intel/fs: Generalize the unlit centroid workaround
[mesa.git] / src / intel / compiler / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include "brw_fs.h"
31 #include "compiler/glsl_types.h"
32
33 using namespace brw;
34
35 /* Sample from the MCS surface attached to this multisample texture. */
36 fs_reg
37 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
38 const fs_reg &texture)
39 {
40 const fs_reg dest = vgrf(glsl_type::uvec4_type);
41
42 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
43 srcs[TEX_LOGICAL_SRC_COORDINATE] = coordinate;
44 srcs[TEX_LOGICAL_SRC_SURFACE] = texture;
45 srcs[TEX_LOGICAL_SRC_SAMPLER] = texture;
46 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(components);
47 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
48
49 fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
50 ARRAY_SIZE(srcs));
51
52 /* We only care about one or two regs of response, but the sampler always
53 * writes 4/8.
54 */
55 inst->size_written = 4 * dest.component_size(inst->exec_size);
56
57 return dest;
58 }
59
60 /**
61 * Apply workarounds for Gen6 gather with UINT/SINT
62 */
63 void
64 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
65 {
66 if (!wa)
67 return;
68
69 int width = (wa & WA_8BIT) ? 8 : 16;
70
71 for (int i = 0; i < 4; i++) {
72 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
73 /* Convert from UNORM to UINT */
74 bld.MUL(dst_f, dst_f, brw_imm_f((1 << width) - 1));
75 bld.MOV(dst, dst_f);
76
77 if (wa & WA_SIGN) {
78 /* Reinterpret the UINT value as a signed INT value by
79 * shifting the sign bit into place, then shifting back
80 * preserving sign.
81 */
82 bld.SHL(dst, dst, brw_imm_d(32 - width));
83 bld.ASR(dst, dst, brw_imm_d(32 - width));
84 }
85
86 dst = offset(dst, bld, 1);
87 }
88 }
89
90 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
91 void
92 fs_visitor::emit_dummy_fs()
93 {
94 int reg_width = dispatch_width / 8;
95
96 /* Everyone's favorite color. */
97 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
98 for (int i = 0; i < 4; i++) {
99 bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
100 brw_imm_f(color[i]));
101 }
102
103 fs_inst *write;
104 write = bld.emit(FS_OPCODE_FB_WRITE);
105 write->eot = true;
106 write->last_rt = true;
107 if (devinfo->gen >= 6) {
108 write->base_mrf = 2;
109 write->mlen = 4 * reg_width;
110 } else {
111 write->header_size = 2;
112 write->base_mrf = 0;
113 write->mlen = 2 + 4 * reg_width;
114 }
115
116 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
117 * varying to avoid GPU hangs, so set that.
118 */
119 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
120 wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
121 memset(wm_prog_data->urb_setup, -1,
122 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
123
124 /* We don't have any uniforms. */
125 stage_prog_data->nr_params = 0;
126 stage_prog_data->nr_pull_params = 0;
127 stage_prog_data->curb_read_length = 0;
128 stage_prog_data->dispatch_grf_start_reg = 2;
129 wm_prog_data->dispatch_grf_start_reg_16 = 2;
130 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
131
132 calculate_cfg();
133 }
134
135 /* The register location here is relative to the start of the URB
136 * data. It will get adjusted to be a real location before
137 * generate_code() time.
138 */
139 fs_reg
140 fs_visitor::interp_reg(int location, int channel)
141 {
142 assert(stage == MESA_SHADER_FRAGMENT);
143 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
144 int regnr = prog_data->urb_setup[location] * 4 + channel;
145 assert(prog_data->urb_setup[location] != -1);
146
147 return fs_reg(ATTR, regnr, BRW_REGISTER_TYPE_F);
148 }
149
150 /** Emits the interpolation for the varying inputs. */
151 void
152 fs_visitor::emit_interpolation_setup_gen4()
153 {
154 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
155
156 fs_builder abld = bld.annotate("compute pixel centers");
157 this->pixel_x = vgrf(glsl_type::uint_type);
158 this->pixel_y = vgrf(glsl_type::uint_type);
159 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
160 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
161 abld.ADD(this->pixel_x,
162 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
163 fs_reg(brw_imm_v(0x10101010)));
164 abld.ADD(this->pixel_y,
165 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
166 fs_reg(brw_imm_v(0x11001100)));
167
168 abld = bld.annotate("compute pixel deltas from v0");
169
170 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL] =
171 vgrf(glsl_type::vec2_type);
172 const fs_reg &delta_xy = this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL];
173 const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
174 const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
175
176 if (devinfo->has_pln && dispatch_width == 16) {
177 for (unsigned i = 0; i < 2; i++) {
178 abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
179 half(this->pixel_x, i), xstart);
180 abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
181 half(this->pixel_y, i), ystart);
182 }
183 } else {
184 abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
185 abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
186 }
187
188 abld = bld.annotate("compute pos.w and 1/pos.w");
189 /* Compute wpos.w. It's always in our setup, since it's needed to
190 * interpolate the other attributes.
191 */
192 this->wpos_w = vgrf(glsl_type::float_type);
193 abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
194 component(interp_reg(VARYING_SLOT_POS, 3), 0));
195 /* Compute the pixel 1/W value from wpos.w. */
196 this->pixel_w = vgrf(glsl_type::float_type);
197 abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
198 }
199
200 /** Emits the interpolation for the varying inputs. */
201 void
202 fs_visitor::emit_interpolation_setup_gen6()
203 {
204 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
205
206 fs_builder abld = bld.annotate("compute pixel centers");
207 if (devinfo->gen >= 8 || dispatch_width == 8) {
208 /* The "Register Region Restrictions" page says for BDW (and newer,
209 * presumably):
210 *
211 * "When destination spans two registers, the source may be one or
212 * two registers. The destination elements must be evenly split
213 * between the two registers."
214 *
215 * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
216 * compute our pixel centers.
217 */
218 fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8),
219 BRW_REGISTER_TYPE_UW);
220
221 const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
222 dbld.ADD(int_pixel_xy,
223 fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
224 fs_reg(brw_imm_v(0x11001010)));
225
226 this->pixel_x = vgrf(glsl_type::float_type);
227 this->pixel_y = vgrf(glsl_type::float_type);
228 abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
229 abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
230 } else {
231 /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
232 *
233 * "When destination spans two registers, the source MUST span two
234 * registers."
235 *
236 * Since the GRF source of the ADD will only read a single register, we
237 * must do two separate ADDs in SIMD16.
238 */
239 fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
240 fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
241 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
242 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
243 abld.ADD(int_pixel_x,
244 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
245 fs_reg(brw_imm_v(0x10101010)));
246 abld.ADD(int_pixel_y,
247 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
248 fs_reg(brw_imm_v(0x11001100)));
249
250 /* As of gen6, we can no longer mix float and int sources. We have
251 * to turn the integer pixel centers into floats for their actual
252 * use.
253 */
254 this->pixel_x = vgrf(glsl_type::float_type);
255 this->pixel_y = vgrf(glsl_type::float_type);
256 abld.MOV(this->pixel_x, int_pixel_x);
257 abld.MOV(this->pixel_y, int_pixel_y);
258 }
259
260 abld = bld.annotate("compute pos.w");
261 this->pixel_w = fetch_payload_reg(abld, payload.source_w_reg);
262 this->wpos_w = vgrf(glsl_type::float_type);
263 abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
264
265 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(prog_data);
266 uint32_t centroid_modes = wm_prog_data->barycentric_interp_modes &
267 (1 << BRW_BARYCENTRIC_PERSPECTIVE_CENTROID |
268 1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
269
270 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
271 this->delta_xy[i] = fetch_payload_reg(
272 bld, payload.barycentric_coord_reg[i], BRW_REGISTER_TYPE_F, 2);
273
274 if (devinfo->needs_unlit_centroid_workaround &&
275 (centroid_modes & (1 << i))) {
276 const fs_reg &pixel_delta_xy = delta_xy[i - 1];
277
278 /* Get the pixel/sample mask into f0 so that we know which
279 * pixels are lit. Then, for each channel that is unlit,
280 * replace the centroid data with non-centroid data.
281 */
282 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
283
284 for (unsigned q = 0; q < dispatch_width / 8; q++) {
285 for (unsigned c = 0; c < 2; c++) {
286 const unsigned idx = c + (q & 2) + (q & 1) * dispatch_width / 8;
287 set_predicate_inv(
288 BRW_PREDICATE_NORMAL, true,
289 bld.half(q).MOV(horiz_offset(delta_xy[i], idx * 8),
290 horiz_offset(pixel_delta_xy, idx * 8)));
291 }
292 }
293 }
294 }
295 }
296
297 static enum brw_conditional_mod
298 cond_for_alpha_func(GLenum func)
299 {
300 switch(func) {
301 case GL_GREATER:
302 return BRW_CONDITIONAL_G;
303 case GL_GEQUAL:
304 return BRW_CONDITIONAL_GE;
305 case GL_LESS:
306 return BRW_CONDITIONAL_L;
307 case GL_LEQUAL:
308 return BRW_CONDITIONAL_LE;
309 case GL_EQUAL:
310 return BRW_CONDITIONAL_EQ;
311 case GL_NOTEQUAL:
312 return BRW_CONDITIONAL_NEQ;
313 default:
314 unreachable("Not reached");
315 }
316 }
317
318 /**
319 * Alpha test support for when we compile it into the shader instead
320 * of using the normal fixed-function alpha test.
321 */
322 void
323 fs_visitor::emit_alpha_test()
324 {
325 assert(stage == MESA_SHADER_FRAGMENT);
326 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
327 const fs_builder abld = bld.annotate("Alpha test");
328
329 fs_inst *cmp;
330 if (key->alpha_test_func == GL_ALWAYS)
331 return;
332
333 if (key->alpha_test_func == GL_NEVER) {
334 /* f0.1 = 0 */
335 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
336 BRW_REGISTER_TYPE_UW));
337 cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
338 BRW_CONDITIONAL_NEQ);
339 } else {
340 /* RT0 alpha */
341 fs_reg color = offset(outputs[0], bld, 3);
342
343 /* f0.1 &= func(color, ref) */
344 cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
345 cond_for_alpha_func(key->alpha_test_func));
346 }
347 cmp->predicate = BRW_PREDICATE_NORMAL;
348 cmp->flag_subreg = 1;
349 }
350
351 fs_inst *
352 fs_visitor::emit_single_fb_write(const fs_builder &bld,
353 fs_reg color0, fs_reg color1,
354 fs_reg src0_alpha, unsigned components)
355 {
356 assert(stage == MESA_SHADER_FRAGMENT);
357 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
358
359 /* Hand over gl_FragDepth or the payload depth. */
360 const fs_reg dst_depth = fetch_payload_reg(bld, payload.dest_depth_reg);
361 fs_reg src_depth, src_stencil;
362
363 if (source_depth_to_render_target) {
364 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
365 src_depth = frag_depth;
366 else
367 src_depth = fetch_payload_reg(bld, payload.source_depth_reg);
368 }
369
370 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
371 src_stencil = frag_stencil;
372
373 const fs_reg sources[] = {
374 color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
375 (prog_data->uses_omask ? sample_mask : fs_reg()),
376 brw_imm_ud(components)
377 };
378 assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
379 fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
380 sources, ARRAY_SIZE(sources));
381
382 if (prog_data->uses_kill) {
383 write->predicate = BRW_PREDICATE_NORMAL;
384 write->flag_subreg = 1;
385 }
386
387 return write;
388 }
389
390 void
391 fs_visitor::emit_fb_writes()
392 {
393 assert(stage == MESA_SHADER_FRAGMENT);
394 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
395 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
396
397 fs_inst *inst = NULL;
398
399 if (source_depth_to_render_target && devinfo->gen == 6) {
400 /* For outputting oDepth on gen6, SIMD8 writes have to be used. This
401 * would require SIMD8 moves of each half to message regs, e.g. by using
402 * the SIMD lowering pass. Unfortunately this is more difficult than it
403 * sounds because the SIMD8 single-source message lacks channel selects
404 * for the second and third subspans.
405 */
406 limit_dispatch_width(8, "Depth writes unsupported in SIMD16+ mode.\n");
407 }
408
409 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
410 /* From the 'Render Target Write message' section of the docs:
411 * "Output Stencil is not supported with SIMD16 Render Target Write
412 * Messages."
413 */
414 limit_dispatch_width(8, "gl_FragStencilRefARB unsupported "
415 "in SIMD16+ mode.\n");
416 }
417
418 for (int target = 0; target < key->nr_color_regions; target++) {
419 /* Skip over outputs that weren't written. */
420 if (this->outputs[target].file == BAD_FILE)
421 continue;
422
423 const fs_builder abld = bld.annotate(
424 ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
425
426 fs_reg src0_alpha;
427 if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
428 src0_alpha = offset(outputs[0], bld, 3);
429
430 inst = emit_single_fb_write(abld, this->outputs[target],
431 this->dual_src_output, src0_alpha, 4);
432 inst->target = target;
433 }
434
435 prog_data->dual_src_blend = (this->dual_src_output.file != BAD_FILE &&
436 this->outputs[0].file != BAD_FILE);
437 assert(!prog_data->dual_src_blend || key->nr_color_regions == 1);
438
439 if (inst == NULL) {
440 /* Even if there's no color buffers enabled, we still need to send
441 * alpha out the pipeline to our null renderbuffer to support
442 * alpha-testing, alpha-to-coverage, and so on.
443 */
444 /* FINISHME: Factor out this frequently recurring pattern into a
445 * helper function.
446 */
447 const fs_reg srcs[] = { reg_undef, reg_undef,
448 reg_undef, offset(this->outputs[0], bld, 3) };
449 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
450 bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
451
452 inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
453 inst->target = 0;
454 }
455
456 inst->last_rt = true;
457 inst->eot = true;
458 }
459
460 void
461 fs_visitor::setup_uniform_clipplane_values()
462 {
463 const struct brw_vs_prog_key *key =
464 (const struct brw_vs_prog_key *) this->key;
465
466 if (key->nr_userclip_plane_consts == 0)
467 return;
468
469 assert(stage_prog_data->nr_params == uniforms);
470 brw_stage_prog_data_add_params(stage_prog_data,
471 key->nr_userclip_plane_consts * 4);
472
473 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
474 this->userplane[i] = fs_reg(UNIFORM, uniforms);
475 for (int j = 0; j < 4; ++j) {
476 stage_prog_data->param[uniforms + j] =
477 BRW_PARAM_BUILTIN_CLIP_PLANE(i, j);
478 }
479 uniforms += 4;
480 }
481 }
482
483 /**
484 * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
485 *
486 * This does nothing if the shader uses gl_ClipDistance or user clipping is
487 * disabled altogether.
488 */
489 void fs_visitor::compute_clip_distance()
490 {
491 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
492 const struct brw_vs_prog_key *key =
493 (const struct brw_vs_prog_key *) this->key;
494
495 /* Bail unless some sort of legacy clipping is enabled */
496 if (key->nr_userclip_plane_consts == 0)
497 return;
498
499 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
500 *
501 * "If a linked set of shaders forming the vertex stage contains no
502 * static write to gl_ClipVertex or gl_ClipDistance, but the
503 * application has requested clipping against user clip planes through
504 * the API, then the coordinate written to gl_Position is used for
505 * comparison against the user clip planes."
506 *
507 * This function is only called if the shader didn't write to
508 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
509 * if the user wrote to it; otherwise we use gl_Position.
510 */
511
512 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
513 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
514 clip_vertex = VARYING_SLOT_POS;
515
516 /* If the clip vertex isn't written, skip this. Typically this means
517 * the GS will set up clipping. */
518 if (outputs[clip_vertex].file == BAD_FILE)
519 return;
520
521 setup_uniform_clipplane_values();
522
523 const fs_builder abld = bld.annotate("user clip distances");
524
525 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
526 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
527
528 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
529 fs_reg u = userplane[i];
530 const fs_reg output = offset(outputs[VARYING_SLOT_CLIP_DIST0 + i / 4],
531 bld, i & 3);
532
533 abld.MUL(output, outputs[clip_vertex], u);
534 for (int j = 1; j < 4; j++) {
535 u.nr = userplane[i].nr + j;
536 abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
537 }
538 }
539 }
540
541 void
542 fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
543 {
544 int slot, urb_offset, length;
545 int starting_urb_offset = 0;
546 const struct brw_vue_prog_data *vue_prog_data =
547 brw_vue_prog_data(this->prog_data);
548 const struct brw_vs_prog_key *vs_key =
549 (const struct brw_vs_prog_key *) this->key;
550 const GLbitfield64 psiz_mask =
551 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
552 const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
553 bool flush;
554 fs_reg sources[8];
555 fs_reg urb_handle;
556
557 if (stage == MESA_SHADER_TESS_EVAL)
558 urb_handle = fs_reg(retype(brw_vec8_grf(4, 0), BRW_REGISTER_TYPE_UD));
559 else
560 urb_handle = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
561
562 opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
563 int header_size = 1;
564 fs_reg per_slot_offsets;
565
566 if (stage == MESA_SHADER_GEOMETRY) {
567 const struct brw_gs_prog_data *gs_prog_data =
568 brw_gs_prog_data(this->prog_data);
569
570 /* We need to increment the Global Offset to skip over the control data
571 * header and the extra "Vertex Count" field (1 HWord) at the beginning
572 * of the VUE. We're counting in OWords, so the units are doubled.
573 */
574 starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
575 if (gs_prog_data->static_vertex_count == -1)
576 starting_urb_offset += 2;
577
578 /* We also need to use per-slot offsets. The per-slot offset is the
579 * Vertex Count. SIMD8 mode processes 8 different primitives at a
580 * time; each may output a different number of vertices.
581 */
582 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT;
583 header_size++;
584
585 /* The URB offset is in 128-bit units, so we need to multiply by 2 */
586 const int output_vertex_size_owords =
587 gs_prog_data->output_vertex_size_hwords * 2;
588
589 if (gs_vertex_count.file == IMM) {
590 per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
591 gs_vertex_count.ud);
592 } else {
593 per_slot_offsets = vgrf(glsl_type::int_type);
594 bld.MUL(per_slot_offsets, gs_vertex_count,
595 brw_imm_ud(output_vertex_size_owords));
596 }
597 }
598
599 length = 0;
600 urb_offset = starting_urb_offset;
601 flush = false;
602
603 /* SSO shaders can have VUE slots allocated which are never actually
604 * written to, so ignore them when looking for the last (written) slot.
605 */
606 int last_slot = vue_map->num_slots - 1;
607 while (last_slot > 0 &&
608 (vue_map->slot_to_varying[last_slot] == BRW_VARYING_SLOT_PAD ||
609 outputs[vue_map->slot_to_varying[last_slot]].file == BAD_FILE)) {
610 last_slot--;
611 }
612
613 bool urb_written = false;
614 for (slot = 0; slot < vue_map->num_slots; slot++) {
615 int varying = vue_map->slot_to_varying[slot];
616 switch (varying) {
617 case VARYING_SLOT_PSIZ: {
618 /* The point size varying slot is the vue header and is always in the
619 * vue map. But often none of the special varyings that live there
620 * are written and in that case we can skip writing to the vue
621 * header, provided the corresponding state properly clamps the
622 * values further down the pipeline. */
623 if ((vue_map->slots_valid & psiz_mask) == 0) {
624 assert(length == 0);
625 urb_offset++;
626 break;
627 }
628
629 fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
630 bld.MOV(zero, brw_imm_ud(0u));
631
632 sources[length++] = zero;
633 if (vue_map->slots_valid & VARYING_BIT_LAYER)
634 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
635 else
636 sources[length++] = zero;
637
638 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
639 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
640 else
641 sources[length++] = zero;
642
643 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
644 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
645 else
646 sources[length++] = zero;
647 break;
648 }
649 case BRW_VARYING_SLOT_NDC:
650 case VARYING_SLOT_EDGE:
651 unreachable("unexpected scalar vs output");
652 break;
653
654 default:
655 /* gl_Position is always in the vue map, but isn't always written by
656 * the shader. Other varyings (clip distances) get added to the vue
657 * map but don't always get written. In those cases, the
658 * corresponding this->output[] slot will be invalid we and can skip
659 * the urb write for the varying. If we've already queued up a vue
660 * slot for writing we flush a mlen 5 urb write, otherwise we just
661 * advance the urb_offset.
662 */
663 if (varying == BRW_VARYING_SLOT_PAD ||
664 this->outputs[varying].file == BAD_FILE) {
665 if (length > 0)
666 flush = true;
667 else
668 urb_offset++;
669 break;
670 }
671
672 if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
673 (varying == VARYING_SLOT_COL0 ||
674 varying == VARYING_SLOT_COL1 ||
675 varying == VARYING_SLOT_BFC0 ||
676 varying == VARYING_SLOT_BFC1)) {
677 /* We need to clamp these guys, so do a saturating MOV into a
678 * temp register and use that for the payload.
679 */
680 for (int i = 0; i < 4; i++) {
681 fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
682 fs_reg src = offset(this->outputs[varying], bld, i);
683 set_saturate(true, bld.MOV(reg, src));
684 sources[length++] = reg;
685 }
686 } else {
687 for (unsigned i = 0; i < 4; i++)
688 sources[length++] = offset(this->outputs[varying], bld, i);
689 }
690 break;
691 }
692
693 const fs_builder abld = bld.annotate("URB write");
694
695 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
696 * the last slot or if we need to flush (see BAD_FILE varying case
697 * above), emit a URB write send now to flush out the data.
698 */
699 if (length == 8 || (length > 0 && slot == last_slot))
700 flush = true;
701 if (flush) {
702 fs_reg *payload_sources =
703 ralloc_array(mem_ctx, fs_reg, length + header_size);
704 fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
705 BRW_REGISTER_TYPE_F);
706 payload_sources[0] = urb_handle;
707
708 if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
709 payload_sources[1] = per_slot_offsets;
710
711 memcpy(&payload_sources[header_size], sources,
712 length * sizeof sources[0]);
713
714 abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
715 header_size);
716
717 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
718 inst->eot = slot == last_slot && stage != MESA_SHADER_GEOMETRY;
719 inst->mlen = length + header_size;
720 inst->offset = urb_offset;
721 urb_offset = starting_urb_offset + slot + 1;
722 length = 0;
723 flush = false;
724 urb_written = true;
725 }
726 }
727
728 /* If we don't have any valid slots to write, just do a minimal urb write
729 * send to terminate the shader. This includes 1 slot of undefined data,
730 * because it's invalid to write 0 data:
731 *
732 * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
733 * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
734 * Write Data Payload:
735 *
736 * "The write data payload can be between 1 and 8 message phases long."
737 */
738 if (!urb_written) {
739 /* For GS, just turn EmitVertex() into a no-op. We don't want it to
740 * end the thread, and emit_gs_thread_end() already emits a SEND with
741 * EOT at the end of the program for us.
742 */
743 if (stage == MESA_SHADER_GEOMETRY)
744 return;
745
746 fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
747 bld.exec_all().MOV(payload, urb_handle);
748
749 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
750 inst->eot = true;
751 inst->mlen = 2;
752 inst->offset = 1;
753 return;
754 }
755 }
756
757 void
758 fs_visitor::emit_cs_terminate()
759 {
760 assert(devinfo->gen >= 7);
761
762 /* We are getting the thread ID from the compute shader header */
763 assert(stage == MESA_SHADER_COMPUTE);
764
765 /* We can't directly send from g0, since sends with EOT have to use
766 * g112-127. So, copy it to a virtual register, The register allocator will
767 * make sure it uses the appropriate register range.
768 */
769 struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
770 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
771 bld.group(8, 0).exec_all().MOV(payload, g0);
772
773 /* Send a message to the thread spawner to terminate the thread. */
774 fs_inst *inst = bld.exec_all()
775 .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
776 inst->eot = true;
777 }
778
779 void
780 fs_visitor::emit_barrier()
781 {
782 assert(devinfo->gen >= 7);
783 const uint32_t barrier_id_mask =
784 devinfo->gen >= 9 ? 0x8f000000u : 0x0f000000u;
785
786 /* We are getting the barrier ID from the compute shader header */
787 assert(stage == MESA_SHADER_COMPUTE);
788
789 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
790
791 /* Clear the message payload */
792 bld.exec_all().group(8, 0).MOV(payload, brw_imm_ud(0u));
793
794 /* Copy the barrier id from r0.2 to the message payload reg.2 */
795 fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
796 bld.exec_all().group(1, 0).AND(component(payload, 2), r0_2,
797 brw_imm_ud(barrier_id_mask));
798
799 /* Emit a gateway "barrier" message using the payload we set up, followed
800 * by a wait instruction.
801 */
802 bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
803 }
804
805 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
806 void *mem_ctx,
807 const void *key,
808 struct brw_stage_prog_data *prog_data,
809 struct gl_program *prog,
810 const nir_shader *shader,
811 unsigned dispatch_width,
812 int shader_time_index,
813 const struct brw_vue_map *input_vue_map)
814 : backend_shader(compiler, log_data, mem_ctx, shader, prog_data),
815 key(key), gs_compile(NULL), prog_data(prog_data), prog(prog),
816 input_vue_map(input_vue_map),
817 dispatch_width(dispatch_width),
818 shader_time_index(shader_time_index),
819 bld(fs_builder(this, dispatch_width).at_end())
820 {
821 init();
822 }
823
824 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
825 void *mem_ctx,
826 struct brw_gs_compile *c,
827 struct brw_gs_prog_data *prog_data,
828 const nir_shader *shader,
829 int shader_time_index)
830 : backend_shader(compiler, log_data, mem_ctx, shader,
831 &prog_data->base.base),
832 key(&c->key), gs_compile(c),
833 prog_data(&prog_data->base.base), prog(NULL),
834 dispatch_width(8),
835 shader_time_index(shader_time_index),
836 bld(fs_builder(this, dispatch_width).at_end())
837 {
838 init();
839 }
840
841
842 void
843 fs_visitor::init()
844 {
845 switch (stage) {
846 case MESA_SHADER_FRAGMENT:
847 key_tex = &((const brw_wm_prog_key *) key)->tex;
848 break;
849 case MESA_SHADER_VERTEX:
850 key_tex = &((const brw_vs_prog_key *) key)->tex;
851 break;
852 case MESA_SHADER_TESS_CTRL:
853 key_tex = &((const brw_tcs_prog_key *) key)->tex;
854 break;
855 case MESA_SHADER_TESS_EVAL:
856 key_tex = &((const brw_tes_prog_key *) key)->tex;
857 break;
858 case MESA_SHADER_GEOMETRY:
859 key_tex = &((const brw_gs_prog_key *) key)->tex;
860 break;
861 case MESA_SHADER_COMPUTE:
862 key_tex = &((const brw_cs_prog_key*) key)->tex;
863 break;
864 default:
865 unreachable("unhandled shader stage");
866 }
867
868 this->max_dispatch_width = 32;
869 this->prog_data = this->stage_prog_data;
870
871 this->failed = false;
872
873 this->nir_locals = NULL;
874 this->nir_ssa_values = NULL;
875
876 memset(&this->payload, 0, sizeof(this->payload));
877 this->source_depth_to_render_target = false;
878 this->runtime_check_aads_emit = false;
879 this->first_non_payload_grf = 0;
880 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
881
882 this->virtual_grf_start = NULL;
883 this->virtual_grf_end = NULL;
884 this->live_intervals = NULL;
885 this->regs_live_at_ip = NULL;
886
887 this->uniforms = 0;
888 this->last_scratch = 0;
889 this->pull_constant_loc = NULL;
890 this->push_constant_loc = NULL;
891
892 this->promoted_constants = 0,
893
894 this->grf_used = 0;
895 this->spilled_any_registers = false;
896 }
897
898 fs_visitor::~fs_visitor()
899 {
900 }