nir: Move compute system value lowering to a separate pass
[mesa.git] / src / intel / compiler / brw_nir.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_nir.h"
25 #include "brw_shader.h"
26 #include "dev/gen_debug.h"
27 #include "compiler/glsl_types.h"
28 #include "compiler/nir/nir_builder.h"
29 #include "util/u_math.h"
30
31 static bool
32 remap_tess_levels(nir_builder *b, nir_intrinsic_instr *intr,
33 GLenum primitive_mode)
34 {
35 const int location = nir_intrinsic_base(intr);
36 const unsigned component = nir_intrinsic_component(intr);
37 bool out_of_bounds;
38
39 if (location == VARYING_SLOT_TESS_LEVEL_INNER) {
40 switch (primitive_mode) {
41 case GL_QUADS:
42 /* gl_TessLevelInner[0..1] lives at DWords 3-2 (reversed). */
43 nir_intrinsic_set_base(intr, 0);
44 nir_intrinsic_set_component(intr, 3 - component);
45 out_of_bounds = false;
46 break;
47 case GL_TRIANGLES:
48 /* gl_TessLevelInner[0] lives at DWord 4. */
49 nir_intrinsic_set_base(intr, 1);
50 out_of_bounds = component > 0;
51 break;
52 case GL_ISOLINES:
53 out_of_bounds = true;
54 break;
55 default:
56 unreachable("Bogus tessellation domain");
57 }
58 } else if (location == VARYING_SLOT_TESS_LEVEL_OUTER) {
59 if (primitive_mode == GL_ISOLINES) {
60 /* gl_TessLevelOuter[0..1] lives at DWords 6-7 (in order). */
61 nir_intrinsic_set_base(intr, 1);
62 nir_intrinsic_set_component(intr, 2 + nir_intrinsic_component(intr));
63 out_of_bounds = component > 1;
64 } else {
65 /* Triangles use DWords 7-5 (reversed); Quads use 7-4 (reversed) */
66 nir_intrinsic_set_base(intr, 1);
67 nir_intrinsic_set_component(intr, 3 - nir_intrinsic_component(intr));
68 out_of_bounds = component == 3 && primitive_mode == GL_TRIANGLES;
69 }
70 } else {
71 return false;
72 }
73
74 if (out_of_bounds) {
75 if (nir_intrinsic_infos[intr->intrinsic].has_dest) {
76 b->cursor = nir_before_instr(&intr->instr);
77 nir_ssa_def *undef = nir_ssa_undef(b, 1, 32);
78 nir_ssa_def_rewrite_uses(&intr->dest.ssa, nir_src_for_ssa(undef));
79 }
80 nir_instr_remove(&intr->instr);
81 }
82
83 return true;
84 }
85
86 static bool
87 is_input(nir_intrinsic_instr *intrin)
88 {
89 return intrin->intrinsic == nir_intrinsic_load_input ||
90 intrin->intrinsic == nir_intrinsic_load_per_vertex_input ||
91 intrin->intrinsic == nir_intrinsic_load_interpolated_input;
92 }
93
94 static bool
95 is_output(nir_intrinsic_instr *intrin)
96 {
97 return intrin->intrinsic == nir_intrinsic_load_output ||
98 intrin->intrinsic == nir_intrinsic_load_per_vertex_output ||
99 intrin->intrinsic == nir_intrinsic_store_output ||
100 intrin->intrinsic == nir_intrinsic_store_per_vertex_output;
101 }
102
103
104 static bool
105 remap_patch_urb_offsets(nir_block *block, nir_builder *b,
106 const struct brw_vue_map *vue_map,
107 GLenum tes_primitive_mode)
108 {
109 const bool is_passthrough_tcs = b->shader->info.name &&
110 strcmp(b->shader->info.name, "passthrough") == 0;
111
112 nir_foreach_instr_safe(instr, block) {
113 if (instr->type != nir_instr_type_intrinsic)
114 continue;
115
116 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
117
118 gl_shader_stage stage = b->shader->info.stage;
119
120 if ((stage == MESA_SHADER_TESS_CTRL && is_output(intrin)) ||
121 (stage == MESA_SHADER_TESS_EVAL && is_input(intrin))) {
122
123 if (!is_passthrough_tcs &&
124 remap_tess_levels(b, intrin, tes_primitive_mode))
125 continue;
126
127 int vue_slot = vue_map->varying_to_slot[intrin->const_index[0]];
128 assert(vue_slot != -1);
129 intrin->const_index[0] = vue_slot;
130
131 nir_src *vertex = nir_get_io_vertex_index_src(intrin);
132 if (vertex) {
133 if (nir_src_is_const(*vertex)) {
134 intrin->const_index[0] += nir_src_as_uint(*vertex) *
135 vue_map->num_per_vertex_slots;
136 } else {
137 b->cursor = nir_before_instr(&intrin->instr);
138
139 /* Multiply by the number of per-vertex slots. */
140 nir_ssa_def *vertex_offset =
141 nir_imul(b,
142 nir_ssa_for_src(b, *vertex, 1),
143 nir_imm_int(b,
144 vue_map->num_per_vertex_slots));
145
146 /* Add it to the existing offset */
147 nir_src *offset = nir_get_io_offset_src(intrin);
148 nir_ssa_def *total_offset =
149 nir_iadd(b, vertex_offset,
150 nir_ssa_for_src(b, *offset, 1));
151
152 nir_instr_rewrite_src(&intrin->instr, offset,
153 nir_src_for_ssa(total_offset));
154 }
155 }
156 }
157 }
158 return true;
159 }
160
161 void
162 brw_nir_lower_vs_inputs(nir_shader *nir,
163 const uint8_t *vs_attrib_wa_flags)
164 {
165 /* Start with the location of the variable's base. */
166 nir_foreach_shader_in_variable(var, nir)
167 var->data.driver_location = var->data.location;
168
169 /* Now use nir_lower_io to walk dereference chains. Attribute arrays are
170 * loaded as one vec4 or dvec4 per element (or matrix column), depending on
171 * whether it is a double-precision type or not.
172 */
173 nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
174 nir_lower_io_lower_64bit_to_32);
175
176 /* This pass needs actual constants */
177 nir_opt_constant_folding(nir);
178
179 nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
180
181 brw_nir_apply_attribute_workarounds(nir, vs_attrib_wa_flags);
182
183 /* The last step is to remap VERT_ATTRIB_* to actual registers */
184
185 /* Whether or not we have any system generated values. gl_DrawID is not
186 * included here as it lives in its own vec4.
187 */
188 const bool has_sgvs =
189 nir->info.system_values_read &
190 (BITFIELD64_BIT(SYSTEM_VALUE_FIRST_VERTEX) |
191 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) |
192 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) |
193 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID));
194
195 const unsigned num_inputs = util_bitcount64(nir->info.inputs_read);
196
197 nir_foreach_function(function, nir) {
198 if (!function->impl)
199 continue;
200
201 nir_builder b;
202 nir_builder_init(&b, function->impl);
203
204 nir_foreach_block(block, function->impl) {
205 nir_foreach_instr_safe(instr, block) {
206 if (instr->type != nir_instr_type_intrinsic)
207 continue;
208
209 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
210
211 switch (intrin->intrinsic) {
212 case nir_intrinsic_load_first_vertex:
213 case nir_intrinsic_load_base_instance:
214 case nir_intrinsic_load_vertex_id_zero_base:
215 case nir_intrinsic_load_instance_id:
216 case nir_intrinsic_load_is_indexed_draw:
217 case nir_intrinsic_load_draw_id: {
218 b.cursor = nir_after_instr(&intrin->instr);
219
220 /* gl_VertexID and friends are stored by the VF as the last
221 * vertex element. We convert them to load_input intrinsics at
222 * the right location.
223 */
224 nir_intrinsic_instr *load =
225 nir_intrinsic_instr_create(nir, nir_intrinsic_load_input);
226 load->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
227
228 nir_intrinsic_set_base(load, num_inputs);
229 switch (intrin->intrinsic) {
230 case nir_intrinsic_load_first_vertex:
231 nir_intrinsic_set_component(load, 0);
232 break;
233 case nir_intrinsic_load_base_instance:
234 nir_intrinsic_set_component(load, 1);
235 break;
236 case nir_intrinsic_load_vertex_id_zero_base:
237 nir_intrinsic_set_component(load, 2);
238 break;
239 case nir_intrinsic_load_instance_id:
240 nir_intrinsic_set_component(load, 3);
241 break;
242 case nir_intrinsic_load_draw_id:
243 case nir_intrinsic_load_is_indexed_draw:
244 /* gl_DrawID and IsIndexedDraw are stored right after
245 * gl_VertexID and friends if any of them exist.
246 */
247 nir_intrinsic_set_base(load, num_inputs + has_sgvs);
248 if (intrin->intrinsic == nir_intrinsic_load_draw_id)
249 nir_intrinsic_set_component(load, 0);
250 else
251 nir_intrinsic_set_component(load, 1);
252 break;
253 default:
254 unreachable("Invalid system value intrinsic");
255 }
256
257 load->num_components = 1;
258 nir_ssa_dest_init(&load->instr, &load->dest, 1, 32, NULL);
259 nir_builder_instr_insert(&b, &load->instr);
260
261 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
262 nir_src_for_ssa(&load->dest.ssa));
263 nir_instr_remove(&intrin->instr);
264 break;
265 }
266
267 case nir_intrinsic_load_input: {
268 /* Attributes come in a contiguous block, ordered by their
269 * gl_vert_attrib value. That means we can compute the slot
270 * number for an attribute by masking out the enabled attributes
271 * before it and counting the bits.
272 */
273 int attr = nir_intrinsic_base(intrin);
274 int slot = util_bitcount64(nir->info.inputs_read &
275 BITFIELD64_MASK(attr));
276 nir_intrinsic_set_base(intrin, slot);
277 break;
278 }
279
280 default:
281 break; /* Nothing to do */
282 }
283 }
284 }
285 }
286 }
287
288 void
289 brw_nir_lower_vue_inputs(nir_shader *nir,
290 const struct brw_vue_map *vue_map)
291 {
292 nir_foreach_shader_in_variable(var, nir)
293 var->data.driver_location = var->data.location;
294
295 /* Inputs are stored in vec4 slots, so use type_size_vec4(). */
296 nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
297 nir_lower_io_lower_64bit_to_32);
298
299 /* This pass needs actual constants */
300 nir_opt_constant_folding(nir);
301
302 nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
303
304 nir_foreach_function(function, nir) {
305 if (!function->impl)
306 continue;
307
308 nir_foreach_block(block, function->impl) {
309 nir_foreach_instr(instr, block) {
310 if (instr->type != nir_instr_type_intrinsic)
311 continue;
312
313 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
314
315 if (intrin->intrinsic == nir_intrinsic_load_input ||
316 intrin->intrinsic == nir_intrinsic_load_per_vertex_input) {
317 /* Offset 0 is the VUE header, which contains
318 * VARYING_SLOT_LAYER [.y], VARYING_SLOT_VIEWPORT [.z], and
319 * VARYING_SLOT_PSIZ [.w].
320 */
321 int varying = nir_intrinsic_base(intrin);
322 int vue_slot;
323 switch (varying) {
324 case VARYING_SLOT_PSIZ:
325 nir_intrinsic_set_base(intrin, 0);
326 nir_intrinsic_set_component(intrin, 3);
327 break;
328
329 default:
330 vue_slot = vue_map->varying_to_slot[varying];
331 assert(vue_slot != -1);
332 nir_intrinsic_set_base(intrin, vue_slot);
333 break;
334 }
335 }
336 }
337 }
338 }
339 }
340
341 void
342 brw_nir_lower_tes_inputs(nir_shader *nir, const struct brw_vue_map *vue_map)
343 {
344 nir_foreach_shader_in_variable(var, nir)
345 var->data.driver_location = var->data.location;
346
347 nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
348 nir_lower_io_lower_64bit_to_32);
349
350 /* This pass needs actual constants */
351 nir_opt_constant_folding(nir);
352
353 nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
354
355 nir_foreach_function(function, nir) {
356 if (function->impl) {
357 nir_builder b;
358 nir_builder_init(&b, function->impl);
359 nir_foreach_block(block, function->impl) {
360 remap_patch_urb_offsets(block, &b, vue_map,
361 nir->info.tess.primitive_mode);
362 }
363 }
364 }
365 }
366
367 void
368 brw_nir_lower_fs_inputs(nir_shader *nir,
369 const struct gen_device_info *devinfo,
370 const struct brw_wm_prog_key *key)
371 {
372 nir_foreach_shader_in_variable(var, nir) {
373 var->data.driver_location = var->data.location;
374
375 /* Apply default interpolation mode.
376 *
377 * Everything defaults to smooth except for the legacy GL color
378 * built-in variables, which might be flat depending on API state.
379 */
380 if (var->data.interpolation == INTERP_MODE_NONE) {
381 const bool flat = key->flat_shade &&
382 (var->data.location == VARYING_SLOT_COL0 ||
383 var->data.location == VARYING_SLOT_COL1);
384
385 var->data.interpolation = flat ? INTERP_MODE_FLAT
386 : INTERP_MODE_SMOOTH;
387 }
388
389 /* On Ironlake and below, there is only one interpolation mode.
390 * Centroid interpolation doesn't mean anything on this hardware --
391 * there is no multisampling.
392 */
393 if (devinfo->gen < 6) {
394 var->data.centroid = false;
395 var->data.sample = false;
396 }
397 }
398
399 nir_lower_io_options lower_io_options = nir_lower_io_lower_64bit_to_32;
400 if (key->persample_interp)
401 lower_io_options |= nir_lower_io_force_sample_interpolation;
402
403 nir_lower_io(nir, nir_var_shader_in, type_size_vec4, lower_io_options);
404 if (devinfo->gen >= 11)
405 nir_lower_interpolation(nir, ~0);
406
407 /* This pass needs actual constants */
408 nir_opt_constant_folding(nir);
409
410 nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
411 }
412
413 void
414 brw_nir_lower_vue_outputs(nir_shader *nir)
415 {
416 nir_foreach_shader_out_variable(var, nir) {
417 var->data.driver_location = var->data.location;
418 }
419
420 nir_lower_io(nir, nir_var_shader_out, type_size_vec4,
421 nir_lower_io_lower_64bit_to_32);
422 }
423
424 void
425 brw_nir_lower_tcs_outputs(nir_shader *nir, const struct brw_vue_map *vue_map,
426 GLenum tes_primitive_mode)
427 {
428 nir_foreach_shader_out_variable(var, nir) {
429 var->data.driver_location = var->data.location;
430 }
431
432 nir_lower_io(nir, nir_var_shader_out, type_size_vec4,
433 nir_lower_io_lower_64bit_to_32);
434
435 /* This pass needs actual constants */
436 nir_opt_constant_folding(nir);
437
438 nir_io_add_const_offset_to_base(nir, nir_var_shader_out);
439
440 nir_foreach_function(function, nir) {
441 if (function->impl) {
442 nir_builder b;
443 nir_builder_init(&b, function->impl);
444 nir_foreach_block(block, function->impl) {
445 remap_patch_urb_offsets(block, &b, vue_map, tes_primitive_mode);
446 }
447 }
448 }
449 }
450
451 void
452 brw_nir_lower_fs_outputs(nir_shader *nir)
453 {
454 nir_foreach_shader_out_variable(var, nir) {
455 var->data.driver_location =
456 SET_FIELD(var->data.index, BRW_NIR_FRAG_OUTPUT_INDEX) |
457 SET_FIELD(var->data.location, BRW_NIR_FRAG_OUTPUT_LOCATION);
458 }
459
460 nir_lower_io(nir, nir_var_shader_out, type_size_dvec4, 0);
461 }
462
463 #define OPT(pass, ...) ({ \
464 bool this_progress = false; \
465 NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__); \
466 if (this_progress) \
467 progress = true; \
468 this_progress; \
469 })
470
471 static nir_variable_mode
472 brw_nir_no_indirect_mask(const struct brw_compiler *compiler,
473 gl_shader_stage stage)
474 {
475 nir_variable_mode indirect_mask = 0;
476
477 if (compiler->glsl_compiler_options[stage].EmitNoIndirectInput)
478 indirect_mask |= nir_var_shader_in;
479 if (compiler->glsl_compiler_options[stage].EmitNoIndirectOutput)
480 indirect_mask |= nir_var_shader_out;
481 if (compiler->glsl_compiler_options[stage].EmitNoIndirectTemp)
482 indirect_mask |= nir_var_function_temp;
483
484 return indirect_mask;
485 }
486
487 void
488 brw_nir_optimize(nir_shader *nir, const struct brw_compiler *compiler,
489 bool is_scalar, bool allow_copies)
490 {
491 nir_variable_mode indirect_mask =
492 brw_nir_no_indirect_mask(compiler, nir->info.stage);
493
494 bool progress;
495 unsigned lower_flrp =
496 (nir->options->lower_flrp16 ? 16 : 0) |
497 (nir->options->lower_flrp32 ? 32 : 0) |
498 (nir->options->lower_flrp64 ? 64 : 0);
499
500 do {
501 progress = false;
502 OPT(nir_split_array_vars, nir_var_function_temp);
503 OPT(nir_shrink_vec_array_vars, nir_var_function_temp);
504 OPT(nir_opt_deref);
505 OPT(nir_lower_vars_to_ssa);
506 if (allow_copies) {
507 /* Only run this pass in the first call to brw_nir_optimize. Later
508 * calls assume that we've lowered away any copy_deref instructions
509 * and we don't want to introduce any more.
510 */
511 OPT(nir_opt_find_array_copies);
512 }
513 OPT(nir_opt_copy_prop_vars);
514 OPT(nir_opt_dead_write_vars);
515 OPT(nir_opt_combine_stores, nir_var_all);
516
517 if (is_scalar) {
518 OPT(nir_lower_alu_to_scalar, NULL, NULL);
519 } else {
520 OPT(nir_opt_shrink_vectors);
521 }
522
523 OPT(nir_copy_prop);
524
525 if (is_scalar) {
526 OPT(nir_lower_phis_to_scalar);
527 }
528
529 OPT(nir_copy_prop);
530 OPT(nir_opt_dce);
531 OPT(nir_opt_cse);
532 OPT(nir_opt_combine_stores, nir_var_all);
533
534 /* Passing 0 to the peephole select pass causes it to convert
535 * if-statements that contain only move instructions in the branches
536 * regardless of the count.
537 *
538 * Passing 1 to the peephole select pass causes it to convert
539 * if-statements that contain at most a single ALU instruction (total)
540 * in both branches. Before Gen6, some math instructions were
541 * prohibitively expensive and the results of compare operations need an
542 * extra resolve step. For these reasons, this pass is more harmful
543 * than good on those platforms.
544 *
545 * For indirect loads of uniforms (push constants), we assume that array
546 * indices will nearly always be in bounds and the cost of the load is
547 * low. Therefore there shouldn't be a performance benefit to avoid it.
548 * However, in vec4 tessellation shaders, these loads operate by
549 * actually pulling from memory.
550 */
551 const bool is_vec4_tessellation = !is_scalar &&
552 (nir->info.stage == MESA_SHADER_TESS_CTRL ||
553 nir->info.stage == MESA_SHADER_TESS_EVAL);
554 OPT(nir_opt_peephole_select, 0, !is_vec4_tessellation, false);
555 OPT(nir_opt_peephole_select, 8, !is_vec4_tessellation,
556 compiler->devinfo->gen >= 6);
557
558 OPT(nir_opt_intrinsics);
559 OPT(nir_opt_idiv_const, 32);
560 OPT(nir_opt_algebraic);
561 OPT(nir_opt_constant_folding);
562
563 if (lower_flrp != 0) {
564 if (OPT(nir_lower_flrp,
565 lower_flrp,
566 false /* always_precise */,
567 compiler->devinfo->gen >= 6)) {
568 OPT(nir_opt_constant_folding);
569 }
570
571 /* Nothing should rematerialize any flrps, so we only need to do this
572 * lowering once.
573 */
574 lower_flrp = 0;
575 }
576
577 OPT(nir_opt_dead_cf);
578 if (OPT(nir_opt_trivial_continues)) {
579 /* If nir_opt_trivial_continues makes progress, then we need to clean
580 * things up if we want any hope of nir_opt_if or nir_opt_loop_unroll
581 * to make progress.
582 */
583 OPT(nir_copy_prop);
584 OPT(nir_opt_dce);
585 }
586 OPT(nir_opt_if, false);
587 OPT(nir_opt_conditional_discard);
588 if (nir->options->max_unroll_iterations != 0) {
589 OPT(nir_opt_loop_unroll, indirect_mask);
590 }
591 OPT(nir_opt_remove_phis);
592 OPT(nir_opt_undef);
593 OPT(nir_lower_pack);
594 } while (progress);
595
596 /* Workaround Gfxbench unused local sampler variable which will trigger an
597 * assert in the opt_large_constants pass.
598 */
599 OPT(nir_remove_dead_variables, nir_var_function_temp, NULL);
600 }
601
602 static unsigned
603 lower_bit_size_callback(const nir_alu_instr *alu, UNUSED void *data)
604 {
605 assert(alu->dest.dest.is_ssa);
606 if (alu->dest.dest.ssa.bit_size >= 32)
607 return 0;
608
609 const struct brw_compiler *compiler = (const struct brw_compiler *) data;
610
611 switch (alu->op) {
612 case nir_op_idiv:
613 case nir_op_imod:
614 case nir_op_irem:
615 case nir_op_udiv:
616 case nir_op_umod:
617 case nir_op_fceil:
618 case nir_op_ffloor:
619 case nir_op_ffract:
620 case nir_op_fround_even:
621 case nir_op_ftrunc:
622 return 32;
623 case nir_op_frcp:
624 case nir_op_frsq:
625 case nir_op_fsqrt:
626 case nir_op_fpow:
627 case nir_op_fexp2:
628 case nir_op_flog2:
629 case nir_op_fsin:
630 case nir_op_fcos:
631 return compiler->devinfo->gen < 9 ? 32 : 0;
632 default:
633 return 0;
634 }
635 }
636
637 /* Does some simple lowering and runs the standard suite of optimizations
638 *
639 * This is intended to be called more-or-less directly after you get the
640 * shader out of GLSL or some other source. While it is geared towards i965,
641 * it is not at all generator-specific except for the is_scalar flag. Even
642 * there, it is safe to call with is_scalar = false for a shader that is
643 * intended for the FS backend as long as nir_optimize is called again with
644 * is_scalar = true to scalarize everything prior to code gen.
645 */
646 void
647 brw_preprocess_nir(const struct brw_compiler *compiler, nir_shader *nir,
648 const nir_shader *softfp64)
649 {
650 const struct gen_device_info *devinfo = compiler->devinfo;
651 UNUSED bool progress; /* Written by OPT */
652
653 const bool is_scalar = compiler->scalar_stage[nir->info.stage];
654
655 if (is_scalar) {
656 OPT(nir_lower_alu_to_scalar, NULL, NULL);
657 }
658
659 if (nir->info.stage == MESA_SHADER_GEOMETRY)
660 OPT(nir_lower_gs_intrinsics, false);
661
662 /* See also brw_nir_trig_workarounds.py */
663 if (compiler->precise_trig &&
664 !(devinfo->gen >= 10 || devinfo->is_kabylake))
665 OPT(brw_nir_apply_trig_workarounds);
666
667 if (devinfo->gen >= 12)
668 OPT(brw_nir_clamp_image_1d_2d_array_sizes);
669
670 static const nir_lower_tex_options tex_options = {
671 .lower_txp = ~0,
672 .lower_txf_offset = true,
673 .lower_rect_offset = true,
674 .lower_tex_without_implicit_lod = true,
675 .lower_txd_cube_map = true,
676 .lower_txb_shadow_clamp = true,
677 .lower_txd_shadow_clamp = true,
678 .lower_txd_offset_clamp = true,
679 .lower_tg4_offsets = true,
680 };
681
682 OPT(nir_lower_tex, &tex_options);
683 OPT(nir_normalize_cubemap_coords);
684
685 OPT(nir_lower_global_vars_to_local);
686
687 OPT(nir_split_var_copies);
688 OPT(nir_split_struct_vars, nir_var_function_temp);
689
690 brw_nir_optimize(nir, compiler, is_scalar, true);
691
692 OPT(nir_lower_doubles, softfp64, nir->options->lower_doubles_options);
693 OPT(nir_lower_int64);
694
695 OPT(nir_lower_bit_size, lower_bit_size_callback, (void *)compiler);
696
697 if (is_scalar) {
698 OPT(nir_lower_load_const_to_scalar);
699 }
700
701 /* Lower a bunch of stuff */
702 OPT(nir_lower_var_copies);
703
704 /* This needs to be run after the first optimization pass but before we
705 * lower indirect derefs away
706 */
707 if (compiler->supports_shader_constants) {
708 OPT(nir_opt_large_constants, NULL, 32);
709 }
710
711 OPT(nir_lower_system_values);
712 OPT(nir_lower_compute_system_values);
713
714 const nir_lower_subgroups_options subgroups_options = {
715 .ballot_bit_size = 32,
716 .lower_to_scalar = true,
717 .lower_vote_trivial = !is_scalar,
718 .lower_shuffle = true,
719 .lower_quad_broadcast_dynamic = true,
720 };
721 OPT(nir_lower_subgroups, &subgroups_options);
722
723 OPT(nir_lower_clip_cull_distance_arrays);
724
725 if ((devinfo->gen >= 8 || devinfo->is_haswell) && is_scalar) {
726 /* TODO: Yes, we could in theory do this on gen6 and earlier. However,
727 * that would require plumbing through support for these indirect
728 * scratch read/write messages with message registers and that's just a
729 * pain. Also, the primary benefit of this is for compute shaders which
730 * won't run on gen6 and earlier anyway.
731 *
732 * On gen7 and earlier the scratch space size is limited to 12kB.
733 * By enabling this optimization we may easily exceed this limit without
734 * having any fallback.
735 *
736 * The threshold of 128B was chosen semi-arbitrarily. The idea is that
737 * 128B per channel on a SIMD8 program is 32 registers or 25% of the
738 * register file. Any array that large is likely to cause pressure
739 * issues. Also, this value is sufficiently high that the benchmarks
740 * known to suffer from large temporary array issues are helped but
741 * nothing else in shader-db is hurt except for maybe that one kerbal
742 * space program shader.
743 */
744 OPT(nir_lower_vars_to_scratch, nir_var_function_temp, 128,
745 glsl_get_natural_size_align_bytes);
746 }
747
748 nir_variable_mode indirect_mask =
749 brw_nir_no_indirect_mask(compiler, nir->info.stage);
750 OPT(nir_lower_indirect_derefs, indirect_mask);
751
752 /* Lower array derefs of vectors for SSBO and UBO loads. For both UBOs and
753 * SSBOs, our back-end is capable of loading an entire vec4 at a time and
754 * we would like to take advantage of that whenever possible regardless of
755 * whether or not the app gives us full loads. This should allow the
756 * optimizer to combine UBO and SSBO load operations and save us some send
757 * messages.
758 */
759 OPT(nir_lower_array_deref_of_vec,
760 nir_var_mem_ubo | nir_var_mem_ssbo,
761 nir_lower_direct_array_deref_of_vec_load);
762
763 /* Get rid of split copies */
764 brw_nir_optimize(nir, compiler, is_scalar, false);
765 }
766
767 void
768 brw_nir_link_shaders(const struct brw_compiler *compiler,
769 nir_shader *producer, nir_shader *consumer)
770 {
771 nir_lower_io_arrays_to_elements(producer, consumer);
772 nir_validate_shader(producer, "after nir_lower_io_arrays_to_elements");
773 nir_validate_shader(consumer, "after nir_lower_io_arrays_to_elements");
774
775 const bool p_is_scalar = compiler->scalar_stage[producer->info.stage];
776 const bool c_is_scalar = compiler->scalar_stage[consumer->info.stage];
777
778 if (p_is_scalar && c_is_scalar) {
779 NIR_PASS_V(producer, nir_lower_io_to_scalar_early, nir_var_shader_out);
780 NIR_PASS_V(consumer, nir_lower_io_to_scalar_early, nir_var_shader_in);
781 brw_nir_optimize(producer, compiler, p_is_scalar, false);
782 brw_nir_optimize(consumer, compiler, c_is_scalar, false);
783 }
784
785 if (nir_link_opt_varyings(producer, consumer))
786 brw_nir_optimize(consumer, compiler, c_is_scalar, false);
787
788 NIR_PASS_V(producer, nir_remove_dead_variables, nir_var_shader_out, NULL);
789 NIR_PASS_V(consumer, nir_remove_dead_variables, nir_var_shader_in, NULL);
790
791 if (nir_remove_unused_varyings(producer, consumer)) {
792 NIR_PASS_V(producer, nir_lower_global_vars_to_local);
793 NIR_PASS_V(consumer, nir_lower_global_vars_to_local);
794
795 /* The backend might not be able to handle indirects on
796 * temporaries so we need to lower indirects on any of the
797 * varyings we have demoted here.
798 */
799 NIR_PASS_V(producer, nir_lower_indirect_derefs,
800 brw_nir_no_indirect_mask(compiler, producer->info.stage));
801 NIR_PASS_V(consumer, nir_lower_indirect_derefs,
802 brw_nir_no_indirect_mask(compiler, consumer->info.stage));
803
804 brw_nir_optimize(producer, compiler, p_is_scalar, false);
805 brw_nir_optimize(consumer, compiler, c_is_scalar, false);
806 }
807
808 NIR_PASS_V(producer, nir_lower_io_to_vector, nir_var_shader_out);
809 NIR_PASS_V(producer, nir_opt_combine_stores, nir_var_shader_out);
810 NIR_PASS_V(consumer, nir_lower_io_to_vector, nir_var_shader_in);
811
812 if (producer->info.stage != MESA_SHADER_TESS_CTRL) {
813 /* Calling lower_io_to_vector creates output variable writes with
814 * write-masks. On non-TCS outputs, the back-end can't handle it and we
815 * need to call nir_lower_io_to_temporaries to get rid of them. This,
816 * in turn, creates temporary variables and extra copy_deref intrinsics
817 * that we need to clean up.
818 */
819 NIR_PASS_V(producer, nir_lower_io_to_temporaries,
820 nir_shader_get_entrypoint(producer), true, false);
821 NIR_PASS_V(producer, nir_lower_global_vars_to_local);
822 NIR_PASS_V(producer, nir_split_var_copies);
823 NIR_PASS_V(producer, nir_lower_var_copies);
824 }
825 }
826
827 static bool
828 brw_nir_should_vectorize_mem(unsigned align, unsigned bit_size,
829 unsigned num_components, unsigned high_offset,
830 nir_intrinsic_instr *low,
831 nir_intrinsic_instr *high)
832 {
833 /* Don't combine things to generate 64-bit loads/stores. We have to split
834 * those back into 32-bit ones anyway and UBO loads aren't split in NIR so
835 * we don't want to make a mess for the back-end.
836 */
837 if (bit_size > 32)
838 return false;
839
840 /* We can handle at most a vec4 right now. Anything bigger would get
841 * immediately split by brw_nir_lower_mem_access_bit_sizes anyway.
842 */
843 if (num_components > 4)
844 return false;
845
846 if (align < bit_size / 8)
847 return false;
848
849 return true;
850 }
851
852 static
853 bool combine_all_barriers(nir_intrinsic_instr *a,
854 nir_intrinsic_instr *b,
855 void *data)
856 {
857 /* Translation to backend IR will get rid of modes we don't care about, so
858 * no harm in always combining them.
859 *
860 * TODO: While HW has only ACQUIRE|RELEASE fences, we could improve the
861 * scheduling so that it can take advantage of the different semantics.
862 */
863 nir_intrinsic_set_memory_modes(a, nir_intrinsic_memory_modes(a) |
864 nir_intrinsic_memory_modes(b));
865 nir_intrinsic_set_memory_semantics(a, nir_intrinsic_memory_semantics(a) |
866 nir_intrinsic_memory_semantics(b));
867 nir_intrinsic_set_memory_scope(a, MAX2(nir_intrinsic_memory_scope(a),
868 nir_intrinsic_memory_scope(b)));
869 return true;
870 }
871
872 static void
873 brw_vectorize_lower_mem_access(nir_shader *nir,
874 const struct brw_compiler *compiler,
875 bool is_scalar)
876 {
877 const struct gen_device_info *devinfo = compiler->devinfo;
878 bool progress = false;
879
880 if (is_scalar) {
881 OPT(nir_opt_load_store_vectorize,
882 nir_var_mem_ubo | nir_var_mem_ssbo |
883 nir_var_mem_global | nir_var_mem_shared,
884 brw_nir_should_vectorize_mem,
885 (nir_variable_mode)0);
886 }
887
888 OPT(brw_nir_lower_mem_access_bit_sizes, devinfo);
889
890 while (progress) {
891 progress = false;
892
893 OPT(nir_lower_pack);
894 OPT(nir_copy_prop);
895 OPT(nir_opt_dce);
896 OPT(nir_opt_cse);
897 OPT(nir_opt_algebraic);
898 OPT(nir_opt_constant_folding);
899 }
900 }
901
902 /* Prepare the given shader for codegen
903 *
904 * This function is intended to be called right before going into the actual
905 * backend and is highly backend-specific. Also, once this function has been
906 * called on a shader, it will no longer be in SSA form so most optimizations
907 * will not work.
908 */
909 void
910 brw_postprocess_nir(nir_shader *nir, const struct brw_compiler *compiler,
911 bool is_scalar)
912 {
913 const struct gen_device_info *devinfo = compiler->devinfo;
914 bool debug_enabled =
915 (INTEL_DEBUG & intel_debug_flag_for_shader_stage(nir->info.stage));
916
917 UNUSED bool progress; /* Written by OPT */
918
919 OPT(brw_nir_lower_scoped_barriers);
920 OPT(nir_opt_combine_memory_barriers, combine_all_barriers, NULL);
921
922 do {
923 progress = false;
924 OPT(nir_opt_algebraic_before_ffma);
925 } while (progress);
926
927 brw_nir_optimize(nir, compiler, is_scalar, false);
928
929 brw_vectorize_lower_mem_access(nir, compiler, is_scalar);
930
931 if (OPT(nir_lower_int64))
932 brw_nir_optimize(nir, compiler, is_scalar, false);
933
934 if (devinfo->gen >= 6) {
935 /* Try and fuse multiply-adds */
936 OPT(brw_nir_opt_peephole_ffma);
937 }
938
939 if (OPT(nir_opt_comparison_pre)) {
940 OPT(nir_copy_prop);
941 OPT(nir_opt_dce);
942 OPT(nir_opt_cse);
943
944 /* Do the select peepehole again. nir_opt_comparison_pre (combined with
945 * the other optimization passes) will have removed at least one
946 * instruction from one of the branches of the if-statement, so now it
947 * might be under the threshold of conversion to bcsel.
948 *
949 * See brw_nir_optimize for the explanation of is_vec4_tessellation.
950 */
951 const bool is_vec4_tessellation = !is_scalar &&
952 (nir->info.stage == MESA_SHADER_TESS_CTRL ||
953 nir->info.stage == MESA_SHADER_TESS_EVAL);
954 OPT(nir_opt_peephole_select, 0, is_vec4_tessellation, false);
955 OPT(nir_opt_peephole_select, 1, is_vec4_tessellation,
956 compiler->devinfo->gen >= 6);
957 }
958
959 do {
960 progress = false;
961 if (OPT(nir_opt_algebraic_late)) {
962 /* At this late stage, anything that makes more constants will wreak
963 * havok on the vec4 backend. The handling of constants in the vec4
964 * backend is not good.
965 */
966 if (is_scalar)
967 OPT(nir_opt_constant_folding);
968
969 OPT(nir_copy_prop);
970 OPT(nir_opt_dce);
971 OPT(nir_opt_cse);
972 }
973 } while (progress);
974
975
976 OPT(brw_nir_lower_conversions);
977
978 if (is_scalar)
979 OPT(nir_lower_alu_to_scalar, NULL, NULL);
980
981 while (OPT(nir_opt_algebraic_distribute_src_mods)) {
982 OPT(nir_copy_prop);
983 OPT(nir_opt_dce);
984 OPT(nir_opt_cse);
985 }
986
987 OPT(nir_copy_prop);
988 OPT(nir_opt_dce);
989 OPT(nir_opt_move, nir_move_comparisons);
990
991 OPT(nir_lower_bool_to_int32);
992 OPT(nir_copy_prop);
993 OPT(nir_opt_dce);
994
995 OPT(nir_lower_locals_to_regs);
996
997 if (unlikely(debug_enabled)) {
998 /* Re-index SSA defs so we print more sensible numbers. */
999 nir_foreach_function(function, nir) {
1000 if (function->impl)
1001 nir_index_ssa_defs(function->impl);
1002 }
1003
1004 fprintf(stderr, "NIR (SSA form) for %s shader:\n",
1005 _mesa_shader_stage_to_string(nir->info.stage));
1006 nir_print_shader(nir, stderr);
1007 }
1008
1009 OPT(nir_convert_from_ssa, true);
1010
1011 if (!is_scalar) {
1012 OPT(nir_move_vec_src_uses_to_dest);
1013 OPT(nir_lower_vec_to_movs);
1014 }
1015
1016 OPT(nir_opt_dce);
1017
1018 if (OPT(nir_opt_rematerialize_compares))
1019 OPT(nir_opt_dce);
1020
1021 /* This is the last pass we run before we start emitting stuff. It
1022 * determines when we need to insert boolean resolves on Gen <= 5. We
1023 * run it last because it stashes data in instr->pass_flags and we don't
1024 * want that to be squashed by other NIR passes.
1025 */
1026 if (devinfo->gen <= 5)
1027 brw_nir_analyze_boolean_resolves(nir);
1028
1029 nir_sweep(nir);
1030
1031 if (unlikely(debug_enabled)) {
1032 fprintf(stderr, "NIR (final form) for %s shader:\n",
1033 _mesa_shader_stage_to_string(nir->info.stage));
1034 nir_print_shader(nir, stderr);
1035 }
1036 }
1037
1038 static bool
1039 brw_nir_apply_sampler_key(nir_shader *nir,
1040 const struct brw_compiler *compiler,
1041 const struct brw_sampler_prog_key_data *key_tex)
1042 {
1043 const struct gen_device_info *devinfo = compiler->devinfo;
1044 nir_lower_tex_options tex_options = {
1045 .lower_txd_clamp_bindless_sampler = true,
1046 .lower_txd_clamp_if_sampler_index_not_lt_16 = true,
1047 };
1048
1049 /* Iron Lake and prior require lowering of all rectangle textures */
1050 if (devinfo->gen < 6)
1051 tex_options.lower_rect = true;
1052
1053 /* Prior to Broadwell, our hardware can't actually do GL_CLAMP */
1054 if (devinfo->gen < 8) {
1055 tex_options.saturate_s = key_tex->gl_clamp_mask[0];
1056 tex_options.saturate_t = key_tex->gl_clamp_mask[1];
1057 tex_options.saturate_r = key_tex->gl_clamp_mask[2];
1058 }
1059
1060 /* Prior to Haswell, we have to fake texture swizzle */
1061 for (unsigned s = 0; s < MAX_SAMPLERS; s++) {
1062 if (key_tex->swizzles[s] == SWIZZLE_NOOP)
1063 continue;
1064
1065 tex_options.swizzle_result |= BITFIELD_BIT(s);
1066 for (unsigned c = 0; c < 4; c++)
1067 tex_options.swizzles[s][c] = GET_SWZ(key_tex->swizzles[s], c);
1068 }
1069
1070 /* Prior to Haswell, we have to lower gradients on shadow samplers */
1071 tex_options.lower_txd_shadow = devinfo->gen < 8 && !devinfo->is_haswell;
1072
1073 tex_options.lower_y_uv_external = key_tex->y_uv_image_mask;
1074 tex_options.lower_y_u_v_external = key_tex->y_u_v_image_mask;
1075 tex_options.lower_yx_xuxv_external = key_tex->yx_xuxv_image_mask;
1076 tex_options.lower_xy_uxvx_external = key_tex->xy_uxvx_image_mask;
1077 tex_options.lower_ayuv_external = key_tex->ayuv_image_mask;
1078 tex_options.lower_xyuv_external = key_tex->xyuv_image_mask;
1079 tex_options.bt709_external = key_tex->bt709_mask;
1080 tex_options.bt2020_external = key_tex->bt2020_mask;
1081
1082 /* Setup array of scaling factors for each texture. */
1083 memcpy(&tex_options.scale_factors, &key_tex->scale_factors,
1084 sizeof(tex_options.scale_factors));
1085
1086 return nir_lower_tex(nir, &tex_options);
1087 }
1088
1089 static unsigned
1090 get_subgroup_size(gl_shader_stage stage,
1091 const struct brw_base_prog_key *key,
1092 unsigned max_subgroup_size)
1093 {
1094 switch (key->subgroup_size_type) {
1095 case BRW_SUBGROUP_SIZE_API_CONSTANT:
1096 /* We have to use the global constant size. */
1097 return BRW_SUBGROUP_SIZE;
1098
1099 case BRW_SUBGROUP_SIZE_UNIFORM:
1100 /* It has to be uniform across all invocations but can vary per stage
1101 * if we want. This gives us a bit more freedom.
1102 *
1103 * For compute, brw_nir_apply_key is called per-dispatch-width so this
1104 * is the actual subgroup size and not a maximum. However, we only
1105 * invoke one size of any given compute shader so it's still guaranteed
1106 * to be uniform across invocations.
1107 */
1108 return max_subgroup_size;
1109
1110 case BRW_SUBGROUP_SIZE_VARYING:
1111 /* The subgroup size is allowed to be fully varying. For geometry
1112 * stages, we know it's always 8 which is max_subgroup_size so we can
1113 * return that. For compute, brw_nir_apply_key is called once per
1114 * dispatch-width so max_subgroup_size is the real subgroup size.
1115 *
1116 * For fragment, we return 0 and let it fall through to the back-end
1117 * compiler. This means we can't optimize based on subgroup size but
1118 * that's a risk the client took when it asked for a varying subgroup
1119 * size.
1120 */
1121 return stage == MESA_SHADER_FRAGMENT ? 0 : max_subgroup_size;
1122
1123 case BRW_SUBGROUP_SIZE_REQUIRE_8:
1124 case BRW_SUBGROUP_SIZE_REQUIRE_16:
1125 case BRW_SUBGROUP_SIZE_REQUIRE_32:
1126 assert(stage == MESA_SHADER_COMPUTE);
1127 /* These enum values are expressly chosen to be equal to the subgroup
1128 * size that they require.
1129 */
1130 return key->subgroup_size_type;
1131 }
1132
1133 unreachable("Invalid subgroup size type");
1134 }
1135
1136 void
1137 brw_nir_apply_key(nir_shader *nir,
1138 const struct brw_compiler *compiler,
1139 const struct brw_base_prog_key *key,
1140 unsigned max_subgroup_size,
1141 bool is_scalar)
1142 {
1143 bool progress = false;
1144
1145 OPT(brw_nir_apply_sampler_key, compiler, &key->tex);
1146
1147 const nir_lower_subgroups_options subgroups_options = {
1148 .subgroup_size = get_subgroup_size(nir->info.stage, key,
1149 max_subgroup_size),
1150 .ballot_bit_size = 32,
1151 .lower_subgroup_masks = true,
1152 };
1153 OPT(nir_lower_subgroups, &subgroups_options);
1154
1155 if (progress)
1156 brw_nir_optimize(nir, compiler, is_scalar, false);
1157 }
1158
1159 enum brw_conditional_mod
1160 brw_cmod_for_nir_comparison(nir_op op)
1161 {
1162 switch (op) {
1163 case nir_op_flt:
1164 case nir_op_flt32:
1165 case nir_op_ilt:
1166 case nir_op_ilt32:
1167 case nir_op_ult:
1168 case nir_op_ult32:
1169 return BRW_CONDITIONAL_L;
1170
1171 case nir_op_fge:
1172 case nir_op_fge32:
1173 case nir_op_ige:
1174 case nir_op_ige32:
1175 case nir_op_uge:
1176 case nir_op_uge32:
1177 return BRW_CONDITIONAL_GE;
1178
1179 case nir_op_feq:
1180 case nir_op_feq32:
1181 case nir_op_ieq:
1182 case nir_op_ieq32:
1183 case nir_op_b32all_fequal2:
1184 case nir_op_b32all_iequal2:
1185 case nir_op_b32all_fequal3:
1186 case nir_op_b32all_iequal3:
1187 case nir_op_b32all_fequal4:
1188 case nir_op_b32all_iequal4:
1189 return BRW_CONDITIONAL_Z;
1190
1191 case nir_op_fneu:
1192 case nir_op_fneu32:
1193 case nir_op_ine:
1194 case nir_op_ine32:
1195 case nir_op_b32any_fnequal2:
1196 case nir_op_b32any_inequal2:
1197 case nir_op_b32any_fnequal3:
1198 case nir_op_b32any_inequal3:
1199 case nir_op_b32any_fnequal4:
1200 case nir_op_b32any_inequal4:
1201 return BRW_CONDITIONAL_NZ;
1202
1203 default:
1204 unreachable("Unsupported NIR comparison op");
1205 }
1206 }
1207
1208 uint32_t
1209 brw_aop_for_nir_intrinsic(const nir_intrinsic_instr *atomic)
1210 {
1211 switch (atomic->intrinsic) {
1212 #define AOP_CASE(atom) \
1213 case nir_intrinsic_image_atomic_##atom: \
1214 case nir_intrinsic_bindless_image_atomic_##atom: \
1215 case nir_intrinsic_ssbo_atomic_##atom: \
1216 case nir_intrinsic_shared_atomic_##atom: \
1217 case nir_intrinsic_global_atomic_##atom
1218
1219 AOP_CASE(add): {
1220 unsigned src_idx;
1221 switch (atomic->intrinsic) {
1222 case nir_intrinsic_image_atomic_add:
1223 case nir_intrinsic_bindless_image_atomic_add:
1224 src_idx = 3;
1225 break;
1226 case nir_intrinsic_ssbo_atomic_add:
1227 src_idx = 2;
1228 break;
1229 case nir_intrinsic_shared_atomic_add:
1230 case nir_intrinsic_global_atomic_add:
1231 src_idx = 1;
1232 break;
1233 default:
1234 unreachable("Invalid add atomic opcode");
1235 }
1236
1237 if (nir_src_is_const(atomic->src[src_idx])) {
1238 int64_t add_val = nir_src_as_int(atomic->src[src_idx]);
1239 if (add_val == 1)
1240 return BRW_AOP_INC;
1241 else if (add_val == -1)
1242 return BRW_AOP_DEC;
1243 }
1244 return BRW_AOP_ADD;
1245 }
1246
1247 AOP_CASE(imin): return BRW_AOP_IMIN;
1248 AOP_CASE(umin): return BRW_AOP_UMIN;
1249 AOP_CASE(imax): return BRW_AOP_IMAX;
1250 AOP_CASE(umax): return BRW_AOP_UMAX;
1251 AOP_CASE(and): return BRW_AOP_AND;
1252 AOP_CASE(or): return BRW_AOP_OR;
1253 AOP_CASE(xor): return BRW_AOP_XOR;
1254 AOP_CASE(exchange): return BRW_AOP_MOV;
1255 AOP_CASE(comp_swap): return BRW_AOP_CMPWR;
1256
1257 #undef AOP_CASE
1258 #define AOP_CASE(atom) \
1259 case nir_intrinsic_ssbo_atomic_##atom: \
1260 case nir_intrinsic_shared_atomic_##atom: \
1261 case nir_intrinsic_global_atomic_##atom
1262
1263 AOP_CASE(fmin): return BRW_AOP_FMIN;
1264 AOP_CASE(fmax): return BRW_AOP_FMAX;
1265 AOP_CASE(fcomp_swap): return BRW_AOP_FCMPWR;
1266
1267 #undef AOP_CASE
1268
1269 default:
1270 unreachable("Unsupported NIR atomic intrinsic");
1271 }
1272 }
1273
1274 enum brw_reg_type
1275 brw_type_for_nir_type(const struct gen_device_info *devinfo, nir_alu_type type)
1276 {
1277 switch (type) {
1278 case nir_type_uint:
1279 case nir_type_uint32:
1280 return BRW_REGISTER_TYPE_UD;
1281 case nir_type_bool:
1282 case nir_type_int:
1283 case nir_type_bool32:
1284 case nir_type_int32:
1285 return BRW_REGISTER_TYPE_D;
1286 case nir_type_float:
1287 case nir_type_float32:
1288 return BRW_REGISTER_TYPE_F;
1289 case nir_type_float16:
1290 return BRW_REGISTER_TYPE_HF;
1291 case nir_type_float64:
1292 return BRW_REGISTER_TYPE_DF;
1293 case nir_type_int64:
1294 return devinfo->gen < 8 ? BRW_REGISTER_TYPE_DF : BRW_REGISTER_TYPE_Q;
1295 case nir_type_uint64:
1296 return devinfo->gen < 8 ? BRW_REGISTER_TYPE_DF : BRW_REGISTER_TYPE_UQ;
1297 case nir_type_int16:
1298 return BRW_REGISTER_TYPE_W;
1299 case nir_type_uint16:
1300 return BRW_REGISTER_TYPE_UW;
1301 case nir_type_int8:
1302 return BRW_REGISTER_TYPE_B;
1303 case nir_type_uint8:
1304 return BRW_REGISTER_TYPE_UB;
1305 default:
1306 unreachable("unknown type");
1307 }
1308
1309 return BRW_REGISTER_TYPE_F;
1310 }
1311
1312 /* Returns the glsl_base_type corresponding to a nir_alu_type.
1313 * This is used by both brw_vec4_nir and brw_fs_nir.
1314 */
1315 enum glsl_base_type
1316 brw_glsl_base_type_for_nir_type(nir_alu_type type)
1317 {
1318 switch (type) {
1319 case nir_type_float:
1320 case nir_type_float32:
1321 return GLSL_TYPE_FLOAT;
1322
1323 case nir_type_float16:
1324 return GLSL_TYPE_FLOAT16;
1325
1326 case nir_type_float64:
1327 return GLSL_TYPE_DOUBLE;
1328
1329 case nir_type_int:
1330 case nir_type_int32:
1331 return GLSL_TYPE_INT;
1332
1333 case nir_type_uint:
1334 case nir_type_uint32:
1335 return GLSL_TYPE_UINT;
1336
1337 case nir_type_int16:
1338 return GLSL_TYPE_INT16;
1339
1340 case nir_type_uint16:
1341 return GLSL_TYPE_UINT16;
1342
1343 default:
1344 unreachable("bad type");
1345 }
1346 }
1347
1348 nir_shader *
1349 brw_nir_create_passthrough_tcs(void *mem_ctx, const struct brw_compiler *compiler,
1350 const nir_shader_compiler_options *options,
1351 const struct brw_tcs_prog_key *key)
1352 {
1353 nir_builder b;
1354 nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_TESS_CTRL,
1355 options);
1356 nir_shader *nir = b.shader;
1357 nir_variable *var;
1358 nir_intrinsic_instr *load;
1359 nir_intrinsic_instr *store;
1360 nir_ssa_def *zero = nir_imm_int(&b, 0);
1361 nir_ssa_def *invoc_id = nir_load_invocation_id(&b);
1362
1363 nir->info.inputs_read = key->outputs_written &
1364 ~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
1365 nir->info.outputs_written = key->outputs_written;
1366 nir->info.tess.tcs_vertices_out = key->input_vertices;
1367 nir->info.name = ralloc_strdup(nir, "passthrough");
1368 nir->num_uniforms = 8 * sizeof(uint32_t);
1369
1370 var = nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "hdr_0");
1371 var->data.location = 0;
1372 var = nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "hdr_1");
1373 var->data.location = 1;
1374
1375 /* Write the patch URB header. */
1376 for (int i = 0; i <= 1; i++) {
1377 load = nir_intrinsic_instr_create(nir, nir_intrinsic_load_uniform);
1378 load->num_components = 4;
1379 load->src[0] = nir_src_for_ssa(zero);
1380 nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL);
1381 nir_intrinsic_set_base(load, i * 4 * sizeof(uint32_t));
1382 nir_builder_instr_insert(&b, &load->instr);
1383
1384 store = nir_intrinsic_instr_create(nir, nir_intrinsic_store_output);
1385 store->num_components = 4;
1386 store->src[0] = nir_src_for_ssa(&load->dest.ssa);
1387 store->src[1] = nir_src_for_ssa(zero);
1388 nir_intrinsic_set_base(store, VARYING_SLOT_TESS_LEVEL_INNER - i);
1389 nir_intrinsic_set_write_mask(store, WRITEMASK_XYZW);
1390 nir_builder_instr_insert(&b, &store->instr);
1391 }
1392
1393 /* Copy inputs to outputs. */
1394 uint64_t varyings = nir->info.inputs_read;
1395
1396 while (varyings != 0) {
1397 const int varying = ffsll(varyings) - 1;
1398
1399 load = nir_intrinsic_instr_create(nir,
1400 nir_intrinsic_load_per_vertex_input);
1401 load->num_components = 4;
1402 load->src[0] = nir_src_for_ssa(invoc_id);
1403 load->src[1] = nir_src_for_ssa(zero);
1404 nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL);
1405 nir_intrinsic_set_base(load, varying);
1406 nir_builder_instr_insert(&b, &load->instr);
1407
1408 store = nir_intrinsic_instr_create(nir,
1409 nir_intrinsic_store_per_vertex_output);
1410 store->num_components = 4;
1411 store->src[0] = nir_src_for_ssa(&load->dest.ssa);
1412 store->src[1] = nir_src_for_ssa(invoc_id);
1413 store->src[2] = nir_src_for_ssa(zero);
1414 nir_intrinsic_set_base(store, varying);
1415 nir_intrinsic_set_write_mask(store, WRITEMASK_XYZW);
1416 nir_builder_instr_insert(&b, &store->instr);
1417
1418 varyings &= ~BITFIELD64_BIT(varying);
1419 }
1420
1421 nir_validate_shader(nir, "in brw_nir_create_passthrough_tcs");
1422
1423 brw_preprocess_nir(compiler, nir, NULL);
1424
1425 return nir;
1426 }