i965: Move the back-end compiler to src/intel/compiler
[mesa.git] / src / intel / compiler / brw_vec4_reg_allocate.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "util/register_allocate.h"
25 #include "brw_vec4.h"
26 #include "brw_cfg.h"
27
28 using namespace brw;
29
30 namespace brw {
31
32 static void
33 assign(unsigned int *reg_hw_locations, backend_reg *reg)
34 {
35 if (reg->file == VGRF) {
36 reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
37 reg->offset %= REG_SIZE;
38 }
39 }
40
41 bool
42 vec4_visitor::reg_allocate_trivial()
43 {
44 unsigned int hw_reg_mapping[this->alloc.count];
45 bool virtual_grf_used[this->alloc.count];
46 int next;
47
48 /* Calculate which virtual GRFs are actually in use after whatever
49 * optimization passes have occurred.
50 */
51 for (unsigned i = 0; i < this->alloc.count; i++) {
52 virtual_grf_used[i] = false;
53 }
54
55 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
56 if (inst->dst.file == VGRF)
57 virtual_grf_used[inst->dst.nr] = true;
58
59 for (unsigned i = 0; i < 3; i++) {
60 if (inst->src[i].file == VGRF)
61 virtual_grf_used[inst->src[i].nr] = true;
62 }
63 }
64
65 hw_reg_mapping[0] = this->first_non_payload_grf;
66 next = hw_reg_mapping[0] + this->alloc.sizes[0];
67 for (unsigned i = 1; i < this->alloc.count; i++) {
68 if (virtual_grf_used[i]) {
69 hw_reg_mapping[i] = next;
70 next += this->alloc.sizes[i];
71 }
72 }
73 prog_data->total_grf = next;
74
75 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
76 assign(hw_reg_mapping, &inst->dst);
77 assign(hw_reg_mapping, &inst->src[0]);
78 assign(hw_reg_mapping, &inst->src[1]);
79 assign(hw_reg_mapping, &inst->src[2]);
80 }
81
82 if (prog_data->total_grf > max_grf) {
83 fail("Ran out of regs on trivial allocator (%d/%d)\n",
84 prog_data->total_grf, max_grf);
85 return false;
86 }
87
88 return true;
89 }
90
91 extern "C" void
92 brw_vec4_alloc_reg_set(struct brw_compiler *compiler)
93 {
94 int base_reg_count =
95 compiler->devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
96
97 /* After running split_virtual_grfs(), almost all VGRFs will be of size 1.
98 * SEND-from-GRF sources cannot be split, so we also need classes for each
99 * potential message length.
100 */
101 const int class_count = MAX_VGRF_SIZE;
102 int class_sizes[MAX_VGRF_SIZE];
103
104 for (int i = 0; i < class_count; i++)
105 class_sizes[i] = i + 1;
106
107 /* Compute the total number of registers across all classes. */
108 int ra_reg_count = 0;
109 for (int i = 0; i < class_count; i++) {
110 ra_reg_count += base_reg_count - (class_sizes[i] - 1);
111 }
112
113 ralloc_free(compiler->vec4_reg_set.ra_reg_to_grf);
114 compiler->vec4_reg_set.ra_reg_to_grf = ralloc_array(compiler, uint8_t, ra_reg_count);
115 ralloc_free(compiler->vec4_reg_set.regs);
116 compiler->vec4_reg_set.regs = ra_alloc_reg_set(compiler, ra_reg_count, false);
117 if (compiler->devinfo->gen >= 6)
118 ra_set_allocate_round_robin(compiler->vec4_reg_set.regs);
119 ralloc_free(compiler->vec4_reg_set.classes);
120 compiler->vec4_reg_set.classes = ralloc_array(compiler, int, class_count);
121
122 /* Now, add the registers to their classes, and add the conflicts
123 * between them and the base GRF registers (and also each other).
124 */
125 int reg = 0;
126 unsigned *q_values[MAX_VGRF_SIZE];
127 for (int i = 0; i < class_count; i++) {
128 int class_reg_count = base_reg_count - (class_sizes[i] - 1);
129 compiler->vec4_reg_set.classes[i] = ra_alloc_reg_class(compiler->vec4_reg_set.regs);
130
131 q_values[i] = new unsigned[MAX_VGRF_SIZE];
132
133 for (int j = 0; j < class_reg_count; j++) {
134 ra_class_add_reg(compiler->vec4_reg_set.regs, compiler->vec4_reg_set.classes[i], reg);
135
136 compiler->vec4_reg_set.ra_reg_to_grf[reg] = j;
137
138 for (int base_reg = j;
139 base_reg < j + class_sizes[i];
140 base_reg++) {
141 ra_add_reg_conflict(compiler->vec4_reg_set.regs, base_reg, reg);
142 }
143
144 reg++;
145 }
146
147 for (int j = 0; j < class_count; j++) {
148 /* Calculate the q values manually because the algorithm used by
149 * ra_set_finalize() to do it has higher complexity affecting the
150 * start-up time of some applications. q(i, j) is just the maximum
151 * number of registers from class i a register from class j can
152 * conflict with.
153 */
154 q_values[i][j] = class_sizes[i] + class_sizes[j] - 1;
155 }
156 }
157 assert(reg == ra_reg_count);
158
159 for (int reg = 0; reg < base_reg_count; reg++)
160 ra_make_reg_conflicts_transitive(compiler->vec4_reg_set.regs, reg);
161
162 ra_set_finalize(compiler->vec4_reg_set.regs, q_values);
163
164 for (int i = 0; i < MAX_VGRF_SIZE; i++)
165 delete[] q_values[i];
166 }
167
168 void
169 vec4_visitor::setup_payload_interference(struct ra_graph *g,
170 int first_payload_node,
171 int reg_node_count)
172 {
173 int payload_node_count = this->first_non_payload_grf;
174
175 for (int i = 0; i < payload_node_count; i++) {
176 /* Mark each payload reg node as being allocated to its physical register.
177 *
178 * The alternative would be to have per-physical register classes, which
179 * would just be silly.
180 */
181 ra_set_node_reg(g, first_payload_node + i, i);
182
183 /* For now, just mark each payload node as interfering with every other
184 * node to be allocated.
185 */
186 for (int j = 0; j < reg_node_count; j++) {
187 ra_add_node_interference(g, first_payload_node + i, j);
188 }
189 }
190 }
191
192 bool
193 vec4_visitor::reg_allocate()
194 {
195 unsigned int hw_reg_mapping[alloc.count];
196 int payload_reg_count = this->first_non_payload_grf;
197
198 /* Using the trivial allocator can be useful in debugging undefined
199 * register access as a result of broken optimization passes.
200 */
201 if (0)
202 return reg_allocate_trivial();
203
204 calculate_live_intervals();
205
206 int node_count = alloc.count;
207 int first_payload_node = node_count;
208 node_count += payload_reg_count;
209 struct ra_graph *g =
210 ra_alloc_interference_graph(compiler->vec4_reg_set.regs, node_count);
211
212 for (unsigned i = 0; i < alloc.count; i++) {
213 int size = this->alloc.sizes[i];
214 assert(size >= 1 && size <= MAX_VGRF_SIZE);
215 ra_set_node_class(g, i, compiler->vec4_reg_set.classes[size - 1]);
216
217 for (unsigned j = 0; j < i; j++) {
218 if (virtual_grf_interferes(i, j)) {
219 ra_add_node_interference(g, i, j);
220 }
221 }
222 }
223
224 /* Certain instructions can't safely use the same register for their
225 * sources and destination. Add interference.
226 */
227 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
228 if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) {
229 for (unsigned i = 0; i < 3; i++) {
230 if (inst->src[i].file == VGRF) {
231 ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr);
232 }
233 }
234 }
235 }
236
237 setup_payload_interference(g, first_payload_node, node_count);
238
239 if (!ra_allocate(g)) {
240 /* Failed to allocate registers. Spill a reg, and the caller will
241 * loop back into here to try again.
242 */
243 int reg = choose_spill_reg(g);
244 if (this->no_spills) {
245 fail("Failure to register allocate. Reduce number of live "
246 "values to avoid this.");
247 } else if (reg == -1) {
248 fail("no register to spill\n");
249 } else {
250 spill_reg(reg);
251 }
252 ralloc_free(g);
253 return false;
254 }
255
256 /* Get the chosen virtual registers for each node, and map virtual
257 * regs in the register classes back down to real hardware reg
258 * numbers.
259 */
260 prog_data->total_grf = payload_reg_count;
261 for (unsigned i = 0; i < alloc.count; i++) {
262 int reg = ra_get_node_reg(g, i);
263
264 hw_reg_mapping[i] = compiler->vec4_reg_set.ra_reg_to_grf[reg];
265 prog_data->total_grf = MAX2(prog_data->total_grf,
266 hw_reg_mapping[i] + alloc.sizes[i]);
267 }
268
269 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
270 assign(hw_reg_mapping, &inst->dst);
271 assign(hw_reg_mapping, &inst->src[0]);
272 assign(hw_reg_mapping, &inst->src[1]);
273 assign(hw_reg_mapping, &inst->src[2]);
274 }
275
276 ralloc_free(g);
277
278 return true;
279 }
280
281 /**
282 * When we decide to spill a register, instead of blindly spilling every use,
283 * save unspills when the spill register is used (read) in consecutive
284 * instructions. This can potentially save a bunch of unspills that would
285 * have very little impact in register allocation anyway.
286 *
287 * Notice that we need to account for this behavior when spilling a register
288 * and when evaluating spilling costs. This function is designed so it can
289 * be called from both places and avoid repeating the logic.
290 *
291 * - When we call this function from spill_reg(), we pass in scratch_reg the
292 * actual unspill/spill register that we want to reuse in the current
293 * instruction.
294 *
295 * - When we call this from evaluate_spill_costs(), we pass the register for
296 * which we are evaluating spilling costs.
297 *
298 * In either case, we check if the previous instructions read scratch_reg until
299 * we find one that writes to it with a compatible mask or does not read/write
300 * scratch_reg at all.
301 */
302 static bool
303 can_use_scratch_for_source(const vec4_instruction *inst, unsigned i,
304 unsigned scratch_reg)
305 {
306 assert(inst->src[i].file == VGRF);
307 bool prev_inst_read_scratch_reg = false;
308
309 /* See if any previous source in the same instructions reads scratch_reg */
310 for (unsigned n = 0; n < i; n++) {
311 if (inst->src[n].file == VGRF && inst->src[n].nr == scratch_reg)
312 prev_inst_read_scratch_reg = true;
313 }
314
315 /* Now check if previous instructions read/write scratch_reg */
316 for (vec4_instruction *prev_inst = (vec4_instruction *) inst->prev;
317 !prev_inst->is_head_sentinel();
318 prev_inst = (vec4_instruction *) prev_inst->prev) {
319
320 /* If the previous instruction writes to scratch_reg then we can reuse
321 * it if the write is not conditional and the channels we write are
322 * compatible with our read mask
323 */
324 if (prev_inst->dst.file == VGRF && prev_inst->dst.nr == scratch_reg) {
325 return (!prev_inst->predicate || prev_inst->opcode == BRW_OPCODE_SEL) &&
326 (brw_mask_for_swizzle(inst->src[i].swizzle) &
327 ~prev_inst->dst.writemask) == 0;
328 }
329
330 /* Skip scratch read/writes so that instructions generated by spilling
331 * other registers (that won't read/write scratch_reg) do not stop us from
332 * reusing scratch_reg for this instruction.
333 */
334 if (prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_WRITE ||
335 prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_READ)
336 continue;
337
338 /* If the previous instruction does not write to scratch_reg, then check
339 * if it reads it
340 */
341 int n;
342 for (n = 0; n < 3; n++) {
343 if (prev_inst->src[n].file == VGRF &&
344 prev_inst->src[n].nr == scratch_reg) {
345 prev_inst_read_scratch_reg = true;
346 break;
347 }
348 }
349 if (n == 3) {
350 /* The previous instruction does not read scratch_reg. At this point,
351 * if no previous instruction has read scratch_reg it means that we
352 * will need to unspill it here and we can't reuse it (so we return
353 * false). Otherwise, if we found at least one consecutive instruction
354 * that read scratch_reg, then we know that we got here from
355 * evaluate_spill_costs (since for the spill_reg path any block of
356 * consecutive instructions using scratch_reg must start with a write
357 * to that register, so we would've exited the loop in the check for
358 * the write that we have at the start of this loop), and in that case
359 * it means that we found the point at which the scratch_reg would be
360 * unspilled. Since we always unspill a full vec4, it means that we
361 * have all the channels available and we can just return true to
362 * signal that we can reuse the register in the current instruction
363 * too.
364 */
365 return prev_inst_read_scratch_reg;
366 }
367 }
368
369 return prev_inst_read_scratch_reg;
370 }
371
372 static inline unsigned
373 spill_cost_for_type(enum brw_reg_type type)
374 {
375 /* Spilling of a 64-bit register involves emitting 2 32-bit scratch
376 * messages plus the 64b/32b shuffling code.
377 */
378 return type_sz(type) == 8 ? 2.25f : 1.0f;
379 }
380
381 void
382 vec4_visitor::evaluate_spill_costs(float *spill_costs, bool *no_spill)
383 {
384 float loop_scale = 1.0;
385
386 unsigned *reg_type_size = (unsigned *)
387 ralloc_size(NULL, this->alloc.count * sizeof(unsigned));
388
389 for (unsigned i = 0; i < this->alloc.count; i++) {
390 spill_costs[i] = 0.0;
391 no_spill[i] = alloc.sizes[i] != 1 && alloc.sizes[i] != 2;
392 reg_type_size[i] = 0;
393 }
394
395 /* Calculate costs for spilling nodes. Call it a cost of 1 per
396 * spill/unspill we'll have to do, and guess that the insides of
397 * loops run 10 times.
398 */
399 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
400 for (unsigned int i = 0; i < 3; i++) {
401 if (inst->src[i].file == VGRF && !no_spill[inst->src[i].nr]) {
402 /* We will only unspill src[i] it it wasn't unspilled for the
403 * previous instruction, in which case we'll just reuse the scratch
404 * reg for this instruction.
405 */
406 if (!can_use_scratch_for_source(inst, i, inst->src[i].nr)) {
407 spill_costs[inst->src[i].nr] +=
408 loop_scale * spill_cost_for_type(inst->src[i].type);
409 if (inst->src[i].reladdr ||
410 inst->src[i].offset >= REG_SIZE)
411 no_spill[inst->src[i].nr] = true;
412
413 /* We don't support unspills of partial DF reads.
414 *
415 * Our 64-bit unspills are implemented with two 32-bit scratch
416 * messages, each one reading that for both SIMD4x2 threads that
417 * we need to shuffle into correct 64-bit data. Ensure that we
418 * are reading data for both threads.
419 */
420 if (type_sz(inst->src[i].type) == 8 && inst->exec_size != 8)
421 no_spill[inst->src[i].nr] = true;
422 }
423
424 /* We can't spill registers that mix 32-bit and 64-bit access (that
425 * contain 64-bit data that is operated on via 32-bit instructions)
426 */
427 unsigned type_size = type_sz(inst->src[i].type);
428 if (reg_type_size[inst->src[i].nr] == 0)
429 reg_type_size[inst->src[i].nr] = type_size;
430 else if (reg_type_size[inst->src[i].nr] != type_size)
431 no_spill[inst->src[i].nr] = true;
432 }
433 }
434
435 if (inst->dst.file == VGRF && !no_spill[inst->dst.nr]) {
436 spill_costs[inst->dst.nr] +=
437 loop_scale * spill_cost_for_type(inst->dst.type);
438 if (inst->dst.reladdr || inst->dst.offset >= REG_SIZE)
439 no_spill[inst->dst.nr] = true;
440
441 /* We don't support spills of partial DF writes.
442 *
443 * Our 64-bit spills are implemented with two 32-bit scratch messages,
444 * each one writing that for both SIMD4x2 threads. Ensure that we
445 * are writing data for both threads.
446 */
447 if (type_sz(inst->dst.type) == 8 && inst->exec_size != 8)
448 no_spill[inst->dst.nr] = true;
449
450 /* FROM_DOUBLE opcodes are setup so that they use a dst register
451 * with a size of 2 even if they only produce a single-precison
452 * result (this is so that the opcode can use the larger register to
453 * produce a 64-bit aligned intermediary result as required by the
454 * hardware during the conversion process). This creates a problem for
455 * spilling though, because when we attempt to emit a spill for the
456 * dst we see a 32-bit destination and emit a scratch write that
457 * allocates a single spill register.
458 */
459 if (inst->opcode == VEC4_OPCODE_FROM_DOUBLE)
460 no_spill[inst->dst.nr] = true;
461
462 /* We can't spill registers that mix 32-bit and 64-bit access (that
463 * contain 64-bit data that is operated on via 32-bit instructions)
464 */
465 unsigned type_size = type_sz(inst->dst.type);
466 if (reg_type_size[inst->dst.nr] == 0)
467 reg_type_size[inst->dst.nr] = type_size;
468 else if (reg_type_size[inst->dst.nr] != type_size)
469 no_spill[inst->dst.nr] = true;
470 }
471
472 switch (inst->opcode) {
473
474 case BRW_OPCODE_DO:
475 loop_scale *= 10;
476 break;
477
478 case BRW_OPCODE_WHILE:
479 loop_scale /= 10;
480 break;
481
482 case SHADER_OPCODE_GEN4_SCRATCH_READ:
483 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
484 for (int i = 0; i < 3; i++) {
485 if (inst->src[i].file == VGRF)
486 no_spill[inst->src[i].nr] = true;
487 }
488 if (inst->dst.file == VGRF)
489 no_spill[inst->dst.nr] = true;
490 break;
491
492 default:
493 break;
494 }
495 }
496
497 ralloc_free(reg_type_size);
498 }
499
500 int
501 vec4_visitor::choose_spill_reg(struct ra_graph *g)
502 {
503 float spill_costs[this->alloc.count];
504 bool no_spill[this->alloc.count];
505
506 evaluate_spill_costs(spill_costs, no_spill);
507
508 for (unsigned i = 0; i < this->alloc.count; i++) {
509 if (!no_spill[i])
510 ra_set_node_spill_cost(g, i, spill_costs[i]);
511 }
512
513 return ra_get_best_spill_node(g);
514 }
515
516 void
517 vec4_visitor::spill_reg(int spill_reg_nr)
518 {
519 assert(alloc.sizes[spill_reg_nr] == 1 || alloc.sizes[spill_reg_nr] == 2);
520 unsigned int spill_offset = last_scratch;
521 last_scratch += alloc.sizes[spill_reg_nr];
522
523 /* Generate spill/unspill instructions for the objects being spilled. */
524 int scratch_reg = -1;
525 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
526 for (unsigned int i = 0; i < 3; i++) {
527 if (inst->src[i].file == VGRF && inst->src[i].nr == spill_reg_nr) {
528 if (scratch_reg == -1 ||
529 !can_use_scratch_for_source(inst, i, scratch_reg)) {
530 /* We need to unspill anyway so make sure we read the full vec4
531 * in any case. This way, the cached register can be reused
532 * for consecutive instructions that read different channels of
533 * the same vec4.
534 */
535 scratch_reg = alloc.allocate(alloc.sizes[spill_reg_nr]);
536 src_reg temp = inst->src[i];
537 temp.nr = scratch_reg;
538 temp.offset = 0;
539 temp.swizzle = BRW_SWIZZLE_XYZW;
540 emit_scratch_read(block, inst,
541 dst_reg(temp), inst->src[i], spill_offset);
542 temp.offset = inst->src[i].offset;
543 }
544 assert(scratch_reg != -1);
545 inst->src[i].nr = scratch_reg;
546 }
547 }
548
549 if (inst->dst.file == VGRF && inst->dst.nr == spill_reg_nr) {
550 emit_scratch_write(block, inst, spill_offset);
551 scratch_reg = inst->dst.nr;
552 }
553 }
554
555 invalidate_live_intervals();
556 }
557
558 } /* namespace brw */