intel: fix disasm_info memory leaks
[mesa.git] / src / intel / compiler / brw_vec4_generator.cpp
1 /* Copyright © 2011 Intel Corporation
2 *
3 * Permission is hereby granted, free of charge, to any person obtaining a
4 * copy of this software and associated documentation files (the "Software"),
5 * to deal in the Software without restriction, including without limitation
6 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
7 * and/or sell copies of the Software, and to permit persons to whom the
8 * Software is furnished to do so, subject to the following conditions:
9 *
10 * The above copyright notice and this permission notice (including the next
11 * paragraph) shall be included in all copies or substantial portions of the
12 * Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
20 * IN THE SOFTWARE.
21 */
22
23 #include "brw_vec4.h"
24 #include "brw_cfg.h"
25 #include "brw_eu.h"
26 #include "common/gen_debug.h"
27
28 using namespace brw;
29
30 static void
31 generate_math1_gen4(struct brw_codegen *p,
32 vec4_instruction *inst,
33 struct brw_reg dst,
34 struct brw_reg src)
35 {
36 gen4_math(p,
37 dst,
38 brw_math_function(inst->opcode),
39 inst->base_mrf,
40 src,
41 BRW_MATH_PRECISION_FULL);
42 }
43
44 static void
45 check_gen6_math_src_arg(struct brw_reg src)
46 {
47 /* Source swizzles are ignored. */
48 assert(!src.abs);
49 assert(!src.negate);
50 assert(src.swizzle == BRW_SWIZZLE_XYZW);
51 }
52
53 static void
54 generate_math_gen6(struct brw_codegen *p,
55 vec4_instruction *inst,
56 struct brw_reg dst,
57 struct brw_reg src0,
58 struct brw_reg src1)
59 {
60 /* Can't do writemask because math can't be align16. */
61 assert(dst.writemask == WRITEMASK_XYZW);
62 /* Source swizzles are ignored. */
63 check_gen6_math_src_arg(src0);
64 if (src1.file == BRW_GENERAL_REGISTER_FILE)
65 check_gen6_math_src_arg(src1);
66
67 brw_set_default_access_mode(p, BRW_ALIGN_1);
68 gen6_math(p, dst, brw_math_function(inst->opcode), src0, src1);
69 brw_set_default_access_mode(p, BRW_ALIGN_16);
70 }
71
72 static void
73 generate_math2_gen4(struct brw_codegen *p,
74 vec4_instruction *inst,
75 struct brw_reg dst,
76 struct brw_reg src0,
77 struct brw_reg src1)
78 {
79 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
80 * "Message Payload":
81 *
82 * "Operand0[7]. For the INT DIV functions, this operand is the
83 * denominator."
84 * ...
85 * "Operand1[7]. For the INT DIV functions, this operand is the
86 * numerator."
87 */
88 bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
89 struct brw_reg &op0 = is_int_div ? src1 : src0;
90 struct brw_reg &op1 = is_int_div ? src0 : src1;
91
92 brw_push_insn_state(p);
93 brw_set_default_saturate(p, false);
94 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
95 brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1), op1.type), op1);
96 brw_pop_insn_state(p);
97
98 gen4_math(p,
99 dst,
100 brw_math_function(inst->opcode),
101 inst->base_mrf,
102 op0,
103 BRW_MATH_PRECISION_FULL);
104 }
105
106 static void
107 generate_tex(struct brw_codegen *p,
108 struct brw_vue_prog_data *prog_data,
109 gl_shader_stage stage,
110 vec4_instruction *inst,
111 struct brw_reg dst,
112 struct brw_reg src,
113 struct brw_reg surface_index,
114 struct brw_reg sampler_index)
115 {
116 const struct gen_device_info *devinfo = p->devinfo;
117 int msg_type = -1;
118
119 if (devinfo->gen >= 5) {
120 switch (inst->opcode) {
121 case SHADER_OPCODE_TEX:
122 case SHADER_OPCODE_TXL:
123 if (inst->shadow_compare) {
124 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
125 } else {
126 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
127 }
128 break;
129 case SHADER_OPCODE_TXD:
130 if (inst->shadow_compare) {
131 /* Gen7.5+. Otherwise, lowered by brw_lower_texture_gradients(). */
132 assert(devinfo->gen >= 8 || devinfo->is_haswell);
133 msg_type = HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE;
134 } else {
135 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
136 }
137 break;
138 case SHADER_OPCODE_TXF:
139 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
140 break;
141 case SHADER_OPCODE_TXF_CMS_W:
142 assert(devinfo->gen >= 9);
143 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
144 break;
145 case SHADER_OPCODE_TXF_CMS:
146 if (devinfo->gen >= 7)
147 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS;
148 else
149 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
150 break;
151 case SHADER_OPCODE_TXF_MCS:
152 assert(devinfo->gen >= 7);
153 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
154 break;
155 case SHADER_OPCODE_TXS:
156 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
157 break;
158 case SHADER_OPCODE_TG4:
159 if (inst->shadow_compare) {
160 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C;
161 } else {
162 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
163 }
164 break;
165 case SHADER_OPCODE_TG4_OFFSET:
166 if (inst->shadow_compare) {
167 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C;
168 } else {
169 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
170 }
171 break;
172 case SHADER_OPCODE_SAMPLEINFO:
173 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
174 break;
175 default:
176 unreachable("should not get here: invalid vec4 texture opcode");
177 }
178 } else {
179 switch (inst->opcode) {
180 case SHADER_OPCODE_TEX:
181 case SHADER_OPCODE_TXL:
182 if (inst->shadow_compare) {
183 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD_COMPARE;
184 assert(inst->mlen == 3);
185 } else {
186 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD;
187 assert(inst->mlen == 2);
188 }
189 break;
190 case SHADER_OPCODE_TXD:
191 /* There is no sample_d_c message; comparisons are done manually. */
192 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_GRADIENTS;
193 assert(inst->mlen == 4);
194 break;
195 case SHADER_OPCODE_TXF:
196 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_LD;
197 assert(inst->mlen == 2);
198 break;
199 case SHADER_OPCODE_TXS:
200 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_RESINFO;
201 assert(inst->mlen == 2);
202 break;
203 default:
204 unreachable("should not get here: invalid vec4 texture opcode");
205 }
206 }
207
208 assert(msg_type != -1);
209
210 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
211
212 /* Load the message header if present. If there's a texture offset, we need
213 * to set it up explicitly and load the offset bitfield. Otherwise, we can
214 * use an implied move from g0 to the first message register.
215 */
216 if (inst->header_size != 0) {
217 if (devinfo->gen < 6 && !inst->offset) {
218 /* Set up an implied move from g0 to the MRF. */
219 src = brw_vec8_grf(0, 0);
220 } else {
221 struct brw_reg header =
222 retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD);
223 uint32_t dw2 = 0;
224
225 /* Explicitly set up the message header by copying g0 to the MRF. */
226 brw_push_insn_state(p);
227 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
228 brw_MOV(p, header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
229
230 brw_set_default_access_mode(p, BRW_ALIGN_1);
231
232 if (inst->offset)
233 /* Set the texel offset bits in DWord 2. */
234 dw2 = inst->offset;
235
236 if (devinfo->gen >= 9)
237 /* SKL+ overloads BRW_SAMPLER_SIMD_MODE_SIMD4X2 to also do SIMD8D,
238 * based on bit 22 in the header.
239 */
240 dw2 |= GEN9_SAMPLER_SIMD_MODE_EXTENSION_SIMD4X2;
241
242 /* The VS, DS, and FS stages have the g0.2 payload delivered as 0,
243 * so header0.2 is 0 when g0 is copied. The HS and GS stages do
244 * not, so we must set to to 0 to avoid setting undesirable bits
245 * in the message header.
246 */
247 if (dw2 ||
248 stage == MESA_SHADER_TESS_CTRL ||
249 stage == MESA_SHADER_GEOMETRY) {
250 brw_MOV(p, get_element_ud(header, 2), brw_imm_ud(dw2));
251 }
252
253 brw_adjust_sampler_state_pointer(p, header, sampler_index);
254 brw_pop_insn_state(p);
255 }
256 }
257
258 uint32_t return_format;
259
260 switch (dst.type) {
261 case BRW_REGISTER_TYPE_D:
262 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
263 break;
264 case BRW_REGISTER_TYPE_UD:
265 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
266 break;
267 default:
268 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
269 break;
270 }
271
272 uint32_t base_binding_table_index = (inst->opcode == SHADER_OPCODE_TG4 ||
273 inst->opcode == SHADER_OPCODE_TG4_OFFSET)
274 ? prog_data->base.binding_table.gather_texture_start
275 : prog_data->base.binding_table.texture_start;
276
277 if (surface_index.file == BRW_IMMEDIATE_VALUE &&
278 sampler_index.file == BRW_IMMEDIATE_VALUE) {
279 uint32_t surface = surface_index.ud;
280 uint32_t sampler = sampler_index.ud;
281
282 brw_SAMPLE(p,
283 dst,
284 inst->base_mrf,
285 src,
286 surface + base_binding_table_index,
287 sampler % 16,
288 msg_type,
289 1, /* response length */
290 inst->mlen,
291 inst->header_size != 0,
292 BRW_SAMPLER_SIMD_MODE_SIMD4X2,
293 return_format);
294
295 brw_mark_surface_used(&prog_data->base, sampler + base_binding_table_index);
296 } else {
297 /* Non-constant sampler index. */
298
299 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
300 struct brw_reg surface_reg = vec1(retype(surface_index, BRW_REGISTER_TYPE_UD));
301 struct brw_reg sampler_reg = vec1(retype(sampler_index, BRW_REGISTER_TYPE_UD));
302
303 brw_push_insn_state(p);
304 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
305 brw_set_default_access_mode(p, BRW_ALIGN_1);
306
307 if (brw_regs_equal(&surface_reg, &sampler_reg)) {
308 brw_MUL(p, addr, sampler_reg, brw_imm_uw(0x101));
309 } else {
310 if (sampler_reg.file == BRW_IMMEDIATE_VALUE) {
311 brw_OR(p, addr, surface_reg, brw_imm_ud(sampler_reg.ud << 8));
312 } else {
313 brw_SHL(p, addr, sampler_reg, brw_imm_ud(8));
314 brw_OR(p, addr, addr, surface_reg);
315 }
316 }
317 if (base_binding_table_index)
318 brw_ADD(p, addr, addr, brw_imm_ud(base_binding_table_index));
319 brw_AND(p, addr, addr, brw_imm_ud(0xfff));
320
321 brw_pop_insn_state(p);
322
323 if (inst->base_mrf != -1)
324 gen6_resolve_implied_move(p, &src, inst->base_mrf);
325
326 /* dst = send(offset, a0.0 | <descriptor>) */
327 brw_inst *insn = brw_send_indirect_message(
328 p, BRW_SFID_SAMPLER, dst, src, addr);
329 brw_set_sampler_message(p, insn,
330 0 /* surface */,
331 0 /* sampler */,
332 msg_type,
333 1 /* rlen */,
334 inst->mlen /* mlen */,
335 inst->header_size != 0 /* header */,
336 BRW_SAMPLER_SIMD_MODE_SIMD4X2,
337 return_format);
338
339 /* visitor knows more than we do about the surface limit required,
340 * so has already done marking.
341 */
342 }
343 }
344
345 static void
346 generate_vs_urb_write(struct brw_codegen *p, vec4_instruction *inst)
347 {
348 brw_urb_WRITE(p,
349 brw_null_reg(), /* dest */
350 inst->base_mrf, /* starting mrf reg nr */
351 brw_vec8_grf(0, 0), /* src */
352 inst->urb_write_flags,
353 inst->mlen,
354 0, /* response len */
355 inst->offset, /* urb destination offset */
356 BRW_URB_SWIZZLE_INTERLEAVE);
357 }
358
359 static void
360 generate_gs_urb_write(struct brw_codegen *p, vec4_instruction *inst)
361 {
362 struct brw_reg src = brw_message_reg(inst->base_mrf);
363 brw_urb_WRITE(p,
364 brw_null_reg(), /* dest */
365 inst->base_mrf, /* starting mrf reg nr */
366 src,
367 inst->urb_write_flags,
368 inst->mlen,
369 0, /* response len */
370 inst->offset, /* urb destination offset */
371 BRW_URB_SWIZZLE_INTERLEAVE);
372 }
373
374 static void
375 generate_gs_urb_write_allocate(struct brw_codegen *p, vec4_instruction *inst)
376 {
377 struct brw_reg src = brw_message_reg(inst->base_mrf);
378
379 /* We pass the temporary passed in src0 as the writeback register */
380 brw_urb_WRITE(p,
381 inst->src[0].as_brw_reg(), /* dest */
382 inst->base_mrf, /* starting mrf reg nr */
383 src,
384 BRW_URB_WRITE_ALLOCATE_COMPLETE,
385 inst->mlen,
386 1, /* response len */
387 inst->offset, /* urb destination offset */
388 BRW_URB_SWIZZLE_INTERLEAVE);
389
390 /* Now put allocated urb handle in dst.0 */
391 brw_push_insn_state(p);
392 brw_set_default_access_mode(p, BRW_ALIGN_1);
393 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
394 brw_MOV(p, get_element_ud(inst->dst.as_brw_reg(), 0),
395 get_element_ud(inst->src[0].as_brw_reg(), 0));
396 brw_pop_insn_state(p);
397 }
398
399 static void
400 generate_gs_thread_end(struct brw_codegen *p, vec4_instruction *inst)
401 {
402 struct brw_reg src = brw_message_reg(inst->base_mrf);
403 brw_urb_WRITE(p,
404 brw_null_reg(), /* dest */
405 inst->base_mrf, /* starting mrf reg nr */
406 src,
407 BRW_URB_WRITE_EOT | inst->urb_write_flags,
408 inst->mlen,
409 0, /* response len */
410 0, /* urb destination offset */
411 BRW_URB_SWIZZLE_INTERLEAVE);
412 }
413
414 static void
415 generate_gs_set_write_offset(struct brw_codegen *p,
416 struct brw_reg dst,
417 struct brw_reg src0,
418 struct brw_reg src1)
419 {
420 /* From p22 of volume 4 part 2 of the Ivy Bridge PRM (2.4.3.1 Message
421 * Header: M0.3):
422 *
423 * Slot 0 Offset. This field, after adding to the Global Offset field
424 * in the message descriptor, specifies the offset (in 256-bit units)
425 * from the start of the URB entry, as referenced by URB Handle 0, at
426 * which the data will be accessed.
427 *
428 * Similar text describes DWORD M0.4, which is slot 1 offset.
429 *
430 * Therefore, we want to multiply DWORDs 0 and 4 of src0 (the x components
431 * of the register for geometry shader invocations 0 and 1) by the
432 * immediate value in src1, and store the result in DWORDs 3 and 4 of dst.
433 *
434 * We can do this with the following EU instruction:
435 *
436 * mul(2) dst.3<1>UD src0<8;2,4>UD src1<...>UW { Align1 WE_all }
437 */
438 brw_push_insn_state(p);
439 brw_set_default_access_mode(p, BRW_ALIGN_1);
440 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
441 assert(p->devinfo->gen >= 7 &&
442 src1.file == BRW_IMMEDIATE_VALUE &&
443 src1.type == BRW_REGISTER_TYPE_UD &&
444 src1.ud <= USHRT_MAX);
445 if (src0.file == BRW_IMMEDIATE_VALUE) {
446 brw_MOV(p, suboffset(stride(dst, 2, 2, 1), 3),
447 brw_imm_ud(src0.ud * src1.ud));
448 } else {
449 brw_MUL(p, suboffset(stride(dst, 2, 2, 1), 3), stride(src0, 8, 2, 4),
450 retype(src1, BRW_REGISTER_TYPE_UW));
451 }
452 brw_pop_insn_state(p);
453 }
454
455 static void
456 generate_gs_set_vertex_count(struct brw_codegen *p,
457 struct brw_reg dst,
458 struct brw_reg src)
459 {
460 brw_push_insn_state(p);
461 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
462
463 if (p->devinfo->gen >= 8) {
464 /* Move the vertex count into the second MRF for the EOT write. */
465 brw_MOV(p, retype(brw_message_reg(dst.nr + 1), BRW_REGISTER_TYPE_UD),
466 src);
467 } else {
468 /* If we think of the src and dst registers as composed of 8 DWORDs each,
469 * we want to pick up the contents of DWORDs 0 and 4 from src, truncate
470 * them to WORDs, and then pack them into DWORD 2 of dst.
471 *
472 * It's easier to get the EU to do this if we think of the src and dst
473 * registers as composed of 16 WORDS each; then, we want to pick up the
474 * contents of WORDs 0 and 8 from src, and pack them into WORDs 4 and 5
475 * of dst.
476 *
477 * We can do that by the following EU instruction:
478 *
479 * mov (2) dst.4<1>:uw src<8;1,0>:uw { Align1, Q1, NoMask }
480 */
481 brw_set_default_access_mode(p, BRW_ALIGN_1);
482 brw_MOV(p,
483 suboffset(stride(retype(dst, BRW_REGISTER_TYPE_UW), 2, 2, 1), 4),
484 stride(retype(src, BRW_REGISTER_TYPE_UW), 8, 1, 0));
485 }
486 brw_pop_insn_state(p);
487 }
488
489 static void
490 generate_gs_svb_write(struct brw_codegen *p,
491 struct brw_vue_prog_data *prog_data,
492 vec4_instruction *inst,
493 struct brw_reg dst,
494 struct brw_reg src0,
495 struct brw_reg src1)
496 {
497 int binding = inst->sol_binding;
498 bool final_write = inst->sol_final_write;
499
500 brw_push_insn_state(p);
501 brw_set_default_exec_size(p, BRW_EXECUTE_4);
502 /* Copy Vertex data into M0.x */
503 brw_MOV(p, stride(dst, 4, 4, 1),
504 stride(retype(src0, BRW_REGISTER_TYPE_UD), 4, 4, 1));
505 brw_pop_insn_state(p);
506
507 brw_push_insn_state(p);
508 /* Send SVB Write */
509 brw_svb_write(p,
510 final_write ? src1 : brw_null_reg(), /* dest == src1 */
511 1, /* msg_reg_nr */
512 dst, /* src0 == previous dst */
513 BRW_GEN6_SOL_BINDING_START + binding, /* binding_table_index */
514 final_write); /* send_commit_msg */
515
516 /* Finally, wait for the write commit to occur so that we can proceed to
517 * other things safely.
518 *
519 * From the Sandybridge PRM, Volume 4, Part 1, Section 3.3:
520 *
521 * The write commit does not modify the destination register, but
522 * merely clears the dependency associated with the destination
523 * register. Thus, a simple “mov” instruction using the register as a
524 * source is sufficient to wait for the write commit to occur.
525 */
526 if (final_write) {
527 brw_MOV(p, src1, src1);
528 }
529 brw_pop_insn_state(p);
530 }
531
532 static void
533 generate_gs_svb_set_destination_index(struct brw_codegen *p,
534 vec4_instruction *inst,
535 struct brw_reg dst,
536 struct brw_reg src)
537 {
538 int vertex = inst->sol_vertex;
539 brw_push_insn_state(p);
540 brw_set_default_access_mode(p, BRW_ALIGN_1);
541 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
542 brw_MOV(p, get_element_ud(dst, 5), get_element_ud(src, vertex));
543 brw_pop_insn_state(p);
544 }
545
546 static void
547 generate_gs_set_dword_2(struct brw_codegen *p,
548 struct brw_reg dst,
549 struct brw_reg src)
550 {
551 brw_push_insn_state(p);
552 brw_set_default_access_mode(p, BRW_ALIGN_1);
553 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
554 brw_MOV(p, suboffset(vec1(dst), 2), suboffset(vec1(src), 0));
555 brw_pop_insn_state(p);
556 }
557
558 static void
559 generate_gs_prepare_channel_masks(struct brw_codegen *p,
560 struct brw_reg dst)
561 {
562 /* We want to left shift just DWORD 4 (the x component belonging to the
563 * second geometry shader invocation) by 4 bits. So generate the
564 * instruction:
565 *
566 * shl(1) dst.4<1>UD dst.4<0,1,0>UD 4UD { align1 WE_all }
567 */
568 dst = suboffset(vec1(dst), 4);
569 brw_push_insn_state(p);
570 brw_set_default_access_mode(p, BRW_ALIGN_1);
571 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
572 brw_SHL(p, dst, dst, brw_imm_ud(4));
573 brw_pop_insn_state(p);
574 }
575
576 static void
577 generate_gs_set_channel_masks(struct brw_codegen *p,
578 struct brw_reg dst,
579 struct brw_reg src)
580 {
581 /* From p21 of volume 4 part 2 of the Ivy Bridge PRM (2.4.3.1 Message
582 * Header: M0.5):
583 *
584 * 15 Vertex 1 DATA [3] / Vertex 0 DATA[7] Channel Mask
585 *
586 * When Swizzle Control = URB_INTERLEAVED this bit controls Vertex 1
587 * DATA[3], when Swizzle Control = URB_NOSWIZZLE this bit controls
588 * Vertex 0 DATA[7]. This bit is ANDed with the corresponding
589 * channel enable to determine the final channel enable. For the
590 * URB_READ_OWORD & URB_READ_HWORD messages, when final channel
591 * enable is 1 it indicates that Vertex 1 DATA [3] will be included
592 * in the writeback message. For the URB_WRITE_OWORD &
593 * URB_WRITE_HWORD messages, when final channel enable is 1 it
594 * indicates that Vertex 1 DATA [3] will be written to the surface.
595 *
596 * 0: Vertex 1 DATA [3] / Vertex 0 DATA[7] channel not included
597 * 1: Vertex DATA [3] / Vertex 0 DATA[7] channel included
598 *
599 * 14 Vertex 1 DATA [2] Channel Mask
600 * 13 Vertex 1 DATA [1] Channel Mask
601 * 12 Vertex 1 DATA [0] Channel Mask
602 * 11 Vertex 0 DATA [3] Channel Mask
603 * 10 Vertex 0 DATA [2] Channel Mask
604 * 9 Vertex 0 DATA [1] Channel Mask
605 * 8 Vertex 0 DATA [0] Channel Mask
606 *
607 * (This is from a section of the PRM that is agnostic to the particular
608 * type of shader being executed, so "Vertex 0" and "Vertex 1" refer to
609 * geometry shader invocations 0 and 1, respectively). Since we have the
610 * enable flags for geometry shader invocation 0 in bits 3:0 of DWORD 0,
611 * and the enable flags for geometry shader invocation 1 in bits 7:0 of
612 * DWORD 4, we just need to OR them together and store the result in bits
613 * 15:8 of DWORD 5.
614 *
615 * It's easier to get the EU to do this if we think of the src and dst
616 * registers as composed of 32 bytes each; then, we want to pick up the
617 * contents of bytes 0 and 16 from src, OR them together, and store them in
618 * byte 21.
619 *
620 * We can do that by the following EU instruction:
621 *
622 * or(1) dst.21<1>UB src<0,1,0>UB src.16<0,1,0>UB { align1 WE_all }
623 *
624 * Note: this relies on the source register having zeros in (a) bits 7:4 of
625 * DWORD 0 and (b) bits 3:0 of DWORD 4. We can rely on (b) because the
626 * source register was prepared by GS_OPCODE_PREPARE_CHANNEL_MASKS (which
627 * shifts DWORD 4 left by 4 bits), and we can rely on (a) because prior to
628 * the execution of GS_OPCODE_PREPARE_CHANNEL_MASKS, DWORDs 0 and 4 need to
629 * contain valid channel mask values (which are in the range 0x0-0xf).
630 */
631 dst = retype(dst, BRW_REGISTER_TYPE_UB);
632 src = retype(src, BRW_REGISTER_TYPE_UB);
633 brw_push_insn_state(p);
634 brw_set_default_access_mode(p, BRW_ALIGN_1);
635 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
636 brw_OR(p, suboffset(vec1(dst), 21), vec1(src), suboffset(vec1(src), 16));
637 brw_pop_insn_state(p);
638 }
639
640 static void
641 generate_gs_get_instance_id(struct brw_codegen *p,
642 struct brw_reg dst)
643 {
644 /* We want to right shift R0.0 & R0.1 by GEN7_GS_PAYLOAD_INSTANCE_ID_SHIFT
645 * and store into dst.0 & dst.4. So generate the instruction:
646 *
647 * shr(8) dst<1> R0<1,4,0> GEN7_GS_PAYLOAD_INSTANCE_ID_SHIFT { align1 WE_normal 1Q }
648 */
649 brw_push_insn_state(p);
650 brw_set_default_access_mode(p, BRW_ALIGN_1);
651 dst = retype(dst, BRW_REGISTER_TYPE_UD);
652 struct brw_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
653 brw_SHR(p, dst, stride(r0, 1, 4, 0),
654 brw_imm_ud(GEN7_GS_PAYLOAD_INSTANCE_ID_SHIFT));
655 brw_pop_insn_state(p);
656 }
657
658 static void
659 generate_gs_ff_sync_set_primitives(struct brw_codegen *p,
660 struct brw_reg dst,
661 struct brw_reg src0,
662 struct brw_reg src1,
663 struct brw_reg src2)
664 {
665 brw_push_insn_state(p);
666 brw_set_default_access_mode(p, BRW_ALIGN_1);
667 /* Save src0 data in 16:31 bits of dst.0 */
668 brw_AND(p, suboffset(vec1(dst), 0), suboffset(vec1(src0), 0),
669 brw_imm_ud(0xffffu));
670 brw_SHL(p, suboffset(vec1(dst), 0), suboffset(vec1(dst), 0), brw_imm_ud(16));
671 /* Save src1 data in 0:15 bits of dst.0 */
672 brw_AND(p, suboffset(vec1(src2), 0), suboffset(vec1(src1), 0),
673 brw_imm_ud(0xffffu));
674 brw_OR(p, suboffset(vec1(dst), 0),
675 suboffset(vec1(dst), 0),
676 suboffset(vec1(src2), 0));
677 brw_pop_insn_state(p);
678 }
679
680 static void
681 generate_gs_ff_sync(struct brw_codegen *p,
682 vec4_instruction *inst,
683 struct brw_reg dst,
684 struct brw_reg src0,
685 struct brw_reg src1)
686 {
687 /* This opcode uses an implied MRF register for:
688 * - the header of the ff_sync message. And as such it is expected to be
689 * initialized to r0 before calling here.
690 * - the destination where we will write the allocated URB handle.
691 */
692 struct brw_reg header =
693 retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD);
694
695 /* Overwrite dword 0 of the header (SO vertices to write) and
696 * dword 1 (number of primitives written).
697 */
698 brw_push_insn_state(p);
699 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
700 brw_set_default_access_mode(p, BRW_ALIGN_1);
701 brw_MOV(p, get_element_ud(header, 0), get_element_ud(src1, 0));
702 brw_MOV(p, get_element_ud(header, 1), get_element_ud(src0, 0));
703 brw_pop_insn_state(p);
704
705 /* Allocate URB handle in dst */
706 brw_ff_sync(p,
707 dst,
708 0,
709 header,
710 1, /* allocate */
711 1, /* response length */
712 0 /* eot */);
713
714 /* Now put allocated urb handle in header.0 */
715 brw_push_insn_state(p);
716 brw_set_default_access_mode(p, BRW_ALIGN_1);
717 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
718 brw_MOV(p, get_element_ud(header, 0), get_element_ud(dst, 0));
719
720 /* src1 is not an immediate when we use transform feedback */
721 if (src1.file != BRW_IMMEDIATE_VALUE) {
722 brw_set_default_exec_size(p, BRW_EXECUTE_4);
723 brw_MOV(p, brw_vec4_grf(src1.nr, 0), brw_vec4_grf(dst.nr, 1));
724 }
725
726 brw_pop_insn_state(p);
727 }
728
729 static void
730 generate_gs_set_primitive_id(struct brw_codegen *p, struct brw_reg dst)
731 {
732 /* In gen6, PrimitiveID is delivered in R0.1 of the payload */
733 struct brw_reg src = brw_vec8_grf(0, 0);
734 brw_push_insn_state(p);
735 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
736 brw_set_default_access_mode(p, BRW_ALIGN_1);
737 brw_MOV(p, get_element_ud(dst, 0), get_element_ud(src, 1));
738 brw_pop_insn_state(p);
739 }
740
741 static void
742 generate_tcs_get_instance_id(struct brw_codegen *p, struct brw_reg dst)
743 {
744 const struct gen_device_info *devinfo = p->devinfo;
745 const bool ivb = devinfo->is_ivybridge || devinfo->is_baytrail;
746
747 /* "Instance Count" comes as part of the payload in r0.2 bits 23:17.
748 *
749 * Since we operate in SIMD4x2 mode, we need run half as many threads
750 * as necessary. So we assign (2i + 1, 2i) as the thread counts. We
751 * shift right by one less to accomplish the multiplication by two.
752 */
753 dst = retype(dst, BRW_REGISTER_TYPE_UD);
754 struct brw_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
755
756 brw_push_insn_state(p);
757 brw_set_default_access_mode(p, BRW_ALIGN_1);
758
759 const int mask = ivb ? INTEL_MASK(22, 16) : INTEL_MASK(23, 17);
760 const int shift = ivb ? 16 : 17;
761
762 brw_AND(p, get_element_ud(dst, 0), get_element_ud(r0, 2), brw_imm_ud(mask));
763 brw_SHR(p, get_element_ud(dst, 0), get_element_ud(dst, 0),
764 brw_imm_ud(shift - 1));
765 brw_ADD(p, get_element_ud(dst, 4), get_element_ud(dst, 0), brw_imm_ud(1));
766
767 brw_pop_insn_state(p);
768 }
769
770 static void
771 generate_tcs_urb_write(struct brw_codegen *p,
772 vec4_instruction *inst,
773 struct brw_reg urb_header)
774 {
775 const struct gen_device_info *devinfo = p->devinfo;
776
777 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
778 brw_set_dest(p, send, brw_null_reg());
779 brw_set_src0(p, send, urb_header);
780
781 brw_set_message_descriptor(p, send, BRW_SFID_URB,
782 inst->mlen /* mlen */, 0 /* rlen */,
783 true /* header */, false /* eot */);
784 brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_WRITE_OWORD);
785 brw_inst_set_urb_global_offset(devinfo, send, inst->offset);
786 if (inst->urb_write_flags & BRW_URB_WRITE_EOT) {
787 brw_inst_set_eot(devinfo, send, 1);
788 } else {
789 brw_inst_set_urb_per_slot_offset(devinfo, send, 1);
790 brw_inst_set_urb_swizzle_control(devinfo, send, BRW_URB_SWIZZLE_INTERLEAVE);
791 }
792
793 /* what happens to swizzles? */
794 }
795
796
797 static void
798 generate_tcs_input_urb_offsets(struct brw_codegen *p,
799 struct brw_reg dst,
800 struct brw_reg vertex,
801 struct brw_reg offset)
802 {
803 /* Generates an URB read/write message header for HS/DS operation.
804 * Inputs are a vertex index, and a byte offset from the beginning of
805 * the vertex. */
806
807 /* If `vertex` is not an immediate, we clobber a0.0 */
808
809 assert(vertex.file == BRW_IMMEDIATE_VALUE || vertex.file == BRW_GENERAL_REGISTER_FILE);
810 assert(vertex.type == BRW_REGISTER_TYPE_UD || vertex.type == BRW_REGISTER_TYPE_D);
811
812 assert(dst.file == BRW_GENERAL_REGISTER_FILE);
813
814 brw_push_insn_state(p);
815 brw_set_default_access_mode(p, BRW_ALIGN_1);
816 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
817 brw_MOV(p, dst, brw_imm_ud(0));
818
819 /* m0.5 bits 8-15 are channel enables */
820 brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud(0xff00));
821
822 /* m0.0-0.1: URB handles */
823 if (vertex.file == BRW_IMMEDIATE_VALUE) {
824 uint32_t vertex_index = vertex.ud;
825 struct brw_reg index_reg = brw_vec1_grf(
826 1 + (vertex_index >> 3), vertex_index & 7);
827
828 brw_MOV(p, vec2(get_element_ud(dst, 0)),
829 retype(index_reg, BRW_REGISTER_TYPE_UD));
830 } else {
831 /* Use indirect addressing. ICP Handles are DWords (single channels
832 * of a register) and start at g1.0.
833 *
834 * In order to start our region at g1.0, we add 8 to the vertex index,
835 * effectively skipping over the 8 channels in g0.0. This gives us a
836 * DWord offset to the ICP Handle.
837 *
838 * Indirect addressing works in terms of bytes, so we then multiply
839 * the DWord offset by 4 (by shifting left by 2).
840 */
841 struct brw_reg addr = brw_address_reg(0);
842
843 /* bottom half: m0.0 = g[1.0 + vertex.0]UD */
844 brw_ADD(p, addr, retype(get_element_ud(vertex, 0), BRW_REGISTER_TYPE_UW),
845 brw_imm_uw(0x8));
846 brw_SHL(p, addr, addr, brw_imm_uw(2));
847 brw_MOV(p, get_element_ud(dst, 0), deref_1ud(brw_indirect(0, 0), 0));
848
849 /* top half: m0.1 = g[1.0 + vertex.4]UD */
850 brw_ADD(p, addr, retype(get_element_ud(vertex, 4), BRW_REGISTER_TYPE_UW),
851 brw_imm_uw(0x8));
852 brw_SHL(p, addr, addr, brw_imm_uw(2));
853 brw_MOV(p, get_element_ud(dst, 1), deref_1ud(brw_indirect(0, 0), 0));
854 }
855
856 /* m0.3-0.4: 128bit-granular offsets into the URB from the handles */
857 if (offset.file != ARF)
858 brw_MOV(p, vec2(get_element_ud(dst, 3)), stride(offset, 4, 1, 0));
859
860 brw_pop_insn_state(p);
861 }
862
863
864 static void
865 generate_tcs_output_urb_offsets(struct brw_codegen *p,
866 struct brw_reg dst,
867 struct brw_reg write_mask,
868 struct brw_reg offset)
869 {
870 /* Generates an URB read/write message header for HS/DS operation, for the patch URB entry. */
871 assert(dst.file == BRW_GENERAL_REGISTER_FILE || dst.file == BRW_MESSAGE_REGISTER_FILE);
872
873 assert(write_mask.file == BRW_IMMEDIATE_VALUE);
874 assert(write_mask.type == BRW_REGISTER_TYPE_UD);
875
876 brw_push_insn_state(p);
877
878 brw_set_default_access_mode(p, BRW_ALIGN_1);
879 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
880 brw_MOV(p, dst, brw_imm_ud(0));
881
882 unsigned mask = write_mask.ud;
883
884 /* m0.5 bits 15:12 and 11:8 are channel enables */
885 brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud((mask << 8) | (mask << 12)));
886
887 /* HS patch URB handle is delivered in r0.0 */
888 struct brw_reg urb_handle = brw_vec1_grf(0, 0);
889
890 /* m0.0-0.1: URB handles */
891 brw_MOV(p, vec2(get_element_ud(dst, 0)),
892 retype(urb_handle, BRW_REGISTER_TYPE_UD));
893
894 /* m0.3-0.4: 128bit-granular offsets into the URB from the handles */
895 if (offset.file != ARF)
896 brw_MOV(p, vec2(get_element_ud(dst, 3)), stride(offset, 4, 1, 0));
897
898 brw_pop_insn_state(p);
899 }
900
901 static void
902 generate_tes_create_input_read_header(struct brw_codegen *p,
903 struct brw_reg dst)
904 {
905 brw_push_insn_state(p);
906 brw_set_default_access_mode(p, BRW_ALIGN_1);
907 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
908
909 /* Initialize the register to 0 */
910 brw_MOV(p, dst, brw_imm_ud(0));
911
912 /* Enable all the channels in m0.5 bits 15:8 */
913 brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud(0xff00));
914
915 /* Copy g1.3 (the patch URB handle) to m0.0 and m0.1. For safety,
916 * mask out irrelevant "Reserved" bits, as they're not marked MBZ.
917 */
918 brw_AND(p, vec2(get_element_ud(dst, 0)),
919 retype(brw_vec1_grf(1, 3), BRW_REGISTER_TYPE_UD),
920 brw_imm_ud(0x1fff));
921 brw_pop_insn_state(p);
922 }
923
924 static void
925 generate_tes_add_indirect_urb_offset(struct brw_codegen *p,
926 struct brw_reg dst,
927 struct brw_reg header,
928 struct brw_reg offset)
929 {
930 brw_push_insn_state(p);
931 brw_set_default_access_mode(p, BRW_ALIGN_1);
932 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
933
934 brw_MOV(p, dst, header);
935 /* m0.3-0.4: 128-bit-granular offsets into the URB from the handles */
936 brw_MOV(p, vec2(get_element_ud(dst, 3)), stride(offset, 4, 1, 0));
937
938 brw_pop_insn_state(p);
939 }
940
941 static void
942 generate_vec4_urb_read(struct brw_codegen *p,
943 vec4_instruction *inst,
944 struct brw_reg dst,
945 struct brw_reg header)
946 {
947 const struct gen_device_info *devinfo = p->devinfo;
948
949 assert(header.file == BRW_GENERAL_REGISTER_FILE);
950 assert(header.type == BRW_REGISTER_TYPE_UD);
951
952 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
953 brw_set_dest(p, send, dst);
954 brw_set_src0(p, send, header);
955
956 brw_set_message_descriptor(p, send, BRW_SFID_URB,
957 1 /* mlen */, 1 /* rlen */,
958 true /* header */, false /* eot */);
959 brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_READ_OWORD);
960 brw_inst_set_urb_swizzle_control(devinfo, send, BRW_URB_SWIZZLE_INTERLEAVE);
961 brw_inst_set_urb_per_slot_offset(devinfo, send, 1);
962
963 brw_inst_set_urb_global_offset(devinfo, send, inst->offset);
964 }
965
966 static void
967 generate_tcs_release_input(struct brw_codegen *p,
968 struct brw_reg header,
969 struct brw_reg vertex,
970 struct brw_reg is_unpaired)
971 {
972 const struct gen_device_info *devinfo = p->devinfo;
973
974 assert(vertex.file == BRW_IMMEDIATE_VALUE);
975 assert(vertex.type == BRW_REGISTER_TYPE_UD);
976
977 /* m0.0-0.1: URB handles */
978 struct brw_reg urb_handles =
979 retype(brw_vec2_grf(1 + (vertex.ud >> 3), vertex.ud & 7),
980 BRW_REGISTER_TYPE_UD);
981
982 brw_push_insn_state(p);
983 brw_set_default_access_mode(p, BRW_ALIGN_1);
984 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
985 brw_MOV(p, header, brw_imm_ud(0));
986 brw_MOV(p, vec2(get_element_ud(header, 0)), urb_handles);
987 brw_pop_insn_state(p);
988
989 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
990 brw_set_dest(p, send, brw_null_reg());
991 brw_set_src0(p, send, header);
992 brw_set_message_descriptor(p, send, BRW_SFID_URB,
993 1 /* mlen */, 0 /* rlen */,
994 true /* header */, false /* eot */);
995 brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_READ_OWORD);
996 brw_inst_set_urb_complete(devinfo, send, 1);
997 brw_inst_set_urb_swizzle_control(devinfo, send, is_unpaired.ud ?
998 BRW_URB_SWIZZLE_NONE :
999 BRW_URB_SWIZZLE_INTERLEAVE);
1000 }
1001
1002 static void
1003 generate_tcs_thread_end(struct brw_codegen *p, vec4_instruction *inst)
1004 {
1005 struct brw_reg header = brw_message_reg(inst->base_mrf);
1006
1007 brw_push_insn_state(p);
1008 brw_set_default_access_mode(p, BRW_ALIGN_1);
1009 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1010 brw_MOV(p, header, brw_imm_ud(0));
1011 brw_MOV(p, get_element_ud(header, 5), brw_imm_ud(WRITEMASK_X << 8));
1012 brw_MOV(p, get_element_ud(header, 0),
1013 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
1014 brw_MOV(p, brw_message_reg(inst->base_mrf + 1), brw_imm_ud(0u));
1015 brw_pop_insn_state(p);
1016
1017 brw_urb_WRITE(p,
1018 brw_null_reg(), /* dest */
1019 inst->base_mrf, /* starting mrf reg nr */
1020 header,
1021 BRW_URB_WRITE_EOT | BRW_URB_WRITE_OWORD |
1022 BRW_URB_WRITE_USE_CHANNEL_MASKS,
1023 inst->mlen,
1024 0, /* response len */
1025 0, /* urb destination offset */
1026 0);
1027 }
1028
1029 static void
1030 generate_tes_get_primitive_id(struct brw_codegen *p, struct brw_reg dst)
1031 {
1032 brw_push_insn_state(p);
1033 brw_set_default_access_mode(p, BRW_ALIGN_1);
1034 brw_MOV(p, dst, retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_D));
1035 brw_pop_insn_state(p);
1036 }
1037
1038 static void
1039 generate_tcs_get_primitive_id(struct brw_codegen *p, struct brw_reg dst)
1040 {
1041 brw_push_insn_state(p);
1042 brw_set_default_access_mode(p, BRW_ALIGN_1);
1043 brw_MOV(p, dst, retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
1044 brw_pop_insn_state(p);
1045 }
1046
1047 static void
1048 generate_tcs_create_barrier_header(struct brw_codegen *p,
1049 struct brw_vue_prog_data *prog_data,
1050 struct brw_reg dst)
1051 {
1052 const struct gen_device_info *devinfo = p->devinfo;
1053 const bool ivb = devinfo->is_ivybridge || devinfo->is_baytrail;
1054 struct brw_reg m0_2 = get_element_ud(dst, 2);
1055 unsigned instances = ((struct brw_tcs_prog_data *) prog_data)->instances;
1056
1057 brw_push_insn_state(p);
1058 brw_set_default_access_mode(p, BRW_ALIGN_1);
1059 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1060
1061 /* Zero the message header */
1062 brw_MOV(p, retype(dst, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
1063
1064 /* Copy "Barrier ID" from r0.2, bits 16:13 (Gen7.5+) or 15:12 (Gen7) */
1065 brw_AND(p, m0_2,
1066 retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
1067 brw_imm_ud(ivb ? INTEL_MASK(15, 12) : INTEL_MASK(16, 13)));
1068
1069 /* Shift it up to bits 27:24. */
1070 brw_SHL(p, m0_2, get_element_ud(dst, 2), brw_imm_ud(ivb ? 12 : 11));
1071
1072 /* Set the Barrier Count and the enable bit */
1073 brw_OR(p, m0_2, m0_2, brw_imm_ud(instances << 9 | (1 << 15)));
1074
1075 brw_pop_insn_state(p);
1076 }
1077
1078 static void
1079 generate_oword_dual_block_offsets(struct brw_codegen *p,
1080 struct brw_reg m1,
1081 struct brw_reg index)
1082 {
1083 int second_vertex_offset;
1084
1085 if (p->devinfo->gen >= 6)
1086 second_vertex_offset = 1;
1087 else
1088 second_vertex_offset = 16;
1089
1090 m1 = retype(m1, BRW_REGISTER_TYPE_D);
1091
1092 /* Set up M1 (message payload). Only the block offsets in M1.0 and
1093 * M1.4 are used, and the rest are ignored.
1094 */
1095 struct brw_reg m1_0 = suboffset(vec1(m1), 0);
1096 struct brw_reg m1_4 = suboffset(vec1(m1), 4);
1097 struct brw_reg index_0 = suboffset(vec1(index), 0);
1098 struct brw_reg index_4 = suboffset(vec1(index), 4);
1099
1100 brw_push_insn_state(p);
1101 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1102 brw_set_default_access_mode(p, BRW_ALIGN_1);
1103
1104 brw_MOV(p, m1_0, index_0);
1105
1106 if (index.file == BRW_IMMEDIATE_VALUE) {
1107 index_4.ud += second_vertex_offset;
1108 brw_MOV(p, m1_4, index_4);
1109 } else {
1110 brw_ADD(p, m1_4, index_4, brw_imm_d(second_vertex_offset));
1111 }
1112
1113 brw_pop_insn_state(p);
1114 }
1115
1116 static void
1117 generate_unpack_flags(struct brw_codegen *p,
1118 struct brw_reg dst)
1119 {
1120 brw_push_insn_state(p);
1121 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1122 brw_set_default_access_mode(p, BRW_ALIGN_1);
1123
1124 struct brw_reg flags = brw_flag_reg(0, 0);
1125 struct brw_reg dst_0 = suboffset(vec1(dst), 0);
1126 struct brw_reg dst_4 = suboffset(vec1(dst), 4);
1127
1128 brw_AND(p, dst_0, flags, brw_imm_ud(0x0f));
1129 brw_AND(p, dst_4, flags, brw_imm_ud(0xf0));
1130 brw_SHR(p, dst_4, dst_4, brw_imm_ud(4));
1131
1132 brw_pop_insn_state(p);
1133 }
1134
1135 static void
1136 generate_scratch_read(struct brw_codegen *p,
1137 vec4_instruction *inst,
1138 struct brw_reg dst,
1139 struct brw_reg index)
1140 {
1141 const struct gen_device_info *devinfo = p->devinfo;
1142 struct brw_reg header = brw_vec8_grf(0, 0);
1143
1144 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1145
1146 generate_oword_dual_block_offsets(p, brw_message_reg(inst->base_mrf + 1),
1147 index);
1148
1149 uint32_t msg_type;
1150
1151 if (devinfo->gen >= 6)
1152 msg_type = GEN6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1153 else if (devinfo->gen == 5 || devinfo->is_g4x)
1154 msg_type = G45_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1155 else
1156 msg_type = BRW_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1157
1158 const unsigned target_cache =
1159 devinfo->gen >= 7 ? GEN7_SFID_DATAPORT_DATA_CACHE :
1160 devinfo->gen >= 6 ? GEN6_SFID_DATAPORT_RENDER_CACHE :
1161 BRW_DATAPORT_READ_TARGET_RENDER_CACHE;
1162
1163 /* Each of the 8 channel enables is considered for whether each
1164 * dword is written.
1165 */
1166 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1167 brw_set_dest(p, send, dst);
1168 brw_set_src0(p, send, header);
1169 if (devinfo->gen < 6)
1170 brw_inst_set_cond_modifier(devinfo, send, inst->base_mrf);
1171 brw_set_dp_read_message(p, send,
1172 brw_scratch_surface_idx(p),
1173 BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD,
1174 msg_type, target_cache,
1175 2, /* mlen */
1176 true, /* header_present */
1177 1 /* rlen */);
1178 }
1179
1180 static void
1181 generate_scratch_write(struct brw_codegen *p,
1182 vec4_instruction *inst,
1183 struct brw_reg dst,
1184 struct brw_reg src,
1185 struct brw_reg index)
1186 {
1187 const struct gen_device_info *devinfo = p->devinfo;
1188 const unsigned target_cache =
1189 (devinfo->gen >= 7 ? GEN7_SFID_DATAPORT_DATA_CACHE :
1190 devinfo->gen >= 6 ? GEN6_SFID_DATAPORT_RENDER_CACHE :
1191 BRW_DATAPORT_READ_TARGET_RENDER_CACHE);
1192 struct brw_reg header = brw_vec8_grf(0, 0);
1193 bool write_commit;
1194
1195 /* If the instruction is predicated, we'll predicate the send, not
1196 * the header setup.
1197 */
1198 brw_set_default_predicate_control(p, false);
1199
1200 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1201
1202 generate_oword_dual_block_offsets(p, brw_message_reg(inst->base_mrf + 1),
1203 index);
1204
1205 brw_MOV(p,
1206 retype(brw_message_reg(inst->base_mrf + 2), BRW_REGISTER_TYPE_D),
1207 retype(src, BRW_REGISTER_TYPE_D));
1208
1209 uint32_t msg_type;
1210
1211 if (devinfo->gen >= 7)
1212 msg_type = GEN7_DATAPORT_DC_OWORD_DUAL_BLOCK_WRITE;
1213 else if (devinfo->gen == 6)
1214 msg_type = GEN6_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE;
1215 else
1216 msg_type = BRW_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE;
1217
1218 brw_set_default_predicate_control(p, inst->predicate);
1219
1220 /* Pre-gen6, we have to specify write commits to ensure ordering
1221 * between reads and writes within a thread. Afterwards, that's
1222 * guaranteed and write commits only matter for inter-thread
1223 * synchronization.
1224 */
1225 if (devinfo->gen >= 6) {
1226 write_commit = false;
1227 } else {
1228 /* The visitor set up our destination register to be g0. This
1229 * means that when the next read comes along, we will end up
1230 * reading from g0 and causing a block on the write commit. For
1231 * write-after-read, we are relying on the value of the previous
1232 * read being used (and thus blocking on completion) before our
1233 * write is executed. This means we have to be careful in
1234 * instruction scheduling to not violate this assumption.
1235 */
1236 write_commit = true;
1237 }
1238
1239 /* Each of the 8 channel enables is considered for whether each
1240 * dword is written.
1241 */
1242 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1243 brw_set_dest(p, send, dst);
1244 brw_set_src0(p, send, header);
1245 if (devinfo->gen < 6)
1246 brw_inst_set_cond_modifier(p->devinfo, send, inst->base_mrf);
1247 brw_set_dp_write_message(p, send,
1248 brw_scratch_surface_idx(p),
1249 BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD,
1250 msg_type,
1251 target_cache,
1252 3, /* mlen */
1253 true, /* header present */
1254 false, /* not a render target write */
1255 write_commit, /* rlen */
1256 false, /* eot */
1257 write_commit);
1258 }
1259
1260 static void
1261 generate_pull_constant_load(struct brw_codegen *p,
1262 struct brw_vue_prog_data *prog_data,
1263 vec4_instruction *inst,
1264 struct brw_reg dst,
1265 struct brw_reg index,
1266 struct brw_reg offset)
1267 {
1268 const struct gen_device_info *devinfo = p->devinfo;
1269 const unsigned target_cache =
1270 (devinfo->gen >= 6 ? GEN6_SFID_DATAPORT_SAMPLER_CACHE :
1271 BRW_DATAPORT_READ_TARGET_DATA_CACHE);
1272 assert(index.file == BRW_IMMEDIATE_VALUE &&
1273 index.type == BRW_REGISTER_TYPE_UD);
1274 uint32_t surf_index = index.ud;
1275
1276 struct brw_reg header = brw_vec8_grf(0, 0);
1277
1278 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1279
1280 if (devinfo->gen >= 6) {
1281 if (offset.file == BRW_IMMEDIATE_VALUE) {
1282 brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1),
1283 BRW_REGISTER_TYPE_D),
1284 brw_imm_d(offset.ud >> 4));
1285 } else {
1286 brw_SHR(p, retype(brw_message_reg(inst->base_mrf + 1),
1287 BRW_REGISTER_TYPE_D),
1288 offset, brw_imm_d(4));
1289 }
1290 } else {
1291 brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1),
1292 BRW_REGISTER_TYPE_D),
1293 offset);
1294 }
1295
1296 uint32_t msg_type;
1297
1298 if (devinfo->gen >= 6)
1299 msg_type = GEN6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1300 else if (devinfo->gen == 5 || devinfo->is_g4x)
1301 msg_type = G45_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1302 else
1303 msg_type = BRW_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1304
1305 /* Each of the 8 channel enables is considered for whether each
1306 * dword is written.
1307 */
1308 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1309 brw_set_dest(p, send, dst);
1310 brw_set_src0(p, send, header);
1311 if (devinfo->gen < 6)
1312 brw_inst_set_cond_modifier(p->devinfo, send, inst->base_mrf);
1313 brw_set_dp_read_message(p, send,
1314 surf_index,
1315 BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD,
1316 msg_type,
1317 target_cache,
1318 2, /* mlen */
1319 true, /* header_present */
1320 1 /* rlen */);
1321 }
1322
1323 static void
1324 generate_get_buffer_size(struct brw_codegen *p,
1325 struct brw_vue_prog_data *prog_data,
1326 vec4_instruction *inst,
1327 struct brw_reg dst,
1328 struct brw_reg src,
1329 struct brw_reg surf_index)
1330 {
1331 assert(p->devinfo->gen >= 7);
1332 assert(surf_index.type == BRW_REGISTER_TYPE_UD &&
1333 surf_index.file == BRW_IMMEDIATE_VALUE);
1334
1335 brw_SAMPLE(p,
1336 dst,
1337 inst->base_mrf,
1338 src,
1339 surf_index.ud,
1340 0,
1341 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
1342 1, /* response length */
1343 inst->mlen,
1344 inst->header_size > 0,
1345 BRW_SAMPLER_SIMD_MODE_SIMD4X2,
1346 BRW_SAMPLER_RETURN_FORMAT_SINT32);
1347
1348 brw_mark_surface_used(&prog_data->base, surf_index.ud);
1349 }
1350
1351 static void
1352 generate_pull_constant_load_gen7(struct brw_codegen *p,
1353 struct brw_vue_prog_data *prog_data,
1354 vec4_instruction *inst,
1355 struct brw_reg dst,
1356 struct brw_reg surf_index,
1357 struct brw_reg offset)
1358 {
1359 assert(surf_index.type == BRW_REGISTER_TYPE_UD);
1360
1361 if (surf_index.file == BRW_IMMEDIATE_VALUE) {
1362
1363 brw_inst *insn = brw_next_insn(p, BRW_OPCODE_SEND);
1364 brw_set_dest(p, insn, dst);
1365 brw_set_src0(p, insn, offset);
1366 brw_set_sampler_message(p, insn,
1367 surf_index.ud,
1368 0, /* LD message ignores sampler unit */
1369 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1370 1, /* rlen */
1371 inst->mlen,
1372 inst->header_size != 0,
1373 BRW_SAMPLER_SIMD_MODE_SIMD4X2,
1374 0);
1375
1376 brw_mark_surface_used(&prog_data->base, surf_index.ud);
1377
1378 } else {
1379
1380 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1381
1382 brw_push_insn_state(p);
1383 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1384 brw_set_default_access_mode(p, BRW_ALIGN_1);
1385
1386 /* a0.0 = surf_index & 0xff */
1387 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1388 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1389 brw_set_dest(p, insn_and, addr);
1390 brw_set_src0(p, insn_and, vec1(retype(surf_index, BRW_REGISTER_TYPE_UD)));
1391 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1392
1393 brw_pop_insn_state(p);
1394
1395 /* dst = send(offset, a0.0 | <descriptor>) */
1396 brw_inst *insn = brw_send_indirect_message(
1397 p, BRW_SFID_SAMPLER, dst, offset, addr);
1398 brw_set_sampler_message(p, insn,
1399 0 /* surface */,
1400 0 /* sampler */,
1401 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1402 1 /* rlen */,
1403 inst->mlen,
1404 inst->header_size != 0,
1405 BRW_SAMPLER_SIMD_MODE_SIMD4X2,
1406 0);
1407 }
1408 }
1409
1410 static void
1411 generate_set_simd4x2_header_gen9(struct brw_codegen *p,
1412 vec4_instruction *inst,
1413 struct brw_reg dst)
1414 {
1415 brw_push_insn_state(p);
1416 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1417
1418 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1419 brw_MOV(p, vec8(dst), retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
1420
1421 brw_set_default_access_mode(p, BRW_ALIGN_1);
1422 brw_MOV(p, get_element_ud(dst, 2),
1423 brw_imm_ud(GEN9_SAMPLER_SIMD_MODE_EXTENSION_SIMD4X2));
1424
1425 brw_pop_insn_state(p);
1426 }
1427
1428 static void
1429 generate_mov_indirect(struct brw_codegen *p,
1430 vec4_instruction *inst,
1431 struct brw_reg dst, struct brw_reg reg,
1432 struct brw_reg indirect, struct brw_reg length)
1433 {
1434 assert(indirect.type == BRW_REGISTER_TYPE_UD);
1435 assert(p->devinfo->gen >= 6);
1436
1437 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr * (REG_SIZE / 2);
1438
1439 /* This instruction acts in align1 mode */
1440 assert(dst.writemask == WRITEMASK_XYZW);
1441
1442 if (indirect.file == BRW_IMMEDIATE_VALUE) {
1443 imm_byte_offset += indirect.ud;
1444
1445 reg.nr = imm_byte_offset / REG_SIZE;
1446 reg.subnr = (imm_byte_offset / (REG_SIZE / 2)) % 2;
1447 unsigned shift = (imm_byte_offset / 4) % 4;
1448 reg.swizzle += BRW_SWIZZLE4(shift, shift, shift, shift);
1449
1450 brw_MOV(p, dst, reg);
1451 } else {
1452 brw_push_insn_state(p);
1453 brw_set_default_access_mode(p, BRW_ALIGN_1);
1454 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1455
1456 struct brw_reg addr = vec8(brw_address_reg(0));
1457
1458 /* We need to move the indirect value into the address register. In
1459 * order to make things make some sense, we want to respect at least the
1460 * X component of the swizzle. In order to do that, we need to convert
1461 * the subnr (probably 0) to an align1 subnr and add in the swizzle.
1462 */
1463 assert(brw_is_single_value_swizzle(indirect.swizzle));
1464 indirect.subnr = (indirect.subnr * 4 + BRW_GET_SWZ(indirect.swizzle, 0));
1465
1466 /* We then use a region of <8,4,0>:uw to pick off the first 2 bytes of
1467 * the indirect and splat it out to all four channels of the given half
1468 * of a0.
1469 */
1470 indirect.subnr *= 2;
1471 indirect = stride(retype(indirect, BRW_REGISTER_TYPE_UW), 8, 4, 0);
1472 brw_ADD(p, addr, indirect, brw_imm_uw(imm_byte_offset));
1473
1474 /* Now we need to incorporate the swizzle from the source register */
1475 if (reg.swizzle != BRW_SWIZZLE_XXXX) {
1476 uint32_t uv_swiz = BRW_GET_SWZ(reg.swizzle, 0) << 2 |
1477 BRW_GET_SWZ(reg.swizzle, 1) << 6 |
1478 BRW_GET_SWZ(reg.swizzle, 2) << 10 |
1479 BRW_GET_SWZ(reg.swizzle, 3) << 14;
1480 uv_swiz |= uv_swiz << 16;
1481
1482 brw_ADD(p, addr, addr, brw_imm_uv(uv_swiz));
1483 }
1484
1485 brw_MOV(p, dst, retype(brw_VxH_indirect(0, 0), reg.type));
1486
1487 brw_pop_insn_state(p);
1488 }
1489 }
1490
1491 static void
1492 generate_code(struct brw_codegen *p,
1493 const struct brw_compiler *compiler,
1494 void *log_data,
1495 const nir_shader *nir,
1496 struct brw_vue_prog_data *prog_data,
1497 const struct cfg_t *cfg)
1498 {
1499 const struct gen_device_info *devinfo = p->devinfo;
1500 const char *stage_abbrev = _mesa_shader_stage_to_abbrev(nir->info.stage);
1501 bool debug_flag = INTEL_DEBUG &
1502 intel_debug_flag_for_shader_stage(nir->info.stage);
1503 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1504 int spill_count = 0, fill_count = 0;
1505 int loop_count = 0;
1506
1507 foreach_block_and_inst (block, vec4_instruction, inst, cfg) {
1508 struct brw_reg src[3], dst;
1509
1510 if (unlikely(debug_flag))
1511 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1512
1513 for (unsigned int i = 0; i < 3; i++) {
1514 src[i] = inst->src[i].as_brw_reg();
1515 }
1516 dst = inst->dst.as_brw_reg();
1517
1518 brw_set_default_predicate_control(p, inst->predicate);
1519 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1520 brw_set_default_flag_reg(p, 0, inst->flag_subreg);
1521 brw_set_default_saturate(p, inst->saturate);
1522 brw_set_default_mask_control(p, inst->force_writemask_all);
1523 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1524
1525 assert(inst->group % inst->exec_size == 0);
1526 assert(inst->group % 4 == 0);
1527
1528 /* There are some instructions where the destination is 64-bit
1529 * but we retype it to a smaller type. In that case, we cannot
1530 * double the exec_size.
1531 */
1532 const bool is_df = (get_exec_type_size(inst) == 8 ||
1533 inst->dst.type == BRW_REGISTER_TYPE_DF) &&
1534 inst->opcode != VEC4_OPCODE_PICK_LOW_32BIT &&
1535 inst->opcode != VEC4_OPCODE_PICK_HIGH_32BIT &&
1536 inst->opcode != VEC4_OPCODE_SET_LOW_32BIT &&
1537 inst->opcode != VEC4_OPCODE_SET_HIGH_32BIT;
1538
1539 unsigned exec_size = inst->exec_size;
1540 if (devinfo->gen == 7 && !devinfo->is_haswell && is_df)
1541 exec_size *= 2;
1542
1543 brw_set_default_exec_size(p, cvt(exec_size) - 1);
1544
1545 if (!inst->force_writemask_all)
1546 brw_set_default_group(p, inst->group);
1547
1548 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1549 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1550
1551 unsigned pre_emit_nr_insn = p->nr_insn;
1552
1553 switch (inst->opcode) {
1554 case VEC4_OPCODE_UNPACK_UNIFORM:
1555 case BRW_OPCODE_MOV:
1556 brw_MOV(p, dst, src[0]);
1557 break;
1558 case BRW_OPCODE_ADD:
1559 brw_ADD(p, dst, src[0], src[1]);
1560 break;
1561 case BRW_OPCODE_MUL:
1562 brw_MUL(p, dst, src[0], src[1]);
1563 break;
1564 case BRW_OPCODE_MACH:
1565 brw_MACH(p, dst, src[0], src[1]);
1566 break;
1567
1568 case BRW_OPCODE_MAD:
1569 assert(devinfo->gen >= 6);
1570 brw_MAD(p, dst, src[0], src[1], src[2]);
1571 break;
1572
1573 case BRW_OPCODE_FRC:
1574 brw_FRC(p, dst, src[0]);
1575 break;
1576 case BRW_OPCODE_RNDD:
1577 brw_RNDD(p, dst, src[0]);
1578 break;
1579 case BRW_OPCODE_RNDE:
1580 brw_RNDE(p, dst, src[0]);
1581 break;
1582 case BRW_OPCODE_RNDZ:
1583 brw_RNDZ(p, dst, src[0]);
1584 break;
1585
1586 case BRW_OPCODE_AND:
1587 brw_AND(p, dst, src[0], src[1]);
1588 break;
1589 case BRW_OPCODE_OR:
1590 brw_OR(p, dst, src[0], src[1]);
1591 break;
1592 case BRW_OPCODE_XOR:
1593 brw_XOR(p, dst, src[0], src[1]);
1594 break;
1595 case BRW_OPCODE_NOT:
1596 brw_NOT(p, dst, src[0]);
1597 break;
1598 case BRW_OPCODE_ASR:
1599 brw_ASR(p, dst, src[0], src[1]);
1600 break;
1601 case BRW_OPCODE_SHR:
1602 brw_SHR(p, dst, src[0], src[1]);
1603 break;
1604 case BRW_OPCODE_SHL:
1605 brw_SHL(p, dst, src[0], src[1]);
1606 break;
1607
1608 case BRW_OPCODE_CMP:
1609 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1610 break;
1611 case BRW_OPCODE_SEL:
1612 brw_SEL(p, dst, src[0], src[1]);
1613 break;
1614
1615 case BRW_OPCODE_DPH:
1616 brw_DPH(p, dst, src[0], src[1]);
1617 break;
1618
1619 case BRW_OPCODE_DP4:
1620 brw_DP4(p, dst, src[0], src[1]);
1621 break;
1622
1623 case BRW_OPCODE_DP3:
1624 brw_DP3(p, dst, src[0], src[1]);
1625 break;
1626
1627 case BRW_OPCODE_DP2:
1628 brw_DP2(p, dst, src[0], src[1]);
1629 break;
1630
1631 case BRW_OPCODE_F32TO16:
1632 assert(devinfo->gen >= 7);
1633 brw_F32TO16(p, dst, src[0]);
1634 break;
1635
1636 case BRW_OPCODE_F16TO32:
1637 assert(devinfo->gen >= 7);
1638 brw_F16TO32(p, dst, src[0]);
1639 break;
1640
1641 case BRW_OPCODE_LRP:
1642 assert(devinfo->gen >= 6);
1643 brw_LRP(p, dst, src[0], src[1], src[2]);
1644 break;
1645
1646 case BRW_OPCODE_BFREV:
1647 assert(devinfo->gen >= 7);
1648 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1649 retype(src[0], BRW_REGISTER_TYPE_UD));
1650 break;
1651 case BRW_OPCODE_FBH:
1652 assert(devinfo->gen >= 7);
1653 brw_FBH(p, retype(dst, src[0].type), src[0]);
1654 break;
1655 case BRW_OPCODE_FBL:
1656 assert(devinfo->gen >= 7);
1657 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
1658 retype(src[0], BRW_REGISTER_TYPE_UD));
1659 break;
1660 case BRW_OPCODE_LZD:
1661 brw_LZD(p, dst, src[0]);
1662 break;
1663 case BRW_OPCODE_CBIT:
1664 assert(devinfo->gen >= 7);
1665 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
1666 retype(src[0], BRW_REGISTER_TYPE_UD));
1667 break;
1668 case BRW_OPCODE_ADDC:
1669 assert(devinfo->gen >= 7);
1670 brw_ADDC(p, dst, src[0], src[1]);
1671 break;
1672 case BRW_OPCODE_SUBB:
1673 assert(devinfo->gen >= 7);
1674 brw_SUBB(p, dst, src[0], src[1]);
1675 break;
1676 case BRW_OPCODE_MAC:
1677 brw_MAC(p, dst, src[0], src[1]);
1678 break;
1679
1680 case BRW_OPCODE_BFE:
1681 assert(devinfo->gen >= 7);
1682 brw_BFE(p, dst, src[0], src[1], src[2]);
1683 break;
1684
1685 case BRW_OPCODE_BFI1:
1686 assert(devinfo->gen >= 7);
1687 brw_BFI1(p, dst, src[0], src[1]);
1688 break;
1689 case BRW_OPCODE_BFI2:
1690 assert(devinfo->gen >= 7);
1691 brw_BFI2(p, dst, src[0], src[1], src[2]);
1692 break;
1693
1694 case BRW_OPCODE_IF:
1695 if (!inst->src[0].is_null()) {
1696 /* The instruction has an embedded compare (only allowed on gen6) */
1697 assert(devinfo->gen == 6);
1698 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
1699 } else {
1700 brw_inst *if_inst = brw_IF(p, BRW_EXECUTE_8);
1701 brw_inst_set_pred_control(p->devinfo, if_inst, inst->predicate);
1702 }
1703 break;
1704
1705 case BRW_OPCODE_ELSE:
1706 brw_ELSE(p);
1707 break;
1708 case BRW_OPCODE_ENDIF:
1709 brw_ENDIF(p);
1710 break;
1711
1712 case BRW_OPCODE_DO:
1713 brw_DO(p, BRW_EXECUTE_8);
1714 break;
1715
1716 case BRW_OPCODE_BREAK:
1717 brw_BREAK(p);
1718 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
1719 break;
1720 case BRW_OPCODE_CONTINUE:
1721 brw_CONT(p);
1722 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
1723 break;
1724
1725 case BRW_OPCODE_WHILE:
1726 brw_WHILE(p);
1727 loop_count++;
1728 break;
1729
1730 case SHADER_OPCODE_RCP:
1731 case SHADER_OPCODE_RSQ:
1732 case SHADER_OPCODE_SQRT:
1733 case SHADER_OPCODE_EXP2:
1734 case SHADER_OPCODE_LOG2:
1735 case SHADER_OPCODE_SIN:
1736 case SHADER_OPCODE_COS:
1737 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1738 if (devinfo->gen >= 7) {
1739 gen6_math(p, dst, brw_math_function(inst->opcode), src[0],
1740 brw_null_reg());
1741 } else if (devinfo->gen == 6) {
1742 generate_math_gen6(p, inst, dst, src[0], brw_null_reg());
1743 } else {
1744 generate_math1_gen4(p, inst, dst, src[0]);
1745 }
1746 break;
1747
1748 case SHADER_OPCODE_POW:
1749 case SHADER_OPCODE_INT_QUOTIENT:
1750 case SHADER_OPCODE_INT_REMAINDER:
1751 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1752 if (devinfo->gen >= 7) {
1753 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
1754 } else if (devinfo->gen == 6) {
1755 generate_math_gen6(p, inst, dst, src[0], src[1]);
1756 } else {
1757 generate_math2_gen4(p, inst, dst, src[0], src[1]);
1758 }
1759 break;
1760
1761 case SHADER_OPCODE_TEX:
1762 case SHADER_OPCODE_TXD:
1763 case SHADER_OPCODE_TXF:
1764 case SHADER_OPCODE_TXF_CMS:
1765 case SHADER_OPCODE_TXF_CMS_W:
1766 case SHADER_OPCODE_TXF_MCS:
1767 case SHADER_OPCODE_TXL:
1768 case SHADER_OPCODE_TXS:
1769 case SHADER_OPCODE_TG4:
1770 case SHADER_OPCODE_TG4_OFFSET:
1771 case SHADER_OPCODE_SAMPLEINFO:
1772 generate_tex(p, prog_data, nir->info.stage,
1773 inst, dst, src[0], src[1], src[2]);
1774 break;
1775
1776 case VS_OPCODE_URB_WRITE:
1777 generate_vs_urb_write(p, inst);
1778 break;
1779
1780 case SHADER_OPCODE_GEN4_SCRATCH_READ:
1781 generate_scratch_read(p, inst, dst, src[0]);
1782 fill_count++;
1783 break;
1784
1785 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
1786 generate_scratch_write(p, inst, dst, src[0], src[1]);
1787 spill_count++;
1788 break;
1789
1790 case VS_OPCODE_PULL_CONSTANT_LOAD:
1791 generate_pull_constant_load(p, prog_data, inst, dst, src[0], src[1]);
1792 break;
1793
1794 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
1795 generate_pull_constant_load_gen7(p, prog_data, inst, dst, src[0], src[1]);
1796 break;
1797
1798 case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
1799 generate_set_simd4x2_header_gen9(p, inst, dst);
1800 break;
1801
1802
1803 case VS_OPCODE_GET_BUFFER_SIZE:
1804 generate_get_buffer_size(p, prog_data, inst, dst, src[0], src[1]);
1805 break;
1806
1807 case GS_OPCODE_URB_WRITE:
1808 generate_gs_urb_write(p, inst);
1809 break;
1810
1811 case GS_OPCODE_URB_WRITE_ALLOCATE:
1812 generate_gs_urb_write_allocate(p, inst);
1813 break;
1814
1815 case GS_OPCODE_SVB_WRITE:
1816 generate_gs_svb_write(p, prog_data, inst, dst, src[0], src[1]);
1817 break;
1818
1819 case GS_OPCODE_SVB_SET_DST_INDEX:
1820 generate_gs_svb_set_destination_index(p, inst, dst, src[0]);
1821 break;
1822
1823 case GS_OPCODE_THREAD_END:
1824 generate_gs_thread_end(p, inst);
1825 break;
1826
1827 case GS_OPCODE_SET_WRITE_OFFSET:
1828 generate_gs_set_write_offset(p, dst, src[0], src[1]);
1829 break;
1830
1831 case GS_OPCODE_SET_VERTEX_COUNT:
1832 generate_gs_set_vertex_count(p, dst, src[0]);
1833 break;
1834
1835 case GS_OPCODE_FF_SYNC:
1836 generate_gs_ff_sync(p, inst, dst, src[0], src[1]);
1837 break;
1838
1839 case GS_OPCODE_FF_SYNC_SET_PRIMITIVES:
1840 generate_gs_ff_sync_set_primitives(p, dst, src[0], src[1], src[2]);
1841 break;
1842
1843 case GS_OPCODE_SET_PRIMITIVE_ID:
1844 generate_gs_set_primitive_id(p, dst);
1845 break;
1846
1847 case GS_OPCODE_SET_DWORD_2:
1848 generate_gs_set_dword_2(p, dst, src[0]);
1849 break;
1850
1851 case GS_OPCODE_PREPARE_CHANNEL_MASKS:
1852 generate_gs_prepare_channel_masks(p, dst);
1853 break;
1854
1855 case GS_OPCODE_SET_CHANNEL_MASKS:
1856 generate_gs_set_channel_masks(p, dst, src[0]);
1857 break;
1858
1859 case GS_OPCODE_GET_INSTANCE_ID:
1860 generate_gs_get_instance_id(p, dst);
1861 break;
1862
1863 case SHADER_OPCODE_SHADER_TIME_ADD:
1864 brw_shader_time_add(p, src[0],
1865 prog_data->base.binding_table.shader_time_start);
1866 brw_mark_surface_used(&prog_data->base,
1867 prog_data->base.binding_table.shader_time_start);
1868 break;
1869
1870 case SHADER_OPCODE_UNTYPED_ATOMIC:
1871 assert(src[2].file == BRW_IMMEDIATE_VALUE);
1872 brw_untyped_atomic(p, dst, src[0], src[1], src[2].ud, inst->mlen,
1873 !inst->dst.is_null());
1874 break;
1875
1876 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
1877 assert(src[2].file == BRW_IMMEDIATE_VALUE);
1878 brw_untyped_surface_read(p, dst, src[0], src[1], inst->mlen,
1879 src[2].ud);
1880 break;
1881
1882 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
1883 assert(src[2].file == BRW_IMMEDIATE_VALUE);
1884 brw_untyped_surface_write(p, src[0], src[1], inst->mlen,
1885 src[2].ud);
1886 break;
1887
1888 case SHADER_OPCODE_TYPED_ATOMIC:
1889 assert(src[2].file == BRW_IMMEDIATE_VALUE);
1890 brw_typed_atomic(p, dst, src[0], src[1], src[2].ud, inst->mlen,
1891 !inst->dst.is_null());
1892 break;
1893
1894 case SHADER_OPCODE_TYPED_SURFACE_READ:
1895 assert(src[2].file == BRW_IMMEDIATE_VALUE);
1896 brw_typed_surface_read(p, dst, src[0], src[1], inst->mlen,
1897 src[2].ud);
1898 break;
1899
1900 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
1901 assert(src[2].file == BRW_IMMEDIATE_VALUE);
1902 brw_typed_surface_write(p, src[0], src[1], inst->mlen,
1903 src[2].ud);
1904 break;
1905
1906 case SHADER_OPCODE_MEMORY_FENCE:
1907 brw_memory_fence(p, dst);
1908 break;
1909
1910 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
1911 const struct brw_reg mask =
1912 brw_stage_has_packed_dispatch(devinfo, nir->info.stage,
1913 &prog_data->base) ? brw_imm_ud(~0u) :
1914 brw_dmask_reg();
1915 brw_find_live_channel(p, dst, mask);
1916 break;
1917 }
1918
1919 case SHADER_OPCODE_BROADCAST:
1920 assert(inst->force_writemask_all);
1921 brw_broadcast(p, dst, src[0], src[1]);
1922 break;
1923
1924 case VS_OPCODE_UNPACK_FLAGS_SIMD4X2:
1925 generate_unpack_flags(p, dst);
1926 break;
1927
1928 case VEC4_OPCODE_MOV_BYTES: {
1929 /* Moves the low byte from each channel, using an Align1 access mode
1930 * and a <4,1,0> source region.
1931 */
1932 assert(src[0].type == BRW_REGISTER_TYPE_UB ||
1933 src[0].type == BRW_REGISTER_TYPE_B);
1934
1935 brw_set_default_access_mode(p, BRW_ALIGN_1);
1936 src[0].vstride = BRW_VERTICAL_STRIDE_4;
1937 src[0].width = BRW_WIDTH_1;
1938 src[0].hstride = BRW_HORIZONTAL_STRIDE_0;
1939 brw_MOV(p, dst, src[0]);
1940 brw_set_default_access_mode(p, BRW_ALIGN_16);
1941 break;
1942 }
1943
1944 case VEC4_OPCODE_DOUBLE_TO_F32:
1945 case VEC4_OPCODE_DOUBLE_TO_D32:
1946 case VEC4_OPCODE_DOUBLE_TO_U32: {
1947 assert(type_sz(src[0].type) == 8);
1948 assert(type_sz(dst.type) == 8);
1949
1950 brw_reg_type dst_type;
1951
1952 switch (inst->opcode) {
1953 case VEC4_OPCODE_DOUBLE_TO_F32:
1954 dst_type = BRW_REGISTER_TYPE_F;
1955 break;
1956 case VEC4_OPCODE_DOUBLE_TO_D32:
1957 dst_type = BRW_REGISTER_TYPE_D;
1958 break;
1959 case VEC4_OPCODE_DOUBLE_TO_U32:
1960 dst_type = BRW_REGISTER_TYPE_UD;
1961 break;
1962 default:
1963 unreachable("Not supported conversion");
1964 }
1965 dst = retype(dst, dst_type);
1966
1967 brw_set_default_access_mode(p, BRW_ALIGN_1);
1968
1969 /* When converting from DF->F, we set destination's stride as 2 as an
1970 * aligment requirement. But in IVB/BYT, each DF implicitly writes
1971 * two floats, being the first one the converted value. So we don't
1972 * need to explicitly set stride 2, but 1.
1973 */
1974 struct brw_reg spread_dst;
1975 if (devinfo->gen == 7 && !devinfo->is_haswell)
1976 spread_dst = stride(dst, 8, 4, 1);
1977 else
1978 spread_dst = stride(dst, 8, 4, 2);
1979
1980 brw_MOV(p, spread_dst, src[0]);
1981
1982 brw_set_default_access_mode(p, BRW_ALIGN_16);
1983 break;
1984 }
1985
1986 case VEC4_OPCODE_TO_DOUBLE: {
1987 assert(type_sz(src[0].type) == 4);
1988 assert(type_sz(dst.type) == 8);
1989
1990 brw_set_default_access_mode(p, BRW_ALIGN_1);
1991
1992 brw_MOV(p, dst, src[0]);
1993
1994 brw_set_default_access_mode(p, BRW_ALIGN_16);
1995 break;
1996 }
1997
1998 case VEC4_OPCODE_PICK_LOW_32BIT:
1999 case VEC4_OPCODE_PICK_HIGH_32BIT: {
2000 /* Stores the low/high 32-bit of each 64-bit element in src[0] into
2001 * dst using ALIGN1 mode and a <8,4,2>:UD region on the source.
2002 */
2003 assert(type_sz(src[0].type) == 8);
2004 assert(type_sz(dst.type) == 4);
2005
2006 brw_set_default_access_mode(p, BRW_ALIGN_1);
2007
2008 dst = retype(dst, BRW_REGISTER_TYPE_UD);
2009 dst.hstride = BRW_HORIZONTAL_STRIDE_1;
2010
2011 src[0] = retype(src[0], BRW_REGISTER_TYPE_UD);
2012 if (inst->opcode == VEC4_OPCODE_PICK_HIGH_32BIT)
2013 src[0] = suboffset(src[0], 1);
2014 src[0] = spread(src[0], 2);
2015 brw_MOV(p, dst, src[0]);
2016
2017 brw_set_default_access_mode(p, BRW_ALIGN_16);
2018 break;
2019 }
2020
2021 case VEC4_OPCODE_SET_LOW_32BIT:
2022 case VEC4_OPCODE_SET_HIGH_32BIT: {
2023 /* Reads consecutive 32-bit elements from src[0] and writes
2024 * them to the low/high 32-bit of each 64-bit element in dst.
2025 */
2026 assert(type_sz(src[0].type) == 4);
2027 assert(type_sz(dst.type) == 8);
2028
2029 brw_set_default_access_mode(p, BRW_ALIGN_1);
2030
2031 dst = retype(dst, BRW_REGISTER_TYPE_UD);
2032 if (inst->opcode == VEC4_OPCODE_SET_HIGH_32BIT)
2033 dst = suboffset(dst, 1);
2034 dst.hstride = BRW_HORIZONTAL_STRIDE_2;
2035
2036 src[0] = retype(src[0], BRW_REGISTER_TYPE_UD);
2037 brw_MOV(p, dst, src[0]);
2038
2039 brw_set_default_access_mode(p, BRW_ALIGN_16);
2040 break;
2041 }
2042
2043 case VEC4_OPCODE_PACK_BYTES: {
2044 /* Is effectively:
2045 *
2046 * mov(8) dst<16,4,1>:UB src<4,1,0>:UB
2047 *
2048 * but destinations' only regioning is horizontal stride, so instead we
2049 * have to use two instructions:
2050 *
2051 * mov(4) dst<1>:UB src<4,1,0>:UB
2052 * mov(4) dst.16<1>:UB src.16<4,1,0>:UB
2053 *
2054 * where they pack the four bytes from the low and high four DW.
2055 */
2056 assert(_mesa_is_pow_two(dst.writemask) &&
2057 dst.writemask != 0);
2058 unsigned offset = __builtin_ctz(dst.writemask);
2059
2060 dst.type = BRW_REGISTER_TYPE_UB;
2061
2062 brw_set_default_access_mode(p, BRW_ALIGN_1);
2063
2064 src[0].type = BRW_REGISTER_TYPE_UB;
2065 src[0].vstride = BRW_VERTICAL_STRIDE_4;
2066 src[0].width = BRW_WIDTH_1;
2067 src[0].hstride = BRW_HORIZONTAL_STRIDE_0;
2068 dst.subnr = offset * 4;
2069 struct brw_inst *insn = brw_MOV(p, dst, src[0]);
2070 brw_inst_set_exec_size(p->devinfo, insn, BRW_EXECUTE_4);
2071 brw_inst_set_no_dd_clear(p->devinfo, insn, true);
2072 brw_inst_set_no_dd_check(p->devinfo, insn, inst->no_dd_check);
2073
2074 src[0].subnr = 16;
2075 dst.subnr = 16 + offset * 4;
2076 insn = brw_MOV(p, dst, src[0]);
2077 brw_inst_set_exec_size(p->devinfo, insn, BRW_EXECUTE_4);
2078 brw_inst_set_no_dd_clear(p->devinfo, insn, inst->no_dd_clear);
2079 brw_inst_set_no_dd_check(p->devinfo, insn, true);
2080
2081 brw_set_default_access_mode(p, BRW_ALIGN_16);
2082 break;
2083 }
2084
2085 case TCS_OPCODE_URB_WRITE:
2086 generate_tcs_urb_write(p, inst, src[0]);
2087 break;
2088
2089 case VEC4_OPCODE_URB_READ:
2090 generate_vec4_urb_read(p, inst, dst, src[0]);
2091 break;
2092
2093 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
2094 generate_tcs_input_urb_offsets(p, dst, src[0], src[1]);
2095 break;
2096
2097 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
2098 generate_tcs_output_urb_offsets(p, dst, src[0], src[1]);
2099 break;
2100
2101 case TCS_OPCODE_GET_INSTANCE_ID:
2102 generate_tcs_get_instance_id(p, dst);
2103 break;
2104
2105 case TCS_OPCODE_GET_PRIMITIVE_ID:
2106 generate_tcs_get_primitive_id(p, dst);
2107 break;
2108
2109 case TCS_OPCODE_CREATE_BARRIER_HEADER:
2110 generate_tcs_create_barrier_header(p, prog_data, dst);
2111 break;
2112
2113 case TES_OPCODE_CREATE_INPUT_READ_HEADER:
2114 generate_tes_create_input_read_header(p, dst);
2115 break;
2116
2117 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
2118 generate_tes_add_indirect_urb_offset(p, dst, src[0], src[1]);
2119 break;
2120
2121 case TES_OPCODE_GET_PRIMITIVE_ID:
2122 generate_tes_get_primitive_id(p, dst);
2123 break;
2124
2125 case TCS_OPCODE_SRC0_010_IS_ZERO:
2126 /* If src_reg had stride like fs_reg, we wouldn't need this. */
2127 brw_MOV(p, brw_null_reg(), stride(src[0], 0, 1, 0));
2128 break;
2129
2130 case TCS_OPCODE_RELEASE_INPUT:
2131 generate_tcs_release_input(p, dst, src[0], src[1]);
2132 break;
2133
2134 case TCS_OPCODE_THREAD_END:
2135 generate_tcs_thread_end(p, inst);
2136 break;
2137
2138 case SHADER_OPCODE_BARRIER:
2139 brw_barrier(p, src[0]);
2140 brw_WAIT(p);
2141 break;
2142
2143 case SHADER_OPCODE_MOV_INDIRECT:
2144 generate_mov_indirect(p, inst, dst, src[0], src[1], src[2]);
2145 break;
2146
2147 case BRW_OPCODE_DIM:
2148 assert(devinfo->is_haswell);
2149 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2150 assert(dst.type == BRW_REGISTER_TYPE_DF);
2151 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2152 break;
2153
2154 default:
2155 unreachable("Unsupported opcode");
2156 }
2157
2158 if (inst->opcode == VEC4_OPCODE_PACK_BYTES) {
2159 /* Handled dependency hints in the generator. */
2160
2161 assert(!inst->conditional_mod);
2162 } else if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2163 assert(p->nr_insn == pre_emit_nr_insn + 1 ||
2164 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2165 "emitting more than 1 instruction");
2166
2167 brw_inst *last = &p->store[pre_emit_nr_insn];
2168
2169 if (inst->conditional_mod)
2170 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2171 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2172 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2173 }
2174 }
2175
2176 brw_set_uip_jip(p, 0);
2177
2178 /* end of program sentinel */
2179 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2180
2181 #ifndef NDEBUG
2182 bool validated =
2183 #else
2184 if (unlikely(debug_flag))
2185 #endif
2186 brw_validate_instructions(devinfo, p->store,
2187 0, p->next_insn_offset,
2188 disasm_info);
2189
2190 int before_size = p->next_insn_offset;
2191 brw_compact_instructions(p, 0, disasm_info);
2192 int after_size = p->next_insn_offset;
2193
2194 if (unlikely(debug_flag)) {
2195 fprintf(stderr, "Native code for %s %s shader %s:\n",
2196 nir->info.label ? nir->info.label : "unnamed",
2197 _mesa_shader_stage_to_string(nir->info.stage), nir->info.name);
2198
2199 fprintf(stderr, "%s vec4 shader: %d instructions. %d loops. %u cycles. %d:%d "
2200 "spills:fills. Compacted %d to %d bytes (%.0f%%)\n",
2201 stage_abbrev, before_size / 16, loop_count, cfg->cycle_count,
2202 spill_count, fill_count, before_size, after_size,
2203 100.0f * (before_size - after_size) / before_size);
2204
2205 dump_assembly(p->store, disasm_info);
2206 }
2207 ralloc_free(disasm_info);
2208 assert(validated);
2209
2210 compiler->shader_debug_log(log_data,
2211 "%s vec4 shader: %d inst, %d loops, %u cycles, "
2212 "%d:%d spills:fills, compacted %d to %d bytes.",
2213 stage_abbrev, before_size / 16,
2214 loop_count, cfg->cycle_count, spill_count,
2215 fill_count, before_size, after_size);
2216
2217 }
2218
2219 extern "C" const unsigned *
2220 brw_vec4_generate_assembly(const struct brw_compiler *compiler,
2221 void *log_data,
2222 void *mem_ctx,
2223 const nir_shader *nir,
2224 struct brw_vue_prog_data *prog_data,
2225 const struct cfg_t *cfg,
2226 unsigned *out_assembly_size)
2227 {
2228 struct brw_codegen *p = rzalloc(mem_ctx, struct brw_codegen);
2229 brw_init_codegen(compiler->devinfo, p, mem_ctx);
2230 brw_set_default_access_mode(p, BRW_ALIGN_16);
2231
2232 generate_code(p, compiler, log_data, nir, prog_data, cfg);
2233
2234 return brw_get_program(p, out_assembly_size);
2235 }