i965/vs: Set uses_vertexid and friends from brw_compile_vs
[mesa.git] / src / intel / compiler / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include "brw_fs.h"
31 #include "compiler/glsl_types.h"
32
33 using namespace brw;
34
35 fs_reg *
36 fs_visitor::emit_vs_system_value(int location)
37 {
38 fs_reg *reg = new(this->mem_ctx)
39 fs_reg(ATTR, 4 * _mesa_bitcount_64(nir->info.inputs_read),
40 BRW_REGISTER_TYPE_D);
41
42 switch (location) {
43 case SYSTEM_VALUE_BASE_VERTEX:
44 reg->offset = 0;
45 break;
46 case SYSTEM_VALUE_BASE_INSTANCE:
47 reg->offset = REG_SIZE;
48 break;
49 case SYSTEM_VALUE_VERTEX_ID:
50 unreachable("should have been lowered");
51 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
52 reg->offset = 2 * REG_SIZE;
53 break;
54 case SYSTEM_VALUE_INSTANCE_ID:
55 reg->offset = 3 * REG_SIZE;
56 break;
57 case SYSTEM_VALUE_DRAW_ID:
58 if (nir->info.system_values_read &
59 (BITFIELD64_BIT(SYSTEM_VALUE_BASE_VERTEX) |
60 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) |
61 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) |
62 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID)))
63 reg->nr += 4;
64 reg->offset = 0;
65 break;
66 default:
67 unreachable("not reached");
68 }
69
70 return reg;
71 }
72
73 /* Sample from the MCS surface attached to this multisample texture. */
74 fs_reg
75 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
76 const fs_reg &texture)
77 {
78 const fs_reg dest = vgrf(glsl_type::uvec4_type);
79
80 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
81 srcs[TEX_LOGICAL_SRC_COORDINATE] = coordinate;
82 srcs[TEX_LOGICAL_SRC_SURFACE] = texture;
83 srcs[TEX_LOGICAL_SRC_SAMPLER] = texture;
84 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(components);
85 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
86
87 fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
88 ARRAY_SIZE(srcs));
89
90 /* We only care about one or two regs of response, but the sampler always
91 * writes 4/8.
92 */
93 inst->size_written = 4 * dest.component_size(inst->exec_size);
94
95 return dest;
96 }
97
98 /**
99 * Apply workarounds for Gen6 gather with UINT/SINT
100 */
101 void
102 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
103 {
104 if (!wa)
105 return;
106
107 int width = (wa & WA_8BIT) ? 8 : 16;
108
109 for (int i = 0; i < 4; i++) {
110 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
111 /* Convert from UNORM to UINT */
112 bld.MUL(dst_f, dst_f, brw_imm_f((1 << width) - 1));
113 bld.MOV(dst, dst_f);
114
115 if (wa & WA_SIGN) {
116 /* Reinterpret the UINT value as a signed INT value by
117 * shifting the sign bit into place, then shifting back
118 * preserving sign.
119 */
120 bld.SHL(dst, dst, brw_imm_d(32 - width));
121 bld.ASR(dst, dst, brw_imm_d(32 - width));
122 }
123
124 dst = offset(dst, bld, 1);
125 }
126 }
127
128 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
129 void
130 fs_visitor::emit_dummy_fs()
131 {
132 int reg_width = dispatch_width / 8;
133
134 /* Everyone's favorite color. */
135 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
136 for (int i = 0; i < 4; i++) {
137 bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
138 brw_imm_f(color[i]));
139 }
140
141 fs_inst *write;
142 write = bld.emit(FS_OPCODE_FB_WRITE);
143 write->eot = true;
144 if (devinfo->gen >= 6) {
145 write->base_mrf = 2;
146 write->mlen = 4 * reg_width;
147 } else {
148 write->header_size = 2;
149 write->base_mrf = 0;
150 write->mlen = 2 + 4 * reg_width;
151 }
152
153 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
154 * varying to avoid GPU hangs, so set that.
155 */
156 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
157 wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
158 memset(wm_prog_data->urb_setup, -1,
159 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
160
161 /* We don't have any uniforms. */
162 stage_prog_data->nr_params = 0;
163 stage_prog_data->nr_pull_params = 0;
164 stage_prog_data->curb_read_length = 0;
165 stage_prog_data->dispatch_grf_start_reg = 2;
166 wm_prog_data->dispatch_grf_start_reg_2 = 2;
167 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
168
169 calculate_cfg();
170 }
171
172 /* The register location here is relative to the start of the URB
173 * data. It will get adjusted to be a real location before
174 * generate_code() time.
175 */
176 struct brw_reg
177 fs_visitor::interp_reg(int location, int channel)
178 {
179 assert(stage == MESA_SHADER_FRAGMENT);
180 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
181 int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
182 int stride = (channel & 1) * 4;
183
184 assert(prog_data->urb_setup[location] != -1);
185
186 return brw_vec1_grf(regnr, stride);
187 }
188
189 /** Emits the interpolation for the varying inputs. */
190 void
191 fs_visitor::emit_interpolation_setup_gen4()
192 {
193 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
194
195 fs_builder abld = bld.annotate("compute pixel centers");
196 this->pixel_x = vgrf(glsl_type::uint_type);
197 this->pixel_y = vgrf(glsl_type::uint_type);
198 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
199 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
200 abld.ADD(this->pixel_x,
201 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
202 fs_reg(brw_imm_v(0x10101010)));
203 abld.ADD(this->pixel_y,
204 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
205 fs_reg(brw_imm_v(0x11001100)));
206
207 abld = bld.annotate("compute pixel deltas from v0");
208
209 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL] =
210 vgrf(glsl_type::vec2_type);
211 const fs_reg &delta_xy = this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL];
212 const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
213 const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
214
215 if (devinfo->has_pln && dispatch_width == 16) {
216 for (unsigned i = 0; i < 2; i++) {
217 abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
218 half(this->pixel_x, i), xstart);
219 abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
220 half(this->pixel_y, i), ystart);
221 }
222 } else {
223 abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
224 abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
225 }
226
227 abld = bld.annotate("compute pos.w and 1/pos.w");
228 /* Compute wpos.w. It's always in our setup, since it's needed to
229 * interpolate the other attributes.
230 */
231 this->wpos_w = vgrf(glsl_type::float_type);
232 abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
233 interp_reg(VARYING_SLOT_POS, 3));
234 /* Compute the pixel 1/W value from wpos.w. */
235 this->pixel_w = vgrf(glsl_type::float_type);
236 abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
237 }
238
239 /** Emits the interpolation for the varying inputs. */
240 void
241 fs_visitor::emit_interpolation_setup_gen6()
242 {
243 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
244
245 fs_builder abld = bld.annotate("compute pixel centers");
246 if (devinfo->gen >= 8 || dispatch_width == 8) {
247 /* The "Register Region Restrictions" page says for BDW (and newer,
248 * presumably):
249 *
250 * "When destination spans two registers, the source may be one or
251 * two registers. The destination elements must be evenly split
252 * between the two registers."
253 *
254 * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
255 * compute our pixel centers.
256 */
257 fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8),
258 BRW_REGISTER_TYPE_UW);
259
260 const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
261 dbld.ADD(int_pixel_xy,
262 fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
263 fs_reg(brw_imm_v(0x11001010)));
264
265 this->pixel_x = vgrf(glsl_type::float_type);
266 this->pixel_y = vgrf(glsl_type::float_type);
267 abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
268 abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
269 } else {
270 /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
271 *
272 * "When destination spans two registers, the source MUST span two
273 * registers."
274 *
275 * Since the GRF source of the ADD will only read a single register, we
276 * must do two separate ADDs in SIMD16.
277 */
278 fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
279 fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
280 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
281 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
282 abld.ADD(int_pixel_x,
283 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
284 fs_reg(brw_imm_v(0x10101010)));
285 abld.ADD(int_pixel_y,
286 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
287 fs_reg(brw_imm_v(0x11001100)));
288
289 /* As of gen6, we can no longer mix float and int sources. We have
290 * to turn the integer pixel centers into floats for their actual
291 * use.
292 */
293 this->pixel_x = vgrf(glsl_type::float_type);
294 this->pixel_y = vgrf(glsl_type::float_type);
295 abld.MOV(this->pixel_x, int_pixel_x);
296 abld.MOV(this->pixel_y, int_pixel_y);
297 }
298
299 abld = bld.annotate("compute pos.w");
300 this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
301 this->wpos_w = vgrf(glsl_type::float_type);
302 abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
303
304 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(prog_data);
305 uint32_t centroid_modes = wm_prog_data->barycentric_interp_modes &
306 (1 << BRW_BARYCENTRIC_PERSPECTIVE_CENTROID |
307 1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
308
309 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
310 uint8_t reg = payload.barycentric_coord_reg[i];
311 this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
312
313 if (devinfo->needs_unlit_centroid_workaround &&
314 (centroid_modes & (1 << i))) {
315 /* Get the pixel/sample mask into f0 so that we know which
316 * pixels are lit. Then, for each channel that is unlit,
317 * replace the centroid data with non-centroid data.
318 */
319 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
320
321 uint8_t pixel_reg = payload.barycentric_coord_reg[i - 1];
322
323 set_predicate_inv(BRW_PREDICATE_NORMAL, true,
324 bld.half(0).MOV(brw_vec8_grf(reg, 0),
325 brw_vec8_grf(pixel_reg, 0)));
326 set_predicate_inv(BRW_PREDICATE_NORMAL, true,
327 bld.half(0).MOV(brw_vec8_grf(reg + 1, 0),
328 brw_vec8_grf(pixel_reg + 1, 0)));
329 if (dispatch_width == 16) {
330 set_predicate_inv(BRW_PREDICATE_NORMAL, true,
331 bld.half(1).MOV(brw_vec8_grf(reg + 2, 0),
332 brw_vec8_grf(pixel_reg + 2, 0)));
333 set_predicate_inv(BRW_PREDICATE_NORMAL, true,
334 bld.half(1).MOV(brw_vec8_grf(reg + 3, 0),
335 brw_vec8_grf(pixel_reg + 3, 0)));
336 }
337 assert(dispatch_width != 32); /* not implemented yet */
338 }
339 }
340 }
341
342 static enum brw_conditional_mod
343 cond_for_alpha_func(GLenum func)
344 {
345 switch(func) {
346 case GL_GREATER:
347 return BRW_CONDITIONAL_G;
348 case GL_GEQUAL:
349 return BRW_CONDITIONAL_GE;
350 case GL_LESS:
351 return BRW_CONDITIONAL_L;
352 case GL_LEQUAL:
353 return BRW_CONDITIONAL_LE;
354 case GL_EQUAL:
355 return BRW_CONDITIONAL_EQ;
356 case GL_NOTEQUAL:
357 return BRW_CONDITIONAL_NEQ;
358 default:
359 unreachable("Not reached");
360 }
361 }
362
363 /**
364 * Alpha test support for when we compile it into the shader instead
365 * of using the normal fixed-function alpha test.
366 */
367 void
368 fs_visitor::emit_alpha_test()
369 {
370 assert(stage == MESA_SHADER_FRAGMENT);
371 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
372 const fs_builder abld = bld.annotate("Alpha test");
373
374 fs_inst *cmp;
375 if (key->alpha_test_func == GL_ALWAYS)
376 return;
377
378 if (key->alpha_test_func == GL_NEVER) {
379 /* f0.1 = 0 */
380 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
381 BRW_REGISTER_TYPE_UW));
382 cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
383 BRW_CONDITIONAL_NEQ);
384 } else {
385 /* RT0 alpha */
386 fs_reg color = offset(outputs[0], bld, 3);
387
388 /* f0.1 &= func(color, ref) */
389 cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
390 cond_for_alpha_func(key->alpha_test_func));
391 }
392 cmp->predicate = BRW_PREDICATE_NORMAL;
393 cmp->flag_subreg = 1;
394 }
395
396 fs_inst *
397 fs_visitor::emit_single_fb_write(const fs_builder &bld,
398 fs_reg color0, fs_reg color1,
399 fs_reg src0_alpha, unsigned components)
400 {
401 assert(stage == MESA_SHADER_FRAGMENT);
402 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
403
404 /* Hand over gl_FragDepth or the payload depth. */
405 const fs_reg dst_depth = (payload.dest_depth_reg ?
406 fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0)) :
407 fs_reg());
408 fs_reg src_depth, src_stencil;
409
410 if (source_depth_to_render_target) {
411 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
412 src_depth = frag_depth;
413 else
414 src_depth = fs_reg(brw_vec8_grf(payload.source_depth_reg, 0));
415 }
416
417 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
418 src_stencil = frag_stencil;
419
420 const fs_reg sources[] = {
421 color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
422 (prog_data->uses_omask ? sample_mask : fs_reg()),
423 brw_imm_ud(components)
424 };
425 assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
426 fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
427 sources, ARRAY_SIZE(sources));
428
429 if (prog_data->uses_kill) {
430 write->predicate = BRW_PREDICATE_NORMAL;
431 write->flag_subreg = 1;
432 }
433
434 return write;
435 }
436
437 void
438 fs_visitor::emit_fb_writes()
439 {
440 assert(stage == MESA_SHADER_FRAGMENT);
441 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
442 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
443
444 fs_inst *inst = NULL;
445
446 if (source_depth_to_render_target && devinfo->gen == 6) {
447 /* For outputting oDepth on gen6, SIMD8 writes have to be used. This
448 * would require SIMD8 moves of each half to message regs, e.g. by using
449 * the SIMD lowering pass. Unfortunately this is more difficult than it
450 * sounds because the SIMD8 single-source message lacks channel selects
451 * for the second and third subspans.
452 */
453 limit_dispatch_width(8, "Depth writes unsupported in SIMD16+ mode.\n");
454 }
455
456 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
457 /* From the 'Render Target Write message' section of the docs:
458 * "Output Stencil is not supported with SIMD16 Render Target Write
459 * Messages."
460 */
461 limit_dispatch_width(8, "gl_FragStencilRefARB unsupported "
462 "in SIMD16+ mode.\n");
463 }
464
465 for (int target = 0; target < key->nr_color_regions; target++) {
466 /* Skip over outputs that weren't written. */
467 if (this->outputs[target].file == BAD_FILE)
468 continue;
469
470 const fs_builder abld = bld.annotate(
471 ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
472
473 fs_reg src0_alpha;
474 if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
475 src0_alpha = offset(outputs[0], bld, 3);
476
477 inst = emit_single_fb_write(abld, this->outputs[target],
478 this->dual_src_output, src0_alpha, 4);
479 inst->target = target;
480 }
481
482 prog_data->dual_src_blend = (this->dual_src_output.file != BAD_FILE);
483 assert(!prog_data->dual_src_blend || key->nr_color_regions == 1);
484
485 if (inst == NULL) {
486 /* Even if there's no color buffers enabled, we still need to send
487 * alpha out the pipeline to our null renderbuffer to support
488 * alpha-testing, alpha-to-coverage, and so on.
489 */
490 /* FINISHME: Factor out this frequently recurring pattern into a
491 * helper function.
492 */
493 const fs_reg srcs[] = { reg_undef, reg_undef,
494 reg_undef, offset(this->outputs[0], bld, 3) };
495 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
496 bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
497
498 inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
499 inst->target = 0;
500 }
501
502 inst->eot = true;
503 }
504
505 void
506 fs_visitor::setup_uniform_clipplane_values(gl_clip_plane *clip_planes)
507 {
508 const struct brw_vs_prog_key *key =
509 (const struct brw_vs_prog_key *) this->key;
510
511 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
512 this->userplane[i] = fs_reg(UNIFORM, uniforms);
513 for (int j = 0; j < 4; ++j) {
514 stage_prog_data->param[uniforms + j] =
515 (gl_constant_value *) &clip_planes[i][j];
516 }
517 uniforms += 4;
518 }
519 }
520
521 /**
522 * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
523 *
524 * This does nothing if the shader uses gl_ClipDistance or user clipping is
525 * disabled altogether.
526 */
527 void fs_visitor::compute_clip_distance(gl_clip_plane *clip_planes)
528 {
529 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
530 const struct brw_vs_prog_key *key =
531 (const struct brw_vs_prog_key *) this->key;
532
533 /* Bail unless some sort of legacy clipping is enabled */
534 if (key->nr_userclip_plane_consts == 0)
535 return;
536
537 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
538 *
539 * "If a linked set of shaders forming the vertex stage contains no
540 * static write to gl_ClipVertex or gl_ClipDistance, but the
541 * application has requested clipping against user clip planes through
542 * the API, then the coordinate written to gl_Position is used for
543 * comparison against the user clip planes."
544 *
545 * This function is only called if the shader didn't write to
546 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
547 * if the user wrote to it; otherwise we use gl_Position.
548 */
549
550 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
551 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
552 clip_vertex = VARYING_SLOT_POS;
553
554 /* If the clip vertex isn't written, skip this. Typically this means
555 * the GS will set up clipping. */
556 if (outputs[clip_vertex].file == BAD_FILE)
557 return;
558
559 setup_uniform_clipplane_values(clip_planes);
560
561 const fs_builder abld = bld.annotate("user clip distances");
562
563 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
564 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
565
566 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
567 fs_reg u = userplane[i];
568 const fs_reg output = offset(outputs[VARYING_SLOT_CLIP_DIST0 + i / 4],
569 bld, i & 3);
570
571 abld.MUL(output, outputs[clip_vertex], u);
572 for (int j = 1; j < 4; j++) {
573 u.nr = userplane[i].nr + j;
574 abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
575 }
576 }
577 }
578
579 void
580 fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
581 {
582 int slot, urb_offset, length;
583 int starting_urb_offset = 0;
584 const struct brw_vue_prog_data *vue_prog_data =
585 brw_vue_prog_data(this->prog_data);
586 const struct brw_vs_prog_key *vs_key =
587 (const struct brw_vs_prog_key *) this->key;
588 const GLbitfield64 psiz_mask =
589 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
590 const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
591 bool flush;
592 fs_reg sources[8];
593 fs_reg urb_handle;
594
595 if (stage == MESA_SHADER_TESS_EVAL)
596 urb_handle = fs_reg(retype(brw_vec8_grf(4, 0), BRW_REGISTER_TYPE_UD));
597 else
598 urb_handle = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
599
600 /* If we don't have any valid slots to write, just do a minimal urb write
601 * send to terminate the shader. This includes 1 slot of undefined data,
602 * because it's invalid to write 0 data:
603 *
604 * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
605 * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
606 * Write Data Payload:
607 *
608 * "The write data payload can be between 1 and 8 message phases long."
609 */
610 if (vue_map->slots_valid == 0) {
611 /* For GS, just turn EmitVertex() into a no-op. We don't want it to
612 * end the thread, and emit_gs_thread_end() already emits a SEND with
613 * EOT at the end of the program for us.
614 */
615 if (stage == MESA_SHADER_GEOMETRY)
616 return;
617
618 fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
619 bld.exec_all().MOV(payload, urb_handle);
620
621 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
622 inst->eot = true;
623 inst->mlen = 2;
624 inst->offset = 1;
625 return;
626 }
627
628 opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
629 int header_size = 1;
630 fs_reg per_slot_offsets;
631
632 if (stage == MESA_SHADER_GEOMETRY) {
633 const struct brw_gs_prog_data *gs_prog_data =
634 brw_gs_prog_data(this->prog_data);
635
636 /* We need to increment the Global Offset to skip over the control data
637 * header and the extra "Vertex Count" field (1 HWord) at the beginning
638 * of the VUE. We're counting in OWords, so the units are doubled.
639 */
640 starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
641 if (gs_prog_data->static_vertex_count == -1)
642 starting_urb_offset += 2;
643
644 /* We also need to use per-slot offsets. The per-slot offset is the
645 * Vertex Count. SIMD8 mode processes 8 different primitives at a
646 * time; each may output a different number of vertices.
647 */
648 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT;
649 header_size++;
650
651 /* The URB offset is in 128-bit units, so we need to multiply by 2 */
652 const int output_vertex_size_owords =
653 gs_prog_data->output_vertex_size_hwords * 2;
654
655 if (gs_vertex_count.file == IMM) {
656 per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
657 gs_vertex_count.ud);
658 } else {
659 per_slot_offsets = vgrf(glsl_type::int_type);
660 bld.MUL(per_slot_offsets, gs_vertex_count,
661 brw_imm_ud(output_vertex_size_owords));
662 }
663 }
664
665 length = 0;
666 urb_offset = starting_urb_offset;
667 flush = false;
668
669 /* SSO shaders can have VUE slots allocated which are never actually
670 * written to, so ignore them when looking for the last (written) slot.
671 */
672 int last_slot = vue_map->num_slots - 1;
673 while (last_slot > 0 &&
674 (vue_map->slot_to_varying[last_slot] == BRW_VARYING_SLOT_PAD ||
675 outputs[vue_map->slot_to_varying[last_slot]].file == BAD_FILE)) {
676 last_slot--;
677 }
678
679 for (slot = 0; slot < vue_map->num_slots; slot++) {
680 int varying = vue_map->slot_to_varying[slot];
681 switch (varying) {
682 case VARYING_SLOT_PSIZ: {
683 /* The point size varying slot is the vue header and is always in the
684 * vue map. But often none of the special varyings that live there
685 * are written and in that case we can skip writing to the vue
686 * header, provided the corresponding state properly clamps the
687 * values further down the pipeline. */
688 if ((vue_map->slots_valid & psiz_mask) == 0) {
689 assert(length == 0);
690 urb_offset++;
691 break;
692 }
693
694 fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
695 bld.MOV(zero, brw_imm_ud(0u));
696
697 sources[length++] = zero;
698 if (vue_map->slots_valid & VARYING_BIT_LAYER)
699 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
700 else
701 sources[length++] = zero;
702
703 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
704 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
705 else
706 sources[length++] = zero;
707
708 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
709 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
710 else
711 sources[length++] = zero;
712 break;
713 }
714 case BRW_VARYING_SLOT_NDC:
715 case VARYING_SLOT_EDGE:
716 unreachable("unexpected scalar vs output");
717 break;
718
719 default:
720 /* gl_Position is always in the vue map, but isn't always written by
721 * the shader. Other varyings (clip distances) get added to the vue
722 * map but don't always get written. In those cases, the
723 * corresponding this->output[] slot will be invalid we and can skip
724 * the urb write for the varying. If we've already queued up a vue
725 * slot for writing we flush a mlen 5 urb write, otherwise we just
726 * advance the urb_offset.
727 */
728 if (varying == BRW_VARYING_SLOT_PAD ||
729 this->outputs[varying].file == BAD_FILE) {
730 if (length > 0)
731 flush = true;
732 else
733 urb_offset++;
734 break;
735 }
736
737 if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
738 (varying == VARYING_SLOT_COL0 ||
739 varying == VARYING_SLOT_COL1 ||
740 varying == VARYING_SLOT_BFC0 ||
741 varying == VARYING_SLOT_BFC1)) {
742 /* We need to clamp these guys, so do a saturating MOV into a
743 * temp register and use that for the payload.
744 */
745 for (int i = 0; i < 4; i++) {
746 fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
747 fs_reg src = offset(this->outputs[varying], bld, i);
748 set_saturate(true, bld.MOV(reg, src));
749 sources[length++] = reg;
750 }
751 } else {
752 for (unsigned i = 0; i < 4; i++)
753 sources[length++] = offset(this->outputs[varying], bld, i);
754 }
755 break;
756 }
757
758 const fs_builder abld = bld.annotate("URB write");
759
760 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
761 * the last slot or if we need to flush (see BAD_FILE varying case
762 * above), emit a URB write send now to flush out the data.
763 */
764 if (length == 8 || slot == last_slot)
765 flush = true;
766 if (flush) {
767 fs_reg *payload_sources =
768 ralloc_array(mem_ctx, fs_reg, length + header_size);
769 fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
770 BRW_REGISTER_TYPE_F);
771 payload_sources[0] = urb_handle;
772
773 if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
774 payload_sources[1] = per_slot_offsets;
775
776 memcpy(&payload_sources[header_size], sources,
777 length * sizeof sources[0]);
778
779 abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
780 header_size);
781
782 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
783 inst->eot = slot == last_slot && stage != MESA_SHADER_GEOMETRY;
784 inst->mlen = length + header_size;
785 inst->offset = urb_offset;
786 urb_offset = starting_urb_offset + slot + 1;
787 length = 0;
788 flush = false;
789 }
790 }
791 }
792
793 void
794 fs_visitor::emit_cs_terminate()
795 {
796 assert(devinfo->gen >= 7);
797
798 /* We are getting the thread ID from the compute shader header */
799 assert(stage == MESA_SHADER_COMPUTE);
800
801 /* We can't directly send from g0, since sends with EOT have to use
802 * g112-127. So, copy it to a virtual register, The register allocator will
803 * make sure it uses the appropriate register range.
804 */
805 struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
806 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
807 bld.group(8, 0).exec_all().MOV(payload, g0);
808
809 /* Send a message to the thread spawner to terminate the thread. */
810 fs_inst *inst = bld.exec_all()
811 .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
812 inst->eot = true;
813 }
814
815 void
816 fs_visitor::emit_barrier()
817 {
818 assert(devinfo->gen >= 7);
819 const uint32_t barrier_id_mask =
820 devinfo->gen >= 9 ? 0x8f000000u : 0x0f000000u;
821
822 /* We are getting the barrier ID from the compute shader header */
823 assert(stage == MESA_SHADER_COMPUTE);
824
825 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
826
827 const fs_builder pbld = bld.exec_all().group(8, 0);
828
829 /* Clear the message payload */
830 pbld.MOV(payload, brw_imm_ud(0u));
831
832 /* Copy the barrier id from r0.2 to the message payload reg.2 */
833 fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
834 pbld.AND(component(payload, 2), r0_2, brw_imm_ud(barrier_id_mask));
835
836 /* Emit a gateway "barrier" message using the payload we set up, followed
837 * by a wait instruction.
838 */
839 bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
840 }
841
842 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
843 void *mem_ctx,
844 const void *key,
845 struct brw_stage_prog_data *prog_data,
846 struct gl_program *prog,
847 const nir_shader *shader,
848 unsigned dispatch_width,
849 int shader_time_index,
850 const struct brw_vue_map *input_vue_map)
851 : backend_shader(compiler, log_data, mem_ctx, shader, prog_data),
852 key(key), gs_compile(NULL), prog_data(prog_data), prog(prog),
853 input_vue_map(input_vue_map),
854 dispatch_width(dispatch_width),
855 shader_time_index(shader_time_index),
856 bld(fs_builder(this, dispatch_width).at_end())
857 {
858 init();
859 }
860
861 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
862 void *mem_ctx,
863 struct brw_gs_compile *c,
864 struct brw_gs_prog_data *prog_data,
865 const nir_shader *shader,
866 int shader_time_index)
867 : backend_shader(compiler, log_data, mem_ctx, shader,
868 &prog_data->base.base),
869 key(&c->key), gs_compile(c),
870 prog_data(&prog_data->base.base), prog(NULL),
871 dispatch_width(8),
872 shader_time_index(shader_time_index),
873 bld(fs_builder(this, dispatch_width).at_end())
874 {
875 init();
876 }
877
878
879 void
880 fs_visitor::init()
881 {
882 switch (stage) {
883 case MESA_SHADER_FRAGMENT:
884 key_tex = &((const brw_wm_prog_key *) key)->tex;
885 break;
886 case MESA_SHADER_VERTEX:
887 key_tex = &((const brw_vs_prog_key *) key)->tex;
888 break;
889 case MESA_SHADER_TESS_CTRL:
890 key_tex = &((const brw_tcs_prog_key *) key)->tex;
891 break;
892 case MESA_SHADER_TESS_EVAL:
893 key_tex = &((const brw_tes_prog_key *) key)->tex;
894 break;
895 case MESA_SHADER_GEOMETRY:
896 key_tex = &((const brw_gs_prog_key *) key)->tex;
897 break;
898 case MESA_SHADER_COMPUTE:
899 key_tex = &((const brw_cs_prog_key*) key)->tex;
900 break;
901 default:
902 unreachable("unhandled shader stage");
903 }
904
905 if (stage == MESA_SHADER_COMPUTE) {
906 const struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
907 unsigned size = cs_prog_data->local_size[0] *
908 cs_prog_data->local_size[1] *
909 cs_prog_data->local_size[2];
910 size = DIV_ROUND_UP(size, devinfo->max_cs_threads);
911 min_dispatch_width = size > 16 ? 32 : (size > 8 ? 16 : 8);
912 } else {
913 min_dispatch_width = 8;
914 }
915
916 this->max_dispatch_width = 32;
917 this->prog_data = this->stage_prog_data;
918
919 this->failed = false;
920
921 this->nir_locals = NULL;
922 this->nir_ssa_values = NULL;
923
924 memset(&this->payload, 0, sizeof(this->payload));
925 this->source_depth_to_render_target = false;
926 this->runtime_check_aads_emit = false;
927 this->first_non_payload_grf = 0;
928 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
929
930 this->virtual_grf_start = NULL;
931 this->virtual_grf_end = NULL;
932 this->live_intervals = NULL;
933 this->regs_live_at_ip = NULL;
934
935 this->uniforms = 0;
936 this->last_scratch = 0;
937 this->pull_constant_loc = NULL;
938 this->push_constant_loc = NULL;
939
940 this->promoted_constants = 0,
941
942 this->spilled_any_registers = false;
943 }
944
945 fs_visitor::~fs_visitor()
946 {
947 }