intel/compiler/icl: Use barrier id bits 24:30 instead of 24:27,31
[mesa.git] / src / intel / compiler / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include "brw_fs.h"
31 #include "compiler/glsl_types.h"
32
33 using namespace brw;
34
35 /* Sample from the MCS surface attached to this multisample texture. */
36 fs_reg
37 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
38 const fs_reg &texture)
39 {
40 const fs_reg dest = vgrf(glsl_type::uvec4_type);
41
42 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
43 srcs[TEX_LOGICAL_SRC_COORDINATE] = coordinate;
44 srcs[TEX_LOGICAL_SRC_SURFACE] = texture;
45 srcs[TEX_LOGICAL_SRC_SAMPLER] = texture;
46 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(components);
47 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
48
49 fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
50 ARRAY_SIZE(srcs));
51
52 /* We only care about one or two regs of response, but the sampler always
53 * writes 4/8.
54 */
55 inst->size_written = 4 * dest.component_size(inst->exec_size);
56
57 return dest;
58 }
59
60 /**
61 * Apply workarounds for Gen6 gather with UINT/SINT
62 */
63 void
64 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
65 {
66 if (!wa)
67 return;
68
69 int width = (wa & WA_8BIT) ? 8 : 16;
70
71 for (int i = 0; i < 4; i++) {
72 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
73 /* Convert from UNORM to UINT */
74 bld.MUL(dst_f, dst_f, brw_imm_f((1 << width) - 1));
75 bld.MOV(dst, dst_f);
76
77 if (wa & WA_SIGN) {
78 /* Reinterpret the UINT value as a signed INT value by
79 * shifting the sign bit into place, then shifting back
80 * preserving sign.
81 */
82 bld.SHL(dst, dst, brw_imm_d(32 - width));
83 bld.ASR(dst, dst, brw_imm_d(32 - width));
84 }
85
86 dst = offset(dst, bld, 1);
87 }
88 }
89
90 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
91 void
92 fs_visitor::emit_dummy_fs()
93 {
94 int reg_width = dispatch_width / 8;
95
96 /* Everyone's favorite color. */
97 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
98 for (int i = 0; i < 4; i++) {
99 bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
100 brw_imm_f(color[i]));
101 }
102
103 fs_inst *write;
104 write = bld.emit(FS_OPCODE_FB_WRITE);
105 write->eot = true;
106 write->last_rt = true;
107 if (devinfo->gen >= 6) {
108 write->base_mrf = 2;
109 write->mlen = 4 * reg_width;
110 } else {
111 write->header_size = 2;
112 write->base_mrf = 0;
113 write->mlen = 2 + 4 * reg_width;
114 }
115
116 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
117 * varying to avoid GPU hangs, so set that.
118 */
119 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
120 wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
121 memset(wm_prog_data->urb_setup, -1,
122 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
123
124 /* We don't have any uniforms. */
125 stage_prog_data->nr_params = 0;
126 stage_prog_data->nr_pull_params = 0;
127 stage_prog_data->curb_read_length = 0;
128 stage_prog_data->dispatch_grf_start_reg = 2;
129 wm_prog_data->dispatch_grf_start_reg_16 = 2;
130 wm_prog_data->dispatch_grf_start_reg_32 = 2;
131 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
132
133 calculate_cfg();
134 }
135
136 /* The register location here is relative to the start of the URB
137 * data. It will get adjusted to be a real location before
138 * generate_code() time.
139 */
140 fs_reg
141 fs_visitor::interp_reg(int location, int channel)
142 {
143 assert(stage == MESA_SHADER_FRAGMENT);
144 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
145 int regnr = prog_data->urb_setup[location] * 4 + channel;
146 assert(prog_data->urb_setup[location] != -1);
147
148 return fs_reg(ATTR, regnr, BRW_REGISTER_TYPE_F);
149 }
150
151 /** Emits the interpolation for the varying inputs. */
152 void
153 fs_visitor::emit_interpolation_setup_gen4()
154 {
155 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
156
157 fs_builder abld = bld.annotate("compute pixel centers");
158 this->pixel_x = vgrf(glsl_type::uint_type);
159 this->pixel_y = vgrf(glsl_type::uint_type);
160 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
161 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
162 abld.ADD(this->pixel_x,
163 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
164 fs_reg(brw_imm_v(0x10101010)));
165 abld.ADD(this->pixel_y,
166 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
167 fs_reg(brw_imm_v(0x11001100)));
168
169 abld = bld.annotate("compute pixel deltas from v0");
170
171 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL] =
172 vgrf(glsl_type::vec2_type);
173 const fs_reg &delta_xy = this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL];
174 const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
175 const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
176
177 if (devinfo->has_pln && dispatch_width == 16) {
178 for (unsigned i = 0; i < 2; i++) {
179 abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
180 half(this->pixel_x, i), xstart);
181 abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
182 half(this->pixel_y, i), ystart);
183 }
184 } else {
185 abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
186 abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
187 }
188
189 abld = bld.annotate("compute pos.w and 1/pos.w");
190 /* Compute wpos.w. It's always in our setup, since it's needed to
191 * interpolate the other attributes.
192 */
193 this->wpos_w = vgrf(glsl_type::float_type);
194 abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
195 component(interp_reg(VARYING_SLOT_POS, 3), 0));
196 /* Compute the pixel 1/W value from wpos.w. */
197 this->pixel_w = vgrf(glsl_type::float_type);
198 abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
199 }
200
201 /** Emits the interpolation for the varying inputs. */
202 void
203 fs_visitor::emit_interpolation_setup_gen6()
204 {
205 fs_builder abld = bld.annotate("compute pixel centers");
206
207 this->pixel_x = vgrf(glsl_type::float_type);
208 this->pixel_y = vgrf(glsl_type::float_type);
209
210 for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
211 const fs_builder hbld = abld.group(MIN2(16, dispatch_width), i);
212 struct brw_reg gi_uw = retype(brw_vec1_grf(1 + i, 0), BRW_REGISTER_TYPE_UW);
213
214 if (devinfo->gen >= 8 || dispatch_width == 8) {
215 /* The "Register Region Restrictions" page says for BDW (and newer,
216 * presumably):
217 *
218 * "When destination spans two registers, the source may be one or
219 * two registers. The destination elements must be evenly split
220 * between the two registers."
221 *
222 * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16
223 * to compute our pixel centers.
224 */
225 const fs_builder dbld =
226 abld.exec_all().group(hbld.dispatch_width() * 2, 0);
227 fs_reg int_pixel_xy = dbld.vgrf(BRW_REGISTER_TYPE_UW);
228
229 dbld.ADD(int_pixel_xy,
230 fs_reg(stride(suboffset(gi_uw, 4), 1, 4, 0)),
231 fs_reg(brw_imm_v(0x11001010)));
232
233 hbld.emit(FS_OPCODE_PIXEL_X, offset(pixel_x, hbld, i), int_pixel_xy);
234 hbld.emit(FS_OPCODE_PIXEL_Y, offset(pixel_y, hbld, i), int_pixel_xy);
235 } else {
236 /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
237 *
238 * "When destination spans two registers, the source MUST span
239 * two registers."
240 *
241 * Since the GRF source of the ADD will only read a single register,
242 * we must do two separate ADDs in SIMD16.
243 */
244 const fs_reg int_pixel_x = hbld.vgrf(BRW_REGISTER_TYPE_UW);
245 const fs_reg int_pixel_y = hbld.vgrf(BRW_REGISTER_TYPE_UW);
246
247 hbld.ADD(int_pixel_x,
248 fs_reg(stride(suboffset(gi_uw, 4), 2, 4, 0)),
249 fs_reg(brw_imm_v(0x10101010)));
250 hbld.ADD(int_pixel_y,
251 fs_reg(stride(suboffset(gi_uw, 5), 2, 4, 0)),
252 fs_reg(brw_imm_v(0x11001100)));
253
254 /* As of gen6, we can no longer mix float and int sources. We have
255 * to turn the integer pixel centers into floats for their actual
256 * use.
257 */
258 hbld.MOV(offset(pixel_x, hbld, i), int_pixel_x);
259 hbld.MOV(offset(pixel_y, hbld, i), int_pixel_y);
260 }
261 }
262
263 abld = bld.annotate("compute pos.w");
264 this->pixel_w = fetch_payload_reg(abld, payload.source_w_reg);
265 this->wpos_w = vgrf(glsl_type::float_type);
266 abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
267
268 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(prog_data);
269
270 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
271 this->delta_xy[i] = fetch_payload_reg(
272 bld, payload.barycentric_coord_reg[i], BRW_REGISTER_TYPE_F, 2);
273 }
274
275 uint32_t centroid_modes = wm_prog_data->barycentric_interp_modes &
276 (1 << BRW_BARYCENTRIC_PERSPECTIVE_CENTROID |
277 1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
278
279 if (devinfo->needs_unlit_centroid_workaround && centroid_modes) {
280 /* Get the pixel/sample mask into f0 so that we know which
281 * pixels are lit. Then, for each channel that is unlit,
282 * replace the centroid data with non-centroid data.
283 */
284 for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
285 bld.exec_all().group(1, 0)
286 .MOV(retype(brw_flag_reg(0, i), BRW_REGISTER_TYPE_UW),
287 retype(brw_vec1_grf(1 + i, 7), BRW_REGISTER_TYPE_UW));
288 }
289
290 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
291 if (!(centroid_modes & (1 << i)))
292 continue;
293
294 const fs_reg &pixel_delta_xy = delta_xy[i - 1];
295
296 for (unsigned q = 0; q < dispatch_width / 8; q++) {
297 for (unsigned c = 0; c < 2; c++) {
298 const unsigned idx = c + (q & 2) + (q & 1) * dispatch_width / 8;
299 set_predicate_inv(
300 BRW_PREDICATE_NORMAL, true,
301 bld.half(q).MOV(horiz_offset(delta_xy[i], idx * 8),
302 horiz_offset(pixel_delta_xy, idx * 8)));
303 }
304 }
305 }
306 }
307 }
308
309 static enum brw_conditional_mod
310 cond_for_alpha_func(GLenum func)
311 {
312 switch(func) {
313 case GL_GREATER:
314 return BRW_CONDITIONAL_G;
315 case GL_GEQUAL:
316 return BRW_CONDITIONAL_GE;
317 case GL_LESS:
318 return BRW_CONDITIONAL_L;
319 case GL_LEQUAL:
320 return BRW_CONDITIONAL_LE;
321 case GL_EQUAL:
322 return BRW_CONDITIONAL_EQ;
323 case GL_NOTEQUAL:
324 return BRW_CONDITIONAL_NEQ;
325 default:
326 unreachable("Not reached");
327 }
328 }
329
330 /**
331 * Alpha test support for when we compile it into the shader instead
332 * of using the normal fixed-function alpha test.
333 */
334 void
335 fs_visitor::emit_alpha_test()
336 {
337 assert(stage == MESA_SHADER_FRAGMENT);
338 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
339 const fs_builder abld = bld.annotate("Alpha test");
340
341 fs_inst *cmp;
342 if (key->alpha_test_func == GL_ALWAYS)
343 return;
344
345 if (key->alpha_test_func == GL_NEVER) {
346 /* f0.1 = 0 */
347 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
348 BRW_REGISTER_TYPE_UW));
349 cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
350 BRW_CONDITIONAL_NEQ);
351 } else {
352 /* RT0 alpha */
353 fs_reg color = offset(outputs[0], bld, 3);
354
355 /* f0.1 &= func(color, ref) */
356 cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
357 cond_for_alpha_func(key->alpha_test_func));
358 }
359 cmp->predicate = BRW_PREDICATE_NORMAL;
360 cmp->flag_subreg = 1;
361 }
362
363 fs_inst *
364 fs_visitor::emit_single_fb_write(const fs_builder &bld,
365 fs_reg color0, fs_reg color1,
366 fs_reg src0_alpha, unsigned components)
367 {
368 assert(stage == MESA_SHADER_FRAGMENT);
369 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
370
371 /* Hand over gl_FragDepth or the payload depth. */
372 const fs_reg dst_depth = fetch_payload_reg(bld, payload.dest_depth_reg);
373 fs_reg src_depth, src_stencil;
374
375 if (source_depth_to_render_target) {
376 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
377 src_depth = frag_depth;
378 else
379 src_depth = fetch_payload_reg(bld, payload.source_depth_reg);
380 }
381
382 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
383 src_stencil = frag_stencil;
384
385 const fs_reg sources[] = {
386 color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
387 (prog_data->uses_omask ? sample_mask : fs_reg()),
388 brw_imm_ud(components)
389 };
390 assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
391 fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
392 sources, ARRAY_SIZE(sources));
393
394 if (prog_data->uses_kill) {
395 write->predicate = BRW_PREDICATE_NORMAL;
396 write->flag_subreg = 1;
397 }
398
399 return write;
400 }
401
402 void
403 fs_visitor::emit_fb_writes()
404 {
405 assert(stage == MESA_SHADER_FRAGMENT);
406 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
407 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
408
409 fs_inst *inst = NULL;
410
411 if (source_depth_to_render_target && devinfo->gen == 6) {
412 /* For outputting oDepth on gen6, SIMD8 writes have to be used. This
413 * would require SIMD8 moves of each half to message regs, e.g. by using
414 * the SIMD lowering pass. Unfortunately this is more difficult than it
415 * sounds because the SIMD8 single-source message lacks channel selects
416 * for the second and third subspans.
417 */
418 limit_dispatch_width(8, "Depth writes unsupported in SIMD16+ mode.\n");
419 }
420
421 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
422 /* From the 'Render Target Write message' section of the docs:
423 * "Output Stencil is not supported with SIMD16 Render Target Write
424 * Messages."
425 */
426 limit_dispatch_width(8, "gl_FragStencilRefARB unsupported "
427 "in SIMD16+ mode.\n");
428 }
429
430 for (int target = 0; target < key->nr_color_regions; target++) {
431 /* Skip over outputs that weren't written. */
432 if (this->outputs[target].file == BAD_FILE)
433 continue;
434
435 const fs_builder abld = bld.annotate(
436 ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
437
438 fs_reg src0_alpha;
439 if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
440 src0_alpha = offset(outputs[0], bld, 3);
441
442 inst = emit_single_fb_write(abld, this->outputs[target],
443 this->dual_src_output, src0_alpha, 4);
444 inst->target = target;
445 }
446
447 prog_data->dual_src_blend = (this->dual_src_output.file != BAD_FILE &&
448 this->outputs[0].file != BAD_FILE);
449 assert(!prog_data->dual_src_blend || key->nr_color_regions == 1);
450
451 if (inst == NULL) {
452 /* Even if there's no color buffers enabled, we still need to send
453 * alpha out the pipeline to our null renderbuffer to support
454 * alpha-testing, alpha-to-coverage, and so on.
455 */
456 /* FINISHME: Factor out this frequently recurring pattern into a
457 * helper function.
458 */
459 const fs_reg srcs[] = { reg_undef, reg_undef,
460 reg_undef, offset(this->outputs[0], bld, 3) };
461 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
462 bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
463
464 inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
465 inst->target = 0;
466 }
467
468 inst->last_rt = true;
469 inst->eot = true;
470 }
471
472 void
473 fs_visitor::setup_uniform_clipplane_values()
474 {
475 const struct brw_vs_prog_key *key =
476 (const struct brw_vs_prog_key *) this->key;
477
478 if (key->nr_userclip_plane_consts == 0)
479 return;
480
481 assert(stage_prog_data->nr_params == uniforms);
482 brw_stage_prog_data_add_params(stage_prog_data,
483 key->nr_userclip_plane_consts * 4);
484
485 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
486 this->userplane[i] = fs_reg(UNIFORM, uniforms);
487 for (int j = 0; j < 4; ++j) {
488 stage_prog_data->param[uniforms + j] =
489 BRW_PARAM_BUILTIN_CLIP_PLANE(i, j);
490 }
491 uniforms += 4;
492 }
493 }
494
495 /**
496 * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
497 *
498 * This does nothing if the shader uses gl_ClipDistance or user clipping is
499 * disabled altogether.
500 */
501 void fs_visitor::compute_clip_distance()
502 {
503 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
504 const struct brw_vs_prog_key *key =
505 (const struct brw_vs_prog_key *) this->key;
506
507 /* Bail unless some sort of legacy clipping is enabled */
508 if (key->nr_userclip_plane_consts == 0)
509 return;
510
511 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
512 *
513 * "If a linked set of shaders forming the vertex stage contains no
514 * static write to gl_ClipVertex or gl_ClipDistance, but the
515 * application has requested clipping against user clip planes through
516 * the API, then the coordinate written to gl_Position is used for
517 * comparison against the user clip planes."
518 *
519 * This function is only called if the shader didn't write to
520 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
521 * if the user wrote to it; otherwise we use gl_Position.
522 */
523
524 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
525 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
526 clip_vertex = VARYING_SLOT_POS;
527
528 /* If the clip vertex isn't written, skip this. Typically this means
529 * the GS will set up clipping. */
530 if (outputs[clip_vertex].file == BAD_FILE)
531 return;
532
533 setup_uniform_clipplane_values();
534
535 const fs_builder abld = bld.annotate("user clip distances");
536
537 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
538 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
539
540 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
541 fs_reg u = userplane[i];
542 const fs_reg output = offset(outputs[VARYING_SLOT_CLIP_DIST0 + i / 4],
543 bld, i & 3);
544
545 abld.MUL(output, outputs[clip_vertex], u);
546 for (int j = 1; j < 4; j++) {
547 u.nr = userplane[i].nr + j;
548 abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
549 }
550 }
551 }
552
553 void
554 fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
555 {
556 int slot, urb_offset, length;
557 int starting_urb_offset = 0;
558 const struct brw_vue_prog_data *vue_prog_data =
559 brw_vue_prog_data(this->prog_data);
560 const struct brw_vs_prog_key *vs_key =
561 (const struct brw_vs_prog_key *) this->key;
562 const GLbitfield64 psiz_mask =
563 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
564 const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
565 bool flush;
566 fs_reg sources[8];
567 fs_reg urb_handle;
568
569 if (stage == MESA_SHADER_TESS_EVAL)
570 urb_handle = fs_reg(retype(brw_vec8_grf(4, 0), BRW_REGISTER_TYPE_UD));
571 else
572 urb_handle = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
573
574 opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
575 int header_size = 1;
576 fs_reg per_slot_offsets;
577
578 if (stage == MESA_SHADER_GEOMETRY) {
579 const struct brw_gs_prog_data *gs_prog_data =
580 brw_gs_prog_data(this->prog_data);
581
582 /* We need to increment the Global Offset to skip over the control data
583 * header and the extra "Vertex Count" field (1 HWord) at the beginning
584 * of the VUE. We're counting in OWords, so the units are doubled.
585 */
586 starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
587 if (gs_prog_data->static_vertex_count == -1)
588 starting_urb_offset += 2;
589
590 /* We also need to use per-slot offsets. The per-slot offset is the
591 * Vertex Count. SIMD8 mode processes 8 different primitives at a
592 * time; each may output a different number of vertices.
593 */
594 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT;
595 header_size++;
596
597 /* The URB offset is in 128-bit units, so we need to multiply by 2 */
598 const int output_vertex_size_owords =
599 gs_prog_data->output_vertex_size_hwords * 2;
600
601 if (gs_vertex_count.file == IMM) {
602 per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
603 gs_vertex_count.ud);
604 } else {
605 per_slot_offsets = vgrf(glsl_type::uint_type);
606 bld.MUL(per_slot_offsets, gs_vertex_count,
607 brw_imm_ud(output_vertex_size_owords));
608 }
609 }
610
611 length = 0;
612 urb_offset = starting_urb_offset;
613 flush = false;
614
615 /* SSO shaders can have VUE slots allocated which are never actually
616 * written to, so ignore them when looking for the last (written) slot.
617 */
618 int last_slot = vue_map->num_slots - 1;
619 while (last_slot > 0 &&
620 (vue_map->slot_to_varying[last_slot] == BRW_VARYING_SLOT_PAD ||
621 outputs[vue_map->slot_to_varying[last_slot]].file == BAD_FILE)) {
622 last_slot--;
623 }
624
625 bool urb_written = false;
626 for (slot = 0; slot < vue_map->num_slots; slot++) {
627 int varying = vue_map->slot_to_varying[slot];
628 switch (varying) {
629 case VARYING_SLOT_PSIZ: {
630 /* The point size varying slot is the vue header and is always in the
631 * vue map. But often none of the special varyings that live there
632 * are written and in that case we can skip writing to the vue
633 * header, provided the corresponding state properly clamps the
634 * values further down the pipeline. */
635 if ((vue_map->slots_valid & psiz_mask) == 0) {
636 assert(length == 0);
637 urb_offset++;
638 break;
639 }
640
641 fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
642 bld.MOV(zero, brw_imm_ud(0u));
643
644 sources[length++] = zero;
645 if (vue_map->slots_valid & VARYING_BIT_LAYER)
646 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
647 else
648 sources[length++] = zero;
649
650 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
651 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
652 else
653 sources[length++] = zero;
654
655 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
656 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
657 else
658 sources[length++] = zero;
659 break;
660 }
661 case BRW_VARYING_SLOT_NDC:
662 case VARYING_SLOT_EDGE:
663 unreachable("unexpected scalar vs output");
664 break;
665
666 default:
667 /* gl_Position is always in the vue map, but isn't always written by
668 * the shader. Other varyings (clip distances) get added to the vue
669 * map but don't always get written. In those cases, the
670 * corresponding this->output[] slot will be invalid we and can skip
671 * the urb write for the varying. If we've already queued up a vue
672 * slot for writing we flush a mlen 5 urb write, otherwise we just
673 * advance the urb_offset.
674 */
675 if (varying == BRW_VARYING_SLOT_PAD ||
676 this->outputs[varying].file == BAD_FILE) {
677 if (length > 0)
678 flush = true;
679 else
680 urb_offset++;
681 break;
682 }
683
684 if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
685 (varying == VARYING_SLOT_COL0 ||
686 varying == VARYING_SLOT_COL1 ||
687 varying == VARYING_SLOT_BFC0 ||
688 varying == VARYING_SLOT_BFC1)) {
689 /* We need to clamp these guys, so do a saturating MOV into a
690 * temp register and use that for the payload.
691 */
692 for (int i = 0; i < 4; i++) {
693 fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
694 fs_reg src = offset(this->outputs[varying], bld, i);
695 set_saturate(true, bld.MOV(reg, src));
696 sources[length++] = reg;
697 }
698 } else {
699 for (unsigned i = 0; i < 4; i++)
700 sources[length++] = offset(this->outputs[varying], bld, i);
701 }
702 break;
703 }
704
705 const fs_builder abld = bld.annotate("URB write");
706
707 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
708 * the last slot or if we need to flush (see BAD_FILE varying case
709 * above), emit a URB write send now to flush out the data.
710 */
711 if (length == 8 || (length > 0 && slot == last_slot))
712 flush = true;
713 if (flush) {
714 fs_reg *payload_sources =
715 ralloc_array(mem_ctx, fs_reg, length + header_size);
716 fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
717 BRW_REGISTER_TYPE_F);
718 payload_sources[0] = urb_handle;
719
720 if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
721 payload_sources[1] = per_slot_offsets;
722
723 memcpy(&payload_sources[header_size], sources,
724 length * sizeof sources[0]);
725
726 abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
727 header_size);
728
729 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
730 inst->eot = slot == last_slot && stage != MESA_SHADER_GEOMETRY;
731 inst->mlen = length + header_size;
732 inst->offset = urb_offset;
733 urb_offset = starting_urb_offset + slot + 1;
734 length = 0;
735 flush = false;
736 urb_written = true;
737 }
738 }
739
740 /* If we don't have any valid slots to write, just do a minimal urb write
741 * send to terminate the shader. This includes 1 slot of undefined data,
742 * because it's invalid to write 0 data:
743 *
744 * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
745 * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
746 * Write Data Payload:
747 *
748 * "The write data payload can be between 1 and 8 message phases long."
749 */
750 if (!urb_written) {
751 /* For GS, just turn EmitVertex() into a no-op. We don't want it to
752 * end the thread, and emit_gs_thread_end() already emits a SEND with
753 * EOT at the end of the program for us.
754 */
755 if (stage == MESA_SHADER_GEOMETRY)
756 return;
757
758 fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
759 bld.exec_all().MOV(payload, urb_handle);
760
761 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
762 inst->eot = true;
763 inst->mlen = 2;
764 inst->offset = 1;
765 return;
766 }
767 }
768
769 void
770 fs_visitor::emit_cs_terminate()
771 {
772 assert(devinfo->gen >= 7);
773
774 /* We are getting the thread ID from the compute shader header */
775 assert(stage == MESA_SHADER_COMPUTE);
776
777 /* We can't directly send from g0, since sends with EOT have to use
778 * g112-127. So, copy it to a virtual register, The register allocator will
779 * make sure it uses the appropriate register range.
780 */
781 struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
782 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
783 bld.group(8, 0).exec_all().MOV(payload, g0);
784
785 /* Send a message to the thread spawner to terminate the thread. */
786 fs_inst *inst = bld.exec_all()
787 .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
788 inst->eot = true;
789 }
790
791 void
792 fs_visitor::emit_barrier()
793 {
794 uint32_t barrier_id_mask;
795 switch (devinfo->gen) {
796 case 7:
797 case 8:
798 barrier_id_mask = 0x0f000000u; break;
799 case 9:
800 case 10:
801 barrier_id_mask = 0x8f000000u; break;
802 case 11:
803 barrier_id_mask = 0x7f000000u; break;
804 default:
805 unreachable("barrier is only available on gen >= 7");
806 }
807
808 /* We are getting the barrier ID from the compute shader header */
809 assert(stage == MESA_SHADER_COMPUTE);
810
811 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
812
813 /* Clear the message payload */
814 bld.exec_all().group(8, 0).MOV(payload, brw_imm_ud(0u));
815
816 /* Copy the barrier id from r0.2 to the message payload reg.2 */
817 fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
818 bld.exec_all().group(1, 0).AND(component(payload, 2), r0_2,
819 brw_imm_ud(barrier_id_mask));
820
821 /* Emit a gateway "barrier" message using the payload we set up, followed
822 * by a wait instruction.
823 */
824 bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
825 }
826
827 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
828 void *mem_ctx,
829 const void *key,
830 struct brw_stage_prog_data *prog_data,
831 struct gl_program *prog,
832 const nir_shader *shader,
833 unsigned dispatch_width,
834 int shader_time_index,
835 const struct brw_vue_map *input_vue_map)
836 : backend_shader(compiler, log_data, mem_ctx, shader, prog_data),
837 key(key), gs_compile(NULL), prog_data(prog_data), prog(prog),
838 input_vue_map(input_vue_map),
839 dispatch_width(dispatch_width),
840 shader_time_index(shader_time_index),
841 bld(fs_builder(this, dispatch_width).at_end())
842 {
843 init();
844 }
845
846 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
847 void *mem_ctx,
848 struct brw_gs_compile *c,
849 struct brw_gs_prog_data *prog_data,
850 const nir_shader *shader,
851 int shader_time_index)
852 : backend_shader(compiler, log_data, mem_ctx, shader,
853 &prog_data->base.base),
854 key(&c->key), gs_compile(c),
855 prog_data(&prog_data->base.base), prog(NULL),
856 dispatch_width(8),
857 shader_time_index(shader_time_index),
858 bld(fs_builder(this, dispatch_width).at_end())
859 {
860 init();
861 }
862
863
864 void
865 fs_visitor::init()
866 {
867 switch (stage) {
868 case MESA_SHADER_FRAGMENT:
869 key_tex = &((const brw_wm_prog_key *) key)->tex;
870 break;
871 case MESA_SHADER_VERTEX:
872 key_tex = &((const brw_vs_prog_key *) key)->tex;
873 break;
874 case MESA_SHADER_TESS_CTRL:
875 key_tex = &((const brw_tcs_prog_key *) key)->tex;
876 break;
877 case MESA_SHADER_TESS_EVAL:
878 key_tex = &((const brw_tes_prog_key *) key)->tex;
879 break;
880 case MESA_SHADER_GEOMETRY:
881 key_tex = &((const brw_gs_prog_key *) key)->tex;
882 break;
883 case MESA_SHADER_COMPUTE:
884 key_tex = &((const brw_cs_prog_key*) key)->tex;
885 break;
886 default:
887 unreachable("unhandled shader stage");
888 }
889
890 this->max_dispatch_width = 32;
891 this->prog_data = this->stage_prog_data;
892
893 this->failed = false;
894
895 this->nir_locals = NULL;
896 this->nir_ssa_values = NULL;
897
898 memset(&this->payload, 0, sizeof(this->payload));
899 this->source_depth_to_render_target = false;
900 this->runtime_check_aads_emit = false;
901 this->first_non_payload_grf = 0;
902 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
903
904 this->virtual_grf_start = NULL;
905 this->virtual_grf_end = NULL;
906 this->live_intervals = NULL;
907 this->regs_live_at_ip = NULL;
908
909 this->uniforms = 0;
910 this->last_scratch = 0;
911 this->pull_constant_loc = NULL;
912 this->push_constant_loc = NULL;
913
914 this->promoted_constants = 0,
915
916 this->grf_used = 0;
917 this->spilled_any_registers = false;
918 }
919
920 fs_visitor::~fs_visitor()
921 {
922 }