i965: Move the back-end compiler to src/intel/compiler
[mesa.git] / src / intel / compiler / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include "brw_fs.h"
31 #include "compiler/glsl_types.h"
32
33 using namespace brw;
34
35 fs_reg *
36 fs_visitor::emit_vs_system_value(int location)
37 {
38 fs_reg *reg = new(this->mem_ctx)
39 fs_reg(ATTR, 4 * _mesa_bitcount_64(nir->info->inputs_read),
40 BRW_REGISTER_TYPE_D);
41 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
42
43 switch (location) {
44 case SYSTEM_VALUE_BASE_VERTEX:
45 reg->offset = 0;
46 vs_prog_data->uses_basevertex = true;
47 break;
48 case SYSTEM_VALUE_BASE_INSTANCE:
49 reg->offset = REG_SIZE;
50 vs_prog_data->uses_baseinstance = true;
51 break;
52 case SYSTEM_VALUE_VERTEX_ID:
53 unreachable("should have been lowered");
54 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
55 reg->offset = 2 * REG_SIZE;
56 vs_prog_data->uses_vertexid = true;
57 break;
58 case SYSTEM_VALUE_INSTANCE_ID:
59 reg->offset = 3 * REG_SIZE;
60 vs_prog_data->uses_instanceid = true;
61 break;
62 case SYSTEM_VALUE_DRAW_ID:
63 if (nir->info->system_values_read &
64 (BITFIELD64_BIT(SYSTEM_VALUE_BASE_VERTEX) |
65 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) |
66 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) |
67 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID)))
68 reg->nr += 4;
69 reg->offset = 0;
70 vs_prog_data->uses_drawid = true;
71 break;
72 default:
73 unreachable("not reached");
74 }
75
76 return reg;
77 }
78
79 /* Sample from the MCS surface attached to this multisample texture. */
80 fs_reg
81 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
82 const fs_reg &texture)
83 {
84 const fs_reg dest = vgrf(glsl_type::uvec4_type);
85
86 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
87 srcs[TEX_LOGICAL_SRC_COORDINATE] = coordinate;
88 srcs[TEX_LOGICAL_SRC_SURFACE] = texture;
89 srcs[TEX_LOGICAL_SRC_SAMPLER] = texture;
90 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(components);
91 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
92
93 fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
94 ARRAY_SIZE(srcs));
95
96 /* We only care about one or two regs of response, but the sampler always
97 * writes 4/8.
98 */
99 inst->size_written = 4 * dest.component_size(inst->exec_size);
100
101 return dest;
102 }
103
104 /**
105 * Apply workarounds for Gen6 gather with UINT/SINT
106 */
107 void
108 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
109 {
110 if (!wa)
111 return;
112
113 int width = (wa & WA_8BIT) ? 8 : 16;
114
115 for (int i = 0; i < 4; i++) {
116 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
117 /* Convert from UNORM to UINT */
118 bld.MUL(dst_f, dst_f, brw_imm_f((1 << width) - 1));
119 bld.MOV(dst, dst_f);
120
121 if (wa & WA_SIGN) {
122 /* Reinterpret the UINT value as a signed INT value by
123 * shifting the sign bit into place, then shifting back
124 * preserving sign.
125 */
126 bld.SHL(dst, dst, brw_imm_d(32 - width));
127 bld.ASR(dst, dst, brw_imm_d(32 - width));
128 }
129
130 dst = offset(dst, bld, 1);
131 }
132 }
133
134 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
135 void
136 fs_visitor::emit_dummy_fs()
137 {
138 int reg_width = dispatch_width / 8;
139
140 /* Everyone's favorite color. */
141 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
142 for (int i = 0; i < 4; i++) {
143 bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
144 brw_imm_f(color[i]));
145 }
146
147 fs_inst *write;
148 write = bld.emit(FS_OPCODE_FB_WRITE);
149 write->eot = true;
150 if (devinfo->gen >= 6) {
151 write->base_mrf = 2;
152 write->mlen = 4 * reg_width;
153 } else {
154 write->header_size = 2;
155 write->base_mrf = 0;
156 write->mlen = 2 + 4 * reg_width;
157 }
158
159 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
160 * varying to avoid GPU hangs, so set that.
161 */
162 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
163 wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
164 memset(wm_prog_data->urb_setup, -1,
165 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
166
167 /* We don't have any uniforms. */
168 stage_prog_data->nr_params = 0;
169 stage_prog_data->nr_pull_params = 0;
170 stage_prog_data->curb_read_length = 0;
171 stage_prog_data->dispatch_grf_start_reg = 2;
172 wm_prog_data->dispatch_grf_start_reg_2 = 2;
173 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
174
175 calculate_cfg();
176 }
177
178 /* The register location here is relative to the start of the URB
179 * data. It will get adjusted to be a real location before
180 * generate_code() time.
181 */
182 struct brw_reg
183 fs_visitor::interp_reg(int location, int channel)
184 {
185 assert(stage == MESA_SHADER_FRAGMENT);
186 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
187 int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
188 int stride = (channel & 1) * 4;
189
190 assert(prog_data->urb_setup[location] != -1);
191
192 return brw_vec1_grf(regnr, stride);
193 }
194
195 /** Emits the interpolation for the varying inputs. */
196 void
197 fs_visitor::emit_interpolation_setup_gen4()
198 {
199 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
200
201 fs_builder abld = bld.annotate("compute pixel centers");
202 this->pixel_x = vgrf(glsl_type::uint_type);
203 this->pixel_y = vgrf(glsl_type::uint_type);
204 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
205 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
206 abld.ADD(this->pixel_x,
207 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
208 fs_reg(brw_imm_v(0x10101010)));
209 abld.ADD(this->pixel_y,
210 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
211 fs_reg(brw_imm_v(0x11001100)));
212
213 abld = bld.annotate("compute pixel deltas from v0");
214
215 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL] =
216 vgrf(glsl_type::vec2_type);
217 const fs_reg &delta_xy = this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL];
218 const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
219 const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
220
221 if (devinfo->has_pln && dispatch_width == 16) {
222 for (unsigned i = 0; i < 2; i++) {
223 abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
224 half(this->pixel_x, i), xstart);
225 abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
226 half(this->pixel_y, i), ystart);
227 }
228 } else {
229 abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
230 abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
231 }
232
233 abld = bld.annotate("compute pos.w and 1/pos.w");
234 /* Compute wpos.w. It's always in our setup, since it's needed to
235 * interpolate the other attributes.
236 */
237 this->wpos_w = vgrf(glsl_type::float_type);
238 abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
239 interp_reg(VARYING_SLOT_POS, 3));
240 /* Compute the pixel 1/W value from wpos.w. */
241 this->pixel_w = vgrf(glsl_type::float_type);
242 abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
243 }
244
245 /** Emits the interpolation for the varying inputs. */
246 void
247 fs_visitor::emit_interpolation_setup_gen6()
248 {
249 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
250
251 fs_builder abld = bld.annotate("compute pixel centers");
252 if (devinfo->gen >= 8 || dispatch_width == 8) {
253 /* The "Register Region Restrictions" page says for BDW (and newer,
254 * presumably):
255 *
256 * "When destination spans two registers, the source may be one or
257 * two registers. The destination elements must be evenly split
258 * between the two registers."
259 *
260 * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
261 * compute our pixel centers.
262 */
263 fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8),
264 BRW_REGISTER_TYPE_UW);
265
266 const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
267 dbld.ADD(int_pixel_xy,
268 fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
269 fs_reg(brw_imm_v(0x11001010)));
270
271 this->pixel_x = vgrf(glsl_type::float_type);
272 this->pixel_y = vgrf(glsl_type::float_type);
273 abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
274 abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
275 } else {
276 /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
277 *
278 * "When destination spans two registers, the source MUST span two
279 * registers."
280 *
281 * Since the GRF source of the ADD will only read a single register, we
282 * must do two separate ADDs in SIMD16.
283 */
284 fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
285 fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
286 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
287 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
288 abld.ADD(int_pixel_x,
289 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
290 fs_reg(brw_imm_v(0x10101010)));
291 abld.ADD(int_pixel_y,
292 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
293 fs_reg(brw_imm_v(0x11001100)));
294
295 /* As of gen6, we can no longer mix float and int sources. We have
296 * to turn the integer pixel centers into floats for their actual
297 * use.
298 */
299 this->pixel_x = vgrf(glsl_type::float_type);
300 this->pixel_y = vgrf(glsl_type::float_type);
301 abld.MOV(this->pixel_x, int_pixel_x);
302 abld.MOV(this->pixel_y, int_pixel_y);
303 }
304
305 abld = bld.annotate("compute pos.w");
306 this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
307 this->wpos_w = vgrf(glsl_type::float_type);
308 abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
309
310 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(prog_data);
311 uint32_t centroid_modes = wm_prog_data->barycentric_interp_modes &
312 (1 << BRW_BARYCENTRIC_PERSPECTIVE_CENTROID |
313 1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
314
315 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
316 uint8_t reg = payload.barycentric_coord_reg[i];
317 this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
318
319 if (devinfo->needs_unlit_centroid_workaround &&
320 (centroid_modes & (1 << i))) {
321 /* Get the pixel/sample mask into f0 so that we know which
322 * pixels are lit. Then, for each channel that is unlit,
323 * replace the centroid data with non-centroid data.
324 */
325 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
326
327 uint8_t pixel_reg = payload.barycentric_coord_reg[i - 1];
328
329 set_predicate_inv(BRW_PREDICATE_NORMAL, true,
330 bld.half(0).MOV(brw_vec8_grf(reg, 0),
331 brw_vec8_grf(pixel_reg, 0)));
332 set_predicate_inv(BRW_PREDICATE_NORMAL, true,
333 bld.half(0).MOV(brw_vec8_grf(reg + 1, 0),
334 brw_vec8_grf(pixel_reg + 1, 0)));
335 if (dispatch_width == 16) {
336 set_predicate_inv(BRW_PREDICATE_NORMAL, true,
337 bld.half(1).MOV(brw_vec8_grf(reg + 2, 0),
338 brw_vec8_grf(pixel_reg + 2, 0)));
339 set_predicate_inv(BRW_PREDICATE_NORMAL, true,
340 bld.half(1).MOV(brw_vec8_grf(reg + 3, 0),
341 brw_vec8_grf(pixel_reg + 3, 0)));
342 }
343 assert(dispatch_width != 32); /* not implemented yet */
344 }
345 }
346 }
347
348 static enum brw_conditional_mod
349 cond_for_alpha_func(GLenum func)
350 {
351 switch(func) {
352 case GL_GREATER:
353 return BRW_CONDITIONAL_G;
354 case GL_GEQUAL:
355 return BRW_CONDITIONAL_GE;
356 case GL_LESS:
357 return BRW_CONDITIONAL_L;
358 case GL_LEQUAL:
359 return BRW_CONDITIONAL_LE;
360 case GL_EQUAL:
361 return BRW_CONDITIONAL_EQ;
362 case GL_NOTEQUAL:
363 return BRW_CONDITIONAL_NEQ;
364 default:
365 unreachable("Not reached");
366 }
367 }
368
369 /**
370 * Alpha test support for when we compile it into the shader instead
371 * of using the normal fixed-function alpha test.
372 */
373 void
374 fs_visitor::emit_alpha_test()
375 {
376 assert(stage == MESA_SHADER_FRAGMENT);
377 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
378 const fs_builder abld = bld.annotate("Alpha test");
379
380 fs_inst *cmp;
381 if (key->alpha_test_func == GL_ALWAYS)
382 return;
383
384 if (key->alpha_test_func == GL_NEVER) {
385 /* f0.1 = 0 */
386 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
387 BRW_REGISTER_TYPE_UW));
388 cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
389 BRW_CONDITIONAL_NEQ);
390 } else {
391 /* RT0 alpha */
392 fs_reg color = offset(outputs[0], bld, 3);
393
394 /* f0.1 &= func(color, ref) */
395 cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
396 cond_for_alpha_func(key->alpha_test_func));
397 }
398 cmp->predicate = BRW_PREDICATE_NORMAL;
399 cmp->flag_subreg = 1;
400 }
401
402 fs_inst *
403 fs_visitor::emit_single_fb_write(const fs_builder &bld,
404 fs_reg color0, fs_reg color1,
405 fs_reg src0_alpha, unsigned components)
406 {
407 assert(stage == MESA_SHADER_FRAGMENT);
408 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
409
410 /* Hand over gl_FragDepth or the payload depth. */
411 const fs_reg dst_depth = (payload.dest_depth_reg ?
412 fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0)) :
413 fs_reg());
414 fs_reg src_depth, src_stencil;
415
416 if (source_depth_to_render_target) {
417 if (nir->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
418 src_depth = frag_depth;
419 else
420 src_depth = fs_reg(brw_vec8_grf(payload.source_depth_reg, 0));
421 }
422
423 if (nir->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
424 src_stencil = frag_stencil;
425
426 const fs_reg sources[] = {
427 color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
428 (prog_data->uses_omask ? sample_mask : fs_reg()),
429 brw_imm_ud(components)
430 };
431 assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
432 fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
433 sources, ARRAY_SIZE(sources));
434
435 if (prog_data->uses_kill) {
436 write->predicate = BRW_PREDICATE_NORMAL;
437 write->flag_subreg = 1;
438 }
439
440 return write;
441 }
442
443 void
444 fs_visitor::emit_fb_writes()
445 {
446 assert(stage == MESA_SHADER_FRAGMENT);
447 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
448 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
449
450 fs_inst *inst = NULL;
451
452 if (source_depth_to_render_target && devinfo->gen == 6) {
453 /* For outputting oDepth on gen6, SIMD8 writes have to be used. This
454 * would require SIMD8 moves of each half to message regs, e.g. by using
455 * the SIMD lowering pass. Unfortunately this is more difficult than it
456 * sounds because the SIMD8 single-source message lacks channel selects
457 * for the second and third subspans.
458 */
459 limit_dispatch_width(8, "Depth writes unsupported in SIMD16+ mode.\n");
460 }
461
462 if (nir->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
463 /* From the 'Render Target Write message' section of the docs:
464 * "Output Stencil is not supported with SIMD16 Render Target Write
465 * Messages."
466 */
467 limit_dispatch_width(8, "gl_FragStencilRefARB unsupported "
468 "in SIMD16+ mode.\n");
469 }
470
471 for (int target = 0; target < key->nr_color_regions; target++) {
472 /* Skip over outputs that weren't written. */
473 if (this->outputs[target].file == BAD_FILE)
474 continue;
475
476 const fs_builder abld = bld.annotate(
477 ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
478
479 fs_reg src0_alpha;
480 if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
481 src0_alpha = offset(outputs[0], bld, 3);
482
483 inst = emit_single_fb_write(abld, this->outputs[target],
484 this->dual_src_output, src0_alpha, 4);
485 inst->target = target;
486 }
487
488 prog_data->dual_src_blend = (this->dual_src_output.file != BAD_FILE);
489 assert(!prog_data->dual_src_blend || key->nr_color_regions == 1);
490
491 if (inst == NULL) {
492 /* Even if there's no color buffers enabled, we still need to send
493 * alpha out the pipeline to our null renderbuffer to support
494 * alpha-testing, alpha-to-coverage, and so on.
495 */
496 /* FINISHME: Factor out this frequently recurring pattern into a
497 * helper function.
498 */
499 const fs_reg srcs[] = { reg_undef, reg_undef,
500 reg_undef, offset(this->outputs[0], bld, 3) };
501 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
502 bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
503
504 inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
505 inst->target = 0;
506 }
507
508 inst->eot = true;
509 }
510
511 void
512 fs_visitor::setup_uniform_clipplane_values(gl_clip_plane *clip_planes)
513 {
514 const struct brw_vs_prog_key *key =
515 (const struct brw_vs_prog_key *) this->key;
516
517 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
518 this->userplane[i] = fs_reg(UNIFORM, uniforms);
519 for (int j = 0; j < 4; ++j) {
520 stage_prog_data->param[uniforms + j] =
521 (gl_constant_value *) &clip_planes[i][j];
522 }
523 uniforms += 4;
524 }
525 }
526
527 /**
528 * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
529 *
530 * This does nothing if the shader uses gl_ClipDistance or user clipping is
531 * disabled altogether.
532 */
533 void fs_visitor::compute_clip_distance(gl_clip_plane *clip_planes)
534 {
535 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
536 const struct brw_vs_prog_key *key =
537 (const struct brw_vs_prog_key *) this->key;
538
539 /* Bail unless some sort of legacy clipping is enabled */
540 if (key->nr_userclip_plane_consts == 0)
541 return;
542
543 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
544 *
545 * "If a linked set of shaders forming the vertex stage contains no
546 * static write to gl_ClipVertex or gl_ClipDistance, but the
547 * application has requested clipping against user clip planes through
548 * the API, then the coordinate written to gl_Position is used for
549 * comparison against the user clip planes."
550 *
551 * This function is only called if the shader didn't write to
552 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
553 * if the user wrote to it; otherwise we use gl_Position.
554 */
555
556 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
557 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
558 clip_vertex = VARYING_SLOT_POS;
559
560 /* If the clip vertex isn't written, skip this. Typically this means
561 * the GS will set up clipping. */
562 if (outputs[clip_vertex].file == BAD_FILE)
563 return;
564
565 setup_uniform_clipplane_values(clip_planes);
566
567 const fs_builder abld = bld.annotate("user clip distances");
568
569 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
570 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
571
572 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
573 fs_reg u = userplane[i];
574 const fs_reg output = offset(outputs[VARYING_SLOT_CLIP_DIST0 + i / 4],
575 bld, i & 3);
576
577 abld.MUL(output, outputs[clip_vertex], u);
578 for (int j = 1; j < 4; j++) {
579 u.nr = userplane[i].nr + j;
580 abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
581 }
582 }
583 }
584
585 void
586 fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
587 {
588 int slot, urb_offset, length;
589 int starting_urb_offset = 0;
590 const struct brw_vue_prog_data *vue_prog_data =
591 brw_vue_prog_data(this->prog_data);
592 const struct brw_vs_prog_key *vs_key =
593 (const struct brw_vs_prog_key *) this->key;
594 const GLbitfield64 psiz_mask =
595 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
596 const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
597 bool flush;
598 fs_reg sources[8];
599 fs_reg urb_handle;
600
601 if (stage == MESA_SHADER_TESS_EVAL)
602 urb_handle = fs_reg(retype(brw_vec8_grf(4, 0), BRW_REGISTER_TYPE_UD));
603 else
604 urb_handle = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
605
606 /* If we don't have any valid slots to write, just do a minimal urb write
607 * send to terminate the shader. This includes 1 slot of undefined data,
608 * because it's invalid to write 0 data:
609 *
610 * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
611 * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
612 * Write Data Payload:
613 *
614 * "The write data payload can be between 1 and 8 message phases long."
615 */
616 if (vue_map->slots_valid == 0) {
617 /* For GS, just turn EmitVertex() into a no-op. We don't want it to
618 * end the thread, and emit_gs_thread_end() already emits a SEND with
619 * EOT at the end of the program for us.
620 */
621 if (stage == MESA_SHADER_GEOMETRY)
622 return;
623
624 fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
625 bld.exec_all().MOV(payload, urb_handle);
626
627 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
628 inst->eot = true;
629 inst->mlen = 2;
630 inst->offset = 1;
631 return;
632 }
633
634 opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
635 int header_size = 1;
636 fs_reg per_slot_offsets;
637
638 if (stage == MESA_SHADER_GEOMETRY) {
639 const struct brw_gs_prog_data *gs_prog_data =
640 brw_gs_prog_data(this->prog_data);
641
642 /* We need to increment the Global Offset to skip over the control data
643 * header and the extra "Vertex Count" field (1 HWord) at the beginning
644 * of the VUE. We're counting in OWords, so the units are doubled.
645 */
646 starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
647 if (gs_prog_data->static_vertex_count == -1)
648 starting_urb_offset += 2;
649
650 /* We also need to use per-slot offsets. The per-slot offset is the
651 * Vertex Count. SIMD8 mode processes 8 different primitives at a
652 * time; each may output a different number of vertices.
653 */
654 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT;
655 header_size++;
656
657 /* The URB offset is in 128-bit units, so we need to multiply by 2 */
658 const int output_vertex_size_owords =
659 gs_prog_data->output_vertex_size_hwords * 2;
660
661 if (gs_vertex_count.file == IMM) {
662 per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
663 gs_vertex_count.ud);
664 } else {
665 per_slot_offsets = vgrf(glsl_type::int_type);
666 bld.MUL(per_slot_offsets, gs_vertex_count,
667 brw_imm_ud(output_vertex_size_owords));
668 }
669 }
670
671 length = 0;
672 urb_offset = starting_urb_offset;
673 flush = false;
674
675 /* SSO shaders can have VUE slots allocated which are never actually
676 * written to, so ignore them when looking for the last (written) slot.
677 */
678 int last_slot = vue_map->num_slots - 1;
679 while (last_slot > 0 &&
680 (vue_map->slot_to_varying[last_slot] == BRW_VARYING_SLOT_PAD ||
681 outputs[vue_map->slot_to_varying[last_slot]].file == BAD_FILE)) {
682 last_slot--;
683 }
684
685 for (slot = 0; slot < vue_map->num_slots; slot++) {
686 int varying = vue_map->slot_to_varying[slot];
687 switch (varying) {
688 case VARYING_SLOT_PSIZ: {
689 /* The point size varying slot is the vue header and is always in the
690 * vue map. But often none of the special varyings that live there
691 * are written and in that case we can skip writing to the vue
692 * header, provided the corresponding state properly clamps the
693 * values further down the pipeline. */
694 if ((vue_map->slots_valid & psiz_mask) == 0) {
695 assert(length == 0);
696 urb_offset++;
697 break;
698 }
699
700 fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
701 bld.MOV(zero, brw_imm_ud(0u));
702
703 sources[length++] = zero;
704 if (vue_map->slots_valid & VARYING_BIT_LAYER)
705 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
706 else
707 sources[length++] = zero;
708
709 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
710 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
711 else
712 sources[length++] = zero;
713
714 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
715 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
716 else
717 sources[length++] = zero;
718 break;
719 }
720 case BRW_VARYING_SLOT_NDC:
721 case VARYING_SLOT_EDGE:
722 unreachable("unexpected scalar vs output");
723 break;
724
725 default:
726 /* gl_Position is always in the vue map, but isn't always written by
727 * the shader. Other varyings (clip distances) get added to the vue
728 * map but don't always get written. In those cases, the
729 * corresponding this->output[] slot will be invalid we and can skip
730 * the urb write for the varying. If we've already queued up a vue
731 * slot for writing we flush a mlen 5 urb write, otherwise we just
732 * advance the urb_offset.
733 */
734 if (varying == BRW_VARYING_SLOT_PAD ||
735 this->outputs[varying].file == BAD_FILE) {
736 if (length > 0)
737 flush = true;
738 else
739 urb_offset++;
740 break;
741 }
742
743 if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
744 (varying == VARYING_SLOT_COL0 ||
745 varying == VARYING_SLOT_COL1 ||
746 varying == VARYING_SLOT_BFC0 ||
747 varying == VARYING_SLOT_BFC1)) {
748 /* We need to clamp these guys, so do a saturating MOV into a
749 * temp register and use that for the payload.
750 */
751 for (int i = 0; i < 4; i++) {
752 fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
753 fs_reg src = offset(this->outputs[varying], bld, i);
754 set_saturate(true, bld.MOV(reg, src));
755 sources[length++] = reg;
756 }
757 } else {
758 for (unsigned i = 0; i < 4; i++)
759 sources[length++] = offset(this->outputs[varying], bld, i);
760 }
761 break;
762 }
763
764 const fs_builder abld = bld.annotate("URB write");
765
766 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
767 * the last slot or if we need to flush (see BAD_FILE varying case
768 * above), emit a URB write send now to flush out the data.
769 */
770 if (length == 8 || slot == last_slot)
771 flush = true;
772 if (flush) {
773 fs_reg *payload_sources =
774 ralloc_array(mem_ctx, fs_reg, length + header_size);
775 fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
776 BRW_REGISTER_TYPE_F);
777 payload_sources[0] = urb_handle;
778
779 if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
780 payload_sources[1] = per_slot_offsets;
781
782 memcpy(&payload_sources[header_size], sources,
783 length * sizeof sources[0]);
784
785 abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
786 header_size);
787
788 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
789 inst->eot = slot == last_slot && stage != MESA_SHADER_GEOMETRY;
790 inst->mlen = length + header_size;
791 inst->offset = urb_offset;
792 urb_offset = starting_urb_offset + slot + 1;
793 length = 0;
794 flush = false;
795 }
796 }
797 }
798
799 void
800 fs_visitor::emit_cs_terminate()
801 {
802 assert(devinfo->gen >= 7);
803
804 /* We are getting the thread ID from the compute shader header */
805 assert(stage == MESA_SHADER_COMPUTE);
806
807 /* We can't directly send from g0, since sends with EOT have to use
808 * g112-127. So, copy it to a virtual register, The register allocator will
809 * make sure it uses the appropriate register range.
810 */
811 struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
812 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
813 bld.group(8, 0).exec_all().MOV(payload, g0);
814
815 /* Send a message to the thread spawner to terminate the thread. */
816 fs_inst *inst = bld.exec_all()
817 .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
818 inst->eot = true;
819 }
820
821 void
822 fs_visitor::emit_barrier()
823 {
824 assert(devinfo->gen >= 7);
825 const uint32_t barrier_id_mask =
826 devinfo->gen >= 9 ? 0x8f000000u : 0x0f000000u;
827
828 /* We are getting the barrier ID from the compute shader header */
829 assert(stage == MESA_SHADER_COMPUTE);
830
831 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
832
833 const fs_builder pbld = bld.exec_all().group(8, 0);
834
835 /* Clear the message payload */
836 pbld.MOV(payload, brw_imm_ud(0u));
837
838 /* Copy the barrier id from r0.2 to the message payload reg.2 */
839 fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
840 pbld.AND(component(payload, 2), r0_2, brw_imm_ud(barrier_id_mask));
841
842 /* Emit a gateway "barrier" message using the payload we set up, followed
843 * by a wait instruction.
844 */
845 bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
846 }
847
848 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
849 void *mem_ctx,
850 const void *key,
851 struct brw_stage_prog_data *prog_data,
852 struct gl_program *prog,
853 const nir_shader *shader,
854 unsigned dispatch_width,
855 int shader_time_index,
856 const struct brw_vue_map *input_vue_map)
857 : backend_shader(compiler, log_data, mem_ctx, shader, prog_data),
858 key(key), gs_compile(NULL), prog_data(prog_data), prog(prog),
859 input_vue_map(input_vue_map),
860 dispatch_width(dispatch_width),
861 shader_time_index(shader_time_index),
862 bld(fs_builder(this, dispatch_width).at_end())
863 {
864 init();
865 }
866
867 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
868 void *mem_ctx,
869 struct brw_gs_compile *c,
870 struct brw_gs_prog_data *prog_data,
871 const nir_shader *shader,
872 int shader_time_index)
873 : backend_shader(compiler, log_data, mem_ctx, shader,
874 &prog_data->base.base),
875 key(&c->key), gs_compile(c),
876 prog_data(&prog_data->base.base), prog(NULL),
877 dispatch_width(8),
878 shader_time_index(shader_time_index),
879 bld(fs_builder(this, dispatch_width).at_end())
880 {
881 init();
882 }
883
884
885 void
886 fs_visitor::init()
887 {
888 switch (stage) {
889 case MESA_SHADER_FRAGMENT:
890 key_tex = &((const brw_wm_prog_key *) key)->tex;
891 break;
892 case MESA_SHADER_VERTEX:
893 key_tex = &((const brw_vs_prog_key *) key)->tex;
894 break;
895 case MESA_SHADER_TESS_CTRL:
896 key_tex = &((const brw_tcs_prog_key *) key)->tex;
897 break;
898 case MESA_SHADER_TESS_EVAL:
899 key_tex = &((const brw_tes_prog_key *) key)->tex;
900 break;
901 case MESA_SHADER_GEOMETRY:
902 key_tex = &((const brw_gs_prog_key *) key)->tex;
903 break;
904 case MESA_SHADER_COMPUTE:
905 key_tex = &((const brw_cs_prog_key*) key)->tex;
906 break;
907 default:
908 unreachable("unhandled shader stage");
909 }
910
911 if (stage == MESA_SHADER_COMPUTE) {
912 const struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
913 unsigned size = cs_prog_data->local_size[0] *
914 cs_prog_data->local_size[1] *
915 cs_prog_data->local_size[2];
916 size = DIV_ROUND_UP(size, devinfo->max_cs_threads);
917 min_dispatch_width = size > 16 ? 32 : (size > 8 ? 16 : 8);
918 } else {
919 min_dispatch_width = 8;
920 }
921
922 this->max_dispatch_width = 32;
923 this->prog_data = this->stage_prog_data;
924
925 this->failed = false;
926
927 this->nir_locals = NULL;
928 this->nir_ssa_values = NULL;
929
930 memset(&this->payload, 0, sizeof(this->payload));
931 this->source_depth_to_render_target = false;
932 this->runtime_check_aads_emit = false;
933 this->first_non_payload_grf = 0;
934 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
935
936 this->virtual_grf_start = NULL;
937 this->virtual_grf_end = NULL;
938 this->live_intervals = NULL;
939 this->regs_live_at_ip = NULL;
940
941 this->uniforms = 0;
942 this->last_scratch = 0;
943 this->pull_constant_loc = NULL;
944 this->push_constant_loc = NULL;
945
946 this->promoted_constants = 0,
947
948 this->spilled_any_registers = false;
949 }
950
951 fs_visitor::~fs_visitor()
952 {
953 }