert(gs_prog_data->base.include_vue_handles);
2431
2432 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2433 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2434
2435 if (gs_prog_data->invocations == 1) {
2436 if (nir_src_is_const(vertex_src)) {
2437 /* The vertex index is constant; just select the proper URB handle. */
2438 icp_handle =
2439 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2440 BRW_REGISTER_TYPE_UD);
2441 } else {
2442 /* The vertex index is non-constant. We need to use indirect
2443 * addressing to fetch the proper URB handle.
2444 *
2445 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2446 * indicating that channel <n> should read the handle from
2447 * DWord <n>. We convert that to bytes by multiplying by 4.
2448 *
2449 * Next, we convert the vertex index to bytes by multiplying
2450 * by 32 (shifting by 5), and add the two together. This is
2451 * the final indirect byte offset.
2452 */
2453 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2454 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2455 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2456 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2457
2458 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2459 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2460 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2461 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2462 /* Convert vertex_index to bytes (multiply by 32) */
2463 bld.SHL(vertex_offset_bytes,
2464 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2465 brw_imm_ud(5u));
2466 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2467
2468 /* Use first_icp_handle as the base offset. There is one register
2469 * of URB handles per vertex, so inform the register allocator that
2470 * we might read up to nir->info.gs.vertices_in registers.
2471 */
2472 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2473 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2474 fs_reg(icp_offset_bytes),
2475 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2476 }
2477 } else {
2478 assert(gs_prog_data->invocations > 1);
2479
2480 if (nir_src_is_const(vertex_src)) {
2481 unsigned vertex = nir_src_as_uint(vertex_src);
2482 assert(devinfo->gen >= 9 || vertex <= 5);
2483 bld.MOV(icp_handle,
2484 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2485 BRW_REGISTER_TYPE_UD));
2486 } else {
2487 /* The vertex index is non-constant. We need to use indirect
2488 * addressing to fetch the proper URB handle.
2489 *
2490 */
2491 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2492
2493 /* Convert vertex_index to bytes (multiply by 4) */
2494 bld.SHL(icp_offset_bytes,
2495 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2496 brw_imm_ud(2u));
2497
2498 /* Use first_icp_handle as the base offset. There is one DWord
2499 * of URB handles per vertex, so inform the register allocator that
2500 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2501 */
2502 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2503 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2504 fs_reg(icp_offset_bytes),
2505 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2506 REG_SIZE));
2507 }
2508 }
2509
2510 fs_inst *inst;
2511 fs_reg indirect_offset = get_nir_src(offset_src);
2512
2513 if (nir_src_is_const(offset_src)) {
2514 /* Constant indexing - use global offset. */
2515 if (first_component != 0) {
2516 unsigned read_components = num_components + first_component;
2517 fs_reg tmp = bld.vgrf(dst.type, read_components);
2518 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2519 inst->size_written = read_components *
2520 tmp.component_size(inst->exec_size);
2521 for (unsigned i = 0; i < num_components; i++) {
2522 bld.MOV(offset(dst, bld, i),
2523 offset(tmp, bld, i + first_component));
2524 }
2525 } else {
2526 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2527 inst->size_written = num_components *
2528 dst.component_size(inst->exec_size);
2529 }
2530 inst->offset = base_offset + nir_src_as_uint(offset_src);
2531 inst->mlen = 1;
2532 } else {
2533 /* Indirect indexing - use per-slot offsets as well. */
2534 const fs_reg srcs[] = { icp_handle, indirect_offset };
2535 unsigned read_components = num_components + first_component;
2536 fs_reg tmp = bld.vgrf(dst.type, read_components);
2537 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2538 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2539 if (first_component != 0) {
2540 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2541 payload);
2542 inst->size_written = read_components *
2543 tmp.component_size(inst->exec_size);
2544 for (unsigned i = 0; i < num_components; i++) {
2545 bld.MOV(offset(dst, bld, i),
2546 offset(tmp, bld, i + first_component));
2547 }
2548 } else {
2549 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
2550 inst->size_written = num_components *
2551 dst.component_size(inst->exec_size);
2552 }
2553 inst->offset = base_offset;
2554 inst->mlen = 2;
2555 }
2556 }
2557
2558 fs_reg
2559 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2560 {
2561 nir_src *offset_src = nir_get_io_offset_src(instr);
2562
2563 if (nir_src_is_const(*offset_src)) {
2564 /* The only constant offset we should find is 0. brw_nir.c's
2565 * add_const_offset_to_base() will fold other constant offsets
2566 * into instr->const_index[0].
2567 */
2568 assert(nir_src_as_uint(*offset_src) == 0);
2569 return fs_reg();
2570 }
2571
2572 return get_nir_src(*offset_src);
2573 }
2574
2575 void
2576 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2577 nir_intrinsic_instr *instr)
2578 {
2579 assert(stage == MESA_SHADER_VERTEX);
2580
2581 fs_reg dest;
2582 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2583 dest = get_nir_dest(instr->dest);
2584
2585 switch (instr->intrinsic) {
2586 case nir_intrinsic_load_vertex_id:
2587 case nir_intrinsic_load_base_vertex:
2588 unreachable("should be lowered by nir_lower_system_values()");
2589
2590 case nir_intrinsic_load_input: {
2591 assert(nir_dest_bit_size(instr->dest) == 32);
2592 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2593 src = offset(src, bld, nir_intrinsic_component(instr));
2594 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2595
2596 for (unsigned i = 0; i < instr->num_components; i++)
2597 bld.MOV(offset(dest, bld, i), offset(src, bld, i));
2598 break;
2599 }
2600
2601 case nir_intrinsic_load_vertex_id_zero_base:
2602 case nir_intrinsic_load_instance_id:
2603 case nir_intrinsic_load_base_instance:
2604 case nir_intrinsic_load_draw_id:
2605 case nir_intrinsic_load_first_vertex:
2606 case nir_intrinsic_load_is_indexed_draw:
2607 unreachable("lowered by brw_nir_lower_vs_inputs");
2608
2609 default:
2610 nir_emit_intrinsic(bld, instr);
2611 break;
2612 }
2613 }
2614
2615 fs_reg
2616 fs_visitor::get_tcs_single_patch_icp_handle(const fs_builder &bld,
2617 nir_intrinsic_instr *instr)
2618 {
2619 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2620 const nir_src &vertex_src = instr->src[0];
2621 nir_intrinsic_instr *vertex_intrin = nir_src_as_intrinsic(vertex_src);
2622 fs_reg icp_handle;
2623
2624 if (nir_src_is_const(vertex_src)) {
2625 /* Emit a MOV to resolve <0,1,0> regioning. */
2626 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2627 unsigned vertex = nir_src_as_uint(vertex_src);
2628 bld.MOV(icp_handle,
2629 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2630 BRW_REGISTER_TYPE_UD));
2631 } else if (tcs_prog_data->instances == 1 && vertex_intrin &&
2632 vertex_intrin->intrinsic == nir_intrinsic_load_invocation_id) {
2633 /* For the common case of only 1 instance, an array index of
2634 * gl_InvocationID means reading g1. Skip all the indirect work.
2635 */
2636 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2637 } else {
2638 /* The vertex index is non-constant. We need to use indirect
2639 * addressing to fetch the proper URB handle.
2640 */
2641 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2642
2643 /* Each ICP handle is a single DWord (4 bytes) */
2644 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2645 bld.SHL(vertex_offset_bytes,
2646 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2647 brw_imm_ud(2u));
2648
2649 /* Start at g1. We might read up to 4 registers. */
2650 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2651 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2652 brw_imm_ud(4 * REG_SIZE));
2653 }
2654
2655 return icp_handle;
2656 }
2657
2658 fs_reg
2659 fs_visitor::get_tcs_eight_patch_icp_handle(const fs_builder &bld,
2660 nir_intrinsic_instr *instr)
2661 {
2662 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2663 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2664 const nir_src &vertex_src = instr->src[0];
2665
2666 unsigned first_icp_handle = tcs_prog_data->include_primitive_id ? 3 : 2;
2667
2668 if (nir_src_is_const(vertex_src)) {
2669 return fs_reg(retype(brw_vec8_grf(first_icp_handle +
2670 nir_src_as_uint(vertex_src), 0),
2671 BRW_REGISTER_TYPE_UD));
2672 }
2673
2674 /* The vertex index is non-constant. We need to use indirect
2675 * addressing to fetch the proper URB handle.
2676 *
2677 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2678 * indicating that channel <n> should read the handle from
2679 * DWord <n>. We convert that to bytes by multiplying by 4.
2680 *
2681 * Next, we convert the vertex index to bytes by multiplying
2682 * by 32 (shifting by 5), and add the two together. This is
2683 * the final indirect byte offset.
2684 */
2685 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2686 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2687 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2688 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2689 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2690
2691 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2692 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2693 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2694 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2695 /* Convert vertex_index to bytes (multiply by 32) */
2696 bld.SHL(vertex_offset_bytes,
2697 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2698 brw_imm_ud(5u));
2699 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2700
2701 /* Use first_icp_handle as the base offset. There is one register
2702 * of URB handles per vertex, so inform the register allocator that
2703 * we might read up to nir->info.gs.vertices_in registers.
2704 */
2705 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2706 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2707 icp_offset_bytes, brw_imm_ud(tcs_key->input_vertices * REG_SIZE));
2708
2709 return icp_handle;
2710 }
2711
2712 struct brw_reg
2713 fs_visitor::get_tcs_output_urb_handle()
2714 {
2715 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
2716
2717 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
2718 return retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2719 } else {
2720 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
2721 return retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2722 }
2723 }
2724
2725 void
2726 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2727 nir_intrinsic_instr *instr)
2728 {
2729 assert(stage == MESA_SHADER_TESS_CTRL);
2730 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2731 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2732 struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
2733
2734 bool eight_patch =
2735 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH;
2736
2737 fs_reg dst;
2738 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2739 dst = get_nir_dest(instr->dest);
2740
2741 switch (instr->intrinsic) {
2742 case nir_intrinsic_load_primitive_id:
2743 bld.MOV(dst, fs_reg(eight_patch ? brw_vec8_grf(2, 0)
2744 : brw_vec1_grf(0, 1)));
2745 break;
2746 case nir_intrinsic_load_invocation_id:
2747 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2748 break;
2749 case nir_intrinsic_load_patch_vertices_in:
2750 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2751 brw_imm_d(tcs_key->input_vertices));
2752 break;
2753
2754 case nir_intrinsic_control_barrier: {
2755 if (tcs_prog_data->instances == 1)
2756 break;
2757
2758 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2759 fs_reg m0_2 = component(m0, 2);
2760
2761 const fs_builder chanbld = bld.exec_all().group(1, 0);
2762
2763 /* Zero the message header */
2764 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2765
2766 if (devinfo->gen < 11) {
2767 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2768 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2769 brw_imm_ud(INTEL_MASK(16, 13)));
2770
2771 /* Shift it up to bits 27:24. */
2772 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2773 } else {
2774 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2775 brw_imm_ud(INTEL_MASK(30, 24)));
2776 }
2777
2778 /* Set the Barrier Count and the enable bit */
2779 if (devinfo->gen < 11) {
2780 chanbld.OR(m0_2, m0_2,
2781 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2782 } else {
2783 chanbld.OR(m0_2, m0_2,
2784 brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
2785 }
2786
2787 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2788 break;
2789 }
2790
2791 case nir_intrinsic_load_input:
2792 unreachable("nir_lower_io should never give us these.");
2793 break;
2794
2795 case nir_intrinsic_load_per_vertex_input: {
2796 assert(nir_dest_bit_size(instr->dest) == 32);
2797 fs_reg indirect_offset = get_indirect_offset(instr);
2798 unsigned imm_offset = instr->const_index[0];
2799 fs_inst *inst;
2800
2801 fs_reg icp_handle =
2802 eight_patch ? get_tcs_eight_patch_icp_handle(bld, instr)
2803 : get_tcs_single_patch_icp_handle(bld, instr);
2804
2805 /* We can only read two double components with each URB read, so
2806 * we send two read messages in that case, each one loading up to
2807 * two double components.
2808 */
2809 unsigned num_components = instr->num_components;
2810 unsigned first_component = nir_intrinsic_component(instr);
2811
2812 if (indirect_offset.file == BAD_FILE) {
2813 /* Constant indexing - use global offset. */
2814 if (first_component != 0) {
2815 unsigned read_components = num_components + first_component;
2816 fs_reg tmp = bld.vgrf(dst.type, read_components);
2817 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2818 for (unsigned i = 0; i < num_components; i++) {
2819 bld.MOV(offset(dst, bld, i),
2820 offset(tmp, bld, i + first_component));
2821 }
2822 } else {
2823 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2824 }
2825 inst->offset = imm_offset;
2826 inst->mlen = 1;
2827 } else {
2828 /* Indirect indexing - use per-slot offsets as well. */
2829 const fs_reg srcs[] = { icp_handle, indirect_offset };
2830 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2831 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2832 if (first_component != 0) {
2833 unsigned read_components = num_components + first_component;
2834 fs_reg tmp = bld.vgrf(dst.type, read_components);
2835 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2836 payload);
2837 for (unsigned i = 0; i < num_components; i++) {
2838 bld.MOV(offset(dst, bld, i),
2839 offset(tmp, bld, i + first_component));
2840 }
2841 } else {
2842 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2843 payload);
2844 }
2845 inst->offset = imm_offset;
2846 inst->mlen = 2;
2847 }
2848 inst->size_written = (num_components + first_component) *
2849 inst->dst.component_size(inst->exec_size);
2850
2851 /* Copy the temporary to the destination to deal with writemasking.
2852 *
2853 * Also attempt to deal with gl_PointSize being in the .w component.
2854 */
2855 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2856 assert(type_sz(dst.type) == 4);
2857 inst->dst = bld.vgrf(dst.type, 4);
2858 inst->size_written = 4 * REG_SIZE;
2859 bld.MOV(dst, offset(inst->dst, bld, 3));
2860 }
2861 break;
2862 }
2863
2864 case nir_intrinsic_load_output:
2865 case nir_intrinsic_load_per_vertex_output: {
2866 assert(nir_dest_bit_size(instr->dest) == 32);
2867 fs_reg indirect_offset = get_indirect_offset(instr);
2868 unsigned imm_offset = instr->const_index[0];
2869 unsigned first_component = nir_intrinsic_component(instr);
2870
2871 struct brw_reg output_handles = get_tcs_output_urb_handle();
2872
2873 fs_inst *inst;
2874 if (indirect_offset.file == BAD_FILE) {
2875 /* This MOV replicates the output handle to all enabled channels
2876 * is SINGLE_PATCH mode.
2877 */
2878 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2879 bld.MOV(patch_handle, output_handles);
2880
2881 {
2882 if (first_component != 0) {
2883 unsigned read_components =
2884 instr->num_components + first_component;
2885 fs_reg tmp = bld.vgrf(dst.type, read_components);
2886 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2887 patch_handle);
2888 inst->size_written = read_components * REG_SIZE;
2889 for (unsigned i = 0; i < instr->num_components; i++) {
2890 bld.MOV(offset(dst, bld, i),
2891 offset(tmp, bld, i + first_component));
2892 }
2893 } else {
2894 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2895 patch_handle);
2896 inst->size_written = instr->num_components * REG_SIZE;
2897 }
2898 inst->offset = imm_offset;
2899 inst->mlen = 1;
2900 }
2901 } else {
2902 /* Indirect indexing - use per-slot offsets as well. */
2903 const fs_reg srcs[] = { output_handles, indirect_offset };
2904 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2905 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2906 if (first_component != 0) {
2907 unsigned read_components =
2908 instr->num_components + first_component;
2909 fs_reg tmp = bld.vgrf(dst.type, read_components);
2910 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2911 payload);
2912 inst->size_written = read_components * REG_SIZE;
2913 for (unsigned i = 0; i < instr->num_components; i++) {
2914 bld.MOV(offset(dst, bld, i),
2915 offset(tmp, bld, i + first_component));
2916 }
2917 } else {
2918 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2919 payload);
2920 inst->size_written = instr->num_components * REG_SIZE;
2921 }
2922 inst->offset = imm_offset;
2923 inst->mlen = 2;
2924 }
2925 break;
2926 }
2927
2928 case nir_intrinsic_store_output:
2929 case nir_intrinsic_store_per_vertex_output: {
2930 assert(nir_src_bit_size(instr->src[0]) == 32);
2931 fs_reg value = get_nir_src(instr->src[0]);
2932 fs_reg indirect_offset = get_indirect_offset(instr);
2933 unsigned imm_offset = instr->const_index[0];
2934 unsigned mask = instr->const_index[1];
2935 unsigned header_regs = 0;
2936 struct brw_reg output_handles = get_tcs_output_urb_handle();
2937
2938 fs_reg srcs[7];
2939 srcs[header_regs++] = output_handles;
2940
2941 if (indirect_offset.file != BAD_FILE) {
2942 srcs[header_regs++] = indirect_offset;
2943 }
2944
2945 if (mask == 0)
2946 break;
2947
2948 unsigned num_components = util_last_bit(mask);
2949 enum opcode opcode;
2950
2951 /* We can only pack two 64-bit components in a single message, so send
2952 * 2 messages if we have more components
2953 */
2954 unsigned first_component = nir_intrinsic_component(instr);
2955 mask = mask << first_component;
2956
2957 if (mask != WRITEMASK_XYZW) {
2958 srcs[header_regs++] = brw_imm_ud(mask << 16);
2959 opcode = indirect_offset.file != BAD_FILE ?
2960 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2961 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2962 } else {
2963 opcode = indirect_offset.file != BAD_FILE ?
2964 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2965 SHADER_OPCODE_URB_WRITE_SIMD8;
2966 }
2967
2968 for (unsigned i = 0; i < num_components; i++) {
2969 if (!(mask & (1 << (i + first_component))))
2970 continue;
2971
2972 srcs[header_regs + i + first_component] = offset(value, bld, i);
2973 }
2974
2975 unsigned mlen = header_regs + num_components + first_component;
2976 fs_reg payload =
2977 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2978 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2979
2980 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2981 inst->offset = imm_offset;
2982 inst->mlen = mlen;
2983 break;
2984 }
2985
2986 default:
2987 nir_emit_intrinsic(bld, instr);
2988 break;
2989 }
2990 }
2991
2992 void
2993 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2994 nir_intrinsic_instr *instr)
2995 {
2996 assert(stage == MESA_SHADER_TESS_EVAL);
2997 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2998
2999 fs_reg dest;
3000 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3001 dest = get_nir_dest(instr->dest);
3002
3003 switch (instr->intrinsic) {
3004 case nir_intrinsic_load_primitive_id:
3005 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
3006 break;
3007 case nir_intrinsic_load_tess_coord:
3008 /* gl_TessCoord is part of the payload in g1-3 */
3009 for (unsigned i = 0; i < 3; i++) {
3010 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
3011 }
3012 break;
3013
3014 case nir_intrinsic_load_input:
3015 case nir_intrinsic_load_per_vertex_input: {
3016 assert(nir_dest_bit_size(instr->dest) == 32);
3017 fs_reg indirect_offset = get_indirect_offset(instr);
3018 unsigned imm_offset = instr->const_index[0];
3019 unsigned first_component = nir_intrinsic_component(instr);
3020
3021 fs_inst *inst;
3022 if (indirect_offset.file == BAD_FILE) {
3023 /* Arbitrarily only push up to 32 vec4 slots worth of data,
3024 * which is 16 registers (since each holds 2 vec4 slots).
3025 */
3026 const unsigned max_push_slots = 32;
3027 if (imm_offset < max_push_slots) {
3028 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
3029 for (int i = 0; i < instr->num_components; i++) {
3030 unsigned comp = 4 * (imm_offset % 2) + i + first_component;
3031 bld.MOV(offset(dest, bld, i), component(src, comp));
3032 }
3033
3034 tes_prog_data->base.urb_read_length =
3035 MAX2(tes_prog_data->base.urb_read_length,
3036 (imm_offset / 2) + 1);
3037 } else {
3038 /* Replicate the patch handle to all enabled channels */
3039 const fs_reg srcs[] = {
3040 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
3041 };
3042 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
3043 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
3044
3045 if (first_component != 0) {
3046 unsigned read_components =
3047 instr->num_components + first_component;
3048 fs_reg tmp = bld.vgrf(dest.type, read_components);
3049 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
3050 patch_handle);
3051 inst->size_written = read_components * REG_SIZE;
3052 for (unsigned i = 0; i < instr->num_components; i++) {
3053 bld.MOV(offset(dest, bld, i),
3054 offset(tmp, bld, i + first_component));
3055 }
3056 } else {
3057 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
3058 patch_handle);
3059 inst->size_written = instr->num_components * REG_SIZE;
3060 }
3061 inst->mlen = 1;
3062 inst->offset = imm_offset;
3063 }
3064 } else {
3065 /* Indirect indexing - use per-slot offsets as well. */
3066
3067 /* We can only read two double components with each URB read, so
3068 * we send two read messages in that case, each one loading up to
3069 * two double components.
3070 */
3071 unsigned num_components = instr->num_components;
3072 const fs_reg srcs[] = {
3073 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3074 indirect_offset
3075 };
3076 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3077 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3078
3079 if (first_component != 0) {
3080 unsigned read_components =
3081 num_components + first_component;
3082 fs_reg tmp = bld.vgrf(dest.type, read_components);
3083 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3084 payload);
3085 for (unsigned i = 0; i < num_components; i++) {
3086 bld.MOV(offset(dest, bld, i),
3087 offset(tmp, bld, i + first_component));
3088 }
3089 } else {
3090 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3091 payload);
3092 }
3093 inst->mlen = 2;
3094 inst->offset = imm_offset;
3095 inst->size_written = (num_components + first_component) *
3096 inst->dst.component_size(inst->exec_size);
3097 }
3098 break;
3099 }
3100 default:
3101 nir_emit_intrinsic(bld, instr);
3102 break;
3103 }
3104 }
3105
3106 void
3107 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3108 nir_intrinsic_instr *instr)
3109 {
3110 assert(stage == MESA_SHADER_GEOMETRY);
3111 fs_reg indirect_offset;
3112
3113 fs_reg dest;
3114 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3115 dest = get_nir_dest(instr->dest);
3116
3117 switch (instr->intrinsic) {
3118 case nir_intrinsic_load_primitive_id:
3119 assert(stage == MESA_SHADER_GEOMETRY);
3120 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3121 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3122 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3123 break;
3124
3125 case nir_intrinsic_load_input:
3126 unreachable("load_input intrinsics are invalid for the GS stage");
3127
3128 case nir_intrinsic_load_per_vertex_input:
3129 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3130 instr->src[1], instr->num_components,
3131 nir_intrinsic_component(instr));
3132 break;
3133
3134 case nir_intrinsic_emit_vertex_with_counter:
3135 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3136 break;
3137
3138 case nir_intrinsic_end_primitive_with_counter:
3139 emit_gs_end_primitive(instr->src[0]);
3140 break;
3141
3142 case nir_intrinsic_set_vertex_count:
3143 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3144 break;
3145
3146 case nir_intrinsic_load_invocation_id: {
3147 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3148 assert(val.file != BAD_FILE);
3149 dest.type = val.type;
3150 bld.MOV(dest, val);
3151 break;
3152 }
3153
3154 default:
3155 nir_emit_intrinsic(bld, instr);
3156 break;
3157 }
3158 }
3159
3160 /**
3161 * Fetch the current render target layer index.
3162 */
3163 static fs_reg
3164 fetch_render_target_array_index(const fs_builder &bld)
3165 {
3166 if (bld.shader->devinfo->gen >= 6) {
3167 /* The render target array index is provided in the thread payload as
3168 * bits 26:16 of r0.0.
3169 */
3170 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3171 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3172 brw_imm_uw(0x7ff));
3173 return idx;
3174 } else {
3175 /* Pre-SNB we only ever render into the first layer of the framebuffer
3176 * since layered rendering is not implemented.
3177 */
3178 return brw_imm_ud(0);
3179 }
3180 }
3181
3182 /**
3183 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3184 * framebuffer at the current fragment coordinates and sample index.
3185 */
3186 fs_inst *
3187 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3188 unsigned target)
3189 {
3190 const struct gen_device_info *devinfo = bld.shader->devinfo;
3191
3192 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3193 const brw_wm_prog_key *wm_key =
3194 reinterpret_cast<const brw_wm_prog_key *>(key);
3195 assert(!wm_key->coherent_fb_fetch);
3196 const struct brw_wm_prog_data *wm_prog_data =
3197 brw_wm_prog_data(stage_prog_data);
3198
3199 /* Calculate the surface index relative to the start of the texture binding
3200 * table block, since that's what the texturing messages expect.
3201 */
3202 const unsigned surface = target +
3203 wm_prog_data->binding_table.render_target_read_start -
3204 wm_prog_data->base.binding_table.texture_start;
3205
3206 /* Calculate the fragment coordinates. */
3207 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3208 bld.MOV(offset(coords, bld, 0), pixel_x);
3209 bld.MOV(offset(coords, bld, 1), pixel_y);
3210 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3211
3212 /* Calculate the sample index and MCS payload when multisampling. Luckily
3213 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3214 * shouldn't be necessary to recompile based on whether the framebuffer is
3215 * CMS or UMS.
3216 */
3217 if (wm_key->multisample_fbo &&
3218 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3219 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3220
3221 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3222 const fs_reg mcs = wm_key->multisample_fbo ?
3223 emit_mcs_fetch(coords, 3, brw_imm_ud(surface), fs_reg()) : fs_reg();
3224
3225 /* Use either a normal or a CMS texel fetch message depending on whether
3226 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3227 * message just in case the framebuffer uses 16x multisampling, it should
3228 * be equivalent to the normal CMS fetch for lower multisampling modes.
3229 */
3230 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3231 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3232 SHADER_OPCODE_TXF_CMS_LOGICAL;
3233
3234 /* Emit the instruction. */
3235 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3236 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
3237 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
3238 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
3239 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
3240 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3241 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
3242 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3243 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
3244
3245 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3246 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3247
3248 return inst;
3249 }
3250
3251 /**
3252 * Actual coherent framebuffer read implemented using the native render target
3253 * read message. Requires SKL+.
3254 */
3255 static fs_inst *
3256 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3257 {
3258 assert(bld.shader->devinfo->gen >= 9);
3259 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3260 inst->target = target;
3261 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3262
3263 return inst;
3264 }
3265
3266 static fs_reg
3267 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3268 {
3269 if (n && regs[0].file != BAD_FILE) {
3270 return regs[0];
3271
3272 } else {
3273 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3274
3275 for (unsigned i = 0; i < n; i++)
3276 regs[i] = tmp;
3277
3278 return tmp;
3279 }
3280 }
3281
3282 static fs_reg
3283 alloc_frag_output(fs_visitor *v, unsigned location)
3284 {
3285 assert(v->stage == MESA_SHADER_FRAGMENT);
3286 const brw_wm_prog_key *const key =
3287 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3288 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3289 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3290
3291 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3292 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3293
3294 else if (l == FRAG_RESULT_COLOR)
3295 return alloc_temporary(v->bld, 4, v->outputs,
3296 MAX2(key->nr_color_regions, 1));
3297
3298 else if (l == FRAG_RESULT_DEPTH)
3299 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3300
3301 else if (l == FRAG_RESULT_STENCIL)
3302 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3303
3304 else if (l == FRAG_RESULT_SAMPLE_MASK)
3305 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3306
3307 else if (l >= FRAG_RESULT_DATA0 &&
3308 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3309 return alloc_temporary(v->bld, 4,
3310 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3311
3312 else
3313 unreachable("Invalid location");
3314 }
3315
3316 /* Annoyingly, we get the barycentrics into the shader in a layout that's
3317 * optimized for PLN but it doesn't work nearly as well as one would like for
3318 * manual interpolation.
3319 */
3320 static void
3321 shuffle_from_pln_layout(const fs_builder &bld, fs_reg dest, fs_reg pln_data)
3322 {
3323 dest.type = BRW_REGISTER_TYPE_F;
3324 pln_data.type = BRW_REGISTER_TYPE_F;
3325 const fs_reg dest_u = offset(dest, bld, 0);
3326 const fs_reg dest_v = offset(dest, bld, 1);
3327
3328 for (unsigned g = 0; g < bld.dispatch_width() / 8; g++) {
3329 const fs_builder gbld = bld.group(8, g);
3330 gbld.MOV(horiz_offset(dest_u, g * 8),
3331 byte_offset(pln_data, (g * 2 + 0) * REG_SIZE));
3332 gbld.MOV(horiz_offset(dest_v, g * 8),
3333 byte_offset(pln_data, (g * 2 + 1) * REG_SIZE));
3334 }
3335 }
3336
3337 static void
3338 shuffle_to_pln_layout(const fs_builder &bld, fs_reg pln_data, fs_reg src)
3339 {
3340 pln_data.type = BRW_REGISTER_TYPE_F;
3341 src.type = BRW_REGISTER_TYPE_F;
3342 const fs_reg src_u = offset(src, bld, 0);
3343 const fs_reg src_v = offset(src, bld, 1);
3344
3345 for (unsigned g = 0; g < bld.dispatch_width() / 8; g++) {
3346 const fs_builder gbld = bld.group(8, g);
3347 gbld.MOV(byte_offset(pln_data, (g * 2 + 0) * REG_SIZE),
3348 horiz_offset(src_u, g * 8));
3349 gbld.MOV(byte_offset(pln_data, (g * 2 + 1) * REG_SIZE),
3350 horiz_offset(src_v, g * 8));
3351 }
3352 }
3353
3354 void
3355 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3356 nir_intrinsic_instr *instr)
3357 {
3358 assert(stage == MESA_SHADER_FRAGMENT);
3359
3360 fs_reg dest;
3361 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3362 dest = get_nir_dest(instr->dest);
3363
3364 switch (instr->intrinsic) {
3365 case nir_intrinsic_load_front_face:
3366 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3367 *emit_frontfacing_interpolation());
3368 break;
3369
3370 case nir_intrinsic_load_sample_pos: {
3371 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3372 assert(sample_pos.file != BAD_FILE);
3373 dest.type = sample_pos.type;
3374 bld.MOV(dest, sample_pos);
3375 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3376 break;
3377 }
3378
3379 case nir_intrinsic_load_layer_id:
3380 dest.type = BRW_REGISTER_TYPE_UD;
3381 bld.MOV(dest, fetch_render_target_array_index(bld));
3382 break;
3383
3384 case nir_intrinsic_is_helper_invocation: {
3385 /* Unlike the regular gl_HelperInvocation, that is defined at dispatch,
3386 * the helperInvocationEXT() (aka SpvOpIsHelperInvocationEXT) takes into
3387 * consideration demoted invocations. That information is stored in
3388 * f0.1.
3389 */
3390 dest.type = BRW_REGISTER_TYPE_UD;
3391
3392 bld.MOV(dest, brw_imm_ud(0));
3393
3394 fs_inst *mov = bld.MOV(dest, brw_imm_ud(~0));
3395 mov->predicate = BRW_PREDICATE_NORMAL;
3396 mov->predicate_inverse = true;
3397 mov->flag_subreg = 1;
3398 break;
3399 }
3400
3401 case nir_intrinsic_load_helper_invocation:
3402 case nir_intrinsic_load_sample_mask_in:
3403 case nir_intrinsic_load_sample_id: {
3404 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3405 fs_reg val = nir_system_values[sv];
3406 assert(val.file != BAD_FILE);
3407 dest.type = val.type;
3408 bld.MOV(dest, val);
3409 break;
3410 }
3411
3412 case nir_intrinsic_store_output: {
3413 const fs_reg src = get_nir_src(instr->src[0]);
3414 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3415 const unsigned location = nir_intrinsic_base(instr) +
3416 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3417 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3418 src.type);
3419
3420 for (unsigned j = 0; j < instr->num_components; j++)
3421 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3422 offset(src, bld, j));
3423
3424 break;
3425 }
3426
3427 case nir_intrinsic_load_output: {
3428 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3429 BRW_NIR_FRAG_OUTPUT_LOCATION);
3430 assert(l >= FRAG_RESULT_DATA0);
3431 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3432 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3433 const fs_reg tmp = bld.vgrf(dest.type, 4);
3434
3435 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3436 emit_coherent_fb_read(bld, tmp, target);
3437 else
3438 emit_non_coherent_fb_read(bld, tmp, target);
3439
3440 for (unsigned j = 0; j < instr->num_components; j++) {
3441 bld.MOV(offset(dest, bld, j),
3442 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3443 }
3444
3445 break;
3446 }
3447
3448 case nir_intrinsic_demote:
3449 case nir_intrinsic_discard:
3450 case nir_intrinsic_demote_if:
3451 case nir_intrinsic_discard_if: {
3452 /* We track our discarded pixels in f0.1. By predicating on it, we can
3453 * update just the flag bits that aren't yet discarded. If there's no
3454 * condition, we emit a CMP of g0 != g0, so all currently executing
3455 * channels will get turned off.
3456 */
3457 fs_inst *cmp = NULL;
3458 if (instr->intrinsic == nir_intrinsic_demote_if ||
3459 instr->intrinsic == nir_intrinsic_discard_if) {
3460 nir_alu_instr *alu = nir_src_as_alu_instr(instr->src[0]);
3461
3462 if (alu != NULL &&
3463 alu->op != nir_op_bcsel &&
3464 alu->op != nir_op_inot &&
3465 (devinfo->gen > 5 ||
3466 (alu->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) != BRW_NIR_BOOLEAN_NEEDS_RESOLVE ||
3467 alu->op == nir_op_fne32 || alu->op == nir_op_feq32 ||
3468 alu->op == nir_op_flt32 || alu->op == nir_op_fge32 ||
3469 alu->op == nir_op_ine32 || alu->op == nir_op_ieq32 ||
3470 alu->op == nir_op_ilt32 || alu->op == nir_op_ige32 ||
3471 alu->op == nir_op_ult32 || alu->op == nir_op_uge32)) {
3472 /* Re-emit the instruction that generated the Boolean value, but
3473 * do not store it. Since this instruction will be conditional,
3474 * other instructions that want to use the real Boolean value may
3475 * get garbage. This was a problem for piglit's fs-discard-exit-2
3476 * test.
3477 *
3478 * Ideally we'd detect that the instruction cannot have a
3479 * conditional modifier before emitting the instructions. Alas,
3480 * that is nigh impossible. Instead, we're going to assume the
3481 * instruction (or last instruction) generated can have a
3482 * conditional modifier. If it cannot, fallback to the old-style
3483 * compare, and hope dead code elimination will clean up the
3484 * extra instructions generated.
3485 */
3486 nir_emit_alu(bld, alu, false);
3487
3488 cmp = (fs_inst *) instructions.get_tail();
3489 if (cmp->conditional_mod == BRW_CONDITIONAL_NONE) {
3490 if (cmp->can_do_cmod())
3491 cmp->conditional_mod = BRW_CONDITIONAL_Z;
3492 else
3493 cmp = NULL;
3494 } else {
3495 /* The old sequence that would have been generated is,
3496 * basically, bool_result == false. This is equivalent to
3497 * !bool_result, so negate the old modifier.
3498 */
3499 cmp->conditional_mod = brw_negate_cmod(cmp->conditional_mod);
3500 }
3501 }
3502
3503 if (cmp == NULL) {
3504 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3505 brw_imm_d(0), BRW_CONDITIONAL_Z);
3506 }
3507 } else {
3508 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3509 BRW_REGISTER_TYPE_UW));
3510 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3511 }
3512
3513 cmp->predicate = BRW_PREDICATE_NORMAL;
3514 cmp->flag_subreg = 1;
3515
3516 if (devinfo->gen >= 6) {
3517 /* Due to the way we implement discard, the jump will only happen
3518 * when the whole quad is discarded. So we can do this even for
3519 * demote as it won't break its uniformity promises.
3520 */
3521 emit_discard_jump();
3522 }
3523
3524 limit_dispatch_width(16, "Fragment discard/demote not implemented in SIMD32 mode.\n");
3525 break;
3526 }
3527
3528 case nir_intrinsic_load_input: {
3529 /* load_input is only used for flat inputs */
3530 assert(nir_dest_bit_size(instr->dest) == 32);
3531 unsigned base = nir_intrinsic_base(instr);
3532 unsigned comp = nir_intrinsic_component(instr);
3533 unsigned num_components = instr->num_components;
3534
3535 /* Special case fields in the VUE header */
3536 if (base == VARYING_SLOT_LAYER)
3537 comp = 1;
3538 else if (base == VARYING_SLOT_VIEWPORT)
3539 comp = 2;
3540
3541 for (unsigned int i = 0; i < num_components; i++) {
3542 bld.MOV(offset(dest, bld, i),
3543 retype(component(interp_reg(base, comp + i), 3), dest.type));
3544 }
3545 break;
3546 }
3547
3548 case nir_intrinsic_load_fs_input_interp_deltas: {
3549 assert(stage == MESA_SHADER_FRAGMENT);
3550 assert(nir_src_as_uint(instr->src[0]) == 0);
3551 fs_reg interp = interp_reg(nir_intrinsic_base(instr),
3552 nir_intrinsic_component(instr));
3553 dest.type = BRW_REGISTER_TYPE_F;
3554 bld.MOV(offset(dest, bld, 0), component(interp, 3));
3555 bld.MOV(offset(dest, bld, 1), component(interp, 1));
3556 bld.MOV(offset(dest, bld, 2), component(interp, 0));
3557 break;
3558 }
3559
3560 case nir_intrinsic_load_barycentric_pixel:
3561 case nir_intrinsic_load_barycentric_centroid:
3562 case nir_intrinsic_load_barycentric_sample: {
3563 /* Use the delta_xy values computed from the payload */
3564 const glsl_interp_mode interp_mode =
3565 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3566 enum brw_barycentric_mode bary =
3567 brw_barycentric_mode(interp_mode, instr->intrinsic);
3568
3569 shuffle_from_pln_layout(bld, dest, this->delta_xy[bary]);
3570 break;
3571 }
3572
3573 case nir_intrinsic_load_barycentric_at_sample: {
3574 const glsl_interp_mode interpolation =
3575 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3576
3577 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3578 if (nir_src_is_const(instr->src[0])) {
3579 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3580
3581 emit_pixel_interpolater_send(bld,
3582 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3583 tmp,
3584 fs_reg(), /* src */
3585 brw_imm_ud(msg_data),
3586 interpolation);
3587 } else {
3588 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3589 BRW_REGISTER_TYPE_UD);
3590
3591 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3592 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3593 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3594 bld.exec_all().group(1, 0)
3595 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3596 emit_pixel_interpolater_send(bld,
3597 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3598 tmp,
3599 fs_reg(), /* src */
3600 component(msg_data, 0),
3601 interpolation);
3602 } else {
3603 /* Make a loop that sends a message to the pixel interpolater
3604 * for the sample number in each live channel. If there are
3605 * multiple channels with the same sample number then these
3606 * will be handled simultaneously with a single interation of
3607 * the loop.
3608 */
3609 bld.emit(BRW_OPCODE_DO);
3610
3611 /* Get the next live sample number into sample_id_reg */
3612 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3613
3614 /* Set the flag register so that we can perform the send
3615 * message on all channels that have the same sample number
3616 */
3617 bld.CMP(bld.null_reg_ud(),
3618 sample_src, sample_id,
3619 BRW_CONDITIONAL_EQ);
3620 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3621 bld.exec_all().group(1, 0)
3622 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3623 fs_inst *inst =
3624 emit_pixel_interpolater_send(bld,
3625 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3626 tmp,
3627 fs_reg(), /* src */
3628 component(msg_data, 0),
3629 interpolation);
3630 set_predicate(BRW_PREDICATE_NORMAL, inst);
3631
3632 /* Continue the loop if there are any live channels left */
3633 set_predicate_inv(BRW_PREDICATE_NORMAL,
3634 true, /* inverse */
3635 bld.emit(BRW_OPCODE_WHILE));
3636 }
3637 }
3638 shuffle_from_pln_layout(bld, dest, tmp);
3639 break;
3640 }
3641
3642 case nir_intrinsic_load_barycentric_at_offset: {
3643 const glsl_interp_mode interpolation =
3644 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3645
3646 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3647
3648 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3649 if (const_offset) {
3650 assert(nir_src_bit_size(instr->src[0]) == 32);
3651 unsigned off_x = MIN2((int)(const_offset[0].f32 * 16), 7) & 0xf;
3652 unsigned off_y = MIN2((int)(const_offset[1].f32 * 16), 7) & 0xf;
3653
3654 emit_pixel_interpolater_send(bld,
3655 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3656 tmp,
3657 fs_reg(), /* src */
3658 brw_imm_ud(off_x | (off_y << 4)),
3659 interpolation);
3660 } else {
3661 fs_reg src = vgrf(glsl_type::ivec2_type);
3662 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3663 BRW_REGISTER_TYPE_F);
3664 for (int i = 0; i < 2; i++) {
3665 fs_reg temp = vgrf(glsl_type::float_type);
3666 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3667 fs_reg itemp = vgrf(glsl_type::int_type);
3668 /* float to int */
3669 bld.MOV(itemp, temp);
3670
3671 /* Clamp the upper end of the range to +7/16.
3672 * ARB_gpu_shader5 requires that we support a maximum offset
3673 * of +0.5, which isn't representable in a S0.4 value -- if
3674 * we didn't clamp it, we'd end up with -8/16, which is the
3675 * opposite of what the shader author wanted.
3676 *
3677 * This is legal due to ARB_gpu_shader5's quantization
3678 * rules:
3679 *
3680 * "Not all values of <offset> may be supported; x and y
3681 * offsets may be rounded to fixed-point values with the
3682 * number of fraction bits given by the
3683 * implementation-dependent constant
3684 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3685 */
3686 set_condmod(BRW_CONDITIONAL_L,
3687 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3688 }
3689
3690 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3691 emit_pixel_interpolater_send(bld,
3692 opcode,
3693 tmp,
3694 src,
3695 brw_imm_ud(0u),
3696 interpolation);
3697 }
3698 shuffle_from_pln_layout(bld, dest, tmp);
3699 break;
3700 }
3701
3702 case nir_intrinsic_load_frag_coord:
3703 emit_fragcoord_interpolation(dest);
3704 break;
3705
3706 case nir_intrinsic_load_interpolated_input: {
3707 assert(instr->src[0].ssa &&
3708 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3709 nir_intrinsic_instr *bary_intrinsic =
3710 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3711 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3712 enum glsl_interp_mode interp_mode =
3713 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3714 fs_reg dst_xy;
3715
3716 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3717 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3718 /* Use the result of the PI message. Because the load_barycentric
3719 * intrinsics return a regular vec2 and we need it in PLN layout, we
3720 * have to do a translation. Fortunately, copy-prop cleans this up
3721 * reliably.
3722 */
3723 dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3724 shuffle_to_pln_layout(bld, dst_xy, get_nir_src(instr->src[0]));
3725 } else {
3726 /* Use the delta_xy values computed from the payload */
3727 enum brw_barycentric_mode bary =
3728 brw_barycentric_mode(interp_mode, bary_intrin);
3729
3730 dst_xy = this->delta_xy[bary];
3731 }
3732
3733 for (unsigned int i = 0; i < instr->num_components; i++) {
3734 fs_reg interp =
3735 component(interp_reg(nir_intrinsic_base(instr),
3736 nir_intrinsic_component(instr) + i), 0);
3737 interp.type = BRW_REGISTER_TYPE_F;
3738 dest.type = BRW_REGISTER_TYPE_F;
3739
3740 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3741 fs_reg tmp = vgrf(glsl_type::float_type);
3742 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3743 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3744 } else {
3745 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3746 }
3747 }
3748 break;
3749 }
3750
3751 default:
3752 nir_emit_intrinsic(bld, instr);
3753 break;
3754 }
3755 }
3756
3757 void
3758 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3759 nir_intrinsic_instr *instr)
3760 {
3761 assert(stage == MESA_SHADER_COMPUTE);
3762 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3763
3764 fs_reg dest;
3765 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3766 dest = get_nir_dest(instr->dest);
3767
3768 switch (instr->intrinsic) {
3769 case nir_intrinsic_control_barrier:
3770 emit_barrier();
3771 cs_prog_data->uses_barrier = true;
3772 break;
3773
3774 case nir_intrinsic_load_subgroup_id:
3775 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3776 break;
3777
3778 case nir_intrinsic_load_local_invocation_id:
3779 case nir_intrinsic_load_work_group_id: {
3780 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3781 fs_reg val = nir_system_values[sv];
3782 assert(val.file != BAD_FILE);
3783 dest.type = val.type;
3784 for (unsigned i = 0; i < 3; i++)
3785 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3786 break;
3787 }
3788
3789 case nir_intrinsic_load_num_work_groups: {
3790 const unsigned surface =
3791 cs_prog_data->binding_table.work_groups_start;
3792
3793 cs_prog_data->uses_num_work_groups = true;
3794
3795 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3796 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3797 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3798 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1); /* num components */
3799
3800 /* Read the 3 GLuint components of gl_NumWorkGroups */
3801 for (unsigned i = 0; i < 3; i++) {
3802 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(i << 2);
3803 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3804 offset(dest, bld, i), srcs, SURFACE_LOGICAL_NUM_SRCS);
3805 }
3806 break;
3807 }
3808
3809 case nir_intrinsic_shared_atomic_add:
3810 case nir_intrinsic_shared_atomic_imin:
3811 case nir_intrinsic_shared_atomic_umin:
3812 case nir_intrinsic_shared_atomic_imax:
3813 case nir_intrinsic_shared_atomic_umax:
3814 case nir_intrinsic_shared_atomic_and:
3815 case nir_intrinsic_shared_atomic_or:
3816 case nir_intrinsic_shared_atomic_xor:
3817 case nir_intrinsic_shared_atomic_exchange:
3818 case nir_intrinsic_shared_atomic_comp_swap:
3819 nir_emit_shared_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
3820 break;
3821 case nir_intrinsic_shared_atomic_fmin:
3822 case nir_intrinsic_shared_atomic_fmax:
3823 case nir_intrinsic_shared_atomic_fcomp_swap:
3824 nir_emit_shared_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
3825 break;
3826
3827 case nir_intrinsic_load_shared: {
3828 assert(devinfo->gen >= 7);
3829 assert(stage == MESA_SHADER_COMPUTE);
3830
3831 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3832 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3833 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3834 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3835 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3836
3837 /* Make dest unsigned because that's what the temporary will be */
3838 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3839
3840 /* Read the vector */
3841 if (nir_intrinsic_align(instr) >= 4) {
3842 assert(nir_dest_bit_size(instr->dest) == 32);
3843 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3844 fs_inst *inst =
3845 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3846 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3847 inst->size_written = instr->num_components * dispatch_width * 4;
3848 } else {
3849 assert(nir_dest_bit_size(instr->dest) <= 32);
3850 assert(nir_dest_num_components(instr->dest) == 1);
3851 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3852
3853 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3854 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3855 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3856 bld.MOV(dest, subscript(read_result, dest.type, 0));
3857 }
3858 break;
3859 }
3860
3861 case nir_intrinsic_store_shared: {
3862 assert(devinfo->gen >= 7);
3863 assert(stage == MESA_SHADER_COMPUTE);
3864
3865 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3866 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3867 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3868 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3869 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3870
3871 fs_reg data = get_nir_src(instr->src[0]);
3872 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3873
3874 assert(nir_intrinsic_write_mask(instr) ==
3875 (1u << instr->num_components) - 1);
3876 if (nir_intrinsic_align(instr) >= 4) {
3877 assert(nir_src_bit_size(instr->src[0]) == 32);
3878 assert(nir_src_num_components(instr->src[0]) <= 4);
3879 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3880 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3881 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3882 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3883 } else {
3884 assert(nir_src_bit_size(instr->src[0]) <= 32);
3885 assert(nir_src_num_components(instr->src[0]) == 1);
3886 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3887
3888 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3889 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3890
3891 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3892 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3893 }
3894 break;
3895 }
3896
3897 default:
3898 nir_emit_intrinsic(bld, instr);
3899 break;
3900 }
3901 }
3902
3903 static fs_reg
3904 brw_nir_reduction_op_identity(const fs_builder &bld,
3905 nir_op op, brw_reg_type type)
3906 {
3907 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3908 switch (type_sz(type)) {
3909 case 1:
3910 if (type == BRW_REGISTER_TYPE_UB) {
3911 return brw_imm_uw(value.u8);
3912 } else {
3913 assert(type == BRW_REGISTER_TYPE_B);
3914 return brw_imm_w(value.i8);
3915 }
3916 case 2:
3917 return retype(brw_imm_uw(value.u16), type);
3918 case 4:
3919 return retype(brw_imm_ud(value.u32), type);
3920 case 8:
3921 if (type == BRW_REGISTER_TYPE_DF)
3922 return setup_imm_df(bld, value.f64);
3923 else
3924 return retype(brw_imm_u64(value.u64), type);
3925 default:
3926 unreachable("Invalid type size");
3927 }
3928 }
3929
3930 static opcode
3931 brw_op_for_nir_reduction_op(nir_op op)
3932 {
3933 switch (op) {
3934 case nir_op_iadd: return BRW_OPCODE_ADD;
3935 case nir_op_fadd: return BRW_OPCODE_ADD;
3936 case nir_op_imul: return BRW_OPCODE_MUL;
3937 case nir_op_fmul: return BRW_OPCODE_MUL;
3938 case nir_op_imin: return BRW_OPCODE_SEL;
3939 case nir_op_umin: return BRW_OPCODE_SEL;
3940 case nir_op_fmin: return BRW_OPCODE_SEL;
3941 case nir_op_imax: return BRW_OPCODE_SEL;
3942 case nir_op_umax: return BRW_OPCODE_SEL;
3943 case nir_op_fmax: return BRW_OPCODE_SEL;
3944 case nir_op_iand: return BRW_OPCODE_AND;
3945 case nir_op_ior: return BRW_OPCODE_OR;
3946 case nir_op_ixor: return BRW_OPCODE_XOR;
3947 default:
3948 unreachable("Invalid reduction operation");
3949 }
3950 }
3951
3952 static brw_conditional_mod
3953 brw_cond_mod_for_nir_reduction_op(nir_op op)
3954 {
3955 switch (op) {
3956 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3957 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3958 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3959 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3960 case nir_op_imin: return BRW_CONDITIONAL_L;
3961 case nir_op_umin: return BRW_CONDITIONAL_L;
3962 case nir_op_fmin: return BRW_CONDITIONAL_L;
3963 case nir_op_imax: return BRW_CONDITIONAL_GE;
3964 case nir_op_umax: return BRW_CONDITIONAL_GE;
3965 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3966 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3967 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3968 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3969 default:
3970 unreachable("Invalid reduction operation");
3971 }
3972 }
3973
3974 fs_reg
3975 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3976 nir_intrinsic_instr *instr)
3977 {
3978 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3979
3980 if (stage_prog_data->binding_table.image_start > 0) {
3981 if (image.file == BRW_IMMEDIATE_VALUE) {
3982 image.d += stage_prog_data->binding_table.image_start;
3983 } else {
3984 bld.ADD(image, image,
3985 brw_imm_d(stage_prog_data->binding_table.image_start));
3986 }
3987 }
3988
3989 return bld.emit_uniformize(image);
3990 }
3991
3992 fs_reg
3993 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
3994 nir_intrinsic_instr *instr)
3995 {
3996 /* SSBO stores are weird in that their index is in src[1] */
3997 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
3998
3999 fs_reg surf_index;
4000 if (nir_src_is_const(instr->src[src])) {
4001 unsigned index = stage_prog_data->binding_table.ssbo_start +
4002 nir_src_as_uint(instr->src[src]);
4003 surf_index = brw_imm_ud(index);
4004 } else {
4005 surf_index = vgrf(glsl_type::uint_type);
4006 bld.ADD(surf_index, get_nir_src(instr->src[src]),
4007 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4008 }
4009
4010 return bld.emit_uniformize(surf_index);
4011 }
4012
4013 static unsigned
4014 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
4015 {
4016 switch (nir_intrinsic_image_dim(instr)) {
4017 case GLSL_SAMPLER_DIM_1D:
4018 return 1 + nir_intrinsic_image_array(instr);
4019 case GLSL_SAMPLER_DIM_2D:
4020 case GLSL_SAMPLER_DIM_RECT:
4021 return 2 + nir_intrinsic_image_array(instr);
4022 case GLSL_SAMPLER_DIM_3D:
4023 case GLSL_SAMPLER_DIM_CUBE:
4024 return 3;
4025 case GLSL_SAMPLER_DIM_BUF:
4026 return 1;
4027 case GLSL_SAMPLER_DIM_MS:
4028 return 2 + nir_intrinsic_image_array(instr);
4029 default:
4030 unreachable("Invalid image dimension");
4031 }
4032 }
4033
4034 /**
4035 * The offsets we get from NIR act as if each SIMD channel has it's own blob
4036 * of contiguous space. However, if we actually place each SIMD channel in
4037 * it's own space, we end up with terrible cache performance because each SIMD
4038 * channel accesses a different cache line even when they're all accessing the
4039 * same byte offset. To deal with this problem, we swizzle the address using
4040 * a simple algorithm which ensures that any time a SIMD message reads or
4041 * writes the same address, it's all in the same cache line. We have to keep
4042 * the bottom two bits fixed so that we can read/write up to a dword at a time
4043 * and the individual element is contiguous. We do this by splitting the
4044 * address as follows:
4045 *
4046 * 31 4-6 2 0
4047 * +-------------------------------+------------+----------+
4048 * | Hi address bits | chan index | addr low |
4049 * +-------------------------------+------------+----------+
4050 *
4051 * In other words, the bottom two address bits stay, and the top 30 get
4052 * shifted up so that we can stick the SIMD channel index in the middle. This
4053 * way, we can access 8, 16, or 32-bit elements and, when accessing a 32-bit
4054 * at the same logical offset, the scratch read/write instruction acts on
4055 * continuous elements and we get good cache locality.
4056 */
4057 fs_reg
4058 fs_visitor::swizzle_nir_scratch_addr(const brw::fs_builder &bld,
4059 const fs_reg &nir_addr,
4060 bool in_dwords)
4061 {
4062 const fs_reg &chan_index =
4063 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
4064 const unsigned chan_index_bits = ffs(dispatch_width) - 1;
4065
4066 fs_reg addr = bld.vgrf(BRW_REGISTER_TYPE_UD);
4067 if (in_dwords) {
4068 /* In this case, we know the address is aligned to a DWORD and we want
4069 * the final address in DWORDs.
4070 */
4071 bld.SHL(addr, nir_addr, brw_imm_ud(chan_index_bits - 2));
4072 bld.OR(addr, addr, chan_index);
4073 } else {
4074 /* This case substantially more annoying because we have to pay
4075 * attention to those pesky two bottom bits.
4076 */
4077 fs_reg addr_hi = bld.vgrf(BRW_REGISTER_TYPE_UD);
4078 bld.AND(addr_hi, nir_addr, brw_imm_ud(~0x3u));
4079 bld.SHL(addr_hi, addr_hi, brw_imm_ud(chan_index_bits));
4080 fs_reg chan_addr = bld.vgrf(BRW_REGISTER_TYPE_UD);
4081 bld.SHL(chan_addr, chan_index, brw_imm_ud(2));
4082 bld.AND(addr, nir_addr, brw_imm_ud(0x3u));
4083 bld.OR(addr, addr, addr_hi);
4084 bld.OR(addr, addr, chan_addr);
4085 }
4086 return addr;
4087 }
4088
4089 void
4090 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
4091 {
4092 fs_reg dest;
4093 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4094 dest = get_nir_dest(instr->dest);
4095
4096 switch (instr->intrinsic) {
4097 case nir_intrinsic_image_load:
4098 case nir_intrinsic_image_store:
4099 case nir_intrinsic_image_atomic_add:
4100 case nir_intrinsic_image_atomic_imin:
4101 case nir_intrinsic_image_atomic_umin:
4102 case nir_intrinsic_image_atomic_imax:
4103 case nir_intrinsic_image_atomic_umax:
4104 case nir_intrinsic_image_atomic_and:
4105 case nir_intrinsic_image_atomic_or:
4106 case nir_intrinsic_image_atomic_xor:
4107 case nir_intrinsic_image_atomic_exchange:
4108 case nir_intrinsic_image_atomic_comp_swap:
4109 case nir_intrinsic_bindless_image_load:
4110 case nir_intrinsic_bindless_image_store:
4111 case nir_intrinsic_bindless_image_atomic_add:
4112 case nir_intrinsic_bindless_image_atomic_imin:
4113 case nir_intrinsic_bindless_image_atomic_umin:
4114 case nir_intrinsic_bindless_image_atomic_imax:
4115 case nir_intrinsic_bindless_image_atomic_umax:
4116 case nir_intrinsic_bindless_image_atomic_and:
4117 case nir_intrinsic_bindless_image_atomic_or:
4118 case nir_intrinsic_bindless_image_atomic_xor:
4119 case nir_intrinsic_bindless_image_atomic_exchange:
4120 case nir_intrinsic_bindless_image_atomic_comp_swap: {
4121 if (stage == MESA_SHADER_FRAGMENT &&
4122 instr->intrinsic != nir_intrinsic_image_load)
4123 brw_wm_prog_data(prog_data)->has_side_effects = true;
4124
4125 /* Get some metadata from the image intrinsic. */
4126 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
4127
4128 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4129
4130 switch (instr->intrinsic) {
4131 case nir_intrinsic_image_load:
4132 case nir_intrinsic_image_store:
4133 case nir_intrinsic_image_atomic_add:
4134 case nir_intrinsic_image_atomic_imin:
4135 case nir_intrinsic_image_atomic_umin:
4136 case nir_intrinsic_image_atomic_imax:
4137 case nir_intrinsic_image_atomic_umax:
4138 case nir_intrinsic_image_atomic_and:
4139 case nir_intrinsic_image_atomic_or:
4140 case nir_intrinsic_image_atomic_xor:
4141 case nir_intrinsic_image_atomic_exchange:
4142 case nir_intrinsic_image_atomic_comp_swap:
4143 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4144 get_nir_image_intrinsic_image(bld, instr);
4145 break;
4146
4147 default:
4148 /* Bindless */
4149 srcs[SURFACE_LOGICAL_SRC_SURFACE_HANDLE] =
4150 bld.emit_uniformize(get_nir_src(instr->src[0]));
4151 break;
4152 }
4153
4154 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4155 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
4156 brw_imm_ud(image_intrinsic_coord_components(instr));
4157
4158 /* Emit an image load, store or atomic op. */
4159 if (instr->intrinsic == nir_intrinsic_image_load ||
4160 instr->intrinsic == nir_intrinsic_bindless_image_load) {
4161 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4162 fs_inst *inst =
4163 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
4164 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4165 inst->size_written = instr->num_components * dispatch_width * 4;
4166 } else if (instr->intrinsic == nir_intrinsic_image_store ||
4167 instr->intrinsic == nir_intrinsic_bindless_image_store) {
4168 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4169 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
4170 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
4171 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4172 } else {
4173 unsigned num_srcs = info->num_srcs;
4174 int op = brw_aop_for_nir_intrinsic(instr);
4175 if (op == BRW_AOP_INC || op == BRW_AOP_DEC) {
4176 assert(num_srcs == 4);
4177 num_srcs = 3;
4178 }
4179
4180 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4181
4182 fs_reg data;
4183 if (num_srcs >= 4)
4184 data = get_nir_src(instr->src[3]);
4185 if (num_srcs >= 5) {
4186 fs_reg tmp = bld.vgrf(data.type, 2);
4187 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
4188 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4189 data = tmp;
4190 }
4191 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4192
4193 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
4194 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4195 }
4196 break;
4197 }
4198
4199 case nir_intrinsic_image_size:
4200 case nir_intrinsic_bindless_image_size: {
4201 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
4202 * into will handle the binding table index for us in the geneerator.
4203 * Incidentally, this means that we can handle bindless with exactly the
4204 * same code.
4205 */
4206 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
4207 BRW_REGISTER_TYPE_UD);
4208 image = bld.emit_uniformize(image);
4209
4210 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4211 if (instr->intrinsic == nir_intrinsic_image_size)
4212 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
4213 else
4214 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = image;
4215 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
4216 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
4217 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
4218
4219 /* Since the image size is always uniform, we can just emit a SIMD8
4220 * query instruction and splat the result out.
4221 */
4222 const fs_builder ubld = bld.exec_all().group(8, 0);
4223
4224 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4225 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
4226 tmp, srcs, ARRAY_SIZE(srcs));
4227 inst->size_written = 4 * REG_SIZE;
4228
4229 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
4230 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
4231 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
4232 offset(retype(dest, tmp.type), bld, c),
4233 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
4234 } else {
4235 bld.MOV(offset(retype(dest, tmp.type), bld, c),
4236 component(offset(tmp, ubld, c), 0));
4237 }
4238 }
4239 break;
4240 }
4241
4242 case nir_intrinsic_image_load_raw_intel: {
4243 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4244 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4245 get_nir_image_intrinsic_image(bld, instr);
4246 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4247 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4248 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4249
4250 fs_inst *inst =
4251 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4252 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4253 inst->size_written = instr->num_components * dispatch_width * 4;
4254 break;
4255 }
4256
4257 case nir_intrinsic_image_store_raw_intel: {
4258 if (stage == MESA_SHADER_FRAGMENT)
4259 brw_wm_prog_data(prog_data)->has_side_effects = true;
4260
4261 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4262 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4263 get_nir_image_intrinsic_image(bld, instr);
4264 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4265 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
4266 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4267 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4268
4269 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4270 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4271 break;
4272 }
4273
4274 case nir_intrinsic_scoped_memory_barrier:
4275 case nir_intrinsic_group_memory_barrier:
4276 case nir_intrinsic_memory_barrier_shared:
4277 case nir_intrinsic_memory_barrier_atomic_counter:
4278 case nir_intrinsic_memory_barrier_buffer:
4279 case nir_intrinsic_memory_barrier_image:
4280 case nir_intrinsic_memory_barrier: {
4281 bool l3_fence, slm_fence;
4282 if (instr->intrinsic == nir_intrinsic_scoped_memory_barrier) {
4283 nir_variable_mode modes = nir_intrinsic_memory_modes(instr);
4284 l3_fence = modes & (nir_var_shader_out |
4285 nir_var_mem_ssbo |
4286 nir_var_mem_global);
4287 /* Prior to gen11, we only have one kind of fence. */
4288 slm_fence = devinfo->gen >= 11 && (modes & nir_var_mem_shared);
4289 l3_fence |= devinfo->gen < 11 && (modes & nir_var_mem_shared);
4290 } else {
4291 if (devinfo->gen >= 11) {
4292 l3_fence = instr->intrinsic != nir_intrinsic_memory_barrier_shared;
4293 slm_fence = instr->intrinsic == nir_intrinsic_group_memory_barrier ||
4294 instr->intrinsic == nir_intrinsic_memory_barrier ||
4295 instr->intrinsic == nir_intrinsic_memory_barrier_shared;
4296 } else {
4297 /* Prior to gen11, we only have one kind of fence. */
4298 l3_fence = true;
4299 slm_fence = false;
4300 }
4301 }
4302
4303 /* Be conservative in Gen11+ and always stall in a fence. Since there
4304 * are two different fences, and shader might want to synchronize
4305 * between them.
4306 *
4307 * TODO: Improve NIR so that scope and visibility information for the
4308 * barriers is available here to make a better decision.
4309 *
4310 * TODO: When emitting more than one fence, it might help emit all
4311 * the fences first and then generate the stall moves.
4312 */
4313 const bool stall = devinfo->gen >= 11;
4314
4315 const fs_builder ubld = bld.group(8, 0);
4316 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4317
4318 if (l3_fence) {
4319 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
4320 brw_vec8_grf(0, 0), brw_imm_ud(stall),
4321 /* bti */ brw_imm_ud(0))
4322 ->size_written = 2 * REG_SIZE;
4323 }
4324
4325 if (slm_fence) {
4326 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
4327 brw_vec8_grf(0, 0), brw_imm_ud(stall),
4328 brw_imm_ud(GEN7_BTI_SLM))
4329 ->size_written = 2 * REG_SIZE;
4330 }
4331
4332 break;
4333 }
4334
4335 case nir_intrinsic_memory_barrier_tcs_patch:
4336 break;
4337
4338 case nir_intrinsic_shader_clock: {
4339 /* We cannot do anything if there is an event, so ignore it for now */
4340 const fs_reg shader_clock = get_timestamp(bld);
4341 const fs_reg srcs[] = { component(shader_clock, 0),
4342 component(shader_clock, 1) };
4343 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
4344 break;
4345 }
4346
4347 case nir_intrinsic_image_samples:
4348 /* The driver does not support multi-sampled images. */
4349 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4350 break;
4351
4352 case nir_intrinsic_load_uniform: {
4353 /* Offsets are in bytes but they should always aligned to
4354 * the type size
4355 */
4356 assert(instr->const_index[0] % 4 == 0 ||
4357 instr->const_index[0] % type_sz(dest.type) == 0);
4358
4359 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4360
4361 if (nir_src_is_const(instr->src[0])) {
4362 unsigned load_offset = nir_src_as_uint(instr->src[0]);
4363 assert(load_offset % type_sz(dest.type) == 0);
4364 /* For 16-bit types we add the module of the const_index[0]
4365 * offset to access to not 32-bit aligned element
4366 */
4367 src.offset = load_offset + instr->const_index[0] % 4;
4368
4369 for (unsigned j = 0; j < instr->num_components; j++) {
4370 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4371 }
4372 } else {
4373 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4374 BRW_REGISTER_TYPE_UD);
4375
4376 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4377 * go past the end of the uniform. In order to keep the n'th
4378 * component from running past, we subtract off the size of all but
4379 * one component of the vector.
4380 */
4381 assert(instr->const_index[1] >=
4382 instr->num_components * (int) type_sz(dest.type));
4383 unsigned read_size = instr->const_index[1] -
4384 (instr->num_components - 1) * type_sz(dest.type);
4385
4386 bool supports_64bit_indirects =
4387 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4388
4389 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4390 for (unsigned j = 0; j < instr->num_components; j++) {
4391 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4392 offset(dest, bld, j), offset(src, bld, j),
4393 indirect, brw_imm_ud(read_size));
4394 }
4395 } else {
4396 const unsigned num_mov_indirects =
4397 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4398 /* We read a little bit less per MOV INDIRECT, as they are now
4399 * 32-bits ones instead of 64-bit. Fix read_size then.
4400 */
4401 const unsigned read_size_32bit = read_size -
4402 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4403 for (unsigned j = 0; j < instr->num_components; j++) {
4404 for (unsigned i = 0; i < num_mov_indirects; i++) {
4405 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4406 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4407 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4408 indirect, brw_imm_ud(read_size_32bit));
4409 }
4410 }
4411 }
4412 }
4413 break;
4414 }
4415
4416 case nir_intrinsic_load_ubo: {
4417 fs_reg surf_index;
4418 if (nir_src_is_const(instr->src[0])) {
4419 const unsigned index = stage_prog_data->binding_table.ubo_start +
4420 nir_src_as_uint(instr->src[0]);
4421 surf_index = brw_imm_ud(index);
4422 } else {
4423 /* The block index is not a constant. Evaluate the index expression
4424 * per-channel and add the base UBO index; we have to select a value
4425 * from any live channel.
4426 */
4427 surf_index = vgrf(glsl_type::uint_type);
4428 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4429 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4430 surf_index = bld.emit_uniformize(surf_index);
4431 }
4432
4433 if (!nir_src_is_const(instr->src[1])) {
4434 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4435 BRW_REGISTER_TYPE_UD);
4436
4437 for (int i = 0; i < instr->num_components; i++)
4438 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4439 base_offset, i * type_sz(dest.type));
4440
4441 prog_data->has_ubo_pull = true;
4442 } else {
4443 /* Even if we are loading doubles, a pull constant load will load
4444 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4445 * need to load a full dvec4 we will have to emit 2 loads. This is
4446 * similar to demote_pull_constants(), except that in that case we
4447 * see individual accesses to each component of the vector and then
4448 * we let CSE deal with duplicate loads. Here we see a vector access
4449 * and we have to split it if necessary.
4450 */
4451 const unsigned type_size = type_sz(dest.type);
4452 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4453
4454 /* See if we've selected this as a push constant candidate */
4455 if (nir_src_is_const(instr->src[0])) {
4456 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4457 const unsigned offset_256b = load_offset / 32;
4458
4459 fs_reg push_reg;
4460 for (int i = 0; i < 4; i++) {
4461 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4462 if (range->block == ubo_block &&
4463 offset_256b >= range->start &&
4464 offset_256b < range->start + range->length) {
4465
4466 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4467 push_reg.offset = load_offset - 32 * range->start;
4468 break;
4469 }
4470 }
4471
4472 if (push_reg.file != BAD_FILE) {
4473 for (unsigned i = 0; i < instr->num_components; i++) {
4474 bld.MOV(offset(dest, bld, i),
4475 byte_offset(push_reg, i * type_size));
4476 }
4477 break;
4478 }
4479 }
4480
4481 prog_data->has_ubo_pull = true;
4482
4483 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4484 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4485 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4486
4487 for (unsigned c = 0; c < instr->num_components;) {
4488 const unsigned base = load_offset + c * type_size;
4489 /* Number of usable components in the next block-aligned load. */
4490 const unsigned count = MIN2(instr->num_components - c,
4491 (block_sz - base % block_sz) / type_size);
4492
4493 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4494 packed_consts, surf_index,
4495 brw_imm_ud(base & ~(block_sz - 1)));
4496
4497 const fs_reg consts =
4498 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4499 dest.type);
4500
4501 for (unsigned d = 0; d < count; d++)
4502 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4503
4504 c += count;
4505 }
4506 }
4507 break;
4508 }
4509
4510 case nir_intrinsic_load_global: {
4511 assert(devinfo->gen >= 8);
4512
4513 if (nir_intrinsic_align(instr) >= 4) {
4514 assert(nir_dest_bit_size(instr->dest) == 32);
4515 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4516 dest,
4517 get_nir_src(instr->src[0]), /* Address */
4518 fs_reg(), /* No source data */
4519 brw_imm_ud(instr->num_components));
4520 inst->size_written = instr->num_components *
4521 inst->dst.component_size(inst->exec_size);
4522 } else {
4523 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4524 assert(bit_size <= 32);
4525 assert(nir_dest_num_components(instr->dest) == 1);
4526 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4527 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4528 tmp,
4529 get_nir_src(instr->src[0]), /* Address */
4530 fs_reg(), /* No source data */
4531 brw_imm_ud(bit_size));
4532 bld.MOV(dest, subscript(tmp, dest.type, 0));
4533 }
4534 break;
4535 }
4536
4537 case nir_intrinsic_store_global:
4538 assert(devinfo->gen >= 8);
4539
4540 if (stage == MESA_SHADER_FRAGMENT)
4541 brw_wm_prog_data(prog_data)->has_side_effects = true;
4542
4543 if (nir_intrinsic_align(instr) >= 4) {
4544 assert(nir_src_bit_size(instr->src[0]) == 32);
4545 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4546 fs_reg(),
4547 get_nir_src(instr->src[1]), /* Address */
4548 get_nir_src(instr->src[0]), /* Data */
4549 brw_imm_ud(instr->num_components));
4550 } else {
4551 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4552 assert(bit_size <= 32);
4553 assert(nir_src_num_components(instr->src[0]) == 1);
4554 brw_reg_type data_type =
4555 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4556 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4557 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4558 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4559 fs_reg(),
4560 get_nir_src(instr->src[1]), /* Address */
4561 tmp, /* Data */
4562 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4563 }
4564 break;
4565
4566 case nir_intrinsic_global_atomic_add:
4567 case nir_intrinsic_global_atomic_imin:
4568 case nir_intrinsic_global_atomic_umin:
4569 case nir_intrinsic_global_atomic_imax:
4570 case nir_intrinsic_global_atomic_umax:
4571 case nir_intrinsic_global_atomic_and:
4572 case nir_intrinsic_global_atomic_or:
4573 case nir_intrinsic_global_atomic_xor:
4574 case nir_intrinsic_global_atomic_exchange:
4575 case nir_intrinsic_global_atomic_comp_swap:
4576 nir_emit_global_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
4577 break;
4578 case nir_intrinsic_global_atomic_fmin:
4579 case nir_intrinsic_global_atomic_fmax:
4580 case nir_intrinsic_global_atomic_fcomp_swap:
4581 nir_emit_global_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
4582 break;
4583
4584 case nir_intrinsic_load_ssbo: {
4585 assert(devinfo->gen >= 7);
4586
4587 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4588 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4589 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4590 get_nir_ssbo_intrinsic_index(bld, instr);
4591 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4592 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4593
4594 /* Make dest unsigned because that's what the temporary will be */
4595 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4596
4597 /* Read the vector */
4598 if (nir_intrinsic_align(instr) >= 4) {
4599 assert(nir_dest_bit_size(instr->dest) == 32);
4600 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4601 fs_inst *inst =
4602 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4603 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4604 inst->size_written = instr->num_components * dispatch_width * 4;
4605 } else {
4606 assert(nir_dest_bit_size(instr->dest) <= 32);
4607 assert(nir_dest_num_components(instr->dest) == 1);
4608 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4609
4610 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4611 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4612 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4613 bld.MOV(dest, subscript(read_result, dest.type, 0));
4614 }
4615 break;
4616 }
4617
4618 case nir_intrinsic_store_ssbo: {
4619 assert(devinfo->gen >= 7);
4620
4621 if (stage == MESA_SHADER_FRAGMENT)
4622 brw_wm_prog_data(prog_data)->has_side_effects = true;
4623
4624 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4625 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4626 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4627 get_nir_ssbo_intrinsic_index(bld, instr);
4628 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4629 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4630
4631 fs_reg data = get_nir_src(instr->src[0]);
4632 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4633
4634 assert(nir_intrinsic_write_mask(instr) ==
4635 (1u << instr->num_components) - 1);
4636 if (nir_intrinsic_align(instr) >= 4) {
4637 assert(nir_src_bit_size(instr->src[0]) == 32);
4638 assert(nir_src_num_components(instr->src[0]) <= 4);
4639 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4640 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4641 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4642 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4643 } else {
4644 assert(nir_src_bit_size(instr->src[0]) <= 32);
4645 assert(nir_src_num_components(instr->src[0]) == 1);
4646 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4647
4648 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4649 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4650
4651 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4652 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4653 }
4654 break;
4655 }
4656
4657 case nir_intrinsic_store_output: {
4658 assert(nir_src_bit_size(instr->src[0]) == 32);
4659 fs_reg src = get_nir_src(instr->src[0]);
4660
4661 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4662 unsigned num_components = instr->num_components;
4663 unsigned first_component = nir_intrinsic_component(instr);
4664
4665 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4666 4 * store_offset), src.type);
4667 for (unsigned j = 0; j < num_components; j++) {
4668 bld.MOV(offset(new_dest, bld, j + first_component),
4669 offset(src, bld, j));
4670 }
4671 break;
4672 }
4673
4674 case nir_intrinsic_ssbo_atomic_add:
4675 case nir_intrinsic_ssbo_atomic_imin:
4676 case nir_intrinsic_ssbo_atomic_umin:
4677 case nir_intrinsic_ssbo_atomic_imax:
4678 case nir_intrinsic_ssbo_atomic_umax:
4679 case nir_intrinsic_ssbo_atomic_and:
4680 case nir_intrinsic_ssbo_atomic_or:
4681 case nir_intrinsic_ssbo_atomic_xor:
4682 case nir_intrinsic_ssbo_atomic_exchange:
4683 case nir_intrinsic_ssbo_atomic_comp_swap:
4684 nir_emit_ssbo_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
4685 break;
4686 case nir_intrinsic_ssbo_atomic_fmin:
4687 case nir_intrinsic_ssbo_atomic_fmax:
4688 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4689 nir_emit_ssbo_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
4690 break;
4691
4692 case nir_intrinsic_get_buffer_size: {
4693 assert(nir_src_num_components(instr->src[0]) == 1);
4694 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4695 nir_src_as_uint(instr->src[0]) : 0;
4696
4697 /* A resinfo's sampler message is used to get the buffer size. The
4698 * SIMD8's writeback message consists of four registers and SIMD16's
4699 * writeback message consists of 8 destination registers (two per each
4700 * component). Because we are only interested on the first channel of
4701 * the first returned component, where resinfo returns the buffer size
4702 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4703 * the dispatch width.
4704 */
4705 const fs_builder ubld = bld.exec_all().group(8, 0);
4706 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4707 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4708
4709 /* Set LOD = 0 */
4710 ubld.MOV(src_payload, brw_imm_d(0));
4711
4712 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4713 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4714 src_payload, brw_imm_ud(index));
4715 inst->header_size = 0;
4716 inst->mlen = 1;
4717 inst->size_written = 4 * REG_SIZE;
4718
4719 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4720 *
4721 * "Out-of-bounds checking is always performed at a DWord granularity. If
4722 * any part of the DWord is out-of-bounds then the whole DWord is
4723 * considered out-of-bounds."
4724 *
4725 * This implies that types with size smaller than 4-bytes need to be
4726 * padded if they don't complete the last dword of the buffer. But as we
4727 * need to maintain the original size we need to reverse the padding
4728 * calculation to return the correct size to know the number of elements
4729 * of an unsized array. As we stored in the last two bits of the surface
4730 * size the needed padding for the buffer, we calculate here the
4731 * original buffer_size reversing the surface_size calculation:
4732 *
4733 * surface_size = isl_align(buffer_size, 4) +
4734 * (isl_align(buffer_size) - buffer_size)
4735 *
4736 * buffer_size = surface_size & ~3 - surface_size & 3
4737 */
4738
4739 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4740 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4741 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4742
4743 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4744 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4745 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4746
4747 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4748 break;
4749 }
4750
4751 case nir_intrinsic_load_scratch: {
4752 assert(devinfo->gen >= 7);
4753
4754 assert(nir_dest_num_components(instr->dest) == 1);
4755 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4756 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4757
4758 if (devinfo->gen >= 8) {
4759 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4760 brw_imm_ud(GEN8_BTI_STATELESS_NON_COHERENT);
4761 } else {
4762 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(BRW_BTI_STATELESS);
4763 }
4764
4765 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4766 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4767 const fs_reg nir_addr = get_nir_src(instr->src[0]);
4768
4769 /* Make dest unsigned because that's what the temporary will be */
4770 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4771
4772 /* Read the vector */
4773 if (nir_intrinsic_align(instr) >= 4) {
4774 assert(nir_dest_bit_size(instr->dest) == 32);
4775
4776 /* The offset for a DWORD scattered message is in dwords. */
4777 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4778 swizzle_nir_scratch_addr(bld, nir_addr, true);
4779
4780 bld.emit(SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL,
4781 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4782 } else {
4783 assert(nir_dest_bit_size(instr->dest) <= 32);
4784
4785 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4786 swizzle_nir_scratch_addr(bld, nir_addr, false);
4787
4788 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4789 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4790 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4791 bld.MOV(dest, read_result);
4792 }
4793 break;
4794 }
4795
4796 case nir_intrinsic_store_scratch: {
4797 assert(devinfo->gen >= 7);
4798
4799 assert(nir_src_num_components(instr->src[0]) == 1);
4800 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4801 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4802
4803 if (devinfo->gen >= 8) {
4804 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4805 brw_imm_ud(GEN8_BTI_STATELESS_NON_COHERENT);
4806 } else {
4807 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(BRW_BTI_STATELESS);
4808 }
4809
4810 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4811 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4812 const fs_reg nir_addr = get_nir_src(instr->src[1]);
4813
4814 fs_reg data = get_nir_src(instr->src[0]);
4815 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4816
4817 assert(nir_intrinsic_write_mask(instr) ==
4818 (1u << instr->num_components) - 1);
4819 if (nir_intrinsic_align(instr) >= 4) {
4820 assert(nir_src_bit_size(instr->src[0]) == 32);
4821 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4822
4823 /* The offset for a DWORD scattered message is in dwords. */
4824 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4825 swizzle_nir_scratch_addr(bld, nir_addr, true);
4826
4827 bld.emit(SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL,
4828 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4829 } else {
4830 assert(nir_src_bit_size(instr->src[0]) <= 32);
4831
4832 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4833 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4834
4835 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4836 swizzle_nir_scratch_addr(bld, nir_addr, false);
4837
4838 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4839 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4840 }
4841 break;
4842 }
4843
4844 case nir_intrinsic_load_subgroup_size:
4845 /* This should only happen for fragment shaders because every other case
4846 * is lowered in NIR so we can optimize on it.
4847 */
4848 assert(stage == MESA_SHADER_FRAGMENT);
4849 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(dispatch_width));
4850 break;
4851
4852 case nir_intrinsic_load_subgroup_invocation:
4853 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4854 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4855 break;
4856
4857 case nir_intrinsic_load_subgroup_eq_mask:
4858 case nir_intrinsic_load_subgroup_ge_mask:
4859 case nir_intrinsic_load_subgroup_gt_mask:
4860 case nir_intrinsic_load_subgroup_le_mask:
4861 case nir_intrinsic_load_subgroup_lt_mask:
4862 unreachable("not reached");
4863
4864 case nir_intrinsic_vote_any: {
4865 const fs_builder ubld = bld.exec_all().group(1, 0);
4866
4867 /* The any/all predicates do not consider channel enables. To prevent
4868 * dead channels from affecting the result, we initialize the flag with
4869 * with the identity value for the logical operation.
4870 */
4871 if (dispatch_width == 32) {
4872 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4873 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4874 brw_imm_ud(0));
4875 } else {
4876 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4877 }
4878 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4879
4880 /* For some reason, the any/all predicates don't work properly with
4881 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4882 * doesn't read the correct subset of the flag register and you end up
4883 * getting garbage in the second half. Work around this by using a pair
4884 * of 1-wide MOVs and scattering the result.
4885 */
4886 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4887 ubld.MOV(res1, brw_imm_d(0));
4888 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4889 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4890 BRW_PREDICATE_ALIGN1_ANY32H,
4891 ubld.MOV(res1, brw_imm_d(-1)));
4892
4893 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4894 break;
4895 }
4896 case nir_intrinsic_vote_all: {
4897 const fs_builder ubld = bld.exec_all().group(1, 0);
4898
4899 /* The any/all predicates do not consider channel enables. To prevent
4900 * dead channels from affecting the result, we initialize the flag with
4901 * with the identity value for the logical operation.
4902 */
4903 if (dispatch_width == 32) {
4904 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4905 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4906 brw_imm_ud(0xffffffff));
4907 } else {
4908 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4909 }
4910 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4911
4912 /* For some reason, the any/all predicates don't work properly with
4913 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4914 * doesn't read the correct subset of the flag register and you end up
4915 * getting garbage in the second half. Work around this by using a pair
4916 * of 1-wide MOVs and scattering the result.
4917 */
4918 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4919 ubld.MOV(res1, brw_imm_d(0));
4920 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4921 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4922 BRW_PREDICATE_ALIGN1_ALL32H,
4923 ubld.MOV(res1, brw_imm_d(-1)));
4924
4925 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4926 break;
4927 }
4928 case nir_intrinsic_vote_feq:
4929 case nir_intrinsic_vote_ieq: {
4930 fs_reg value = get_nir_src(instr->src[0]);
4931 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4932 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4933 value.type = bit_size == 8 ? BRW_REGISTER_TYPE_B :
4934 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4935 }
4936
4937 fs_reg uniformized = bld.emit_uniformize(value);
4938 const fs_builder ubld = bld.exec_all().group(1, 0);
4939
4940 /* The any/all predicates do not consider channel enables. To prevent
4941 * dead channels from affecting the result, we initialize the flag with
4942 * with the identity value for the logical operation.
4943 */
4944 if (dispatch_width == 32) {
4945 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4946 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4947 brw_imm_ud(0xffffffff));
4948 } else {
4949 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4950 }
4951 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4952
4953 /* For some reason, the any/all predicates don't work properly with
4954 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4955 * doesn't read the correct subset of the flag register and you end up
4956 * getting garbage in the second half. Work around this by using a pair
4957 * of 1-wide MOVs and scattering the result.
4958 */
4959 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4960 ubld.MOV(res1, brw_imm_d(0));
4961 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4962 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4963 BRW_PREDICATE_ALIGN1_ALL32H,
4964 ubld.MOV(res1, brw_imm_d(-1)));
4965
4966 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4967 break;
4968 }
4969
4970 case nir_intrinsic_ballot: {
4971 const fs_reg value = retype(get_nir_src(instr->src[0]),
4972 BRW_REGISTER_TYPE_UD);
4973 struct brw_reg flag = brw_flag_reg(0, 0);
4974 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4975 * as f0.0. This is a problem for fragment programs as we currently use
4976 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4977 * programs yet so this isn't a problem. When we do, something will
4978 * have to change.
4979 */
4980 if (dispatch_width == 32)
4981 flag.type = BRW_REGISTER_TYPE_UD;
4982
4983 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4984 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4985
4986 if (instr->dest.ssa.bit_size > 32) {
4987 dest.type = BRW_REGISTER_TYPE_UQ;
4988 } else {
4989 dest.type = BRW_REGISTER_TYPE_UD;
4990 }
4991 bld.MOV(dest, flag);
4992 break;
4993 }
4994
4995 case nir_intrinsic_read_invocation: {
4996 const fs_reg value = get_nir_src(instr->src[0]);
4997 const fs_reg invocation = get_nir_src(instr->src[1]);
4998 fs_reg tmp = bld.vgrf(value.type);
4999
5000 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
5001 bld.emit_uniformize(invocation));
5002
5003 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
5004 break;
5005 }
5006
5007 case nir_intrinsic_read_first_invocation: {
5008 const fs_reg value = get_nir_src(instr->src[0]);
5009 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
5010 break;
5011 }
5012
5013 case nir_intrinsic_shuffle: {
5014 const fs_reg value = get_nir_src(instr->src[0]);
5015 const fs_reg index = get_nir_src(instr->src[1]);
5016
5017 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
5018 break;
5019 }
5020
5021 case nir_intrinsic_first_invocation: {
5022 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
5023 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
5024 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
5025 fs_reg(component(tmp, 0)));
5026 break;
5027 }
5028
5029 case nir_intrinsic_quad_broadcast: {
5030 const fs_reg value = get_nir_src(instr->src[0]);
5031 const unsigned index = nir_src_as_uint(instr->src[1]);
5032
5033 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
5034 value, brw_imm_ud(index), brw_imm_ud(4));
5035 break;
5036 }
5037
5038 case nir_intrinsic_quad_swap_horizontal: {
5039 const fs_reg value = get_nir_src(instr->src[0]);
5040 const fs_reg tmp = bld.vgrf(value.type);
5041 if (devinfo->gen <= 7) {
5042 /* The hardware doesn't seem to support these crazy regions with
5043 * compressed instructions on gen7 and earlier so we fall back to
5044 * using quad swizzles. Fortunately, we don't support 64-bit
5045 * anything in Vulkan on gen7.
5046 */
5047 assert(nir_src_bit_size(instr->src[0]) == 32);
5048 const fs_builder ubld = bld.exec_all();
5049 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5050 brw_imm_ud(BRW_SWIZZLE4(1,0,3,2)));
5051 bld.MOV(retype(dest, value.type), tmp);
5052 } else {
5053 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
5054
5055 const fs_reg src_left = horiz_stride(value, 2);
5056 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
5057 const fs_reg tmp_left = horiz_stride(tmp, 2);
5058 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
5059
5060 ubld.MOV(tmp_left, src_right);
5061 ubld.MOV(tmp_right, src_left);
5062
5063 }
5064 bld.MOV(retype(dest, value.type), tmp);
5065 break;
5066 }
5067
5068 case nir_intrinsic_quad_swap_vertical: {
5069 const fs_reg value = get_nir_src(instr->src[0]);
5070 if (nir_src_bit_size(instr->src[0]) == 32) {
5071 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
5072 const fs_reg tmp = bld.vgrf(value.type);
5073 const fs_builder ubld = bld.exec_all();
5074 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5075 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
5076 bld.MOV(retype(dest, value.type), tmp);
5077 } else {
5078 /* For larger data types, we have to either emit dispatch_width many
5079 * MOVs or else fall back to doing indirects.
5080 */
5081 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5082 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5083 brw_imm_w(0x2));
5084 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
5085 }
5086 break;
5087 }
5088
5089 case nir_intrinsic_quad_swap_diagonal: {
5090 const fs_reg value = get_nir_src(instr->src[0]);
5091 if (nir_src_bit_size(instr->src[0]) == 32) {
5092 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
5093 const fs_reg tmp = bld.vgrf(value.type);
5094 const fs_builder ubld = bld.exec_all();
5095 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5096 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
5097 bld.MOV(retype(dest, value.type), tmp);
5098 } else {
5099 /* For larger data types, we have to either emit dispatch_width many
5100 * MOVs or else fall back to doing indirects.
5101 */
5102 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5103 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5104 brw_imm_w(0x3));
5105 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
5106 }
5107 break;
5108 }
5109
5110 case nir_intrinsic_reduce: {
5111 fs_reg src = get_nir_src(instr->src[0]);
5112 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
5113 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
5114 if (cluster_size == 0 || cluster_size > dispatch_width)
5115 cluster_size = dispatch_width;
5116
5117 /* Figure out the source type */
5118 src.type = brw_type_for_nir_type(devinfo,
5119 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
5120 nir_src_bit_size(instr->src[0])));
5121
5122 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
5123 opcode brw_op = brw_op_for_nir_reduction_op(redop);
5124 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
5125
5126 /* There are a couple of register region issues that make things
5127 * complicated for 8-bit types:
5128 *
5129 * 1. Only raw moves are allowed to write to a packed 8-bit
5130 * destination.
5131 * 2. If we use a strided destination, the efficient way to do scan
5132 * operations ends up using strides that are too big to encode in
5133 * an instruction.
5134 *
5135 * To get around these issues, we just do all 8-bit scan operations in
5136 * 16 bits. It's actually fewer instructions than what we'd have to do
5137 * if we were trying to do it in native 8-bit types and the results are
5138 * the same once we truncate to 8 bits at the end.
5139 */
5140 brw_reg_type scan_type = src.type;
5141 if (type_sz(scan_type) == 1)
5142 scan_type = brw_reg_type_from_bit_size(16, src.type);
5143
5144 /* Set up a register for all of our scratching around and initialize it
5145 * to reduction operation's identity value.
5146 */
5147 fs_reg scan = bld.vgrf(scan_type);
5148 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5149
5150 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
5151
5152 dest.type = src.type;
5153 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
5154 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
5155 * the distance between clusters is at least 2 GRFs. In this case,
5156 * we don't need the weird striding of the CLUSTER_BROADCAST
5157 * instruction and can just do regular MOVs.
5158 */
5159 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
5160 const unsigned groups =
5161 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
5162 const unsigned group_size = dispatch_width / groups;
5163 for (unsigned i = 0; i < groups; i++) {
5164 const unsigned cluster = (i * group_size) / cluster_size;
5165 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
5166 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
5167 component(scan, comp));
5168 }
5169 } else {
5170 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
5171 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
5172 }
5173 break;
5174 }
5175
5176 case nir_intrinsic_inclusive_scan:
5177 case nir_intrinsic_exclusive_scan: {
5178 fs_reg src = get_nir_src(instr->src[0]);
5179 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
5180
5181 /* Figure out the source type */
5182 src.type = brw_type_for_nir_type(devinfo,
5183 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
5184 nir_src_bit_size(instr->src[0])));
5185
5186 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
5187 opcode brw_op = brw_op_for_nir_reduction_op(redop);
5188 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
5189
5190 /* There are a couple of register region issues that make things
5191 * complicated for 8-bit types:
5192 *
5193 * 1. Only raw moves are allowed to write to a packed 8-bit
5194 * destination.
5195 * 2. If we use a strided destination, the efficient way to do scan
5196 * operations ends up using strides that are too big to encode in
5197 * an instruction.
5198 *
5199 * To get around these issues, we just do all 8-bit scan operations in
5200 * 16 bits. It's actually fewer instructions than what we'd have to do
5201 * if we were trying to do it in native 8-bit types and the results are
5202 * the same once we truncate to 8 bits at the end.
5203 */
5204 brw_reg_type scan_type = src.type;
5205 if (type_sz(scan_type) == 1)
5206 scan_type = brw_reg_type_from_bit_size(16, src.type);
5207
5208 /* Set up a register for all of our scratching around and initialize it
5209 * to reduction operation's identity value.
5210 */
5211 fs_reg scan = bld.vgrf(scan_type);
5212 const fs_builder allbld = bld.exec_all();
5213 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5214
5215 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
5216 /* Exclusive scan is a bit harder because we have to do an annoying
5217 * shift of the contents before we can begin. To make things worse,
5218 * we can't do this with a normal stride; we have to use indirects.
5219 */
5220 fs_reg shifted = bld.vgrf(scan_type);
5221 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5222 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5223 brw_imm_w(-1));
5224 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
5225 allbld.group(1, 0).MOV(component(shifted, 0), identity);
5226 scan = shifted;
5227 }
5228
5229 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
5230
5231 bld.MOV(retype(dest, src.type), scan);
5232 break;
5233 }
5234
5235 case nir_intrinsic_begin_invocation_interlock: {
5236 const fs_builder ubld = bld.group(8, 0);
5237 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5238
5239 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp, brw_vec8_grf(0, 0))
5240 ->size_written = 2 * REG_SIZE;
5241 break;
5242 }
5243
5244 case nir_intrinsic_end_invocation_interlock: {
5245 /* For endInvocationInterlock(), we need to insert a memory fence which
5246 * stalls in the shader until the memory transactions prior to that
5247 * fence are complete. This ensures that the shader does not end before
5248 * any writes from its critical section have landed. Otherwise, you can
5249 * end up with a case where the next invocation on that pixel properly
5250 * stalls for previous FS invocation on its pixel to complete but
5251 * doesn't actually wait for the dataport memory transactions from that
5252 * thread to land before submitting its own.
5253 */
5254 const fs_builder ubld = bld.group(8, 0);
5255 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5256 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
5257 brw_vec8_grf(0, 0), brw_imm_ud(1), brw_imm_ud(0))
5258 ->size_written = 2 * REG_SIZE;
5259 break;
5260 }
5261
5262 default:
5263 unreachable("unknown intrinsic");
5264 }
5265 }
5266
5267 void
5268 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
5269 int op, nir_intrinsic_instr *instr)
5270 {
5271 if (stage == MESA_SHADER_FRAGMENT)
5272 brw_wm_prog_data(prog_data)->has_side_effects = true;
5273
5274 /* The BTI untyped atomic messages only support 32-bit atomics. If you
5275 * just look at the big table of messages in the Vol 7 of the SKL PRM, they
5276 * appear to exist. However, if you look at Vol 2a, there are no message
5277 * descriptors provided for Qword atomic ops except for A64 messages.
5278 */
5279 assert(nir_dest_bit_size(instr->dest) == 32);
5280
5281 fs_reg dest;
5282 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5283 dest = get_nir_dest(instr->dest);
5284
5285 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5286 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5287 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5288 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5289 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5290
5291 fs_reg data;
5292 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5293 data = get_nir_src(instr->src[2]);
5294
5295 if (op == BRW_AOP_CMPWR) {
5296 fs_reg tmp = bld.vgrf(data.type, 2);
5297 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5298 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5299 data = tmp;
5300 }
5301 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5302
5303 /* Emit the actual atomic operation */
5304
5305 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5306 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5307 }
5308
5309 void
5310 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
5311 int op, nir_intrinsic_instr *instr)
5312 {
5313 if (stage == MESA_SHADER_FRAGMENT)
5314 brw_wm_prog_data(prog_data)->has_side_effects = true;
5315
5316 fs_reg dest;
5317 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5318 dest = get_nir_dest(instr->dest);
5319
5320 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5321 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5322 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5323 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5324 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5325
5326 fs_reg data = get_nir_src(instr->src[2]);
5327 if (op == BRW_AOP_FCMPWR) {
5328 fs_reg tmp = bld.vgrf(data.type, 2);
5329 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5330 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5331 data = tmp;
5332 }
5333 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5334
5335 /* Emit the actual atomic operation */
5336
5337 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5338 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5339 }
5340
5341 void
5342 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
5343 int op, nir_intrinsic_instr *instr)
5344 {
5345 fs_reg dest;
5346 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5347 dest = get_nir_dest(instr->dest);
5348
5349 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5350 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5351 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5352 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5353
5354 fs_reg data;
5355 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5356 data = get_nir_src(instr->src[1]);
5357 if (op == BRW_AOP_CMPWR) {
5358 fs_reg tmp = bld.vgrf(data.type, 2);
5359 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5360 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5361 data = tmp;
5362 }
5363 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5364
5365 /* Get the offset */
5366 if (nir_src_is_const(instr->src[0])) {
5367 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5368 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5369 } else {
5370 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5371 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5372 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5373 brw_imm_ud(instr->const_index[0]));
5374 }
5375
5376 /* Emit the actual atomic operation operation */
5377
5378 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5379 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5380 }
5381
5382 void
5383 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
5384 int op, nir_intrinsic_instr *instr)
5385 {
5386 fs_reg dest;
5387 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5388 dest = get_nir_dest(instr->dest);
5389
5390 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5391 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5392 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5393 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5394
5395 fs_reg data = get_nir_src(instr->src[1]);
5396 if (op == BRW_AOP_FCMPWR) {
5397 fs_reg tmp = bld.vgrf(data.type, 2);
5398 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5399 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5400 data = tmp;
5401 }
5402 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5403
5404 /* Get the offset */
5405 if (nir_src_is_const(instr->src[0])) {
5406 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5407 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5408 } else {
5409 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5410 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5411 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5412 brw_imm_ud(instr->const_index[0]));
5413 }
5414
5415 /* Emit the actual atomic operation operation */
5416
5417 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5418 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5419 }
5420
5421 void
5422 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
5423 int op, nir_intrinsic_instr *instr)
5424 {
5425 if (stage == MESA_SHADER_FRAGMENT)
5426 brw_wm_prog_data(prog_data)->has_side_effects = true;
5427
5428 fs_reg dest;
5429 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5430 dest = get_nir_dest(instr->dest);
5431
5432 fs_reg addr = get_nir_src(instr->src[0]);
5433
5434 fs_reg data;
5435 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5436 data = get_nir_src(instr->src[1]);
5437
5438 if (op == BRW_AOP_CMPWR) {
5439 fs_reg tmp = bld.vgrf(data.type, 2);
5440 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5441 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5442 data = tmp;
5443 }
5444
5445 if (nir_dest_bit_size(instr->dest) == 64) {
5446 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL,
5447 dest, addr, data, brw_imm_ud(op));
5448 } else {
5449 assert(nir_dest_bit_size(instr->dest) == 32);
5450 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5451 dest, addr, data, brw_imm_ud(op));
5452 }
5453 }
5454
5455 void
5456 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
5457 int op, nir_intrinsic_instr *instr)
5458 {
5459 if (stage == MESA_SHADER_FRAGMENT)
5460 brw_wm_prog_data(prog_data)->has_side_effects = true;
5461
5462 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
5463 fs_reg dest = get_nir_dest(instr->dest);
5464
5465 fs_reg addr = get_nir_src(instr->src[0]);
5466
5467 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
5468 fs_reg data = get_nir_src(instr->src[1]);
5469
5470 if (op == BRW_AOP_FCMPWR) {
5471 fs_reg tmp = bld.vgrf(data.type, 2);
5472 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5473 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5474 data = tmp;
5475 }
5476
5477 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5478 dest, addr, data, brw_imm_ud(op));
5479 }
5480
5481 void
5482 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5483 {
5484 unsigned texture = instr->texture_index;
5485 unsigned sampler = instr->sampler_index;
5486
5487 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5488
5489 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5490 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5491
5492 int lod_components = 0;
5493
5494 /* The hardware requires a LOD for buffer textures */
5495 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5496 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5497
5498 uint32_t header_bits = 0;
5499 for (unsigned i = 0; i < instr->num_srcs; i++) {
5500 fs_reg src = get_nir_src(instr->src[i].src);
5501 switch (instr->src[i].src_type) {
5502 case nir_tex_src_bias:
5503 srcs[TEX_LOGICAL_SRC_LOD] =
5504 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5505 break;
5506 case nir_tex_src_comparator:
5507 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5508 break;
5509 case nir_tex_src_coord:
5510 switch (instr->op) {
5511 case nir_texop_txf:
5512 case nir_texop_txf_ms:
5513 case nir_texop_txf_ms_mcs:
5514 case nir_texop_samples_identical:
5515 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5516 break;
5517 default:
5518 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5519 break;
5520 }
5521 break;
5522 case nir_tex_src_ddx:
5523 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5524 lod_components = nir_tex_instr_src_size(instr, i);
5525 break;
5526 case nir_tex_src_ddy:
5527 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5528 break;
5529 case nir_tex_src_lod:
5530 switch (instr->op) {
5531 case nir_texop_txs:
5532 srcs[TEX_LOGICAL_SRC_LOD] =
5533 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5534 break;
5535 case nir_texop_txf:
5536 srcs[TEX_LOGICAL_SRC_LOD] =
5537 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5538 break;
5539 default:
5540 srcs[TEX_LOGICAL_SRC_LOD] =
5541 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5542 break;
5543 }
5544 break;
5545 case nir_tex_src_min_lod:
5546 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
5547 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5548 break;
5549 case nir_tex_src_ms_index:
5550 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5551 break;
5552
5553 case nir_tex_src_offset: {
5554 uint32_t offset_bits = 0;
5555 if (brw_texture_offset(instr, i, &offset_bits)) {
5556 header_bits |= offset_bits;
5557 } else {
5558 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5559 retype(src, BRW_REGISTER_TYPE_D);
5560 }
5561 break;
5562 }
5563
5564 case nir_tex_src_projector:
5565 unreachable("should be lowered");
5566
5567 case nir_tex_src_texture_offset: {
5568 /* Emit code to evaluate the actual indexing expression */
5569 fs_reg tmp = vgrf(glsl_type::uint_type);
5570 bld.ADD(tmp, src, brw_imm_ud(texture));
5571 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5572 break;
5573 }
5574
5575 case nir_tex_src_sampler_offset: {
5576 /* Emit code to evaluate the actual indexing expression */
5577 fs_reg tmp = vgrf(glsl_type::uint_type);
5578 bld.ADD(tmp, src, brw_imm_ud(sampler));
5579 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5580 break;
5581 }
5582
5583 case nir_tex_src_texture_handle:
5584 assert(nir_tex_instr_src_index(instr, nir_tex_src_texture_offset) == -1);
5585 srcs[TEX_LOGICAL_SRC_SURFACE] = fs_reg();
5586 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = bld.emit_uniformize(src);
5587 break;
5588
5589 case nir_tex_src_sampler_handle:
5590 assert(nir_tex_instr_src_index(instr, nir_tex_src_sampler_offset) == -1);
5591 srcs[TEX_LOGICAL_SRC_SAMPLER] = fs_reg();
5592 srcs[TEX_LOGICAL_SRC_SAMPLER_HANDLE] = bld.emit_uniformize(src);
5593 break;
5594
5595 case nir_tex_src_ms_mcs:
5596 assert(instr->op == nir_texop_txf_ms);
5597 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5598 break;
5599
5600 case nir_tex_src_plane: {
5601 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5602 const uint32_t texture_index =
5603 instr->texture_index +
5604 stage_prog_data->binding_table.plane_start[plane] -
5605 stage_prog_data->binding_table.texture_start;
5606
5607 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5608 break;
5609 }
5610
5611 default:
5612 unreachable("unknown texture source");
5613 }
5614 }
5615
5616 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5617 (instr->op == nir_texop_txf_ms ||
5618 instr->op == nir_texop_samples_identical)) {
5619 if (devinfo->gen >= 7 &&
5620 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5621 srcs[TEX_LOGICAL_SRC_MCS] =
5622 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5623 instr->coord_components,
5624 srcs[TEX_LOGICAL_SRC_SURFACE],
5625 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE]);
5626 } else {
5627 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5628 }
5629 }
5630
5631 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5632 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5633
5634 enum opcode opcode;
5635 switch (instr->op) {
5636 case nir_texop_tex:
5637 opcode = SHADER_OPCODE_TEX_LOGICAL;
5638 break;
5639 case nir_texop_txb:
5640 opcode = FS_OPCODE_TXB_LOGICAL;
5641 break;
5642 case nir_texop_txl:
5643 opcode = SHADER_OPCODE_TXL_LOGICAL;
5644 break;
5645 case nir_texop_txd:
5646 opcode = SHADER_OPCODE_TXD_LOGICAL;
5647 break;
5648 case nir_texop_txf:
5649 opcode = SHADER_OPCODE_TXF_LOGICAL;
5650 break;
5651 case nir_texop_txf_ms:
5652 if ((key_tex->msaa_16 & (1 << sampler)))
5653 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5654 else
5655 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5656 break;
5657 case nir_texop_txf_ms_mcs:
5658 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5659 break;
5660 case nir_texop_query_levels:
5661 case nir_texop_txs:
5662 opcode = SHADER_OPCODE_TXS_LOGICAL;
5663 break;
5664 case nir_texop_lod:
5665 opcode = SHADER_OPCODE_LOD_LOGICAL;
5666 break;
5667 case nir_texop_tg4:
5668 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5669 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5670 else
5671 opcode = SHADER_OPCODE_TG4_LOGICAL;
5672 break;
5673 case nir_texop_texture_samples:
5674 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5675 break;
5676 case nir_texop_samples_identical: {
5677 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5678
5679 /* If mcs is an immediate value, it means there is no MCS. In that case
5680 * just return false.
5681 */
5682 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5683 bld.MOV(dst, brw_imm_ud(0u));
5684 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5685 fs_reg tmp = vgrf(glsl_type::uint_type);
5686 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5687 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5688 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5689 } else {
5690 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5691 BRW_CONDITIONAL_EQ);
5692 }
5693 return;
5694 }
5695 default:
5696 unreachable("unknown texture opcode");
5697 }
5698
5699 if (instr->op == nir_texop_tg4) {
5700 if (instr->component == 1 &&
5701 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5702 /* gather4 sampler is broken for green channel on RG32F --
5703 * we must ask for blue instead.
5704 */
5705 header_bits |= 2 << 16;
5706 } else {
5707 header_bits |= instr->component << 16;
5708 }
5709 }
5710
5711 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5712 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5713 inst->offset = header_bits;
5714
5715 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5716 if (devinfo->gen >= 9 &&
5717 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5718 unsigned write_mask = instr->dest.is_ssa ?
5719 nir_ssa_def_components_read(&instr->dest.ssa):
5720 (1 << dest_size) - 1;
5721 assert(write_mask != 0); /* dead code should have been eliminated */
5722 inst->size_written = util_last_bit(write_mask) *
5723 inst->dst.component_size(inst->exec_size);
5724 } else {
5725 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5726 }
5727
5728 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5729 inst->shadow_compare = true;
5730
5731 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5732 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5733
5734 fs_reg nir_dest[4];
5735 for (unsigned i = 0; i < dest_size; i++)
5736 nir_dest[i] = offset(dst, bld, i);
5737
5738 if (instr->op == nir_texop_query_levels) {
5739 /* # levels is in .w */
5740 nir_dest[0] = offset(dst, bld, 3);
5741 } else if (instr->op == nir_texop_txs &&
5742 dest_size >= 3 && devinfo->gen < 7) {
5743 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5744 fs_reg depth = offset(dst, bld, 2);
5745 nir_dest[2] = vgrf(glsl_type::int_type);
5746 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5747 }
5748
5749 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5750 }
5751
5752 void
5753 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5754 {
5755 switch (instr->type) {
5756 case nir_jump_break:
5757 bld.emit(BRW_OPCODE_BREAK);
5758 break;
5759 case nir_jump_continue:
5760 bld.emit(BRW_OPCODE_CONTINUE);
5761 break;
5762 case nir_jump_return:
5763 default:
5764 unreachable("unknown jump");
5765 }
5766 }
5767
5768 /*
5769 * This helper takes a source register and un/shuffles it into the destination
5770 * register.
5771 *
5772 * If source type size is smaller than destination type size the operation
5773 * needed is a component shuffle. The opposite case would be an unshuffle. If
5774 * source/destination type size is equal a shuffle is done that would be
5775 * equivalent to a simple MOV.
5776 *
5777 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5778 * components .xyz 16-bit vector on SIMD8 would be.
5779 *
5780 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5781 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5782 *
5783 * This helper will return the following 2 32-bit components with the 16-bit
5784 * values shuffled:
5785 *
5786 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5787 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5788 *
5789 * For unshuffle, the example would be the opposite, a 64-bit type source
5790 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5791 * would be:
5792 *
5793 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5794 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5795 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5796 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5797 *
5798 * The returned result would be the following 4 32-bit components unshuffled:
5799 *
5800 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5801 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5802 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5803 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5804 *
5805 * - Source and destination register must not be overlapped.
5806 * - components units are measured in terms of the smaller type between
5807 * source and destination because we are un/shuffling the smaller
5808 * components from/into the bigger ones.
5809 * - first_component parameter allows skipping source components.
5810 */
5811 void
5812 shuffle_src_to_dst(const fs_builder &bld,
5813 const fs_reg &dst,
5814 const fs_reg &src,
5815 uint32_t first_component,
5816 uint32_t components)
5817 {
5818 if (type_sz(src.type) == type_sz(dst.type)) {
5819 assert(!regions_overlap(dst,
5820 type_sz(dst.type) * bld.dispatch_width() * components,
5821 offset(src, bld, first_component),
5822 type_sz(src.type) * bld.dispatch_width() * components));
5823 for (unsigned i = 0; i < components; i++) {
5824 bld.MOV(retype(offset(dst, bld, i), src.type),
5825 offset(src, bld, i + first_component));
5826 }
5827 } else if (type_sz(src.type) < type_sz(dst.type)) {
5828 /* Source is shuffled into destination */
5829 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5830 assert(!regions_overlap(dst,
5831 type_sz(dst.type) * bld.dispatch_width() *
5832 DIV_ROUND_UP(components, size_ratio),
5833 offset(src, bld, first_component),
5834 type_sz(src.type) * bld.dispatch_width() * components));
5835
5836 brw_reg_type shuffle_type =
5837 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5838 BRW_REGISTER_TYPE_D);
5839 for (unsigned i = 0; i < components; i++) {
5840 fs_reg shuffle_component_i =
5841 subscript(offset(dst, bld, i / size_ratio),
5842 shuffle_type, i % size_ratio);
5843 bld.MOV(shuffle_component_i,
5844 retype(offset(src, bld, i + first_component), shuffle_type));
5845 }
5846 } else {
5847 /* Source is unshuffled into destination */
5848 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5849 assert(!regions_overlap(dst,
5850 type_sz(dst.type) * bld.dispatch_width() * components,
5851 offset(src, bld, first_component / size_ratio),
5852 type_sz(src.type) * bld.dispatch_width() *
5853 DIV_ROUND_UP(components + (first_component % size_ratio),
5854 size_ratio)));
5855
5856 brw_reg_type shuffle_type =
5857 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5858 BRW_REGISTER_TYPE_D);
5859 for (unsigned i = 0; i < components; i++) {
5860 fs_reg shuffle_component_i =
5861 subscript(offset(src, bld, (first_component + i) / size_ratio),
5862 shuffle_type, (first_component + i) % size_ratio);
5863 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5864 shuffle_component_i);
5865 }
5866 }
5867 }
5868
5869 void
5870 shuffle_from_32bit_read(const fs_builder &bld,
5871 const fs_reg &dst,
5872 const fs_reg &src,
5873 uint32_t first_component,
5874 uint32_t components)
5875 {
5876 assert(type_sz(src.type) == 4);
5877
5878 /* This function takes components in units of the destination type while
5879 * shuffle_src_to_dst takes components in units of the smallest type
5880 */
5881 if (type_sz(dst.type) > 4) {
5882 assert(type_sz(dst.type) == 8);
5883 first_component *= 2;
5884 components *= 2;
5885 }
5886
5887 shuffle_src_to_dst(bld, dst, src, first_component, components);
5888 }
5889
5890 fs_reg
5891 setup_imm_df(const fs_builder &bld, double v)
5892 {
5893 const struct gen_device_info *devinfo = bld.shader->devinfo;
5894 assert(devinfo->gen >= 7);
5895
5896 if (devinfo->gen >= 8)
5897 return brw_imm_df(v);
5898
5899 /* gen7.5 does not support DF immediates straighforward but the DIM
5900 * instruction allows to set the 64-bit immediate value.
5901 */
5902 if (devinfo->is_haswell) {
5903 const fs_builder ubld = bld.exec_all().group(1, 0);
5904 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5905 ubld.DIM(dst, brw_imm_df(v));
5906 return component(dst, 0);
5907 }
5908
5909 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5910 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5911 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5912 *
5913 * Alternatively, we could also produce a normal VGRF (without stride 0)
5914 * by writing to all the channels in the VGRF, however, that would hit the
5915 * gen7 bug where we have to split writes that span more than 1 register
5916 * into instructions with a width of 4 (otherwise the write to the second
5917 * register written runs into an execmask hardware bug) which isn't very
5918 * nice.
5919 */
5920 union {
5921 double d;
5922 struct {
5923 uint32_t i1;
5924 uint32_t i2;
5925 };
5926 } di;
5927
5928 di.d = v;
5929
5930 const fs_builder ubld = bld.exec_all().group(1, 0);
5931 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5932 ubld.MOV(tmp, brw_imm_ud(di.i1));
5933 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5934
5935 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5936 }
5937
5938 fs_reg
5939 setup_imm_b(const fs_builder &bld, int8_t v)
5940 {
5941 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5942 bld.MOV(tmp, brw_imm_w(v));
5943 return tmp;
5944 }
5945
5946 fs_reg
5947 setup_imm_ub(const fs_builder &bld, uint8_t v)
5948 {
5949 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5950 bld.MOV(tmp, brw_imm_uw(v));
5951 return tmp;
5952 }