vulkan,anv: Add a base object struct type
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/debug.h"
36 #include "util/build_id.h"
37 #include "util/disk_cache.h"
38 #include "util/mesa-sha1.h"
39 #include "util/os_file.h"
40 #include "util/u_atomic.h"
41 #include "util/u_string.h"
42 #include "util/xmlpool.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_aux_map.h"
46 #include "common/gen_defines.h"
47 #include "compiler/glsl_types.h"
48
49 #include "genxml/gen7_pack.h"
50
51 static const char anv_dri_options_xml[] =
52 DRI_CONF_BEGIN
53 DRI_CONF_SECTION_PERFORMANCE
54 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
55 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
56 DRI_CONF_SECTION_END
57
58 DRI_CONF_SECTION_DEBUG
59 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
60 DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST("false")
61 DRI_CONF_SECTION_END
62 DRI_CONF_END;
63
64 /* This is probably far to big but it reflects the max size used for messages
65 * in OpenGLs KHR_debug.
66 */
67 #define MAX_DEBUG_MESSAGE_LENGTH 4096
68
69 static void
70 compiler_debug_log(void *data, const char *fmt, ...)
71 {
72 char str[MAX_DEBUG_MESSAGE_LENGTH];
73 struct anv_device *device = (struct anv_device *)data;
74 struct anv_instance *instance = device->physical->instance;
75
76 if (list_is_empty(&instance->debug_report_callbacks.callbacks))
77 return;
78
79 va_list args;
80 va_start(args, fmt);
81 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
82 va_end(args);
83
84 vk_debug_report(&instance->debug_report_callbacks,
85 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
86 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
87 0, 0, 0, "anv", str);
88 }
89
90 static void
91 compiler_perf_log(void *data, const char *fmt, ...)
92 {
93 va_list args;
94 va_start(args, fmt);
95
96 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
97 intel_logd_v(fmt, args);
98
99 va_end(args);
100 }
101
102 static uint64_t
103 anv_compute_heap_size(int fd, uint64_t gtt_size)
104 {
105 /* Query the total ram from the system */
106 struct sysinfo info;
107 sysinfo(&info);
108
109 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
110
111 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
112 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
113 */
114 uint64_t available_ram;
115 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
116 available_ram = total_ram / 2;
117 else
118 available_ram = total_ram * 3 / 4;
119
120 /* We also want to leave some padding for things we allocate in the driver,
121 * so don't go over 3/4 of the GTT either.
122 */
123 uint64_t available_gtt = gtt_size * 3 / 4;
124
125 return MIN2(available_ram, available_gtt);
126 }
127
128 static VkResult
129 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
130 {
131 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
132 &device->gtt_size) == -1) {
133 /* If, for whatever reason, we can't actually get the GTT size from the
134 * kernel (too old?) fall back to the aperture size.
135 */
136 anv_perf_warn(NULL, NULL,
137 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
138
139 if (anv_gem_get_aperture(fd, &device->gtt_size) == -1) {
140 return vk_errorfi(device->instance, NULL,
141 VK_ERROR_INITIALIZATION_FAILED,
142 "failed to get aperture size: %m");
143 }
144 }
145
146 /* We only allow 48-bit addresses with softpin because knowing the actual
147 * address is required for the vertex cache flush workaround.
148 */
149 device->supports_48bit_addresses = (device->info.gen >= 8) &&
150 device->has_softpin &&
151 device->gtt_size > (4ULL << 30 /* GiB */);
152
153 uint64_t heap_size = anv_compute_heap_size(fd, device->gtt_size);
154
155 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
156 /* When running with an overridden PCI ID, we may get a GTT size from
157 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
158 * address support can still fail. Just clamp the address space size to
159 * 2 GiB if we don't have 48-bit support.
160 */
161 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
162 "not support for 48-bit addresses",
163 __FILE__, __LINE__);
164 heap_size = 2ull << 30;
165 }
166
167 device->memory.heap_count = 1;
168 device->memory.heaps[0] = (struct anv_memory_heap) {
169 .size = heap_size,
170 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
171 };
172
173 uint32_t type_count = 0;
174 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
175 if (device->info.has_llc) {
176 /* Big core GPUs share LLC with the CPU and thus one memory type can be
177 * both cached and coherent at the same time.
178 */
179 device->memory.types[type_count++] = (struct anv_memory_type) {
180 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
181 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
182 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
183 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
184 .heapIndex = heap,
185 };
186 } else {
187 /* The spec requires that we expose a host-visible, coherent memory
188 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
189 * to give the application a choice between cached, but not coherent and
190 * coherent but uncached (WC though).
191 */
192 device->memory.types[type_count++] = (struct anv_memory_type) {
193 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
194 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
195 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
196 .heapIndex = heap,
197 };
198 device->memory.types[type_count++] = (struct anv_memory_type) {
199 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
200 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
201 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
202 .heapIndex = heap,
203 };
204 }
205 }
206 device->memory.type_count = type_count;
207
208 return VK_SUCCESS;
209 }
210
211 static VkResult
212 anv_physical_device_init_uuids(struct anv_physical_device *device)
213 {
214 const struct build_id_note *note =
215 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
216 if (!note) {
217 return vk_errorfi(device->instance, NULL,
218 VK_ERROR_INITIALIZATION_FAILED,
219 "Failed to find build-id");
220 }
221
222 unsigned build_id_len = build_id_length(note);
223 if (build_id_len < 20) {
224 return vk_errorfi(device->instance, NULL,
225 VK_ERROR_INITIALIZATION_FAILED,
226 "build-id too short. It needs to be a SHA");
227 }
228
229 memcpy(device->driver_build_sha1, build_id_data(note), 20);
230
231 struct mesa_sha1 sha1_ctx;
232 uint8_t sha1[20];
233 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
234
235 /* The pipeline cache UUID is used for determining when a pipeline cache is
236 * invalid. It needs both a driver build and the PCI ID of the device.
237 */
238 _mesa_sha1_init(&sha1_ctx);
239 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
240 _mesa_sha1_update(&sha1_ctx, &device->info.chipset_id,
241 sizeof(device->info.chipset_id));
242 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
243 sizeof(device->always_use_bindless));
244 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
245 sizeof(device->has_a64_buffer_access));
246 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
247 sizeof(device->has_bindless_images));
248 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
249 sizeof(device->has_bindless_samplers));
250 _mesa_sha1_final(&sha1_ctx, sha1);
251 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
252
253 /* The driver UUID is used for determining sharability of images and memory
254 * between two Vulkan instances in separate processes. People who want to
255 * share memory need to also check the device UUID (below) so all this
256 * needs to be is the build-id.
257 */
258 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
259
260 /* The device UUID uniquely identifies the given device within the machine.
261 * Since we never have more than one device, this doesn't need to be a real
262 * UUID. However, on the off-chance that someone tries to use this to
263 * cache pre-tiled images or something of the like, we use the PCI ID and
264 * some bits of ISL info to ensure that this is safe.
265 */
266 _mesa_sha1_init(&sha1_ctx);
267 _mesa_sha1_update(&sha1_ctx, &device->info.chipset_id,
268 sizeof(device->info.chipset_id));
269 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
270 sizeof(device->isl_dev.has_bit6_swizzling));
271 _mesa_sha1_final(&sha1_ctx, sha1);
272 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
273
274 return VK_SUCCESS;
275 }
276
277 static void
278 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
279 {
280 #ifdef ENABLE_SHADER_CACHE
281 char renderer[10];
282 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
283 device->info.chipset_id);
284 assert(len == sizeof(renderer) - 2);
285
286 char timestamp[41];
287 _mesa_sha1_format(timestamp, device->driver_build_sha1);
288
289 const uint64_t driver_flags =
290 brw_get_compiler_config_value(device->compiler);
291 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
292 #else
293 device->disk_cache = NULL;
294 #endif
295 }
296
297 static void
298 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
299 {
300 #ifdef ENABLE_SHADER_CACHE
301 if (device->disk_cache)
302 disk_cache_destroy(device->disk_cache);
303 #else
304 assert(device->disk_cache == NULL);
305 #endif
306 }
307
308 static uint64_t
309 get_available_system_memory()
310 {
311 char *meminfo = os_read_file("/proc/meminfo", NULL);
312 if (!meminfo)
313 return 0;
314
315 char *str = strstr(meminfo, "MemAvailable:");
316 if (!str) {
317 free(meminfo);
318 return 0;
319 }
320
321 uint64_t kb_mem_available;
322 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
323 free(meminfo);
324 return kb_mem_available << 10;
325 }
326
327 free(meminfo);
328 return 0;
329 }
330
331 static VkResult
332 anv_physical_device_try_create(struct anv_instance *instance,
333 drmDevicePtr drm_device,
334 struct anv_physical_device **device_out)
335 {
336 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
337 const char *path = drm_device->nodes[DRM_NODE_RENDER];
338 VkResult result;
339 int fd;
340 int master_fd = -1;
341
342 brw_process_intel_debug_variable();
343
344 fd = open(path, O_RDWR | O_CLOEXEC);
345 if (fd < 0)
346 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
347
348 struct gen_device_info devinfo;
349 if (!gen_get_device_info_from_fd(fd, &devinfo)) {
350 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
351 goto fail_fd;
352 }
353
354 const char *device_name = gen_get_device_name(devinfo.chipset_id);
355
356 if (devinfo.is_haswell) {
357 intel_logw("Haswell Vulkan support is incomplete");
358 } else if (devinfo.gen == 7 && !devinfo.is_baytrail) {
359 intel_logw("Ivy Bridge Vulkan support is incomplete");
360 } else if (devinfo.gen == 7 && devinfo.is_baytrail) {
361 intel_logw("Bay Trail Vulkan support is incomplete");
362 } else if (devinfo.gen >= 8 && devinfo.gen <= 11) {
363 /* Gen8-11 fully supported */
364 } else if (devinfo.gen == 12) {
365 intel_logw("Vulkan is not yet fully supported on gen12");
366 } else {
367 result = vk_errorfi(instance, NULL, VK_ERROR_INCOMPATIBLE_DRIVER,
368 "Vulkan not yet supported on %s", device_name);
369 goto fail_fd;
370 }
371
372 struct anv_physical_device *device =
373 vk_alloc(&instance->alloc, sizeof(*device), 8,
374 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
375 if (device == NULL) {
376 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
377 goto fail_fd;
378 }
379
380 vk_object_base_init(NULL, &device->base, VK_OBJECT_TYPE_PHYSICAL_DEVICE);
381 device->instance = instance;
382
383 assert(strlen(path) < ARRAY_SIZE(device->path));
384 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
385
386 device->info = devinfo;
387 device->name = device_name;
388
389 device->no_hw = device->info.no_hw;
390 if (getenv("INTEL_NO_HW") != NULL)
391 device->no_hw = true;
392
393 device->pci_info.domain = drm_device->businfo.pci->domain;
394 device->pci_info.bus = drm_device->businfo.pci->bus;
395 device->pci_info.device = drm_device->businfo.pci->dev;
396 device->pci_info.function = drm_device->businfo.pci->func;
397
398 device->cmd_parser_version = -1;
399 if (device->info.gen == 7) {
400 device->cmd_parser_version =
401 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
402 if (device->cmd_parser_version == -1) {
403 result = vk_errorfi(device->instance, NULL,
404 VK_ERROR_INITIALIZATION_FAILED,
405 "failed to get command parser version");
406 goto fail_alloc;
407 }
408 }
409
410 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
411 result = vk_errorfi(device->instance, NULL,
412 VK_ERROR_INITIALIZATION_FAILED,
413 "kernel missing gem wait");
414 goto fail_alloc;
415 }
416
417 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
418 result = vk_errorfi(device->instance, NULL,
419 VK_ERROR_INITIALIZATION_FAILED,
420 "kernel missing execbuf2");
421 goto fail_alloc;
422 }
423
424 if (!device->info.has_llc &&
425 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
426 result = vk_errorfi(device->instance, NULL,
427 VK_ERROR_INITIALIZATION_FAILED,
428 "kernel missing wc mmap");
429 goto fail_alloc;
430 }
431
432 device->has_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN);
433 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
434 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
435 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
436 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
437 device->has_syncobj_wait = device->has_syncobj &&
438 anv_gem_supports_syncobj_wait(fd);
439 device->has_context_priority = anv_gem_has_context_priority(fd);
440
441 result = anv_physical_device_init_heaps(device, fd);
442 if (result != VK_SUCCESS)
443 goto fail_alloc;
444
445 device->use_softpin = device->has_softpin &&
446 device->supports_48bit_addresses;
447
448 device->has_context_isolation =
449 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
450
451 device->always_use_bindless =
452 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
453
454 /* We first got the A64 messages on broadwell and we can only use them if
455 * we can pass addresses directly into the shader which requires softpin.
456 */
457 device->has_a64_buffer_access = device->info.gen >= 8 &&
458 device->use_softpin;
459
460 /* We first get bindless image access on Skylake and we can only really do
461 * it if we don't have any relocations so we need softpin.
462 */
463 device->has_bindless_images = device->info.gen >= 9 &&
464 device->use_softpin;
465
466 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
467 * because it's just a matter of setting the sampler address in the sample
468 * message header. However, we've not bothered to wire it up for vec4 so
469 * we leave it disabled on gen7.
470 */
471 device->has_bindless_samplers = device->info.gen >= 8;
472
473 device->has_implicit_ccs = device->info.has_aux_map;
474
475 device->has_mem_available = get_available_system_memory() != 0;
476
477 device->always_flush_cache =
478 driQueryOptionb(&instance->dri_options, "always_flush_cache");
479
480 device->has_mmap_offset =
481 anv_gem_get_param(fd, I915_PARAM_MMAP_GTT_VERSION) >= 4;
482
483 /* GENs prior to 8 do not support EU/Subslice info */
484 if (device->info.gen >= 8) {
485 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
486 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
487
488 /* Without this information, we cannot get the right Braswell
489 * brandstrings, and we have to use conservative numbers for GPGPU on
490 * many platforms, but otherwise, things will just work.
491 */
492 if (device->subslice_total < 1 || device->eu_total < 1) {
493 intel_logw("Kernel 4.1 required to properly query GPU properties");
494 }
495 } else if (device->info.gen == 7) {
496 device->subslice_total = 1 << (device->info.gt - 1);
497 }
498
499 if (device->info.is_cherryview &&
500 device->subslice_total > 0 && device->eu_total > 0) {
501 /* Logical CS threads = EUs per subslice * num threads per EU */
502 uint32_t max_cs_threads =
503 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
504
505 /* Fuse configurations may give more threads than expected, never less. */
506 if (max_cs_threads > device->info.max_cs_threads)
507 device->info.max_cs_threads = max_cs_threads;
508 }
509
510 device->compiler = brw_compiler_create(NULL, &device->info);
511 if (device->compiler == NULL) {
512 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
513 goto fail_alloc;
514 }
515 device->compiler->shader_debug_log = compiler_debug_log;
516 device->compiler->shader_perf_log = compiler_perf_log;
517 device->compiler->supports_pull_constants = false;
518 device->compiler->constant_buffer_0_is_relative =
519 device->info.gen < 8 || !device->has_context_isolation;
520 device->compiler->supports_shader_constants = true;
521 device->compiler->compact_params = false;
522
523 /* Broadwell PRM says:
524 *
525 * "Before Gen8, there was a historical configuration control field to
526 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
527 * different places: TILECTL[1:0], ARB_MODE[5:4], and
528 * DISP_ARB_CTL[14:13].
529 *
530 * For Gen8 and subsequent generations, the swizzle fields are all
531 * reserved, and the CPU's memory controller performs all address
532 * swizzling modifications."
533 */
534 bool swizzled =
535 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
536
537 isl_device_init(&device->isl_dev, &device->info, swizzled);
538
539 result = anv_physical_device_init_uuids(device);
540 if (result != VK_SUCCESS)
541 goto fail_compiler;
542
543 anv_physical_device_init_disk_cache(device);
544
545 if (instance->enabled_extensions.KHR_display) {
546 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
547 if (master_fd >= 0) {
548 /* prod the device with a GETPARAM call which will fail if
549 * we don't have permission to even render on this device
550 */
551 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
552 close(master_fd);
553 master_fd = -1;
554 }
555 }
556 }
557 device->master_fd = master_fd;
558
559 result = anv_init_wsi(device);
560 if (result != VK_SUCCESS)
561 goto fail_disk_cache;
562
563 device->perf = anv_get_perf(&device->info, fd);
564
565 anv_physical_device_get_supported_extensions(device,
566 &device->supported_extensions);
567
568
569 device->local_fd = fd;
570
571 *device_out = device;
572
573 return VK_SUCCESS;
574
575 fail_disk_cache:
576 anv_physical_device_free_disk_cache(device);
577 fail_compiler:
578 ralloc_free(device->compiler);
579 fail_alloc:
580 vk_free(&instance->alloc, device);
581 fail_fd:
582 close(fd);
583 if (master_fd != -1)
584 close(master_fd);
585 return result;
586 }
587
588 static void
589 anv_physical_device_destroy(struct anv_physical_device *device)
590 {
591 anv_finish_wsi(device);
592 anv_physical_device_free_disk_cache(device);
593 ralloc_free(device->compiler);
594 ralloc_free(device->perf);
595 close(device->local_fd);
596 if (device->master_fd >= 0)
597 close(device->master_fd);
598 vk_object_base_finish(&device->base);
599 vk_free(&device->instance->alloc, device);
600 }
601
602 static void *
603 default_alloc_func(void *pUserData, size_t size, size_t align,
604 VkSystemAllocationScope allocationScope)
605 {
606 return malloc(size);
607 }
608
609 static void *
610 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
611 size_t align, VkSystemAllocationScope allocationScope)
612 {
613 return realloc(pOriginal, size);
614 }
615
616 static void
617 default_free_func(void *pUserData, void *pMemory)
618 {
619 free(pMemory);
620 }
621
622 static const VkAllocationCallbacks default_alloc = {
623 .pUserData = NULL,
624 .pfnAllocation = default_alloc_func,
625 .pfnReallocation = default_realloc_func,
626 .pfnFree = default_free_func,
627 };
628
629 VkResult anv_EnumerateInstanceExtensionProperties(
630 const char* pLayerName,
631 uint32_t* pPropertyCount,
632 VkExtensionProperties* pProperties)
633 {
634 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
635
636 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
637 if (anv_instance_extensions_supported.extensions[i]) {
638 vk_outarray_append(&out, prop) {
639 *prop = anv_instance_extensions[i];
640 }
641 }
642 }
643
644 return vk_outarray_status(&out);
645 }
646
647 VkResult anv_CreateInstance(
648 const VkInstanceCreateInfo* pCreateInfo,
649 const VkAllocationCallbacks* pAllocator,
650 VkInstance* pInstance)
651 {
652 struct anv_instance *instance;
653 VkResult result;
654
655 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
656
657 struct anv_instance_extension_table enabled_extensions = {};
658 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
659 int idx;
660 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
661 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
662 anv_instance_extensions[idx].extensionName) == 0)
663 break;
664 }
665
666 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
667 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
668
669 if (!anv_instance_extensions_supported.extensions[idx])
670 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
671
672 enabled_extensions.extensions[idx] = true;
673 }
674
675 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
676 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
677 if (!instance)
678 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
679
680 vk_object_base_init(NULL, &instance->base, VK_OBJECT_TYPE_INSTANCE);
681
682 if (pAllocator)
683 instance->alloc = *pAllocator;
684 else
685 instance->alloc = default_alloc;
686
687 instance->app_info = (struct anv_app_info) { .api_version = 0 };
688 if (pCreateInfo->pApplicationInfo) {
689 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
690
691 instance->app_info.app_name =
692 vk_strdup(&instance->alloc, app->pApplicationName,
693 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
694 instance->app_info.app_version = app->applicationVersion;
695
696 instance->app_info.engine_name =
697 vk_strdup(&instance->alloc, app->pEngineName,
698 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
699 instance->app_info.engine_version = app->engineVersion;
700
701 instance->app_info.api_version = app->apiVersion;
702 }
703
704 if (instance->app_info.api_version == 0)
705 instance->app_info.api_version = VK_API_VERSION_1_0;
706
707 instance->enabled_extensions = enabled_extensions;
708
709 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
710 /* Vulkan requires that entrypoints for extensions which have not been
711 * enabled must not be advertised.
712 */
713 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
714 &instance->enabled_extensions)) {
715 instance->dispatch.entrypoints[i] = NULL;
716 } else {
717 instance->dispatch.entrypoints[i] =
718 anv_instance_dispatch_table.entrypoints[i];
719 }
720 }
721
722 for (unsigned i = 0; i < ARRAY_SIZE(instance->physical_device_dispatch.entrypoints); i++) {
723 /* Vulkan requires that entrypoints for extensions which have not been
724 * enabled must not be advertised.
725 */
726 if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
727 &instance->enabled_extensions)) {
728 instance->physical_device_dispatch.entrypoints[i] = NULL;
729 } else {
730 instance->physical_device_dispatch.entrypoints[i] =
731 anv_physical_device_dispatch_table.entrypoints[i];
732 }
733 }
734
735 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
736 /* Vulkan requires that entrypoints for extensions which have not been
737 * enabled must not be advertised.
738 */
739 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
740 &instance->enabled_extensions, NULL)) {
741 instance->device_dispatch.entrypoints[i] = NULL;
742 } else {
743 instance->device_dispatch.entrypoints[i] =
744 anv_device_dispatch_table.entrypoints[i];
745 }
746 }
747
748 instance->physical_devices_enumerated = false;
749 list_inithead(&instance->physical_devices);
750
751 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
752 if (result != VK_SUCCESS) {
753 vk_free2(&default_alloc, pAllocator, instance);
754 return vk_error(result);
755 }
756
757 instance->pipeline_cache_enabled =
758 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
759
760 glsl_type_singleton_init_or_ref();
761
762 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
763
764 driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
765 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
766 0, "anv", NULL,
767 instance->app_info.engine_name,
768 instance->app_info.engine_version);
769
770 *pInstance = anv_instance_to_handle(instance);
771
772 return VK_SUCCESS;
773 }
774
775 void anv_DestroyInstance(
776 VkInstance _instance,
777 const VkAllocationCallbacks* pAllocator)
778 {
779 ANV_FROM_HANDLE(anv_instance, instance, _instance);
780
781 if (!instance)
782 return;
783
784 list_for_each_entry_safe(struct anv_physical_device, pdevice,
785 &instance->physical_devices, link)
786 anv_physical_device_destroy(pdevice);
787
788 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
789 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
790
791 VG(VALGRIND_DESTROY_MEMPOOL(instance));
792
793 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
794
795 glsl_type_singleton_decref();
796
797 driDestroyOptionCache(&instance->dri_options);
798 driDestroyOptionInfo(&instance->available_dri_options);
799
800 vk_object_base_finish(&instance->base);
801 vk_free(&instance->alloc, instance);
802 }
803
804 static VkResult
805 anv_enumerate_physical_devices(struct anv_instance *instance)
806 {
807 if (instance->physical_devices_enumerated)
808 return VK_SUCCESS;
809
810 instance->physical_devices_enumerated = true;
811
812 /* TODO: Check for more devices ? */
813 drmDevicePtr devices[8];
814 int max_devices;
815
816 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
817 if (max_devices < 1)
818 return VK_SUCCESS;
819
820 VkResult result = VK_SUCCESS;
821 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
822 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
823 devices[i]->bustype == DRM_BUS_PCI &&
824 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
825
826 struct anv_physical_device *pdevice;
827 result = anv_physical_device_try_create(instance, devices[i],
828 &pdevice);
829 /* Incompatible DRM device, skip. */
830 if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
831 result = VK_SUCCESS;
832 continue;
833 }
834
835 /* Error creating the physical device, report the error. */
836 if (result != VK_SUCCESS)
837 break;
838
839 list_addtail(&pdevice->link, &instance->physical_devices);
840 }
841 }
842 drmFreeDevices(devices, max_devices);
843
844 /* If we successfully enumerated any devices, call it success */
845 return result;
846 }
847
848 VkResult anv_EnumeratePhysicalDevices(
849 VkInstance _instance,
850 uint32_t* pPhysicalDeviceCount,
851 VkPhysicalDevice* pPhysicalDevices)
852 {
853 ANV_FROM_HANDLE(anv_instance, instance, _instance);
854 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
855
856 VkResult result = anv_enumerate_physical_devices(instance);
857 if (result != VK_SUCCESS)
858 return result;
859
860 list_for_each_entry(struct anv_physical_device, pdevice,
861 &instance->physical_devices, link) {
862 vk_outarray_append(&out, i) {
863 *i = anv_physical_device_to_handle(pdevice);
864 }
865 }
866
867 return vk_outarray_status(&out);
868 }
869
870 VkResult anv_EnumeratePhysicalDeviceGroups(
871 VkInstance _instance,
872 uint32_t* pPhysicalDeviceGroupCount,
873 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
874 {
875 ANV_FROM_HANDLE(anv_instance, instance, _instance);
876 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
877 pPhysicalDeviceGroupCount);
878
879 VkResult result = anv_enumerate_physical_devices(instance);
880 if (result != VK_SUCCESS)
881 return result;
882
883 list_for_each_entry(struct anv_physical_device, pdevice,
884 &instance->physical_devices, link) {
885 vk_outarray_append(&out, p) {
886 p->physicalDeviceCount = 1;
887 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
888 p->physicalDevices[0] = anv_physical_device_to_handle(pdevice);
889 p->subsetAllocation = false;
890
891 vk_foreach_struct(ext, p->pNext)
892 anv_debug_ignored_stype(ext->sType);
893 }
894 }
895
896 return vk_outarray_status(&out);
897 }
898
899 void anv_GetPhysicalDeviceFeatures(
900 VkPhysicalDevice physicalDevice,
901 VkPhysicalDeviceFeatures* pFeatures)
902 {
903 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
904
905 *pFeatures = (VkPhysicalDeviceFeatures) {
906 .robustBufferAccess = true,
907 .fullDrawIndexUint32 = true,
908 .imageCubeArray = true,
909 .independentBlend = true,
910 .geometryShader = true,
911 .tessellationShader = true,
912 .sampleRateShading = true,
913 .dualSrcBlend = true,
914 .logicOp = true,
915 .multiDrawIndirect = true,
916 .drawIndirectFirstInstance = true,
917 .depthClamp = true,
918 .depthBiasClamp = true,
919 .fillModeNonSolid = true,
920 .depthBounds = pdevice->info.gen >= 12,
921 .wideLines = true,
922 .largePoints = true,
923 .alphaToOne = true,
924 .multiViewport = true,
925 .samplerAnisotropy = true,
926 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
927 pdevice->info.is_baytrail,
928 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
929 .textureCompressionBC = true,
930 .occlusionQueryPrecise = true,
931 .pipelineStatisticsQuery = true,
932 .fragmentStoresAndAtomics = true,
933 .shaderTessellationAndGeometryPointSize = true,
934 .shaderImageGatherExtended = true,
935 .shaderStorageImageExtendedFormats = true,
936 .shaderStorageImageMultisample = false,
937 .shaderStorageImageReadWithoutFormat = false,
938 .shaderStorageImageWriteWithoutFormat = true,
939 .shaderUniformBufferArrayDynamicIndexing = true,
940 .shaderSampledImageArrayDynamicIndexing = true,
941 .shaderStorageBufferArrayDynamicIndexing = true,
942 .shaderStorageImageArrayDynamicIndexing = true,
943 .shaderClipDistance = true,
944 .shaderCullDistance = true,
945 .shaderFloat64 = pdevice->info.gen >= 8 &&
946 pdevice->info.has_64bit_float,
947 .shaderInt64 = pdevice->info.gen >= 8 &&
948 pdevice->info.has_64bit_int,
949 .shaderInt16 = pdevice->info.gen >= 8,
950 .shaderResourceMinLod = pdevice->info.gen >= 9,
951 .variableMultisampleRate = true,
952 .inheritedQueries = true,
953 };
954
955 /* We can't do image stores in vec4 shaders */
956 pFeatures->vertexPipelineStoresAndAtomics =
957 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
958 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
959
960 struct anv_app_info *app_info = &pdevice->instance->app_info;
961
962 /* The new DOOM and Wolfenstein games require depthBounds without
963 * checking for it. They seem to run fine without it so just claim it's
964 * there and accept the consequences.
965 */
966 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
967 pFeatures->depthBounds = true;
968 }
969
970 static void
971 anv_get_physical_device_features_1_1(struct anv_physical_device *pdevice,
972 VkPhysicalDeviceVulkan11Features *f)
973 {
974 assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES);
975
976 f->storageBuffer16BitAccess = pdevice->info.gen >= 8;
977 f->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
978 f->storagePushConstant16 = pdevice->info.gen >= 8;
979 f->storageInputOutput16 = false;
980 f->multiview = true;
981 f->multiviewGeometryShader = true;
982 f->multiviewTessellationShader = true;
983 f->variablePointersStorageBuffer = true;
984 f->variablePointers = true;
985 f->protectedMemory = false;
986 f->samplerYcbcrConversion = true;
987 f->shaderDrawParameters = true;
988 }
989
990 static void
991 anv_get_physical_device_features_1_2(struct anv_physical_device *pdevice,
992 VkPhysicalDeviceVulkan12Features *f)
993 {
994 assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES);
995
996 f->samplerMirrorClampToEdge = true;
997 f->drawIndirectCount = true;
998 f->storageBuffer8BitAccess = pdevice->info.gen >= 8;
999 f->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
1000 f->storagePushConstant8 = pdevice->info.gen >= 8;
1001 f->shaderBufferInt64Atomics = pdevice->info.gen >= 9 &&
1002 pdevice->use_softpin;
1003 f->shaderSharedInt64Atomics = false;
1004 f->shaderFloat16 = pdevice->info.gen >= 8;
1005 f->shaderInt8 = pdevice->info.gen >= 8;
1006
1007 bool descIndexing = pdevice->has_a64_buffer_access &&
1008 pdevice->has_bindless_images;
1009 f->descriptorIndexing = descIndexing;
1010 f->shaderInputAttachmentArrayDynamicIndexing = false;
1011 f->shaderUniformTexelBufferArrayDynamicIndexing = descIndexing;
1012 f->shaderStorageTexelBufferArrayDynamicIndexing = descIndexing;
1013 f->shaderUniformBufferArrayNonUniformIndexing = false;
1014 f->shaderSampledImageArrayNonUniformIndexing = descIndexing;
1015 f->shaderStorageBufferArrayNonUniformIndexing = descIndexing;
1016 f->shaderStorageImageArrayNonUniformIndexing = descIndexing;
1017 f->shaderInputAttachmentArrayNonUniformIndexing = false;
1018 f->shaderUniformTexelBufferArrayNonUniformIndexing = descIndexing;
1019 f->shaderStorageTexelBufferArrayNonUniformIndexing = descIndexing;
1020 f->descriptorBindingUniformBufferUpdateAfterBind = false;
1021 f->descriptorBindingSampledImageUpdateAfterBind = descIndexing;
1022 f->descriptorBindingStorageImageUpdateAfterBind = descIndexing;
1023 f->descriptorBindingStorageBufferUpdateAfterBind = descIndexing;
1024 f->descriptorBindingUniformTexelBufferUpdateAfterBind = descIndexing;
1025 f->descriptorBindingStorageTexelBufferUpdateAfterBind = descIndexing;
1026 f->descriptorBindingUpdateUnusedWhilePending = descIndexing;
1027 f->descriptorBindingPartiallyBound = descIndexing;
1028 f->descriptorBindingVariableDescriptorCount = false;
1029 f->runtimeDescriptorArray = descIndexing;
1030
1031 f->samplerFilterMinmax = pdevice->info.gen >= 9;
1032 f->scalarBlockLayout = true;
1033 f->imagelessFramebuffer = true;
1034 f->uniformBufferStandardLayout = true;
1035 f->shaderSubgroupExtendedTypes = true;
1036 f->separateDepthStencilLayouts = true;
1037 f->hostQueryReset = true;
1038 f->timelineSemaphore = true;
1039 f->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1040 f->bufferDeviceAddressCaptureReplay = pdevice->has_a64_buffer_access;
1041 f->bufferDeviceAddressMultiDevice = false;
1042 f->vulkanMemoryModel = true;
1043 f->vulkanMemoryModelDeviceScope = true;
1044 f->vulkanMemoryModelAvailabilityVisibilityChains = true;
1045 f->shaderOutputViewportIndex = true;
1046 f->shaderOutputLayer = true;
1047 f->subgroupBroadcastDynamicId = true;
1048 }
1049
1050 void anv_GetPhysicalDeviceFeatures2(
1051 VkPhysicalDevice physicalDevice,
1052 VkPhysicalDeviceFeatures2* pFeatures)
1053 {
1054 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1055 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1056
1057 VkPhysicalDeviceVulkan11Features core_1_1 = {
1058 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES,
1059 };
1060 anv_get_physical_device_features_1_1(pdevice, &core_1_1);
1061
1062 VkPhysicalDeviceVulkan12Features core_1_2 = {
1063 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
1064 };
1065 anv_get_physical_device_features_1_2(pdevice, &core_1_2);
1066
1067 #define CORE_FEATURE(major, minor, feature) \
1068 features->feature = core_##major##_##minor.feature
1069
1070
1071 vk_foreach_struct(ext, pFeatures->pNext) {
1072 switch (ext->sType) {
1073 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
1074 VkPhysicalDevice8BitStorageFeaturesKHR *features =
1075 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
1076 CORE_FEATURE(1, 2, storageBuffer8BitAccess);
1077 CORE_FEATURE(1, 2, uniformAndStorageBuffer8BitAccess);
1078 CORE_FEATURE(1, 2, storagePushConstant8);
1079 break;
1080 }
1081
1082 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1083 VkPhysicalDevice16BitStorageFeatures *features =
1084 (VkPhysicalDevice16BitStorageFeatures *)ext;
1085 CORE_FEATURE(1, 1, storageBuffer16BitAccess);
1086 CORE_FEATURE(1, 1, uniformAndStorageBuffer16BitAccess);
1087 CORE_FEATURE(1, 1, storagePushConstant16);
1088 CORE_FEATURE(1, 1, storageInputOutput16);
1089 break;
1090 }
1091
1092 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1093 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1094 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1095 features->bufferDeviceAddressCaptureReplay = false;
1096 features->bufferDeviceAddressMultiDevice = false;
1097 break;
1098 }
1099
1100 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_KHR: {
1101 VkPhysicalDeviceBufferDeviceAddressFeaturesKHR *features = (void *)ext;
1102 CORE_FEATURE(1, 2, bufferDeviceAddress);
1103 CORE_FEATURE(1, 2, bufferDeviceAddressCaptureReplay);
1104 CORE_FEATURE(1, 2, bufferDeviceAddressMultiDevice);
1105 break;
1106 }
1107
1108 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1109 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1110 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1111 features->computeDerivativeGroupQuads = true;
1112 features->computeDerivativeGroupLinear = true;
1113 break;
1114 }
1115
1116 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1117 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1118 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1119 features->conditionalRendering = pdevice->info.gen >= 8 ||
1120 pdevice->info.is_haswell;
1121 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1122 pdevice->info.is_haswell;
1123 break;
1124 }
1125
1126 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1127 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1128 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1129 features->depthClipEnable = true;
1130 break;
1131 }
1132
1133 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1134 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1135 CORE_FEATURE(1, 2, shaderFloat16);
1136 CORE_FEATURE(1, 2, shaderInt8);
1137 break;
1138 }
1139
1140 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1141 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1142 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1143 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1144 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1145 features->fragmentShaderShadingRateInterlock = false;
1146 break;
1147 }
1148
1149 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1150 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1151 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1152 CORE_FEATURE(1, 2, hostQueryReset);
1153 break;
1154 }
1155
1156 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1157 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1158 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1159 CORE_FEATURE(1, 2, shaderInputAttachmentArrayDynamicIndexing);
1160 CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayDynamicIndexing);
1161 CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayDynamicIndexing);
1162 CORE_FEATURE(1, 2, shaderUniformBufferArrayNonUniformIndexing);
1163 CORE_FEATURE(1, 2, shaderSampledImageArrayNonUniformIndexing);
1164 CORE_FEATURE(1, 2, shaderStorageBufferArrayNonUniformIndexing);
1165 CORE_FEATURE(1, 2, shaderStorageImageArrayNonUniformIndexing);
1166 CORE_FEATURE(1, 2, shaderInputAttachmentArrayNonUniformIndexing);
1167 CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayNonUniformIndexing);
1168 CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayNonUniformIndexing);
1169 CORE_FEATURE(1, 2, descriptorBindingUniformBufferUpdateAfterBind);
1170 CORE_FEATURE(1, 2, descriptorBindingSampledImageUpdateAfterBind);
1171 CORE_FEATURE(1, 2, descriptorBindingStorageImageUpdateAfterBind);
1172 CORE_FEATURE(1, 2, descriptorBindingStorageBufferUpdateAfterBind);
1173 CORE_FEATURE(1, 2, descriptorBindingUniformTexelBufferUpdateAfterBind);
1174 CORE_FEATURE(1, 2, descriptorBindingStorageTexelBufferUpdateAfterBind);
1175 CORE_FEATURE(1, 2, descriptorBindingUpdateUnusedWhilePending);
1176 CORE_FEATURE(1, 2, descriptorBindingPartiallyBound);
1177 CORE_FEATURE(1, 2, descriptorBindingVariableDescriptorCount);
1178 CORE_FEATURE(1, 2, runtimeDescriptorArray);
1179 break;
1180 }
1181
1182 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1183 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1184 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1185 features->indexTypeUint8 = true;
1186 break;
1187 }
1188
1189 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1190 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1191 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1192 features->inlineUniformBlock = true;
1193 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1194 break;
1195 }
1196
1197 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1198 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1199 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1200 features->rectangularLines = true;
1201 features->bresenhamLines = true;
1202 /* Support for Smooth lines with MSAA was removed on gen11. From the
1203 * BSpec section "Multisample ModesState" table for "AA Line Support
1204 * Requirements":
1205 *
1206 * GEN10:BUG:######## NUM_MULTISAMPLES == 1
1207 *
1208 * Fortunately, this isn't a case most people care about.
1209 */
1210 features->smoothLines = pdevice->info.gen < 10;
1211 features->stippledRectangularLines = false;
1212 features->stippledBresenhamLines = true;
1213 features->stippledSmoothLines = false;
1214 break;
1215 }
1216
1217 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1218 VkPhysicalDeviceMultiviewFeatures *features =
1219 (VkPhysicalDeviceMultiviewFeatures *)ext;
1220 CORE_FEATURE(1, 1, multiview);
1221 CORE_FEATURE(1, 1, multiviewGeometryShader);
1222 CORE_FEATURE(1, 1, multiviewTessellationShader);
1223 break;
1224 }
1225
1226 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1227 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1228 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1229 CORE_FEATURE(1, 2, imagelessFramebuffer);
1230 break;
1231 }
1232
1233 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1234 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1235 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1236 features->pipelineExecutableInfo = true;
1237 break;
1238 }
1239
1240 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1241 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1242 CORE_FEATURE(1, 1, protectedMemory);
1243 break;
1244 }
1245
1246 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT: {
1247 VkPhysicalDeviceRobustness2FeaturesEXT *features = (void *)ext;
1248 features->robustBufferAccess2 = true;
1249 features->robustImageAccess2 = true;
1250 features->nullDescriptor = true;
1251 break;
1252 }
1253
1254 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1255 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1256 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1257 CORE_FEATURE(1, 1, samplerYcbcrConversion);
1258 break;
1259 }
1260
1261 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1262 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1263 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1264 CORE_FEATURE(1, 2, scalarBlockLayout);
1265 break;
1266 }
1267
1268 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: {
1269 VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *features =
1270 (VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *)ext;
1271 CORE_FEATURE(1, 2, separateDepthStencilLayouts);
1272 break;
1273 }
1274
1275 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1276 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1277 CORE_FEATURE(1, 2, shaderBufferInt64Atomics);
1278 CORE_FEATURE(1, 2, shaderSharedInt64Atomics);
1279 break;
1280 }
1281
1282 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1283 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1284 features->shaderDemoteToHelperInvocation = true;
1285 break;
1286 }
1287
1288 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1289 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1290 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1291 features->shaderSubgroupClock = true;
1292 features->shaderDeviceClock = false;
1293 break;
1294 }
1295
1296 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1297 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1298 CORE_FEATURE(1, 1, shaderDrawParameters);
1299 break;
1300 }
1301
1302 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
1303 VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
1304 (VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
1305 CORE_FEATURE(1, 2, shaderSubgroupExtendedTypes);
1306 break;
1307 }
1308
1309 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1310 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1311 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1312 features->subgroupSizeControl = true;
1313 features->computeFullSubgroups = true;
1314 break;
1315 }
1316
1317 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1318 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1319 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1320 features->texelBufferAlignment = true;
1321 break;
1322 }
1323
1324 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES_KHR: {
1325 VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *features =
1326 (VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *) ext;
1327 CORE_FEATURE(1, 2, timelineSemaphore);
1328 break;
1329 }
1330
1331 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1332 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1333 CORE_FEATURE(1, 1, variablePointersStorageBuffer);
1334 CORE_FEATURE(1, 1, variablePointers);
1335 break;
1336 }
1337
1338 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1339 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1340 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1341 features->transformFeedback = true;
1342 features->geometryStreams = true;
1343 break;
1344 }
1345
1346 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1347 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1348 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1349 CORE_FEATURE(1, 2, uniformBufferStandardLayout);
1350 break;
1351 }
1352
1353 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1354 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1355 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1356 features->vertexAttributeInstanceRateDivisor = true;
1357 features->vertexAttributeInstanceRateZeroDivisor = true;
1358 break;
1359 }
1360
1361 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES:
1362 anv_get_physical_device_features_1_1(pdevice, (void *)ext);
1363 break;
1364
1365 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES:
1366 anv_get_physical_device_features_1_2(pdevice, (void *)ext);
1367 break;
1368
1369 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR: {
1370 VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *features = (void *)ext;
1371 CORE_FEATURE(1, 2, vulkanMemoryModel);
1372 CORE_FEATURE(1, 2, vulkanMemoryModelDeviceScope);
1373 CORE_FEATURE(1, 2, vulkanMemoryModelAvailabilityVisibilityChains);
1374 break;
1375 }
1376
1377 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1378 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1379 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1380 features->ycbcrImageArrays = true;
1381 break;
1382 }
1383
1384 default:
1385 anv_debug_ignored_stype(ext->sType);
1386 break;
1387 }
1388 }
1389
1390 #undef CORE_FEATURE
1391 }
1392
1393 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1394
1395 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1396 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1397
1398 void anv_GetPhysicalDeviceProperties(
1399 VkPhysicalDevice physicalDevice,
1400 VkPhysicalDeviceProperties* pProperties)
1401 {
1402 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1403 const struct gen_device_info *devinfo = &pdevice->info;
1404
1405 /* See assertions made when programming the buffer surface state. */
1406 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1407 (1ul << 30) : (1ul << 27);
1408
1409 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1410 const uint32_t max_textures =
1411 pdevice->has_bindless_images ? UINT16_MAX : 128;
1412 const uint32_t max_samplers =
1413 pdevice->has_bindless_samplers ? UINT16_MAX :
1414 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1415 const uint32_t max_images =
1416 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1417
1418 /* If we can use bindless for everything, claim a high per-stage limit,
1419 * otherwise use the binding table size, minus the slots reserved for
1420 * render targets and one slot for the descriptor buffer. */
1421 const uint32_t max_per_stage =
1422 pdevice->has_bindless_images && pdevice->has_a64_buffer_access
1423 ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
1424
1425 /* Limit max_threads to 64 for the GPGPU_WALKER command */
1426 const uint32_t max_workgroup_size = 32 * MIN2(64, devinfo->max_cs_threads);
1427
1428 VkSampleCountFlags sample_counts =
1429 isl_device_get_sample_counts(&pdevice->isl_dev);
1430
1431
1432 VkPhysicalDeviceLimits limits = {
1433 .maxImageDimension1D = (1 << 14),
1434 .maxImageDimension2D = (1 << 14),
1435 .maxImageDimension3D = (1 << 11),
1436 .maxImageDimensionCube = (1 << 14),
1437 .maxImageArrayLayers = (1 << 11),
1438 .maxTexelBufferElements = 128 * 1024 * 1024,
1439 .maxUniformBufferRange = (1ul << 27),
1440 .maxStorageBufferRange = max_raw_buffer_sz,
1441 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1442 .maxMemoryAllocationCount = UINT32_MAX,
1443 .maxSamplerAllocationCount = 64 * 1024,
1444 .bufferImageGranularity = 64, /* A cache line */
1445 .sparseAddressSpaceSize = 0,
1446 .maxBoundDescriptorSets = MAX_SETS,
1447 .maxPerStageDescriptorSamplers = max_samplers,
1448 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1449 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1450 .maxPerStageDescriptorSampledImages = max_textures,
1451 .maxPerStageDescriptorStorageImages = max_images,
1452 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1453 .maxPerStageResources = max_per_stage,
1454 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1455 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1456 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1457 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1458 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1459 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1460 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1461 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1462 .maxVertexInputAttributes = MAX_VBS,
1463 .maxVertexInputBindings = MAX_VBS,
1464 .maxVertexInputAttributeOffset = 2047,
1465 .maxVertexInputBindingStride = 2048,
1466 .maxVertexOutputComponents = 128,
1467 .maxTessellationGenerationLevel = 64,
1468 .maxTessellationPatchSize = 32,
1469 .maxTessellationControlPerVertexInputComponents = 128,
1470 .maxTessellationControlPerVertexOutputComponents = 128,
1471 .maxTessellationControlPerPatchOutputComponents = 128,
1472 .maxTessellationControlTotalOutputComponents = 2048,
1473 .maxTessellationEvaluationInputComponents = 128,
1474 .maxTessellationEvaluationOutputComponents = 128,
1475 .maxGeometryShaderInvocations = 32,
1476 .maxGeometryInputComponents = 64,
1477 .maxGeometryOutputComponents = 128,
1478 .maxGeometryOutputVertices = 256,
1479 .maxGeometryTotalOutputComponents = 1024,
1480 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1481 .maxFragmentOutputAttachments = 8,
1482 .maxFragmentDualSrcAttachments = 1,
1483 .maxFragmentCombinedOutputResources = 8,
1484 .maxComputeSharedMemorySize = 64 * 1024,
1485 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1486 .maxComputeWorkGroupInvocations = max_workgroup_size,
1487 .maxComputeWorkGroupSize = {
1488 max_workgroup_size,
1489 max_workgroup_size,
1490 max_workgroup_size,
1491 },
1492 .subPixelPrecisionBits = 8,
1493 .subTexelPrecisionBits = 8,
1494 .mipmapPrecisionBits = 8,
1495 .maxDrawIndexedIndexValue = UINT32_MAX,
1496 .maxDrawIndirectCount = UINT32_MAX,
1497 .maxSamplerLodBias = 16,
1498 .maxSamplerAnisotropy = 16,
1499 .maxViewports = MAX_VIEWPORTS,
1500 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1501 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1502 .viewportSubPixelBits = 13, /* We take a float? */
1503 .minMemoryMapAlignment = 4096, /* A page */
1504 /* The dataport requires texel alignment so we need to assume a worst
1505 * case of R32G32B32A32 which is 16 bytes.
1506 */
1507 .minTexelBufferOffsetAlignment = 16,
1508 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1509 .minUniformBufferOffsetAlignment = 32,
1510 .minStorageBufferOffsetAlignment = 4,
1511 .minTexelOffset = -8,
1512 .maxTexelOffset = 7,
1513 .minTexelGatherOffset = -32,
1514 .maxTexelGatherOffset = 31,
1515 .minInterpolationOffset = -0.5,
1516 .maxInterpolationOffset = 0.4375,
1517 .subPixelInterpolationOffsetBits = 4,
1518 .maxFramebufferWidth = (1 << 14),
1519 .maxFramebufferHeight = (1 << 14),
1520 .maxFramebufferLayers = (1 << 11),
1521 .framebufferColorSampleCounts = sample_counts,
1522 .framebufferDepthSampleCounts = sample_counts,
1523 .framebufferStencilSampleCounts = sample_counts,
1524 .framebufferNoAttachmentsSampleCounts = sample_counts,
1525 .maxColorAttachments = MAX_RTS,
1526 .sampledImageColorSampleCounts = sample_counts,
1527 .sampledImageIntegerSampleCounts = sample_counts,
1528 .sampledImageDepthSampleCounts = sample_counts,
1529 .sampledImageStencilSampleCounts = sample_counts,
1530 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1531 .maxSampleMaskWords = 1,
1532 .timestampComputeAndGraphics = true,
1533 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1534 .maxClipDistances = 8,
1535 .maxCullDistances = 8,
1536 .maxCombinedClipAndCullDistances = 8,
1537 .discreteQueuePriorities = 2,
1538 .pointSizeRange = { 0.125, 255.875 },
1539 .lineWidthRange = {
1540 0.0,
1541 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1542 2047.9921875 : 7.9921875,
1543 },
1544 .pointSizeGranularity = (1.0 / 8.0),
1545 .lineWidthGranularity = (1.0 / 128.0),
1546 .strictLines = false,
1547 .standardSampleLocations = true,
1548 .optimalBufferCopyOffsetAlignment = 128,
1549 .optimalBufferCopyRowPitchAlignment = 128,
1550 .nonCoherentAtomSize = 64,
1551 };
1552
1553 *pProperties = (VkPhysicalDeviceProperties) {
1554 .apiVersion = anv_physical_device_api_version(pdevice),
1555 .driverVersion = vk_get_driver_version(),
1556 .vendorID = 0x8086,
1557 .deviceID = pdevice->info.chipset_id,
1558 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1559 .limits = limits,
1560 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1561 };
1562
1563 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1564 "%s", pdevice->name);
1565 memcpy(pProperties->pipelineCacheUUID,
1566 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1567 }
1568
1569 static void
1570 anv_get_physical_device_properties_1_1(struct anv_physical_device *pdevice,
1571 VkPhysicalDeviceVulkan11Properties *p)
1572 {
1573 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES);
1574
1575 memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1576 memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1577 memset(p->deviceLUID, 0, VK_LUID_SIZE);
1578 p->deviceNodeMask = 0;
1579 p->deviceLUIDValid = false;
1580
1581 p->subgroupSize = BRW_SUBGROUP_SIZE;
1582 VkShaderStageFlags scalar_stages = 0;
1583 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1584 if (pdevice->compiler->scalar_stage[stage])
1585 scalar_stages |= mesa_to_vk_shader_stage(stage);
1586 }
1587 p->subgroupSupportedStages = scalar_stages;
1588 p->subgroupSupportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1589 VK_SUBGROUP_FEATURE_VOTE_BIT |
1590 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1591 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1592 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1593 VK_SUBGROUP_FEATURE_QUAD_BIT;
1594 if (pdevice->info.gen >= 8) {
1595 /* TODO: There's no technical reason why these can't be made to
1596 * work on gen7 but they don't at the moment so it's best to leave
1597 * the feature disabled than enabled and broken.
1598 */
1599 p->subgroupSupportedOperations |= VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1600 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1601 }
1602 p->subgroupQuadOperationsInAllStages = pdevice->info.gen >= 8;
1603
1604 p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1605 p->maxMultiviewViewCount = 16;
1606 p->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1607 p->protectedNoFault = false;
1608 /* This value doesn't matter for us today as our per-stage descriptors are
1609 * the real limit.
1610 */
1611 p->maxPerSetDescriptors = 1024;
1612 p->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1613 }
1614
1615 static void
1616 anv_get_physical_device_properties_1_2(struct anv_physical_device *pdevice,
1617 VkPhysicalDeviceVulkan12Properties *p)
1618 {
1619 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES);
1620
1621 p->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1622 memset(p->driverName, 0, sizeof(p->driverName));
1623 snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1624 "Intel open-source Mesa driver");
1625 memset(p->driverInfo, 0, sizeof(p->driverInfo));
1626 snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1627 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1628 p->conformanceVersion = (VkConformanceVersionKHR) {
1629 .major = 1,
1630 .minor = 2,
1631 .subminor = 0,
1632 .patch = 0,
1633 };
1634
1635 p->denormBehaviorIndependence =
1636 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1637 p->roundingModeIndependence =
1638 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
1639
1640 /* Broadwell does not support HF denorms and there are restrictions
1641 * other gens. According to Kabylake's PRM:
1642 *
1643 * "math - Extended Math Function
1644 * [...]
1645 * Restriction : Half-float denorms are always retained."
1646 */
1647 p->shaderDenormFlushToZeroFloat16 = false;
1648 p->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
1649 p->shaderRoundingModeRTEFloat16 = true;
1650 p->shaderRoundingModeRTZFloat16 = true;
1651 p->shaderSignedZeroInfNanPreserveFloat16 = true;
1652
1653 p->shaderDenormFlushToZeroFloat32 = true;
1654 p->shaderDenormPreserveFloat32 = true;
1655 p->shaderRoundingModeRTEFloat32 = true;
1656 p->shaderRoundingModeRTZFloat32 = true;
1657 p->shaderSignedZeroInfNanPreserveFloat32 = true;
1658
1659 p->shaderDenormFlushToZeroFloat64 = true;
1660 p->shaderDenormPreserveFloat64 = true;
1661 p->shaderRoundingModeRTEFloat64 = true;
1662 p->shaderRoundingModeRTZFloat64 = true;
1663 p->shaderSignedZeroInfNanPreserveFloat64 = true;
1664
1665 /* It's a bit hard to exactly map our implementation to the limits
1666 * described here. The bindless surface handle in the extended
1667 * message descriptors is 20 bits and it's an index into the table of
1668 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1669 * address. Given that most things consume two surface states per
1670 * view (general/sampled for textures and write-only/read-write for
1671 * images), we claim 2^19 things.
1672 *
1673 * For SSBOs, we just use A64 messages so there is no real limit
1674 * there beyond the limit on the total size of a descriptor set.
1675 */
1676 const unsigned max_bindless_views = 1 << 19;
1677 p->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1678 p->shaderUniformBufferArrayNonUniformIndexingNative = false;
1679 p->shaderSampledImageArrayNonUniformIndexingNative = false;
1680 p->shaderStorageBufferArrayNonUniformIndexingNative = true;
1681 p->shaderStorageImageArrayNonUniformIndexingNative = false;
1682 p->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1683 p->robustBufferAccessUpdateAfterBind = true;
1684 p->quadDivergentImplicitLod = false;
1685 p->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1686 p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1687 p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1688 p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1689 p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1690 p->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1691 p->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1692 p->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1693 p->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1694 p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1695 p->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1696 p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1697 p->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1698 p->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1699 p->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1700
1701 /* We support all of the depth resolve modes */
1702 p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1703 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1704 VK_RESOLVE_MODE_MIN_BIT_KHR |
1705 VK_RESOLVE_MODE_MAX_BIT_KHR;
1706 /* Average doesn't make sense for stencil so we don't support that */
1707 p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1708 if (pdevice->info.gen >= 8) {
1709 /* The advanced stencil resolve modes currently require stencil
1710 * sampling be supported by the hardware.
1711 */
1712 p->supportedStencilResolveModes |= VK_RESOLVE_MODE_MIN_BIT_KHR |
1713 VK_RESOLVE_MODE_MAX_BIT_KHR;
1714 }
1715 p->independentResolveNone = true;
1716 p->independentResolve = true;
1717
1718 p->filterMinmaxSingleComponentFormats = pdevice->info.gen >= 9;
1719 p->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1720
1721 p->maxTimelineSemaphoreValueDifference = UINT64_MAX;
1722
1723 p->framebufferIntegerColorSampleCounts =
1724 isl_device_get_sample_counts(&pdevice->isl_dev);
1725 }
1726
1727 void anv_GetPhysicalDeviceProperties2(
1728 VkPhysicalDevice physicalDevice,
1729 VkPhysicalDeviceProperties2* pProperties)
1730 {
1731 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1732
1733 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1734
1735 VkPhysicalDeviceVulkan11Properties core_1_1 = {
1736 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES,
1737 };
1738 anv_get_physical_device_properties_1_1(pdevice, &core_1_1);
1739
1740 VkPhysicalDeviceVulkan12Properties core_1_2 = {
1741 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES,
1742 };
1743 anv_get_physical_device_properties_1_2(pdevice, &core_1_2);
1744
1745 #define CORE_RENAMED_PROPERTY(major, minor, ext_property, core_property) \
1746 memcpy(&properties->ext_property, &core_##major##_##minor.core_property, \
1747 sizeof(core_##major##_##minor.core_property))
1748
1749 #define CORE_PROPERTY(major, minor, property) \
1750 CORE_RENAMED_PROPERTY(major, minor, property, property)
1751
1752 vk_foreach_struct(ext, pProperties->pNext) {
1753 switch (ext->sType) {
1754 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1755 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *properties =
1756 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1757 CORE_PROPERTY(1, 2, supportedDepthResolveModes);
1758 CORE_PROPERTY(1, 2, supportedStencilResolveModes);
1759 CORE_PROPERTY(1, 2, independentResolveNone);
1760 CORE_PROPERTY(1, 2, independentResolve);
1761 break;
1762 }
1763
1764 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1765 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *properties =
1766 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1767 CORE_PROPERTY(1, 2, maxUpdateAfterBindDescriptorsInAllPools);
1768 CORE_PROPERTY(1, 2, shaderUniformBufferArrayNonUniformIndexingNative);
1769 CORE_PROPERTY(1, 2, shaderSampledImageArrayNonUniformIndexingNative);
1770 CORE_PROPERTY(1, 2, shaderStorageBufferArrayNonUniformIndexingNative);
1771 CORE_PROPERTY(1, 2, shaderStorageImageArrayNonUniformIndexingNative);
1772 CORE_PROPERTY(1, 2, shaderInputAttachmentArrayNonUniformIndexingNative);
1773 CORE_PROPERTY(1, 2, robustBufferAccessUpdateAfterBind);
1774 CORE_PROPERTY(1, 2, quadDivergentImplicitLod);
1775 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSamplers);
1776 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindUniformBuffers);
1777 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageBuffers);
1778 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSampledImages);
1779 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageImages);
1780 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindInputAttachments);
1781 CORE_PROPERTY(1, 2, maxPerStageUpdateAfterBindResources);
1782 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSamplers);
1783 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffers);
1784 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffersDynamic);
1785 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffers);
1786 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffersDynamic);
1787 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSampledImages);
1788 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageImages);
1789 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindInputAttachments);
1790 break;
1791 }
1792
1793 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1794 VkPhysicalDeviceDriverPropertiesKHR *properties =
1795 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1796 CORE_PROPERTY(1, 2, driverID);
1797 CORE_PROPERTY(1, 2, driverName);
1798 CORE_PROPERTY(1, 2, driverInfo);
1799 CORE_PROPERTY(1, 2, conformanceVersion);
1800 break;
1801 }
1802
1803 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1804 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1805 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1806 /* Userptr needs page aligned memory. */
1807 props->minImportedHostPointerAlignment = 4096;
1808 break;
1809 }
1810
1811 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1812 VkPhysicalDeviceIDProperties *properties =
1813 (VkPhysicalDeviceIDProperties *)ext;
1814 CORE_PROPERTY(1, 1, deviceUUID);
1815 CORE_PROPERTY(1, 1, driverUUID);
1816 CORE_PROPERTY(1, 1, deviceLUID);
1817 CORE_PROPERTY(1, 1, deviceLUIDValid);
1818 break;
1819 }
1820
1821 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1822 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1823 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1824 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1825 props->maxPerStageDescriptorInlineUniformBlocks =
1826 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1827 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1828 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1829 props->maxDescriptorSetInlineUniformBlocks =
1830 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1831 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1832 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1833 break;
1834 }
1835
1836 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1837 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1838 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1839 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1840 * Sampling Rules - Legacy Mode", it says the following:
1841 *
1842 * "Note that the device divides a pixel into a 16x16 array of
1843 * subpixels, referenced by their upper left corners."
1844 *
1845 * This is the only known reference in the PRMs to the subpixel
1846 * precision of line rasterization and a "16x16 array of subpixels"
1847 * implies 4 subpixel precision bits. Empirical testing has shown
1848 * that 4 subpixel precision bits applies to all line rasterization
1849 * types.
1850 */
1851 props->lineSubPixelPrecisionBits = 4;
1852 break;
1853 }
1854
1855 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1856 VkPhysicalDeviceMaintenance3Properties *properties =
1857 (VkPhysicalDeviceMaintenance3Properties *)ext;
1858 /* This value doesn't matter for us today as our per-stage
1859 * descriptors are the real limit.
1860 */
1861 CORE_PROPERTY(1, 1, maxPerSetDescriptors);
1862 CORE_PROPERTY(1, 1, maxMemoryAllocationSize);
1863 break;
1864 }
1865
1866 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1867 VkPhysicalDeviceMultiviewProperties *properties =
1868 (VkPhysicalDeviceMultiviewProperties *)ext;
1869 CORE_PROPERTY(1, 1, maxMultiviewViewCount);
1870 CORE_PROPERTY(1, 1, maxMultiviewInstanceIndex);
1871 break;
1872 }
1873
1874 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1875 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1876 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1877 properties->pciDomain = pdevice->pci_info.domain;
1878 properties->pciBus = pdevice->pci_info.bus;
1879 properties->pciDevice = pdevice->pci_info.device;
1880 properties->pciFunction = pdevice->pci_info.function;
1881 break;
1882 }
1883
1884 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1885 VkPhysicalDevicePointClippingProperties *properties =
1886 (VkPhysicalDevicePointClippingProperties *) ext;
1887 CORE_PROPERTY(1, 1, pointClippingBehavior);
1888 break;
1889 }
1890
1891 #pragma GCC diagnostic push
1892 #pragma GCC diagnostic ignored "-Wswitch"
1893 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1894 VkPhysicalDevicePresentationPropertiesANDROID *props =
1895 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1896 props->sharedImage = VK_FALSE;
1897 break;
1898 }
1899 #pragma GCC diagnostic pop
1900
1901 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1902 VkPhysicalDeviceProtectedMemoryProperties *properties =
1903 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1904 CORE_PROPERTY(1, 1, protectedNoFault);
1905 break;
1906 }
1907
1908 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1909 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1910 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1911 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1912 break;
1913 }
1914
1915 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_PROPERTIES_EXT: {
1916 VkPhysicalDeviceRobustness2PropertiesEXT *properties = (void *)ext;
1917 properties->robustStorageBufferAccessSizeAlignment =
1918 ANV_SSBO_BOUNDS_CHECK_ALIGNMENT;
1919 properties->robustUniformBufferAccessSizeAlignment =
1920 ANV_UBO_BOUNDS_CHECK_ALIGNMENT;
1921 break;
1922 }
1923
1924 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1925 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1926 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1927 CORE_PROPERTY(1, 2, filterMinmaxImageComponentMapping);
1928 CORE_PROPERTY(1, 2, filterMinmaxSingleComponentFormats);
1929 break;
1930 }
1931
1932 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1933 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1934 CORE_PROPERTY(1, 1, subgroupSize);
1935 CORE_RENAMED_PROPERTY(1, 1, supportedStages,
1936 subgroupSupportedStages);
1937 CORE_RENAMED_PROPERTY(1, 1, supportedOperations,
1938 subgroupSupportedOperations);
1939 CORE_RENAMED_PROPERTY(1, 1, quadOperationsInAllStages,
1940 subgroupQuadOperationsInAllStages);
1941 break;
1942 }
1943
1944 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1945 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1946 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1947 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1948 props->minSubgroupSize = 8;
1949 props->maxSubgroupSize = 32;
1950 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1951 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1952 break;
1953 }
1954 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
1955 VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
1956 CORE_PROPERTY(1, 2, denormBehaviorIndependence);
1957 CORE_PROPERTY(1, 2, roundingModeIndependence);
1958 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat16);
1959 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat16);
1960 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat16);
1961 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat16);
1962 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat16);
1963 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat32);
1964 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat32);
1965 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat32);
1966 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat32);
1967 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat32);
1968 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat64);
1969 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat64);
1970 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat64);
1971 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat64);
1972 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat64);
1973 break;
1974 }
1975
1976 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1977 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1978 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1979
1980 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1981 * Base Address:
1982 *
1983 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1984 * specifies the base address of the first element of the surface,
1985 * computed in software by adding the surface base address to the
1986 * byte offset of the element in the buffer. The base address must
1987 * be aligned to element size."
1988 *
1989 * The typed dataport messages require that things be texel aligned.
1990 * Otherwise, we may just load/store the wrong data or, in the worst
1991 * case, there may be hangs.
1992 */
1993 props->storageTexelBufferOffsetAlignmentBytes = 16;
1994 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1995
1996 /* The sampler, however, is much more forgiving and it can handle
1997 * arbitrary byte alignment for linear and buffer surfaces. It's
1998 * hard to find a good PRM citation for this but years of empirical
1999 * experience demonstrate that this is true.
2000 */
2001 props->uniformTexelBufferOffsetAlignmentBytes = 1;
2002 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
2003 break;
2004 }
2005
2006 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES_KHR: {
2007 VkPhysicalDeviceTimelineSemaphorePropertiesKHR *properties =
2008 (VkPhysicalDeviceTimelineSemaphorePropertiesKHR *) ext;
2009 CORE_PROPERTY(1, 2, maxTimelineSemaphoreValueDifference);
2010 break;
2011 }
2012
2013 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
2014 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
2015 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
2016
2017 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
2018 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
2019 props->maxTransformFeedbackBufferSize = (1ull << 32);
2020 props->maxTransformFeedbackStreamDataSize = 128 * 4;
2021 props->maxTransformFeedbackBufferDataSize = 128 * 4;
2022 props->maxTransformFeedbackBufferDataStride = 2048;
2023 props->transformFeedbackQueries = true;
2024 props->transformFeedbackStreamsLinesTriangles = false;
2025 props->transformFeedbackRasterizationStreamSelect = false;
2026 props->transformFeedbackDraw = true;
2027 break;
2028 }
2029
2030 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
2031 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
2032 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
2033 /* We have to restrict this a bit for multiview */
2034 props->maxVertexAttribDivisor = UINT32_MAX / 16;
2035 break;
2036 }
2037
2038 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES:
2039 anv_get_physical_device_properties_1_1(pdevice, (void *)ext);
2040 break;
2041
2042 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES:
2043 anv_get_physical_device_properties_1_2(pdevice, (void *)ext);
2044 break;
2045
2046 default:
2047 anv_debug_ignored_stype(ext->sType);
2048 break;
2049 }
2050 }
2051
2052 #undef CORE_RENAMED_PROPERTY
2053 #undef CORE_PROPERTY
2054 }
2055
2056 /* We support exactly one queue family. */
2057 static const VkQueueFamilyProperties
2058 anv_queue_family_properties = {
2059 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
2060 VK_QUEUE_COMPUTE_BIT |
2061 VK_QUEUE_TRANSFER_BIT,
2062 .queueCount = 1,
2063 .timestampValidBits = 36, /* XXX: Real value here */
2064 .minImageTransferGranularity = { 1, 1, 1 },
2065 };
2066
2067 void anv_GetPhysicalDeviceQueueFamilyProperties(
2068 VkPhysicalDevice physicalDevice,
2069 uint32_t* pCount,
2070 VkQueueFamilyProperties* pQueueFamilyProperties)
2071 {
2072 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
2073
2074 vk_outarray_append(&out, p) {
2075 *p = anv_queue_family_properties;
2076 }
2077 }
2078
2079 void anv_GetPhysicalDeviceQueueFamilyProperties2(
2080 VkPhysicalDevice physicalDevice,
2081 uint32_t* pQueueFamilyPropertyCount,
2082 VkQueueFamilyProperties2* pQueueFamilyProperties)
2083 {
2084
2085 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
2086
2087 vk_outarray_append(&out, p) {
2088 p->queueFamilyProperties = anv_queue_family_properties;
2089
2090 vk_foreach_struct(s, p->pNext) {
2091 anv_debug_ignored_stype(s->sType);
2092 }
2093 }
2094 }
2095
2096 void anv_GetPhysicalDeviceMemoryProperties(
2097 VkPhysicalDevice physicalDevice,
2098 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
2099 {
2100 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2101
2102 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
2103 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
2104 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
2105 .propertyFlags = physical_device->memory.types[i].propertyFlags,
2106 .heapIndex = physical_device->memory.types[i].heapIndex,
2107 };
2108 }
2109
2110 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
2111 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
2112 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
2113 .size = physical_device->memory.heaps[i].size,
2114 .flags = physical_device->memory.heaps[i].flags,
2115 };
2116 }
2117 }
2118
2119 static void
2120 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
2121 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
2122 {
2123 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2124 uint64_t sys_available = get_available_system_memory();
2125 assert(sys_available > 0);
2126
2127 VkDeviceSize total_heaps_size = 0;
2128 for (size_t i = 0; i < device->memory.heap_count; i++)
2129 total_heaps_size += device->memory.heaps[i].size;
2130
2131 for (size_t i = 0; i < device->memory.heap_count; i++) {
2132 VkDeviceSize heap_size = device->memory.heaps[i].size;
2133 VkDeviceSize heap_used = device->memory.heaps[i].used;
2134 VkDeviceSize heap_budget;
2135
2136 double heap_proportion = (double) heap_size / total_heaps_size;
2137 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
2138
2139 /*
2140 * Let's not incite the app to starve the system: report at most 90% of
2141 * available system memory.
2142 */
2143 uint64_t heap_available = sys_available_prop * 9 / 10;
2144 heap_budget = MIN2(heap_size, heap_used + heap_available);
2145
2146 /*
2147 * Round down to the nearest MB
2148 */
2149 heap_budget &= ~((1ull << 20) - 1);
2150
2151 /*
2152 * The heapBudget value must be non-zero for array elements less than
2153 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
2154 * value must be less than or equal to VkMemoryHeap::size for each heap.
2155 */
2156 assert(0 < heap_budget && heap_budget <= heap_size);
2157
2158 memoryBudget->heapUsage[i] = heap_used;
2159 memoryBudget->heapBudget[i] = heap_budget;
2160 }
2161
2162 /* The heapBudget and heapUsage values must be zero for array elements
2163 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
2164 */
2165 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
2166 memoryBudget->heapBudget[i] = 0;
2167 memoryBudget->heapUsage[i] = 0;
2168 }
2169 }
2170
2171 void anv_GetPhysicalDeviceMemoryProperties2(
2172 VkPhysicalDevice physicalDevice,
2173 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
2174 {
2175 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
2176 &pMemoryProperties->memoryProperties);
2177
2178 vk_foreach_struct(ext, pMemoryProperties->pNext) {
2179 switch (ext->sType) {
2180 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
2181 anv_get_memory_budget(physicalDevice, (void*)ext);
2182 break;
2183 default:
2184 anv_debug_ignored_stype(ext->sType);
2185 break;
2186 }
2187 }
2188 }
2189
2190 void
2191 anv_GetDeviceGroupPeerMemoryFeatures(
2192 VkDevice device,
2193 uint32_t heapIndex,
2194 uint32_t localDeviceIndex,
2195 uint32_t remoteDeviceIndex,
2196 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
2197 {
2198 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
2199 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
2200 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
2201 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
2202 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
2203 }
2204
2205 PFN_vkVoidFunction anv_GetInstanceProcAddr(
2206 VkInstance _instance,
2207 const char* pName)
2208 {
2209 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2210
2211 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
2212 * when we have to return valid function pointers, NULL, or it's left
2213 * undefined. See the table for exact details.
2214 */
2215 if (pName == NULL)
2216 return NULL;
2217
2218 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
2219 if (strcmp(pName, "vk" #entrypoint) == 0) \
2220 return (PFN_vkVoidFunction)anv_##entrypoint
2221
2222 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
2223 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
2224 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
2225 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
2226
2227 /* GetInstanceProcAddr() can also be called with a NULL instance.
2228 * See https://gitlab.khronos.org/vulkan/vulkan/issues/2057
2229 */
2230 LOOKUP_ANV_ENTRYPOINT(GetInstanceProcAddr);
2231
2232 #undef LOOKUP_ANV_ENTRYPOINT
2233
2234 if (instance == NULL)
2235 return NULL;
2236
2237 int idx = anv_get_instance_entrypoint_index(pName);
2238 if (idx >= 0)
2239 return instance->dispatch.entrypoints[idx];
2240
2241 idx = anv_get_physical_device_entrypoint_index(pName);
2242 if (idx >= 0)
2243 return instance->physical_device_dispatch.entrypoints[idx];
2244
2245 idx = anv_get_device_entrypoint_index(pName);
2246 if (idx >= 0)
2247 return instance->device_dispatch.entrypoints[idx];
2248
2249 return NULL;
2250 }
2251
2252 /* With version 1+ of the loader interface the ICD should expose
2253 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
2254 */
2255 PUBLIC
2256 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2257 VkInstance instance,
2258 const char* pName);
2259
2260 PUBLIC
2261 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2262 VkInstance instance,
2263 const char* pName)
2264 {
2265 return anv_GetInstanceProcAddr(instance, pName);
2266 }
2267
2268 PFN_vkVoidFunction anv_GetDeviceProcAddr(
2269 VkDevice _device,
2270 const char* pName)
2271 {
2272 ANV_FROM_HANDLE(anv_device, device, _device);
2273
2274 if (!device || !pName)
2275 return NULL;
2276
2277 int idx = anv_get_device_entrypoint_index(pName);
2278 if (idx < 0)
2279 return NULL;
2280
2281 return device->dispatch.entrypoints[idx];
2282 }
2283
2284 /* With version 4+ of the loader interface the ICD should expose
2285 * vk_icdGetPhysicalDeviceProcAddr()
2286 */
2287 PUBLIC
2288 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
2289 VkInstance _instance,
2290 const char* pName);
2291
2292 PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
2293 VkInstance _instance,
2294 const char* pName)
2295 {
2296 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2297
2298 if (!pName || !instance)
2299 return NULL;
2300
2301 int idx = anv_get_physical_device_entrypoint_index(pName);
2302 if (idx < 0)
2303 return NULL;
2304
2305 return instance->physical_device_dispatch.entrypoints[idx];
2306 }
2307
2308
2309 VkResult
2310 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
2311 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
2312 const VkAllocationCallbacks* pAllocator,
2313 VkDebugReportCallbackEXT* pCallback)
2314 {
2315 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2316 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2317 pCreateInfo, pAllocator, &instance->alloc,
2318 pCallback);
2319 }
2320
2321 void
2322 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
2323 VkDebugReportCallbackEXT _callback,
2324 const VkAllocationCallbacks* pAllocator)
2325 {
2326 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2327 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2328 _callback, pAllocator, &instance->alloc);
2329 }
2330
2331 void
2332 anv_DebugReportMessageEXT(VkInstance _instance,
2333 VkDebugReportFlagsEXT flags,
2334 VkDebugReportObjectTypeEXT objectType,
2335 uint64_t object,
2336 size_t location,
2337 int32_t messageCode,
2338 const char* pLayerPrefix,
2339 const char* pMessage)
2340 {
2341 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2342 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2343 object, location, messageCode, pLayerPrefix, pMessage);
2344 }
2345
2346 static struct anv_state
2347 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2348 {
2349 struct anv_state state;
2350
2351 state = anv_state_pool_alloc(pool, size, align);
2352 memcpy(state.map, p, size);
2353
2354 return state;
2355 }
2356
2357 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
2358 * straightforward 32-bit float color in the first 64 bytes. Instead of using
2359 * a nice float/integer union like Gen8+, Haswell specifies the integer border
2360 * color as a separate entry /after/ the float color. The layout of this entry
2361 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
2362 *
2363 * Since we don't know the format/bpp, we can't make any of the border colors
2364 * containing '1' work for all formats, as it would be in the wrong place for
2365 * some of them. We opt to make 32-bit integers work as this seems like the
2366 * most common option. Fortunately, transparent black works regardless, as
2367 * all zeroes is the same in every bit-size.
2368 */
2369 struct hsw_border_color {
2370 float float32[4];
2371 uint32_t _pad0[12];
2372 uint32_t uint32[4];
2373 uint32_t _pad1[108];
2374 };
2375
2376 struct gen8_border_color {
2377 union {
2378 float float32[4];
2379 uint32_t uint32[4];
2380 };
2381 /* Pad out to 64 bytes */
2382 uint32_t _pad[12];
2383 };
2384
2385 static void
2386 anv_device_init_border_colors(struct anv_device *device)
2387 {
2388 if (device->info.is_haswell) {
2389 static const struct hsw_border_color border_colors[] = {
2390 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2391 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2392 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2393 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2394 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2395 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2396 };
2397
2398 device->border_colors =
2399 anv_state_pool_emit_data(&device->dynamic_state_pool,
2400 sizeof(border_colors), 512, border_colors);
2401 } else {
2402 static const struct gen8_border_color border_colors[] = {
2403 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2404 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2405 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2406 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2407 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2408 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2409 };
2410
2411 device->border_colors =
2412 anv_state_pool_emit_data(&device->dynamic_state_pool,
2413 sizeof(border_colors), 64, border_colors);
2414 }
2415 }
2416
2417 static VkResult
2418 anv_device_init_trivial_batch(struct anv_device *device)
2419 {
2420 VkResult result = anv_device_alloc_bo(device, 4096,
2421 ANV_BO_ALLOC_MAPPED,
2422 0 /* explicit_address */,
2423 &device->trivial_batch_bo);
2424 if (result != VK_SUCCESS)
2425 return result;
2426
2427 struct anv_batch batch = {
2428 .start = device->trivial_batch_bo->map,
2429 .next = device->trivial_batch_bo->map,
2430 .end = device->trivial_batch_bo->map + 4096,
2431 };
2432
2433 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2434 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2435
2436 if (!device->info.has_llc)
2437 gen_clflush_range(batch.start, batch.next - batch.start);
2438
2439 return VK_SUCCESS;
2440 }
2441
2442 VkResult anv_EnumerateDeviceExtensionProperties(
2443 VkPhysicalDevice physicalDevice,
2444 const char* pLayerName,
2445 uint32_t* pPropertyCount,
2446 VkExtensionProperties* pProperties)
2447 {
2448 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2449 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2450
2451 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2452 if (device->supported_extensions.extensions[i]) {
2453 vk_outarray_append(&out, prop) {
2454 *prop = anv_device_extensions[i];
2455 }
2456 }
2457 }
2458
2459 return vk_outarray_status(&out);
2460 }
2461
2462 static void
2463 anv_device_init_dispatch(struct anv_device *device)
2464 {
2465 const struct anv_instance *instance = device->physical->instance;
2466
2467 const struct anv_device_dispatch_table *genX_table;
2468 switch (device->info.gen) {
2469 case 12:
2470 genX_table = &gen12_device_dispatch_table;
2471 break;
2472 case 11:
2473 genX_table = &gen11_device_dispatch_table;
2474 break;
2475 case 10:
2476 genX_table = &gen10_device_dispatch_table;
2477 break;
2478 case 9:
2479 genX_table = &gen9_device_dispatch_table;
2480 break;
2481 case 8:
2482 genX_table = &gen8_device_dispatch_table;
2483 break;
2484 case 7:
2485 if (device->info.is_haswell)
2486 genX_table = &gen75_device_dispatch_table;
2487 else
2488 genX_table = &gen7_device_dispatch_table;
2489 break;
2490 default:
2491 unreachable("unsupported gen\n");
2492 }
2493
2494 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2495 /* Vulkan requires that entrypoints for extensions which have not been
2496 * enabled must not be advertised.
2497 */
2498 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
2499 &instance->enabled_extensions,
2500 &device->enabled_extensions)) {
2501 device->dispatch.entrypoints[i] = NULL;
2502 } else if (genX_table->entrypoints[i]) {
2503 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2504 } else {
2505 device->dispatch.entrypoints[i] =
2506 anv_device_dispatch_table.entrypoints[i];
2507 }
2508 }
2509 }
2510
2511 static int
2512 vk_priority_to_gen(int priority)
2513 {
2514 switch (priority) {
2515 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2516 return GEN_CONTEXT_LOW_PRIORITY;
2517 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2518 return GEN_CONTEXT_MEDIUM_PRIORITY;
2519 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2520 return GEN_CONTEXT_HIGH_PRIORITY;
2521 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2522 return GEN_CONTEXT_REALTIME_PRIORITY;
2523 default:
2524 unreachable("Invalid priority");
2525 }
2526 }
2527
2528 static VkResult
2529 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2530 {
2531 VkResult result = anv_device_alloc_bo(device, 4096,
2532 ANV_BO_ALLOC_MAPPED,
2533 0 /* explicit_address */,
2534 &device->hiz_clear_bo);
2535 if (result != VK_SUCCESS)
2536 return result;
2537
2538 union isl_color_value hiz_clear = { .u32 = { 0, } };
2539 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2540
2541 memcpy(device->hiz_clear_bo->map, hiz_clear.u32, sizeof(hiz_clear.u32));
2542
2543 if (!device->info.has_llc)
2544 gen_clflush_range(device->hiz_clear_bo->map, sizeof(hiz_clear.u32));
2545
2546 return VK_SUCCESS;
2547 }
2548
2549 static bool
2550 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2551 struct anv_block_pool *pool,
2552 uint64_t address)
2553 {
2554 anv_block_pool_foreach_bo(bo, pool) {
2555 uint64_t bo_address = gen_48b_address(bo->offset);
2556 if (address >= bo_address && address < (bo_address + bo->size)) {
2557 *ret = (struct gen_batch_decode_bo) {
2558 .addr = bo_address,
2559 .size = bo->size,
2560 .map = bo->map,
2561 };
2562 return true;
2563 }
2564 }
2565 return false;
2566 }
2567
2568 /* Finding a buffer for batch decoding */
2569 static struct gen_batch_decode_bo
2570 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2571 {
2572 struct anv_device *device = v_batch;
2573 struct gen_batch_decode_bo ret_bo = {};
2574
2575 assert(ppgtt);
2576
2577 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2578 return ret_bo;
2579 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2580 return ret_bo;
2581 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2582 return ret_bo;
2583 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2584 return ret_bo;
2585
2586 if (!device->cmd_buffer_being_decoded)
2587 return (struct gen_batch_decode_bo) { };
2588
2589 struct anv_batch_bo **bo;
2590
2591 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2592 /* The decoder zeroes out the top 16 bits, so we need to as well */
2593 uint64_t bo_address = (*bo)->bo->offset & (~0ull >> 16);
2594
2595 if (address >= bo_address && address < bo_address + (*bo)->bo->size) {
2596 return (struct gen_batch_decode_bo) {
2597 .addr = bo_address,
2598 .size = (*bo)->bo->size,
2599 .map = (*bo)->bo->map,
2600 };
2601 }
2602 }
2603
2604 return (struct gen_batch_decode_bo) { };
2605 }
2606
2607 struct gen_aux_map_buffer {
2608 struct gen_buffer base;
2609 struct anv_state state;
2610 };
2611
2612 static struct gen_buffer *
2613 gen_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
2614 {
2615 struct gen_aux_map_buffer *buf = malloc(sizeof(struct gen_aux_map_buffer));
2616 if (!buf)
2617 return NULL;
2618
2619 struct anv_device *device = (struct anv_device*)driver_ctx;
2620 assert(device->physical->supports_48bit_addresses &&
2621 device->physical->use_softpin);
2622
2623 struct anv_state_pool *pool = &device->dynamic_state_pool;
2624 buf->state = anv_state_pool_alloc(pool, size, size);
2625
2626 buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset;
2627 buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size;
2628 buf->base.map = buf->state.map;
2629 buf->base.driver_bo = &buf->state;
2630 return &buf->base;
2631 }
2632
2633 static void
2634 gen_aux_map_buffer_free(void *driver_ctx, struct gen_buffer *buffer)
2635 {
2636 struct gen_aux_map_buffer *buf = (struct gen_aux_map_buffer*)buffer;
2637 struct anv_device *device = (struct anv_device*)driver_ctx;
2638 struct anv_state_pool *pool = &device->dynamic_state_pool;
2639 anv_state_pool_free(pool, buf->state);
2640 free(buf);
2641 }
2642
2643 static struct gen_mapped_pinned_buffer_alloc aux_map_allocator = {
2644 .alloc = gen_aux_map_buffer_alloc,
2645 .free = gen_aux_map_buffer_free,
2646 };
2647
2648 static VkResult
2649 check_physical_device_features(VkPhysicalDevice physicalDevice,
2650 const VkPhysicalDeviceFeatures *features)
2651 {
2652 VkPhysicalDeviceFeatures supported_features;
2653 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2654 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2655 VkBool32 *enabled_feature = (VkBool32 *)features;
2656 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2657 for (uint32_t i = 0; i < num_features; i++) {
2658 if (enabled_feature[i] && !supported_feature[i])
2659 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2660 }
2661
2662 return VK_SUCCESS;
2663 }
2664
2665 VkResult anv_CreateDevice(
2666 VkPhysicalDevice physicalDevice,
2667 const VkDeviceCreateInfo* pCreateInfo,
2668 const VkAllocationCallbacks* pAllocator,
2669 VkDevice* pDevice)
2670 {
2671 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2672 VkResult result;
2673 struct anv_device *device;
2674
2675 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2676
2677 struct anv_device_extension_table enabled_extensions = { };
2678 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2679 int idx;
2680 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2681 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2682 anv_device_extensions[idx].extensionName) == 0)
2683 break;
2684 }
2685
2686 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2687 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2688
2689 if (!physical_device->supported_extensions.extensions[idx])
2690 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2691
2692 enabled_extensions.extensions[idx] = true;
2693 }
2694
2695 /* Check enabled features */
2696 bool robust_buffer_access = false;
2697 if (pCreateInfo->pEnabledFeatures) {
2698 result = check_physical_device_features(physicalDevice,
2699 pCreateInfo->pEnabledFeatures);
2700 if (result != VK_SUCCESS)
2701 return result;
2702
2703 if (pCreateInfo->pEnabledFeatures->robustBufferAccess)
2704 robust_buffer_access = true;
2705 }
2706
2707 vk_foreach_struct_const(ext, pCreateInfo->pNext) {
2708 switch (ext->sType) {
2709 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: {
2710 const VkPhysicalDeviceFeatures2 *features = (const void *)ext;
2711 result = check_physical_device_features(physicalDevice,
2712 &features->features);
2713 if (result != VK_SUCCESS)
2714 return result;
2715
2716 if (features->features.robustBufferAccess)
2717 robust_buffer_access = true;
2718 break;
2719 }
2720
2721 default:
2722 /* Don't warn */
2723 break;
2724 }
2725 }
2726
2727 /* Check requested queues and fail if we are requested to create any
2728 * queues with flags we don't support.
2729 */
2730 assert(pCreateInfo->queueCreateInfoCount > 0);
2731 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2732 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2733 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2734 }
2735
2736 /* Check if client specified queue priority. */
2737 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2738 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2739 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2740
2741 VkQueueGlobalPriorityEXT priority =
2742 queue_priority ? queue_priority->globalPriority :
2743 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2744
2745 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2746 sizeof(*device), 8,
2747 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2748 if (!device)
2749 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2750
2751 vk_device_init(&device->vk, pCreateInfo,
2752 &physical_device->instance->alloc, pAllocator);
2753
2754 if (INTEL_DEBUG & DEBUG_BATCH) {
2755 const unsigned decode_flags =
2756 GEN_BATCH_DECODE_FULL |
2757 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2758 GEN_BATCH_DECODE_OFFSETS |
2759 GEN_BATCH_DECODE_FLOATS;
2760
2761 gen_batch_decode_ctx_init(&device->decoder_ctx,
2762 &physical_device->info,
2763 stderr, decode_flags, NULL,
2764 decode_get_bo, NULL, device);
2765 }
2766
2767 device->physical = physical_device;
2768 device->no_hw = physical_device->no_hw;
2769 device->_lost = false;
2770
2771 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2772 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2773 if (device->fd == -1) {
2774 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2775 goto fail_device;
2776 }
2777
2778 device->context_id = anv_gem_create_context(device);
2779 if (device->context_id == -1) {
2780 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2781 goto fail_fd;
2782 }
2783
2784 result = anv_queue_init(device, &device->queue);
2785 if (result != VK_SUCCESS)
2786 goto fail_context_id;
2787
2788 if (physical_device->use_softpin) {
2789 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2790 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2791 goto fail_queue;
2792 }
2793
2794 /* keep the page with address zero out of the allocator */
2795 util_vma_heap_init(&device->vma_lo,
2796 LOW_HEAP_MIN_ADDRESS, LOW_HEAP_SIZE);
2797
2798 util_vma_heap_init(&device->vma_cva, CLIENT_VISIBLE_HEAP_MIN_ADDRESS,
2799 CLIENT_VISIBLE_HEAP_SIZE);
2800
2801 /* Leave the last 4GiB out of the high vma range, so that no state
2802 * base address + size can overflow 48 bits. For more information see
2803 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
2804 */
2805 util_vma_heap_init(&device->vma_hi, HIGH_HEAP_MIN_ADDRESS,
2806 physical_device->gtt_size - (1ull << 32) -
2807 HIGH_HEAP_MIN_ADDRESS);
2808 }
2809
2810 list_inithead(&device->memory_objects);
2811
2812 /* As per spec, the driver implementation may deny requests to acquire
2813 * a priority above the default priority (MEDIUM) if the caller does not
2814 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2815 * is returned.
2816 */
2817 if (physical_device->has_context_priority) {
2818 int err = anv_gem_set_context_param(device->fd, device->context_id,
2819 I915_CONTEXT_PARAM_PRIORITY,
2820 vk_priority_to_gen(priority));
2821 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2822 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2823 goto fail_vmas;
2824 }
2825 }
2826
2827 device->info = physical_device->info;
2828 device->isl_dev = physical_device->isl_dev;
2829
2830 /* On Broadwell and later, we can use batch chaining to more efficiently
2831 * implement growing command buffers. Prior to Haswell, the kernel
2832 * command parser gets in the way and we have to fall back to growing
2833 * the batch.
2834 */
2835 device->can_chain_batches = device->info.gen >= 8;
2836
2837 device->robust_buffer_access = robust_buffer_access;
2838 device->enabled_extensions = enabled_extensions;
2839
2840 anv_device_init_dispatch(device);
2841
2842 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2843 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2844 goto fail_queue;
2845 }
2846
2847 pthread_condattr_t condattr;
2848 if (pthread_condattr_init(&condattr) != 0) {
2849 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2850 goto fail_mutex;
2851 }
2852 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2853 pthread_condattr_destroy(&condattr);
2854 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2855 goto fail_mutex;
2856 }
2857 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2858 pthread_condattr_destroy(&condattr);
2859 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2860 goto fail_mutex;
2861 }
2862 pthread_condattr_destroy(&condattr);
2863
2864 result = anv_bo_cache_init(&device->bo_cache);
2865 if (result != VK_SUCCESS)
2866 goto fail_queue_cond;
2867
2868 anv_bo_pool_init(&device->batch_bo_pool, device);
2869
2870 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2871 DYNAMIC_STATE_POOL_MIN_ADDRESS, 16384);
2872 if (result != VK_SUCCESS)
2873 goto fail_batch_bo_pool;
2874
2875 result = anv_state_pool_init(&device->instruction_state_pool, device,
2876 INSTRUCTION_STATE_POOL_MIN_ADDRESS, 16384);
2877 if (result != VK_SUCCESS)
2878 goto fail_dynamic_state_pool;
2879
2880 result = anv_state_pool_init(&device->surface_state_pool, device,
2881 SURFACE_STATE_POOL_MIN_ADDRESS, 4096);
2882 if (result != VK_SUCCESS)
2883 goto fail_instruction_state_pool;
2884
2885 if (physical_device->use_softpin) {
2886 result = anv_state_pool_init(&device->binding_table_pool, device,
2887 BINDING_TABLE_POOL_MIN_ADDRESS, 4096);
2888 if (result != VK_SUCCESS)
2889 goto fail_surface_state_pool;
2890 }
2891
2892 if (device->info.gen >= 12) {
2893 device->aux_map_ctx = gen_aux_map_init(device, &aux_map_allocator,
2894 &physical_device->info);
2895 if (!device->aux_map_ctx)
2896 goto fail_binding_table_pool;
2897 }
2898
2899 result = anv_device_alloc_bo(device, 4096, 0 /* flags */,
2900 0 /* explicit_address */,
2901 &device->workaround_bo);
2902 if (result != VK_SUCCESS)
2903 goto fail_surface_aux_map_pool;
2904
2905 result = anv_device_init_trivial_batch(device);
2906 if (result != VK_SUCCESS)
2907 goto fail_workaround_bo;
2908
2909 /* Allocate a null surface state at surface state offset 0. This makes
2910 * NULL descriptor handling trivial because we can just memset structures
2911 * to zero and they have a valid descriptor.
2912 */
2913 device->null_surface_state =
2914 anv_state_pool_alloc(&device->surface_state_pool,
2915 device->isl_dev.ss.size,
2916 device->isl_dev.ss.align);
2917 isl_null_fill_state(&device->isl_dev, device->null_surface_state.map,
2918 isl_extent3d(1, 1, 1) /* This shouldn't matter */);
2919 assert(device->null_surface_state.offset == 0);
2920
2921 if (device->info.gen >= 10) {
2922 result = anv_device_init_hiz_clear_value_bo(device);
2923 if (result != VK_SUCCESS)
2924 goto fail_trivial_batch_bo;
2925 }
2926
2927 anv_scratch_pool_init(device, &device->scratch_pool);
2928
2929 switch (device->info.gen) {
2930 case 7:
2931 if (!device->info.is_haswell)
2932 result = gen7_init_device_state(device);
2933 else
2934 result = gen75_init_device_state(device);
2935 break;
2936 case 8:
2937 result = gen8_init_device_state(device);
2938 break;
2939 case 9:
2940 result = gen9_init_device_state(device);
2941 break;
2942 case 10:
2943 result = gen10_init_device_state(device);
2944 break;
2945 case 11:
2946 result = gen11_init_device_state(device);
2947 break;
2948 case 12:
2949 result = gen12_init_device_state(device);
2950 break;
2951 default:
2952 /* Shouldn't get here as we don't create physical devices for any other
2953 * gens. */
2954 unreachable("unhandled gen");
2955 }
2956 if (result != VK_SUCCESS)
2957 goto fail_workaround_bo;
2958
2959 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2960
2961 anv_device_init_blorp(device);
2962
2963 anv_device_init_border_colors(device);
2964
2965 anv_device_perf_init(device);
2966
2967 *pDevice = anv_device_to_handle(device);
2968
2969 return VK_SUCCESS;
2970
2971 fail_workaround_bo:
2972 anv_scratch_pool_finish(device, &device->scratch_pool);
2973 if (device->info.gen >= 10)
2974 anv_device_release_bo(device, device->hiz_clear_bo);
2975 anv_device_release_bo(device, device->workaround_bo);
2976 fail_trivial_batch_bo:
2977 anv_device_release_bo(device, device->trivial_batch_bo);
2978 fail_surface_aux_map_pool:
2979 if (device->info.gen >= 12) {
2980 gen_aux_map_finish(device->aux_map_ctx);
2981 device->aux_map_ctx = NULL;
2982 }
2983 fail_binding_table_pool:
2984 if (physical_device->use_softpin)
2985 anv_state_pool_finish(&device->binding_table_pool);
2986 fail_surface_state_pool:
2987 anv_state_pool_finish(&device->surface_state_pool);
2988 fail_instruction_state_pool:
2989 anv_state_pool_finish(&device->instruction_state_pool);
2990 fail_dynamic_state_pool:
2991 anv_state_pool_finish(&device->dynamic_state_pool);
2992 fail_batch_bo_pool:
2993 anv_bo_pool_finish(&device->batch_bo_pool);
2994 anv_bo_cache_finish(&device->bo_cache);
2995 fail_queue_cond:
2996 pthread_cond_destroy(&device->queue_submit);
2997 fail_mutex:
2998 pthread_mutex_destroy(&device->mutex);
2999 fail_vmas:
3000 if (physical_device->use_softpin) {
3001 util_vma_heap_finish(&device->vma_hi);
3002 util_vma_heap_finish(&device->vma_cva);
3003 util_vma_heap_finish(&device->vma_lo);
3004 }
3005 fail_queue:
3006 anv_queue_finish(&device->queue);
3007 fail_context_id:
3008 anv_gem_destroy_context(device, device->context_id);
3009 fail_fd:
3010 close(device->fd);
3011 fail_device:
3012 vk_free(&device->vk.alloc, device);
3013
3014 return result;
3015 }
3016
3017 void anv_DestroyDevice(
3018 VkDevice _device,
3019 const VkAllocationCallbacks* pAllocator)
3020 {
3021 ANV_FROM_HANDLE(anv_device, device, _device);
3022
3023 if (!device)
3024 return;
3025
3026 anv_device_finish_blorp(device);
3027
3028 anv_pipeline_cache_finish(&device->default_pipeline_cache);
3029
3030 anv_queue_finish(&device->queue);
3031
3032 #ifdef HAVE_VALGRIND
3033 /* We only need to free these to prevent valgrind errors. The backing
3034 * BO will go away in a couple of lines so we don't actually leak.
3035 */
3036 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
3037 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
3038 #endif
3039
3040 anv_scratch_pool_finish(device, &device->scratch_pool);
3041
3042 anv_device_release_bo(device, device->workaround_bo);
3043 anv_device_release_bo(device, device->trivial_batch_bo);
3044 if (device->info.gen >= 10)
3045 anv_device_release_bo(device, device->hiz_clear_bo);
3046
3047 if (device->info.gen >= 12) {
3048 gen_aux_map_finish(device->aux_map_ctx);
3049 device->aux_map_ctx = NULL;
3050 }
3051
3052 if (device->physical->use_softpin)
3053 anv_state_pool_finish(&device->binding_table_pool);
3054 anv_state_pool_finish(&device->surface_state_pool);
3055 anv_state_pool_finish(&device->instruction_state_pool);
3056 anv_state_pool_finish(&device->dynamic_state_pool);
3057
3058 anv_bo_pool_finish(&device->batch_bo_pool);
3059
3060 anv_bo_cache_finish(&device->bo_cache);
3061
3062 if (device->physical->use_softpin) {
3063 util_vma_heap_finish(&device->vma_hi);
3064 util_vma_heap_finish(&device->vma_cva);
3065 util_vma_heap_finish(&device->vma_lo);
3066 }
3067
3068 pthread_cond_destroy(&device->queue_submit);
3069 pthread_mutex_destroy(&device->mutex);
3070
3071 anv_gem_destroy_context(device, device->context_id);
3072
3073 if (INTEL_DEBUG & DEBUG_BATCH)
3074 gen_batch_decode_ctx_finish(&device->decoder_ctx);
3075
3076 close(device->fd);
3077
3078 vk_device_finish(&device->vk);
3079 vk_free(&device->vk.alloc, device);
3080 }
3081
3082 VkResult anv_EnumerateInstanceLayerProperties(
3083 uint32_t* pPropertyCount,
3084 VkLayerProperties* pProperties)
3085 {
3086 if (pProperties == NULL) {
3087 *pPropertyCount = 0;
3088 return VK_SUCCESS;
3089 }
3090
3091 /* None supported at this time */
3092 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
3093 }
3094
3095 VkResult anv_EnumerateDeviceLayerProperties(
3096 VkPhysicalDevice physicalDevice,
3097 uint32_t* pPropertyCount,
3098 VkLayerProperties* pProperties)
3099 {
3100 if (pProperties == NULL) {
3101 *pPropertyCount = 0;
3102 return VK_SUCCESS;
3103 }
3104
3105 /* None supported at this time */
3106 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
3107 }
3108
3109 void anv_GetDeviceQueue(
3110 VkDevice _device,
3111 uint32_t queueNodeIndex,
3112 uint32_t queueIndex,
3113 VkQueue* pQueue)
3114 {
3115 const VkDeviceQueueInfo2 info = {
3116 .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
3117 .pNext = NULL,
3118 .flags = 0,
3119 .queueFamilyIndex = queueNodeIndex,
3120 .queueIndex = queueIndex,
3121 };
3122
3123 anv_GetDeviceQueue2(_device, &info, pQueue);
3124 }
3125
3126 void anv_GetDeviceQueue2(
3127 VkDevice _device,
3128 const VkDeviceQueueInfo2* pQueueInfo,
3129 VkQueue* pQueue)
3130 {
3131 ANV_FROM_HANDLE(anv_device, device, _device);
3132
3133 assert(pQueueInfo->queueIndex == 0);
3134
3135 if (pQueueInfo->flags == device->queue.flags)
3136 *pQueue = anv_queue_to_handle(&device->queue);
3137 else
3138 *pQueue = NULL;
3139 }
3140
3141 VkResult
3142 _anv_device_set_lost(struct anv_device *device,
3143 const char *file, int line,
3144 const char *msg, ...)
3145 {
3146 VkResult err;
3147 va_list ap;
3148
3149 p_atomic_inc(&device->_lost);
3150
3151 va_start(ap, msg);
3152 err = __vk_errorv(device->physical->instance, device,
3153 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
3154 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
3155 va_end(ap);
3156
3157 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
3158 abort();
3159
3160 return err;
3161 }
3162
3163 VkResult
3164 _anv_queue_set_lost(struct anv_queue *queue,
3165 const char *file, int line,
3166 const char *msg, ...)
3167 {
3168 VkResult err;
3169 va_list ap;
3170
3171 p_atomic_inc(&queue->device->_lost);
3172
3173 va_start(ap, msg);
3174 err = __vk_errorv(queue->device->physical->instance, queue->device,
3175 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
3176 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
3177 va_end(ap);
3178
3179 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
3180 abort();
3181
3182 return err;
3183 }
3184
3185 VkResult
3186 anv_device_query_status(struct anv_device *device)
3187 {
3188 /* This isn't likely as most of the callers of this function already check
3189 * for it. However, it doesn't hurt to check and it potentially lets us
3190 * avoid an ioctl.
3191 */
3192 if (anv_device_is_lost(device))
3193 return VK_ERROR_DEVICE_LOST;
3194
3195 uint32_t active, pending;
3196 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
3197 if (ret == -1) {
3198 /* We don't know the real error. */
3199 return anv_device_set_lost(device, "get_reset_stats failed: %m");
3200 }
3201
3202 if (active) {
3203 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
3204 } else if (pending) {
3205 return anv_device_set_lost(device, "GPU hung with commands in-flight");
3206 }
3207
3208 return VK_SUCCESS;
3209 }
3210
3211 VkResult
3212 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
3213 {
3214 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
3215 * Other usages of the BO (such as on different hardware) will not be
3216 * flagged as "busy" by this ioctl. Use with care.
3217 */
3218 int ret = anv_gem_busy(device, bo->gem_handle);
3219 if (ret == 1) {
3220 return VK_NOT_READY;
3221 } else if (ret == -1) {
3222 /* We don't know the real error. */
3223 return anv_device_set_lost(device, "gem wait failed: %m");
3224 }
3225
3226 /* Query for device status after the busy call. If the BO we're checking
3227 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
3228 * client because it clearly doesn't have valid data. Yes, this most
3229 * likely means an ioctl, but we just did an ioctl to query the busy status
3230 * so it's no great loss.
3231 */
3232 return anv_device_query_status(device);
3233 }
3234
3235 VkResult
3236 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
3237 int64_t timeout)
3238 {
3239 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
3240 if (ret == -1 && errno == ETIME) {
3241 return VK_TIMEOUT;
3242 } else if (ret == -1) {
3243 /* We don't know the real error. */
3244 return anv_device_set_lost(device, "gem wait failed: %m");
3245 }
3246
3247 /* Query for device status after the wait. If the BO we're waiting on got
3248 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
3249 * because it clearly doesn't have valid data. Yes, this most likely means
3250 * an ioctl, but we just did an ioctl to wait so it's no great loss.
3251 */
3252 return anv_device_query_status(device);
3253 }
3254
3255 VkResult anv_DeviceWaitIdle(
3256 VkDevice _device)
3257 {
3258 ANV_FROM_HANDLE(anv_device, device, _device);
3259
3260 if (anv_device_is_lost(device))
3261 return VK_ERROR_DEVICE_LOST;
3262
3263 return anv_queue_submit_simple_batch(&device->queue, NULL);
3264 }
3265
3266 uint64_t
3267 anv_vma_alloc(struct anv_device *device,
3268 uint64_t size, uint64_t align,
3269 enum anv_bo_alloc_flags alloc_flags,
3270 uint64_t client_address)
3271 {
3272 pthread_mutex_lock(&device->vma_mutex);
3273
3274 uint64_t addr = 0;
3275
3276 if (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) {
3277 if (client_address) {
3278 if (util_vma_heap_alloc_addr(&device->vma_cva,
3279 client_address, size)) {
3280 addr = client_address;
3281 }
3282 } else {
3283 addr = util_vma_heap_alloc(&device->vma_cva, size, align);
3284 }
3285 /* We don't want to fall back to other heaps */
3286 goto done;
3287 }
3288
3289 assert(client_address == 0);
3290
3291 if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS))
3292 addr = util_vma_heap_alloc(&device->vma_hi, size, align);
3293
3294 if (addr == 0)
3295 addr = util_vma_heap_alloc(&device->vma_lo, size, align);
3296
3297 done:
3298 pthread_mutex_unlock(&device->vma_mutex);
3299
3300 assert(addr == gen_48b_address(addr));
3301 return gen_canonical_address(addr);
3302 }
3303
3304 void
3305 anv_vma_free(struct anv_device *device,
3306 uint64_t address, uint64_t size)
3307 {
3308 const uint64_t addr_48b = gen_48b_address(address);
3309
3310 pthread_mutex_lock(&device->vma_mutex);
3311
3312 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
3313 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
3314 util_vma_heap_free(&device->vma_lo, addr_48b, size);
3315 } else if (addr_48b >= CLIENT_VISIBLE_HEAP_MIN_ADDRESS &&
3316 addr_48b <= CLIENT_VISIBLE_HEAP_MAX_ADDRESS) {
3317 util_vma_heap_free(&device->vma_cva, addr_48b, size);
3318 } else {
3319 assert(addr_48b >= HIGH_HEAP_MIN_ADDRESS);
3320 util_vma_heap_free(&device->vma_hi, addr_48b, size);
3321 }
3322
3323 pthread_mutex_unlock(&device->vma_mutex);
3324 }
3325
3326 VkResult anv_AllocateMemory(
3327 VkDevice _device,
3328 const VkMemoryAllocateInfo* pAllocateInfo,
3329 const VkAllocationCallbacks* pAllocator,
3330 VkDeviceMemory* pMem)
3331 {
3332 ANV_FROM_HANDLE(anv_device, device, _device);
3333 struct anv_physical_device *pdevice = device->physical;
3334 struct anv_device_memory *mem;
3335 VkResult result = VK_SUCCESS;
3336
3337 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
3338
3339 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
3340 assert(pAllocateInfo->allocationSize > 0);
3341
3342 VkDeviceSize aligned_alloc_size =
3343 align_u64(pAllocateInfo->allocationSize, 4096);
3344
3345 if (aligned_alloc_size > MAX_MEMORY_ALLOCATION_SIZE)
3346 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3347
3348 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3349 struct anv_memory_type *mem_type =
3350 &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
3351 assert(mem_type->heapIndex < pdevice->memory.heap_count);
3352 struct anv_memory_heap *mem_heap =
3353 &pdevice->memory.heaps[mem_type->heapIndex];
3354
3355 uint64_t mem_heap_used = p_atomic_read(&mem_heap->used);
3356 if (mem_heap_used + aligned_alloc_size > mem_heap->size)
3357 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3358
3359 mem = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*mem), 8,
3360 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3361 if (mem == NULL)
3362 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3363
3364 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3365 vk_object_base_init(&device->vk, &mem->base, VK_OBJECT_TYPE_DEVICE_MEMORY);
3366 mem->type = mem_type;
3367 mem->map = NULL;
3368 mem->map_size = 0;
3369 mem->ahw = NULL;
3370 mem->host_ptr = NULL;
3371
3372 enum anv_bo_alloc_flags alloc_flags = 0;
3373
3374 const VkExportMemoryAllocateInfo *export_info = NULL;
3375 const VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info = NULL;
3376 const VkImportMemoryFdInfoKHR *fd_info = NULL;
3377 const VkImportMemoryHostPointerInfoEXT *host_ptr_info = NULL;
3378 const VkMemoryDedicatedAllocateInfo *dedicated_info = NULL;
3379 VkMemoryAllocateFlags vk_flags = 0;
3380 uint64_t client_address = 0;
3381
3382 vk_foreach_struct_const(ext, pAllocateInfo->pNext) {
3383 switch (ext->sType) {
3384 case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO:
3385 export_info = (void *)ext;
3386 break;
3387
3388 case VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID:
3389 ahw_import_info = (void *)ext;
3390 break;
3391
3392 case VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR:
3393 fd_info = (void *)ext;
3394 break;
3395
3396 case VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT:
3397 host_ptr_info = (void *)ext;
3398 break;
3399
3400 case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO: {
3401 const VkMemoryAllocateFlagsInfo *flags_info = (void *)ext;
3402 vk_flags = flags_info->flags;
3403 break;
3404 }
3405
3406 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO:
3407 dedicated_info = (void *)ext;
3408 break;
3409
3410 case VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO_KHR: {
3411 const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *addr_info =
3412 (const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *)ext;
3413 client_address = addr_info->opaqueCaptureAddress;
3414 break;
3415 }
3416
3417 default:
3418 anv_debug_ignored_stype(ext->sType);
3419 break;
3420 }
3421 }
3422
3423 /* By default, we want all VkDeviceMemory objects to support CCS */
3424 if (device->physical->has_implicit_ccs)
3425 alloc_flags |= ANV_BO_ALLOC_IMPLICIT_CCS;
3426
3427 if (vk_flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR)
3428 alloc_flags |= ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS;
3429
3430 if ((export_info && export_info->handleTypes) ||
3431 (fd_info && fd_info->handleType) ||
3432 (host_ptr_info && host_ptr_info->handleType)) {
3433 /* Anything imported or exported is EXTERNAL */
3434 alloc_flags |= ANV_BO_ALLOC_EXTERNAL;
3435
3436 /* We can't have implicit CCS on external memory with an AUX-table.
3437 * Doing so would require us to sync the aux tables across processes
3438 * which is impractical.
3439 */
3440 if (device->info.has_aux_map)
3441 alloc_flags &= ~ANV_BO_ALLOC_IMPLICIT_CCS;
3442 }
3443
3444 /* Check if we need to support Android HW buffer export. If so,
3445 * create AHardwareBuffer and import memory from it.
3446 */
3447 bool android_export = false;
3448 if (export_info && export_info->handleTypes &
3449 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
3450 android_export = true;
3451
3452 if (ahw_import_info) {
3453 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
3454 if (result != VK_SUCCESS)
3455 goto fail;
3456
3457 goto success;
3458 } else if (android_export) {
3459 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
3460 if (result != VK_SUCCESS)
3461 goto fail;
3462
3463 const VkImportAndroidHardwareBufferInfoANDROID import_info = {
3464 .buffer = mem->ahw,
3465 };
3466 result = anv_import_ahw_memory(_device, mem, &import_info);
3467 if (result != VK_SUCCESS)
3468 goto fail;
3469
3470 goto success;
3471 }
3472
3473 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3474 * ignored.
3475 */
3476 if (fd_info && fd_info->handleType) {
3477 /* At the moment, we support only the below handle types. */
3478 assert(fd_info->handleType ==
3479 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3480 fd_info->handleType ==
3481 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3482
3483 result = anv_device_import_bo(device, fd_info->fd, alloc_flags,
3484 client_address, &mem->bo);
3485 if (result != VK_SUCCESS)
3486 goto fail;
3487
3488 /* For security purposes, we reject importing the bo if it's smaller
3489 * than the requested allocation size. This prevents a malicious client
3490 * from passing a buffer to a trusted client, lying about the size, and
3491 * telling the trusted client to try and texture from an image that goes
3492 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3493 * in the trusted client. The trusted client can protect itself against
3494 * this sort of attack but only if it can trust the buffer size.
3495 */
3496 if (mem->bo->size < aligned_alloc_size) {
3497 result = vk_errorf(device, device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
3498 "aligned allocationSize too large for "
3499 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3500 "%"PRIu64"B > %"PRIu64"B",
3501 aligned_alloc_size, mem->bo->size);
3502 anv_device_release_bo(device, mem->bo);
3503 goto fail;
3504 }
3505
3506 /* From the Vulkan spec:
3507 *
3508 * "Importing memory from a file descriptor transfers ownership of
3509 * the file descriptor from the application to the Vulkan
3510 * implementation. The application must not perform any operations on
3511 * the file descriptor after a successful import."
3512 *
3513 * If the import fails, we leave the file descriptor open.
3514 */
3515 close(fd_info->fd);
3516 goto success;
3517 }
3518
3519 if (host_ptr_info && host_ptr_info->handleType) {
3520 if (host_ptr_info->handleType ==
3521 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3522 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3523 goto fail;
3524 }
3525
3526 assert(host_ptr_info->handleType ==
3527 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3528
3529 result = anv_device_import_bo_from_host_ptr(device,
3530 host_ptr_info->pHostPointer,
3531 pAllocateInfo->allocationSize,
3532 alloc_flags,
3533 client_address,
3534 &mem->bo);
3535 if (result != VK_SUCCESS)
3536 goto fail;
3537
3538 mem->host_ptr = host_ptr_info->pHostPointer;
3539 goto success;
3540 }
3541
3542 /* Regular allocate (not importing memory). */
3543
3544 result = anv_device_alloc_bo(device, pAllocateInfo->allocationSize,
3545 alloc_flags, client_address, &mem->bo);
3546 if (result != VK_SUCCESS)
3547 goto fail;
3548
3549 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3550 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3551
3552 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3553 * the BO. In this case, we have a dedicated allocation.
3554 */
3555 if (image->needs_set_tiling) {
3556 const uint32_t i915_tiling =
3557 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3558 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3559 image->planes[0].surface.isl.row_pitch_B,
3560 i915_tiling);
3561 if (ret) {
3562 anv_device_release_bo(device, mem->bo);
3563 result = vk_errorf(device, device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
3564 "failed to set BO tiling: %m");
3565 goto fail;
3566 }
3567 }
3568 }
3569
3570 success:
3571 mem_heap_used = p_atomic_add_return(&mem_heap->used, mem->bo->size);
3572 if (mem_heap_used > mem_heap->size) {
3573 p_atomic_add(&mem_heap->used, -mem->bo->size);
3574 anv_device_release_bo(device, mem->bo);
3575 result = vk_errorf(device, device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
3576 "Out of heap memory");
3577 goto fail;
3578 }
3579
3580 pthread_mutex_lock(&device->mutex);
3581 list_addtail(&mem->link, &device->memory_objects);
3582 pthread_mutex_unlock(&device->mutex);
3583
3584 *pMem = anv_device_memory_to_handle(mem);
3585
3586 return VK_SUCCESS;
3587
3588 fail:
3589 vk_free2(&device->vk.alloc, pAllocator, mem);
3590
3591 return result;
3592 }
3593
3594 VkResult anv_GetMemoryFdKHR(
3595 VkDevice device_h,
3596 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3597 int* pFd)
3598 {
3599 ANV_FROM_HANDLE(anv_device, dev, device_h);
3600 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3601
3602 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3603
3604 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3605 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3606
3607 return anv_device_export_bo(dev, mem->bo, pFd);
3608 }
3609
3610 VkResult anv_GetMemoryFdPropertiesKHR(
3611 VkDevice _device,
3612 VkExternalMemoryHandleTypeFlagBits handleType,
3613 int fd,
3614 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3615 {
3616 ANV_FROM_HANDLE(anv_device, device, _device);
3617
3618 switch (handleType) {
3619 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3620 /* dma-buf can be imported as any memory type */
3621 pMemoryFdProperties->memoryTypeBits =
3622 (1 << device->physical->memory.type_count) - 1;
3623 return VK_SUCCESS;
3624
3625 default:
3626 /* The valid usage section for this function says:
3627 *
3628 * "handleType must not be one of the handle types defined as
3629 * opaque."
3630 *
3631 * So opaque handle types fall into the default "unsupported" case.
3632 */
3633 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3634 }
3635 }
3636
3637 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3638 VkDevice _device,
3639 VkExternalMemoryHandleTypeFlagBits handleType,
3640 const void* pHostPointer,
3641 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3642 {
3643 ANV_FROM_HANDLE(anv_device, device, _device);
3644
3645 assert(pMemoryHostPointerProperties->sType ==
3646 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3647
3648 switch (handleType) {
3649 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT:
3650 /* Host memory can be imported as any memory type. */
3651 pMemoryHostPointerProperties->memoryTypeBits =
3652 (1ull << device->physical->memory.type_count) - 1;
3653
3654 return VK_SUCCESS;
3655
3656 default:
3657 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3658 }
3659 }
3660
3661 void anv_FreeMemory(
3662 VkDevice _device,
3663 VkDeviceMemory _mem,
3664 const VkAllocationCallbacks* pAllocator)
3665 {
3666 ANV_FROM_HANDLE(anv_device, device, _device);
3667 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3668
3669 if (mem == NULL)
3670 return;
3671
3672 pthread_mutex_lock(&device->mutex);
3673 list_del(&mem->link);
3674 pthread_mutex_unlock(&device->mutex);
3675
3676 if (mem->map)
3677 anv_UnmapMemory(_device, _mem);
3678
3679 p_atomic_add(&device->physical->memory.heaps[mem->type->heapIndex].used,
3680 -mem->bo->size);
3681
3682 anv_device_release_bo(device, mem->bo);
3683
3684 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3685 if (mem->ahw)
3686 AHardwareBuffer_release(mem->ahw);
3687 #endif
3688
3689 vk_object_base_finish(&mem->base);
3690 vk_free2(&device->vk.alloc, pAllocator, mem);
3691 }
3692
3693 VkResult anv_MapMemory(
3694 VkDevice _device,
3695 VkDeviceMemory _memory,
3696 VkDeviceSize offset,
3697 VkDeviceSize size,
3698 VkMemoryMapFlags flags,
3699 void** ppData)
3700 {
3701 ANV_FROM_HANDLE(anv_device, device, _device);
3702 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3703
3704 if (mem == NULL) {
3705 *ppData = NULL;
3706 return VK_SUCCESS;
3707 }
3708
3709 if (mem->host_ptr) {
3710 *ppData = mem->host_ptr + offset;
3711 return VK_SUCCESS;
3712 }
3713
3714 if (size == VK_WHOLE_SIZE)
3715 size = mem->bo->size - offset;
3716
3717 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3718 *
3719 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3720 * assert(size != 0);
3721 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3722 * equal to the size of the memory minus offset
3723 */
3724 assert(size > 0);
3725 assert(offset + size <= mem->bo->size);
3726
3727 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3728 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3729 * at a time is valid. We could just mmap up front and return an offset
3730 * pointer here, but that may exhaust virtual memory on 32 bit
3731 * userspace. */
3732
3733 uint32_t gem_flags = 0;
3734
3735 if (!device->info.has_llc &&
3736 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3737 gem_flags |= I915_MMAP_WC;
3738
3739 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3740 uint64_t map_offset;
3741 if (!device->physical->has_mmap_offset)
3742 map_offset = offset & ~4095ull;
3743 else
3744 map_offset = 0;
3745 assert(offset >= map_offset);
3746 uint64_t map_size = (offset + size) - map_offset;
3747
3748 /* Let's map whole pages */
3749 map_size = align_u64(map_size, 4096);
3750
3751 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3752 map_offset, map_size, gem_flags);
3753 if (map == MAP_FAILED)
3754 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3755
3756 mem->map = map;
3757 mem->map_size = map_size;
3758
3759 *ppData = mem->map + (offset - map_offset);
3760
3761 return VK_SUCCESS;
3762 }
3763
3764 void anv_UnmapMemory(
3765 VkDevice _device,
3766 VkDeviceMemory _memory)
3767 {
3768 ANV_FROM_HANDLE(anv_device, device, _device);
3769 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3770
3771 if (mem == NULL || mem->host_ptr)
3772 return;
3773
3774 anv_gem_munmap(device, mem->map, mem->map_size);
3775
3776 mem->map = NULL;
3777 mem->map_size = 0;
3778 }
3779
3780 static void
3781 clflush_mapped_ranges(struct anv_device *device,
3782 uint32_t count,
3783 const VkMappedMemoryRange *ranges)
3784 {
3785 for (uint32_t i = 0; i < count; i++) {
3786 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3787 if (ranges[i].offset >= mem->map_size)
3788 continue;
3789
3790 gen_clflush_range(mem->map + ranges[i].offset,
3791 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3792 }
3793 }
3794
3795 VkResult anv_FlushMappedMemoryRanges(
3796 VkDevice _device,
3797 uint32_t memoryRangeCount,
3798 const VkMappedMemoryRange* pMemoryRanges)
3799 {
3800 ANV_FROM_HANDLE(anv_device, device, _device);
3801
3802 if (device->info.has_llc)
3803 return VK_SUCCESS;
3804
3805 /* Make sure the writes we're flushing have landed. */
3806 __builtin_ia32_mfence();
3807
3808 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3809
3810 return VK_SUCCESS;
3811 }
3812
3813 VkResult anv_InvalidateMappedMemoryRanges(
3814 VkDevice _device,
3815 uint32_t memoryRangeCount,
3816 const VkMappedMemoryRange* pMemoryRanges)
3817 {
3818 ANV_FROM_HANDLE(anv_device, device, _device);
3819
3820 if (device->info.has_llc)
3821 return VK_SUCCESS;
3822
3823 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3824
3825 /* Make sure no reads get moved up above the invalidate. */
3826 __builtin_ia32_mfence();
3827
3828 return VK_SUCCESS;
3829 }
3830
3831 void anv_GetBufferMemoryRequirements(
3832 VkDevice _device,
3833 VkBuffer _buffer,
3834 VkMemoryRequirements* pMemoryRequirements)
3835 {
3836 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3837 ANV_FROM_HANDLE(anv_device, device, _device);
3838
3839 /* The Vulkan spec (git aaed022) says:
3840 *
3841 * memoryTypeBits is a bitfield and contains one bit set for every
3842 * supported memory type for the resource. The bit `1<<i` is set if and
3843 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3844 * structure for the physical device is supported.
3845 */
3846 uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
3847
3848 /* Base alignment requirement of a cache line */
3849 uint32_t alignment = 16;
3850
3851 /* We need an alignment of 32 for pushing UBOs */
3852 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3853 alignment = MAX2(alignment, 32);
3854
3855 pMemoryRequirements->size = buffer->size;
3856 pMemoryRequirements->alignment = alignment;
3857
3858 /* Storage and Uniform buffers should have their size aligned to
3859 * 32-bits to avoid boundary checks when last DWord is not complete.
3860 * This would ensure that not internal padding would be needed for
3861 * 16-bit types.
3862 */
3863 if (device->robust_buffer_access &&
3864 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3865 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3866 pMemoryRequirements->size = align_u64(buffer->size, 4);
3867
3868 pMemoryRequirements->memoryTypeBits = memory_types;
3869 }
3870
3871 void anv_GetBufferMemoryRequirements2(
3872 VkDevice _device,
3873 const VkBufferMemoryRequirementsInfo2* pInfo,
3874 VkMemoryRequirements2* pMemoryRequirements)
3875 {
3876 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3877 &pMemoryRequirements->memoryRequirements);
3878
3879 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3880 switch (ext->sType) {
3881 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3882 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3883 requirements->prefersDedicatedAllocation = false;
3884 requirements->requiresDedicatedAllocation = false;
3885 break;
3886 }
3887
3888 default:
3889 anv_debug_ignored_stype(ext->sType);
3890 break;
3891 }
3892 }
3893 }
3894
3895 void anv_GetImageMemoryRequirements(
3896 VkDevice _device,
3897 VkImage _image,
3898 VkMemoryRequirements* pMemoryRequirements)
3899 {
3900 ANV_FROM_HANDLE(anv_image, image, _image);
3901 ANV_FROM_HANDLE(anv_device, device, _device);
3902
3903 /* The Vulkan spec (git aaed022) says:
3904 *
3905 * memoryTypeBits is a bitfield and contains one bit set for every
3906 * supported memory type for the resource. The bit `1<<i` is set if and
3907 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3908 * structure for the physical device is supported.
3909 *
3910 * All types are currently supported for images.
3911 */
3912 uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
3913
3914 pMemoryRequirements->size = image->size;
3915 pMemoryRequirements->alignment = image->alignment;
3916 pMemoryRequirements->memoryTypeBits = memory_types;
3917 }
3918
3919 void anv_GetImageMemoryRequirements2(
3920 VkDevice _device,
3921 const VkImageMemoryRequirementsInfo2* pInfo,
3922 VkMemoryRequirements2* pMemoryRequirements)
3923 {
3924 ANV_FROM_HANDLE(anv_device, device, _device);
3925 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3926
3927 anv_GetImageMemoryRequirements(_device, pInfo->image,
3928 &pMemoryRequirements->memoryRequirements);
3929
3930 vk_foreach_struct_const(ext, pInfo->pNext) {
3931 switch (ext->sType) {
3932 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3933 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3934 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3935 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3936 plane_reqs->planeAspect);
3937
3938 assert(image->planes[plane].offset == 0);
3939
3940 /* The Vulkan spec (git aaed022) says:
3941 *
3942 * memoryTypeBits is a bitfield and contains one bit set for every
3943 * supported memory type for the resource. The bit `1<<i` is set
3944 * if and only if the memory type `i` in the
3945 * VkPhysicalDeviceMemoryProperties structure for the physical
3946 * device is supported.
3947 *
3948 * All types are currently supported for images.
3949 */
3950 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3951 (1ull << device->physical->memory.type_count) - 1;
3952
3953 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3954 pMemoryRequirements->memoryRequirements.alignment =
3955 image->planes[plane].alignment;
3956 break;
3957 }
3958
3959 default:
3960 anv_debug_ignored_stype(ext->sType);
3961 break;
3962 }
3963 }
3964
3965 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3966 switch (ext->sType) {
3967 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3968 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3969 if (image->needs_set_tiling || image->external_format) {
3970 /* If we need to set the tiling for external consumers, we need a
3971 * dedicated allocation.
3972 *
3973 * See also anv_AllocateMemory.
3974 */
3975 requirements->prefersDedicatedAllocation = true;
3976 requirements->requiresDedicatedAllocation = true;
3977 } else {
3978 requirements->prefersDedicatedAllocation = false;
3979 requirements->requiresDedicatedAllocation = false;
3980 }
3981 break;
3982 }
3983
3984 default:
3985 anv_debug_ignored_stype(ext->sType);
3986 break;
3987 }
3988 }
3989 }
3990
3991 void anv_GetImageSparseMemoryRequirements(
3992 VkDevice device,
3993 VkImage image,
3994 uint32_t* pSparseMemoryRequirementCount,
3995 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3996 {
3997 *pSparseMemoryRequirementCount = 0;
3998 }
3999
4000 void anv_GetImageSparseMemoryRequirements2(
4001 VkDevice device,
4002 const VkImageSparseMemoryRequirementsInfo2* pInfo,
4003 uint32_t* pSparseMemoryRequirementCount,
4004 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
4005 {
4006 *pSparseMemoryRequirementCount = 0;
4007 }
4008
4009 void anv_GetDeviceMemoryCommitment(
4010 VkDevice device,
4011 VkDeviceMemory memory,
4012 VkDeviceSize* pCommittedMemoryInBytes)
4013 {
4014 *pCommittedMemoryInBytes = 0;
4015 }
4016
4017 static void
4018 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
4019 {
4020 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
4021 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
4022
4023 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
4024
4025 if (mem) {
4026 buffer->address = (struct anv_address) {
4027 .bo = mem->bo,
4028 .offset = pBindInfo->memoryOffset,
4029 };
4030 } else {
4031 buffer->address = ANV_NULL_ADDRESS;
4032 }
4033 }
4034
4035 VkResult anv_BindBufferMemory(
4036 VkDevice device,
4037 VkBuffer buffer,
4038 VkDeviceMemory memory,
4039 VkDeviceSize memoryOffset)
4040 {
4041 anv_bind_buffer_memory(
4042 &(VkBindBufferMemoryInfo) {
4043 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
4044 .buffer = buffer,
4045 .memory = memory,
4046 .memoryOffset = memoryOffset,
4047 });
4048
4049 return VK_SUCCESS;
4050 }
4051
4052 VkResult anv_BindBufferMemory2(
4053 VkDevice device,
4054 uint32_t bindInfoCount,
4055 const VkBindBufferMemoryInfo* pBindInfos)
4056 {
4057 for (uint32_t i = 0; i < bindInfoCount; i++)
4058 anv_bind_buffer_memory(&pBindInfos[i]);
4059
4060 return VK_SUCCESS;
4061 }
4062
4063 VkResult anv_QueueBindSparse(
4064 VkQueue _queue,
4065 uint32_t bindInfoCount,
4066 const VkBindSparseInfo* pBindInfo,
4067 VkFence fence)
4068 {
4069 ANV_FROM_HANDLE(anv_queue, queue, _queue);
4070 if (anv_device_is_lost(queue->device))
4071 return VK_ERROR_DEVICE_LOST;
4072
4073 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
4074 }
4075
4076 // Event functions
4077
4078 VkResult anv_CreateEvent(
4079 VkDevice _device,
4080 const VkEventCreateInfo* pCreateInfo,
4081 const VkAllocationCallbacks* pAllocator,
4082 VkEvent* pEvent)
4083 {
4084 ANV_FROM_HANDLE(anv_device, device, _device);
4085 struct anv_event *event;
4086
4087 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
4088
4089 event = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*event), 8,
4090 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4091 if (event == NULL)
4092 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4093
4094 vk_object_base_init(&device->vk, &event->base, VK_OBJECT_TYPE_EVENT);
4095 event->state = anv_state_pool_alloc(&device->dynamic_state_pool,
4096 sizeof(uint64_t), 8);
4097 *(uint64_t *)event->state.map = VK_EVENT_RESET;
4098
4099 *pEvent = anv_event_to_handle(event);
4100
4101 return VK_SUCCESS;
4102 }
4103
4104 void anv_DestroyEvent(
4105 VkDevice _device,
4106 VkEvent _event,
4107 const VkAllocationCallbacks* pAllocator)
4108 {
4109 ANV_FROM_HANDLE(anv_device, device, _device);
4110 ANV_FROM_HANDLE(anv_event, event, _event);
4111
4112 if (!event)
4113 return;
4114
4115 anv_state_pool_free(&device->dynamic_state_pool, event->state);
4116
4117 vk_object_base_finish(&event->base);
4118 vk_free2(&device->vk.alloc, pAllocator, event);
4119 }
4120
4121 VkResult anv_GetEventStatus(
4122 VkDevice _device,
4123 VkEvent _event)
4124 {
4125 ANV_FROM_HANDLE(anv_device, device, _device);
4126 ANV_FROM_HANDLE(anv_event, event, _event);
4127
4128 if (anv_device_is_lost(device))
4129 return VK_ERROR_DEVICE_LOST;
4130
4131 return *(uint64_t *)event->state.map;
4132 }
4133
4134 VkResult anv_SetEvent(
4135 VkDevice _device,
4136 VkEvent _event)
4137 {
4138 ANV_FROM_HANDLE(anv_event, event, _event);
4139
4140 *(uint64_t *)event->state.map = VK_EVENT_SET;
4141
4142 return VK_SUCCESS;
4143 }
4144
4145 VkResult anv_ResetEvent(
4146 VkDevice _device,
4147 VkEvent _event)
4148 {
4149 ANV_FROM_HANDLE(anv_event, event, _event);
4150
4151 *(uint64_t *)event->state.map = VK_EVENT_RESET;
4152
4153 return VK_SUCCESS;
4154 }
4155
4156 // Buffer functions
4157
4158 VkResult anv_CreateBuffer(
4159 VkDevice _device,
4160 const VkBufferCreateInfo* pCreateInfo,
4161 const VkAllocationCallbacks* pAllocator,
4162 VkBuffer* pBuffer)
4163 {
4164 ANV_FROM_HANDLE(anv_device, device, _device);
4165 struct anv_buffer *buffer;
4166
4167 /* Don't allow creating buffers bigger than our address space. The real
4168 * issue here is that we may align up the buffer size and we don't want
4169 * doing so to cause roll-over. However, no one has any business
4170 * allocating a buffer larger than our GTT size.
4171 */
4172 if (pCreateInfo->size > device->physical->gtt_size)
4173 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
4174
4175 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
4176
4177 buffer = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*buffer), 8,
4178 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4179 if (buffer == NULL)
4180 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4181
4182 vk_object_base_init(&device->vk, &buffer->base, VK_OBJECT_TYPE_BUFFER);
4183 buffer->size = pCreateInfo->size;
4184 buffer->usage = pCreateInfo->usage;
4185 buffer->address = ANV_NULL_ADDRESS;
4186
4187 *pBuffer = anv_buffer_to_handle(buffer);
4188
4189 return VK_SUCCESS;
4190 }
4191
4192 void anv_DestroyBuffer(
4193 VkDevice _device,
4194 VkBuffer _buffer,
4195 const VkAllocationCallbacks* pAllocator)
4196 {
4197 ANV_FROM_HANDLE(anv_device, device, _device);
4198 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4199
4200 if (!buffer)
4201 return;
4202
4203 vk_object_base_finish(&buffer->base);
4204 vk_free2(&device->vk.alloc, pAllocator, buffer);
4205 }
4206
4207 VkDeviceAddress anv_GetBufferDeviceAddress(
4208 VkDevice device,
4209 const VkBufferDeviceAddressInfoKHR* pInfo)
4210 {
4211 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
4212
4213 assert(!anv_address_is_null(buffer->address));
4214 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
4215
4216 return anv_address_physical(buffer->address);
4217 }
4218
4219 uint64_t anv_GetBufferOpaqueCaptureAddress(
4220 VkDevice device,
4221 const VkBufferDeviceAddressInfoKHR* pInfo)
4222 {
4223 return 0;
4224 }
4225
4226 uint64_t anv_GetDeviceMemoryOpaqueCaptureAddress(
4227 VkDevice device,
4228 const VkDeviceMemoryOpaqueCaptureAddressInfoKHR* pInfo)
4229 {
4230 ANV_FROM_HANDLE(anv_device_memory, memory, pInfo->memory);
4231
4232 assert(memory->bo->flags & EXEC_OBJECT_PINNED);
4233 assert(memory->bo->has_client_visible_address);
4234
4235 return gen_48b_address(memory->bo->offset);
4236 }
4237
4238 void
4239 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
4240 enum isl_format format,
4241 struct anv_address address,
4242 uint32_t range, uint32_t stride)
4243 {
4244 isl_buffer_fill_state(&device->isl_dev, state.map,
4245 .address = anv_address_physical(address),
4246 .mocs = device->isl_dev.mocs.internal,
4247 .size_B = range,
4248 .format = format,
4249 .swizzle = ISL_SWIZZLE_IDENTITY,
4250 .stride_B = stride);
4251 }
4252
4253 void anv_DestroySampler(
4254 VkDevice _device,
4255 VkSampler _sampler,
4256 const VkAllocationCallbacks* pAllocator)
4257 {
4258 ANV_FROM_HANDLE(anv_device, device, _device);
4259 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
4260
4261 if (!sampler)
4262 return;
4263
4264 if (sampler->bindless_state.map) {
4265 anv_state_pool_free(&device->dynamic_state_pool,
4266 sampler->bindless_state);
4267 }
4268
4269 vk_object_base_finish(&sampler->base);
4270 vk_free2(&device->vk.alloc, pAllocator, sampler);
4271 }
4272
4273 VkResult anv_CreateFramebuffer(
4274 VkDevice _device,
4275 const VkFramebufferCreateInfo* pCreateInfo,
4276 const VkAllocationCallbacks* pAllocator,
4277 VkFramebuffer* pFramebuffer)
4278 {
4279 ANV_FROM_HANDLE(anv_device, device, _device);
4280 struct anv_framebuffer *framebuffer;
4281
4282 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
4283
4284 size_t size = sizeof(*framebuffer);
4285
4286 /* VK_KHR_imageless_framebuffer extension says:
4287 *
4288 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
4289 * parameter pAttachments is ignored.
4290 */
4291 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
4292 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
4293 framebuffer = vk_alloc2(&device->vk.alloc, pAllocator, size, 8,
4294 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4295 if (framebuffer == NULL)
4296 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4297
4298 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
4299 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
4300 framebuffer->attachments[i] = iview;
4301 }
4302 framebuffer->attachment_count = pCreateInfo->attachmentCount;
4303 } else {
4304 framebuffer = vk_alloc2(&device->vk.alloc, pAllocator, size, 8,
4305 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4306 if (framebuffer == NULL)
4307 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4308
4309 framebuffer->attachment_count = 0;
4310 }
4311
4312 vk_object_base_init(&device->vk, &framebuffer->base,
4313 VK_OBJECT_TYPE_FRAMEBUFFER);
4314
4315 framebuffer->width = pCreateInfo->width;
4316 framebuffer->height = pCreateInfo->height;
4317 framebuffer->layers = pCreateInfo->layers;
4318
4319 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
4320
4321 return VK_SUCCESS;
4322 }
4323
4324 void anv_DestroyFramebuffer(
4325 VkDevice _device,
4326 VkFramebuffer _fb,
4327 const VkAllocationCallbacks* pAllocator)
4328 {
4329 ANV_FROM_HANDLE(anv_device, device, _device);
4330 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
4331
4332 if (!fb)
4333 return;
4334
4335 vk_object_base_finish(&fb->base);
4336 vk_free2(&device->vk.alloc, pAllocator, fb);
4337 }
4338
4339 static const VkTimeDomainEXT anv_time_domains[] = {
4340 VK_TIME_DOMAIN_DEVICE_EXT,
4341 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
4342 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
4343 };
4344
4345 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
4346 VkPhysicalDevice physicalDevice,
4347 uint32_t *pTimeDomainCount,
4348 VkTimeDomainEXT *pTimeDomains)
4349 {
4350 int d;
4351 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
4352
4353 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
4354 vk_outarray_append(&out, i) {
4355 *i = anv_time_domains[d];
4356 }
4357 }
4358
4359 return vk_outarray_status(&out);
4360 }
4361
4362 static uint64_t
4363 anv_clock_gettime(clockid_t clock_id)
4364 {
4365 struct timespec current;
4366 int ret;
4367
4368 ret = clock_gettime(clock_id, &current);
4369 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
4370 ret = clock_gettime(CLOCK_MONOTONIC, &current);
4371 if (ret < 0)
4372 return 0;
4373
4374 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
4375 }
4376
4377 #define TIMESTAMP 0x2358
4378
4379 VkResult anv_GetCalibratedTimestampsEXT(
4380 VkDevice _device,
4381 uint32_t timestampCount,
4382 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
4383 uint64_t *pTimestamps,
4384 uint64_t *pMaxDeviation)
4385 {
4386 ANV_FROM_HANDLE(anv_device, device, _device);
4387 uint64_t timestamp_frequency = device->info.timestamp_frequency;
4388 int ret;
4389 int d;
4390 uint64_t begin, end;
4391 uint64_t max_clock_period = 0;
4392
4393 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4394
4395 for (d = 0; d < timestampCount; d++) {
4396 switch (pTimestampInfos[d].timeDomain) {
4397 case VK_TIME_DOMAIN_DEVICE_EXT:
4398 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
4399 &pTimestamps[d]);
4400
4401 if (ret != 0) {
4402 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
4403 "register: %m");
4404 }
4405 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
4406 max_clock_period = MAX2(max_clock_period, device_period);
4407 break;
4408 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
4409 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
4410 max_clock_period = MAX2(max_clock_period, 1);
4411 break;
4412
4413 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
4414 pTimestamps[d] = begin;
4415 break;
4416 default:
4417 pTimestamps[d] = 0;
4418 break;
4419 }
4420 }
4421
4422 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4423
4424 /*
4425 * The maximum deviation is the sum of the interval over which we
4426 * perform the sampling and the maximum period of any sampled
4427 * clock. That's because the maximum skew between any two sampled
4428 * clock edges is when the sampled clock with the largest period is
4429 * sampled at the end of that period but right at the beginning of the
4430 * sampling interval and some other clock is sampled right at the
4431 * begining of its sampling period and right at the end of the
4432 * sampling interval. Let's assume the GPU has the longest clock
4433 * period and that the application is sampling GPU and monotonic:
4434 *
4435 * s e
4436 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
4437 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4438 *
4439 * g
4440 * 0 1 2 3
4441 * GPU -----_____-----_____-----_____-----_____
4442 *
4443 * m
4444 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
4445 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4446 *
4447 * Interval <----------------->
4448 * Deviation <-------------------------->
4449 *
4450 * s = read(raw) 2
4451 * g = read(GPU) 1
4452 * m = read(monotonic) 2
4453 * e = read(raw) b
4454 *
4455 * We round the sample interval up by one tick to cover sampling error
4456 * in the interval clock
4457 */
4458
4459 uint64_t sample_interval = end - begin + 1;
4460
4461 *pMaxDeviation = sample_interval + max_clock_period;
4462
4463 return VK_SUCCESS;
4464 }
4465
4466 /* vk_icd.h does not declare this function, so we declare it here to
4467 * suppress Wmissing-prototypes.
4468 */
4469 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4470 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4471
4472 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4473 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4474 {
4475 /* For the full details on loader interface versioning, see
4476 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4477 * What follows is a condensed summary, to help you navigate the large and
4478 * confusing official doc.
4479 *
4480 * - Loader interface v0 is incompatible with later versions. We don't
4481 * support it.
4482 *
4483 * - In loader interface v1:
4484 * - The first ICD entrypoint called by the loader is
4485 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4486 * entrypoint.
4487 * - The ICD must statically expose no other Vulkan symbol unless it is
4488 * linked with -Bsymbolic.
4489 * - Each dispatchable Vulkan handle created by the ICD must be
4490 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4491 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4492 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4493 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4494 * such loader-managed surfaces.
4495 *
4496 * - Loader interface v2 differs from v1 in:
4497 * - The first ICD entrypoint called by the loader is
4498 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4499 * statically expose this entrypoint.
4500 *
4501 * - Loader interface v3 differs from v2 in:
4502 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4503 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4504 * because the loader no longer does so.
4505 *
4506 * - Loader interface v4 differs from v3 in:
4507 * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
4508 */
4509 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
4510 return VK_SUCCESS;
4511 }