intel/compiler: Re-prefix non-logical surface opcodes with VEC4
[mesa.git] / src / intel / compiler / brw_vec4_generator.cpp
1 /* Copyright © 2011 Intel Corporation
2 *
3 * Permission is hereby granted, free of charge, to any person obtaining a
4 * copy of this software and associated documentation files (the "Software"),
5 * to deal in the Software without restriction, including without limitation
6 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
7 * and/or sell copies of the Software, and to permit persons to whom the
8 * Software is furnished to do so, subject to the following conditions:
9 *
10 * The above copyright notice and this permission notice (including the next
11 * paragraph) shall be included in all copies or substantial portions of the
12 * Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
20 * IN THE SOFTWARE.
21 */
22
23 #include "brw_vec4.h"
24 #include "brw_cfg.h"
25 #include "brw_eu.h"
26 #include "common/gen_debug.h"
27
28 using namespace brw;
29
30 static void
31 generate_math1_gen4(struct brw_codegen *p,
32 vec4_instruction *inst,
33 struct brw_reg dst,
34 struct brw_reg src)
35 {
36 gen4_math(p,
37 dst,
38 brw_math_function(inst->opcode),
39 inst->base_mrf,
40 src,
41 BRW_MATH_PRECISION_FULL);
42 }
43
44 static void
45 check_gen6_math_src_arg(struct brw_reg src)
46 {
47 /* Source swizzles are ignored. */
48 assert(!src.abs);
49 assert(!src.negate);
50 assert(src.swizzle == BRW_SWIZZLE_XYZW);
51 }
52
53 static void
54 generate_math_gen6(struct brw_codegen *p,
55 vec4_instruction *inst,
56 struct brw_reg dst,
57 struct brw_reg src0,
58 struct brw_reg src1)
59 {
60 /* Can't do writemask because math can't be align16. */
61 assert(dst.writemask == WRITEMASK_XYZW);
62 /* Source swizzles are ignored. */
63 check_gen6_math_src_arg(src0);
64 if (src1.file == BRW_GENERAL_REGISTER_FILE)
65 check_gen6_math_src_arg(src1);
66
67 brw_set_default_access_mode(p, BRW_ALIGN_1);
68 gen6_math(p, dst, brw_math_function(inst->opcode), src0, src1);
69 brw_set_default_access_mode(p, BRW_ALIGN_16);
70 }
71
72 static void
73 generate_math2_gen4(struct brw_codegen *p,
74 vec4_instruction *inst,
75 struct brw_reg dst,
76 struct brw_reg src0,
77 struct brw_reg src1)
78 {
79 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
80 * "Message Payload":
81 *
82 * "Operand0[7]. For the INT DIV functions, this operand is the
83 * denominator."
84 * ...
85 * "Operand1[7]. For the INT DIV functions, this operand is the
86 * numerator."
87 */
88 bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
89 struct brw_reg &op0 = is_int_div ? src1 : src0;
90 struct brw_reg &op1 = is_int_div ? src0 : src1;
91
92 brw_push_insn_state(p);
93 brw_set_default_saturate(p, false);
94 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
95 brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1), op1.type), op1);
96 brw_pop_insn_state(p);
97
98 gen4_math(p,
99 dst,
100 brw_math_function(inst->opcode),
101 inst->base_mrf,
102 op0,
103 BRW_MATH_PRECISION_FULL);
104 }
105
106 static void
107 generate_tex(struct brw_codegen *p,
108 struct brw_vue_prog_data *prog_data,
109 gl_shader_stage stage,
110 vec4_instruction *inst,
111 struct brw_reg dst,
112 struct brw_reg src,
113 struct brw_reg surface_index,
114 struct brw_reg sampler_index)
115 {
116 const struct gen_device_info *devinfo = p->devinfo;
117 int msg_type = -1;
118
119 if (devinfo->gen >= 5) {
120 switch (inst->opcode) {
121 case SHADER_OPCODE_TEX:
122 case SHADER_OPCODE_TXL:
123 if (inst->shadow_compare) {
124 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
125 } else {
126 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
127 }
128 break;
129 case SHADER_OPCODE_TXD:
130 if (inst->shadow_compare) {
131 /* Gen7.5+. Otherwise, lowered by brw_lower_texture_gradients(). */
132 assert(devinfo->gen >= 8 || devinfo->is_haswell);
133 msg_type = HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE;
134 } else {
135 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
136 }
137 break;
138 case SHADER_OPCODE_TXF:
139 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
140 break;
141 case SHADER_OPCODE_TXF_CMS_W:
142 assert(devinfo->gen >= 9);
143 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
144 break;
145 case SHADER_OPCODE_TXF_CMS:
146 if (devinfo->gen >= 7)
147 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS;
148 else
149 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
150 break;
151 case SHADER_OPCODE_TXF_MCS:
152 assert(devinfo->gen >= 7);
153 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
154 break;
155 case SHADER_OPCODE_TXS:
156 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
157 break;
158 case SHADER_OPCODE_TG4:
159 if (inst->shadow_compare) {
160 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C;
161 } else {
162 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
163 }
164 break;
165 case SHADER_OPCODE_TG4_OFFSET:
166 if (inst->shadow_compare) {
167 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C;
168 } else {
169 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
170 }
171 break;
172 case SHADER_OPCODE_SAMPLEINFO:
173 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
174 break;
175 default:
176 unreachable("should not get here: invalid vec4 texture opcode");
177 }
178 } else {
179 switch (inst->opcode) {
180 case SHADER_OPCODE_TEX:
181 case SHADER_OPCODE_TXL:
182 if (inst->shadow_compare) {
183 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD_COMPARE;
184 assert(inst->mlen == 3);
185 } else {
186 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD;
187 assert(inst->mlen == 2);
188 }
189 break;
190 case SHADER_OPCODE_TXD:
191 /* There is no sample_d_c message; comparisons are done manually. */
192 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_GRADIENTS;
193 assert(inst->mlen == 4);
194 break;
195 case SHADER_OPCODE_TXF:
196 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_LD;
197 assert(inst->mlen == 2);
198 break;
199 case SHADER_OPCODE_TXS:
200 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_RESINFO;
201 assert(inst->mlen == 2);
202 break;
203 default:
204 unreachable("should not get here: invalid vec4 texture opcode");
205 }
206 }
207
208 assert(msg_type != -1);
209
210 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
211
212 /* Load the message header if present. If there's a texture offset, we need
213 * to set it up explicitly and load the offset bitfield. Otherwise, we can
214 * use an implied move from g0 to the first message register.
215 */
216 if (inst->header_size != 0) {
217 if (devinfo->gen < 6 && !inst->offset) {
218 /* Set up an implied move from g0 to the MRF. */
219 src = brw_vec8_grf(0, 0);
220 } else {
221 struct brw_reg header =
222 retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD);
223 uint32_t dw2 = 0;
224
225 /* Explicitly set up the message header by copying g0 to the MRF. */
226 brw_push_insn_state(p);
227 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
228 brw_MOV(p, header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
229
230 brw_set_default_access_mode(p, BRW_ALIGN_1);
231
232 if (inst->offset)
233 /* Set the texel offset bits in DWord 2. */
234 dw2 = inst->offset;
235
236 if (devinfo->gen >= 9)
237 /* SKL+ overloads BRW_SAMPLER_SIMD_MODE_SIMD4X2 to also do SIMD8D,
238 * based on bit 22 in the header.
239 */
240 dw2 |= GEN9_SAMPLER_SIMD_MODE_EXTENSION_SIMD4X2;
241
242 /* The VS, DS, and FS stages have the g0.2 payload delivered as 0,
243 * so header0.2 is 0 when g0 is copied. The HS and GS stages do
244 * not, so we must set to to 0 to avoid setting undesirable bits
245 * in the message header.
246 */
247 if (dw2 ||
248 stage == MESA_SHADER_TESS_CTRL ||
249 stage == MESA_SHADER_GEOMETRY) {
250 brw_MOV(p, get_element_ud(header, 2), brw_imm_ud(dw2));
251 }
252
253 brw_adjust_sampler_state_pointer(p, header, sampler_index);
254 brw_pop_insn_state(p);
255 }
256 }
257
258 uint32_t return_format;
259
260 switch (dst.type) {
261 case BRW_REGISTER_TYPE_D:
262 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
263 break;
264 case BRW_REGISTER_TYPE_UD:
265 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
266 break;
267 default:
268 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
269 break;
270 }
271
272 uint32_t base_binding_table_index = (inst->opcode == SHADER_OPCODE_TG4 ||
273 inst->opcode == SHADER_OPCODE_TG4_OFFSET)
274 ? prog_data->base.binding_table.gather_texture_start
275 : prog_data->base.binding_table.texture_start;
276
277 if (surface_index.file == BRW_IMMEDIATE_VALUE &&
278 sampler_index.file == BRW_IMMEDIATE_VALUE) {
279 uint32_t surface = surface_index.ud;
280 uint32_t sampler = sampler_index.ud;
281
282 brw_SAMPLE(p,
283 dst,
284 inst->base_mrf,
285 src,
286 surface + base_binding_table_index,
287 sampler % 16,
288 msg_type,
289 1, /* response length */
290 inst->mlen,
291 inst->header_size != 0,
292 BRW_SAMPLER_SIMD_MODE_SIMD4X2,
293 return_format);
294 } else {
295 /* Non-constant sampler index. */
296
297 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
298 struct brw_reg surface_reg = vec1(retype(surface_index, BRW_REGISTER_TYPE_UD));
299 struct brw_reg sampler_reg = vec1(retype(sampler_index, BRW_REGISTER_TYPE_UD));
300
301 brw_push_insn_state(p);
302 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
303 brw_set_default_access_mode(p, BRW_ALIGN_1);
304
305 if (brw_regs_equal(&surface_reg, &sampler_reg)) {
306 brw_MUL(p, addr, sampler_reg, brw_imm_uw(0x101));
307 } else {
308 if (sampler_reg.file == BRW_IMMEDIATE_VALUE) {
309 brw_OR(p, addr, surface_reg, brw_imm_ud(sampler_reg.ud << 8));
310 } else {
311 brw_SHL(p, addr, sampler_reg, brw_imm_ud(8));
312 brw_OR(p, addr, addr, surface_reg);
313 }
314 }
315 if (base_binding_table_index)
316 brw_ADD(p, addr, addr, brw_imm_ud(base_binding_table_index));
317 brw_AND(p, addr, addr, brw_imm_ud(0xfff));
318
319 brw_pop_insn_state(p);
320
321 if (inst->base_mrf != -1)
322 gen6_resolve_implied_move(p, &src, inst->base_mrf);
323
324 /* dst = send(offset, a0.0 | <descriptor>) */
325 brw_send_indirect_message(
326 p, BRW_SFID_SAMPLER, dst, src, addr,
327 brw_message_desc(devinfo, inst->mlen, 1, inst->header_size) |
328 brw_sampler_desc(devinfo,
329 0 /* surface */,
330 0 /* sampler */,
331 msg_type,
332 BRW_SAMPLER_SIMD_MODE_SIMD4X2,
333 return_format),
334 false /* EOT */);
335
336 /* visitor knows more than we do about the surface limit required,
337 * so has already done marking.
338 */
339 }
340 }
341
342 static void
343 generate_vs_urb_write(struct brw_codegen *p, vec4_instruction *inst)
344 {
345 brw_urb_WRITE(p,
346 brw_null_reg(), /* dest */
347 inst->base_mrf, /* starting mrf reg nr */
348 brw_vec8_grf(0, 0), /* src */
349 inst->urb_write_flags,
350 inst->mlen,
351 0, /* response len */
352 inst->offset, /* urb destination offset */
353 BRW_URB_SWIZZLE_INTERLEAVE);
354 }
355
356 static void
357 generate_gs_urb_write(struct brw_codegen *p, vec4_instruction *inst)
358 {
359 struct brw_reg src = brw_message_reg(inst->base_mrf);
360 brw_urb_WRITE(p,
361 brw_null_reg(), /* dest */
362 inst->base_mrf, /* starting mrf reg nr */
363 src,
364 inst->urb_write_flags,
365 inst->mlen,
366 0, /* response len */
367 inst->offset, /* urb destination offset */
368 BRW_URB_SWIZZLE_INTERLEAVE);
369 }
370
371 static void
372 generate_gs_urb_write_allocate(struct brw_codegen *p, vec4_instruction *inst)
373 {
374 struct brw_reg src = brw_message_reg(inst->base_mrf);
375
376 /* We pass the temporary passed in src0 as the writeback register */
377 brw_urb_WRITE(p,
378 inst->src[0].as_brw_reg(), /* dest */
379 inst->base_mrf, /* starting mrf reg nr */
380 src,
381 BRW_URB_WRITE_ALLOCATE_COMPLETE,
382 inst->mlen,
383 1, /* response len */
384 inst->offset, /* urb destination offset */
385 BRW_URB_SWIZZLE_INTERLEAVE);
386
387 /* Now put allocated urb handle in dst.0 */
388 brw_push_insn_state(p);
389 brw_set_default_access_mode(p, BRW_ALIGN_1);
390 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
391 brw_MOV(p, get_element_ud(inst->dst.as_brw_reg(), 0),
392 get_element_ud(inst->src[0].as_brw_reg(), 0));
393 brw_pop_insn_state(p);
394 }
395
396 static void
397 generate_gs_thread_end(struct brw_codegen *p, vec4_instruction *inst)
398 {
399 struct brw_reg src = brw_message_reg(inst->base_mrf);
400 brw_urb_WRITE(p,
401 brw_null_reg(), /* dest */
402 inst->base_mrf, /* starting mrf reg nr */
403 src,
404 BRW_URB_WRITE_EOT | inst->urb_write_flags,
405 inst->mlen,
406 0, /* response len */
407 0, /* urb destination offset */
408 BRW_URB_SWIZZLE_INTERLEAVE);
409 }
410
411 static void
412 generate_gs_set_write_offset(struct brw_codegen *p,
413 struct brw_reg dst,
414 struct brw_reg src0,
415 struct brw_reg src1)
416 {
417 /* From p22 of volume 4 part 2 of the Ivy Bridge PRM (2.4.3.1 Message
418 * Header: M0.3):
419 *
420 * Slot 0 Offset. This field, after adding to the Global Offset field
421 * in the message descriptor, specifies the offset (in 256-bit units)
422 * from the start of the URB entry, as referenced by URB Handle 0, at
423 * which the data will be accessed.
424 *
425 * Similar text describes DWORD M0.4, which is slot 1 offset.
426 *
427 * Therefore, we want to multiply DWORDs 0 and 4 of src0 (the x components
428 * of the register for geometry shader invocations 0 and 1) by the
429 * immediate value in src1, and store the result in DWORDs 3 and 4 of dst.
430 *
431 * We can do this with the following EU instruction:
432 *
433 * mul(2) dst.3<1>UD src0<8;2,4>UD src1<...>UW { Align1 WE_all }
434 */
435 brw_push_insn_state(p);
436 brw_set_default_access_mode(p, BRW_ALIGN_1);
437 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
438 assert(p->devinfo->gen >= 7 &&
439 src1.file == BRW_IMMEDIATE_VALUE &&
440 src1.type == BRW_REGISTER_TYPE_UD &&
441 src1.ud <= USHRT_MAX);
442 if (src0.file == BRW_IMMEDIATE_VALUE) {
443 brw_MOV(p, suboffset(stride(dst, 2, 2, 1), 3),
444 brw_imm_ud(src0.ud * src1.ud));
445 } else {
446 brw_MUL(p, suboffset(stride(dst, 2, 2, 1), 3), stride(src0, 8, 2, 4),
447 retype(src1, BRW_REGISTER_TYPE_UW));
448 }
449 brw_pop_insn_state(p);
450 }
451
452 static void
453 generate_gs_set_vertex_count(struct brw_codegen *p,
454 struct brw_reg dst,
455 struct brw_reg src)
456 {
457 brw_push_insn_state(p);
458 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
459
460 if (p->devinfo->gen >= 8) {
461 /* Move the vertex count into the second MRF for the EOT write. */
462 brw_MOV(p, retype(brw_message_reg(dst.nr + 1), BRW_REGISTER_TYPE_UD),
463 src);
464 } else {
465 /* If we think of the src and dst registers as composed of 8 DWORDs each,
466 * we want to pick up the contents of DWORDs 0 and 4 from src, truncate
467 * them to WORDs, and then pack them into DWORD 2 of dst.
468 *
469 * It's easier to get the EU to do this if we think of the src and dst
470 * registers as composed of 16 WORDS each; then, we want to pick up the
471 * contents of WORDs 0 and 8 from src, and pack them into WORDs 4 and 5
472 * of dst.
473 *
474 * We can do that by the following EU instruction:
475 *
476 * mov (2) dst.4<1>:uw src<8;1,0>:uw { Align1, Q1, NoMask }
477 */
478 brw_set_default_access_mode(p, BRW_ALIGN_1);
479 brw_MOV(p,
480 suboffset(stride(retype(dst, BRW_REGISTER_TYPE_UW), 2, 2, 1), 4),
481 stride(retype(src, BRW_REGISTER_TYPE_UW), 8, 1, 0));
482 }
483 brw_pop_insn_state(p);
484 }
485
486 static void
487 generate_gs_svb_write(struct brw_codegen *p,
488 struct brw_vue_prog_data *prog_data,
489 vec4_instruction *inst,
490 struct brw_reg dst,
491 struct brw_reg src0,
492 struct brw_reg src1)
493 {
494 int binding = inst->sol_binding;
495 bool final_write = inst->sol_final_write;
496
497 brw_push_insn_state(p);
498 brw_set_default_exec_size(p, BRW_EXECUTE_4);
499 /* Copy Vertex data into M0.x */
500 brw_MOV(p, stride(dst, 4, 4, 1),
501 stride(retype(src0, BRW_REGISTER_TYPE_UD), 4, 4, 1));
502 brw_pop_insn_state(p);
503
504 brw_push_insn_state(p);
505 /* Send SVB Write */
506 brw_svb_write(p,
507 final_write ? src1 : brw_null_reg(), /* dest == src1 */
508 1, /* msg_reg_nr */
509 dst, /* src0 == previous dst */
510 BRW_GEN6_SOL_BINDING_START + binding, /* binding_table_index */
511 final_write); /* send_commit_msg */
512
513 /* Finally, wait for the write commit to occur so that we can proceed to
514 * other things safely.
515 *
516 * From the Sandybridge PRM, Volume 4, Part 1, Section 3.3:
517 *
518 * The write commit does not modify the destination register, but
519 * merely clears the dependency associated with the destination
520 * register. Thus, a simple “mov” instruction using the register as a
521 * source is sufficient to wait for the write commit to occur.
522 */
523 if (final_write) {
524 brw_MOV(p, src1, src1);
525 }
526 brw_pop_insn_state(p);
527 }
528
529 static void
530 generate_gs_svb_set_destination_index(struct brw_codegen *p,
531 vec4_instruction *inst,
532 struct brw_reg dst,
533 struct brw_reg src)
534 {
535 int vertex = inst->sol_vertex;
536 brw_push_insn_state(p);
537 brw_set_default_access_mode(p, BRW_ALIGN_1);
538 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
539 brw_MOV(p, get_element_ud(dst, 5), get_element_ud(src, vertex));
540 brw_pop_insn_state(p);
541 }
542
543 static void
544 generate_gs_set_dword_2(struct brw_codegen *p,
545 struct brw_reg dst,
546 struct brw_reg src)
547 {
548 brw_push_insn_state(p);
549 brw_set_default_access_mode(p, BRW_ALIGN_1);
550 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
551 brw_MOV(p, suboffset(vec1(dst), 2), suboffset(vec1(src), 0));
552 brw_pop_insn_state(p);
553 }
554
555 static void
556 generate_gs_prepare_channel_masks(struct brw_codegen *p,
557 struct brw_reg dst)
558 {
559 /* We want to left shift just DWORD 4 (the x component belonging to the
560 * second geometry shader invocation) by 4 bits. So generate the
561 * instruction:
562 *
563 * shl(1) dst.4<1>UD dst.4<0,1,0>UD 4UD { align1 WE_all }
564 */
565 dst = suboffset(vec1(dst), 4);
566 brw_push_insn_state(p);
567 brw_set_default_access_mode(p, BRW_ALIGN_1);
568 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
569 brw_SHL(p, dst, dst, brw_imm_ud(4));
570 brw_pop_insn_state(p);
571 }
572
573 static void
574 generate_gs_set_channel_masks(struct brw_codegen *p,
575 struct brw_reg dst,
576 struct brw_reg src)
577 {
578 /* From p21 of volume 4 part 2 of the Ivy Bridge PRM (2.4.3.1 Message
579 * Header: M0.5):
580 *
581 * 15 Vertex 1 DATA [3] / Vertex 0 DATA[7] Channel Mask
582 *
583 * When Swizzle Control = URB_INTERLEAVED this bit controls Vertex 1
584 * DATA[3], when Swizzle Control = URB_NOSWIZZLE this bit controls
585 * Vertex 0 DATA[7]. This bit is ANDed with the corresponding
586 * channel enable to determine the final channel enable. For the
587 * URB_READ_OWORD & URB_READ_HWORD messages, when final channel
588 * enable is 1 it indicates that Vertex 1 DATA [3] will be included
589 * in the writeback message. For the URB_WRITE_OWORD &
590 * URB_WRITE_HWORD messages, when final channel enable is 1 it
591 * indicates that Vertex 1 DATA [3] will be written to the surface.
592 *
593 * 0: Vertex 1 DATA [3] / Vertex 0 DATA[7] channel not included
594 * 1: Vertex DATA [3] / Vertex 0 DATA[7] channel included
595 *
596 * 14 Vertex 1 DATA [2] Channel Mask
597 * 13 Vertex 1 DATA [1] Channel Mask
598 * 12 Vertex 1 DATA [0] Channel Mask
599 * 11 Vertex 0 DATA [3] Channel Mask
600 * 10 Vertex 0 DATA [2] Channel Mask
601 * 9 Vertex 0 DATA [1] Channel Mask
602 * 8 Vertex 0 DATA [0] Channel Mask
603 *
604 * (This is from a section of the PRM that is agnostic to the particular
605 * type of shader being executed, so "Vertex 0" and "Vertex 1" refer to
606 * geometry shader invocations 0 and 1, respectively). Since we have the
607 * enable flags for geometry shader invocation 0 in bits 3:0 of DWORD 0,
608 * and the enable flags for geometry shader invocation 1 in bits 7:0 of
609 * DWORD 4, we just need to OR them together and store the result in bits
610 * 15:8 of DWORD 5.
611 *
612 * It's easier to get the EU to do this if we think of the src and dst
613 * registers as composed of 32 bytes each; then, we want to pick up the
614 * contents of bytes 0 and 16 from src, OR them together, and store them in
615 * byte 21.
616 *
617 * We can do that by the following EU instruction:
618 *
619 * or(1) dst.21<1>UB src<0,1,0>UB src.16<0,1,0>UB { align1 WE_all }
620 *
621 * Note: this relies on the source register having zeros in (a) bits 7:4 of
622 * DWORD 0 and (b) bits 3:0 of DWORD 4. We can rely on (b) because the
623 * source register was prepared by GS_OPCODE_PREPARE_CHANNEL_MASKS (which
624 * shifts DWORD 4 left by 4 bits), and we can rely on (a) because prior to
625 * the execution of GS_OPCODE_PREPARE_CHANNEL_MASKS, DWORDs 0 and 4 need to
626 * contain valid channel mask values (which are in the range 0x0-0xf).
627 */
628 dst = retype(dst, BRW_REGISTER_TYPE_UB);
629 src = retype(src, BRW_REGISTER_TYPE_UB);
630 brw_push_insn_state(p);
631 brw_set_default_access_mode(p, BRW_ALIGN_1);
632 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
633 brw_OR(p, suboffset(vec1(dst), 21), vec1(src), suboffset(vec1(src), 16));
634 brw_pop_insn_state(p);
635 }
636
637 static void
638 generate_gs_get_instance_id(struct brw_codegen *p,
639 struct brw_reg dst)
640 {
641 /* We want to right shift R0.0 & R0.1 by GEN7_GS_PAYLOAD_INSTANCE_ID_SHIFT
642 * and store into dst.0 & dst.4. So generate the instruction:
643 *
644 * shr(8) dst<1> R0<1,4,0> GEN7_GS_PAYLOAD_INSTANCE_ID_SHIFT { align1 WE_normal 1Q }
645 */
646 brw_push_insn_state(p);
647 brw_set_default_access_mode(p, BRW_ALIGN_1);
648 dst = retype(dst, BRW_REGISTER_TYPE_UD);
649 struct brw_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
650 brw_SHR(p, dst, stride(r0, 1, 4, 0),
651 brw_imm_ud(GEN7_GS_PAYLOAD_INSTANCE_ID_SHIFT));
652 brw_pop_insn_state(p);
653 }
654
655 static void
656 generate_gs_ff_sync_set_primitives(struct brw_codegen *p,
657 struct brw_reg dst,
658 struct brw_reg src0,
659 struct brw_reg src1,
660 struct brw_reg src2)
661 {
662 brw_push_insn_state(p);
663 brw_set_default_access_mode(p, BRW_ALIGN_1);
664 /* Save src0 data in 16:31 bits of dst.0 */
665 brw_AND(p, suboffset(vec1(dst), 0), suboffset(vec1(src0), 0),
666 brw_imm_ud(0xffffu));
667 brw_SHL(p, suboffset(vec1(dst), 0), suboffset(vec1(dst), 0), brw_imm_ud(16));
668 /* Save src1 data in 0:15 bits of dst.0 */
669 brw_AND(p, suboffset(vec1(src2), 0), suboffset(vec1(src1), 0),
670 brw_imm_ud(0xffffu));
671 brw_OR(p, suboffset(vec1(dst), 0),
672 suboffset(vec1(dst), 0),
673 suboffset(vec1(src2), 0));
674 brw_pop_insn_state(p);
675 }
676
677 static void
678 generate_gs_ff_sync(struct brw_codegen *p,
679 vec4_instruction *inst,
680 struct brw_reg dst,
681 struct brw_reg src0,
682 struct brw_reg src1)
683 {
684 /* This opcode uses an implied MRF register for:
685 * - the header of the ff_sync message. And as such it is expected to be
686 * initialized to r0 before calling here.
687 * - the destination where we will write the allocated URB handle.
688 */
689 struct brw_reg header =
690 retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD);
691
692 /* Overwrite dword 0 of the header (SO vertices to write) and
693 * dword 1 (number of primitives written).
694 */
695 brw_push_insn_state(p);
696 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
697 brw_set_default_access_mode(p, BRW_ALIGN_1);
698 brw_MOV(p, get_element_ud(header, 0), get_element_ud(src1, 0));
699 brw_MOV(p, get_element_ud(header, 1), get_element_ud(src0, 0));
700 brw_pop_insn_state(p);
701
702 /* Allocate URB handle in dst */
703 brw_ff_sync(p,
704 dst,
705 0,
706 header,
707 1, /* allocate */
708 1, /* response length */
709 0 /* eot */);
710
711 /* Now put allocated urb handle in header.0 */
712 brw_push_insn_state(p);
713 brw_set_default_access_mode(p, BRW_ALIGN_1);
714 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
715 brw_MOV(p, get_element_ud(header, 0), get_element_ud(dst, 0));
716
717 /* src1 is not an immediate when we use transform feedback */
718 if (src1.file != BRW_IMMEDIATE_VALUE) {
719 brw_set_default_exec_size(p, BRW_EXECUTE_4);
720 brw_MOV(p, brw_vec4_grf(src1.nr, 0), brw_vec4_grf(dst.nr, 1));
721 }
722
723 brw_pop_insn_state(p);
724 }
725
726 static void
727 generate_gs_set_primitive_id(struct brw_codegen *p, struct brw_reg dst)
728 {
729 /* In gen6, PrimitiveID is delivered in R0.1 of the payload */
730 struct brw_reg src = brw_vec8_grf(0, 0);
731 brw_push_insn_state(p);
732 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
733 brw_set_default_access_mode(p, BRW_ALIGN_1);
734 brw_MOV(p, get_element_ud(dst, 0), get_element_ud(src, 1));
735 brw_pop_insn_state(p);
736 }
737
738 static void
739 generate_tcs_get_instance_id(struct brw_codegen *p, struct brw_reg dst)
740 {
741 const struct gen_device_info *devinfo = p->devinfo;
742 const bool ivb = devinfo->is_ivybridge || devinfo->is_baytrail;
743
744 /* "Instance Count" comes as part of the payload in r0.2 bits 23:17.
745 *
746 * Since we operate in SIMD4x2 mode, we need run half as many threads
747 * as necessary. So we assign (2i + 1, 2i) as the thread counts. We
748 * shift right by one less to accomplish the multiplication by two.
749 */
750 dst = retype(dst, BRW_REGISTER_TYPE_UD);
751 struct brw_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
752
753 brw_push_insn_state(p);
754 brw_set_default_access_mode(p, BRW_ALIGN_1);
755
756 const int mask = ivb ? INTEL_MASK(22, 16) : INTEL_MASK(23, 17);
757 const int shift = ivb ? 16 : 17;
758
759 brw_AND(p, get_element_ud(dst, 0), get_element_ud(r0, 2), brw_imm_ud(mask));
760 brw_SHR(p, get_element_ud(dst, 0), get_element_ud(dst, 0),
761 brw_imm_ud(shift - 1));
762 brw_ADD(p, get_element_ud(dst, 4), get_element_ud(dst, 0), brw_imm_ud(1));
763
764 brw_pop_insn_state(p);
765 }
766
767 static void
768 generate_tcs_urb_write(struct brw_codegen *p,
769 vec4_instruction *inst,
770 struct brw_reg urb_header)
771 {
772 const struct gen_device_info *devinfo = p->devinfo;
773
774 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
775 brw_set_dest(p, send, brw_null_reg());
776 brw_set_src0(p, send, urb_header);
777 brw_set_desc(p, send, brw_message_desc(devinfo, inst->mlen, 0, true));
778
779 brw_inst_set_sfid(devinfo, send, BRW_SFID_URB);
780 brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_WRITE_OWORD);
781 brw_inst_set_urb_global_offset(devinfo, send, inst->offset);
782 if (inst->urb_write_flags & BRW_URB_WRITE_EOT) {
783 brw_inst_set_eot(devinfo, send, 1);
784 } else {
785 brw_inst_set_urb_per_slot_offset(devinfo, send, 1);
786 brw_inst_set_urb_swizzle_control(devinfo, send, BRW_URB_SWIZZLE_INTERLEAVE);
787 }
788
789 /* what happens to swizzles? */
790 }
791
792
793 static void
794 generate_tcs_input_urb_offsets(struct brw_codegen *p,
795 struct brw_reg dst,
796 struct brw_reg vertex,
797 struct brw_reg offset)
798 {
799 /* Generates an URB read/write message header for HS/DS operation.
800 * Inputs are a vertex index, and a byte offset from the beginning of
801 * the vertex. */
802
803 /* If `vertex` is not an immediate, we clobber a0.0 */
804
805 assert(vertex.file == BRW_IMMEDIATE_VALUE || vertex.file == BRW_GENERAL_REGISTER_FILE);
806 assert(vertex.type == BRW_REGISTER_TYPE_UD || vertex.type == BRW_REGISTER_TYPE_D);
807
808 assert(dst.file == BRW_GENERAL_REGISTER_FILE);
809
810 brw_push_insn_state(p);
811 brw_set_default_access_mode(p, BRW_ALIGN_1);
812 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
813 brw_MOV(p, dst, brw_imm_ud(0));
814
815 /* m0.5 bits 8-15 are channel enables */
816 brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud(0xff00));
817
818 /* m0.0-0.1: URB handles */
819 if (vertex.file == BRW_IMMEDIATE_VALUE) {
820 uint32_t vertex_index = vertex.ud;
821 struct brw_reg index_reg = brw_vec1_grf(
822 1 + (vertex_index >> 3), vertex_index & 7);
823
824 brw_MOV(p, vec2(get_element_ud(dst, 0)),
825 retype(index_reg, BRW_REGISTER_TYPE_UD));
826 } else {
827 /* Use indirect addressing. ICP Handles are DWords (single channels
828 * of a register) and start at g1.0.
829 *
830 * In order to start our region at g1.0, we add 8 to the vertex index,
831 * effectively skipping over the 8 channels in g0.0. This gives us a
832 * DWord offset to the ICP Handle.
833 *
834 * Indirect addressing works in terms of bytes, so we then multiply
835 * the DWord offset by 4 (by shifting left by 2).
836 */
837 struct brw_reg addr = brw_address_reg(0);
838
839 /* bottom half: m0.0 = g[1.0 + vertex.0]UD */
840 brw_ADD(p, addr, retype(get_element_ud(vertex, 0), BRW_REGISTER_TYPE_UW),
841 brw_imm_uw(0x8));
842 brw_SHL(p, addr, addr, brw_imm_uw(2));
843 brw_MOV(p, get_element_ud(dst, 0), deref_1ud(brw_indirect(0, 0), 0));
844
845 /* top half: m0.1 = g[1.0 + vertex.4]UD */
846 brw_ADD(p, addr, retype(get_element_ud(vertex, 4), BRW_REGISTER_TYPE_UW),
847 brw_imm_uw(0x8));
848 brw_SHL(p, addr, addr, brw_imm_uw(2));
849 brw_MOV(p, get_element_ud(dst, 1), deref_1ud(brw_indirect(0, 0), 0));
850 }
851
852 /* m0.3-0.4: 128bit-granular offsets into the URB from the handles */
853 if (offset.file != ARF)
854 brw_MOV(p, vec2(get_element_ud(dst, 3)), stride(offset, 4, 1, 0));
855
856 brw_pop_insn_state(p);
857 }
858
859
860 static void
861 generate_tcs_output_urb_offsets(struct brw_codegen *p,
862 struct brw_reg dst,
863 struct brw_reg write_mask,
864 struct brw_reg offset)
865 {
866 /* Generates an URB read/write message header for HS/DS operation, for the patch URB entry. */
867 assert(dst.file == BRW_GENERAL_REGISTER_FILE || dst.file == BRW_MESSAGE_REGISTER_FILE);
868
869 assert(write_mask.file == BRW_IMMEDIATE_VALUE);
870 assert(write_mask.type == BRW_REGISTER_TYPE_UD);
871
872 brw_push_insn_state(p);
873
874 brw_set_default_access_mode(p, BRW_ALIGN_1);
875 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
876 brw_MOV(p, dst, brw_imm_ud(0));
877
878 unsigned mask = write_mask.ud;
879
880 /* m0.5 bits 15:12 and 11:8 are channel enables */
881 brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud((mask << 8) | (mask << 12)));
882
883 /* HS patch URB handle is delivered in r0.0 */
884 struct brw_reg urb_handle = brw_vec1_grf(0, 0);
885
886 /* m0.0-0.1: URB handles */
887 brw_MOV(p, vec2(get_element_ud(dst, 0)),
888 retype(urb_handle, BRW_REGISTER_TYPE_UD));
889
890 /* m0.3-0.4: 128bit-granular offsets into the URB from the handles */
891 if (offset.file != ARF)
892 brw_MOV(p, vec2(get_element_ud(dst, 3)), stride(offset, 4, 1, 0));
893
894 brw_pop_insn_state(p);
895 }
896
897 static void
898 generate_tes_create_input_read_header(struct brw_codegen *p,
899 struct brw_reg dst)
900 {
901 brw_push_insn_state(p);
902 brw_set_default_access_mode(p, BRW_ALIGN_1);
903 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
904
905 /* Initialize the register to 0 */
906 brw_MOV(p, dst, brw_imm_ud(0));
907
908 /* Enable all the channels in m0.5 bits 15:8 */
909 brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud(0xff00));
910
911 /* Copy g1.3 (the patch URB handle) to m0.0 and m0.1. For safety,
912 * mask out irrelevant "Reserved" bits, as they're not marked MBZ.
913 */
914 brw_AND(p, vec2(get_element_ud(dst, 0)),
915 retype(brw_vec1_grf(1, 3), BRW_REGISTER_TYPE_UD),
916 brw_imm_ud(0x1fff));
917 brw_pop_insn_state(p);
918 }
919
920 static void
921 generate_tes_add_indirect_urb_offset(struct brw_codegen *p,
922 struct brw_reg dst,
923 struct brw_reg header,
924 struct brw_reg offset)
925 {
926 brw_push_insn_state(p);
927 brw_set_default_access_mode(p, BRW_ALIGN_1);
928 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
929
930 brw_MOV(p, dst, header);
931
932 /* Uniforms will have a stride <0;4,1>, and we need to convert to <0;1,0>.
933 * Other values get <4;1,0>.
934 */
935 struct brw_reg restrided_offset;
936 if (offset.vstride == BRW_VERTICAL_STRIDE_0 &&
937 offset.width == BRW_WIDTH_4 &&
938 offset.hstride == BRW_HORIZONTAL_STRIDE_1) {
939 restrided_offset = stride(offset, 0, 1, 0);
940 } else {
941 restrided_offset = stride(offset, 4, 1, 0);
942 }
943
944 /* m0.3-0.4: 128-bit-granular offsets into the URB from the handles */
945 brw_MOV(p, vec2(get_element_ud(dst, 3)), restrided_offset);
946
947 brw_pop_insn_state(p);
948 }
949
950 static void
951 generate_vec4_urb_read(struct brw_codegen *p,
952 vec4_instruction *inst,
953 struct brw_reg dst,
954 struct brw_reg header)
955 {
956 const struct gen_device_info *devinfo = p->devinfo;
957
958 assert(header.file == BRW_GENERAL_REGISTER_FILE);
959 assert(header.type == BRW_REGISTER_TYPE_UD);
960
961 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
962 brw_set_dest(p, send, dst);
963 brw_set_src0(p, send, header);
964
965 brw_set_desc(p, send, brw_message_desc(devinfo, 1, 1, true));
966
967 brw_inst_set_sfid(devinfo, send, BRW_SFID_URB);
968 brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_READ_OWORD);
969 brw_inst_set_urb_swizzle_control(devinfo, send, BRW_URB_SWIZZLE_INTERLEAVE);
970 brw_inst_set_urb_per_slot_offset(devinfo, send, 1);
971
972 brw_inst_set_urb_global_offset(devinfo, send, inst->offset);
973 }
974
975 static void
976 generate_tcs_release_input(struct brw_codegen *p,
977 struct brw_reg header,
978 struct brw_reg vertex,
979 struct brw_reg is_unpaired)
980 {
981 const struct gen_device_info *devinfo = p->devinfo;
982
983 assert(vertex.file == BRW_IMMEDIATE_VALUE);
984 assert(vertex.type == BRW_REGISTER_TYPE_UD);
985
986 /* m0.0-0.1: URB handles */
987 struct brw_reg urb_handles =
988 retype(brw_vec2_grf(1 + (vertex.ud >> 3), vertex.ud & 7),
989 BRW_REGISTER_TYPE_UD);
990
991 brw_push_insn_state(p);
992 brw_set_default_access_mode(p, BRW_ALIGN_1);
993 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
994 brw_MOV(p, header, brw_imm_ud(0));
995 brw_MOV(p, vec2(get_element_ud(header, 0)), urb_handles);
996 brw_pop_insn_state(p);
997
998 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
999 brw_set_dest(p, send, brw_null_reg());
1000 brw_set_src0(p, send, header);
1001 brw_set_desc(p, send, brw_message_desc(devinfo, 1, 0, true));
1002
1003 brw_inst_set_sfid(devinfo, send, BRW_SFID_URB);
1004 brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_READ_OWORD);
1005 brw_inst_set_urb_complete(devinfo, send, 1);
1006 brw_inst_set_urb_swizzle_control(devinfo, send, is_unpaired.ud ?
1007 BRW_URB_SWIZZLE_NONE :
1008 BRW_URB_SWIZZLE_INTERLEAVE);
1009 }
1010
1011 static void
1012 generate_tcs_thread_end(struct brw_codegen *p, vec4_instruction *inst)
1013 {
1014 struct brw_reg header = brw_message_reg(inst->base_mrf);
1015
1016 brw_push_insn_state(p);
1017 brw_set_default_access_mode(p, BRW_ALIGN_1);
1018 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1019 brw_MOV(p, header, brw_imm_ud(0));
1020 brw_MOV(p, get_element_ud(header, 5), brw_imm_ud(WRITEMASK_X << 8));
1021 brw_MOV(p, get_element_ud(header, 0),
1022 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
1023 brw_MOV(p, brw_message_reg(inst->base_mrf + 1), brw_imm_ud(0u));
1024 brw_pop_insn_state(p);
1025
1026 brw_urb_WRITE(p,
1027 brw_null_reg(), /* dest */
1028 inst->base_mrf, /* starting mrf reg nr */
1029 header,
1030 BRW_URB_WRITE_EOT | BRW_URB_WRITE_OWORD |
1031 BRW_URB_WRITE_USE_CHANNEL_MASKS,
1032 inst->mlen,
1033 0, /* response len */
1034 0, /* urb destination offset */
1035 0);
1036 }
1037
1038 static void
1039 generate_tes_get_primitive_id(struct brw_codegen *p, struct brw_reg dst)
1040 {
1041 brw_push_insn_state(p);
1042 brw_set_default_access_mode(p, BRW_ALIGN_1);
1043 brw_MOV(p, dst, retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_D));
1044 brw_pop_insn_state(p);
1045 }
1046
1047 static void
1048 generate_tcs_get_primitive_id(struct brw_codegen *p, struct brw_reg dst)
1049 {
1050 brw_push_insn_state(p);
1051 brw_set_default_access_mode(p, BRW_ALIGN_1);
1052 brw_MOV(p, dst, retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
1053 brw_pop_insn_state(p);
1054 }
1055
1056 static void
1057 generate_tcs_create_barrier_header(struct brw_codegen *p,
1058 struct brw_vue_prog_data *prog_data,
1059 struct brw_reg dst)
1060 {
1061 const struct gen_device_info *devinfo = p->devinfo;
1062 const bool ivb = devinfo->is_ivybridge || devinfo->is_baytrail;
1063 struct brw_reg m0_2 = get_element_ud(dst, 2);
1064 unsigned instances = ((struct brw_tcs_prog_data *) prog_data)->instances;
1065
1066 brw_push_insn_state(p);
1067 brw_set_default_access_mode(p, BRW_ALIGN_1);
1068 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1069
1070 /* Zero the message header */
1071 brw_MOV(p, retype(dst, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
1072
1073 /* Copy "Barrier ID" from r0.2, bits 16:13 (Gen7.5+) or 15:12 (Gen7) */
1074 brw_AND(p, m0_2,
1075 retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
1076 brw_imm_ud(ivb ? INTEL_MASK(15, 12) : INTEL_MASK(16, 13)));
1077
1078 /* Shift it up to bits 27:24. */
1079 brw_SHL(p, m0_2, get_element_ud(dst, 2), brw_imm_ud(ivb ? 12 : 11));
1080
1081 /* Set the Barrier Count and the enable bit */
1082 brw_OR(p, m0_2, m0_2, brw_imm_ud(instances << 9 | (1 << 15)));
1083
1084 brw_pop_insn_state(p);
1085 }
1086
1087 static void
1088 generate_oword_dual_block_offsets(struct brw_codegen *p,
1089 struct brw_reg m1,
1090 struct brw_reg index)
1091 {
1092 int second_vertex_offset;
1093
1094 if (p->devinfo->gen >= 6)
1095 second_vertex_offset = 1;
1096 else
1097 second_vertex_offset = 16;
1098
1099 m1 = retype(m1, BRW_REGISTER_TYPE_D);
1100
1101 /* Set up M1 (message payload). Only the block offsets in M1.0 and
1102 * M1.4 are used, and the rest are ignored.
1103 */
1104 struct brw_reg m1_0 = suboffset(vec1(m1), 0);
1105 struct brw_reg m1_4 = suboffset(vec1(m1), 4);
1106 struct brw_reg index_0 = suboffset(vec1(index), 0);
1107 struct brw_reg index_4 = suboffset(vec1(index), 4);
1108
1109 brw_push_insn_state(p);
1110 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1111 brw_set_default_access_mode(p, BRW_ALIGN_1);
1112
1113 brw_MOV(p, m1_0, index_0);
1114
1115 if (index.file == BRW_IMMEDIATE_VALUE) {
1116 index_4.ud += second_vertex_offset;
1117 brw_MOV(p, m1_4, index_4);
1118 } else {
1119 brw_ADD(p, m1_4, index_4, brw_imm_d(second_vertex_offset));
1120 }
1121
1122 brw_pop_insn_state(p);
1123 }
1124
1125 static void
1126 generate_unpack_flags(struct brw_codegen *p,
1127 struct brw_reg dst)
1128 {
1129 brw_push_insn_state(p);
1130 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1131 brw_set_default_access_mode(p, BRW_ALIGN_1);
1132
1133 struct brw_reg flags = brw_flag_reg(0, 0);
1134 struct brw_reg dst_0 = suboffset(vec1(dst), 0);
1135 struct brw_reg dst_4 = suboffset(vec1(dst), 4);
1136
1137 brw_AND(p, dst_0, flags, brw_imm_ud(0x0f));
1138 brw_AND(p, dst_4, flags, brw_imm_ud(0xf0));
1139 brw_SHR(p, dst_4, dst_4, brw_imm_ud(4));
1140
1141 brw_pop_insn_state(p);
1142 }
1143
1144 static void
1145 generate_scratch_read(struct brw_codegen *p,
1146 vec4_instruction *inst,
1147 struct brw_reg dst,
1148 struct brw_reg index)
1149 {
1150 const struct gen_device_info *devinfo = p->devinfo;
1151 struct brw_reg header = brw_vec8_grf(0, 0);
1152
1153 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1154
1155 generate_oword_dual_block_offsets(p, brw_message_reg(inst->base_mrf + 1),
1156 index);
1157
1158 uint32_t msg_type;
1159
1160 if (devinfo->gen >= 6)
1161 msg_type = GEN6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1162 else if (devinfo->gen == 5 || devinfo->is_g4x)
1163 msg_type = G45_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1164 else
1165 msg_type = BRW_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1166
1167 const unsigned target_cache =
1168 devinfo->gen >= 7 ? GEN7_SFID_DATAPORT_DATA_CACHE :
1169 devinfo->gen >= 6 ? GEN6_SFID_DATAPORT_RENDER_CACHE :
1170 BRW_SFID_DATAPORT_READ;
1171
1172 /* Each of the 8 channel enables is considered for whether each
1173 * dword is written.
1174 */
1175 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1176 brw_inst_set_sfid(devinfo, send, target_cache);
1177 brw_set_dest(p, send, dst);
1178 brw_set_src0(p, send, header);
1179 if (devinfo->gen < 6)
1180 brw_inst_set_cond_modifier(devinfo, send, inst->base_mrf);
1181 brw_set_desc(p, send,
1182 brw_message_desc(devinfo, 2, 1, true) |
1183 brw_dp_read_desc(devinfo,
1184 brw_scratch_surface_idx(p),
1185 BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD,
1186 msg_type, BRW_DATAPORT_READ_TARGET_RENDER_CACHE));
1187 }
1188
1189 static void
1190 generate_scratch_write(struct brw_codegen *p,
1191 vec4_instruction *inst,
1192 struct brw_reg dst,
1193 struct brw_reg src,
1194 struct brw_reg index)
1195 {
1196 const struct gen_device_info *devinfo = p->devinfo;
1197 const unsigned target_cache =
1198 (devinfo->gen >= 7 ? GEN7_SFID_DATAPORT_DATA_CACHE :
1199 devinfo->gen >= 6 ? GEN6_SFID_DATAPORT_RENDER_CACHE :
1200 BRW_SFID_DATAPORT_WRITE);
1201 struct brw_reg header = brw_vec8_grf(0, 0);
1202 bool write_commit;
1203
1204 /* If the instruction is predicated, we'll predicate the send, not
1205 * the header setup.
1206 */
1207 brw_set_default_predicate_control(p, false);
1208
1209 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1210
1211 generate_oword_dual_block_offsets(p, brw_message_reg(inst->base_mrf + 1),
1212 index);
1213
1214 brw_MOV(p,
1215 retype(brw_message_reg(inst->base_mrf + 2), BRW_REGISTER_TYPE_D),
1216 retype(src, BRW_REGISTER_TYPE_D));
1217
1218 uint32_t msg_type;
1219
1220 if (devinfo->gen >= 7)
1221 msg_type = GEN7_DATAPORT_DC_OWORD_DUAL_BLOCK_WRITE;
1222 else if (devinfo->gen == 6)
1223 msg_type = GEN6_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE;
1224 else
1225 msg_type = BRW_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE;
1226
1227 brw_set_default_predicate_control(p, inst->predicate);
1228
1229 /* Pre-gen6, we have to specify write commits to ensure ordering
1230 * between reads and writes within a thread. Afterwards, that's
1231 * guaranteed and write commits only matter for inter-thread
1232 * synchronization.
1233 */
1234 if (devinfo->gen >= 6) {
1235 write_commit = false;
1236 } else {
1237 /* The visitor set up our destination register to be g0. This
1238 * means that when the next read comes along, we will end up
1239 * reading from g0 and causing a block on the write commit. For
1240 * write-after-read, we are relying on the value of the previous
1241 * read being used (and thus blocking on completion) before our
1242 * write is executed. This means we have to be careful in
1243 * instruction scheduling to not violate this assumption.
1244 */
1245 write_commit = true;
1246 }
1247
1248 /* Each of the 8 channel enables is considered for whether each
1249 * dword is written.
1250 */
1251 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1252 brw_inst_set_sfid(p->devinfo, send, target_cache);
1253 brw_set_dest(p, send, dst);
1254 brw_set_src0(p, send, header);
1255 if (devinfo->gen < 6)
1256 brw_inst_set_cond_modifier(p->devinfo, send, inst->base_mrf);
1257 brw_set_desc(p, send,
1258 brw_message_desc(devinfo, 3, write_commit, true) |
1259 brw_dp_write_desc(devinfo,
1260 brw_scratch_surface_idx(p),
1261 BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD,
1262 msg_type,
1263 false, /* not a render target write */
1264 write_commit));
1265 }
1266
1267 static void
1268 generate_pull_constant_load(struct brw_codegen *p,
1269 struct brw_vue_prog_data *prog_data,
1270 vec4_instruction *inst,
1271 struct brw_reg dst,
1272 struct brw_reg index,
1273 struct brw_reg offset)
1274 {
1275 const struct gen_device_info *devinfo = p->devinfo;
1276 const unsigned target_cache =
1277 (devinfo->gen >= 6 ? GEN6_SFID_DATAPORT_SAMPLER_CACHE :
1278 BRW_SFID_DATAPORT_READ);
1279 assert(index.file == BRW_IMMEDIATE_VALUE &&
1280 index.type == BRW_REGISTER_TYPE_UD);
1281 uint32_t surf_index = index.ud;
1282
1283 struct brw_reg header = brw_vec8_grf(0, 0);
1284
1285 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1286
1287 if (devinfo->gen >= 6) {
1288 if (offset.file == BRW_IMMEDIATE_VALUE) {
1289 brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1),
1290 BRW_REGISTER_TYPE_D),
1291 brw_imm_d(offset.ud >> 4));
1292 } else {
1293 brw_SHR(p, retype(brw_message_reg(inst->base_mrf + 1),
1294 BRW_REGISTER_TYPE_D),
1295 offset, brw_imm_d(4));
1296 }
1297 } else {
1298 brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1),
1299 BRW_REGISTER_TYPE_D),
1300 offset);
1301 }
1302
1303 uint32_t msg_type;
1304
1305 if (devinfo->gen >= 6)
1306 msg_type = GEN6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1307 else if (devinfo->gen == 5 || devinfo->is_g4x)
1308 msg_type = G45_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1309 else
1310 msg_type = BRW_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1311
1312 /* Each of the 8 channel enables is considered for whether each
1313 * dword is written.
1314 */
1315 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1316 brw_inst_set_sfid(devinfo, send, target_cache);
1317 brw_set_dest(p, send, dst);
1318 brw_set_src0(p, send, header);
1319 if (devinfo->gen < 6)
1320 brw_inst_set_cond_modifier(p->devinfo, send, inst->base_mrf);
1321 brw_set_desc(p, send,
1322 brw_message_desc(devinfo, 2, 1, true) |
1323 brw_dp_read_desc(devinfo, surf_index,
1324 BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD,
1325 msg_type,
1326 BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1327 }
1328
1329 static void
1330 generate_get_buffer_size(struct brw_codegen *p,
1331 struct brw_vue_prog_data *prog_data,
1332 vec4_instruction *inst,
1333 struct brw_reg dst,
1334 struct brw_reg src,
1335 struct brw_reg surf_index)
1336 {
1337 assert(p->devinfo->gen >= 7);
1338 assert(surf_index.type == BRW_REGISTER_TYPE_UD &&
1339 surf_index.file == BRW_IMMEDIATE_VALUE);
1340
1341 brw_SAMPLE(p,
1342 dst,
1343 inst->base_mrf,
1344 src,
1345 surf_index.ud,
1346 0,
1347 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
1348 1, /* response length */
1349 inst->mlen,
1350 inst->header_size > 0,
1351 BRW_SAMPLER_SIMD_MODE_SIMD4X2,
1352 BRW_SAMPLER_RETURN_FORMAT_SINT32);
1353 }
1354
1355 static void
1356 generate_pull_constant_load_gen7(struct brw_codegen *p,
1357 struct brw_vue_prog_data *prog_data,
1358 vec4_instruction *inst,
1359 struct brw_reg dst,
1360 struct brw_reg surf_index,
1361 struct brw_reg offset)
1362 {
1363 const struct gen_device_info *devinfo = p->devinfo;
1364 assert(surf_index.type == BRW_REGISTER_TYPE_UD);
1365
1366 if (surf_index.file == BRW_IMMEDIATE_VALUE) {
1367
1368 brw_inst *insn = brw_next_insn(p, BRW_OPCODE_SEND);
1369 brw_inst_set_sfid(devinfo, insn, BRW_SFID_SAMPLER);
1370 brw_set_dest(p, insn, dst);
1371 brw_set_src0(p, insn, offset);
1372 brw_set_desc(p, insn,
1373 brw_message_desc(devinfo, inst->mlen, 1, inst->header_size) |
1374 brw_sampler_desc(devinfo, surf_index.ud,
1375 0, /* LD message ignores sampler unit */
1376 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1377 BRW_SAMPLER_SIMD_MODE_SIMD4X2, 0));
1378 } else {
1379
1380 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1381
1382 brw_push_insn_state(p);
1383 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1384 brw_set_default_access_mode(p, BRW_ALIGN_1);
1385
1386 /* a0.0 = surf_index & 0xff */
1387 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1388 brw_inst_set_exec_size(devinfo, insn_and, BRW_EXECUTE_1);
1389 brw_set_dest(p, insn_and, addr);
1390 brw_set_src0(p, insn_and, vec1(retype(surf_index, BRW_REGISTER_TYPE_UD)));
1391 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1392
1393 brw_pop_insn_state(p);
1394
1395 /* dst = send(offset, a0.0 | <descriptor>) */
1396 brw_send_indirect_message(
1397 p, BRW_SFID_SAMPLER, dst, offset, addr,
1398 brw_message_desc(devinfo, inst->mlen, 1, inst->header_size) |
1399 brw_sampler_desc(devinfo,
1400 0 /* surface */,
1401 0 /* sampler */,
1402 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1403 BRW_SAMPLER_SIMD_MODE_SIMD4X2,
1404 0),
1405 false /* EOT */);
1406 }
1407 }
1408
1409 static void
1410 generate_set_simd4x2_header_gen9(struct brw_codegen *p,
1411 vec4_instruction *,
1412 struct brw_reg dst)
1413 {
1414 brw_push_insn_state(p);
1415 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1416
1417 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1418 brw_MOV(p, vec8(dst), retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
1419
1420 brw_set_default_access_mode(p, BRW_ALIGN_1);
1421 brw_MOV(p, get_element_ud(dst, 2),
1422 brw_imm_ud(GEN9_SAMPLER_SIMD_MODE_EXTENSION_SIMD4X2));
1423
1424 brw_pop_insn_state(p);
1425 }
1426
1427 static void
1428 generate_mov_indirect(struct brw_codegen *p,
1429 vec4_instruction *,
1430 struct brw_reg dst, struct brw_reg reg,
1431 struct brw_reg indirect)
1432 {
1433 assert(indirect.type == BRW_REGISTER_TYPE_UD);
1434 assert(p->devinfo->gen >= 6);
1435
1436 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr * (REG_SIZE / 2);
1437
1438 /* This instruction acts in align1 mode */
1439 assert(dst.writemask == WRITEMASK_XYZW);
1440
1441 if (indirect.file == BRW_IMMEDIATE_VALUE) {
1442 imm_byte_offset += indirect.ud;
1443
1444 reg.nr = imm_byte_offset / REG_SIZE;
1445 reg.subnr = (imm_byte_offset / (REG_SIZE / 2)) % 2;
1446 unsigned shift = (imm_byte_offset / 4) % 4;
1447 reg.swizzle += BRW_SWIZZLE4(shift, shift, shift, shift);
1448
1449 brw_MOV(p, dst, reg);
1450 } else {
1451 brw_push_insn_state(p);
1452 brw_set_default_access_mode(p, BRW_ALIGN_1);
1453 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1454
1455 struct brw_reg addr = vec8(brw_address_reg(0));
1456
1457 /* We need to move the indirect value into the address register. In
1458 * order to make things make some sense, we want to respect at least the
1459 * X component of the swizzle. In order to do that, we need to convert
1460 * the subnr (probably 0) to an align1 subnr and add in the swizzle.
1461 */
1462 assert(brw_is_single_value_swizzle(indirect.swizzle));
1463 indirect.subnr = (indirect.subnr * 4 + BRW_GET_SWZ(indirect.swizzle, 0));
1464
1465 /* We then use a region of <8,4,0>:uw to pick off the first 2 bytes of
1466 * the indirect and splat it out to all four channels of the given half
1467 * of a0.
1468 */
1469 indirect.subnr *= 2;
1470 indirect = stride(retype(indirect, BRW_REGISTER_TYPE_UW), 8, 4, 0);
1471 brw_ADD(p, addr, indirect, brw_imm_uw(imm_byte_offset));
1472
1473 /* Now we need to incorporate the swizzle from the source register */
1474 if (reg.swizzle != BRW_SWIZZLE_XXXX) {
1475 uint32_t uv_swiz = BRW_GET_SWZ(reg.swizzle, 0) << 2 |
1476 BRW_GET_SWZ(reg.swizzle, 1) << 6 |
1477 BRW_GET_SWZ(reg.swizzle, 2) << 10 |
1478 BRW_GET_SWZ(reg.swizzle, 3) << 14;
1479 uv_swiz |= uv_swiz << 16;
1480
1481 brw_ADD(p, addr, addr, brw_imm_uv(uv_swiz));
1482 }
1483
1484 brw_MOV(p, dst, retype(brw_VxH_indirect(0, 0), reg.type));
1485
1486 brw_pop_insn_state(p);
1487 }
1488 }
1489
1490 static void
1491 generate_code(struct brw_codegen *p,
1492 const struct brw_compiler *compiler,
1493 void *log_data,
1494 const nir_shader *nir,
1495 struct brw_vue_prog_data *prog_data,
1496 const struct cfg_t *cfg)
1497 {
1498 const struct gen_device_info *devinfo = p->devinfo;
1499 const char *stage_abbrev = _mesa_shader_stage_to_abbrev(nir->info.stage);
1500 bool debug_flag = INTEL_DEBUG &
1501 intel_debug_flag_for_shader_stage(nir->info.stage);
1502 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1503 int spill_count = 0, fill_count = 0;
1504 int loop_count = 0;
1505
1506 foreach_block_and_inst (block, vec4_instruction, inst, cfg) {
1507 struct brw_reg src[3], dst;
1508
1509 if (unlikely(debug_flag))
1510 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1511
1512 for (unsigned int i = 0; i < 3; i++) {
1513 src[i] = inst->src[i].as_brw_reg();
1514 }
1515 dst = inst->dst.as_brw_reg();
1516
1517 brw_set_default_predicate_control(p, inst->predicate);
1518 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1519 brw_set_default_flag_reg(p, inst->flag_subreg / 2, inst->flag_subreg % 2);
1520 brw_set_default_saturate(p, inst->saturate);
1521 brw_set_default_mask_control(p, inst->force_writemask_all);
1522 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1523
1524 assert(inst->group % inst->exec_size == 0);
1525 assert(inst->group % 4 == 0);
1526
1527 /* There are some instructions where the destination is 64-bit
1528 * but we retype it to a smaller type. In that case, we cannot
1529 * double the exec_size.
1530 */
1531 const bool is_df = (get_exec_type_size(inst) == 8 ||
1532 inst->dst.type == BRW_REGISTER_TYPE_DF) &&
1533 inst->opcode != VEC4_OPCODE_PICK_LOW_32BIT &&
1534 inst->opcode != VEC4_OPCODE_PICK_HIGH_32BIT &&
1535 inst->opcode != VEC4_OPCODE_SET_LOW_32BIT &&
1536 inst->opcode != VEC4_OPCODE_SET_HIGH_32BIT;
1537
1538 unsigned exec_size = inst->exec_size;
1539 if (devinfo->gen == 7 && !devinfo->is_haswell && is_df)
1540 exec_size *= 2;
1541
1542 brw_set_default_exec_size(p, cvt(exec_size) - 1);
1543
1544 if (!inst->force_writemask_all)
1545 brw_set_default_group(p, inst->group);
1546
1547 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1548 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1549
1550 unsigned pre_emit_nr_insn = p->nr_insn;
1551
1552 switch (inst->opcode) {
1553 case VEC4_OPCODE_UNPACK_UNIFORM:
1554 case BRW_OPCODE_MOV:
1555 brw_MOV(p, dst, src[0]);
1556 break;
1557 case BRW_OPCODE_ADD:
1558 brw_ADD(p, dst, src[0], src[1]);
1559 break;
1560 case BRW_OPCODE_MUL:
1561 brw_MUL(p, dst, src[0], src[1]);
1562 break;
1563 case BRW_OPCODE_MACH:
1564 brw_MACH(p, dst, src[0], src[1]);
1565 break;
1566
1567 case BRW_OPCODE_MAD:
1568 assert(devinfo->gen >= 6);
1569 brw_MAD(p, dst, src[0], src[1], src[2]);
1570 break;
1571
1572 case BRW_OPCODE_FRC:
1573 brw_FRC(p, dst, src[0]);
1574 break;
1575 case BRW_OPCODE_RNDD:
1576 brw_RNDD(p, dst, src[0]);
1577 break;
1578 case BRW_OPCODE_RNDE:
1579 brw_RNDE(p, dst, src[0]);
1580 break;
1581 case BRW_OPCODE_RNDZ:
1582 brw_RNDZ(p, dst, src[0]);
1583 break;
1584
1585 case BRW_OPCODE_AND:
1586 brw_AND(p, dst, src[0], src[1]);
1587 break;
1588 case BRW_OPCODE_OR:
1589 brw_OR(p, dst, src[0], src[1]);
1590 break;
1591 case BRW_OPCODE_XOR:
1592 brw_XOR(p, dst, src[0], src[1]);
1593 break;
1594 case BRW_OPCODE_NOT:
1595 brw_NOT(p, dst, src[0]);
1596 break;
1597 case BRW_OPCODE_ASR:
1598 brw_ASR(p, dst, src[0], src[1]);
1599 break;
1600 case BRW_OPCODE_SHR:
1601 brw_SHR(p, dst, src[0], src[1]);
1602 break;
1603 case BRW_OPCODE_SHL:
1604 brw_SHL(p, dst, src[0], src[1]);
1605 break;
1606
1607 case BRW_OPCODE_CMP:
1608 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1609 break;
1610 case BRW_OPCODE_SEL:
1611 brw_SEL(p, dst, src[0], src[1]);
1612 break;
1613
1614 case BRW_OPCODE_DPH:
1615 brw_DPH(p, dst, src[0], src[1]);
1616 break;
1617
1618 case BRW_OPCODE_DP4:
1619 brw_DP4(p, dst, src[0], src[1]);
1620 break;
1621
1622 case BRW_OPCODE_DP3:
1623 brw_DP3(p, dst, src[0], src[1]);
1624 break;
1625
1626 case BRW_OPCODE_DP2:
1627 brw_DP2(p, dst, src[0], src[1]);
1628 break;
1629
1630 case BRW_OPCODE_F32TO16:
1631 assert(devinfo->gen >= 7);
1632 brw_F32TO16(p, dst, src[0]);
1633 break;
1634
1635 case BRW_OPCODE_F16TO32:
1636 assert(devinfo->gen >= 7);
1637 brw_F16TO32(p, dst, src[0]);
1638 break;
1639
1640 case BRW_OPCODE_LRP:
1641 assert(devinfo->gen >= 6);
1642 brw_LRP(p, dst, src[0], src[1], src[2]);
1643 break;
1644
1645 case BRW_OPCODE_BFREV:
1646 assert(devinfo->gen >= 7);
1647 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1648 retype(src[0], BRW_REGISTER_TYPE_UD));
1649 break;
1650 case BRW_OPCODE_FBH:
1651 assert(devinfo->gen >= 7);
1652 brw_FBH(p, retype(dst, src[0].type), src[0]);
1653 break;
1654 case BRW_OPCODE_FBL:
1655 assert(devinfo->gen >= 7);
1656 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
1657 retype(src[0], BRW_REGISTER_TYPE_UD));
1658 break;
1659 case BRW_OPCODE_LZD:
1660 brw_LZD(p, dst, src[0]);
1661 break;
1662 case BRW_OPCODE_CBIT:
1663 assert(devinfo->gen >= 7);
1664 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
1665 retype(src[0], BRW_REGISTER_TYPE_UD));
1666 break;
1667 case BRW_OPCODE_ADDC:
1668 assert(devinfo->gen >= 7);
1669 brw_ADDC(p, dst, src[0], src[1]);
1670 break;
1671 case BRW_OPCODE_SUBB:
1672 assert(devinfo->gen >= 7);
1673 brw_SUBB(p, dst, src[0], src[1]);
1674 break;
1675 case BRW_OPCODE_MAC:
1676 brw_MAC(p, dst, src[0], src[1]);
1677 break;
1678
1679 case BRW_OPCODE_BFE:
1680 assert(devinfo->gen >= 7);
1681 brw_BFE(p, dst, src[0], src[1], src[2]);
1682 break;
1683
1684 case BRW_OPCODE_BFI1:
1685 assert(devinfo->gen >= 7);
1686 brw_BFI1(p, dst, src[0], src[1]);
1687 break;
1688 case BRW_OPCODE_BFI2:
1689 assert(devinfo->gen >= 7);
1690 brw_BFI2(p, dst, src[0], src[1], src[2]);
1691 break;
1692
1693 case BRW_OPCODE_IF:
1694 if (!inst->src[0].is_null()) {
1695 /* The instruction has an embedded compare (only allowed on gen6) */
1696 assert(devinfo->gen == 6);
1697 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
1698 } else {
1699 brw_inst *if_inst = brw_IF(p, BRW_EXECUTE_8);
1700 brw_inst_set_pred_control(p->devinfo, if_inst, inst->predicate);
1701 }
1702 break;
1703
1704 case BRW_OPCODE_ELSE:
1705 brw_ELSE(p);
1706 break;
1707 case BRW_OPCODE_ENDIF:
1708 brw_ENDIF(p);
1709 break;
1710
1711 case BRW_OPCODE_DO:
1712 brw_DO(p, BRW_EXECUTE_8);
1713 break;
1714
1715 case BRW_OPCODE_BREAK:
1716 brw_BREAK(p);
1717 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
1718 break;
1719 case BRW_OPCODE_CONTINUE:
1720 brw_CONT(p);
1721 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
1722 break;
1723
1724 case BRW_OPCODE_WHILE:
1725 brw_WHILE(p);
1726 loop_count++;
1727 break;
1728
1729 case SHADER_OPCODE_RCP:
1730 case SHADER_OPCODE_RSQ:
1731 case SHADER_OPCODE_SQRT:
1732 case SHADER_OPCODE_EXP2:
1733 case SHADER_OPCODE_LOG2:
1734 case SHADER_OPCODE_SIN:
1735 case SHADER_OPCODE_COS:
1736 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1737 if (devinfo->gen >= 7) {
1738 gen6_math(p, dst, brw_math_function(inst->opcode), src[0],
1739 brw_null_reg());
1740 } else if (devinfo->gen == 6) {
1741 generate_math_gen6(p, inst, dst, src[0], brw_null_reg());
1742 } else {
1743 generate_math1_gen4(p, inst, dst, src[0]);
1744 }
1745 break;
1746
1747 case SHADER_OPCODE_POW:
1748 case SHADER_OPCODE_INT_QUOTIENT:
1749 case SHADER_OPCODE_INT_REMAINDER:
1750 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1751 if (devinfo->gen >= 7) {
1752 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
1753 } else if (devinfo->gen == 6) {
1754 generate_math_gen6(p, inst, dst, src[0], src[1]);
1755 } else {
1756 generate_math2_gen4(p, inst, dst, src[0], src[1]);
1757 }
1758 break;
1759
1760 case SHADER_OPCODE_TEX:
1761 case SHADER_OPCODE_TXD:
1762 case SHADER_OPCODE_TXF:
1763 case SHADER_OPCODE_TXF_CMS:
1764 case SHADER_OPCODE_TXF_CMS_W:
1765 case SHADER_OPCODE_TXF_MCS:
1766 case SHADER_OPCODE_TXL:
1767 case SHADER_OPCODE_TXS:
1768 case SHADER_OPCODE_TG4:
1769 case SHADER_OPCODE_TG4_OFFSET:
1770 case SHADER_OPCODE_SAMPLEINFO:
1771 generate_tex(p, prog_data, nir->info.stage,
1772 inst, dst, src[0], src[1], src[2]);
1773 break;
1774
1775 case SHADER_OPCODE_GET_BUFFER_SIZE:
1776 generate_get_buffer_size(p, prog_data, inst, dst, src[0], src[1]);
1777 break;
1778
1779 case VS_OPCODE_URB_WRITE:
1780 generate_vs_urb_write(p, inst);
1781 break;
1782
1783 case SHADER_OPCODE_GEN4_SCRATCH_READ:
1784 generate_scratch_read(p, inst, dst, src[0]);
1785 fill_count++;
1786 break;
1787
1788 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
1789 generate_scratch_write(p, inst, dst, src[0], src[1]);
1790 spill_count++;
1791 break;
1792
1793 case VS_OPCODE_PULL_CONSTANT_LOAD:
1794 generate_pull_constant_load(p, prog_data, inst, dst, src[0], src[1]);
1795 break;
1796
1797 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
1798 generate_pull_constant_load_gen7(p, prog_data, inst, dst, src[0], src[1]);
1799 break;
1800
1801 case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
1802 generate_set_simd4x2_header_gen9(p, inst, dst);
1803 break;
1804
1805 case GS_OPCODE_URB_WRITE:
1806 generate_gs_urb_write(p, inst);
1807 break;
1808
1809 case GS_OPCODE_URB_WRITE_ALLOCATE:
1810 generate_gs_urb_write_allocate(p, inst);
1811 break;
1812
1813 case GS_OPCODE_SVB_WRITE:
1814 generate_gs_svb_write(p, prog_data, inst, dst, src[0], src[1]);
1815 break;
1816
1817 case GS_OPCODE_SVB_SET_DST_INDEX:
1818 generate_gs_svb_set_destination_index(p, inst, dst, src[0]);
1819 break;
1820
1821 case GS_OPCODE_THREAD_END:
1822 generate_gs_thread_end(p, inst);
1823 break;
1824
1825 case GS_OPCODE_SET_WRITE_OFFSET:
1826 generate_gs_set_write_offset(p, dst, src[0], src[1]);
1827 break;
1828
1829 case GS_OPCODE_SET_VERTEX_COUNT:
1830 generate_gs_set_vertex_count(p, dst, src[0]);
1831 break;
1832
1833 case GS_OPCODE_FF_SYNC:
1834 generate_gs_ff_sync(p, inst, dst, src[0], src[1]);
1835 break;
1836
1837 case GS_OPCODE_FF_SYNC_SET_PRIMITIVES:
1838 generate_gs_ff_sync_set_primitives(p, dst, src[0], src[1], src[2]);
1839 break;
1840
1841 case GS_OPCODE_SET_PRIMITIVE_ID:
1842 generate_gs_set_primitive_id(p, dst);
1843 break;
1844
1845 case GS_OPCODE_SET_DWORD_2:
1846 generate_gs_set_dword_2(p, dst, src[0]);
1847 break;
1848
1849 case GS_OPCODE_PREPARE_CHANNEL_MASKS:
1850 generate_gs_prepare_channel_masks(p, dst);
1851 break;
1852
1853 case GS_OPCODE_SET_CHANNEL_MASKS:
1854 generate_gs_set_channel_masks(p, dst, src[0]);
1855 break;
1856
1857 case GS_OPCODE_GET_INSTANCE_ID:
1858 generate_gs_get_instance_id(p, dst);
1859 break;
1860
1861 case SHADER_OPCODE_SHADER_TIME_ADD:
1862 brw_shader_time_add(p, src[0],
1863 prog_data->base.binding_table.shader_time_start);
1864 break;
1865
1866 case VEC4_OPCODE_UNTYPED_ATOMIC:
1867 assert(src[2].file == BRW_IMMEDIATE_VALUE);
1868 brw_untyped_atomic(p, dst, src[0], src[1], src[2].ud, inst->mlen,
1869 !inst->dst.is_null(), inst->header_size);
1870 break;
1871
1872 case VEC4_OPCODE_UNTYPED_SURFACE_READ:
1873 assert(!inst->header_size);
1874 assert(src[2].file == BRW_IMMEDIATE_VALUE);
1875 brw_untyped_surface_read(p, dst, src[0], src[1], inst->mlen,
1876 src[2].ud);
1877 break;
1878
1879 case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
1880 assert(src[2].file == BRW_IMMEDIATE_VALUE);
1881 brw_untyped_surface_write(p, src[0], src[1], inst->mlen,
1882 src[2].ud, inst->header_size);
1883 break;
1884
1885 case SHADER_OPCODE_MEMORY_FENCE:
1886 brw_memory_fence(p, dst, BRW_OPCODE_SEND);
1887 break;
1888
1889 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
1890 const struct brw_reg mask =
1891 brw_stage_has_packed_dispatch(devinfo, nir->info.stage,
1892 &prog_data->base) ? brw_imm_ud(~0u) :
1893 brw_dmask_reg();
1894 brw_find_live_channel(p, dst, mask);
1895 break;
1896 }
1897
1898 case SHADER_OPCODE_BROADCAST:
1899 assert(inst->force_writemask_all);
1900 brw_broadcast(p, dst, src[0], src[1]);
1901 break;
1902
1903 case VS_OPCODE_UNPACK_FLAGS_SIMD4X2:
1904 generate_unpack_flags(p, dst);
1905 break;
1906
1907 case VEC4_OPCODE_MOV_BYTES: {
1908 /* Moves the low byte from each channel, using an Align1 access mode
1909 * and a <4,1,0> source region.
1910 */
1911 assert(src[0].type == BRW_REGISTER_TYPE_UB ||
1912 src[0].type == BRW_REGISTER_TYPE_B);
1913
1914 brw_set_default_access_mode(p, BRW_ALIGN_1);
1915 src[0].vstride = BRW_VERTICAL_STRIDE_4;
1916 src[0].width = BRW_WIDTH_1;
1917 src[0].hstride = BRW_HORIZONTAL_STRIDE_0;
1918 brw_MOV(p, dst, src[0]);
1919 brw_set_default_access_mode(p, BRW_ALIGN_16);
1920 break;
1921 }
1922
1923 case VEC4_OPCODE_DOUBLE_TO_F32:
1924 case VEC4_OPCODE_DOUBLE_TO_D32:
1925 case VEC4_OPCODE_DOUBLE_TO_U32: {
1926 assert(type_sz(src[0].type) == 8);
1927 assert(type_sz(dst.type) == 8);
1928
1929 brw_reg_type dst_type;
1930
1931 switch (inst->opcode) {
1932 case VEC4_OPCODE_DOUBLE_TO_F32:
1933 dst_type = BRW_REGISTER_TYPE_F;
1934 break;
1935 case VEC4_OPCODE_DOUBLE_TO_D32:
1936 dst_type = BRW_REGISTER_TYPE_D;
1937 break;
1938 case VEC4_OPCODE_DOUBLE_TO_U32:
1939 dst_type = BRW_REGISTER_TYPE_UD;
1940 break;
1941 default:
1942 unreachable("Not supported conversion");
1943 }
1944 dst = retype(dst, dst_type);
1945
1946 brw_set_default_access_mode(p, BRW_ALIGN_1);
1947
1948 /* When converting from DF->F, we set destination's stride as 2 as an
1949 * aligment requirement. But in IVB/BYT, each DF implicitly writes
1950 * two floats, being the first one the converted value. So we don't
1951 * need to explicitly set stride 2, but 1.
1952 */
1953 struct brw_reg spread_dst;
1954 if (devinfo->gen == 7 && !devinfo->is_haswell)
1955 spread_dst = stride(dst, 8, 4, 1);
1956 else
1957 spread_dst = stride(dst, 8, 4, 2);
1958
1959 brw_MOV(p, spread_dst, src[0]);
1960
1961 brw_set_default_access_mode(p, BRW_ALIGN_16);
1962 break;
1963 }
1964
1965 case VEC4_OPCODE_TO_DOUBLE: {
1966 assert(type_sz(src[0].type) == 4);
1967 assert(type_sz(dst.type) == 8);
1968
1969 brw_set_default_access_mode(p, BRW_ALIGN_1);
1970
1971 brw_MOV(p, dst, src[0]);
1972
1973 brw_set_default_access_mode(p, BRW_ALIGN_16);
1974 break;
1975 }
1976
1977 case VEC4_OPCODE_PICK_LOW_32BIT:
1978 case VEC4_OPCODE_PICK_HIGH_32BIT: {
1979 /* Stores the low/high 32-bit of each 64-bit element in src[0] into
1980 * dst using ALIGN1 mode and a <8,4,2>:UD region on the source.
1981 */
1982 assert(type_sz(src[0].type) == 8);
1983 assert(type_sz(dst.type) == 4);
1984
1985 brw_set_default_access_mode(p, BRW_ALIGN_1);
1986
1987 dst = retype(dst, BRW_REGISTER_TYPE_UD);
1988 dst.hstride = BRW_HORIZONTAL_STRIDE_1;
1989
1990 src[0] = retype(src[0], BRW_REGISTER_TYPE_UD);
1991 if (inst->opcode == VEC4_OPCODE_PICK_HIGH_32BIT)
1992 src[0] = suboffset(src[0], 1);
1993 src[0] = spread(src[0], 2);
1994 brw_MOV(p, dst, src[0]);
1995
1996 brw_set_default_access_mode(p, BRW_ALIGN_16);
1997 break;
1998 }
1999
2000 case VEC4_OPCODE_SET_LOW_32BIT:
2001 case VEC4_OPCODE_SET_HIGH_32BIT: {
2002 /* Reads consecutive 32-bit elements from src[0] and writes
2003 * them to the low/high 32-bit of each 64-bit element in dst.
2004 */
2005 assert(type_sz(src[0].type) == 4);
2006 assert(type_sz(dst.type) == 8);
2007
2008 brw_set_default_access_mode(p, BRW_ALIGN_1);
2009
2010 dst = retype(dst, BRW_REGISTER_TYPE_UD);
2011 if (inst->opcode == VEC4_OPCODE_SET_HIGH_32BIT)
2012 dst = suboffset(dst, 1);
2013 dst.hstride = BRW_HORIZONTAL_STRIDE_2;
2014
2015 src[0] = retype(src[0], BRW_REGISTER_TYPE_UD);
2016 brw_MOV(p, dst, src[0]);
2017
2018 brw_set_default_access_mode(p, BRW_ALIGN_16);
2019 break;
2020 }
2021
2022 case VEC4_OPCODE_PACK_BYTES: {
2023 /* Is effectively:
2024 *
2025 * mov(8) dst<16,4,1>:UB src<4,1,0>:UB
2026 *
2027 * but destinations' only regioning is horizontal stride, so instead we
2028 * have to use two instructions:
2029 *
2030 * mov(4) dst<1>:UB src<4,1,0>:UB
2031 * mov(4) dst.16<1>:UB src.16<4,1,0>:UB
2032 *
2033 * where they pack the four bytes from the low and high four DW.
2034 */
2035 assert(_mesa_is_pow_two(dst.writemask) &&
2036 dst.writemask != 0);
2037 unsigned offset = __builtin_ctz(dst.writemask);
2038
2039 dst.type = BRW_REGISTER_TYPE_UB;
2040
2041 brw_set_default_access_mode(p, BRW_ALIGN_1);
2042
2043 src[0].type = BRW_REGISTER_TYPE_UB;
2044 src[0].vstride = BRW_VERTICAL_STRIDE_4;
2045 src[0].width = BRW_WIDTH_1;
2046 src[0].hstride = BRW_HORIZONTAL_STRIDE_0;
2047 dst.subnr = offset * 4;
2048 struct brw_inst *insn = brw_MOV(p, dst, src[0]);
2049 brw_inst_set_exec_size(p->devinfo, insn, BRW_EXECUTE_4);
2050 brw_inst_set_no_dd_clear(p->devinfo, insn, true);
2051 brw_inst_set_no_dd_check(p->devinfo, insn, inst->no_dd_check);
2052
2053 src[0].subnr = 16;
2054 dst.subnr = 16 + offset * 4;
2055 insn = brw_MOV(p, dst, src[0]);
2056 brw_inst_set_exec_size(p->devinfo, insn, BRW_EXECUTE_4);
2057 brw_inst_set_no_dd_clear(p->devinfo, insn, inst->no_dd_clear);
2058 brw_inst_set_no_dd_check(p->devinfo, insn, true);
2059
2060 brw_set_default_access_mode(p, BRW_ALIGN_16);
2061 break;
2062 }
2063
2064 case TCS_OPCODE_URB_WRITE:
2065 generate_tcs_urb_write(p, inst, src[0]);
2066 break;
2067
2068 case VEC4_OPCODE_URB_READ:
2069 generate_vec4_urb_read(p, inst, dst, src[0]);
2070 break;
2071
2072 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
2073 generate_tcs_input_urb_offsets(p, dst, src[0], src[1]);
2074 break;
2075
2076 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
2077 generate_tcs_output_urb_offsets(p, dst, src[0], src[1]);
2078 break;
2079
2080 case TCS_OPCODE_GET_INSTANCE_ID:
2081 generate_tcs_get_instance_id(p, dst);
2082 break;
2083
2084 case TCS_OPCODE_GET_PRIMITIVE_ID:
2085 generate_tcs_get_primitive_id(p, dst);
2086 break;
2087
2088 case TCS_OPCODE_CREATE_BARRIER_HEADER:
2089 generate_tcs_create_barrier_header(p, prog_data, dst);
2090 break;
2091
2092 case TES_OPCODE_CREATE_INPUT_READ_HEADER:
2093 generate_tes_create_input_read_header(p, dst);
2094 break;
2095
2096 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
2097 generate_tes_add_indirect_urb_offset(p, dst, src[0], src[1]);
2098 break;
2099
2100 case TES_OPCODE_GET_PRIMITIVE_ID:
2101 generate_tes_get_primitive_id(p, dst);
2102 break;
2103
2104 case TCS_OPCODE_SRC0_010_IS_ZERO:
2105 /* If src_reg had stride like fs_reg, we wouldn't need this. */
2106 brw_MOV(p, brw_null_reg(), stride(src[0], 0, 1, 0));
2107 break;
2108
2109 case TCS_OPCODE_RELEASE_INPUT:
2110 generate_tcs_release_input(p, dst, src[0], src[1]);
2111 break;
2112
2113 case TCS_OPCODE_THREAD_END:
2114 generate_tcs_thread_end(p, inst);
2115 break;
2116
2117 case SHADER_OPCODE_BARRIER:
2118 brw_barrier(p, src[0]);
2119 brw_WAIT(p);
2120 break;
2121
2122 case SHADER_OPCODE_MOV_INDIRECT:
2123 generate_mov_indirect(p, inst, dst, src[0], src[1]);
2124 break;
2125
2126 case BRW_OPCODE_DIM:
2127 assert(devinfo->is_haswell);
2128 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2129 assert(dst.type == BRW_REGISTER_TYPE_DF);
2130 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2131 break;
2132
2133 default:
2134 unreachable("Unsupported opcode");
2135 }
2136
2137 if (inst->opcode == VEC4_OPCODE_PACK_BYTES) {
2138 /* Handled dependency hints in the generator. */
2139
2140 assert(!inst->conditional_mod);
2141 } else if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2142 assert(p->nr_insn == pre_emit_nr_insn + 1 ||
2143 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2144 "emitting more than 1 instruction");
2145
2146 brw_inst *last = &p->store[pre_emit_nr_insn];
2147
2148 if (inst->conditional_mod)
2149 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2150 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2151 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2152 }
2153 }
2154
2155 brw_set_uip_jip(p, 0);
2156
2157 /* end of program sentinel */
2158 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2159
2160 #ifndef NDEBUG
2161 bool validated =
2162 #else
2163 if (unlikely(debug_flag))
2164 #endif
2165 brw_validate_instructions(devinfo, p->store,
2166 0, p->next_insn_offset,
2167 disasm_info);
2168
2169 int before_size = p->next_insn_offset;
2170 brw_compact_instructions(p, 0, disasm_info);
2171 int after_size = p->next_insn_offset;
2172
2173 if (unlikely(debug_flag)) {
2174 fprintf(stderr, "Native code for %s %s shader %s:\n",
2175 nir->info.label ? nir->info.label : "unnamed",
2176 _mesa_shader_stage_to_string(nir->info.stage), nir->info.name);
2177
2178 fprintf(stderr, "%s vec4 shader: %d instructions. %d loops. %u cycles. %d:%d "
2179 "spills:fills. Compacted %d to %d bytes (%.0f%%)\n",
2180 stage_abbrev, before_size / 16, loop_count, cfg->cycle_count,
2181 spill_count, fill_count, before_size, after_size,
2182 100.0f * (before_size - after_size) / before_size);
2183
2184 dump_assembly(p->store, disasm_info);
2185 }
2186 ralloc_free(disasm_info);
2187 assert(validated);
2188
2189 compiler->shader_debug_log(log_data,
2190 "%s vec4 shader: %d inst, %d loops, %u cycles, "
2191 "%d:%d spills:fills, compacted %d to %d bytes.",
2192 stage_abbrev, before_size / 16,
2193 loop_count, cfg->cycle_count, spill_count,
2194 fill_count, before_size, after_size);
2195
2196 }
2197
2198 extern "C" const unsigned *
2199 brw_vec4_generate_assembly(const struct brw_compiler *compiler,
2200 void *log_data,
2201 void *mem_ctx,
2202 const nir_shader *nir,
2203 struct brw_vue_prog_data *prog_data,
2204 const struct cfg_t *cfg)
2205 {
2206 struct brw_codegen *p = rzalloc(mem_ctx, struct brw_codegen);
2207 brw_init_codegen(compiler->devinfo, p, mem_ctx);
2208 brw_set_default_access_mode(p, BRW_ALIGN_16);
2209
2210 generate_code(p, compiler, log_data, nir, prog_data, cfg);
2211
2212 return brw_get_program(p, &prog_data->base.program_size);
2213 }