intel/perf: add support for querying kernel loaded configurations
[mesa.git] / src / intel / perf / gen_perf.c
1 /*
2 * Copyright © 2018 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <dirent.h>
25
26 #include <sys/types.h>
27 #include <sys/stat.h>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <errno.h>
31
32 #include <drm-uapi/i915_drm.h>
33
34 #include "common/gen_gem.h"
35 #include "gen_perf.h"
36 #include "gen_perf_regs.h"
37 #include "perf/gen_perf_mdapi.h"
38 #include "perf/gen_perf_metrics.h"
39
40 #include "dev/gen_debug.h"
41 #include "dev/gen_device_info.h"
42 #include "util/bitscan.h"
43 #include "util/mesa-sha1.h"
44 #include "util/u_math.h"
45
46 #define FILE_DEBUG_FLAG DEBUG_PERFMON
47 #define MI_RPC_BO_SIZE 4096
48 #define MI_FREQ_START_OFFSET_BYTES (3072)
49 #define MI_RPC_BO_END_OFFSET_BYTES (MI_RPC_BO_SIZE / 2)
50 #define MI_FREQ_END_OFFSET_BYTES (3076)
51
52 #define INTEL_MASK(high, low) (((1u<<((high)-(low)+1))-1)<<(low))
53
54 #define GEN7_RPSTAT1 0xA01C
55 #define GEN7_RPSTAT1_CURR_GT_FREQ_SHIFT 7
56 #define GEN7_RPSTAT1_CURR_GT_FREQ_MASK INTEL_MASK(13, 7)
57 #define GEN7_RPSTAT1_PREV_GT_FREQ_SHIFT 0
58 #define GEN7_RPSTAT1_PREV_GT_FREQ_MASK INTEL_MASK(6, 0)
59
60 #define GEN9_RPSTAT0 0xA01C
61 #define GEN9_RPSTAT0_CURR_GT_FREQ_SHIFT 23
62 #define GEN9_RPSTAT0_CURR_GT_FREQ_MASK INTEL_MASK(31, 23)
63 #define GEN9_RPSTAT0_PREV_GT_FREQ_SHIFT 0
64 #define GEN9_RPSTAT0_PREV_GT_FREQ_MASK INTEL_MASK(8, 0)
65
66 #define GEN6_SO_PRIM_STORAGE_NEEDED 0x2280
67 #define GEN7_SO_PRIM_STORAGE_NEEDED(n) (0x5240 + (n) * 8)
68 #define GEN6_SO_NUM_PRIMS_WRITTEN 0x2288
69 #define GEN7_SO_NUM_PRIMS_WRITTEN(n) (0x5200 + (n) * 8)
70
71 #define MAP_READ (1 << 0)
72 #define MAP_WRITE (1 << 1)
73
74 /**
75 * Periodic OA samples are read() into these buffer structures via the
76 * i915 perf kernel interface and appended to the
77 * perf_ctx->sample_buffers linked list. When we process the
78 * results of an OA metrics query we need to consider all the periodic
79 * samples between the Begin and End MI_REPORT_PERF_COUNT command
80 * markers.
81 *
82 * 'Periodic' is a simplification as there are other automatic reports
83 * written by the hardware also buffered here.
84 *
85 * Considering three queries, A, B and C:
86 *
87 * Time ---->
88 * ________________A_________________
89 * | |
90 * | ________B_________ _____C___________
91 * | | | | | |
92 *
93 * And an illustration of sample buffers read over this time frame:
94 * [HEAD ][ ][ ][ ][ ][ ][ ][ ][TAIL ]
95 *
96 * These nodes may hold samples for query A:
97 * [ ][ ][ A ][ A ][ A ][ A ][ A ][ ][ ]
98 *
99 * These nodes may hold samples for query B:
100 * [ ][ ][ B ][ B ][ B ][ ][ ][ ][ ]
101 *
102 * These nodes may hold samples for query C:
103 * [ ][ ][ ][ ][ ][ C ][ C ][ C ][ ]
104 *
105 * The illustration assumes we have an even distribution of periodic
106 * samples so all nodes have the same size plotted against time:
107 *
108 * Note, to simplify code, the list is never empty.
109 *
110 * With overlapping queries we can see that periodic OA reports may
111 * relate to multiple queries and care needs to be take to keep
112 * track of sample buffers until there are no queries that might
113 * depend on their contents.
114 *
115 * We use a node ref counting system where a reference ensures that a
116 * node and all following nodes can't be freed/recycled until the
117 * reference drops to zero.
118 *
119 * E.g. with a ref of one here:
120 * [ 0 ][ 0 ][ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ]
121 *
122 * These nodes could be freed or recycled ("reaped"):
123 * [ 0 ][ 0 ]
124 *
125 * These must be preserved until the leading ref drops to zero:
126 * [ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ]
127 *
128 * When a query starts we take a reference on the current tail of
129 * the list, knowing that no already-buffered samples can possibly
130 * relate to the newly-started query. A pointer to this node is
131 * also saved in the query object's ->oa.samples_head.
132 *
133 * E.g. starting query A while there are two nodes in .sample_buffers:
134 * ________________A________
135 * |
136 *
137 * [ 0 ][ 1 ]
138 * ^_______ Add a reference and store pointer to node in
139 * A->oa.samples_head
140 *
141 * Moving forward to when the B query starts with no new buffer nodes:
142 * (for reference, i915 perf reads() are only done when queries finish)
143 * ________________A_______
144 * | ________B___
145 * | |
146 *
147 * [ 0 ][ 2 ]
148 * ^_______ Add a reference and store pointer to
149 * node in B->oa.samples_head
150 *
151 * Once a query is finished, after an OA query has become 'Ready',
152 * once the End OA report has landed and after we we have processed
153 * all the intermediate periodic samples then we drop the
154 * ->oa.samples_head reference we took at the start.
155 *
156 * So when the B query has finished we have:
157 * ________________A________
158 * | ______B___________
159 * | | |
160 * [ 0 ][ 1 ][ 0 ][ 0 ][ 0 ]
161 * ^_______ Drop B->oa.samples_head reference
162 *
163 * We still can't free these due to the A->oa.samples_head ref:
164 * [ 1 ][ 0 ][ 0 ][ 0 ]
165 *
166 * When the A query finishes: (note there's a new ref for C's samples_head)
167 * ________________A_________________
168 * | |
169 * | _____C_________
170 * | | |
171 * [ 0 ][ 0 ][ 0 ][ 0 ][ 1 ][ 0 ][ 0 ]
172 * ^_______ Drop A->oa.samples_head reference
173 *
174 * And we can now reap these nodes up to the C->oa.samples_head:
175 * [ X ][ X ][ X ][ X ]
176 * keeping -> [ 1 ][ 0 ][ 0 ]
177 *
178 * We reap old sample buffers each time we finish processing an OA
179 * query by iterating the sample_buffers list from the head until we
180 * find a referenced node and stop.
181 *
182 * Reaped buffers move to a perfquery.free_sample_buffers list and
183 * when we come to read() we first look to recycle a buffer from the
184 * free_sample_buffers list before allocating a new buffer.
185 */
186 struct oa_sample_buf {
187 struct exec_node link;
188 int refcount;
189 int len;
190 uint8_t buf[I915_PERF_OA_SAMPLE_SIZE * 10];
191 uint32_t last_timestamp;
192 };
193
194 /**
195 * gen representation of a performance query object.
196 *
197 * NB: We want to keep this structure relatively lean considering that
198 * applications may expect to allocate enough objects to be able to
199 * query around all draw calls in a frame.
200 */
201 struct gen_perf_query_object
202 {
203 const struct gen_perf_query_info *queryinfo;
204
205 /* See query->kind to know which state below is in use... */
206 union {
207 struct {
208
209 /**
210 * BO containing OA counter snapshots at query Begin/End time.
211 */
212 void *bo;
213
214 /**
215 * Address of mapped of @bo
216 */
217 void *map;
218
219 /**
220 * The MI_REPORT_PERF_COUNT command lets us specify a unique
221 * ID that will be reflected in the resulting OA report
222 * that's written by the GPU. This is the ID we're expecting
223 * in the begin report and the the end report should be
224 * @begin_report_id + 1.
225 */
226 int begin_report_id;
227
228 /**
229 * Reference the head of the brw->perfquery.sample_buffers
230 * list at the time that the query started (so we only need
231 * to look at nodes after this point when looking for samples
232 * related to this query)
233 *
234 * (See struct brw_oa_sample_buf description for more details)
235 */
236 struct exec_node *samples_head;
237
238 /**
239 * false while in the unaccumulated_elements list, and set to
240 * true when the final, end MI_RPC snapshot has been
241 * accumulated.
242 */
243 bool results_accumulated;
244
245 /**
246 * Frequency of the GT at begin and end of the query.
247 */
248 uint64_t gt_frequency[2];
249
250 /**
251 * Accumulated OA results between begin and end of the query.
252 */
253 struct gen_perf_query_result result;
254 } oa;
255
256 struct {
257 /**
258 * BO containing starting and ending snapshots for the
259 * statistics counters.
260 */
261 void *bo;
262 } pipeline_stats;
263 };
264 };
265
266 struct gen_perf_context {
267 struct gen_perf_config *perf;
268
269 void * ctx; /* driver context (eg, brw_context) */
270 void * bufmgr;
271 const struct gen_device_info *devinfo;
272
273 uint32_t hw_ctx;
274 int drm_fd;
275
276 /* The i915 perf stream we open to setup + enable the OA counters */
277 int oa_stream_fd;
278
279 /* An i915 perf stream fd gives exclusive access to the OA unit that will
280 * report counter snapshots for a specific counter set/profile in a
281 * specific layout/format so we can only start OA queries that are
282 * compatible with the currently open fd...
283 */
284 int current_oa_metrics_set_id;
285 int current_oa_format;
286
287 /* List of buffers containing OA reports */
288 struct exec_list sample_buffers;
289
290 /* Cached list of empty sample buffers */
291 struct exec_list free_sample_buffers;
292
293 int n_active_oa_queries;
294 int n_active_pipeline_stats_queries;
295
296 /* The number of queries depending on running OA counters which
297 * extends beyond brw_end_perf_query() since we need to wait until
298 * the last MI_RPC command has parsed by the GPU.
299 *
300 * Accurate accounting is important here as emitting an
301 * MI_REPORT_PERF_COUNT command while the OA unit is disabled will
302 * effectively hang the gpu.
303 */
304 int n_oa_users;
305
306 /* To help catch an spurious problem with the hardware or perf
307 * forwarding samples, we emit each MI_REPORT_PERF_COUNT command
308 * with a unique ID that we can explicitly check for...
309 */
310 int next_query_start_report_id;
311
312 /**
313 * An array of queries whose results haven't yet been assembled
314 * based on the data in buffer objects.
315 *
316 * These may be active, or have already ended. However, the
317 * results have not been requested.
318 */
319 struct gen_perf_query_object **unaccumulated;
320 int unaccumulated_elements;
321 int unaccumulated_array_size;
322
323 /* The total number of query objects so we can relinquish
324 * our exclusive access to perf if the application deletes
325 * all of its objects. (NB: We only disable perf while
326 * there are no active queries)
327 */
328 int n_query_instances;
329 };
330
331 const struct gen_perf_query_info*
332 gen_perf_query_info(const struct gen_perf_query_object *query)
333 {
334 return query->queryinfo;
335 }
336
337 struct gen_perf_context *
338 gen_perf_new_context(void *parent)
339 {
340 struct gen_perf_context *ctx = rzalloc(parent, struct gen_perf_context);
341 if (! ctx)
342 fprintf(stderr, "%s: failed to alloc context\n", __func__);
343 return ctx;
344 }
345
346 struct gen_perf_config *
347 gen_perf_config(struct gen_perf_context *ctx)
348 {
349 return ctx->perf;
350 }
351
352 struct gen_perf_query_object *
353 gen_perf_new_query(struct gen_perf_context *perf_ctx, unsigned query_index)
354 {
355 const struct gen_perf_query_info *query =
356 &perf_ctx->perf->queries[query_index];
357 struct gen_perf_query_object *obj =
358 calloc(1, sizeof(struct gen_perf_query_object));
359
360 if (!obj)
361 return NULL;
362
363 obj->queryinfo = query;
364
365 perf_ctx->n_query_instances++;
366 return obj;
367 }
368
369 int
370 gen_perf_active_queries(struct gen_perf_context *perf_ctx,
371 const struct gen_perf_query_info *query)
372 {
373 assert(perf_ctx->n_active_oa_queries == 0 || perf_ctx->n_active_pipeline_stats_queries == 0);
374
375 switch (query->kind) {
376 case GEN_PERF_QUERY_TYPE_OA:
377 case GEN_PERF_QUERY_TYPE_RAW:
378 return perf_ctx->n_active_oa_queries;
379 break;
380
381 case GEN_PERF_QUERY_TYPE_PIPELINE:
382 return perf_ctx->n_active_pipeline_stats_queries;
383 break;
384
385 default:
386 unreachable("Unknown query type");
387 break;
388 }
389 }
390
391 static inline uint64_t to_user_pointer(void *ptr)
392 {
393 return (uintptr_t) ptr;
394 }
395
396 static bool
397 get_sysfs_dev_dir(struct gen_perf_config *perf, int fd)
398 {
399 struct stat sb;
400 int min, maj;
401 DIR *drmdir;
402 struct dirent *drm_entry;
403 int len;
404
405 perf->sysfs_dev_dir[0] = '\0';
406
407 if (fstat(fd, &sb)) {
408 DBG("Failed to stat DRM fd\n");
409 return false;
410 }
411
412 maj = major(sb.st_rdev);
413 min = minor(sb.st_rdev);
414
415 if (!S_ISCHR(sb.st_mode)) {
416 DBG("DRM fd is not a character device as expected\n");
417 return false;
418 }
419
420 len = snprintf(perf->sysfs_dev_dir,
421 sizeof(perf->sysfs_dev_dir),
422 "/sys/dev/char/%d:%d/device/drm", maj, min);
423 if (len < 0 || len >= sizeof(perf->sysfs_dev_dir)) {
424 DBG("Failed to concatenate sysfs path to drm device\n");
425 return false;
426 }
427
428 drmdir = opendir(perf->sysfs_dev_dir);
429 if (!drmdir) {
430 DBG("Failed to open %s: %m\n", perf->sysfs_dev_dir);
431 return false;
432 }
433
434 while ((drm_entry = readdir(drmdir))) {
435 if ((drm_entry->d_type == DT_DIR ||
436 drm_entry->d_type == DT_LNK) &&
437 strncmp(drm_entry->d_name, "card", 4) == 0)
438 {
439 len = snprintf(perf->sysfs_dev_dir,
440 sizeof(perf->sysfs_dev_dir),
441 "/sys/dev/char/%d:%d/device/drm/%s",
442 maj, min, drm_entry->d_name);
443 closedir(drmdir);
444 if (len < 0 || len >= sizeof(perf->sysfs_dev_dir))
445 return false;
446 else
447 return true;
448 }
449 }
450
451 closedir(drmdir);
452
453 DBG("Failed to find cardX directory under /sys/dev/char/%d:%d/device/drm\n",
454 maj, min);
455
456 return false;
457 }
458
459 static bool
460 read_file_uint64(const char *file, uint64_t *val)
461 {
462 char buf[32];
463 int fd, n;
464
465 fd = open(file, 0);
466 if (fd < 0)
467 return false;
468 while ((n = read(fd, buf, sizeof (buf) - 1)) < 0 &&
469 errno == EINTR);
470 close(fd);
471 if (n < 0)
472 return false;
473
474 buf[n] = '\0';
475 *val = strtoull(buf, NULL, 0);
476
477 return true;
478 }
479
480 static bool
481 read_sysfs_drm_device_file_uint64(struct gen_perf_config *perf,
482 const char *file,
483 uint64_t *value)
484 {
485 char buf[512];
486 int len;
487
488 len = snprintf(buf, sizeof(buf), "%s/%s", perf->sysfs_dev_dir, file);
489 if (len < 0 || len >= sizeof(buf)) {
490 DBG("Failed to concatenate sys filename to read u64 from\n");
491 return false;
492 }
493
494 return read_file_uint64(buf, value);
495 }
496
497 static inline struct gen_perf_query_info *
498 append_query_info(struct gen_perf_config *perf, int max_counters)
499 {
500 struct gen_perf_query_info *query;
501
502 perf->queries = reralloc(perf, perf->queries,
503 struct gen_perf_query_info,
504 ++perf->n_queries);
505 query = &perf->queries[perf->n_queries - 1];
506 memset(query, 0, sizeof(*query));
507
508 if (max_counters > 0) {
509 query->max_counters = max_counters;
510 query->counters =
511 rzalloc_array(perf, struct gen_perf_query_counter, max_counters);
512 }
513
514 return query;
515 }
516
517 static void
518 register_oa_config(struct gen_perf_config *perf,
519 const struct gen_perf_query_info *query,
520 uint64_t config_id)
521 {
522 struct gen_perf_query_info *registered_query = append_query_info(perf, 0);
523
524 *registered_query = *query;
525 registered_query->oa_metrics_set_id = config_id;
526 DBG("metric set registered: id = %" PRIu64", guid = %s\n",
527 registered_query->oa_metrics_set_id, query->guid);
528 }
529
530 static void
531 enumerate_sysfs_metrics(struct gen_perf_config *perf)
532 {
533 DIR *metricsdir = NULL;
534 struct dirent *metric_entry;
535 char buf[256];
536 int len;
537
538 len = snprintf(buf, sizeof(buf), "%s/metrics", perf->sysfs_dev_dir);
539 if (len < 0 || len >= sizeof(buf)) {
540 DBG("Failed to concatenate path to sysfs metrics/ directory\n");
541 return;
542 }
543
544 metricsdir = opendir(buf);
545 if (!metricsdir) {
546 DBG("Failed to open %s: %m\n", buf);
547 return;
548 }
549
550 while ((metric_entry = readdir(metricsdir))) {
551 struct hash_entry *entry;
552
553 if ((metric_entry->d_type != DT_DIR &&
554 metric_entry->d_type != DT_LNK) ||
555 metric_entry->d_name[0] == '.')
556 continue;
557
558 DBG("metric set: %s\n", metric_entry->d_name);
559 entry = _mesa_hash_table_search(perf->oa_metrics_table,
560 metric_entry->d_name);
561 if (entry) {
562 uint64_t id;
563 if (!gen_perf_load_metric_id(perf, metric_entry->d_name, &id)) {
564 DBG("Failed to read metric set id from %s: %m", buf);
565 continue;
566 }
567
568 register_oa_config(perf, (const struct gen_perf_query_info *)entry->data, id);
569 } else
570 DBG("metric set not known by mesa (skipping)\n");
571 }
572
573 closedir(metricsdir);
574 }
575
576 static bool
577 kernel_has_dynamic_config_support(struct gen_perf_config *perf, int fd)
578 {
579 uint64_t invalid_config_id = UINT64_MAX;
580
581 return gen_ioctl(fd, DRM_IOCTL_I915_PERF_REMOVE_CONFIG,
582 &invalid_config_id) < 0 && errno == ENOENT;
583 }
584
585 static int
586 i915_query_items(struct gen_perf_config *perf, int fd,
587 struct drm_i915_query_item *items, uint32_t n_items)
588 {
589 struct drm_i915_query q = {
590 .num_items = n_items,
591 .items_ptr = to_user_pointer(items),
592 };
593 return gen_ioctl(fd, DRM_IOCTL_I915_QUERY, &q);
594 }
595
596 static bool
597 i915_query_perf_config_supported(struct gen_perf_config *perf, int fd)
598 {
599 struct drm_i915_query_item item = {
600 .query_id = DRM_I915_QUERY_PERF_CONFIG,
601 .flags = DRM_I915_QUERY_PERF_CONFIG_LIST,
602 };
603
604 return i915_query_items(perf, fd, &item, 1) == 0 && item.length > 0;
605 }
606
607 static bool
608 i915_query_perf_config_data(struct gen_perf_config *perf,
609 int fd, const char *guid,
610 struct drm_i915_perf_oa_config *config)
611 {
612 struct {
613 struct drm_i915_query_perf_config query;
614 struct drm_i915_perf_oa_config config;
615 } item_data;
616 struct drm_i915_query_item item = {
617 .query_id = DRM_I915_QUERY_PERF_CONFIG,
618 .flags = DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID,
619 .data_ptr = to_user_pointer(&item_data),
620 .length = sizeof(item_data),
621 };
622
623 memset(&item_data, 0, sizeof(item_data));
624 memcpy(item_data.query.uuid, guid, sizeof(item_data.query.uuid));
625 memcpy(&item_data.config, config, sizeof(item_data.config));
626
627 if (!(i915_query_items(perf, fd, &item, 1) == 0 && item.length > 0))
628 return false;
629
630 memcpy(config, &item_data.config, sizeof(item_data.config));
631
632 return true;
633 }
634
635 bool
636 gen_perf_load_metric_id(struct gen_perf_config *perf_cfg,
637 const char *guid,
638 uint64_t *metric_id)
639 {
640 char config_path[280];
641
642 snprintf(config_path, sizeof(config_path), "%s/metrics/%s/id",
643 perf_cfg->sysfs_dev_dir, guid);
644
645 /* Don't recreate already loaded configs. */
646 return read_file_uint64(config_path, metric_id);
647 }
648
649 static uint64_t
650 i915_add_config(struct gen_perf_config *perf, int fd,
651 const struct gen_perf_registers *config,
652 const char *guid)
653 {
654 struct drm_i915_perf_oa_config i915_config = { 0, };
655
656 memcpy(i915_config.uuid, guid, sizeof(i915_config.uuid));
657
658 i915_config.n_mux_regs = config->n_mux_regs;
659 i915_config.mux_regs_ptr = to_user_pointer(config->mux_regs);
660
661 i915_config.n_boolean_regs = config->n_b_counter_regs;
662 i915_config.boolean_regs_ptr = to_user_pointer(config->b_counter_regs);
663
664 i915_config.n_flex_regs = config->n_flex_regs;
665 i915_config.flex_regs_ptr = to_user_pointer(config->flex_regs);
666
667 int ret = gen_ioctl(fd, DRM_IOCTL_I915_PERF_ADD_CONFIG, &i915_config);
668 return ret > 0 ? ret : 0;
669 }
670
671 static void
672 init_oa_configs(struct gen_perf_config *perf, int fd)
673 {
674 hash_table_foreach(perf->oa_metrics_table, entry) {
675 const struct gen_perf_query_info *query = entry->data;
676 uint64_t config_id;
677
678 if (gen_perf_load_metric_id(perf, query->guid, &config_id)) {
679 DBG("metric set: %s (already loaded)\n", query->guid);
680 register_oa_config(perf, query, config_id);
681 continue;
682 }
683
684 int ret = i915_add_config(perf, fd, &query->config, query->guid);
685 if (ret < 0) {
686 DBG("Failed to load \"%s\" (%s) metrics set in kernel: %s\n",
687 query->name, query->guid, strerror(errno));
688 continue;
689 }
690
691 register_oa_config(perf, query, ret);
692 DBG("metric set: %s (added)\n", query->guid);
693 }
694 }
695
696 static void
697 compute_topology_builtins(struct gen_perf_config *perf,
698 const struct gen_device_info *devinfo)
699 {
700 perf->sys_vars.slice_mask = devinfo->slice_masks;
701 perf->sys_vars.n_eu_slices = devinfo->num_slices;
702
703 for (int i = 0; i < sizeof(devinfo->subslice_masks[i]); i++) {
704 perf->sys_vars.n_eu_sub_slices +=
705 __builtin_popcount(devinfo->subslice_masks[i]);
706 }
707
708 for (int i = 0; i < sizeof(devinfo->eu_masks); i++)
709 perf->sys_vars.n_eus += __builtin_popcount(devinfo->eu_masks[i]);
710
711 perf->sys_vars.eu_threads_count = devinfo->num_thread_per_eu;
712
713 /* The subslice mask builtin contains bits for all slices. Prior to Gen11
714 * it had groups of 3bits for each slice, on Gen11 it's 8bits for each
715 * slice.
716 *
717 * Ideally equations would be updated to have a slice/subslice query
718 * function/operator.
719 */
720 perf->sys_vars.subslice_mask = 0;
721
722 int bits_per_subslice = devinfo->gen == 11 ? 8 : 3;
723
724 for (int s = 0; s < util_last_bit(devinfo->slice_masks); s++) {
725 for (int ss = 0; ss < (devinfo->subslice_slice_stride * 8); ss++) {
726 if (gen_device_info_subslice_available(devinfo, s, ss))
727 perf->sys_vars.subslice_mask |= 1ULL << (s * bits_per_subslice + ss);
728 }
729 }
730 }
731
732 static bool
733 init_oa_sys_vars(struct gen_perf_config *perf, const struct gen_device_info *devinfo)
734 {
735 uint64_t min_freq_mhz = 0, max_freq_mhz = 0;
736
737 if (!read_sysfs_drm_device_file_uint64(perf, "gt_min_freq_mhz", &min_freq_mhz))
738 return false;
739
740 if (!read_sysfs_drm_device_file_uint64(perf, "gt_max_freq_mhz", &max_freq_mhz))
741 return false;
742
743 memset(&perf->sys_vars, 0, sizeof(perf->sys_vars));
744 perf->sys_vars.gt_min_freq = min_freq_mhz * 1000000;
745 perf->sys_vars.gt_max_freq = max_freq_mhz * 1000000;
746 perf->sys_vars.timestamp_frequency = devinfo->timestamp_frequency;
747 perf->sys_vars.revision = devinfo->revision;
748 compute_topology_builtins(perf, devinfo);
749
750 return true;
751 }
752
753 typedef void (*perf_register_oa_queries_t)(struct gen_perf_config *);
754
755 static perf_register_oa_queries_t
756 get_register_queries_function(const struct gen_device_info *devinfo)
757 {
758 if (devinfo->is_haswell)
759 return gen_oa_register_queries_hsw;
760 if (devinfo->is_cherryview)
761 return gen_oa_register_queries_chv;
762 if (devinfo->is_broadwell)
763 return gen_oa_register_queries_bdw;
764 if (devinfo->is_broxton)
765 return gen_oa_register_queries_bxt;
766 if (devinfo->is_skylake) {
767 if (devinfo->gt == 2)
768 return gen_oa_register_queries_sklgt2;
769 if (devinfo->gt == 3)
770 return gen_oa_register_queries_sklgt3;
771 if (devinfo->gt == 4)
772 return gen_oa_register_queries_sklgt4;
773 }
774 if (devinfo->is_kabylake) {
775 if (devinfo->gt == 2)
776 return gen_oa_register_queries_kblgt2;
777 if (devinfo->gt == 3)
778 return gen_oa_register_queries_kblgt3;
779 }
780 if (devinfo->is_geminilake)
781 return gen_oa_register_queries_glk;
782 if (devinfo->is_coffeelake) {
783 if (devinfo->gt == 2)
784 return gen_oa_register_queries_cflgt2;
785 if (devinfo->gt == 3)
786 return gen_oa_register_queries_cflgt3;
787 }
788 if (devinfo->is_cannonlake)
789 return gen_oa_register_queries_cnl;
790 if (devinfo->gen == 11)
791 return gen_oa_register_queries_icl;
792
793 return NULL;
794 }
795
796 static inline void
797 add_stat_reg(struct gen_perf_query_info *query, uint32_t reg,
798 uint32_t numerator, uint32_t denominator,
799 const char *name, const char *description)
800 {
801 struct gen_perf_query_counter *counter;
802
803 assert(query->n_counters < query->max_counters);
804
805 counter = &query->counters[query->n_counters];
806 counter->name = name;
807 counter->desc = description;
808 counter->type = GEN_PERF_COUNTER_TYPE_RAW;
809 counter->data_type = GEN_PERF_COUNTER_DATA_TYPE_UINT64;
810 counter->offset = sizeof(uint64_t) * query->n_counters;
811 counter->pipeline_stat.reg = reg;
812 counter->pipeline_stat.numerator = numerator;
813 counter->pipeline_stat.denominator = denominator;
814
815 query->n_counters++;
816 }
817
818 static inline void
819 add_basic_stat_reg(struct gen_perf_query_info *query,
820 uint32_t reg, const char *name)
821 {
822 add_stat_reg(query, reg, 1, 1, name, name);
823 }
824
825 static void
826 load_pipeline_statistic_metrics(struct gen_perf_config *perf_cfg,
827 const struct gen_device_info *devinfo)
828 {
829 struct gen_perf_query_info *query =
830 append_query_info(perf_cfg, MAX_STAT_COUNTERS);
831
832 query->kind = GEN_PERF_QUERY_TYPE_PIPELINE;
833 query->name = "Pipeline Statistics Registers";
834
835 add_basic_stat_reg(query, IA_VERTICES_COUNT,
836 "N vertices submitted");
837 add_basic_stat_reg(query, IA_PRIMITIVES_COUNT,
838 "N primitives submitted");
839 add_basic_stat_reg(query, VS_INVOCATION_COUNT,
840 "N vertex shader invocations");
841
842 if (devinfo->gen == 6) {
843 add_stat_reg(query, GEN6_SO_PRIM_STORAGE_NEEDED, 1, 1,
844 "SO_PRIM_STORAGE_NEEDED",
845 "N geometry shader stream-out primitives (total)");
846 add_stat_reg(query, GEN6_SO_NUM_PRIMS_WRITTEN, 1, 1,
847 "SO_NUM_PRIMS_WRITTEN",
848 "N geometry shader stream-out primitives (written)");
849 } else {
850 add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(0), 1, 1,
851 "SO_PRIM_STORAGE_NEEDED (Stream 0)",
852 "N stream-out (stream 0) primitives (total)");
853 add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(1), 1, 1,
854 "SO_PRIM_STORAGE_NEEDED (Stream 1)",
855 "N stream-out (stream 1) primitives (total)");
856 add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(2), 1, 1,
857 "SO_PRIM_STORAGE_NEEDED (Stream 2)",
858 "N stream-out (stream 2) primitives (total)");
859 add_stat_reg(query, GEN7_SO_PRIM_STORAGE_NEEDED(3), 1, 1,
860 "SO_PRIM_STORAGE_NEEDED (Stream 3)",
861 "N stream-out (stream 3) primitives (total)");
862 add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(0), 1, 1,
863 "SO_NUM_PRIMS_WRITTEN (Stream 0)",
864 "N stream-out (stream 0) primitives (written)");
865 add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(1), 1, 1,
866 "SO_NUM_PRIMS_WRITTEN (Stream 1)",
867 "N stream-out (stream 1) primitives (written)");
868 add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(2), 1, 1,
869 "SO_NUM_PRIMS_WRITTEN (Stream 2)",
870 "N stream-out (stream 2) primitives (written)");
871 add_stat_reg(query, GEN7_SO_NUM_PRIMS_WRITTEN(3), 1, 1,
872 "SO_NUM_PRIMS_WRITTEN (Stream 3)",
873 "N stream-out (stream 3) primitives (written)");
874 }
875
876 add_basic_stat_reg(query, HS_INVOCATION_COUNT,
877 "N TCS shader invocations");
878 add_basic_stat_reg(query, DS_INVOCATION_COUNT,
879 "N TES shader invocations");
880
881 add_basic_stat_reg(query, GS_INVOCATION_COUNT,
882 "N geometry shader invocations");
883 add_basic_stat_reg(query, GS_PRIMITIVES_COUNT,
884 "N geometry shader primitives emitted");
885
886 add_basic_stat_reg(query, CL_INVOCATION_COUNT,
887 "N primitives entering clipping");
888 add_basic_stat_reg(query, CL_PRIMITIVES_COUNT,
889 "N primitives leaving clipping");
890
891 if (devinfo->is_haswell || devinfo->gen == 8) {
892 add_stat_reg(query, PS_INVOCATION_COUNT, 1, 4,
893 "N fragment shader invocations",
894 "N fragment shader invocations");
895 } else {
896 add_basic_stat_reg(query, PS_INVOCATION_COUNT,
897 "N fragment shader invocations");
898 }
899
900 add_basic_stat_reg(query, PS_DEPTH_COUNT,
901 "N z-pass fragments");
902
903 if (devinfo->gen >= 7) {
904 add_basic_stat_reg(query, CS_INVOCATION_COUNT,
905 "N compute shader invocations");
906 }
907
908 query->data_size = sizeof(uint64_t) * query->n_counters;
909 }
910
911 static bool
912 load_oa_metrics(struct gen_perf_config *perf, int fd,
913 const struct gen_device_info *devinfo)
914 {
915 perf_register_oa_queries_t oa_register = get_register_queries_function(devinfo);
916 bool i915_perf_oa_available = false;
917 struct stat sb;
918
919 perf->i915_query_supported = i915_query_perf_config_supported(perf, fd);
920
921 /* The existence of this sysctl parameter implies the kernel supports
922 * the i915 perf interface.
923 */
924 if (stat("/proc/sys/dev/i915/perf_stream_paranoid", &sb) == 0) {
925
926 /* If _paranoid == 1 then on Gen8+ we won't be able to access OA
927 * metrics unless running as root.
928 */
929 if (devinfo->is_haswell)
930 i915_perf_oa_available = true;
931 else {
932 uint64_t paranoid = 1;
933
934 read_file_uint64("/proc/sys/dev/i915/perf_stream_paranoid", &paranoid);
935
936 if (paranoid == 0 || geteuid() == 0)
937 i915_perf_oa_available = true;
938 }
939 }
940
941 if (!i915_perf_oa_available ||
942 !oa_register ||
943 !get_sysfs_dev_dir(perf, fd) ||
944 !init_oa_sys_vars(perf, devinfo))
945 return false;
946
947 perf->oa_metrics_table =
948 _mesa_hash_table_create(perf, _mesa_key_hash_string,
949 _mesa_key_string_equal);
950
951 /* Index all the metric sets mesa knows about before looking to see what
952 * the kernel is advertising.
953 */
954 oa_register(perf);
955
956 if (likely((INTEL_DEBUG & DEBUG_NO_OACONFIG) == 0) &&
957 kernel_has_dynamic_config_support(perf, fd))
958 init_oa_configs(perf, fd);
959 else
960 enumerate_sysfs_metrics(perf);
961
962 return true;
963 }
964
965 struct gen_perf_registers *
966 gen_perf_load_configuration(struct gen_perf_config *perf_cfg, int fd, const char *guid)
967 {
968 if (!perf_cfg->i915_query_supported)
969 return NULL;
970
971 struct drm_i915_perf_oa_config i915_config = { 0, };
972 if (!i915_query_perf_config_data(perf_cfg, fd, guid, &i915_config))
973 return NULL;
974
975 struct gen_perf_registers *config = rzalloc(NULL, struct gen_perf_registers);
976 config->n_flex_regs = i915_config.n_flex_regs;
977 config->flex_regs = rzalloc_array(config, struct gen_perf_query_register_prog, config->n_flex_regs);
978 config->n_mux_regs = i915_config.n_mux_regs;
979 config->mux_regs = rzalloc_array(config, struct gen_perf_query_register_prog, config->n_mux_regs);
980 config->n_b_counter_regs = i915_config.n_boolean_regs;
981 config->b_counter_regs = rzalloc_array(config, struct gen_perf_query_register_prog, config->n_b_counter_regs);
982
983 /*
984 * struct gen_perf_query_register_prog maps exactly to the tuple of
985 * (register offset, register value) returned by the i915.
986 */
987 i915_config.flex_regs_ptr = to_user_pointer(config->flex_regs);
988 i915_config.mux_regs_ptr = to_user_pointer(config->mux_regs);
989 i915_config.boolean_regs_ptr = to_user_pointer(config->b_counter_regs);
990 if (!i915_query_perf_config_data(perf_cfg, fd, guid, &i915_config)) {
991 ralloc_free(config);
992 return NULL;
993 }
994
995 return config;
996 }
997
998 uint64_t
999 gen_perf_store_configuration(struct gen_perf_config *perf_cfg, int fd,
1000 const struct gen_perf_registers *config,
1001 const char *guid)
1002 {
1003 if (guid)
1004 return i915_add_config(perf_cfg, fd, config, guid);
1005
1006 struct mesa_sha1 sha1_ctx;
1007 _mesa_sha1_init(&sha1_ctx);
1008
1009 if (config->flex_regs) {
1010 _mesa_sha1_update(&sha1_ctx, config->flex_regs,
1011 sizeof(config->flex_regs[0]) *
1012 config->n_flex_regs);
1013 }
1014 if (config->mux_regs) {
1015 _mesa_sha1_update(&sha1_ctx, config->mux_regs,
1016 sizeof(config->mux_regs[0]) *
1017 config->n_mux_regs);
1018 }
1019 if (config->b_counter_regs) {
1020 _mesa_sha1_update(&sha1_ctx, config->b_counter_regs,
1021 sizeof(config->b_counter_regs[0]) *
1022 config->n_b_counter_regs);
1023 }
1024
1025 uint8_t hash[20];
1026 _mesa_sha1_final(&sha1_ctx, hash);
1027
1028 char formatted_hash[41];
1029 _mesa_sha1_format(formatted_hash, hash);
1030
1031 char generated_guid[37];
1032 snprintf(generated_guid, sizeof(generated_guid),
1033 "%.8s-%.4s-%.4s-%.4s-%.12s",
1034 &formatted_hash[0], &formatted_hash[8],
1035 &formatted_hash[8 + 4], &formatted_hash[8 + 4 + 4],
1036 &formatted_hash[8 + 4 + 4 + 4]);
1037
1038 /* Check if already present. */
1039 uint64_t id;
1040 if (gen_perf_load_metric_id(perf_cfg, generated_guid, &id))
1041 return id;
1042
1043 return i915_add_config(perf_cfg, fd, config, generated_guid);
1044 }
1045
1046 /* Accumulate 32bits OA counters */
1047 static inline void
1048 accumulate_uint32(const uint32_t *report0,
1049 const uint32_t *report1,
1050 uint64_t *accumulator)
1051 {
1052 *accumulator += (uint32_t)(*report1 - *report0);
1053 }
1054
1055 /* Accumulate 40bits OA counters */
1056 static inline void
1057 accumulate_uint40(int a_index,
1058 const uint32_t *report0,
1059 const uint32_t *report1,
1060 uint64_t *accumulator)
1061 {
1062 const uint8_t *high_bytes0 = (uint8_t *)(report0 + 40);
1063 const uint8_t *high_bytes1 = (uint8_t *)(report1 + 40);
1064 uint64_t high0 = (uint64_t)(high_bytes0[a_index]) << 32;
1065 uint64_t high1 = (uint64_t)(high_bytes1[a_index]) << 32;
1066 uint64_t value0 = report0[a_index + 4] | high0;
1067 uint64_t value1 = report1[a_index + 4] | high1;
1068 uint64_t delta;
1069
1070 if (value0 > value1)
1071 delta = (1ULL << 40) + value1 - value0;
1072 else
1073 delta = value1 - value0;
1074
1075 *accumulator += delta;
1076 }
1077
1078 static void
1079 gen8_read_report_clock_ratios(const uint32_t *report,
1080 uint64_t *slice_freq_hz,
1081 uint64_t *unslice_freq_hz)
1082 {
1083 /* The lower 16bits of the RPT_ID field of the OA reports contains a
1084 * snapshot of the bits coming from the RP_FREQ_NORMAL register and is
1085 * divided this way :
1086 *
1087 * RPT_ID[31:25]: RP_FREQ_NORMAL[20:14] (low squashed_slice_clock_frequency)
1088 * RPT_ID[10:9]: RP_FREQ_NORMAL[22:21] (high squashed_slice_clock_frequency)
1089 * RPT_ID[8:0]: RP_FREQ_NORMAL[31:23] (squashed_unslice_clock_frequency)
1090 *
1091 * RP_FREQ_NORMAL[31:23]: Software Unslice Ratio Request
1092 * Multiple of 33.33MHz 2xclk (16 MHz 1xclk)
1093 *
1094 * RP_FREQ_NORMAL[22:14]: Software Slice Ratio Request
1095 * Multiple of 33.33MHz 2xclk (16 MHz 1xclk)
1096 */
1097
1098 uint32_t unslice_freq = report[0] & 0x1ff;
1099 uint32_t slice_freq_low = (report[0] >> 25) & 0x7f;
1100 uint32_t slice_freq_high = (report[0] >> 9) & 0x3;
1101 uint32_t slice_freq = slice_freq_low | (slice_freq_high << 7);
1102
1103 *slice_freq_hz = slice_freq * 16666667ULL;
1104 *unslice_freq_hz = unslice_freq * 16666667ULL;
1105 }
1106
1107 void
1108 gen_perf_query_result_read_frequencies(struct gen_perf_query_result *result,
1109 const struct gen_device_info *devinfo,
1110 const uint32_t *start,
1111 const uint32_t *end)
1112 {
1113 /* Slice/Unslice frequency is only available in the OA reports when the
1114 * "Disable OA reports due to clock ratio change" field in
1115 * OA_DEBUG_REGISTER is set to 1. This is how the kernel programs this
1116 * global register (see drivers/gpu/drm/i915/i915_perf.c)
1117 *
1118 * Documentation says this should be available on Gen9+ but experimentation
1119 * shows that Gen8 reports similar values, so we enable it there too.
1120 */
1121 if (devinfo->gen < 8)
1122 return;
1123
1124 gen8_read_report_clock_ratios(start,
1125 &result->slice_frequency[0],
1126 &result->unslice_frequency[0]);
1127 gen8_read_report_clock_ratios(end,
1128 &result->slice_frequency[1],
1129 &result->unslice_frequency[1]);
1130 }
1131
1132 void
1133 gen_perf_query_result_accumulate(struct gen_perf_query_result *result,
1134 const struct gen_perf_query_info *query,
1135 const uint32_t *start,
1136 const uint32_t *end)
1137 {
1138 int i, idx = 0;
1139
1140 result->hw_id = start[2];
1141 result->reports_accumulated++;
1142
1143 switch (query->oa_format) {
1144 case I915_OA_FORMAT_A32u40_A4u32_B8_C8:
1145 accumulate_uint32(start + 1, end + 1, result->accumulator + idx++); /* timestamp */
1146 accumulate_uint32(start + 3, end + 3, result->accumulator + idx++); /* clock */
1147
1148 /* 32x 40bit A counters... */
1149 for (i = 0; i < 32; i++)
1150 accumulate_uint40(i, start, end, result->accumulator + idx++);
1151
1152 /* 4x 32bit A counters... */
1153 for (i = 0; i < 4; i++)
1154 accumulate_uint32(start + 36 + i, end + 36 + i, result->accumulator + idx++);
1155
1156 /* 8x 32bit B counters + 8x 32bit C counters... */
1157 for (i = 0; i < 16; i++)
1158 accumulate_uint32(start + 48 + i, end + 48 + i, result->accumulator + idx++);
1159 break;
1160
1161 case I915_OA_FORMAT_A45_B8_C8:
1162 accumulate_uint32(start + 1, end + 1, result->accumulator); /* timestamp */
1163
1164 for (i = 0; i < 61; i++)
1165 accumulate_uint32(start + 3 + i, end + 3 + i, result->accumulator + 1 + i);
1166 break;
1167
1168 default:
1169 unreachable("Can't accumulate OA counters in unknown format");
1170 }
1171
1172 }
1173
1174 void
1175 gen_perf_query_result_clear(struct gen_perf_query_result *result)
1176 {
1177 memset(result, 0, sizeof(*result));
1178 result->hw_id = 0xffffffff; /* invalid */
1179 }
1180
1181 static void
1182 register_mdapi_statistic_query(struct gen_perf_config *perf_cfg,
1183 const struct gen_device_info *devinfo)
1184 {
1185 if (!(devinfo->gen >= 7 && devinfo->gen <= 11))
1186 return;
1187
1188 struct gen_perf_query_info *query =
1189 append_query_info(perf_cfg, MAX_STAT_COUNTERS);
1190
1191 query->kind = GEN_PERF_QUERY_TYPE_PIPELINE;
1192 query->name = "Intel_Raw_Pipeline_Statistics_Query";
1193
1194 /* The order has to match mdapi_pipeline_metrics. */
1195 add_basic_stat_reg(query, IA_VERTICES_COUNT,
1196 "N vertices submitted");
1197 add_basic_stat_reg(query, IA_PRIMITIVES_COUNT,
1198 "N primitives submitted");
1199 add_basic_stat_reg(query, VS_INVOCATION_COUNT,
1200 "N vertex shader invocations");
1201 add_basic_stat_reg(query, GS_INVOCATION_COUNT,
1202 "N geometry shader invocations");
1203 add_basic_stat_reg(query, GS_PRIMITIVES_COUNT,
1204 "N geometry shader primitives emitted");
1205 add_basic_stat_reg(query, CL_INVOCATION_COUNT,
1206 "N primitives entering clipping");
1207 add_basic_stat_reg(query, CL_PRIMITIVES_COUNT,
1208 "N primitives leaving clipping");
1209 if (devinfo->is_haswell || devinfo->gen == 8) {
1210 add_stat_reg(query, PS_INVOCATION_COUNT, 1, 4,
1211 "N fragment shader invocations",
1212 "N fragment shader invocations");
1213 } else {
1214 add_basic_stat_reg(query, PS_INVOCATION_COUNT,
1215 "N fragment shader invocations");
1216 }
1217 add_basic_stat_reg(query, HS_INVOCATION_COUNT,
1218 "N TCS shader invocations");
1219 add_basic_stat_reg(query, DS_INVOCATION_COUNT,
1220 "N TES shader invocations");
1221 if (devinfo->gen >= 7) {
1222 add_basic_stat_reg(query, CS_INVOCATION_COUNT,
1223 "N compute shader invocations");
1224 }
1225
1226 if (devinfo->gen >= 10) {
1227 /* Reuse existing CS invocation register until we can expose this new
1228 * one.
1229 */
1230 add_basic_stat_reg(query, CS_INVOCATION_COUNT,
1231 "Reserved1");
1232 }
1233
1234 query->data_size = sizeof(uint64_t) * query->n_counters;
1235 }
1236
1237 static void
1238 fill_mdapi_perf_query_counter(struct gen_perf_query_info *query,
1239 const char *name,
1240 uint32_t data_offset,
1241 uint32_t data_size,
1242 enum gen_perf_counter_data_type data_type)
1243 {
1244 struct gen_perf_query_counter *counter = &query->counters[query->n_counters];
1245
1246 assert(query->n_counters <= query->max_counters);
1247
1248 counter->name = name;
1249 counter->desc = "Raw counter value";
1250 counter->type = GEN_PERF_COUNTER_TYPE_RAW;
1251 counter->data_type = data_type;
1252 counter->offset = data_offset;
1253
1254 query->n_counters++;
1255
1256 assert(counter->offset + gen_perf_query_counter_get_size(counter) <= query->data_size);
1257 }
1258
1259 #define MDAPI_QUERY_ADD_COUNTER(query, struct_name, field_name, type_name) \
1260 fill_mdapi_perf_query_counter(query, #field_name, \
1261 (uint8_t *) &struct_name.field_name - \
1262 (uint8_t *) &struct_name, \
1263 sizeof(struct_name.field_name), \
1264 GEN_PERF_COUNTER_DATA_TYPE_##type_name)
1265 #define MDAPI_QUERY_ADD_ARRAY_COUNTER(ctx, query, struct_name, field_name, idx, type_name) \
1266 fill_mdapi_perf_query_counter(query, \
1267 ralloc_asprintf(ctx, "%s%i", #field_name, idx), \
1268 (uint8_t *) &struct_name.field_name[idx] - \
1269 (uint8_t *) &struct_name, \
1270 sizeof(struct_name.field_name[0]), \
1271 GEN_PERF_COUNTER_DATA_TYPE_##type_name)
1272
1273 static void
1274 register_mdapi_oa_query(const struct gen_device_info *devinfo,
1275 struct gen_perf_config *perf)
1276 {
1277 struct gen_perf_query_info *query = NULL;
1278
1279 /* MDAPI requires different structures for pretty much every generation
1280 * (right now we have definitions for gen 7 to 11).
1281 */
1282 if (!(devinfo->gen >= 7 && devinfo->gen <= 11))
1283 return;
1284
1285 switch (devinfo->gen) {
1286 case 7: {
1287 query = append_query_info(perf, 1 + 45 + 16 + 7);
1288 query->oa_format = I915_OA_FORMAT_A45_B8_C8;
1289
1290 struct gen7_mdapi_metrics metric_data;
1291 query->data_size = sizeof(metric_data);
1292
1293 MDAPI_QUERY_ADD_COUNTER(query, metric_data, TotalTime, UINT64);
1294 for (int i = 0; i < ARRAY_SIZE(metric_data.ACounters); i++) {
1295 MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query,
1296 metric_data, ACounters, i, UINT64);
1297 }
1298 for (int i = 0; i < ARRAY_SIZE(metric_data.NOACounters); i++) {
1299 MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query,
1300 metric_data, NOACounters, i, UINT64);
1301 }
1302 MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter1, UINT64);
1303 MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter2, UINT64);
1304 MDAPI_QUERY_ADD_COUNTER(query, metric_data, SplitOccured, BOOL32);
1305 MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequencyChanged, BOOL32);
1306 MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequency, UINT64);
1307 MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportId, UINT32);
1308 MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportsCount, UINT32);
1309 break;
1310 }
1311 case 8: {
1312 query = append_query_info(perf, 2 + 36 + 16 + 16);
1313 query->oa_format = I915_OA_FORMAT_A32u40_A4u32_B8_C8;
1314
1315 struct gen8_mdapi_metrics metric_data;
1316 query->data_size = sizeof(metric_data);
1317
1318 MDAPI_QUERY_ADD_COUNTER(query, metric_data, TotalTime, UINT64);
1319 MDAPI_QUERY_ADD_COUNTER(query, metric_data, GPUTicks, UINT64);
1320 for (int i = 0; i < ARRAY_SIZE(metric_data.OaCntr); i++) {
1321 MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query,
1322 metric_data, OaCntr, i, UINT64);
1323 }
1324 for (int i = 0; i < ARRAY_SIZE(metric_data.NoaCntr); i++) {
1325 MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query,
1326 metric_data, NoaCntr, i, UINT64);
1327 }
1328 MDAPI_QUERY_ADD_COUNTER(query, metric_data, BeginTimestamp, UINT64);
1329 MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved1, UINT64);
1330 MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved2, UINT64);
1331 MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved3, UINT32);
1332 MDAPI_QUERY_ADD_COUNTER(query, metric_data, OverrunOccured, BOOL32);
1333 MDAPI_QUERY_ADD_COUNTER(query, metric_data, MarkerUser, UINT64);
1334 MDAPI_QUERY_ADD_COUNTER(query, metric_data, MarkerDriver, UINT64);
1335 MDAPI_QUERY_ADD_COUNTER(query, metric_data, SliceFrequency, UINT64);
1336 MDAPI_QUERY_ADD_COUNTER(query, metric_data, UnsliceFrequency, UINT64);
1337 MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter1, UINT64);
1338 MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter2, UINT64);
1339 MDAPI_QUERY_ADD_COUNTER(query, metric_data, SplitOccured, BOOL32);
1340 MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequencyChanged, BOOL32);
1341 MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequency, UINT64);
1342 MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportId, UINT32);
1343 MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportsCount, UINT32);
1344 break;
1345 }
1346 case 9:
1347 case 10:
1348 case 11: {
1349 query = append_query_info(perf, 2 + 36 + 16 + 16 + 16 + 2);
1350 query->oa_format = I915_OA_FORMAT_A32u40_A4u32_B8_C8;
1351
1352 struct gen9_mdapi_metrics metric_data;
1353 query->data_size = sizeof(metric_data);
1354
1355 MDAPI_QUERY_ADD_COUNTER(query, metric_data, TotalTime, UINT64);
1356 MDAPI_QUERY_ADD_COUNTER(query, metric_data, GPUTicks, UINT64);
1357 for (int i = 0; i < ARRAY_SIZE(metric_data.OaCntr); i++) {
1358 MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query,
1359 metric_data, OaCntr, i, UINT64);
1360 }
1361 for (int i = 0; i < ARRAY_SIZE(metric_data.NoaCntr); i++) {
1362 MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query,
1363 metric_data, NoaCntr, i, UINT64);
1364 }
1365 MDAPI_QUERY_ADD_COUNTER(query, metric_data, BeginTimestamp, UINT64);
1366 MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved1, UINT64);
1367 MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved2, UINT64);
1368 MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved3, UINT32);
1369 MDAPI_QUERY_ADD_COUNTER(query, metric_data, OverrunOccured, BOOL32);
1370 MDAPI_QUERY_ADD_COUNTER(query, metric_data, MarkerUser, UINT64);
1371 MDAPI_QUERY_ADD_COUNTER(query, metric_data, MarkerDriver, UINT64);
1372 MDAPI_QUERY_ADD_COUNTER(query, metric_data, SliceFrequency, UINT64);
1373 MDAPI_QUERY_ADD_COUNTER(query, metric_data, UnsliceFrequency, UINT64);
1374 MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter1, UINT64);
1375 MDAPI_QUERY_ADD_COUNTER(query, metric_data, PerfCounter2, UINT64);
1376 MDAPI_QUERY_ADD_COUNTER(query, metric_data, SplitOccured, BOOL32);
1377 MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequencyChanged, BOOL32);
1378 MDAPI_QUERY_ADD_COUNTER(query, metric_data, CoreFrequency, UINT64);
1379 MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportId, UINT32);
1380 MDAPI_QUERY_ADD_COUNTER(query, metric_data, ReportsCount, UINT32);
1381 for (int i = 0; i < ARRAY_SIZE(metric_data.UserCntr); i++) {
1382 MDAPI_QUERY_ADD_ARRAY_COUNTER(perf->queries, query,
1383 metric_data, UserCntr, i, UINT64);
1384 }
1385 MDAPI_QUERY_ADD_COUNTER(query, metric_data, UserCntrCfgId, UINT32);
1386 MDAPI_QUERY_ADD_COUNTER(query, metric_data, Reserved4, UINT32);
1387 break;
1388 }
1389 default:
1390 unreachable("Unsupported gen");
1391 break;
1392 }
1393
1394 query->kind = GEN_PERF_QUERY_TYPE_RAW;
1395 query->name = "Intel_Raw_Hardware_Counters_Set_0_Query";
1396 query->guid = GEN_PERF_QUERY_GUID_MDAPI;
1397
1398 {
1399 /* Accumulation buffer offsets copied from an actual query... */
1400 const struct gen_perf_query_info *copy_query =
1401 &perf->queries[0];
1402
1403 query->gpu_time_offset = copy_query->gpu_time_offset;
1404 query->gpu_clock_offset = copy_query->gpu_clock_offset;
1405 query->a_offset = copy_query->a_offset;
1406 query->b_offset = copy_query->b_offset;
1407 query->c_offset = copy_query->c_offset;
1408 }
1409 }
1410
1411 static uint64_t
1412 get_metric_id(struct gen_perf_config *perf,
1413 const struct gen_perf_query_info *query)
1414 {
1415 /* These queries are know not to ever change, their config ID has been
1416 * loaded upon the first query creation. No need to look them up again.
1417 */
1418 if (query->kind == GEN_PERF_QUERY_TYPE_OA)
1419 return query->oa_metrics_set_id;
1420
1421 assert(query->kind == GEN_PERF_QUERY_TYPE_RAW);
1422
1423 /* Raw queries can be reprogrammed up by an external application/library.
1424 * When a raw query is used for the first time it's id is set to a value !=
1425 * 0. When it stops being used the id returns to 0. No need to reload the
1426 * ID when it's already loaded.
1427 */
1428 if (query->oa_metrics_set_id != 0) {
1429 DBG("Raw query '%s' guid=%s using cached ID: %"PRIu64"\n",
1430 query->name, query->guid, query->oa_metrics_set_id);
1431 return query->oa_metrics_set_id;
1432 }
1433
1434 struct gen_perf_query_info *raw_query = (struct gen_perf_query_info *)query;
1435 if (!gen_perf_load_metric_id(perf, query->guid,
1436 &raw_query->oa_metrics_set_id)) {
1437 DBG("Unable to read query guid=%s ID, falling back to test config\n", query->guid);
1438 raw_query->oa_metrics_set_id = 1ULL;
1439 } else {
1440 DBG("Raw query '%s'guid=%s loaded ID: %"PRIu64"\n",
1441 query->name, query->guid, query->oa_metrics_set_id);
1442 }
1443 return query->oa_metrics_set_id;
1444 }
1445
1446 static struct oa_sample_buf *
1447 get_free_sample_buf(struct gen_perf_context *perf_ctx)
1448 {
1449 struct exec_node *node = exec_list_pop_head(&perf_ctx->free_sample_buffers);
1450 struct oa_sample_buf *buf;
1451
1452 if (node)
1453 buf = exec_node_data(struct oa_sample_buf, node, link);
1454 else {
1455 buf = ralloc_size(perf_ctx->perf, sizeof(*buf));
1456
1457 exec_node_init(&buf->link);
1458 buf->refcount = 0;
1459 buf->len = 0;
1460 }
1461
1462 return buf;
1463 }
1464
1465 static void
1466 reap_old_sample_buffers(struct gen_perf_context *perf_ctx)
1467 {
1468 struct exec_node *tail_node =
1469 exec_list_get_tail(&perf_ctx->sample_buffers);
1470 struct oa_sample_buf *tail_buf =
1471 exec_node_data(struct oa_sample_buf, tail_node, link);
1472
1473 /* Remove all old, unreferenced sample buffers walking forward from
1474 * the head of the list, except always leave at least one node in
1475 * the list so we always have a node to reference when we Begin
1476 * a new query.
1477 */
1478 foreach_list_typed_safe(struct oa_sample_buf, buf, link,
1479 &perf_ctx->sample_buffers)
1480 {
1481 if (buf->refcount == 0 && buf != tail_buf) {
1482 exec_node_remove(&buf->link);
1483 exec_list_push_head(&perf_ctx->free_sample_buffers, &buf->link);
1484 } else
1485 return;
1486 }
1487 }
1488
1489 static void
1490 free_sample_bufs(struct gen_perf_context *perf_ctx)
1491 {
1492 foreach_list_typed_safe(struct oa_sample_buf, buf, link,
1493 &perf_ctx->free_sample_buffers)
1494 ralloc_free(buf);
1495
1496 exec_list_make_empty(&perf_ctx->free_sample_buffers);
1497 }
1498
1499 /******************************************************************************/
1500
1501 /**
1502 * Emit MI_STORE_REGISTER_MEM commands to capture all of the
1503 * pipeline statistics for the performance query object.
1504 */
1505 static void
1506 snapshot_statistics_registers(void *context,
1507 struct gen_perf_config *perf,
1508 struct gen_perf_query_object *obj,
1509 uint32_t offset_in_bytes)
1510 {
1511 const struct gen_perf_query_info *query = obj->queryinfo;
1512 const int n_counters = query->n_counters;
1513
1514 for (int i = 0; i < n_counters; i++) {
1515 const struct gen_perf_query_counter *counter = &query->counters[i];
1516
1517 assert(counter->data_type == GEN_PERF_COUNTER_DATA_TYPE_UINT64);
1518
1519 perf->vtbl.store_register_mem64(context, obj->pipeline_stats.bo,
1520 counter->pipeline_stat.reg,
1521 offset_in_bytes + i * sizeof(uint64_t));
1522 }
1523 }
1524
1525 static void
1526 gen_perf_close(struct gen_perf_context *perfquery,
1527 const struct gen_perf_query_info *query)
1528 {
1529 if (perfquery->oa_stream_fd != -1) {
1530 close(perfquery->oa_stream_fd);
1531 perfquery->oa_stream_fd = -1;
1532 }
1533 if (query->kind == GEN_PERF_QUERY_TYPE_RAW) {
1534 struct gen_perf_query_info *raw_query =
1535 (struct gen_perf_query_info *) query;
1536 raw_query->oa_metrics_set_id = 0;
1537 }
1538 }
1539
1540 static bool
1541 gen_perf_open(struct gen_perf_context *perf_ctx,
1542 int metrics_set_id,
1543 int report_format,
1544 int period_exponent,
1545 int drm_fd,
1546 uint32_t ctx_id)
1547 {
1548 uint64_t properties[] = {
1549 /* Single context sampling */
1550 DRM_I915_PERF_PROP_CTX_HANDLE, ctx_id,
1551
1552 /* Include OA reports in samples */
1553 DRM_I915_PERF_PROP_SAMPLE_OA, true,
1554
1555 /* OA unit configuration */
1556 DRM_I915_PERF_PROP_OA_METRICS_SET, metrics_set_id,
1557 DRM_I915_PERF_PROP_OA_FORMAT, report_format,
1558 DRM_I915_PERF_PROP_OA_EXPONENT, period_exponent,
1559 };
1560 struct drm_i915_perf_open_param param = {
1561 .flags = I915_PERF_FLAG_FD_CLOEXEC |
1562 I915_PERF_FLAG_FD_NONBLOCK |
1563 I915_PERF_FLAG_DISABLED,
1564 .num_properties = ARRAY_SIZE(properties) / 2,
1565 .properties_ptr = (uintptr_t) properties,
1566 };
1567 int fd = gen_ioctl(drm_fd, DRM_IOCTL_I915_PERF_OPEN, &param);
1568 if (fd == -1) {
1569 DBG("Error opening gen perf OA stream: %m\n");
1570 return false;
1571 }
1572
1573 perf_ctx->oa_stream_fd = fd;
1574
1575 perf_ctx->current_oa_metrics_set_id = metrics_set_id;
1576 perf_ctx->current_oa_format = report_format;
1577
1578 return true;
1579 }
1580
1581 static bool
1582 inc_n_users(struct gen_perf_context *perf_ctx)
1583 {
1584 if (perf_ctx->n_oa_users == 0 &&
1585 gen_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_ENABLE, 0) < 0)
1586 {
1587 return false;
1588 }
1589 ++perf_ctx->n_oa_users;
1590
1591 return true;
1592 }
1593
1594 static void
1595 dec_n_users(struct gen_perf_context *perf_ctx)
1596 {
1597 /* Disabling the i915 perf stream will effectively disable the OA
1598 * counters. Note it's important to be sure there are no outstanding
1599 * MI_RPC commands at this point since they could stall the CS
1600 * indefinitely once OACONTROL is disabled.
1601 */
1602 --perf_ctx->n_oa_users;
1603 if (perf_ctx->n_oa_users == 0 &&
1604 gen_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_DISABLE, 0) < 0)
1605 {
1606 DBG("WARNING: Error disabling gen perf stream: %m\n");
1607 }
1608 }
1609
1610 void
1611 gen_perf_init_metrics(struct gen_perf_config *perf_cfg,
1612 const struct gen_device_info *devinfo,
1613 int drm_fd)
1614 {
1615 load_pipeline_statistic_metrics(perf_cfg, devinfo);
1616 register_mdapi_statistic_query(perf_cfg, devinfo);
1617 if (load_oa_metrics(perf_cfg, drm_fd, devinfo))
1618 register_mdapi_oa_query(devinfo, perf_cfg);
1619 }
1620
1621 void
1622 gen_perf_init_context(struct gen_perf_context *perf_ctx,
1623 struct gen_perf_config *perf_cfg,
1624 void * ctx, /* driver context (eg, brw_context) */
1625 void * bufmgr, /* eg brw_bufmgr */
1626 const struct gen_device_info *devinfo,
1627 uint32_t hw_ctx,
1628 int drm_fd)
1629 {
1630 perf_ctx->perf = perf_cfg;
1631 perf_ctx->ctx = ctx;
1632 perf_ctx->bufmgr = bufmgr;
1633 perf_ctx->drm_fd = drm_fd;
1634 perf_ctx->hw_ctx = hw_ctx;
1635 perf_ctx->devinfo = devinfo;
1636
1637 perf_ctx->unaccumulated =
1638 ralloc_array(ctx, struct gen_perf_query_object *, 2);
1639 perf_ctx->unaccumulated_elements = 0;
1640 perf_ctx->unaccumulated_array_size = 2;
1641
1642 exec_list_make_empty(&perf_ctx->sample_buffers);
1643 exec_list_make_empty(&perf_ctx->free_sample_buffers);
1644
1645 /* It's convenient to guarantee that this linked list of sample
1646 * buffers is never empty so we add an empty head so when we
1647 * Begin an OA query we can always take a reference on a buffer
1648 * in this list.
1649 */
1650 struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx);
1651 exec_list_push_head(&perf_ctx->sample_buffers, &buf->link);
1652
1653 perf_ctx->oa_stream_fd = -1;
1654 perf_ctx->next_query_start_report_id = 1000;
1655 }
1656
1657 /**
1658 * Add a query to the global list of "unaccumulated queries."
1659 *
1660 * Queries are tracked here until all the associated OA reports have
1661 * been accumulated via accumulate_oa_reports() after the end
1662 * MI_REPORT_PERF_COUNT has landed in query->oa.bo.
1663 */
1664 static void
1665 add_to_unaccumulated_query_list(struct gen_perf_context *perf_ctx,
1666 struct gen_perf_query_object *obj)
1667 {
1668 if (perf_ctx->unaccumulated_elements >=
1669 perf_ctx->unaccumulated_array_size)
1670 {
1671 perf_ctx->unaccumulated_array_size *= 1.5;
1672 perf_ctx->unaccumulated =
1673 reralloc(perf_ctx->ctx, perf_ctx->unaccumulated,
1674 struct gen_perf_query_object *,
1675 perf_ctx->unaccumulated_array_size);
1676 }
1677
1678 perf_ctx->unaccumulated[perf_ctx->unaccumulated_elements++] = obj;
1679 }
1680
1681 bool
1682 gen_perf_begin_query(struct gen_perf_context *perf_ctx,
1683 struct gen_perf_query_object *query)
1684 {
1685 struct gen_perf_config *perf_cfg = perf_ctx->perf;
1686 const struct gen_perf_query_info *queryinfo = query->queryinfo;
1687
1688 /* XXX: We have to consider that the command parser unit that parses batch
1689 * buffer commands and is used to capture begin/end counter snapshots isn't
1690 * implicitly synchronized with what's currently running across other GPU
1691 * units (such as the EUs running shaders) that the performance counters are
1692 * associated with.
1693 *
1694 * The intention of performance queries is to measure the work associated
1695 * with commands between the begin/end delimiters and so for that to be the
1696 * case we need to explicitly synchronize the parsing of commands to capture
1697 * Begin/End counter snapshots with what's running across other parts of the
1698 * GPU.
1699 *
1700 * When the command parser reaches a Begin marker it effectively needs to
1701 * drain everything currently running on the GPU until the hardware is idle
1702 * before capturing the first snapshot of counters - otherwise the results
1703 * would also be measuring the effects of earlier commands.
1704 *
1705 * When the command parser reaches an End marker it needs to stall until
1706 * everything currently running on the GPU has finished before capturing the
1707 * end snapshot - otherwise the results won't be a complete representation
1708 * of the work.
1709 *
1710 * Theoretically there could be opportunities to minimize how much of the
1711 * GPU pipeline is drained, or that we stall for, when we know what specific
1712 * units the performance counters being queried relate to but we don't
1713 * currently attempt to be clever here.
1714 *
1715 * Note: with our current simple approach here then for back-to-back queries
1716 * we will redundantly emit duplicate commands to synchronize the command
1717 * streamer with the rest of the GPU pipeline, but we assume that in HW the
1718 * second synchronization is effectively a NOOP.
1719 *
1720 * N.B. The final results are based on deltas of counters between (inside)
1721 * Begin/End markers so even though the total wall clock time of the
1722 * workload is stretched by larger pipeline bubbles the bubbles themselves
1723 * are generally invisible to the query results. Whether that's a good or a
1724 * bad thing depends on the use case. For a lower real-time impact while
1725 * capturing metrics then periodic sampling may be a better choice than
1726 * INTEL_performance_query.
1727 *
1728 *
1729 * This is our Begin synchronization point to drain current work on the
1730 * GPU before we capture our first counter snapshot...
1731 */
1732 perf_cfg->vtbl.emit_mi_flush(perf_ctx->ctx);
1733
1734 switch (queryinfo->kind) {
1735 case GEN_PERF_QUERY_TYPE_OA:
1736 case GEN_PERF_QUERY_TYPE_RAW: {
1737
1738 /* Opening an i915 perf stream implies exclusive access to the OA unit
1739 * which will generate counter reports for a specific counter set with a
1740 * specific layout/format so we can't begin any OA based queries that
1741 * require a different counter set or format unless we get an opportunity
1742 * to close the stream and open a new one...
1743 */
1744 uint64_t metric_id = get_metric_id(perf_ctx->perf, queryinfo);
1745
1746 if (perf_ctx->oa_stream_fd != -1 &&
1747 perf_ctx->current_oa_metrics_set_id != metric_id) {
1748
1749 if (perf_ctx->n_oa_users != 0) {
1750 DBG("WARNING: Begin failed already using perf config=%i/%"PRIu64"\n",
1751 perf_ctx->current_oa_metrics_set_id, metric_id);
1752 return false;
1753 } else
1754 gen_perf_close(perf_ctx, queryinfo);
1755 }
1756
1757 /* If the OA counters aren't already on, enable them. */
1758 if (perf_ctx->oa_stream_fd == -1) {
1759 const struct gen_device_info *devinfo = perf_ctx->devinfo;
1760
1761 /* The period_exponent gives a sampling period as follows:
1762 * sample_period = timestamp_period * 2^(period_exponent + 1)
1763 *
1764 * The timestamps increments every 80ns (HSW), ~52ns (GEN9LP) or
1765 * ~83ns (GEN8/9).
1766 *
1767 * The counter overflow period is derived from the EuActive counter
1768 * which reads a counter that increments by the number of clock
1769 * cycles multiplied by the number of EUs. It can be calculated as:
1770 *
1771 * 2^(number of bits in A counter) / (n_eus * max_gen_freq * 2)
1772 *
1773 * (E.g. 40 EUs @ 1GHz = ~53ms)
1774 *
1775 * We select a sampling period inferior to that overflow period to
1776 * ensure we cannot see more than 1 counter overflow, otherwise we
1777 * could loose information.
1778 */
1779
1780 int a_counter_in_bits = 32;
1781 if (devinfo->gen >= 8)
1782 a_counter_in_bits = 40;
1783
1784 uint64_t overflow_period = pow(2, a_counter_in_bits) / (perf_cfg->sys_vars.n_eus *
1785 /* drop 1GHz freq to have units in nanoseconds */
1786 2);
1787
1788 DBG("A counter overflow period: %"PRIu64"ns, %"PRIu64"ms (n_eus=%"PRIu64")\n",
1789 overflow_period, overflow_period / 1000000ul, perf_cfg->sys_vars.n_eus);
1790
1791 int period_exponent = 0;
1792 uint64_t prev_sample_period, next_sample_period;
1793 for (int e = 0; e < 30; e++) {
1794 prev_sample_period = 1000000000ull * pow(2, e + 1) / devinfo->timestamp_frequency;
1795 next_sample_period = 1000000000ull * pow(2, e + 2) / devinfo->timestamp_frequency;
1796
1797 /* Take the previous sampling period, lower than the overflow
1798 * period.
1799 */
1800 if (prev_sample_period < overflow_period &&
1801 next_sample_period > overflow_period)
1802 period_exponent = e + 1;
1803 }
1804
1805 if (period_exponent == 0) {
1806 DBG("WARNING: enable to find a sampling exponent\n");
1807 return false;
1808 }
1809
1810 DBG("OA sampling exponent: %i ~= %"PRIu64"ms\n", period_exponent,
1811 prev_sample_period / 1000000ul);
1812
1813 if (!gen_perf_open(perf_ctx, metric_id, queryinfo->oa_format,
1814 period_exponent, perf_ctx->drm_fd,
1815 perf_ctx->hw_ctx))
1816 return false;
1817 } else {
1818 assert(perf_ctx->current_oa_metrics_set_id == metric_id &&
1819 perf_ctx->current_oa_format == queryinfo->oa_format);
1820 }
1821
1822 if (!inc_n_users(perf_ctx)) {
1823 DBG("WARNING: Error enabling i915 perf stream: %m\n");
1824 return false;
1825 }
1826
1827 if (query->oa.bo) {
1828 perf_cfg->vtbl.bo_unreference(query->oa.bo);
1829 query->oa.bo = NULL;
1830 }
1831
1832 query->oa.bo = perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr,
1833 "perf. query OA MI_RPC bo",
1834 MI_RPC_BO_SIZE);
1835 #ifdef DEBUG
1836 /* Pre-filling the BO helps debug whether writes landed. */
1837 void *map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_WRITE);
1838 memset(map, 0x80, MI_RPC_BO_SIZE);
1839 perf_cfg->vtbl.bo_unmap(query->oa.bo);
1840 #endif
1841
1842 query->oa.begin_report_id = perf_ctx->next_query_start_report_id;
1843 perf_ctx->next_query_start_report_id += 2;
1844
1845 /* We flush the batchbuffer here to minimize the chances that MI_RPC
1846 * delimiting commands end up in different batchbuffers. If that's the
1847 * case, the measurement will include the time it takes for the kernel
1848 * scheduler to load a new request into the hardware. This is manifested in
1849 * tools like frameretrace by spikes in the "GPU Core Clocks" counter.
1850 */
1851 perf_cfg->vtbl.batchbuffer_flush(perf_ctx->ctx, __FILE__, __LINE__);
1852
1853 /* Take a starting OA counter snapshot. */
1854 perf_cfg->vtbl.emit_mi_report_perf_count(perf_ctx->ctx, query->oa.bo, 0,
1855 query->oa.begin_report_id);
1856 perf_cfg->vtbl.capture_frequency_stat_register(perf_ctx->ctx, query->oa.bo,
1857 MI_FREQ_START_OFFSET_BYTES);
1858
1859 ++perf_ctx->n_active_oa_queries;
1860
1861 /* No already-buffered samples can possibly be associated with this query
1862 * so create a marker within the list of sample buffers enabling us to
1863 * easily ignore earlier samples when processing this query after
1864 * completion.
1865 */
1866 assert(!exec_list_is_empty(&perf_ctx->sample_buffers));
1867 query->oa.samples_head = exec_list_get_tail(&perf_ctx->sample_buffers);
1868
1869 struct oa_sample_buf *buf =
1870 exec_node_data(struct oa_sample_buf, query->oa.samples_head, link);
1871
1872 /* This reference will ensure that future/following sample
1873 * buffers (that may relate to this query) can't be freed until
1874 * this drops to zero.
1875 */
1876 buf->refcount++;
1877
1878 gen_perf_query_result_clear(&query->oa.result);
1879 query->oa.results_accumulated = false;
1880
1881 add_to_unaccumulated_query_list(perf_ctx, query);
1882 break;
1883 }
1884
1885 case GEN_PERF_QUERY_TYPE_PIPELINE:
1886 if (query->pipeline_stats.bo) {
1887 perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo);
1888 query->pipeline_stats.bo = NULL;
1889 }
1890
1891 query->pipeline_stats.bo =
1892 perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr,
1893 "perf. query pipeline stats bo",
1894 STATS_BO_SIZE);
1895
1896 /* Take starting snapshots. */
1897 snapshot_statistics_registers(perf_ctx->ctx , perf_cfg, query, 0);
1898
1899 ++perf_ctx->n_active_pipeline_stats_queries;
1900 break;
1901
1902 default:
1903 unreachable("Unknown query type");
1904 break;
1905 }
1906
1907 return true;
1908 }
1909
1910 void
1911 gen_perf_end_query(struct gen_perf_context *perf_ctx,
1912 struct gen_perf_query_object *query)
1913 {
1914 struct gen_perf_config *perf_cfg = perf_ctx->perf;
1915
1916 /* Ensure that the work associated with the queried commands will have
1917 * finished before taking our query end counter readings.
1918 *
1919 * For more details see comment in brw_begin_perf_query for
1920 * corresponding flush.
1921 */
1922 perf_cfg->vtbl.emit_mi_flush(perf_ctx->ctx);
1923
1924 switch (query->queryinfo->kind) {
1925 case GEN_PERF_QUERY_TYPE_OA:
1926 case GEN_PERF_QUERY_TYPE_RAW:
1927
1928 /* NB: It's possible that the query will have already been marked
1929 * as 'accumulated' if an error was seen while reading samples
1930 * from perf. In this case we mustn't try and emit a closing
1931 * MI_RPC command in case the OA unit has already been disabled
1932 */
1933 if (!query->oa.results_accumulated) {
1934 /* Take an ending OA counter snapshot. */
1935 perf_cfg->vtbl.capture_frequency_stat_register(perf_ctx->ctx, query->oa.bo,
1936 MI_FREQ_END_OFFSET_BYTES);
1937 perf_cfg->vtbl.emit_mi_report_perf_count(perf_ctx->ctx, query->oa.bo,
1938 MI_RPC_BO_END_OFFSET_BYTES,
1939 query->oa.begin_report_id + 1);
1940 }
1941
1942 --perf_ctx->n_active_oa_queries;
1943
1944 /* NB: even though the query has now ended, it can't be accumulated
1945 * until the end MI_REPORT_PERF_COUNT snapshot has been written
1946 * to query->oa.bo
1947 */
1948 break;
1949
1950 case GEN_PERF_QUERY_TYPE_PIPELINE:
1951 snapshot_statistics_registers(perf_ctx->ctx, perf_cfg, query,
1952 STATS_BO_END_OFFSET_BYTES);
1953 --perf_ctx->n_active_pipeline_stats_queries;
1954 break;
1955
1956 default:
1957 unreachable("Unknown query type");
1958 break;
1959 }
1960 }
1961
1962 enum OaReadStatus {
1963 OA_READ_STATUS_ERROR,
1964 OA_READ_STATUS_UNFINISHED,
1965 OA_READ_STATUS_FINISHED,
1966 };
1967
1968 static enum OaReadStatus
1969 read_oa_samples_until(struct gen_perf_context *perf_ctx,
1970 uint32_t start_timestamp,
1971 uint32_t end_timestamp)
1972 {
1973 struct exec_node *tail_node =
1974 exec_list_get_tail(&perf_ctx->sample_buffers);
1975 struct oa_sample_buf *tail_buf =
1976 exec_node_data(struct oa_sample_buf, tail_node, link);
1977 uint32_t last_timestamp = tail_buf->last_timestamp;
1978
1979 while (1) {
1980 struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx);
1981 uint32_t offset;
1982 int len;
1983
1984 while ((len = read(perf_ctx->oa_stream_fd, buf->buf,
1985 sizeof(buf->buf))) < 0 && errno == EINTR)
1986 ;
1987
1988 if (len <= 0) {
1989 exec_list_push_tail(&perf_ctx->free_sample_buffers, &buf->link);
1990
1991 if (len < 0) {
1992 if (errno == EAGAIN)
1993 return ((last_timestamp - start_timestamp) >=
1994 (end_timestamp - start_timestamp)) ?
1995 OA_READ_STATUS_FINISHED :
1996 OA_READ_STATUS_UNFINISHED;
1997 else {
1998 DBG("Error reading i915 perf samples: %m\n");
1999 }
2000 } else
2001 DBG("Spurious EOF reading i915 perf samples\n");
2002
2003 return OA_READ_STATUS_ERROR;
2004 }
2005
2006 buf->len = len;
2007 exec_list_push_tail(&perf_ctx->sample_buffers, &buf->link);
2008
2009 /* Go through the reports and update the last timestamp. */
2010 offset = 0;
2011 while (offset < buf->len) {
2012 const struct drm_i915_perf_record_header *header =
2013 (const struct drm_i915_perf_record_header *) &buf->buf[offset];
2014 uint32_t *report = (uint32_t *) (header + 1);
2015
2016 if (header->type == DRM_I915_PERF_RECORD_SAMPLE)
2017 last_timestamp = report[1];
2018
2019 offset += header->size;
2020 }
2021
2022 buf->last_timestamp = last_timestamp;
2023 }
2024
2025 unreachable("not reached");
2026 return OA_READ_STATUS_ERROR;
2027 }
2028
2029 /**
2030 * Try to read all the reports until either the delimiting timestamp
2031 * or an error arises.
2032 */
2033 static bool
2034 read_oa_samples_for_query(struct gen_perf_context *perf_ctx,
2035 struct gen_perf_query_object *query,
2036 void *current_batch)
2037 {
2038 uint32_t *start;
2039 uint32_t *last;
2040 uint32_t *end;
2041 struct gen_perf_config *perf_cfg = perf_ctx->perf;
2042
2043 /* We need the MI_REPORT_PERF_COUNT to land before we can start
2044 * accumulate. */
2045 assert(!perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) &&
2046 !perf_cfg->vtbl.bo_busy(query->oa.bo));
2047
2048 /* Map the BO once here and let accumulate_oa_reports() unmap
2049 * it. */
2050 if (query->oa.map == NULL)
2051 query->oa.map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_READ);
2052
2053 start = last = query->oa.map;
2054 end = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES;
2055
2056 if (start[0] != query->oa.begin_report_id) {
2057 DBG("Spurious start report id=%"PRIu32"\n", start[0]);
2058 return true;
2059 }
2060 if (end[0] != (query->oa.begin_report_id + 1)) {
2061 DBG("Spurious end report id=%"PRIu32"\n", end[0]);
2062 return true;
2063 }
2064
2065 /* Read the reports until the end timestamp. */
2066 switch (read_oa_samples_until(perf_ctx, start[1], end[1])) {
2067 case OA_READ_STATUS_ERROR:
2068 /* Fallthrough and let accumulate_oa_reports() deal with the
2069 * error. */
2070 case OA_READ_STATUS_FINISHED:
2071 return true;
2072 case OA_READ_STATUS_UNFINISHED:
2073 return false;
2074 }
2075
2076 unreachable("invalid read status");
2077 return false;
2078 }
2079
2080 void
2081 gen_perf_wait_query(struct gen_perf_context *perf_ctx,
2082 struct gen_perf_query_object *query,
2083 void *current_batch)
2084 {
2085 struct gen_perf_config *perf_cfg = perf_ctx->perf;
2086 struct brw_bo *bo = NULL;
2087
2088 switch (query->queryinfo->kind) {
2089 case GEN_PERF_QUERY_TYPE_OA:
2090 case GEN_PERF_QUERY_TYPE_RAW:
2091 bo = query->oa.bo;
2092 break;
2093
2094 case GEN_PERF_QUERY_TYPE_PIPELINE:
2095 bo = query->pipeline_stats.bo;
2096 break;
2097
2098 default:
2099 unreachable("Unknown query type");
2100 break;
2101 }
2102
2103 if (bo == NULL)
2104 return;
2105
2106 /* If the current batch references our results bo then we need to
2107 * flush first...
2108 */
2109 if (perf_cfg->vtbl.batch_references(current_batch, bo))
2110 perf_cfg->vtbl.batchbuffer_flush(perf_ctx->ctx, __FILE__, __LINE__);
2111
2112 perf_cfg->vtbl.bo_wait_rendering(bo);
2113
2114 /* Due to a race condition between the OA unit signaling report
2115 * availability and the report actually being written into memory,
2116 * we need to wait for all the reports to come in before we can
2117 * read them.
2118 */
2119 if (query->queryinfo->kind == GEN_PERF_QUERY_TYPE_OA ||
2120 query->queryinfo->kind == GEN_PERF_QUERY_TYPE_RAW) {
2121 while (!read_oa_samples_for_query(perf_ctx, query, current_batch))
2122 ;
2123 }
2124 }
2125
2126 bool
2127 gen_perf_is_query_ready(struct gen_perf_context *perf_ctx,
2128 struct gen_perf_query_object *query,
2129 void *current_batch)
2130 {
2131 struct gen_perf_config *perf_cfg = perf_ctx->perf;
2132
2133 switch (query->queryinfo->kind) {
2134 case GEN_PERF_QUERY_TYPE_OA:
2135 case GEN_PERF_QUERY_TYPE_RAW:
2136 return (query->oa.results_accumulated ||
2137 (query->oa.bo &&
2138 !perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) &&
2139 !perf_cfg->vtbl.bo_busy(query->oa.bo) &&
2140 read_oa_samples_for_query(perf_ctx, query, current_batch)));
2141 case GEN_PERF_QUERY_TYPE_PIPELINE:
2142 return (query->pipeline_stats.bo &&
2143 !perf_cfg->vtbl.batch_references(current_batch, query->pipeline_stats.bo) &&
2144 !perf_cfg->vtbl.bo_busy(query->pipeline_stats.bo));
2145
2146 default:
2147 unreachable("Unknown query type");
2148 break;
2149 }
2150
2151 return false;
2152 }
2153
2154 /**
2155 * Remove a query from the global list of unaccumulated queries once
2156 * after successfully accumulating the OA reports associated with the
2157 * query in accumulate_oa_reports() or when discarding unwanted query
2158 * results.
2159 */
2160 static void
2161 drop_from_unaccumulated_query_list(struct gen_perf_context *perf_ctx,
2162 struct gen_perf_query_object *query)
2163 {
2164 for (int i = 0; i < perf_ctx->unaccumulated_elements; i++) {
2165 if (perf_ctx->unaccumulated[i] == query) {
2166 int last_elt = --perf_ctx->unaccumulated_elements;
2167
2168 if (i == last_elt)
2169 perf_ctx->unaccumulated[i] = NULL;
2170 else {
2171 perf_ctx->unaccumulated[i] =
2172 perf_ctx->unaccumulated[last_elt];
2173 }
2174
2175 break;
2176 }
2177 }
2178
2179 /* Drop our samples_head reference so that associated periodic
2180 * sample data buffers can potentially be reaped if they aren't
2181 * referenced by any other queries...
2182 */
2183
2184 struct oa_sample_buf *buf =
2185 exec_node_data(struct oa_sample_buf, query->oa.samples_head, link);
2186
2187 assert(buf->refcount > 0);
2188 buf->refcount--;
2189
2190 query->oa.samples_head = NULL;
2191
2192 reap_old_sample_buffers(perf_ctx);
2193 }
2194
2195 /* In general if we see anything spurious while accumulating results,
2196 * we don't try and continue accumulating the current query, hoping
2197 * for the best, we scrap anything outstanding, and then hope for the
2198 * best with new queries.
2199 */
2200 static void
2201 discard_all_queries(struct gen_perf_context *perf_ctx)
2202 {
2203 while (perf_ctx->unaccumulated_elements) {
2204 struct gen_perf_query_object *query = perf_ctx->unaccumulated[0];
2205
2206 query->oa.results_accumulated = true;
2207 drop_from_unaccumulated_query_list(perf_ctx, query);
2208
2209 dec_n_users(perf_ctx);
2210 }
2211 }
2212
2213 /**
2214 * Accumulate raw OA counter values based on deltas between pairs of
2215 * OA reports.
2216 *
2217 * Accumulation starts from the first report captured via
2218 * MI_REPORT_PERF_COUNT (MI_RPC) by brw_begin_perf_query() until the
2219 * last MI_RPC report requested by brw_end_perf_query(). Between these
2220 * two reports there may also some number of periodically sampled OA
2221 * reports collected via the i915 perf interface - depending on the
2222 * duration of the query.
2223 *
2224 * These periodic snapshots help to ensure we handle counter overflow
2225 * correctly by being frequent enough to ensure we don't miss multiple
2226 * overflows of a counter between snapshots. For Gen8+ the i915 perf
2227 * snapshots provide the extra context-switch reports that let us
2228 * subtract out the progress of counters associated with other
2229 * contexts running on the system.
2230 */
2231 static void
2232 accumulate_oa_reports(struct gen_perf_context *perf_ctx,
2233 struct gen_perf_query_object *query)
2234 {
2235 const struct gen_device_info *devinfo = perf_ctx->devinfo;
2236 uint32_t *start;
2237 uint32_t *last;
2238 uint32_t *end;
2239 struct exec_node *first_samples_node;
2240 bool in_ctx = true;
2241 int out_duration = 0;
2242
2243 assert(query->oa.map != NULL);
2244
2245 start = last = query->oa.map;
2246 end = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES;
2247
2248 if (start[0] != query->oa.begin_report_id) {
2249 DBG("Spurious start report id=%"PRIu32"\n", start[0]);
2250 goto error;
2251 }
2252 if (end[0] != (query->oa.begin_report_id + 1)) {
2253 DBG("Spurious end report id=%"PRIu32"\n", end[0]);
2254 goto error;
2255 }
2256
2257 /* See if we have any periodic reports to accumulate too... */
2258
2259 /* N.B. The oa.samples_head was set when the query began and
2260 * pointed to the tail of the perf_ctx->sample_buffers list at
2261 * the time the query started. Since the buffer existed before the
2262 * first MI_REPORT_PERF_COUNT command was emitted we therefore know
2263 * that no data in this particular node's buffer can possibly be
2264 * associated with the query - so skip ahead one...
2265 */
2266 first_samples_node = query->oa.samples_head->next;
2267
2268 foreach_list_typed_from(struct oa_sample_buf, buf, link,
2269 &perf_ctx.sample_buffers,
2270 first_samples_node)
2271 {
2272 int offset = 0;
2273
2274 while (offset < buf->len) {
2275 const struct drm_i915_perf_record_header *header =
2276 (const struct drm_i915_perf_record_header *)(buf->buf + offset);
2277
2278 assert(header->size != 0);
2279 assert(header->size <= buf->len);
2280
2281 offset += header->size;
2282
2283 switch (header->type) {
2284 case DRM_I915_PERF_RECORD_SAMPLE: {
2285 uint32_t *report = (uint32_t *)(header + 1);
2286 bool add = true;
2287
2288 /* Ignore reports that come before the start marker.
2289 * (Note: takes care to allow overflow of 32bit timestamps)
2290 */
2291 if (gen_device_info_timebase_scale(devinfo,
2292 report[1] - start[1]) > 5000000000) {
2293 continue;
2294 }
2295
2296 /* Ignore reports that come after the end marker.
2297 * (Note: takes care to allow overflow of 32bit timestamps)
2298 */
2299 if (gen_device_info_timebase_scale(devinfo,
2300 report[1] - end[1]) <= 5000000000) {
2301 goto end;
2302 }
2303
2304 /* For Gen8+ since the counters continue while other
2305 * contexts are running we need to discount any unrelated
2306 * deltas. The hardware automatically generates a report
2307 * on context switch which gives us a new reference point
2308 * to continuing adding deltas from.
2309 *
2310 * For Haswell we can rely on the HW to stop the progress
2311 * of OA counters while any other context is acctive.
2312 */
2313 if (devinfo->gen >= 8) {
2314 if (in_ctx && report[2] != query->oa.result.hw_id) {
2315 DBG("i915 perf: Switch AWAY (observed by ID change)\n");
2316 in_ctx = false;
2317 out_duration = 0;
2318 } else if (in_ctx == false && report[2] == query->oa.result.hw_id) {
2319 DBG("i915 perf: Switch TO\n");
2320 in_ctx = true;
2321
2322 /* From experimentation in IGT, we found that the OA unit
2323 * might label some report as "idle" (using an invalid
2324 * context ID), right after a report for a given context.
2325 * Deltas generated by those reports actually belong to the
2326 * previous context, even though they're not labelled as
2327 * such.
2328 *
2329 * We didn't *really* Switch AWAY in the case that we e.g.
2330 * saw a single periodic report while idle...
2331 */
2332 if (out_duration >= 1)
2333 add = false;
2334 } else if (in_ctx) {
2335 assert(report[2] == query->oa.result.hw_id);
2336 DBG("i915 perf: Continuation IN\n");
2337 } else {
2338 assert(report[2] != query->oa.result.hw_id);
2339 DBG("i915 perf: Continuation OUT\n");
2340 add = false;
2341 out_duration++;
2342 }
2343 }
2344
2345 if (add) {
2346 gen_perf_query_result_accumulate(&query->oa.result,
2347 query->queryinfo,
2348 last, report);
2349 }
2350
2351 last = report;
2352
2353 break;
2354 }
2355
2356 case DRM_I915_PERF_RECORD_OA_BUFFER_LOST:
2357 DBG("i915 perf: OA error: all reports lost\n");
2358 goto error;
2359 case DRM_I915_PERF_RECORD_OA_REPORT_LOST:
2360 DBG("i915 perf: OA report lost\n");
2361 break;
2362 }
2363 }
2364 }
2365
2366 end:
2367
2368 gen_perf_query_result_accumulate(&query->oa.result, query->queryinfo,
2369 last, end);
2370
2371 query->oa.results_accumulated = true;
2372 drop_from_unaccumulated_query_list(perf_ctx, query);
2373 dec_n_users(perf_ctx);
2374
2375 return;
2376
2377 error:
2378
2379 discard_all_queries(perf_ctx);
2380 }
2381
2382 void
2383 gen_perf_delete_query(struct gen_perf_context *perf_ctx,
2384 struct gen_perf_query_object *query)
2385 {
2386 struct gen_perf_config *perf_cfg = perf_ctx->perf;
2387
2388 /* We can assume that the frontend waits for a query to complete
2389 * before ever calling into here, so we don't have to worry about
2390 * deleting an in-flight query object.
2391 */
2392 switch (query->queryinfo->kind) {
2393 case GEN_PERF_QUERY_TYPE_OA:
2394 case GEN_PERF_QUERY_TYPE_RAW:
2395 if (query->oa.bo) {
2396 if (!query->oa.results_accumulated) {
2397 drop_from_unaccumulated_query_list(perf_ctx, query);
2398 dec_n_users(perf_ctx);
2399 }
2400
2401 perf_cfg->vtbl.bo_unreference(query->oa.bo);
2402 query->oa.bo = NULL;
2403 }
2404
2405 query->oa.results_accumulated = false;
2406 break;
2407
2408 case GEN_PERF_QUERY_TYPE_PIPELINE:
2409 if (query->pipeline_stats.bo) {
2410 perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo);
2411 query->pipeline_stats.bo = NULL;
2412 }
2413 break;
2414
2415 default:
2416 unreachable("Unknown query type");
2417 break;
2418 }
2419
2420 /* As an indication that the INTEL_performance_query extension is no
2421 * longer in use, it's a good time to free our cache of sample
2422 * buffers and close any current i915-perf stream.
2423 */
2424 if (--perf_ctx->n_query_instances == 0) {
2425 free_sample_bufs(perf_ctx);
2426 gen_perf_close(perf_ctx, query->queryinfo);
2427 }
2428
2429 free(query);
2430 }
2431
2432 #define GET_FIELD(word, field) (((word) & field ## _MASK) >> field ## _SHIFT)
2433
2434 static void
2435 read_gt_frequency(struct gen_perf_context *perf_ctx,
2436 struct gen_perf_query_object *obj)
2437 {
2438 const struct gen_device_info *devinfo = perf_ctx->devinfo;
2439 uint32_t start = *((uint32_t *)(obj->oa.map + MI_FREQ_START_OFFSET_BYTES)),
2440 end = *((uint32_t *)(obj->oa.map + MI_FREQ_END_OFFSET_BYTES));
2441
2442 switch (devinfo->gen) {
2443 case 7:
2444 case 8:
2445 obj->oa.gt_frequency[0] = GET_FIELD(start, GEN7_RPSTAT1_CURR_GT_FREQ) * 50ULL;
2446 obj->oa.gt_frequency[1] = GET_FIELD(end, GEN7_RPSTAT1_CURR_GT_FREQ) * 50ULL;
2447 break;
2448 case 9:
2449 case 10:
2450 case 11:
2451 obj->oa.gt_frequency[0] = GET_FIELD(start, GEN9_RPSTAT0_CURR_GT_FREQ) * 50ULL / 3ULL;
2452 obj->oa.gt_frequency[1] = GET_FIELD(end, GEN9_RPSTAT0_CURR_GT_FREQ) * 50ULL / 3ULL;
2453 break;
2454 default:
2455 unreachable("unexpected gen");
2456 }
2457
2458 /* Put the numbers into Hz. */
2459 obj->oa.gt_frequency[0] *= 1000000ULL;
2460 obj->oa.gt_frequency[1] *= 1000000ULL;
2461 }
2462
2463 static int
2464 get_oa_counter_data(struct gen_perf_context *perf_ctx,
2465 struct gen_perf_query_object *query,
2466 size_t data_size,
2467 uint8_t *data)
2468 {
2469 struct gen_perf_config *perf_cfg = perf_ctx->perf;
2470 const struct gen_perf_query_info *queryinfo = query->queryinfo;
2471 int n_counters = queryinfo->n_counters;
2472 int written = 0;
2473
2474 for (int i = 0; i < n_counters; i++) {
2475 const struct gen_perf_query_counter *counter = &queryinfo->counters[i];
2476 uint64_t *out_uint64;
2477 float *out_float;
2478 size_t counter_size = gen_perf_query_counter_get_size(counter);
2479
2480 if (counter_size) {
2481 switch (counter->data_type) {
2482 case GEN_PERF_COUNTER_DATA_TYPE_UINT64:
2483 out_uint64 = (uint64_t *)(data + counter->offset);
2484 *out_uint64 =
2485 counter->oa_counter_read_uint64(perf_cfg, queryinfo,
2486 query->oa.result.accumulator);
2487 break;
2488 case GEN_PERF_COUNTER_DATA_TYPE_FLOAT:
2489 out_float = (float *)(data + counter->offset);
2490 *out_float =
2491 counter->oa_counter_read_float(perf_cfg, queryinfo,
2492 query->oa.result.accumulator);
2493 break;
2494 default:
2495 /* So far we aren't using uint32, double or bool32... */
2496 unreachable("unexpected counter data type");
2497 }
2498 written = counter->offset + counter_size;
2499 }
2500 }
2501
2502 return written;
2503 }
2504
2505 static int
2506 get_pipeline_stats_data(struct gen_perf_context *perf_ctx,
2507 struct gen_perf_query_object *query,
2508 size_t data_size,
2509 uint8_t *data)
2510
2511 {
2512 struct gen_perf_config *perf_cfg = perf_ctx->perf;
2513 const struct gen_perf_query_info *queryinfo = query->queryinfo;
2514 int n_counters = queryinfo->n_counters;
2515 uint8_t *p = data;
2516
2517 uint64_t *start = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->pipeline_stats.bo, MAP_READ);
2518 uint64_t *end = start + (STATS_BO_END_OFFSET_BYTES / sizeof(uint64_t));
2519
2520 for (int i = 0; i < n_counters; i++) {
2521 const struct gen_perf_query_counter *counter = &queryinfo->counters[i];
2522 uint64_t value = end[i] - start[i];
2523
2524 if (counter->pipeline_stat.numerator !=
2525 counter->pipeline_stat.denominator) {
2526 value *= counter->pipeline_stat.numerator;
2527 value /= counter->pipeline_stat.denominator;
2528 }
2529
2530 *((uint64_t *)p) = value;
2531 p += 8;
2532 }
2533
2534 perf_cfg->vtbl.bo_unmap(query->pipeline_stats.bo);
2535
2536 return p - data;
2537 }
2538
2539 void
2540 gen_perf_get_query_data(struct gen_perf_context *perf_ctx,
2541 struct gen_perf_query_object *query,
2542 int data_size,
2543 unsigned *data,
2544 unsigned *bytes_written)
2545 {
2546 struct gen_perf_config *perf_cfg = perf_ctx->perf;
2547 int written = 0;
2548
2549 switch (query->queryinfo->kind) {
2550 case GEN_PERF_QUERY_TYPE_OA:
2551 case GEN_PERF_QUERY_TYPE_RAW:
2552 if (!query->oa.results_accumulated) {
2553 read_gt_frequency(perf_ctx, query);
2554 uint32_t *begin_report = query->oa.map;
2555 uint32_t *end_report = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES;
2556 gen_perf_query_result_read_frequencies(&query->oa.result,
2557 perf_ctx->devinfo,
2558 begin_report,
2559 end_report);
2560 accumulate_oa_reports(perf_ctx, query);
2561 assert(query->oa.results_accumulated);
2562
2563 perf_cfg->vtbl.bo_unmap(query->oa.bo);
2564 query->oa.map = NULL;
2565 }
2566 if (query->queryinfo->kind == GEN_PERF_QUERY_TYPE_OA) {
2567 written = get_oa_counter_data(perf_ctx, query, data_size, (uint8_t *)data);
2568 } else {
2569 const struct gen_device_info *devinfo = perf_ctx->devinfo;
2570
2571 written = gen_perf_query_result_write_mdapi((uint8_t *)data, data_size,
2572 devinfo, &query->oa.result,
2573 query->oa.gt_frequency[0],
2574 query->oa.gt_frequency[1]);
2575 }
2576 break;
2577
2578 case GEN_PERF_QUERY_TYPE_PIPELINE:
2579 written = get_pipeline_stats_data(perf_ctx, query, data_size, (uint8_t *)data);
2580 break;
2581
2582 default:
2583 unreachable("Unknown query type");
2584 break;
2585 }
2586
2587 if (bytes_written)
2588 *bytes_written = written;
2589 }
2590
2591 void
2592 gen_perf_dump_query_count(struct gen_perf_context *perf_ctx)
2593 {
2594 DBG("Queries: (Open queries = %d, OA users = %d)\n",
2595 perf_ctx->n_active_oa_queries, perf_ctx->n_oa_users);
2596 }
2597
2598 void
2599 gen_perf_dump_query(struct gen_perf_context *ctx,
2600 struct gen_perf_query_object *obj,
2601 void *current_batch)
2602 {
2603 switch (obj->queryinfo->kind) {
2604 case GEN_PERF_QUERY_TYPE_OA:
2605 case GEN_PERF_QUERY_TYPE_RAW:
2606 DBG("BO: %-4s OA data: %-10s %-15s\n",
2607 obj->oa.bo ? "yes," : "no,",
2608 gen_perf_is_query_ready(ctx, obj, current_batch) ? "ready," : "not ready,",
2609 obj->oa.results_accumulated ? "accumulated" : "not accumulated");
2610 break;
2611 case GEN_PERF_QUERY_TYPE_PIPELINE:
2612 DBG("BO: %-4s\n",
2613 obj->pipeline_stats.bo ? "yes" : "no");
2614 break;
2615 default:
2616 unreachable("Unknown query type");
2617 break;
2618 }
2619 }