i965: Move the back-end compiler to src/intel/compiler
[mesa.git] / src / intel / compiler / brw_vec4_nir.cpp
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_nir.h"
25 #include "brw_vec4.h"
26 #include "brw_vec4_builder.h"
27 #include "brw_vec4_surface_builder.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 namespace brw {
33
34 void
35 vec4_visitor::emit_nir_code()
36 {
37 if (nir->num_uniforms > 0)
38 nir_setup_uniforms();
39
40 nir_setup_system_values();
41
42 /* get the main function and emit it */
43 nir_foreach_function(function, nir) {
44 assert(strcmp(function->name, "main") == 0);
45 assert(function->impl);
46 nir_emit_impl(function->impl);
47 }
48 }
49
50 void
51 vec4_visitor::nir_setup_system_value_intrinsic(nir_intrinsic_instr *instr)
52 {
53 dst_reg *reg;
54
55 switch (instr->intrinsic) {
56 case nir_intrinsic_load_vertex_id:
57 unreachable("should be lowered by lower_vertex_id().");
58
59 case nir_intrinsic_load_vertex_id_zero_base:
60 reg = &nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
61 if (reg->file == BAD_FILE)
62 *reg = *make_reg_for_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
63 break;
64
65 case nir_intrinsic_load_base_vertex:
66 reg = &nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
67 if (reg->file == BAD_FILE)
68 *reg = *make_reg_for_system_value(SYSTEM_VALUE_BASE_VERTEX);
69 break;
70
71 case nir_intrinsic_load_instance_id:
72 reg = &nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
73 if (reg->file == BAD_FILE)
74 *reg = *make_reg_for_system_value(SYSTEM_VALUE_INSTANCE_ID);
75 break;
76
77 case nir_intrinsic_load_base_instance:
78 reg = &nir_system_values[SYSTEM_VALUE_BASE_INSTANCE];
79 if (reg->file == BAD_FILE)
80 *reg = *make_reg_for_system_value(SYSTEM_VALUE_BASE_INSTANCE);
81 break;
82
83 case nir_intrinsic_load_draw_id:
84 reg = &nir_system_values[SYSTEM_VALUE_DRAW_ID];
85 if (reg->file == BAD_FILE)
86 *reg = *make_reg_for_system_value(SYSTEM_VALUE_DRAW_ID);
87 break;
88
89 default:
90 break;
91 }
92 }
93
94 static bool
95 setup_system_values_block(nir_block *block, vec4_visitor *v)
96 {
97 nir_foreach_instr(instr, block) {
98 if (instr->type != nir_instr_type_intrinsic)
99 continue;
100
101 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
102 v->nir_setup_system_value_intrinsic(intrin);
103 }
104
105 return true;
106 }
107
108 void
109 vec4_visitor::nir_setup_system_values()
110 {
111 nir_system_values = ralloc_array(mem_ctx, dst_reg, SYSTEM_VALUE_MAX);
112 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
113 nir_system_values[i] = dst_reg();
114 }
115
116 nir_foreach_function(function, nir) {
117 assert(strcmp(function->name, "main") == 0);
118 assert(function->impl);
119 nir_foreach_block(block, function->impl) {
120 setup_system_values_block(block, this);
121 }
122 }
123 }
124
125 void
126 vec4_visitor::nir_setup_uniforms()
127 {
128 uniforms = nir->num_uniforms / 16;
129 }
130
131 void
132 vec4_visitor::nir_emit_impl(nir_function_impl *impl)
133 {
134 nir_locals = ralloc_array(mem_ctx, dst_reg, impl->reg_alloc);
135 for (unsigned i = 0; i < impl->reg_alloc; i++) {
136 nir_locals[i] = dst_reg();
137 }
138
139 foreach_list_typed(nir_register, reg, node, &impl->registers) {
140 unsigned array_elems =
141 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
142 const unsigned num_regs = array_elems * DIV_ROUND_UP(reg->bit_size, 32);
143 nir_locals[reg->index] = dst_reg(VGRF, alloc.allocate(num_regs));
144
145 if (reg->bit_size == 64)
146 nir_locals[reg->index].type = BRW_REGISTER_TYPE_DF;
147 }
148
149 nir_ssa_values = ralloc_array(mem_ctx, dst_reg, impl->ssa_alloc);
150
151 nir_emit_cf_list(&impl->body);
152 }
153
154 void
155 vec4_visitor::nir_emit_cf_list(exec_list *list)
156 {
157 exec_list_validate(list);
158 foreach_list_typed(nir_cf_node, node, node, list) {
159 switch (node->type) {
160 case nir_cf_node_if:
161 nir_emit_if(nir_cf_node_as_if(node));
162 break;
163
164 case nir_cf_node_loop:
165 nir_emit_loop(nir_cf_node_as_loop(node));
166 break;
167
168 case nir_cf_node_block:
169 nir_emit_block(nir_cf_node_as_block(node));
170 break;
171
172 default:
173 unreachable("Invalid CFG node block");
174 }
175 }
176 }
177
178 void
179 vec4_visitor::nir_emit_if(nir_if *if_stmt)
180 {
181 /* First, put the condition in f0 */
182 src_reg condition = get_nir_src(if_stmt->condition, BRW_REGISTER_TYPE_D, 1);
183 vec4_instruction *inst = emit(MOV(dst_null_d(), condition));
184 inst->conditional_mod = BRW_CONDITIONAL_NZ;
185
186 /* We can just predicate based on the X channel, as the condition only
187 * goes on its own line */
188 emit(IF(BRW_PREDICATE_ALIGN16_REPLICATE_X));
189
190 nir_emit_cf_list(&if_stmt->then_list);
191
192 /* note: if the else is empty, dead CF elimination will remove it */
193 emit(BRW_OPCODE_ELSE);
194
195 nir_emit_cf_list(&if_stmt->else_list);
196
197 emit(BRW_OPCODE_ENDIF);
198 }
199
200 void
201 vec4_visitor::nir_emit_loop(nir_loop *loop)
202 {
203 emit(BRW_OPCODE_DO);
204
205 nir_emit_cf_list(&loop->body);
206
207 emit(BRW_OPCODE_WHILE);
208 }
209
210 void
211 vec4_visitor::nir_emit_block(nir_block *block)
212 {
213 nir_foreach_instr(instr, block) {
214 nir_emit_instr(instr);
215 }
216 }
217
218 void
219 vec4_visitor::nir_emit_instr(nir_instr *instr)
220 {
221 base_ir = instr;
222
223 switch (instr->type) {
224 case nir_instr_type_load_const:
225 nir_emit_load_const(nir_instr_as_load_const(instr));
226 break;
227
228 case nir_instr_type_intrinsic:
229 nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
230 break;
231
232 case nir_instr_type_alu:
233 nir_emit_alu(nir_instr_as_alu(instr));
234 break;
235
236 case nir_instr_type_jump:
237 nir_emit_jump(nir_instr_as_jump(instr));
238 break;
239
240 case nir_instr_type_tex:
241 nir_emit_texture(nir_instr_as_tex(instr));
242 break;
243
244 case nir_instr_type_ssa_undef:
245 nir_emit_undef(nir_instr_as_ssa_undef(instr));
246 break;
247
248 default:
249 fprintf(stderr, "VS instruction not yet implemented by NIR->vec4\n");
250 break;
251 }
252 }
253
254 static dst_reg
255 dst_reg_for_nir_reg(vec4_visitor *v, nir_register *nir_reg,
256 unsigned base_offset, nir_src *indirect)
257 {
258 dst_reg reg;
259
260 reg = v->nir_locals[nir_reg->index];
261 if (nir_reg->bit_size == 64)
262 reg.type = BRW_REGISTER_TYPE_DF;
263 reg = offset(reg, 8, base_offset);
264 if (indirect) {
265 reg.reladdr =
266 new(v->mem_ctx) src_reg(v->get_nir_src(*indirect,
267 BRW_REGISTER_TYPE_D,
268 1));
269 }
270 return reg;
271 }
272
273 dst_reg
274 vec4_visitor::get_nir_dest(const nir_dest &dest)
275 {
276 if (dest.is_ssa) {
277 dst_reg dst =
278 dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(dest.ssa.bit_size, 32)));
279 if (dest.ssa.bit_size == 64)
280 dst.type = BRW_REGISTER_TYPE_DF;
281 nir_ssa_values[dest.ssa.index] = dst;
282 return dst;
283 } else {
284 return dst_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
285 dest.reg.indirect);
286 }
287 }
288
289 dst_reg
290 vec4_visitor::get_nir_dest(const nir_dest &dest, enum brw_reg_type type)
291 {
292 return retype(get_nir_dest(dest), type);
293 }
294
295 dst_reg
296 vec4_visitor::get_nir_dest(const nir_dest &dest, nir_alu_type type)
297 {
298 return get_nir_dest(dest, brw_type_for_nir_type(devinfo, type));
299 }
300
301 src_reg
302 vec4_visitor::get_nir_src(const nir_src &src, enum brw_reg_type type,
303 unsigned num_components)
304 {
305 dst_reg reg;
306
307 if (src.is_ssa) {
308 assert(src.ssa != NULL);
309 reg = nir_ssa_values[src.ssa->index];
310 }
311 else {
312 reg = dst_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
313 src.reg.indirect);
314 }
315
316 reg = retype(reg, type);
317
318 src_reg reg_as_src = src_reg(reg);
319 reg_as_src.swizzle = brw_swizzle_for_size(num_components);
320 return reg_as_src;
321 }
322
323 src_reg
324 vec4_visitor::get_nir_src(const nir_src &src, nir_alu_type type,
325 unsigned num_components)
326 {
327 return get_nir_src(src, brw_type_for_nir_type(devinfo, type),
328 num_components);
329 }
330
331 src_reg
332 vec4_visitor::get_nir_src(const nir_src &src, unsigned num_components)
333 {
334 /* if type is not specified, default to signed int */
335 return get_nir_src(src, nir_type_int32, num_components);
336 }
337
338 src_reg
339 vec4_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
340 {
341 nir_src *offset_src = nir_get_io_offset_src(instr);
342 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
343
344 if (const_value) {
345 /* The only constant offset we should find is 0. brw_nir.c's
346 * add_const_offset_to_base() will fold other constant offsets
347 * into instr->const_index[0].
348 */
349 assert(const_value->u32[0] == 0);
350 return src_reg();
351 }
352
353 return get_nir_src(*offset_src, BRW_REGISTER_TYPE_UD, 1);
354 }
355
356 void
357 vec4_visitor::nir_emit_load_const(nir_load_const_instr *instr)
358 {
359 dst_reg reg;
360
361 if (instr->def.bit_size == 64) {
362 reg = dst_reg(VGRF, alloc.allocate(2));
363 reg.type = BRW_REGISTER_TYPE_DF;
364 } else {
365 reg = dst_reg(VGRF, alloc.allocate(1));
366 reg.type = BRW_REGISTER_TYPE_D;
367 }
368
369 unsigned remaining = brw_writemask_for_size(instr->def.num_components);
370
371 /* @FIXME: consider emitting vector operations to save some MOVs in
372 * cases where the components are representable in 8 bits.
373 * For now, we emit a MOV for each distinct value.
374 */
375 for (unsigned i = 0; i < instr->def.num_components; i++) {
376 unsigned writemask = 1 << i;
377
378 if ((remaining & writemask) == 0)
379 continue;
380
381 for (unsigned j = i; j < instr->def.num_components; j++) {
382 if ((instr->def.bit_size == 32 &&
383 instr->value.u32[i] == instr->value.u32[j]) ||
384 (instr->def.bit_size == 64 &&
385 instr->value.f64[i] == instr->value.f64[j])) {
386 writemask |= 1 << j;
387 }
388 }
389
390 reg.writemask = writemask;
391 if (instr->def.bit_size == 64) {
392 emit(MOV(reg, setup_imm_df(instr->value.f64[i])));
393 } else {
394 emit(MOV(reg, brw_imm_d(instr->value.i32[i])));
395 }
396
397 remaining &= ~writemask;
398 }
399
400 /* Set final writemask */
401 reg.writemask = brw_writemask_for_size(instr->def.num_components);
402
403 nir_ssa_values[instr->def.index] = reg;
404 }
405
406 void
407 vec4_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
408 {
409 dst_reg dest;
410 src_reg src;
411
412 switch (instr->intrinsic) {
413
414 case nir_intrinsic_load_input: {
415 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
416
417 /* We set EmitNoIndirectInput for VS */
418 assert(const_offset);
419
420 dest = get_nir_dest(instr->dest);
421 dest.writemask = brw_writemask_for_size(instr->num_components);
422
423 src = src_reg(ATTR, instr->const_index[0] + const_offset->u32[0],
424 glsl_type::uvec4_type);
425 src = retype(src, dest.type);
426
427 bool is_64bit = nir_dest_bit_size(instr->dest) == 64;
428 if (is_64bit) {
429 dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
430 src.swizzle = BRW_SWIZZLE_XYZW;
431 shuffle_64bit_data(tmp, src, false);
432 emit(MOV(dest, src_reg(tmp)));
433 } else {
434 /* Swizzle source based on component layout qualifier */
435 src.swizzle = BRW_SWZ_COMP_INPUT(nir_intrinsic_component(instr));
436 emit(MOV(dest, src));
437 }
438 break;
439 }
440
441 case nir_intrinsic_store_output: {
442 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
443 assert(const_offset);
444
445 int varying = instr->const_index[0] + const_offset->u32[0];
446
447 bool is_64bit = nir_src_bit_size(instr->src[0]) == 64;
448 if (is_64bit) {
449 src_reg data;
450 src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_DF,
451 instr->num_components);
452 data = src_reg(this, glsl_type::dvec4_type);
453 shuffle_64bit_data(dst_reg(data), src, true);
454 src = retype(data, BRW_REGISTER_TYPE_F);
455 } else {
456 src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F,
457 instr->num_components);
458 }
459
460 unsigned c = nir_intrinsic_component(instr);
461 output_reg[varying][c] = dst_reg(src);
462 output_num_components[varying][c] = instr->num_components;
463
464 unsigned num_components = instr->num_components;
465 if (is_64bit)
466 num_components *= 2;
467
468 output_reg[varying][c] = dst_reg(src);
469 output_num_components[varying][c] = MIN2(4, num_components);
470
471 if (is_64bit && num_components > 4) {
472 assert(num_components <= 8);
473 output_reg[varying + 1][c] = byte_offset(dst_reg(src), REG_SIZE);
474 output_num_components[varying + 1][c] = num_components - 4;
475 }
476 break;
477 }
478
479 case nir_intrinsic_get_buffer_size: {
480 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
481 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
482
483 const unsigned index =
484 prog_data->base.binding_table.ssbo_start + ssbo_index;
485 dst_reg result_dst = get_nir_dest(instr->dest);
486 vec4_instruction *inst = new(mem_ctx)
487 vec4_instruction(VS_OPCODE_GET_BUFFER_SIZE, result_dst);
488
489 inst->base_mrf = 2;
490 inst->mlen = 1; /* always at least one */
491 inst->src[1] = brw_imm_ud(index);
492
493 /* MRF for the first parameter */
494 src_reg lod = brw_imm_d(0);
495 int param_base = inst->base_mrf;
496 int writemask = WRITEMASK_X;
497 emit(MOV(dst_reg(MRF, param_base, glsl_type::int_type, writemask), lod));
498
499 emit(inst);
500
501 brw_mark_surface_used(&prog_data->base, index);
502 break;
503 }
504
505 case nir_intrinsic_store_ssbo: {
506 assert(devinfo->gen >= 7);
507
508 /* Block index */
509 src_reg surf_index;
510 nir_const_value *const_uniform_block =
511 nir_src_as_const_value(instr->src[1]);
512 if (const_uniform_block) {
513 unsigned index = prog_data->base.binding_table.ssbo_start +
514 const_uniform_block->u32[0];
515 surf_index = brw_imm_ud(index);
516 brw_mark_surface_used(&prog_data->base, index);
517 } else {
518 surf_index = src_reg(this, glsl_type::uint_type);
519 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[1], 1),
520 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
521 surf_index = emit_uniformize(surf_index);
522
523 brw_mark_surface_used(&prog_data->base,
524 prog_data->base.binding_table.ssbo_start +
525 nir->info->num_ssbos - 1);
526 }
527
528 /* Offset */
529 src_reg offset_reg;
530 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
531 if (const_offset) {
532 offset_reg = brw_imm_ud(const_offset->u32[0]);
533 } else {
534 offset_reg = get_nir_src(instr->src[2], 1);
535 }
536
537 /* Value */
538 src_reg val_reg = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F, 4);
539
540 /* Writemask */
541 unsigned write_mask = instr->const_index[0];
542
543 /* IvyBridge does not have a native SIMD4x2 untyped write message so untyped
544 * writes will use SIMD8 mode. In order to hide this and keep symmetry across
545 * typed and untyped messages and across hardware platforms, the
546 * current implementation of the untyped messages will transparently convert
547 * the SIMD4x2 payload into an equivalent SIMD8 payload by transposing it
548 * and enabling only channel X on the SEND instruction.
549 *
550 * The above, works well for full vector writes, but not for partial writes
551 * where we want to write some channels and not others, like when we have
552 * code such as v.xyw = vec3(1,2,4). Because the untyped write messages are
553 * quite restrictive with regards to the channel enables we can configure in
554 * the message descriptor (not all combinations are allowed) we cannot simply
555 * implement these scenarios with a single message while keeping the
556 * aforementioned symmetry in the implementation. For now we de decided that
557 * it is better to keep the symmetry to reduce complexity, so in situations
558 * such as the one described we end up emitting two untyped write messages
559 * (one for xy and another for w).
560 *
561 * The code below packs consecutive channels into a single write message,
562 * detects gaps in the vector write and if needed, sends a second message
563 * with the remaining channels. If in the future we decide that we want to
564 * emit a single message at the expense of losing the symmetry in the
565 * implementation we can:
566 *
567 * 1) For IvyBridge: Only use the red channel of the untyped write SIMD8
568 * message payload. In this mode we can write up to 8 offsets and dwords
569 * to the red channel only (for the two vec4s in the SIMD4x2 execution)
570 * and select which of the 8 channels carry data to write by setting the
571 * appropriate writemask in the dst register of the SEND instruction.
572 * It would require to write a new generator opcode specifically for
573 * IvyBridge since we would need to prepare a SIMD8 payload that could
574 * use any channel, not just X.
575 *
576 * 2) For Haswell+: Simply send a single write message but set the writemask
577 * on the dst of the SEND instruction to select the channels we want to
578 * write. It would require to modify the current messages to receive
579 * and honor the writemask provided.
580 */
581 const vec4_builder bld = vec4_builder(this).at_end()
582 .annotate(current_annotation, base_ir);
583
584 unsigned type_slots = nir_src_bit_size(instr->src[0]) / 32;
585 if (type_slots == 2) {
586 dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
587 shuffle_64bit_data(tmp, retype(val_reg, tmp.type), true);
588 val_reg = src_reg(retype(tmp, BRW_REGISTER_TYPE_F));
589 }
590
591 uint8_t swizzle[4] = { 0, 0, 0, 0};
592 int num_channels = 0;
593 unsigned skipped_channels = 0;
594 int num_components = instr->num_components;
595 for (int i = 0; i < num_components; i++) {
596 /* Read components Z/W of a dvec from the appropriate place. We will
597 * also have to adjust the swizzle (we do that with the '% 4' below)
598 */
599 if (i == 2 && type_slots == 2)
600 val_reg = byte_offset(val_reg, REG_SIZE);
601
602 /* Check if this channel needs to be written. If so, record the
603 * channel we need to take the data from in the swizzle array
604 */
605 int component_mask = 1 << i;
606 int write_test = write_mask & component_mask;
607 if (write_test) {
608 /* If we are writing doubles we have to write 2 channels worth of
609 * of data (64 bits) for each double component.
610 */
611 swizzle[num_channels++] = (i * type_slots) % 4;
612 if (type_slots == 2)
613 swizzle[num_channels++] = (i * type_slots + 1) % 4;
614 }
615
616 /* If we don't have to write this channel it means we have a gap in the
617 * vector, so write the channels we accumulated until now, if any. Do
618 * the same if this was the last component in the vector, if we have
619 * enough channels for a full vec4 write or if we have processed
620 * components XY of a dvec (since components ZW are not in the same
621 * SIMD register)
622 */
623 if (!write_test || i == num_components - 1 || num_channels == 4 ||
624 (i == 1 && type_slots == 2)) {
625 if (num_channels > 0) {
626 /* We have channels to write, so update the offset we need to
627 * write at to skip the channels we skipped, if any.
628 */
629 if (skipped_channels > 0) {
630 if (offset_reg.file == IMM) {
631 offset_reg.ud += 4 * skipped_channels;
632 } else {
633 emit(ADD(dst_reg(offset_reg), offset_reg,
634 brw_imm_ud(4 * skipped_channels)));
635 }
636 }
637
638 /* Swizzle the data register so we take the data from the channels
639 * we need to write and send the write message. This will write
640 * num_channels consecutive dwords starting at offset.
641 */
642 val_reg.swizzle =
643 BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
644 emit_untyped_write(bld, surf_index, offset_reg, val_reg,
645 1 /* dims */, num_channels /* size */,
646 BRW_PREDICATE_NONE);
647
648 /* If we have to do a second write we will have to update the
649 * offset so that we jump over the channels we have just written
650 * now.
651 */
652 skipped_channels = num_channels;
653
654 /* Restart the count for the next write message */
655 num_channels = 0;
656 }
657
658 /* If we didn't write the channel, increase skipped count */
659 if (!write_test)
660 skipped_channels += type_slots;
661 }
662 }
663
664 break;
665 }
666
667 case nir_intrinsic_load_ssbo: {
668 assert(devinfo->gen >= 7);
669
670 nir_const_value *const_uniform_block =
671 nir_src_as_const_value(instr->src[0]);
672
673 src_reg surf_index;
674 if (const_uniform_block) {
675 unsigned index = prog_data->base.binding_table.ssbo_start +
676 const_uniform_block->u32[0];
677 surf_index = brw_imm_ud(index);
678
679 brw_mark_surface_used(&prog_data->base, index);
680 } else {
681 surf_index = src_reg(this, glsl_type::uint_type);
682 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], 1),
683 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
684 surf_index = emit_uniformize(surf_index);
685
686 /* Assume this may touch any UBO. It would be nice to provide
687 * a tighter bound, but the array information is already lowered away.
688 */
689 brw_mark_surface_used(&prog_data->base,
690 prog_data->base.binding_table.ssbo_start +
691 nir->info->num_ssbos - 1);
692 }
693
694 src_reg offset_reg;
695 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
696 if (const_offset) {
697 offset_reg = brw_imm_ud(const_offset->u32[0]);
698 } else {
699 offset_reg = get_nir_src(instr->src[1], 1);
700 }
701
702 /* Read the vector */
703 const vec4_builder bld = vec4_builder(this).at_end()
704 .annotate(current_annotation, base_ir);
705
706 src_reg read_result;
707 dst_reg dest = get_nir_dest(instr->dest);
708 if (type_sz(dest.type) < 8) {
709 read_result = emit_untyped_read(bld, surf_index, offset_reg,
710 1 /* dims */, 4 /* size*/,
711 BRW_PREDICATE_NONE);
712 } else {
713 src_reg shuffled = src_reg(this, glsl_type::dvec4_type);
714
715 src_reg temp;
716 temp = emit_untyped_read(bld, surf_index, offset_reg,
717 1 /* dims */, 4 /* size*/,
718 BRW_PREDICATE_NONE);
719 emit(MOV(dst_reg(retype(shuffled, temp.type)), temp));
720
721 if (offset_reg.file == IMM)
722 offset_reg.ud += 16;
723 else
724 emit(ADD(dst_reg(offset_reg), offset_reg, brw_imm_ud(16)));
725
726 temp = emit_untyped_read(bld, surf_index, offset_reg,
727 1 /* dims */, 4 /* size*/,
728 BRW_PREDICATE_NONE);
729 emit(MOV(dst_reg(retype(byte_offset(shuffled, REG_SIZE), temp.type)),
730 temp));
731
732 read_result = src_reg(this, glsl_type::dvec4_type);
733 shuffle_64bit_data(dst_reg(read_result), shuffled, false);
734 }
735
736 read_result.type = dest.type;
737 read_result.swizzle = brw_swizzle_for_size(instr->num_components);
738 emit(MOV(dest, read_result));
739 break;
740 }
741
742 case nir_intrinsic_ssbo_atomic_add:
743 nir_emit_ssbo_atomic(BRW_AOP_ADD, instr);
744 break;
745 case nir_intrinsic_ssbo_atomic_imin:
746 nir_emit_ssbo_atomic(BRW_AOP_IMIN, instr);
747 break;
748 case nir_intrinsic_ssbo_atomic_umin:
749 nir_emit_ssbo_atomic(BRW_AOP_UMIN, instr);
750 break;
751 case nir_intrinsic_ssbo_atomic_imax:
752 nir_emit_ssbo_atomic(BRW_AOP_IMAX, instr);
753 break;
754 case nir_intrinsic_ssbo_atomic_umax:
755 nir_emit_ssbo_atomic(BRW_AOP_UMAX, instr);
756 break;
757 case nir_intrinsic_ssbo_atomic_and:
758 nir_emit_ssbo_atomic(BRW_AOP_AND, instr);
759 break;
760 case nir_intrinsic_ssbo_atomic_or:
761 nir_emit_ssbo_atomic(BRW_AOP_OR, instr);
762 break;
763 case nir_intrinsic_ssbo_atomic_xor:
764 nir_emit_ssbo_atomic(BRW_AOP_XOR, instr);
765 break;
766 case nir_intrinsic_ssbo_atomic_exchange:
767 nir_emit_ssbo_atomic(BRW_AOP_MOV, instr);
768 break;
769 case nir_intrinsic_ssbo_atomic_comp_swap:
770 nir_emit_ssbo_atomic(BRW_AOP_CMPWR, instr);
771 break;
772
773 case nir_intrinsic_load_vertex_id:
774 unreachable("should be lowered by lower_vertex_id()");
775
776 case nir_intrinsic_load_vertex_id_zero_base:
777 case nir_intrinsic_load_base_vertex:
778 case nir_intrinsic_load_instance_id:
779 case nir_intrinsic_load_base_instance:
780 case nir_intrinsic_load_draw_id:
781 case nir_intrinsic_load_invocation_id: {
782 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
783 src_reg val = src_reg(nir_system_values[sv]);
784 assert(val.file != BAD_FILE);
785 dest = get_nir_dest(instr->dest, val.type);
786 emit(MOV(dest, val));
787 break;
788 }
789
790 case nir_intrinsic_load_uniform: {
791 /* Offsets are in bytes but they should always be multiples of 4 */
792 assert(nir_intrinsic_base(instr) % 4 == 0);
793
794 dest = get_nir_dest(instr->dest);
795
796 src = src_reg(dst_reg(UNIFORM, nir_intrinsic_base(instr) / 16));
797 src.type = dest.type;
798
799 /* Uniforms don't actually have to be vec4 aligned. In the case that
800 * it isn't, we have to use a swizzle to shift things around. They
801 * do still have the std140 alignment requirement that vec2's have to
802 * be vec2-aligned and vec3's and vec4's have to be vec4-aligned.
803 *
804 * The swizzle also works in the indirect case as the generator adds
805 * the swizzle to the offset for us.
806 */
807 unsigned shift = (nir_intrinsic_base(instr) % 16) / 4;
808 assert(shift + instr->num_components <= 4);
809
810 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
811 if (const_offset) {
812 /* Offsets are in bytes but they should always be multiples of 4 */
813 assert(const_offset->u32[0] % 4 == 0);
814
815 unsigned offset = const_offset->u32[0] + shift * 4;
816 src.offset = ROUND_DOWN_TO(offset, 16);
817 shift = (offset % 16) / 4;
818 src.swizzle += BRW_SWIZZLE4(shift, shift, shift, shift);
819
820 emit(MOV(dest, src));
821 } else {
822 src.swizzle += BRW_SWIZZLE4(shift, shift, shift, shift);
823
824 src_reg indirect = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_UD, 1);
825
826 /* MOV_INDIRECT is going to stomp the whole thing anyway */
827 dest.writemask = WRITEMASK_XYZW;
828
829 emit(SHADER_OPCODE_MOV_INDIRECT, dest, src,
830 indirect, brw_imm_ud(instr->const_index[1]));
831 }
832 break;
833 }
834
835 case nir_intrinsic_atomic_counter_read:
836 case nir_intrinsic_atomic_counter_inc:
837 case nir_intrinsic_atomic_counter_dec: {
838 unsigned surf_index = prog_data->base.binding_table.abo_start +
839 (unsigned) instr->const_index[0];
840 const vec4_builder bld =
841 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
842
843 /* Get some metadata from the image intrinsic. */
844 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
845
846 /* Get the arguments of the atomic intrinsic. */
847 src_reg offset = get_nir_src(instr->src[0], nir_type_int32,
848 instr->num_components);
849 const src_reg surface = brw_imm_ud(surf_index);
850 const src_reg src0 = (info->num_srcs >= 2
851 ? get_nir_src(instr->src[1]) : src_reg());
852 const src_reg src1 = (info->num_srcs >= 3
853 ? get_nir_src(instr->src[2]) : src_reg());
854
855 src_reg tmp;
856
857 dest = get_nir_dest(instr->dest);
858
859 if (instr->intrinsic == nir_intrinsic_atomic_counter_read) {
860 tmp = emit_untyped_read(bld, surface, offset, 1, 1);
861 } else {
862 tmp = emit_untyped_atomic(bld, surface, offset,
863 src0, src1,
864 1, 1,
865 get_atomic_counter_op(instr->intrinsic));
866 }
867
868 bld.MOV(retype(dest, tmp.type), tmp);
869 brw_mark_surface_used(stage_prog_data, surf_index);
870 break;
871 }
872
873 case nir_intrinsic_load_ubo: {
874 nir_const_value *const_block_index = nir_src_as_const_value(instr->src[0]);
875 src_reg surf_index;
876
877 dest = get_nir_dest(instr->dest);
878
879 if (const_block_index) {
880 /* The block index is a constant, so just emit the binding table entry
881 * as an immediate.
882 */
883 const unsigned index = prog_data->base.binding_table.ubo_start +
884 const_block_index->u32[0];
885 surf_index = brw_imm_ud(index);
886 brw_mark_surface_used(&prog_data->base, index);
887 } else {
888 /* The block index is not a constant. Evaluate the index expression
889 * per-channel and add the base UBO index; we have to select a value
890 * from any live channel.
891 */
892 surf_index = src_reg(this, glsl_type::uint_type);
893 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], nir_type_int32,
894 instr->num_components),
895 brw_imm_ud(prog_data->base.binding_table.ubo_start)));
896 surf_index = emit_uniformize(surf_index);
897
898 /* Assume this may touch any UBO. It would be nice to provide
899 * a tighter bound, but the array information is already lowered away.
900 */
901 brw_mark_surface_used(&prog_data->base,
902 prog_data->base.binding_table.ubo_start +
903 nir->info->num_ubos - 1);
904 }
905
906 src_reg offset_reg;
907 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
908 if (const_offset) {
909 offset_reg = brw_imm_ud(const_offset->u32[0] & ~15);
910 } else {
911 offset_reg = get_nir_src(instr->src[1], nir_type_uint32, 1);
912 }
913
914 src_reg packed_consts;
915 if (nir_dest_bit_size(instr->dest) == 32) {
916 packed_consts = src_reg(this, glsl_type::vec4_type);
917 emit_pull_constant_load_reg(dst_reg(packed_consts),
918 surf_index,
919 offset_reg,
920 NULL, NULL /* before_block/inst */);
921 } else {
922 src_reg temp = src_reg(this, glsl_type::dvec4_type);
923 src_reg temp_float = retype(temp, BRW_REGISTER_TYPE_F);
924
925 emit_pull_constant_load_reg(dst_reg(temp_float),
926 surf_index, offset_reg, NULL, NULL);
927 if (offset_reg.file == IMM)
928 offset_reg.ud += 16;
929 else
930 emit(ADD(dst_reg(offset_reg), offset_reg, brw_imm_ud(16u)));
931 emit_pull_constant_load_reg(dst_reg(byte_offset(temp_float, REG_SIZE)),
932 surf_index, offset_reg, NULL, NULL);
933
934 packed_consts = src_reg(this, glsl_type::dvec4_type);
935 shuffle_64bit_data(dst_reg(packed_consts), temp, false);
936 }
937
938 packed_consts.swizzle = brw_swizzle_for_size(instr->num_components);
939 if (const_offset) {
940 unsigned type_size = type_sz(dest.type);
941 packed_consts.swizzle +=
942 BRW_SWIZZLE4(const_offset->u32[0] % 16 / type_size,
943 const_offset->u32[0] % 16 / type_size,
944 const_offset->u32[0] % 16 / type_size,
945 const_offset->u32[0] % 16 / type_size);
946 }
947
948 emit(MOV(dest, retype(packed_consts, dest.type)));
949
950 break;
951 }
952
953 case nir_intrinsic_memory_barrier: {
954 const vec4_builder bld =
955 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
956 const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
957 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
958 ->size_written = 2 * REG_SIZE;
959 break;
960 }
961
962 case nir_intrinsic_shader_clock: {
963 /* We cannot do anything if there is an event, so ignore it for now */
964 const src_reg shader_clock = get_timestamp();
965 const enum brw_reg_type type = brw_type_for_base_type(glsl_type::uvec2_type);
966
967 dest = get_nir_dest(instr->dest, type);
968 emit(MOV(dest, shader_clock));
969 break;
970 }
971
972 default:
973 unreachable("Unknown intrinsic");
974 }
975 }
976
977 void
978 vec4_visitor::nir_emit_ssbo_atomic(int op, nir_intrinsic_instr *instr)
979 {
980 dst_reg dest;
981 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
982 dest = get_nir_dest(instr->dest);
983
984 src_reg surface;
985 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
986 if (const_surface) {
987 unsigned surf_index = prog_data->base.binding_table.ssbo_start +
988 const_surface->u32[0];
989 surface = brw_imm_ud(surf_index);
990 brw_mark_surface_used(&prog_data->base, surf_index);
991 } else {
992 surface = src_reg(this, glsl_type::uint_type);
993 emit(ADD(dst_reg(surface), get_nir_src(instr->src[0]),
994 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
995
996 /* Assume this may touch any UBO. This is the same we do for other
997 * UBO/SSBO accesses with non-constant surface.
998 */
999 brw_mark_surface_used(&prog_data->base,
1000 prog_data->base.binding_table.ssbo_start +
1001 nir->info->num_ssbos - 1);
1002 }
1003
1004 src_reg offset = get_nir_src(instr->src[1], 1);
1005 src_reg data1 = get_nir_src(instr->src[2], 1);
1006 src_reg data2;
1007 if (op == BRW_AOP_CMPWR)
1008 data2 = get_nir_src(instr->src[3], 1);
1009
1010 /* Emit the actual atomic operation operation */
1011 const vec4_builder bld =
1012 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
1013
1014 src_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
1015 data1, data2,
1016 1 /* dims */, 1 /* rsize */,
1017 op,
1018 BRW_PREDICATE_NONE);
1019 dest.type = atomic_result.type;
1020 bld.MOV(dest, atomic_result);
1021 }
1022
1023 static unsigned
1024 brw_swizzle_for_nir_swizzle(uint8_t swizzle[4])
1025 {
1026 return BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1027 }
1028
1029 static enum brw_conditional_mod
1030 brw_conditional_for_nir_comparison(nir_op op)
1031 {
1032 switch (op) {
1033 case nir_op_flt:
1034 case nir_op_ilt:
1035 case nir_op_ult:
1036 return BRW_CONDITIONAL_L;
1037
1038 case nir_op_fge:
1039 case nir_op_ige:
1040 case nir_op_uge:
1041 return BRW_CONDITIONAL_GE;
1042
1043 case nir_op_feq:
1044 case nir_op_ieq:
1045 case nir_op_ball_fequal2:
1046 case nir_op_ball_iequal2:
1047 case nir_op_ball_fequal3:
1048 case nir_op_ball_iequal3:
1049 case nir_op_ball_fequal4:
1050 case nir_op_ball_iequal4:
1051 return BRW_CONDITIONAL_Z;
1052
1053 case nir_op_fne:
1054 case nir_op_ine:
1055 case nir_op_bany_fnequal2:
1056 case nir_op_bany_inequal2:
1057 case nir_op_bany_fnequal3:
1058 case nir_op_bany_inequal3:
1059 case nir_op_bany_fnequal4:
1060 case nir_op_bany_inequal4:
1061 return BRW_CONDITIONAL_NZ;
1062
1063 default:
1064 unreachable("not reached: bad operation for comparison");
1065 }
1066 }
1067
1068 bool
1069 vec4_visitor::optimize_predicate(nir_alu_instr *instr,
1070 enum brw_predicate *predicate)
1071 {
1072 if (!instr->src[0].src.is_ssa ||
1073 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
1074 return false;
1075
1076 nir_alu_instr *cmp_instr =
1077 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
1078
1079 switch (cmp_instr->op) {
1080 case nir_op_bany_fnequal2:
1081 case nir_op_bany_inequal2:
1082 case nir_op_bany_fnequal3:
1083 case nir_op_bany_inequal3:
1084 case nir_op_bany_fnequal4:
1085 case nir_op_bany_inequal4:
1086 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1087 break;
1088 case nir_op_ball_fequal2:
1089 case nir_op_ball_iequal2:
1090 case nir_op_ball_fequal3:
1091 case nir_op_ball_iequal3:
1092 case nir_op_ball_fequal4:
1093 case nir_op_ball_iequal4:
1094 *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1095 break;
1096 default:
1097 return false;
1098 }
1099
1100 unsigned size_swizzle =
1101 brw_swizzle_for_size(nir_op_infos[cmp_instr->op].input_sizes[0]);
1102
1103 src_reg op[2];
1104 assert(nir_op_infos[cmp_instr->op].num_inputs == 2);
1105 for (unsigned i = 0; i < 2; i++) {
1106 nir_alu_type type = nir_op_infos[cmp_instr->op].input_types[i];
1107 unsigned bit_size = nir_src_bit_size(cmp_instr->src[i].src);
1108 type = (nir_alu_type) (((unsigned) type) | bit_size);
1109 op[i] = get_nir_src(cmp_instr->src[i].src, type, 4);
1110 unsigned base_swizzle =
1111 brw_swizzle_for_nir_swizzle(cmp_instr->src[i].swizzle);
1112 op[i].swizzle = brw_compose_swizzle(size_swizzle, base_swizzle);
1113 op[i].abs = cmp_instr->src[i].abs;
1114 op[i].negate = cmp_instr->src[i].negate;
1115 }
1116
1117 emit(CMP(dst_null_d(), op[0], op[1],
1118 brw_conditional_for_nir_comparison(cmp_instr->op)));
1119
1120 return true;
1121 }
1122
1123 static void
1124 emit_find_msb_using_lzd(const vec4_builder &bld,
1125 const dst_reg &dst,
1126 const src_reg &src,
1127 bool is_signed)
1128 {
1129 vec4_instruction *inst;
1130 src_reg temp = src;
1131
1132 if (is_signed) {
1133 /* LZD of an absolute value source almost always does the right
1134 * thing. There are two problem values:
1135 *
1136 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
1137 * 0. However, findMSB(int(0x80000000)) == 30.
1138 *
1139 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
1140 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
1141 *
1142 * For a value of zero or negative one, -1 will be returned.
1143 *
1144 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
1145 * findMSB(-(1<<x)) should return x-1.
1146 *
1147 * For all negative number cases, including 0x80000000 and
1148 * 0xffffffff, the correct value is obtained from LZD if instead of
1149 * negating the (already negative) value the logical-not is used. A
1150 * conditonal logical-not can be achieved in two instructions.
1151 */
1152 temp = src_reg(bld.vgrf(BRW_REGISTER_TYPE_D));
1153
1154 bld.ASR(dst_reg(temp), src, brw_imm_d(31));
1155 bld.XOR(dst_reg(temp), temp, src);
1156 }
1157
1158 bld.LZD(retype(dst, BRW_REGISTER_TYPE_UD),
1159 retype(temp, BRW_REGISTER_TYPE_UD));
1160
1161 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
1162 * from the LSB side. Subtract the result from 31 to convert the MSB count
1163 * into an LSB count. If no bits are set, LZD will return 32. 31-32 = -1,
1164 * which is exactly what findMSB() is supposed to return.
1165 */
1166 inst = bld.ADD(dst, retype(src_reg(dst), BRW_REGISTER_TYPE_D),
1167 brw_imm_d(31));
1168 inst->src[0].negate = true;
1169 }
1170
1171 void
1172 vec4_visitor::emit_conversion_from_double(dst_reg dst, src_reg src,
1173 bool saturate,
1174 brw_reg_type single_type)
1175 {
1176 /* BDW PRM vol 15 - workarounds:
1177 * DF->f format conversion for Align16 has wrong emask calculation when
1178 * source is immediate.
1179 */
1180 if (devinfo->gen == 8 && single_type == BRW_REGISTER_TYPE_F &&
1181 src.file == BRW_IMMEDIATE_VALUE) {
1182 vec4_instruction *inst = emit(MOV(dst, brw_imm_f(src.df)));
1183 inst->saturate = saturate;
1184 return;
1185 }
1186
1187 dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
1188 emit(MOV(temp, src));
1189
1190 dst_reg temp2 = dst_reg(this, glsl_type::dvec4_type);
1191 temp2 = retype(temp2, single_type);
1192 emit(VEC4_OPCODE_FROM_DOUBLE, temp2, src_reg(temp))
1193 ->size_written = 2 * REG_SIZE;
1194
1195 vec4_instruction *inst = emit(MOV(dst, src_reg(temp2)));
1196 inst->saturate = saturate;
1197 }
1198
1199 void
1200 vec4_visitor::emit_conversion_to_double(dst_reg dst, src_reg src,
1201 bool saturate,
1202 brw_reg_type single_type)
1203 {
1204 dst_reg tmp_dst = dst_reg(src_reg(this, glsl_type::dvec4_type));
1205 src_reg tmp_src = retype(src_reg(this, glsl_type::vec4_type), single_type);
1206 emit(MOV(dst_reg(tmp_src), retype(src, single_type)));
1207 emit(VEC4_OPCODE_TO_DOUBLE, tmp_dst, tmp_src);
1208 vec4_instruction *inst = emit(MOV(dst, src_reg(tmp_dst)));
1209 inst->saturate = saturate;
1210 }
1211
1212 src_reg
1213 vec4_visitor::setup_imm_df(double v)
1214 {
1215 assert(devinfo->gen >= 7);
1216
1217 if (devinfo->gen >= 8)
1218 return brw_imm_df(v);
1219
1220 /* gen7.5 does not support DF immediates straighforward but the DIM
1221 * instruction allows to set the 64-bit immediate value.
1222 */
1223 if (devinfo->is_haswell) {
1224 dst_reg dst = retype(dst_reg(VGRF, alloc.allocate(2)), BRW_REGISTER_TYPE_DF);
1225 emit(DIM(dst, brw_imm_df(v)))->force_writemask_all = true;
1226 return swizzle(src_reg(retype(dst, BRW_REGISTER_TYPE_DF)), BRW_SWIZZLE_XXXX);
1227 }
1228
1229 /* gen7 does not support DF immediates */
1230 union {
1231 double d;
1232 struct {
1233 uint32_t i1;
1234 uint32_t i2;
1235 };
1236 } di;
1237
1238 di.d = v;
1239
1240 /* Write the low 32-bit of the constant to the X:UD channel and the
1241 * high 32-bit to the Y:UD channel to build the constant in a VGRF.
1242 * We have to do this twice (offset 0 and offset 1), since a DF VGRF takes
1243 * two SIMD8 registers in SIMD4x2 execution. Finally, return a swizzle
1244 * XXXX so any access to the VGRF only reads the constant data in these
1245 * channels.
1246 */
1247 const dst_reg tmp =
1248 retype(dst_reg(VGRF, alloc.allocate(2)), BRW_REGISTER_TYPE_UD);
1249 for (int n = 0; n < 2; n++) {
1250 emit(MOV(writemask(offset(tmp, 8, n), WRITEMASK_X), brw_imm_ud(di.i1)))
1251 ->force_writemask_all = true;
1252 emit(MOV(writemask(offset(tmp, 8, n), WRITEMASK_Y), brw_imm_ud(di.i2)))
1253 ->force_writemask_all = true;
1254 }
1255
1256 return swizzle(src_reg(retype(tmp, BRW_REGISTER_TYPE_DF)), BRW_SWIZZLE_XXXX);
1257 }
1258
1259 void
1260 vec4_visitor::nir_emit_alu(nir_alu_instr *instr)
1261 {
1262 vec4_instruction *inst;
1263
1264 nir_alu_type dst_type = (nir_alu_type) (nir_op_infos[instr->op].output_type |
1265 nir_dest_bit_size(instr->dest.dest));
1266 dst_reg dst = get_nir_dest(instr->dest.dest, dst_type);
1267 dst.writemask = instr->dest.write_mask;
1268
1269 src_reg op[4];
1270 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1271 nir_alu_type src_type = (nir_alu_type)
1272 (nir_op_infos[instr->op].input_types[i] |
1273 nir_src_bit_size(instr->src[i].src));
1274 op[i] = get_nir_src(instr->src[i].src, src_type, 4);
1275 op[i].swizzle = brw_swizzle_for_nir_swizzle(instr->src[i].swizzle);
1276 op[i].abs = instr->src[i].abs;
1277 op[i].negate = instr->src[i].negate;
1278 }
1279
1280 switch (instr->op) {
1281 case nir_op_imov:
1282 case nir_op_fmov:
1283 inst = emit(MOV(dst, op[0]));
1284 inst->saturate = instr->dest.saturate;
1285 break;
1286
1287 case nir_op_vec2:
1288 case nir_op_vec3:
1289 case nir_op_vec4:
1290 unreachable("not reached: should be handled by lower_vec_to_movs()");
1291
1292 case nir_op_i2f:
1293 case nir_op_u2f:
1294 inst = emit(MOV(dst, op[0]));
1295 inst->saturate = instr->dest.saturate;
1296 break;
1297
1298 case nir_op_f2i:
1299 case nir_op_f2u:
1300 inst = emit(MOV(dst, op[0]));
1301 break;
1302
1303 case nir_op_d2f:
1304 emit_conversion_from_double(dst, op[0], instr->dest.saturate,
1305 BRW_REGISTER_TYPE_F);
1306 break;
1307
1308 case nir_op_f2d:
1309 emit_conversion_to_double(dst, op[0], instr->dest.saturate,
1310 BRW_REGISTER_TYPE_F);
1311 break;
1312
1313 case nir_op_d2i:
1314 case nir_op_d2u:
1315 emit_conversion_from_double(dst, op[0], instr->dest.saturate,
1316 instr->op == nir_op_d2i ? BRW_REGISTER_TYPE_D :
1317 BRW_REGISTER_TYPE_UD);
1318 break;
1319
1320 case nir_op_i2d:
1321 case nir_op_u2d:
1322 emit_conversion_to_double(dst, op[0], instr->dest.saturate,
1323 instr->op == nir_op_i2d ? BRW_REGISTER_TYPE_D :
1324 BRW_REGISTER_TYPE_UD);
1325 break;
1326
1327 case nir_op_iadd:
1328 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1329 case nir_op_fadd:
1330 inst = emit(ADD(dst, op[0], op[1]));
1331 inst->saturate = instr->dest.saturate;
1332 break;
1333
1334 case nir_op_fmul:
1335 inst = emit(MUL(dst, op[0], op[1]));
1336 inst->saturate = instr->dest.saturate;
1337 break;
1338
1339 case nir_op_imul: {
1340 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1341 if (devinfo->gen < 8) {
1342 nir_const_value *value0 = nir_src_as_const_value(instr->src[0].src);
1343 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
1344
1345 /* For integer multiplication, the MUL uses the low 16 bits of one of
1346 * the operands (src0 through SNB, src1 on IVB and later). The MACH
1347 * accumulates in the contribution of the upper 16 bits of that
1348 * operand. If we can determine that one of the args is in the low
1349 * 16 bits, though, we can just emit a single MUL.
1350 */
1351 if (value0 && value0->u32[0] < (1 << 16)) {
1352 if (devinfo->gen < 7)
1353 emit(MUL(dst, op[0], op[1]));
1354 else
1355 emit(MUL(dst, op[1], op[0]));
1356 } else if (value1 && value1->u32[0] < (1 << 16)) {
1357 if (devinfo->gen < 7)
1358 emit(MUL(dst, op[1], op[0]));
1359 else
1360 emit(MUL(dst, op[0], op[1]));
1361 } else {
1362 struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1363
1364 emit(MUL(acc, op[0], op[1]));
1365 emit(MACH(dst_null_d(), op[0], op[1]));
1366 emit(MOV(dst, src_reg(acc)));
1367 }
1368 } else {
1369 emit(MUL(dst, op[0], op[1]));
1370 }
1371 break;
1372 }
1373
1374 case nir_op_imul_high:
1375 case nir_op_umul_high: {
1376 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1377 struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1378
1379 if (devinfo->gen >= 8)
1380 emit(MUL(acc, op[0], retype(op[1], BRW_REGISTER_TYPE_UW)));
1381 else
1382 emit(MUL(acc, op[0], op[1]));
1383
1384 emit(MACH(dst, op[0], op[1]));
1385 break;
1386 }
1387
1388 case nir_op_frcp:
1389 inst = emit_math(SHADER_OPCODE_RCP, dst, op[0]);
1390 inst->saturate = instr->dest.saturate;
1391 break;
1392
1393 case nir_op_fexp2:
1394 inst = emit_math(SHADER_OPCODE_EXP2, dst, op[0]);
1395 inst->saturate = instr->dest.saturate;
1396 break;
1397
1398 case nir_op_flog2:
1399 inst = emit_math(SHADER_OPCODE_LOG2, dst, op[0]);
1400 inst->saturate = instr->dest.saturate;
1401 break;
1402
1403 case nir_op_fsin:
1404 inst = emit_math(SHADER_OPCODE_SIN, dst, op[0]);
1405 inst->saturate = instr->dest.saturate;
1406 break;
1407
1408 case nir_op_fcos:
1409 inst = emit_math(SHADER_OPCODE_COS, dst, op[0]);
1410 inst->saturate = instr->dest.saturate;
1411 break;
1412
1413 case nir_op_idiv:
1414 case nir_op_udiv:
1415 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1416 emit_math(SHADER_OPCODE_INT_QUOTIENT, dst, op[0], op[1]);
1417 break;
1418
1419 case nir_op_umod:
1420 case nir_op_irem:
1421 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1422 * appears that our hardware just does the right thing for signed
1423 * remainder.
1424 */
1425 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1426 emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1427 break;
1428
1429 case nir_op_imod: {
1430 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1431 inst = emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1432
1433 /* Math instructions don't support conditional mod */
1434 inst = emit(MOV(dst_null_d(), src_reg(dst)));
1435 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1436
1437 /* Now, we need to determine if signs of the sources are different.
1438 * When we XOR the sources, the top bit is 0 if they are the same and 1
1439 * if they are different. We can then use a conditional modifier to
1440 * turn that into a predicate. This leads us to an XOR.l instruction.
1441 *
1442 * Technically, according to the PRM, you're not allowed to use .l on a
1443 * XOR instruction. However, emperical experiments and Curro's reading
1444 * of the simulator source both indicate that it's safe.
1445 */
1446 src_reg tmp = src_reg(this, glsl_type::ivec4_type);
1447 inst = emit(XOR(dst_reg(tmp), op[0], op[1]));
1448 inst->predicate = BRW_PREDICATE_NORMAL;
1449 inst->conditional_mod = BRW_CONDITIONAL_L;
1450
1451 /* If the result of the initial remainder operation is non-zero and the
1452 * two sources have different signs, add in a copy of op[1] to get the
1453 * final integer modulus value.
1454 */
1455 inst = emit(ADD(dst, src_reg(dst), op[1]));
1456 inst->predicate = BRW_PREDICATE_NORMAL;
1457 break;
1458 }
1459
1460 case nir_op_ldexp:
1461 unreachable("not reached: should be handled by ldexp_to_arith()");
1462
1463 case nir_op_fsqrt:
1464 inst = emit_math(SHADER_OPCODE_SQRT, dst, op[0]);
1465 inst->saturate = instr->dest.saturate;
1466 break;
1467
1468 case nir_op_frsq:
1469 inst = emit_math(SHADER_OPCODE_RSQ, dst, op[0]);
1470 inst->saturate = instr->dest.saturate;
1471 break;
1472
1473 case nir_op_fpow:
1474 inst = emit_math(SHADER_OPCODE_POW, dst, op[0], op[1]);
1475 inst->saturate = instr->dest.saturate;
1476 break;
1477
1478 case nir_op_uadd_carry: {
1479 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1480 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1481
1482 emit(ADDC(dst_null_ud(), op[0], op[1]));
1483 emit(MOV(dst, src_reg(acc)));
1484 break;
1485 }
1486
1487 case nir_op_usub_borrow: {
1488 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1489 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1490
1491 emit(SUBB(dst_null_ud(), op[0], op[1]));
1492 emit(MOV(dst, src_reg(acc)));
1493 break;
1494 }
1495
1496 case nir_op_ftrunc:
1497 inst = emit(RNDZ(dst, op[0]));
1498 inst->saturate = instr->dest.saturate;
1499 break;
1500
1501 case nir_op_fceil: {
1502 src_reg tmp = src_reg(this, glsl_type::float_type);
1503 tmp.swizzle =
1504 brw_swizzle_for_size(instr->src[0].src.is_ssa ?
1505 instr->src[0].src.ssa->num_components :
1506 instr->src[0].src.reg.reg->num_components);
1507
1508 op[0].negate = !op[0].negate;
1509 emit(RNDD(dst_reg(tmp), op[0]));
1510 tmp.negate = true;
1511 inst = emit(MOV(dst, tmp));
1512 inst->saturate = instr->dest.saturate;
1513 break;
1514 }
1515
1516 case nir_op_ffloor:
1517 inst = emit(RNDD(dst, op[0]));
1518 inst->saturate = instr->dest.saturate;
1519 break;
1520
1521 case nir_op_ffract:
1522 inst = emit(FRC(dst, op[0]));
1523 inst->saturate = instr->dest.saturate;
1524 break;
1525
1526 case nir_op_fround_even:
1527 inst = emit(RNDE(dst, op[0]));
1528 inst->saturate = instr->dest.saturate;
1529 break;
1530
1531 case nir_op_fquantize2f16: {
1532 /* See also vec4_visitor::emit_pack_half_2x16() */
1533 src_reg tmp16 = src_reg(this, glsl_type::uvec4_type);
1534 src_reg tmp32 = src_reg(this, glsl_type::vec4_type);
1535 src_reg zero = src_reg(this, glsl_type::vec4_type);
1536
1537 /* Check for denormal */
1538 src_reg abs_src0 = op[0];
1539 abs_src0.abs = true;
1540 emit(CMP(dst_null_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1541 BRW_CONDITIONAL_L));
1542 /* Get the appropriately signed zero */
1543 emit(AND(retype(dst_reg(zero), BRW_REGISTER_TYPE_UD),
1544 retype(op[0], BRW_REGISTER_TYPE_UD),
1545 brw_imm_ud(0x80000000)));
1546 /* Do the actual F32 -> F16 -> F32 conversion */
1547 emit(F32TO16(dst_reg(tmp16), op[0]));
1548 emit(F16TO32(dst_reg(tmp32), tmp16));
1549 /* Select that or zero based on normal status */
1550 inst = emit(BRW_OPCODE_SEL, dst, zero, tmp32);
1551 inst->predicate = BRW_PREDICATE_NORMAL;
1552 inst->saturate = instr->dest.saturate;
1553 break;
1554 }
1555
1556 case nir_op_imin:
1557 case nir_op_umin:
1558 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1559 case nir_op_fmin:
1560 inst = emit_minmax(BRW_CONDITIONAL_L, dst, op[0], op[1]);
1561 inst->saturate = instr->dest.saturate;
1562 break;
1563
1564 case nir_op_imax:
1565 case nir_op_umax:
1566 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1567 case nir_op_fmax:
1568 inst = emit_minmax(BRW_CONDITIONAL_GE, dst, op[0], op[1]);
1569 inst->saturate = instr->dest.saturate;
1570 break;
1571
1572 case nir_op_fddx:
1573 case nir_op_fddx_coarse:
1574 case nir_op_fddx_fine:
1575 case nir_op_fddy:
1576 case nir_op_fddy_coarse:
1577 case nir_op_fddy_fine:
1578 unreachable("derivatives are not valid in vertex shaders");
1579
1580 case nir_op_ilt:
1581 case nir_op_ult:
1582 case nir_op_ige:
1583 case nir_op_uge:
1584 case nir_op_ieq:
1585 case nir_op_ine:
1586 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1587 /* Fallthrough */
1588 case nir_op_flt:
1589 case nir_op_fge:
1590 case nir_op_feq:
1591 case nir_op_fne: {
1592 enum brw_conditional_mod conditional_mod =
1593 brw_conditional_for_nir_comparison(instr->op);
1594
1595 if (nir_src_bit_size(instr->src[0].src) < 64) {
1596 emit(CMP(dst, op[0], op[1], conditional_mod));
1597 } else {
1598 /* Produce a 32-bit boolean result from the DF comparison by selecting
1599 * only the low 32-bit in each DF produced. Do this in a temporary
1600 * so we can then move from there to the result using align16 again
1601 * to honor the original writemask.
1602 */
1603 dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
1604 emit(CMP(temp, op[0], op[1], conditional_mod));
1605 dst_reg result = dst_reg(this, glsl_type::bvec4_type);
1606 emit(VEC4_OPCODE_PICK_LOW_32BIT, result, src_reg(temp));
1607 emit(MOV(dst, src_reg(result)));
1608 }
1609 break;
1610 }
1611
1612 case nir_op_ball_iequal2:
1613 case nir_op_ball_iequal3:
1614 case nir_op_ball_iequal4:
1615 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1616 /* Fallthrough */
1617 case nir_op_ball_fequal2:
1618 case nir_op_ball_fequal3:
1619 case nir_op_ball_fequal4: {
1620 unsigned swiz =
1621 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1622
1623 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1624 brw_conditional_for_nir_comparison(instr->op)));
1625 emit(MOV(dst, brw_imm_d(0)));
1626 inst = emit(MOV(dst, brw_imm_d(~0)));
1627 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1628 break;
1629 }
1630
1631 case nir_op_bany_inequal2:
1632 case nir_op_bany_inequal3:
1633 case nir_op_bany_inequal4:
1634 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1635 /* Fallthrough */
1636 case nir_op_bany_fnequal2:
1637 case nir_op_bany_fnequal3:
1638 case nir_op_bany_fnequal4: {
1639 unsigned swiz =
1640 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1641
1642 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1643 brw_conditional_for_nir_comparison(instr->op)));
1644
1645 emit(MOV(dst, brw_imm_d(0)));
1646 inst = emit(MOV(dst, brw_imm_d(~0)));
1647 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1648 break;
1649 }
1650
1651 case nir_op_inot:
1652 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1653 if (devinfo->gen >= 8) {
1654 op[0] = resolve_source_modifiers(op[0]);
1655 }
1656 emit(NOT(dst, op[0]));
1657 break;
1658
1659 case nir_op_ixor:
1660 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1661 if (devinfo->gen >= 8) {
1662 op[0] = resolve_source_modifiers(op[0]);
1663 op[1] = resolve_source_modifiers(op[1]);
1664 }
1665 emit(XOR(dst, op[0], op[1]));
1666 break;
1667
1668 case nir_op_ior:
1669 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1670 if (devinfo->gen >= 8) {
1671 op[0] = resolve_source_modifiers(op[0]);
1672 op[1] = resolve_source_modifiers(op[1]);
1673 }
1674 emit(OR(dst, op[0], op[1]));
1675 break;
1676
1677 case nir_op_iand:
1678 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1679 if (devinfo->gen >= 8) {
1680 op[0] = resolve_source_modifiers(op[0]);
1681 op[1] = resolve_source_modifiers(op[1]);
1682 }
1683 emit(AND(dst, op[0], op[1]));
1684 break;
1685
1686 case nir_op_b2i:
1687 case nir_op_b2f:
1688 emit(MOV(dst, negate(op[0])));
1689 break;
1690
1691 case nir_op_f2b:
1692 emit(CMP(dst, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1693 break;
1694
1695 case nir_op_d2b: {
1696 /* We use a MOV with conditional_mod to check if the provided value is
1697 * 0.0. We want this to flush denormalized numbers to zero, so we set a
1698 * source modifier on the source operand to trigger this, as source
1699 * modifiers don't affect the result of the testing against 0.0.
1700 */
1701 src_reg value = op[0];
1702 value.abs = true;
1703 vec4_instruction *inst = emit(MOV(dst_null_df(), value));
1704 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1705
1706 src_reg one = src_reg(this, glsl_type::ivec4_type);
1707 emit(MOV(dst_reg(one), brw_imm_d(~0)));
1708 inst = emit(BRW_OPCODE_SEL, dst, one, brw_imm_d(0));
1709 inst->predicate = BRW_PREDICATE_NORMAL;
1710 break;
1711 }
1712
1713 case nir_op_i2b:
1714 emit(CMP(dst, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1715 break;
1716
1717 case nir_op_fnoise1_1:
1718 case nir_op_fnoise1_2:
1719 case nir_op_fnoise1_3:
1720 case nir_op_fnoise1_4:
1721 case nir_op_fnoise2_1:
1722 case nir_op_fnoise2_2:
1723 case nir_op_fnoise2_3:
1724 case nir_op_fnoise2_4:
1725 case nir_op_fnoise3_1:
1726 case nir_op_fnoise3_2:
1727 case nir_op_fnoise3_3:
1728 case nir_op_fnoise3_4:
1729 case nir_op_fnoise4_1:
1730 case nir_op_fnoise4_2:
1731 case nir_op_fnoise4_3:
1732 case nir_op_fnoise4_4:
1733 unreachable("not reached: should be handled by lower_noise");
1734
1735 case nir_op_unpack_half_2x16_split_x:
1736 case nir_op_unpack_half_2x16_split_y:
1737 case nir_op_pack_half_2x16_split:
1738 unreachable("not reached: should not occur in vertex shader");
1739
1740 case nir_op_unpack_snorm_2x16:
1741 case nir_op_unpack_unorm_2x16:
1742 case nir_op_pack_snorm_2x16:
1743 case nir_op_pack_unorm_2x16:
1744 unreachable("not reached: should be handled by lower_packing_builtins");
1745
1746 case nir_op_pack_uvec4_to_uint:
1747 unreachable("not reached");
1748
1749 case nir_op_pack_uvec2_to_uint: {
1750 dst_reg tmp1 = dst_reg(this, glsl_type::uint_type);
1751 tmp1.writemask = WRITEMASK_X;
1752 op[0].swizzle = BRW_SWIZZLE_YYYY;
1753 emit(SHL(tmp1, op[0], src_reg(brw_imm_ud(16u))));
1754
1755 dst_reg tmp2 = dst_reg(this, glsl_type::uint_type);
1756 tmp2.writemask = WRITEMASK_X;
1757 op[0].swizzle = BRW_SWIZZLE_XXXX;
1758 emit(AND(tmp2, op[0], src_reg(brw_imm_ud(0xffffu))));
1759
1760 emit(OR(dst, src_reg(tmp1), src_reg(tmp2)));
1761 break;
1762 }
1763
1764 case nir_op_pack_64_2x32_split: {
1765 dst_reg result = dst_reg(this, glsl_type::dvec4_type);
1766 dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
1767 emit(MOV(tmp, retype(op[0], BRW_REGISTER_TYPE_UD)));
1768 emit(VEC4_OPCODE_SET_LOW_32BIT, result, src_reg(tmp));
1769 emit(MOV(tmp, retype(op[1], BRW_REGISTER_TYPE_UD)));
1770 emit(VEC4_OPCODE_SET_HIGH_32BIT, result, src_reg(tmp));
1771 emit(MOV(dst, src_reg(result)));
1772 break;
1773 }
1774
1775 case nir_op_unpack_64_2x32_split_x:
1776 case nir_op_unpack_64_2x32_split_y: {
1777 enum opcode oper = (instr->op == nir_op_unpack_64_2x32_split_x) ?
1778 VEC4_OPCODE_PICK_LOW_32BIT : VEC4_OPCODE_PICK_HIGH_32BIT;
1779 dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
1780 emit(MOV(tmp, op[0]));
1781 dst_reg tmp2 = dst_reg(this, glsl_type::uvec4_type);
1782 emit(oper, tmp2, src_reg(tmp));
1783 emit(MOV(dst, src_reg(tmp2)));
1784 break;
1785 }
1786
1787 case nir_op_unpack_half_2x16:
1788 /* As NIR does not guarantee that we have a correct swizzle outside the
1789 * boundaries of a vector, and the implementation of emit_unpack_half_2x16
1790 * uses the source operand in an operation with WRITEMASK_Y while our
1791 * source operand has only size 1, it accessed incorrect data producing
1792 * regressions in Piglit. We repeat the swizzle of the first component on the
1793 * rest of components to avoid regressions. In the vec4_visitor IR code path
1794 * this is not needed because the operand has already the correct swizzle.
1795 */
1796 op[0].swizzle = brw_compose_swizzle(BRW_SWIZZLE_XXXX, op[0].swizzle);
1797 emit_unpack_half_2x16(dst, op[0]);
1798 break;
1799
1800 case nir_op_pack_half_2x16:
1801 emit_pack_half_2x16(dst, op[0]);
1802 break;
1803
1804 case nir_op_unpack_unorm_4x8:
1805 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1806 emit_unpack_unorm_4x8(dst, op[0]);
1807 break;
1808
1809 case nir_op_pack_unorm_4x8:
1810 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1811 emit_pack_unorm_4x8(dst, op[0]);
1812 break;
1813
1814 case nir_op_unpack_snorm_4x8:
1815 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1816 emit_unpack_snorm_4x8(dst, op[0]);
1817 break;
1818
1819 case nir_op_pack_snorm_4x8:
1820 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1821 emit_pack_snorm_4x8(dst, op[0]);
1822 break;
1823
1824 case nir_op_bitfield_reverse:
1825 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1826 emit(BFREV(dst, op[0]));
1827 break;
1828
1829 case nir_op_bit_count:
1830 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1831 emit(CBIT(dst, op[0]));
1832 break;
1833
1834 case nir_op_ufind_msb:
1835 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1836 emit_find_msb_using_lzd(vec4_builder(this).at_end(), dst, op[0], false);
1837 break;
1838
1839 case nir_op_ifind_msb: {
1840 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1841 vec4_builder bld = vec4_builder(this).at_end();
1842 src_reg src(dst);
1843
1844 if (devinfo->gen < 7) {
1845 emit_find_msb_using_lzd(bld, dst, op[0], true);
1846 } else {
1847 emit(FBH(retype(dst, BRW_REGISTER_TYPE_UD), op[0]));
1848
1849 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1850 * count from the LSB side. If FBH didn't return an error
1851 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1852 * count into an LSB count.
1853 */
1854 bld.CMP(dst_null_d(), src, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1855
1856 inst = bld.ADD(dst, src, brw_imm_d(31));
1857 inst->predicate = BRW_PREDICATE_NORMAL;
1858 inst->src[0].negate = true;
1859 }
1860 break;
1861 }
1862
1863 case nir_op_find_lsb: {
1864 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1865 vec4_builder bld = vec4_builder(this).at_end();
1866
1867 if (devinfo->gen < 7) {
1868 dst_reg temp = bld.vgrf(BRW_REGISTER_TYPE_D);
1869
1870 /* (x & -x) generates a value that consists of only the LSB of x.
1871 * For all powers of 2, findMSB(y) == findLSB(y).
1872 */
1873 src_reg src = src_reg(retype(op[0], BRW_REGISTER_TYPE_D));
1874 src_reg negated_src = src;
1875
1876 /* One must be negated, and the other must be non-negated. It
1877 * doesn't matter which is which.
1878 */
1879 negated_src.negate = true;
1880 src.negate = false;
1881
1882 bld.AND(temp, src, negated_src);
1883 emit_find_msb_using_lzd(bld, dst, src_reg(temp), false);
1884 } else {
1885 bld.FBL(dst, op[0]);
1886 }
1887 break;
1888 }
1889
1890 case nir_op_ubitfield_extract:
1891 case nir_op_ibitfield_extract:
1892 unreachable("should have been lowered");
1893 case nir_op_ubfe:
1894 case nir_op_ibfe:
1895 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1896 op[0] = fix_3src_operand(op[0]);
1897 op[1] = fix_3src_operand(op[1]);
1898 op[2] = fix_3src_operand(op[2]);
1899
1900 emit(BFE(dst, op[2], op[1], op[0]));
1901 break;
1902
1903 case nir_op_bfm:
1904 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1905 emit(BFI1(dst, op[0], op[1]));
1906 break;
1907
1908 case nir_op_bfi:
1909 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1910 op[0] = fix_3src_operand(op[0]);
1911 op[1] = fix_3src_operand(op[1]);
1912 op[2] = fix_3src_operand(op[2]);
1913
1914 emit(BFI2(dst, op[0], op[1], op[2]));
1915 break;
1916
1917 case nir_op_bitfield_insert:
1918 unreachable("not reached: should have been lowered");
1919
1920 case nir_op_fsign:
1921 if (type_sz(op[0].type) < 8) {
1922 /* AND(val, 0x80000000) gives the sign bit.
1923 *
1924 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
1925 * zero.
1926 */
1927 emit(CMP(dst_null_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1928
1929 op[0].type = BRW_REGISTER_TYPE_UD;
1930 dst.type = BRW_REGISTER_TYPE_UD;
1931 emit(AND(dst, op[0], brw_imm_ud(0x80000000u)));
1932
1933 inst = emit(OR(dst, src_reg(dst), brw_imm_ud(0x3f800000u)));
1934 inst->predicate = BRW_PREDICATE_NORMAL;
1935 dst.type = BRW_REGISTER_TYPE_F;
1936
1937 if (instr->dest.saturate) {
1938 inst = emit(MOV(dst, src_reg(dst)));
1939 inst->saturate = true;
1940 }
1941 } else {
1942 /* For doubles we do the same but we need to consider:
1943 *
1944 * - We use a MOV with conditional_mod instead of a CMP so that we can
1945 * skip loading a 0.0 immediate. We use a source modifier on the
1946 * source of the MOV so that we flush denormalized values to 0.
1947 * Since we want to compare against 0, this won't alter the result.
1948 * - We need to extract the high 32-bit of each DF where the sign
1949 * is stored.
1950 * - We need to produce a DF result.
1951 */
1952
1953 /* Check for zero */
1954 src_reg value = op[0];
1955 value.abs = true;
1956 inst = emit(MOV(dst_null_df(), value));
1957 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1958
1959 /* AND each high 32-bit channel with 0x80000000u */
1960 dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
1961 emit(VEC4_OPCODE_PICK_HIGH_32BIT, tmp, op[0]);
1962 emit(AND(tmp, src_reg(tmp), brw_imm_ud(0x80000000u)));
1963
1964 /* Add 1.0 to each channel, predicated to skip the cases where the
1965 * channel's value was 0
1966 */
1967 inst = emit(OR(tmp, src_reg(tmp), brw_imm_ud(0x3f800000u)));
1968 inst->predicate = BRW_PREDICATE_NORMAL;
1969
1970 /* Now convert the result from float to double */
1971 emit_conversion_to_double(dst, src_reg(tmp), instr->dest.saturate,
1972 BRW_REGISTER_TYPE_F);
1973 }
1974 break;
1975
1976 case nir_op_isign:
1977 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
1978 * -> non-negative val generates 0x00000000.
1979 * Predicated OR sets 1 if val is positive.
1980 */
1981 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1982 emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G));
1983 emit(ASR(dst, op[0], brw_imm_d(31)));
1984 inst = emit(OR(dst, src_reg(dst), brw_imm_d(1)));
1985 inst->predicate = BRW_PREDICATE_NORMAL;
1986 break;
1987
1988 case nir_op_ishl:
1989 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1990 emit(SHL(dst, op[0], op[1]));
1991 break;
1992
1993 case nir_op_ishr:
1994 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1995 emit(ASR(dst, op[0], op[1]));
1996 break;
1997
1998 case nir_op_ushr:
1999 assert(nir_dest_bit_size(instr->dest.dest) < 64);
2000 emit(SHR(dst, op[0], op[1]));
2001 break;
2002
2003 case nir_op_ffma:
2004 if (type_sz(dst.type) == 8) {
2005 dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
2006 emit(MUL(mul_dst, op[1], op[0]));
2007 inst = emit(ADD(dst, src_reg(mul_dst), op[2]));
2008 inst->saturate = instr->dest.saturate;
2009 } else {
2010 op[0] = fix_3src_operand(op[0]);
2011 op[1] = fix_3src_operand(op[1]);
2012 op[2] = fix_3src_operand(op[2]);
2013
2014 inst = emit(MAD(dst, op[2], op[1], op[0]));
2015 inst->saturate = instr->dest.saturate;
2016 }
2017 break;
2018
2019 case nir_op_flrp:
2020 inst = emit_lrp(dst, op[0], op[1], op[2]);
2021 inst->saturate = instr->dest.saturate;
2022 break;
2023
2024 case nir_op_bcsel:
2025 enum brw_predicate predicate;
2026 if (!optimize_predicate(instr, &predicate)) {
2027 emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
2028 switch (dst.writemask) {
2029 case WRITEMASK_X:
2030 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_X;
2031 break;
2032 case WRITEMASK_Y:
2033 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Y;
2034 break;
2035 case WRITEMASK_Z:
2036 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Z;
2037 break;
2038 case WRITEMASK_W:
2039 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_W;
2040 break;
2041 default:
2042 predicate = BRW_PREDICATE_NORMAL;
2043 break;
2044 }
2045 }
2046 inst = emit(BRW_OPCODE_SEL, dst, op[1], op[2]);
2047 inst->predicate = predicate;
2048 break;
2049
2050 case nir_op_fdot_replicated2:
2051 inst = emit(BRW_OPCODE_DP2, dst, op[0], op[1]);
2052 inst->saturate = instr->dest.saturate;
2053 break;
2054
2055 case nir_op_fdot_replicated3:
2056 inst = emit(BRW_OPCODE_DP3, dst, op[0], op[1]);
2057 inst->saturate = instr->dest.saturate;
2058 break;
2059
2060 case nir_op_fdot_replicated4:
2061 inst = emit(BRW_OPCODE_DP4, dst, op[0], op[1]);
2062 inst->saturate = instr->dest.saturate;
2063 break;
2064
2065 case nir_op_fdph_replicated:
2066 inst = emit(BRW_OPCODE_DPH, dst, op[0], op[1]);
2067 inst->saturate = instr->dest.saturate;
2068 break;
2069
2070 case nir_op_iabs:
2071 case nir_op_ineg:
2072 assert(nir_dest_bit_size(instr->dest.dest) < 64);
2073 case nir_op_fabs:
2074 case nir_op_fneg:
2075 case nir_op_fsat:
2076 unreachable("not reached: should be lowered by lower_source mods");
2077
2078 case nir_op_fdiv:
2079 unreachable("not reached: should be lowered by DIV_TO_MUL_RCP in the compiler");
2080
2081 case nir_op_fmod:
2082 unreachable("not reached: should be lowered by MOD_TO_FLOOR in the compiler");
2083
2084 case nir_op_fsub:
2085 case nir_op_isub:
2086 unreachable("not reached: should be handled by ir_sub_to_add_neg");
2087
2088 default:
2089 unreachable("Unimplemented ALU operation");
2090 }
2091
2092 /* If we need to do a boolean resolve, replace the result with -(x & 1)
2093 * to sign extend the low bit to 0/~0
2094 */
2095 if (devinfo->gen <= 5 &&
2096 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) ==
2097 BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
2098 dst_reg masked = dst_reg(this, glsl_type::int_type);
2099 masked.writemask = dst.writemask;
2100 emit(AND(masked, src_reg(dst), brw_imm_d(1)));
2101 src_reg masked_neg = src_reg(masked);
2102 masked_neg.negate = true;
2103 emit(MOV(retype(dst, BRW_REGISTER_TYPE_D), masked_neg));
2104 }
2105 }
2106
2107 void
2108 vec4_visitor::nir_emit_jump(nir_jump_instr *instr)
2109 {
2110 switch (instr->type) {
2111 case nir_jump_break:
2112 emit(BRW_OPCODE_BREAK);
2113 break;
2114
2115 case nir_jump_continue:
2116 emit(BRW_OPCODE_CONTINUE);
2117 break;
2118
2119 case nir_jump_return:
2120 /* fall through */
2121 default:
2122 unreachable("unknown jump");
2123 }
2124 }
2125
2126 enum ir_texture_opcode
2127 ir_texture_opcode_for_nir_texop(nir_texop texop)
2128 {
2129 enum ir_texture_opcode op;
2130
2131 switch (texop) {
2132 case nir_texop_lod: op = ir_lod; break;
2133 case nir_texop_query_levels: op = ir_query_levels; break;
2134 case nir_texop_texture_samples: op = ir_texture_samples; break;
2135 case nir_texop_tex: op = ir_tex; break;
2136 case nir_texop_tg4: op = ir_tg4; break;
2137 case nir_texop_txb: op = ir_txb; break;
2138 case nir_texop_txd: op = ir_txd; break;
2139 case nir_texop_txf: op = ir_txf; break;
2140 case nir_texop_txf_ms: op = ir_txf_ms; break;
2141 case nir_texop_txl: op = ir_txl; break;
2142 case nir_texop_txs: op = ir_txs; break;
2143 case nir_texop_samples_identical: op = ir_samples_identical; break;
2144 default:
2145 unreachable("unknown texture opcode");
2146 }
2147
2148 return op;
2149 }
2150 const glsl_type *
2151 glsl_type_for_nir_alu_type(nir_alu_type alu_type,
2152 unsigned components)
2153 {
2154 return glsl_type::get_instance(brw_glsl_base_type_for_nir_type(alu_type),
2155 components, 1);
2156 }
2157
2158 void
2159 vec4_visitor::nir_emit_texture(nir_tex_instr *instr)
2160 {
2161 unsigned texture = instr->texture_index;
2162 unsigned sampler = instr->sampler_index;
2163 src_reg texture_reg = brw_imm_ud(texture);
2164 src_reg sampler_reg = brw_imm_ud(sampler);
2165 src_reg coordinate;
2166 const glsl_type *coord_type = NULL;
2167 src_reg shadow_comparator;
2168 src_reg offset_value;
2169 src_reg lod, lod2;
2170 src_reg sample_index;
2171 src_reg mcs;
2172
2173 const glsl_type *dest_type =
2174 glsl_type_for_nir_alu_type(instr->dest_type,
2175 nir_tex_instr_dest_size(instr));
2176 dst_reg dest = get_nir_dest(instr->dest, instr->dest_type);
2177
2178 /* The hardware requires a LOD for buffer textures */
2179 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
2180 lod = brw_imm_d(0);
2181
2182 /* Load the texture operation sources */
2183 uint32_t constant_offset = 0;
2184 for (unsigned i = 0; i < instr->num_srcs; i++) {
2185 switch (instr->src[i].src_type) {
2186 case nir_tex_src_comparator:
2187 shadow_comparator = get_nir_src(instr->src[i].src,
2188 BRW_REGISTER_TYPE_F, 1);
2189 break;
2190
2191 case nir_tex_src_coord: {
2192 unsigned src_size = nir_tex_instr_src_size(instr, i);
2193
2194 switch (instr->op) {
2195 case nir_texop_txf:
2196 case nir_texop_txf_ms:
2197 case nir_texop_samples_identical:
2198 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D,
2199 src_size);
2200 coord_type = glsl_type::ivec(src_size);
2201 break;
2202
2203 default:
2204 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2205 src_size);
2206 coord_type = glsl_type::vec(src_size);
2207 break;
2208 }
2209 break;
2210 }
2211
2212 case nir_tex_src_ddx:
2213 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2214 nir_tex_instr_src_size(instr, i));
2215 break;
2216
2217 case nir_tex_src_ddy:
2218 lod2 = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2219 nir_tex_instr_src_size(instr, i));
2220 break;
2221
2222 case nir_tex_src_lod:
2223 switch (instr->op) {
2224 case nir_texop_txs:
2225 case nir_texop_txf:
2226 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
2227 break;
2228
2229 default:
2230 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F, 1);
2231 break;
2232 }
2233 break;
2234
2235 case nir_tex_src_ms_index: {
2236 sample_index = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
2237 break;
2238 }
2239
2240 case nir_tex_src_offset: {
2241 nir_const_value *const_offset =
2242 nir_src_as_const_value(instr->src[i].src);
2243 if (!const_offset ||
2244 !brw_texture_offset(const_offset->i32,
2245 nir_tex_instr_src_size(instr, i),
2246 &constant_offset)) {
2247 offset_value =
2248 get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 2);
2249 }
2250 break;
2251 }
2252
2253 case nir_tex_src_texture_offset: {
2254 /* The highest texture which may be used by this operation is
2255 * the last element of the array. Mark it here, because the generator
2256 * doesn't have enough information to determine the bound.
2257 */
2258 uint32_t array_size = instr->texture_array_size;
2259 uint32_t max_used = texture + array_size - 1;
2260 if (instr->op == nir_texop_tg4) {
2261 max_used += prog_data->base.binding_table.gather_texture_start;
2262 } else {
2263 max_used += prog_data->base.binding_table.texture_start;
2264 }
2265
2266 brw_mark_surface_used(&prog_data->base, max_used);
2267
2268 /* Emit code to evaluate the actual indexing expression */
2269 src_reg src = get_nir_src(instr->src[i].src, 1);
2270 src_reg temp(this, glsl_type::uint_type);
2271 emit(ADD(dst_reg(temp), src, brw_imm_ud(texture)));
2272 texture_reg = emit_uniformize(temp);
2273 break;
2274 }
2275
2276 case nir_tex_src_sampler_offset: {
2277 /* Emit code to evaluate the actual indexing expression */
2278 src_reg src = get_nir_src(instr->src[i].src, 1);
2279 src_reg temp(this, glsl_type::uint_type);
2280 emit(ADD(dst_reg(temp), src, brw_imm_ud(sampler)));
2281 sampler_reg = emit_uniformize(temp);
2282 break;
2283 }
2284
2285 case nir_tex_src_projector:
2286 unreachable("Should be lowered by do_lower_texture_projection");
2287
2288 case nir_tex_src_bias:
2289 unreachable("LOD bias is not valid for vertex shaders.\n");
2290
2291 default:
2292 unreachable("unknown texture source");
2293 }
2294 }
2295
2296 if (instr->op == nir_texop_txf_ms ||
2297 instr->op == nir_texop_samples_identical) {
2298 assert(coord_type != NULL);
2299 if (devinfo->gen >= 7 &&
2300 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
2301 mcs = emit_mcs_fetch(coord_type, coordinate, texture_reg);
2302 } else {
2303 mcs = brw_imm_ud(0u);
2304 }
2305 }
2306
2307 /* Stuff the channel select bits in the top of the texture offset */
2308 if (instr->op == nir_texop_tg4) {
2309 if (instr->component == 1 &&
2310 (key_tex->gather_channel_quirk_mask & (1 << texture))) {
2311 /* gather4 sampler is broken for green channel on RG32F --
2312 * we must ask for blue instead.
2313 */
2314 constant_offset |= 2 << 16;
2315 } else {
2316 constant_offset |= instr->component << 16;
2317 }
2318 }
2319
2320 ir_texture_opcode op = ir_texture_opcode_for_nir_texop(instr->op);
2321
2322 emit_texture(op, dest, dest_type, coordinate, instr->coord_components,
2323 shadow_comparator,
2324 lod, lod2, sample_index,
2325 constant_offset, offset_value, mcs,
2326 texture, texture_reg, sampler_reg);
2327 }
2328
2329 void
2330 vec4_visitor::nir_emit_undef(nir_ssa_undef_instr *instr)
2331 {
2332 nir_ssa_values[instr->def.index] =
2333 dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(instr->def.bit_size, 32)));
2334 }
2335
2336 /* SIMD4x2 64bit data is stored in register space like this:
2337 *
2338 * r0.0:DF x0 y0 z0 w0
2339 * r1.0:DF x1 y1 z1 w1
2340 *
2341 * When we need to write data such as this to memory using 32-bit write
2342 * messages we need to shuffle it in this fashion:
2343 *
2344 * r0.0:DF x0 y0 x1 y1 (to be written at base offset)
2345 * r0.0:DF z0 w0 z1 w1 (to be written at base offset + 16)
2346 *
2347 * We need to do the inverse operation when we read using 32-bit messages,
2348 * which we can do by applying the same exact shuffling on the 64-bit data
2349 * read, only that because the data for each vertex is positioned differently
2350 * we need to apply different channel enables.
2351 *
2352 * This function takes 64bit data and shuffles it as explained above.
2353 *
2354 * The @for_write parameter is used to specify if the shuffling is being done
2355 * for proper SIMD4x2 64-bit data that needs to be shuffled prior to a 32-bit
2356 * write message (for_write = true), or instead we are doing the inverse
2357 * operation and we have just read 64-bit data using a 32-bit messages that we
2358 * need to shuffle to create valid SIMD4x2 64-bit data (for_write = false).
2359 *
2360 * If @block and @ref are non-NULL, then the shuffling is done after @ref,
2361 * otherwise the instructions are emitted normally at the end. The function
2362 * returns the last instruction inserted.
2363 *
2364 * Notice that @src and @dst cannot be the same register.
2365 */
2366 vec4_instruction *
2367 vec4_visitor::shuffle_64bit_data(dst_reg dst, src_reg src, bool for_write,
2368 bblock_t *block, vec4_instruction *ref)
2369 {
2370 assert(type_sz(src.type) == 8);
2371 assert(type_sz(dst.type) == 8);
2372 assert(!regions_overlap(dst, 2 * REG_SIZE, src, 2 * REG_SIZE));
2373 assert(!ref == !block);
2374
2375 const vec4_builder bld = !ref ? vec4_builder(this).at_end() :
2376 vec4_builder(this).at(block, ref->next);
2377
2378 /* Resolve swizzle in src */
2379 vec4_instruction *inst;
2380 if (src.swizzle != BRW_SWIZZLE_XYZW) {
2381 dst_reg data = dst_reg(this, glsl_type::dvec4_type);
2382 inst = bld.MOV(data, src);
2383 src = src_reg(data);
2384 }
2385
2386 /* dst+0.XY = src+0.XY */
2387 inst = bld.group(4, 0).MOV(writemask(dst, WRITEMASK_XY), src);
2388
2389 /* dst+0.ZW = src+1.XY */
2390 inst = bld.group(4, for_write ? 1 : 0)
2391 .MOV(writemask(dst, WRITEMASK_ZW),
2392 swizzle(byte_offset(src, REG_SIZE), BRW_SWIZZLE_XYXY));
2393
2394 /* dst+1.XY = src+0.ZW */
2395 inst = bld.group(4, for_write ? 0 : 1)
2396 .MOV(writemask(byte_offset(dst, REG_SIZE), WRITEMASK_XY),
2397 swizzle(src, BRW_SWIZZLE_ZWZW));
2398
2399 /* dst+1.ZW = src+1.ZW */
2400 inst = bld.group(4, 1)
2401 .MOV(writemask(byte_offset(dst, REG_SIZE), WRITEMASK_ZW),
2402 byte_offset(src, REG_SIZE));
2403
2404 return inst;
2405 }
2406
2407 }