97d0088bd9098c1d55f4d8bf86226066472a55b8
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/debug.h"
36 #include "util/build_id.h"
37 #include "util/disk_cache.h"
38 #include "util/mesa-sha1.h"
39 #include "util/os_file.h"
40 #include "util/u_atomic.h"
41 #include "util/u_string.h"
42 #include "util/xmlpool.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_aux_map.h"
46 #include "common/gen_defines.h"
47 #include "compiler/glsl_types.h"
48
49 #include "genxml/gen7_pack.h"
50
51 static const char anv_dri_options_xml[] =
52 DRI_CONF_BEGIN
53 DRI_CONF_SECTION_PERFORMANCE
54 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
55 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
56 DRI_CONF_SECTION_END
57
58 DRI_CONF_SECTION_DEBUG
59 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
60 DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST("false")
61 DRI_CONF_SECTION_END
62 DRI_CONF_END;
63
64 /* This is probably far to big but it reflects the max size used for messages
65 * in OpenGLs KHR_debug.
66 */
67 #define MAX_DEBUG_MESSAGE_LENGTH 4096
68
69 /* Render engine timestamp register */
70 #define TIMESTAMP 0x2358
71
72 static void
73 compiler_debug_log(void *data, const char *fmt, ...)
74 {
75 char str[MAX_DEBUG_MESSAGE_LENGTH];
76 struct anv_device *device = (struct anv_device *)data;
77 struct anv_instance *instance = device->physical->instance;
78
79 if (list_is_empty(&instance->debug_report_callbacks.callbacks))
80 return;
81
82 va_list args;
83 va_start(args, fmt);
84 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
85 va_end(args);
86
87 vk_debug_report(&instance->debug_report_callbacks,
88 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
89 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
90 0, 0, 0, "anv", str);
91 }
92
93 static void
94 compiler_perf_log(void *data, const char *fmt, ...)
95 {
96 va_list args;
97 va_start(args, fmt);
98
99 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
100 intel_logd_v(fmt, args);
101
102 va_end(args);
103 }
104
105 static uint64_t
106 anv_compute_heap_size(int fd, uint64_t gtt_size)
107 {
108 /* Query the total ram from the system */
109 struct sysinfo info;
110 sysinfo(&info);
111
112 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
113
114 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
115 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
116 */
117 uint64_t available_ram;
118 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
119 available_ram = total_ram / 2;
120 else
121 available_ram = total_ram * 3 / 4;
122
123 /* We also want to leave some padding for things we allocate in the driver,
124 * so don't go over 3/4 of the GTT either.
125 */
126 uint64_t available_gtt = gtt_size * 3 / 4;
127
128 return MIN2(available_ram, available_gtt);
129 }
130
131 static VkResult
132 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
133 {
134 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
135 &device->gtt_size) == -1) {
136 /* If, for whatever reason, we can't actually get the GTT size from the
137 * kernel (too old?) fall back to the aperture size.
138 */
139 anv_perf_warn(NULL, NULL,
140 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
141
142 if (gen_get_aperture_size(fd, &device->gtt_size) == -1) {
143 return vk_errorfi(device->instance, NULL,
144 VK_ERROR_INITIALIZATION_FAILED,
145 "failed to get aperture size: %m");
146 }
147 }
148
149 /* We only allow 48-bit addresses with softpin because knowing the actual
150 * address is required for the vertex cache flush workaround.
151 */
152 device->supports_48bit_addresses = (device->info.gen >= 8) &&
153 device->has_softpin &&
154 device->gtt_size > (4ULL << 30 /* GiB */);
155
156 uint64_t heap_size = anv_compute_heap_size(fd, device->gtt_size);
157
158 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
159 /* When running with an overridden PCI ID, we may get a GTT size from
160 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
161 * address support can still fail. Just clamp the address space size to
162 * 2 GiB if we don't have 48-bit support.
163 */
164 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
165 "not support for 48-bit addresses",
166 __FILE__, __LINE__);
167 heap_size = 2ull << 30;
168 }
169
170 device->memory.heap_count = 1;
171 device->memory.heaps[0] = (struct anv_memory_heap) {
172 .size = heap_size,
173 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
174 };
175
176 uint32_t type_count = 0;
177 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
178 if (device->info.has_llc) {
179 /* Big core GPUs share LLC with the CPU and thus one memory type can be
180 * both cached and coherent at the same time.
181 */
182 device->memory.types[type_count++] = (struct anv_memory_type) {
183 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
184 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
185 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
186 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
187 .heapIndex = heap,
188 };
189 } else {
190 /* The spec requires that we expose a host-visible, coherent memory
191 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
192 * to give the application a choice between cached, but not coherent and
193 * coherent but uncached (WC though).
194 */
195 device->memory.types[type_count++] = (struct anv_memory_type) {
196 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
197 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
198 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
199 .heapIndex = heap,
200 };
201 device->memory.types[type_count++] = (struct anv_memory_type) {
202 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
203 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
204 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
205 .heapIndex = heap,
206 };
207 }
208 }
209 device->memory.type_count = type_count;
210
211 return VK_SUCCESS;
212 }
213
214 static VkResult
215 anv_physical_device_init_uuids(struct anv_physical_device *device)
216 {
217 const struct build_id_note *note =
218 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
219 if (!note) {
220 return vk_errorfi(device->instance, NULL,
221 VK_ERROR_INITIALIZATION_FAILED,
222 "Failed to find build-id");
223 }
224
225 unsigned build_id_len = build_id_length(note);
226 if (build_id_len < 20) {
227 return vk_errorfi(device->instance, NULL,
228 VK_ERROR_INITIALIZATION_FAILED,
229 "build-id too short. It needs to be a SHA");
230 }
231
232 memcpy(device->driver_build_sha1, build_id_data(note), 20);
233
234 struct mesa_sha1 sha1_ctx;
235 uint8_t sha1[20];
236 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
237
238 /* The pipeline cache UUID is used for determining when a pipeline cache is
239 * invalid. It needs both a driver build and the PCI ID of the device.
240 */
241 _mesa_sha1_init(&sha1_ctx);
242 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
243 _mesa_sha1_update(&sha1_ctx, &device->info.chipset_id,
244 sizeof(device->info.chipset_id));
245 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
246 sizeof(device->always_use_bindless));
247 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
248 sizeof(device->has_a64_buffer_access));
249 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
250 sizeof(device->has_bindless_images));
251 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
252 sizeof(device->has_bindless_samplers));
253 _mesa_sha1_final(&sha1_ctx, sha1);
254 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
255
256 /* The driver UUID is used for determining sharability of images and memory
257 * between two Vulkan instances in separate processes. People who want to
258 * share memory need to also check the device UUID (below) so all this
259 * needs to be is the build-id.
260 */
261 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
262
263 /* The device UUID uniquely identifies the given device within the machine.
264 * Since we never have more than one device, this doesn't need to be a real
265 * UUID. However, on the off-chance that someone tries to use this to
266 * cache pre-tiled images or something of the like, we use the PCI ID and
267 * some bits of ISL info to ensure that this is safe.
268 */
269 _mesa_sha1_init(&sha1_ctx);
270 _mesa_sha1_update(&sha1_ctx, &device->info.chipset_id,
271 sizeof(device->info.chipset_id));
272 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
273 sizeof(device->isl_dev.has_bit6_swizzling));
274 _mesa_sha1_final(&sha1_ctx, sha1);
275 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
276
277 return VK_SUCCESS;
278 }
279
280 static void
281 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
282 {
283 #ifdef ENABLE_SHADER_CACHE
284 char renderer[10];
285 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
286 device->info.chipset_id);
287 assert(len == sizeof(renderer) - 2);
288
289 char timestamp[41];
290 _mesa_sha1_format(timestamp, device->driver_build_sha1);
291
292 const uint64_t driver_flags =
293 brw_get_compiler_config_value(device->compiler);
294 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
295 #else
296 device->disk_cache = NULL;
297 #endif
298 }
299
300 static void
301 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
302 {
303 #ifdef ENABLE_SHADER_CACHE
304 if (device->disk_cache)
305 disk_cache_destroy(device->disk_cache);
306 #else
307 assert(device->disk_cache == NULL);
308 #endif
309 }
310
311 static uint64_t
312 get_available_system_memory()
313 {
314 char *meminfo = os_read_file("/proc/meminfo", NULL);
315 if (!meminfo)
316 return 0;
317
318 char *str = strstr(meminfo, "MemAvailable:");
319 if (!str) {
320 free(meminfo);
321 return 0;
322 }
323
324 uint64_t kb_mem_available;
325 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
326 free(meminfo);
327 return kb_mem_available << 10;
328 }
329
330 free(meminfo);
331 return 0;
332 }
333
334 static VkResult
335 anv_physical_device_try_create(struct anv_instance *instance,
336 drmDevicePtr drm_device,
337 struct anv_physical_device **device_out)
338 {
339 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
340 const char *path = drm_device->nodes[DRM_NODE_RENDER];
341 VkResult result;
342 int fd;
343 int master_fd = -1;
344
345 brw_process_intel_debug_variable();
346
347 fd = open(path, O_RDWR | O_CLOEXEC);
348 if (fd < 0)
349 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
350
351 struct gen_device_info devinfo;
352 if (!gen_get_device_info_from_fd(fd, &devinfo)) {
353 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
354 goto fail_fd;
355 }
356
357 const char *device_name = gen_get_device_name(devinfo.chipset_id);
358
359 if (devinfo.is_haswell) {
360 intel_logw("Haswell Vulkan support is incomplete");
361 } else if (devinfo.gen == 7 && !devinfo.is_baytrail) {
362 intel_logw("Ivy Bridge Vulkan support is incomplete");
363 } else if (devinfo.gen == 7 && devinfo.is_baytrail) {
364 intel_logw("Bay Trail Vulkan support is incomplete");
365 } else if (devinfo.gen >= 8 && devinfo.gen <= 11) {
366 /* Gen8-11 fully supported */
367 } else if (devinfo.gen == 12) {
368 intel_logw("Vulkan is not yet fully supported on gen12");
369 } else {
370 result = vk_errorfi(instance, NULL, VK_ERROR_INCOMPATIBLE_DRIVER,
371 "Vulkan not yet supported on %s", device_name);
372 goto fail_fd;
373 }
374
375 struct anv_physical_device *device =
376 vk_alloc(&instance->alloc, sizeof(*device), 8,
377 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
378 if (device == NULL) {
379 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
380 goto fail_fd;
381 }
382
383 vk_object_base_init(NULL, &device->base, VK_OBJECT_TYPE_PHYSICAL_DEVICE);
384 device->instance = instance;
385
386 assert(strlen(path) < ARRAY_SIZE(device->path));
387 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
388
389 device->info = devinfo;
390 device->name = device_name;
391
392 device->no_hw = device->info.no_hw;
393 if (getenv("INTEL_NO_HW") != NULL)
394 device->no_hw = true;
395
396 device->pci_info.domain = drm_device->businfo.pci->domain;
397 device->pci_info.bus = drm_device->businfo.pci->bus;
398 device->pci_info.device = drm_device->businfo.pci->dev;
399 device->pci_info.function = drm_device->businfo.pci->func;
400
401 device->cmd_parser_version = -1;
402 if (device->info.gen == 7) {
403 device->cmd_parser_version =
404 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
405 if (device->cmd_parser_version == -1) {
406 result = vk_errorfi(device->instance, NULL,
407 VK_ERROR_INITIALIZATION_FAILED,
408 "failed to get command parser version");
409 goto fail_alloc;
410 }
411 }
412
413 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
414 result = vk_errorfi(device->instance, NULL,
415 VK_ERROR_INITIALIZATION_FAILED,
416 "kernel missing gem wait");
417 goto fail_alloc;
418 }
419
420 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
421 result = vk_errorfi(device->instance, NULL,
422 VK_ERROR_INITIALIZATION_FAILED,
423 "kernel missing execbuf2");
424 goto fail_alloc;
425 }
426
427 if (!device->info.has_llc &&
428 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
429 result = vk_errorfi(device->instance, NULL,
430 VK_ERROR_INITIALIZATION_FAILED,
431 "kernel missing wc mmap");
432 goto fail_alloc;
433 }
434
435 device->has_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN);
436 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
437 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
438 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
439 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
440 device->has_syncobj_wait = device->has_syncobj &&
441 anv_gem_supports_syncobj_wait(fd);
442 device->has_context_priority = anv_gem_has_context_priority(fd);
443
444 result = anv_physical_device_init_heaps(device, fd);
445 if (result != VK_SUCCESS)
446 goto fail_alloc;
447
448 device->use_softpin = device->has_softpin &&
449 device->supports_48bit_addresses;
450
451 device->has_context_isolation =
452 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
453
454 device->always_use_bindless =
455 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
456
457 device->use_call_secondary =
458 device->use_softpin &&
459 !env_var_as_boolean("ANV_DISABLE_SECONDARY_CMD_BUFFER_CALLS", false);
460
461 /* We first got the A64 messages on broadwell and we can only use them if
462 * we can pass addresses directly into the shader which requires softpin.
463 */
464 device->has_a64_buffer_access = device->info.gen >= 8 &&
465 device->use_softpin;
466
467 /* We first get bindless image access on Skylake and we can only really do
468 * it if we don't have any relocations so we need softpin.
469 */
470 device->has_bindless_images = device->info.gen >= 9 &&
471 device->use_softpin;
472
473 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
474 * because it's just a matter of setting the sampler address in the sample
475 * message header. However, we've not bothered to wire it up for vec4 so
476 * we leave it disabled on gen7.
477 */
478 device->has_bindless_samplers = device->info.gen >= 8;
479
480 device->has_implicit_ccs = device->info.has_aux_map;
481
482 /* Check if we can read the GPU timestamp register from the CPU */
483 uint64_t u64_ignore;
484 device->has_reg_timestamp = anv_gem_reg_read(fd, TIMESTAMP | I915_REG_READ_8B_WA,
485 &u64_ignore) == 0;
486
487 device->has_mem_available = get_available_system_memory() != 0;
488
489 device->always_flush_cache =
490 driQueryOptionb(&instance->dri_options, "always_flush_cache");
491
492 device->has_mmap_offset =
493 anv_gem_get_param(fd, I915_PARAM_MMAP_GTT_VERSION) >= 4;
494
495 /* GENs prior to 8 do not support EU/Subslice info */
496 if (device->info.gen >= 8) {
497 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
498 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
499
500 /* Without this information, we cannot get the right Braswell
501 * brandstrings, and we have to use conservative numbers for GPGPU on
502 * many platforms, but otherwise, things will just work.
503 */
504 if (device->subslice_total < 1 || device->eu_total < 1) {
505 intel_logw("Kernel 4.1 required to properly query GPU properties");
506 }
507 } else if (device->info.gen == 7) {
508 device->subslice_total = 1 << (device->info.gt - 1);
509 }
510
511 if (device->info.is_cherryview &&
512 device->subslice_total > 0 && device->eu_total > 0) {
513 /* Logical CS threads = EUs per subslice * num threads per EU */
514 uint32_t max_cs_threads =
515 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
516
517 /* Fuse configurations may give more threads than expected, never less. */
518 if (max_cs_threads > device->info.max_cs_threads)
519 device->info.max_cs_threads = max_cs_threads;
520 }
521
522 device->compiler = brw_compiler_create(NULL, &device->info);
523 if (device->compiler == NULL) {
524 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
525 goto fail_alloc;
526 }
527 device->compiler->shader_debug_log = compiler_debug_log;
528 device->compiler->shader_perf_log = compiler_perf_log;
529 device->compiler->supports_pull_constants = false;
530 device->compiler->constant_buffer_0_is_relative =
531 device->info.gen < 8 || !device->has_context_isolation;
532 device->compiler->supports_shader_constants = true;
533 device->compiler->compact_params = false;
534
535 /* Broadwell PRM says:
536 *
537 * "Before Gen8, there was a historical configuration control field to
538 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
539 * different places: TILECTL[1:0], ARB_MODE[5:4], and
540 * DISP_ARB_CTL[14:13].
541 *
542 * For Gen8 and subsequent generations, the swizzle fields are all
543 * reserved, and the CPU's memory controller performs all address
544 * swizzling modifications."
545 */
546 bool swizzled =
547 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
548
549 isl_device_init(&device->isl_dev, &device->info, swizzled);
550
551 result = anv_physical_device_init_uuids(device);
552 if (result != VK_SUCCESS)
553 goto fail_compiler;
554
555 anv_physical_device_init_disk_cache(device);
556
557 if (instance->enabled_extensions.KHR_display) {
558 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
559 if (master_fd >= 0) {
560 /* prod the device with a GETPARAM call which will fail if
561 * we don't have permission to even render on this device
562 */
563 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
564 close(master_fd);
565 master_fd = -1;
566 }
567 }
568 }
569 device->master_fd = master_fd;
570
571 result = anv_init_wsi(device);
572 if (result != VK_SUCCESS)
573 goto fail_disk_cache;
574
575 device->perf = anv_get_perf(&device->info, fd);
576
577 anv_physical_device_get_supported_extensions(device,
578 &device->supported_extensions);
579
580
581 device->local_fd = fd;
582
583 *device_out = device;
584
585 return VK_SUCCESS;
586
587 fail_disk_cache:
588 anv_physical_device_free_disk_cache(device);
589 fail_compiler:
590 ralloc_free(device->compiler);
591 fail_alloc:
592 vk_free(&instance->alloc, device);
593 fail_fd:
594 close(fd);
595 if (master_fd != -1)
596 close(master_fd);
597 return result;
598 }
599
600 static void
601 anv_physical_device_destroy(struct anv_physical_device *device)
602 {
603 anv_finish_wsi(device);
604 anv_physical_device_free_disk_cache(device);
605 ralloc_free(device->compiler);
606 ralloc_free(device->perf);
607 close(device->local_fd);
608 if (device->master_fd >= 0)
609 close(device->master_fd);
610 vk_object_base_finish(&device->base);
611 vk_free(&device->instance->alloc, device);
612 }
613
614 static void *
615 default_alloc_func(void *pUserData, size_t size, size_t align,
616 VkSystemAllocationScope allocationScope)
617 {
618 return malloc(size);
619 }
620
621 static void *
622 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
623 size_t align, VkSystemAllocationScope allocationScope)
624 {
625 return realloc(pOriginal, size);
626 }
627
628 static void
629 default_free_func(void *pUserData, void *pMemory)
630 {
631 free(pMemory);
632 }
633
634 static const VkAllocationCallbacks default_alloc = {
635 .pUserData = NULL,
636 .pfnAllocation = default_alloc_func,
637 .pfnReallocation = default_realloc_func,
638 .pfnFree = default_free_func,
639 };
640
641 VkResult anv_EnumerateInstanceExtensionProperties(
642 const char* pLayerName,
643 uint32_t* pPropertyCount,
644 VkExtensionProperties* pProperties)
645 {
646 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
647
648 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
649 if (anv_instance_extensions_supported.extensions[i]) {
650 vk_outarray_append(&out, prop) {
651 *prop = anv_instance_extensions[i];
652 }
653 }
654 }
655
656 return vk_outarray_status(&out);
657 }
658
659 VkResult anv_CreateInstance(
660 const VkInstanceCreateInfo* pCreateInfo,
661 const VkAllocationCallbacks* pAllocator,
662 VkInstance* pInstance)
663 {
664 struct anv_instance *instance;
665 VkResult result;
666
667 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
668
669 struct anv_instance_extension_table enabled_extensions = {};
670 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
671 int idx;
672 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
673 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
674 anv_instance_extensions[idx].extensionName) == 0)
675 break;
676 }
677
678 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
679 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
680
681 if (!anv_instance_extensions_supported.extensions[idx])
682 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
683
684 enabled_extensions.extensions[idx] = true;
685 }
686
687 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
688 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
689 if (!instance)
690 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
691
692 vk_object_base_init(NULL, &instance->base, VK_OBJECT_TYPE_INSTANCE);
693
694 if (pAllocator)
695 instance->alloc = *pAllocator;
696 else
697 instance->alloc = default_alloc;
698
699 instance->app_info = (struct anv_app_info) { .api_version = 0 };
700 if (pCreateInfo->pApplicationInfo) {
701 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
702
703 instance->app_info.app_name =
704 vk_strdup(&instance->alloc, app->pApplicationName,
705 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
706 instance->app_info.app_version = app->applicationVersion;
707
708 instance->app_info.engine_name =
709 vk_strdup(&instance->alloc, app->pEngineName,
710 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
711 instance->app_info.engine_version = app->engineVersion;
712
713 instance->app_info.api_version = app->apiVersion;
714 }
715
716 if (instance->app_info.api_version == 0)
717 instance->app_info.api_version = VK_API_VERSION_1_0;
718
719 instance->enabled_extensions = enabled_extensions;
720
721 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
722 /* Vulkan requires that entrypoints for extensions which have not been
723 * enabled must not be advertised.
724 */
725 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
726 &instance->enabled_extensions)) {
727 instance->dispatch.entrypoints[i] = NULL;
728 } else {
729 instance->dispatch.entrypoints[i] =
730 anv_instance_dispatch_table.entrypoints[i];
731 }
732 }
733
734 for (unsigned i = 0; i < ARRAY_SIZE(instance->physical_device_dispatch.entrypoints); i++) {
735 /* Vulkan requires that entrypoints for extensions which have not been
736 * enabled must not be advertised.
737 */
738 if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
739 &instance->enabled_extensions)) {
740 instance->physical_device_dispatch.entrypoints[i] = NULL;
741 } else {
742 instance->physical_device_dispatch.entrypoints[i] =
743 anv_physical_device_dispatch_table.entrypoints[i];
744 }
745 }
746
747 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
748 /* Vulkan requires that entrypoints for extensions which have not been
749 * enabled must not be advertised.
750 */
751 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
752 &instance->enabled_extensions, NULL)) {
753 instance->device_dispatch.entrypoints[i] = NULL;
754 } else {
755 instance->device_dispatch.entrypoints[i] =
756 anv_device_dispatch_table.entrypoints[i];
757 }
758 }
759
760 instance->physical_devices_enumerated = false;
761 list_inithead(&instance->physical_devices);
762
763 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
764 if (result != VK_SUCCESS) {
765 vk_free2(&default_alloc, pAllocator, instance);
766 return vk_error(result);
767 }
768
769 instance->pipeline_cache_enabled =
770 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
771
772 glsl_type_singleton_init_or_ref();
773
774 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
775
776 driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
777 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
778 0, "anv", NULL,
779 instance->app_info.engine_name,
780 instance->app_info.engine_version);
781
782 *pInstance = anv_instance_to_handle(instance);
783
784 return VK_SUCCESS;
785 }
786
787 void anv_DestroyInstance(
788 VkInstance _instance,
789 const VkAllocationCallbacks* pAllocator)
790 {
791 ANV_FROM_HANDLE(anv_instance, instance, _instance);
792
793 if (!instance)
794 return;
795
796 list_for_each_entry_safe(struct anv_physical_device, pdevice,
797 &instance->physical_devices, link)
798 anv_physical_device_destroy(pdevice);
799
800 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
801 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
802
803 VG(VALGRIND_DESTROY_MEMPOOL(instance));
804
805 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
806
807 glsl_type_singleton_decref();
808
809 driDestroyOptionCache(&instance->dri_options);
810 driDestroyOptionInfo(&instance->available_dri_options);
811
812 vk_object_base_finish(&instance->base);
813 vk_free(&instance->alloc, instance);
814 }
815
816 static VkResult
817 anv_enumerate_physical_devices(struct anv_instance *instance)
818 {
819 if (instance->physical_devices_enumerated)
820 return VK_SUCCESS;
821
822 instance->physical_devices_enumerated = true;
823
824 /* TODO: Check for more devices ? */
825 drmDevicePtr devices[8];
826 int max_devices;
827
828 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
829 if (max_devices < 1)
830 return VK_SUCCESS;
831
832 VkResult result = VK_SUCCESS;
833 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
834 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
835 devices[i]->bustype == DRM_BUS_PCI &&
836 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
837
838 struct anv_physical_device *pdevice;
839 result = anv_physical_device_try_create(instance, devices[i],
840 &pdevice);
841 /* Incompatible DRM device, skip. */
842 if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
843 result = VK_SUCCESS;
844 continue;
845 }
846
847 /* Error creating the physical device, report the error. */
848 if (result != VK_SUCCESS)
849 break;
850
851 list_addtail(&pdevice->link, &instance->physical_devices);
852 }
853 }
854 drmFreeDevices(devices, max_devices);
855
856 /* If we successfully enumerated any devices, call it success */
857 return result;
858 }
859
860 VkResult anv_EnumeratePhysicalDevices(
861 VkInstance _instance,
862 uint32_t* pPhysicalDeviceCount,
863 VkPhysicalDevice* pPhysicalDevices)
864 {
865 ANV_FROM_HANDLE(anv_instance, instance, _instance);
866 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
867
868 VkResult result = anv_enumerate_physical_devices(instance);
869 if (result != VK_SUCCESS)
870 return result;
871
872 list_for_each_entry(struct anv_physical_device, pdevice,
873 &instance->physical_devices, link) {
874 vk_outarray_append(&out, i) {
875 *i = anv_physical_device_to_handle(pdevice);
876 }
877 }
878
879 return vk_outarray_status(&out);
880 }
881
882 VkResult anv_EnumeratePhysicalDeviceGroups(
883 VkInstance _instance,
884 uint32_t* pPhysicalDeviceGroupCount,
885 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
886 {
887 ANV_FROM_HANDLE(anv_instance, instance, _instance);
888 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
889 pPhysicalDeviceGroupCount);
890
891 VkResult result = anv_enumerate_physical_devices(instance);
892 if (result != VK_SUCCESS)
893 return result;
894
895 list_for_each_entry(struct anv_physical_device, pdevice,
896 &instance->physical_devices, link) {
897 vk_outarray_append(&out, p) {
898 p->physicalDeviceCount = 1;
899 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
900 p->physicalDevices[0] = anv_physical_device_to_handle(pdevice);
901 p->subsetAllocation = false;
902
903 vk_foreach_struct(ext, p->pNext)
904 anv_debug_ignored_stype(ext->sType);
905 }
906 }
907
908 return vk_outarray_status(&out);
909 }
910
911 void anv_GetPhysicalDeviceFeatures(
912 VkPhysicalDevice physicalDevice,
913 VkPhysicalDeviceFeatures* pFeatures)
914 {
915 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
916
917 *pFeatures = (VkPhysicalDeviceFeatures) {
918 .robustBufferAccess = true,
919 .fullDrawIndexUint32 = true,
920 .imageCubeArray = true,
921 .independentBlend = true,
922 .geometryShader = true,
923 .tessellationShader = true,
924 .sampleRateShading = true,
925 .dualSrcBlend = true,
926 .logicOp = true,
927 .multiDrawIndirect = true,
928 .drawIndirectFirstInstance = true,
929 .depthClamp = true,
930 .depthBiasClamp = true,
931 .fillModeNonSolid = true,
932 .depthBounds = pdevice->info.gen >= 12,
933 .wideLines = true,
934 .largePoints = true,
935 .alphaToOne = true,
936 .multiViewport = true,
937 .samplerAnisotropy = true,
938 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
939 pdevice->info.is_baytrail,
940 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
941 .textureCompressionBC = true,
942 .occlusionQueryPrecise = true,
943 .pipelineStatisticsQuery = true,
944 .fragmentStoresAndAtomics = true,
945 .shaderTessellationAndGeometryPointSize = true,
946 .shaderImageGatherExtended = true,
947 .shaderStorageImageExtendedFormats = true,
948 .shaderStorageImageMultisample = false,
949 .shaderStorageImageReadWithoutFormat = false,
950 .shaderStorageImageWriteWithoutFormat = true,
951 .shaderUniformBufferArrayDynamicIndexing = true,
952 .shaderSampledImageArrayDynamicIndexing = true,
953 .shaderStorageBufferArrayDynamicIndexing = true,
954 .shaderStorageImageArrayDynamicIndexing = true,
955 .shaderClipDistance = true,
956 .shaderCullDistance = true,
957 .shaderFloat64 = pdevice->info.gen >= 8 &&
958 pdevice->info.has_64bit_float,
959 .shaderInt64 = pdevice->info.gen >= 8 &&
960 pdevice->info.has_64bit_int,
961 .shaderInt16 = pdevice->info.gen >= 8,
962 .shaderResourceMinLod = pdevice->info.gen >= 9,
963 .variableMultisampleRate = true,
964 .inheritedQueries = true,
965 };
966
967 /* We can't do image stores in vec4 shaders */
968 pFeatures->vertexPipelineStoresAndAtomics =
969 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
970 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
971
972 struct anv_app_info *app_info = &pdevice->instance->app_info;
973
974 /* The new DOOM and Wolfenstein games require depthBounds without
975 * checking for it. They seem to run fine without it so just claim it's
976 * there and accept the consequences.
977 */
978 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
979 pFeatures->depthBounds = true;
980 }
981
982 static void
983 anv_get_physical_device_features_1_1(struct anv_physical_device *pdevice,
984 VkPhysicalDeviceVulkan11Features *f)
985 {
986 assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES);
987
988 f->storageBuffer16BitAccess = pdevice->info.gen >= 8;
989 f->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
990 f->storagePushConstant16 = pdevice->info.gen >= 8;
991 f->storageInputOutput16 = false;
992 f->multiview = true;
993 f->multiviewGeometryShader = true;
994 f->multiviewTessellationShader = true;
995 f->variablePointersStorageBuffer = true;
996 f->variablePointers = true;
997 f->protectedMemory = false;
998 f->samplerYcbcrConversion = true;
999 f->shaderDrawParameters = true;
1000 }
1001
1002 static void
1003 anv_get_physical_device_features_1_2(struct anv_physical_device *pdevice,
1004 VkPhysicalDeviceVulkan12Features *f)
1005 {
1006 assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES);
1007
1008 f->samplerMirrorClampToEdge = true;
1009 f->drawIndirectCount = true;
1010 f->storageBuffer8BitAccess = pdevice->info.gen >= 8;
1011 f->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
1012 f->storagePushConstant8 = pdevice->info.gen >= 8;
1013 f->shaderBufferInt64Atomics = pdevice->info.gen >= 9 &&
1014 pdevice->use_softpin;
1015 f->shaderSharedInt64Atomics = false;
1016 f->shaderFloat16 = pdevice->info.gen >= 8;
1017 f->shaderInt8 = pdevice->info.gen >= 8;
1018
1019 bool descIndexing = pdevice->has_a64_buffer_access &&
1020 pdevice->has_bindless_images;
1021 f->descriptorIndexing = descIndexing;
1022 f->shaderInputAttachmentArrayDynamicIndexing = false;
1023 f->shaderUniformTexelBufferArrayDynamicIndexing = descIndexing;
1024 f->shaderStorageTexelBufferArrayDynamicIndexing = descIndexing;
1025 f->shaderUniformBufferArrayNonUniformIndexing = false;
1026 f->shaderSampledImageArrayNonUniformIndexing = descIndexing;
1027 f->shaderStorageBufferArrayNonUniformIndexing = descIndexing;
1028 f->shaderStorageImageArrayNonUniformIndexing = descIndexing;
1029 f->shaderInputAttachmentArrayNonUniformIndexing = false;
1030 f->shaderUniformTexelBufferArrayNonUniformIndexing = descIndexing;
1031 f->shaderStorageTexelBufferArrayNonUniformIndexing = descIndexing;
1032 f->descriptorBindingUniformBufferUpdateAfterBind = false;
1033 f->descriptorBindingSampledImageUpdateAfterBind = descIndexing;
1034 f->descriptorBindingStorageImageUpdateAfterBind = descIndexing;
1035 f->descriptorBindingStorageBufferUpdateAfterBind = descIndexing;
1036 f->descriptorBindingUniformTexelBufferUpdateAfterBind = descIndexing;
1037 f->descriptorBindingStorageTexelBufferUpdateAfterBind = descIndexing;
1038 f->descriptorBindingUpdateUnusedWhilePending = descIndexing;
1039 f->descriptorBindingPartiallyBound = descIndexing;
1040 f->descriptorBindingVariableDescriptorCount = false;
1041 f->runtimeDescriptorArray = descIndexing;
1042
1043 f->samplerFilterMinmax = pdevice->info.gen >= 9;
1044 f->scalarBlockLayout = true;
1045 f->imagelessFramebuffer = true;
1046 f->uniformBufferStandardLayout = true;
1047 f->shaderSubgroupExtendedTypes = true;
1048 f->separateDepthStencilLayouts = true;
1049 f->hostQueryReset = true;
1050 f->timelineSemaphore = true;
1051 f->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1052 f->bufferDeviceAddressCaptureReplay = pdevice->has_a64_buffer_access;
1053 f->bufferDeviceAddressMultiDevice = false;
1054 f->vulkanMemoryModel = true;
1055 f->vulkanMemoryModelDeviceScope = true;
1056 f->vulkanMemoryModelAvailabilityVisibilityChains = true;
1057 f->shaderOutputViewportIndex = true;
1058 f->shaderOutputLayer = true;
1059 f->subgroupBroadcastDynamicId = true;
1060 }
1061
1062 void anv_GetPhysicalDeviceFeatures2(
1063 VkPhysicalDevice physicalDevice,
1064 VkPhysicalDeviceFeatures2* pFeatures)
1065 {
1066 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1067 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1068
1069 VkPhysicalDeviceVulkan11Features core_1_1 = {
1070 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES,
1071 };
1072 anv_get_physical_device_features_1_1(pdevice, &core_1_1);
1073
1074 VkPhysicalDeviceVulkan12Features core_1_2 = {
1075 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
1076 };
1077 anv_get_physical_device_features_1_2(pdevice, &core_1_2);
1078
1079 #define CORE_FEATURE(major, minor, feature) \
1080 features->feature = core_##major##_##minor.feature
1081
1082
1083 vk_foreach_struct(ext, pFeatures->pNext) {
1084 switch (ext->sType) {
1085 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
1086 VkPhysicalDevice8BitStorageFeaturesKHR *features =
1087 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
1088 CORE_FEATURE(1, 2, storageBuffer8BitAccess);
1089 CORE_FEATURE(1, 2, uniformAndStorageBuffer8BitAccess);
1090 CORE_FEATURE(1, 2, storagePushConstant8);
1091 break;
1092 }
1093
1094 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1095 VkPhysicalDevice16BitStorageFeatures *features =
1096 (VkPhysicalDevice16BitStorageFeatures *)ext;
1097 CORE_FEATURE(1, 1, storageBuffer16BitAccess);
1098 CORE_FEATURE(1, 1, uniformAndStorageBuffer16BitAccess);
1099 CORE_FEATURE(1, 1, storagePushConstant16);
1100 CORE_FEATURE(1, 1, storageInputOutput16);
1101 break;
1102 }
1103
1104 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1105 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1106 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1107 features->bufferDeviceAddressCaptureReplay = false;
1108 features->bufferDeviceAddressMultiDevice = false;
1109 break;
1110 }
1111
1112 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_KHR: {
1113 VkPhysicalDeviceBufferDeviceAddressFeaturesKHR *features = (void *)ext;
1114 CORE_FEATURE(1, 2, bufferDeviceAddress);
1115 CORE_FEATURE(1, 2, bufferDeviceAddressCaptureReplay);
1116 CORE_FEATURE(1, 2, bufferDeviceAddressMultiDevice);
1117 break;
1118 }
1119
1120 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1121 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1122 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1123 features->computeDerivativeGroupQuads = true;
1124 features->computeDerivativeGroupLinear = true;
1125 break;
1126 }
1127
1128 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1129 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1130 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1131 features->conditionalRendering = pdevice->info.gen >= 8 ||
1132 pdevice->info.is_haswell;
1133 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1134 pdevice->info.is_haswell;
1135 break;
1136 }
1137
1138 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT: {
1139 VkPhysicalDeviceCustomBorderColorFeaturesEXT *features =
1140 (VkPhysicalDeviceCustomBorderColorFeaturesEXT *)ext;
1141 features->customBorderColors = pdevice->info.gen >= 8;
1142 features->customBorderColorWithoutFormat = pdevice->info.gen >= 8;
1143 break;
1144 }
1145
1146 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1147 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1148 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1149 features->depthClipEnable = true;
1150 break;
1151 }
1152
1153 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1154 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1155 CORE_FEATURE(1, 2, shaderFloat16);
1156 CORE_FEATURE(1, 2, shaderInt8);
1157 break;
1158 }
1159
1160 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1161 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1162 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1163 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1164 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1165 features->fragmentShaderShadingRateInterlock = false;
1166 break;
1167 }
1168
1169 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1170 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1171 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1172 CORE_FEATURE(1, 2, hostQueryReset);
1173 break;
1174 }
1175
1176 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1177 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1178 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1179 CORE_FEATURE(1, 2, shaderInputAttachmentArrayDynamicIndexing);
1180 CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayDynamicIndexing);
1181 CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayDynamicIndexing);
1182 CORE_FEATURE(1, 2, shaderUniformBufferArrayNonUniformIndexing);
1183 CORE_FEATURE(1, 2, shaderSampledImageArrayNonUniformIndexing);
1184 CORE_FEATURE(1, 2, shaderStorageBufferArrayNonUniformIndexing);
1185 CORE_FEATURE(1, 2, shaderStorageImageArrayNonUniformIndexing);
1186 CORE_FEATURE(1, 2, shaderInputAttachmentArrayNonUniformIndexing);
1187 CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayNonUniformIndexing);
1188 CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayNonUniformIndexing);
1189 CORE_FEATURE(1, 2, descriptorBindingUniformBufferUpdateAfterBind);
1190 CORE_FEATURE(1, 2, descriptorBindingSampledImageUpdateAfterBind);
1191 CORE_FEATURE(1, 2, descriptorBindingStorageImageUpdateAfterBind);
1192 CORE_FEATURE(1, 2, descriptorBindingStorageBufferUpdateAfterBind);
1193 CORE_FEATURE(1, 2, descriptorBindingUniformTexelBufferUpdateAfterBind);
1194 CORE_FEATURE(1, 2, descriptorBindingStorageTexelBufferUpdateAfterBind);
1195 CORE_FEATURE(1, 2, descriptorBindingUpdateUnusedWhilePending);
1196 CORE_FEATURE(1, 2, descriptorBindingPartiallyBound);
1197 CORE_FEATURE(1, 2, descriptorBindingVariableDescriptorCount);
1198 CORE_FEATURE(1, 2, runtimeDescriptorArray);
1199 break;
1200 }
1201
1202 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1203 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1204 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1205 features->indexTypeUint8 = true;
1206 break;
1207 }
1208
1209 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1210 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1211 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1212 features->inlineUniformBlock = true;
1213 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1214 break;
1215 }
1216
1217 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1218 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1219 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1220 features->rectangularLines = true;
1221 features->bresenhamLines = true;
1222 /* Support for Smooth lines with MSAA was removed on gen11. From the
1223 * BSpec section "Multisample ModesState" table for "AA Line Support
1224 * Requirements":
1225 *
1226 * GEN10:BUG:######## NUM_MULTISAMPLES == 1
1227 *
1228 * Fortunately, this isn't a case most people care about.
1229 */
1230 features->smoothLines = pdevice->info.gen < 10;
1231 features->stippledRectangularLines = false;
1232 features->stippledBresenhamLines = true;
1233 features->stippledSmoothLines = false;
1234 break;
1235 }
1236
1237 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1238 VkPhysicalDeviceMultiviewFeatures *features =
1239 (VkPhysicalDeviceMultiviewFeatures *)ext;
1240 CORE_FEATURE(1, 1, multiview);
1241 CORE_FEATURE(1, 1, multiviewGeometryShader);
1242 CORE_FEATURE(1, 1, multiviewTessellationShader);
1243 break;
1244 }
1245
1246 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1247 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1248 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1249 CORE_FEATURE(1, 2, imagelessFramebuffer);
1250 break;
1251 }
1252
1253 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_FEATURES_KHR: {
1254 VkPhysicalDevicePerformanceQueryFeaturesKHR *feature =
1255 (VkPhysicalDevicePerformanceQueryFeaturesKHR *)ext;
1256 feature->performanceCounterQueryPools = true;
1257 /* HW only supports a single configuration at a time. */
1258 feature->performanceCounterMultipleQueryPools = false;
1259 break;
1260 }
1261
1262 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_CREATION_CACHE_CONTROL_FEATURES_EXT: {
1263 VkPhysicalDevicePipelineCreationCacheControlFeaturesEXT *features =
1264 (VkPhysicalDevicePipelineCreationCacheControlFeaturesEXT *)ext;
1265 features->pipelineCreationCacheControl = true;
1266 break;
1267 }
1268
1269 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1270 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1271 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1272 features->pipelineExecutableInfo = true;
1273 break;
1274 }
1275
1276 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIVATE_DATA_FEATURES_EXT: {
1277 VkPhysicalDevicePrivateDataFeaturesEXT *features = (void *)ext;
1278 features->privateData = true;
1279 break;
1280 }
1281
1282 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1283 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1284 CORE_FEATURE(1, 1, protectedMemory);
1285 break;
1286 }
1287
1288 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT: {
1289 VkPhysicalDeviceRobustness2FeaturesEXT *features = (void *)ext;
1290 features->robustBufferAccess2 = true;
1291 features->robustImageAccess2 = true;
1292 features->nullDescriptor = true;
1293 break;
1294 }
1295
1296 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1297 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1298 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1299 CORE_FEATURE(1, 1, samplerYcbcrConversion);
1300 break;
1301 }
1302
1303 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1304 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1305 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1306 CORE_FEATURE(1, 2, scalarBlockLayout);
1307 break;
1308 }
1309
1310 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: {
1311 VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *features =
1312 (VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *)ext;
1313 CORE_FEATURE(1, 2, separateDepthStencilLayouts);
1314 break;
1315 }
1316
1317 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1318 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1319 CORE_FEATURE(1, 2, shaderBufferInt64Atomics);
1320 CORE_FEATURE(1, 2, shaderSharedInt64Atomics);
1321 break;
1322 }
1323
1324 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1325 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1326 features->shaderDemoteToHelperInvocation = true;
1327 break;
1328 }
1329
1330 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1331 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1332 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1333 features->shaderSubgroupClock = true;
1334 features->shaderDeviceClock = false;
1335 break;
1336 }
1337
1338 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1339 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1340 CORE_FEATURE(1, 1, shaderDrawParameters);
1341 break;
1342 }
1343
1344 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
1345 VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
1346 (VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
1347 CORE_FEATURE(1, 2, shaderSubgroupExtendedTypes);
1348 break;
1349 }
1350
1351 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1352 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1353 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1354 features->subgroupSizeControl = true;
1355 features->computeFullSubgroups = true;
1356 break;
1357 }
1358
1359 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1360 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1361 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1362 features->texelBufferAlignment = true;
1363 break;
1364 }
1365
1366 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES_KHR: {
1367 VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *features =
1368 (VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *) ext;
1369 CORE_FEATURE(1, 2, timelineSemaphore);
1370 break;
1371 }
1372
1373 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1374 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1375 CORE_FEATURE(1, 1, variablePointersStorageBuffer);
1376 CORE_FEATURE(1, 1, variablePointers);
1377 break;
1378 }
1379
1380 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1381 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1382 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1383 features->transformFeedback = true;
1384 features->geometryStreams = true;
1385 break;
1386 }
1387
1388 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1389 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1390 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1391 CORE_FEATURE(1, 2, uniformBufferStandardLayout);
1392 break;
1393 }
1394
1395 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1396 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1397 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1398 features->vertexAttributeInstanceRateDivisor = true;
1399 features->vertexAttributeInstanceRateZeroDivisor = true;
1400 break;
1401 }
1402
1403 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES:
1404 anv_get_physical_device_features_1_1(pdevice, (void *)ext);
1405 break;
1406
1407 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES:
1408 anv_get_physical_device_features_1_2(pdevice, (void *)ext);
1409 break;
1410
1411 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR: {
1412 VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *features = (void *)ext;
1413 CORE_FEATURE(1, 2, vulkanMemoryModel);
1414 CORE_FEATURE(1, 2, vulkanMemoryModelDeviceScope);
1415 CORE_FEATURE(1, 2, vulkanMemoryModelAvailabilityVisibilityChains);
1416 break;
1417 }
1418
1419 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1420 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1421 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1422 features->ycbcrImageArrays = true;
1423 break;
1424 }
1425
1426 default:
1427 anv_debug_ignored_stype(ext->sType);
1428 break;
1429 }
1430 }
1431
1432 #undef CORE_FEATURE
1433 }
1434
1435 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1436
1437 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1438 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1439
1440 #define MAX_CUSTOM_BORDER_COLORS 4096
1441
1442 void anv_GetPhysicalDeviceProperties(
1443 VkPhysicalDevice physicalDevice,
1444 VkPhysicalDeviceProperties* pProperties)
1445 {
1446 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1447 const struct gen_device_info *devinfo = &pdevice->info;
1448
1449 /* See assertions made when programming the buffer surface state. */
1450 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1451 (1ul << 30) : (1ul << 27);
1452
1453 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1454 const uint32_t max_textures =
1455 pdevice->has_bindless_images ? UINT16_MAX : 128;
1456 const uint32_t max_samplers =
1457 pdevice->has_bindless_samplers ? UINT16_MAX :
1458 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1459 const uint32_t max_images =
1460 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1461
1462 /* If we can use bindless for everything, claim a high per-stage limit,
1463 * otherwise use the binding table size, minus the slots reserved for
1464 * render targets and one slot for the descriptor buffer. */
1465 const uint32_t max_per_stage =
1466 pdevice->has_bindless_images && pdevice->has_a64_buffer_access
1467 ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
1468
1469 /* Limit max_threads to 64 for the GPGPU_WALKER command */
1470 const uint32_t max_workgroup_size = 32 * MIN2(64, devinfo->max_cs_threads);
1471
1472 VkSampleCountFlags sample_counts =
1473 isl_device_get_sample_counts(&pdevice->isl_dev);
1474
1475
1476 VkPhysicalDeviceLimits limits = {
1477 .maxImageDimension1D = (1 << 14),
1478 .maxImageDimension2D = (1 << 14),
1479 .maxImageDimension3D = (1 << 11),
1480 .maxImageDimensionCube = (1 << 14),
1481 .maxImageArrayLayers = (1 << 11),
1482 .maxTexelBufferElements = 128 * 1024 * 1024,
1483 .maxUniformBufferRange = (1ul << 27),
1484 .maxStorageBufferRange = max_raw_buffer_sz,
1485 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1486 .maxMemoryAllocationCount = UINT32_MAX,
1487 .maxSamplerAllocationCount = 64 * 1024,
1488 .bufferImageGranularity = 64, /* A cache line */
1489 .sparseAddressSpaceSize = 0,
1490 .maxBoundDescriptorSets = MAX_SETS,
1491 .maxPerStageDescriptorSamplers = max_samplers,
1492 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1493 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1494 .maxPerStageDescriptorSampledImages = max_textures,
1495 .maxPerStageDescriptorStorageImages = max_images,
1496 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1497 .maxPerStageResources = max_per_stage,
1498 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1499 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1500 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1501 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1502 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1503 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1504 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1505 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1506 .maxVertexInputAttributes = MAX_VBS,
1507 .maxVertexInputBindings = MAX_VBS,
1508 .maxVertexInputAttributeOffset = 2047,
1509 .maxVertexInputBindingStride = 2048,
1510 .maxVertexOutputComponents = 128,
1511 .maxTessellationGenerationLevel = 64,
1512 .maxTessellationPatchSize = 32,
1513 .maxTessellationControlPerVertexInputComponents = 128,
1514 .maxTessellationControlPerVertexOutputComponents = 128,
1515 .maxTessellationControlPerPatchOutputComponents = 128,
1516 .maxTessellationControlTotalOutputComponents = 2048,
1517 .maxTessellationEvaluationInputComponents = 128,
1518 .maxTessellationEvaluationOutputComponents = 128,
1519 .maxGeometryShaderInvocations = 32,
1520 .maxGeometryInputComponents = 64,
1521 .maxGeometryOutputComponents = 128,
1522 .maxGeometryOutputVertices = 256,
1523 .maxGeometryTotalOutputComponents = 1024,
1524 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1525 .maxFragmentOutputAttachments = 8,
1526 .maxFragmentDualSrcAttachments = 1,
1527 .maxFragmentCombinedOutputResources = 8,
1528 .maxComputeSharedMemorySize = 64 * 1024,
1529 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1530 .maxComputeWorkGroupInvocations = max_workgroup_size,
1531 .maxComputeWorkGroupSize = {
1532 max_workgroup_size,
1533 max_workgroup_size,
1534 max_workgroup_size,
1535 },
1536 .subPixelPrecisionBits = 8,
1537 .subTexelPrecisionBits = 8,
1538 .mipmapPrecisionBits = 8,
1539 .maxDrawIndexedIndexValue = UINT32_MAX,
1540 .maxDrawIndirectCount = UINT32_MAX,
1541 .maxSamplerLodBias = 16,
1542 .maxSamplerAnisotropy = 16,
1543 .maxViewports = MAX_VIEWPORTS,
1544 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1545 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1546 .viewportSubPixelBits = 13, /* We take a float? */
1547 .minMemoryMapAlignment = 4096, /* A page */
1548 /* The dataport requires texel alignment so we need to assume a worst
1549 * case of R32G32B32A32 which is 16 bytes.
1550 */
1551 .minTexelBufferOffsetAlignment = 16,
1552 .minUniformBufferOffsetAlignment = ANV_UBO_ALIGNMENT,
1553 .minStorageBufferOffsetAlignment = 4,
1554 .minTexelOffset = -8,
1555 .maxTexelOffset = 7,
1556 .minTexelGatherOffset = -32,
1557 .maxTexelGatherOffset = 31,
1558 .minInterpolationOffset = -0.5,
1559 .maxInterpolationOffset = 0.4375,
1560 .subPixelInterpolationOffsetBits = 4,
1561 .maxFramebufferWidth = (1 << 14),
1562 .maxFramebufferHeight = (1 << 14),
1563 .maxFramebufferLayers = (1 << 11),
1564 .framebufferColorSampleCounts = sample_counts,
1565 .framebufferDepthSampleCounts = sample_counts,
1566 .framebufferStencilSampleCounts = sample_counts,
1567 .framebufferNoAttachmentsSampleCounts = sample_counts,
1568 .maxColorAttachments = MAX_RTS,
1569 .sampledImageColorSampleCounts = sample_counts,
1570 .sampledImageIntegerSampleCounts = sample_counts,
1571 .sampledImageDepthSampleCounts = sample_counts,
1572 .sampledImageStencilSampleCounts = sample_counts,
1573 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1574 .maxSampleMaskWords = 1,
1575 .timestampComputeAndGraphics = true,
1576 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1577 .maxClipDistances = 8,
1578 .maxCullDistances = 8,
1579 .maxCombinedClipAndCullDistances = 8,
1580 .discreteQueuePriorities = 2,
1581 .pointSizeRange = { 0.125, 255.875 },
1582 .lineWidthRange = {
1583 0.0,
1584 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1585 2047.9921875 : 7.9921875,
1586 },
1587 .pointSizeGranularity = (1.0 / 8.0),
1588 .lineWidthGranularity = (1.0 / 128.0),
1589 .strictLines = false,
1590 .standardSampleLocations = true,
1591 .optimalBufferCopyOffsetAlignment = 128,
1592 .optimalBufferCopyRowPitchAlignment = 128,
1593 .nonCoherentAtomSize = 64,
1594 };
1595
1596 *pProperties = (VkPhysicalDeviceProperties) {
1597 .apiVersion = anv_physical_device_api_version(pdevice),
1598 .driverVersion = vk_get_driver_version(),
1599 .vendorID = 0x8086,
1600 .deviceID = pdevice->info.chipset_id,
1601 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1602 .limits = limits,
1603 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1604 };
1605
1606 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1607 "%s", pdevice->name);
1608 memcpy(pProperties->pipelineCacheUUID,
1609 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1610 }
1611
1612 static void
1613 anv_get_physical_device_properties_1_1(struct anv_physical_device *pdevice,
1614 VkPhysicalDeviceVulkan11Properties *p)
1615 {
1616 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES);
1617
1618 memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1619 memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1620 memset(p->deviceLUID, 0, VK_LUID_SIZE);
1621 p->deviceNodeMask = 0;
1622 p->deviceLUIDValid = false;
1623
1624 p->subgroupSize = BRW_SUBGROUP_SIZE;
1625 VkShaderStageFlags scalar_stages = 0;
1626 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1627 if (pdevice->compiler->scalar_stage[stage])
1628 scalar_stages |= mesa_to_vk_shader_stage(stage);
1629 }
1630 p->subgroupSupportedStages = scalar_stages;
1631 p->subgroupSupportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1632 VK_SUBGROUP_FEATURE_VOTE_BIT |
1633 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1634 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1635 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1636 VK_SUBGROUP_FEATURE_QUAD_BIT;
1637 if (pdevice->info.gen >= 8) {
1638 /* TODO: There's no technical reason why these can't be made to
1639 * work on gen7 but they don't at the moment so it's best to leave
1640 * the feature disabled than enabled and broken.
1641 */
1642 p->subgroupSupportedOperations |= VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1643 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1644 }
1645 p->subgroupQuadOperationsInAllStages = pdevice->info.gen >= 8;
1646
1647 p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1648 p->maxMultiviewViewCount = 16;
1649 p->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1650 p->protectedNoFault = false;
1651 /* This value doesn't matter for us today as our per-stage descriptors are
1652 * the real limit.
1653 */
1654 p->maxPerSetDescriptors = 1024;
1655 p->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1656 }
1657
1658 static void
1659 anv_get_physical_device_properties_1_2(struct anv_physical_device *pdevice,
1660 VkPhysicalDeviceVulkan12Properties *p)
1661 {
1662 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES);
1663
1664 p->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1665 memset(p->driverName, 0, sizeof(p->driverName));
1666 snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1667 "Intel open-source Mesa driver");
1668 memset(p->driverInfo, 0, sizeof(p->driverInfo));
1669 snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1670 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1671 p->conformanceVersion = (VkConformanceVersionKHR) {
1672 .major = 1,
1673 .minor = 2,
1674 .subminor = 0,
1675 .patch = 0,
1676 };
1677
1678 p->denormBehaviorIndependence =
1679 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1680 p->roundingModeIndependence =
1681 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
1682
1683 /* Broadwell does not support HF denorms and there are restrictions
1684 * other gens. According to Kabylake's PRM:
1685 *
1686 * "math - Extended Math Function
1687 * [...]
1688 * Restriction : Half-float denorms are always retained."
1689 */
1690 p->shaderDenormFlushToZeroFloat16 = false;
1691 p->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
1692 p->shaderRoundingModeRTEFloat16 = true;
1693 p->shaderRoundingModeRTZFloat16 = true;
1694 p->shaderSignedZeroInfNanPreserveFloat16 = true;
1695
1696 p->shaderDenormFlushToZeroFloat32 = true;
1697 p->shaderDenormPreserveFloat32 = true;
1698 p->shaderRoundingModeRTEFloat32 = true;
1699 p->shaderRoundingModeRTZFloat32 = true;
1700 p->shaderSignedZeroInfNanPreserveFloat32 = true;
1701
1702 p->shaderDenormFlushToZeroFloat64 = true;
1703 p->shaderDenormPreserveFloat64 = true;
1704 p->shaderRoundingModeRTEFloat64 = true;
1705 p->shaderRoundingModeRTZFloat64 = true;
1706 p->shaderSignedZeroInfNanPreserveFloat64 = true;
1707
1708 /* It's a bit hard to exactly map our implementation to the limits
1709 * described here. The bindless surface handle in the extended
1710 * message descriptors is 20 bits and it's an index into the table of
1711 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1712 * address. Given that most things consume two surface states per
1713 * view (general/sampled for textures and write-only/read-write for
1714 * images), we claim 2^19 things.
1715 *
1716 * For SSBOs, we just use A64 messages so there is no real limit
1717 * there beyond the limit on the total size of a descriptor set.
1718 */
1719 const unsigned max_bindless_views = 1 << 19;
1720 p->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1721 p->shaderUniformBufferArrayNonUniformIndexingNative = false;
1722 p->shaderSampledImageArrayNonUniformIndexingNative = false;
1723 p->shaderStorageBufferArrayNonUniformIndexingNative = true;
1724 p->shaderStorageImageArrayNonUniformIndexingNative = false;
1725 p->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1726 p->robustBufferAccessUpdateAfterBind = true;
1727 p->quadDivergentImplicitLod = false;
1728 p->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1729 p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1730 p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1731 p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1732 p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1733 p->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1734 p->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1735 p->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1736 p->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1737 p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1738 p->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1739 p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1740 p->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1741 p->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1742 p->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1743
1744 /* We support all of the depth resolve modes */
1745 p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1746 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1747 VK_RESOLVE_MODE_MIN_BIT_KHR |
1748 VK_RESOLVE_MODE_MAX_BIT_KHR;
1749 /* Average doesn't make sense for stencil so we don't support that */
1750 p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1751 if (pdevice->info.gen >= 8) {
1752 /* The advanced stencil resolve modes currently require stencil
1753 * sampling be supported by the hardware.
1754 */
1755 p->supportedStencilResolveModes |= VK_RESOLVE_MODE_MIN_BIT_KHR |
1756 VK_RESOLVE_MODE_MAX_BIT_KHR;
1757 }
1758 p->independentResolveNone = true;
1759 p->independentResolve = true;
1760
1761 p->filterMinmaxSingleComponentFormats = pdevice->info.gen >= 9;
1762 p->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1763
1764 p->maxTimelineSemaphoreValueDifference = UINT64_MAX;
1765
1766 p->framebufferIntegerColorSampleCounts =
1767 isl_device_get_sample_counts(&pdevice->isl_dev);
1768 }
1769
1770 void anv_GetPhysicalDeviceProperties2(
1771 VkPhysicalDevice physicalDevice,
1772 VkPhysicalDeviceProperties2* pProperties)
1773 {
1774 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1775
1776 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1777
1778 VkPhysicalDeviceVulkan11Properties core_1_1 = {
1779 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES,
1780 };
1781 anv_get_physical_device_properties_1_1(pdevice, &core_1_1);
1782
1783 VkPhysicalDeviceVulkan12Properties core_1_2 = {
1784 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES,
1785 };
1786 anv_get_physical_device_properties_1_2(pdevice, &core_1_2);
1787
1788 #define CORE_RENAMED_PROPERTY(major, minor, ext_property, core_property) \
1789 memcpy(&properties->ext_property, &core_##major##_##minor.core_property, \
1790 sizeof(core_##major##_##minor.core_property))
1791
1792 #define CORE_PROPERTY(major, minor, property) \
1793 CORE_RENAMED_PROPERTY(major, minor, property, property)
1794
1795 vk_foreach_struct(ext, pProperties->pNext) {
1796 switch (ext->sType) {
1797 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_PROPERTIES_EXT: {
1798 VkPhysicalDeviceCustomBorderColorPropertiesEXT *properties =
1799 (VkPhysicalDeviceCustomBorderColorPropertiesEXT *)ext;
1800 properties->maxCustomBorderColorSamplers = MAX_CUSTOM_BORDER_COLORS;
1801 break;
1802 }
1803
1804 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1805 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *properties =
1806 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1807 CORE_PROPERTY(1, 2, supportedDepthResolveModes);
1808 CORE_PROPERTY(1, 2, supportedStencilResolveModes);
1809 CORE_PROPERTY(1, 2, independentResolveNone);
1810 CORE_PROPERTY(1, 2, independentResolve);
1811 break;
1812 }
1813
1814 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1815 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *properties =
1816 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1817 CORE_PROPERTY(1, 2, maxUpdateAfterBindDescriptorsInAllPools);
1818 CORE_PROPERTY(1, 2, shaderUniformBufferArrayNonUniformIndexingNative);
1819 CORE_PROPERTY(1, 2, shaderSampledImageArrayNonUniformIndexingNative);
1820 CORE_PROPERTY(1, 2, shaderStorageBufferArrayNonUniformIndexingNative);
1821 CORE_PROPERTY(1, 2, shaderStorageImageArrayNonUniformIndexingNative);
1822 CORE_PROPERTY(1, 2, shaderInputAttachmentArrayNonUniformIndexingNative);
1823 CORE_PROPERTY(1, 2, robustBufferAccessUpdateAfterBind);
1824 CORE_PROPERTY(1, 2, quadDivergentImplicitLod);
1825 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSamplers);
1826 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindUniformBuffers);
1827 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageBuffers);
1828 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSampledImages);
1829 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageImages);
1830 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindInputAttachments);
1831 CORE_PROPERTY(1, 2, maxPerStageUpdateAfterBindResources);
1832 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSamplers);
1833 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffers);
1834 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffersDynamic);
1835 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffers);
1836 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffersDynamic);
1837 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSampledImages);
1838 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageImages);
1839 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindInputAttachments);
1840 break;
1841 }
1842
1843 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1844 VkPhysicalDeviceDriverPropertiesKHR *properties =
1845 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1846 CORE_PROPERTY(1, 2, driverID);
1847 CORE_PROPERTY(1, 2, driverName);
1848 CORE_PROPERTY(1, 2, driverInfo);
1849 CORE_PROPERTY(1, 2, conformanceVersion);
1850 break;
1851 }
1852
1853 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1854 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1855 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1856 /* Userptr needs page aligned memory. */
1857 props->minImportedHostPointerAlignment = 4096;
1858 break;
1859 }
1860
1861 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1862 VkPhysicalDeviceIDProperties *properties =
1863 (VkPhysicalDeviceIDProperties *)ext;
1864 CORE_PROPERTY(1, 1, deviceUUID);
1865 CORE_PROPERTY(1, 1, driverUUID);
1866 CORE_PROPERTY(1, 1, deviceLUID);
1867 CORE_PROPERTY(1, 1, deviceLUIDValid);
1868 break;
1869 }
1870
1871 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1872 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1873 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1874 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1875 props->maxPerStageDescriptorInlineUniformBlocks =
1876 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1877 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1878 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1879 props->maxDescriptorSetInlineUniformBlocks =
1880 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1881 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1882 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1883 break;
1884 }
1885
1886 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1887 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1888 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1889 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1890 * Sampling Rules - Legacy Mode", it says the following:
1891 *
1892 * "Note that the device divides a pixel into a 16x16 array of
1893 * subpixels, referenced by their upper left corners."
1894 *
1895 * This is the only known reference in the PRMs to the subpixel
1896 * precision of line rasterization and a "16x16 array of subpixels"
1897 * implies 4 subpixel precision bits. Empirical testing has shown
1898 * that 4 subpixel precision bits applies to all line rasterization
1899 * types.
1900 */
1901 props->lineSubPixelPrecisionBits = 4;
1902 break;
1903 }
1904
1905 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1906 VkPhysicalDeviceMaintenance3Properties *properties =
1907 (VkPhysicalDeviceMaintenance3Properties *)ext;
1908 /* This value doesn't matter for us today as our per-stage
1909 * descriptors are the real limit.
1910 */
1911 CORE_PROPERTY(1, 1, maxPerSetDescriptors);
1912 CORE_PROPERTY(1, 1, maxMemoryAllocationSize);
1913 break;
1914 }
1915
1916 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1917 VkPhysicalDeviceMultiviewProperties *properties =
1918 (VkPhysicalDeviceMultiviewProperties *)ext;
1919 CORE_PROPERTY(1, 1, maxMultiviewViewCount);
1920 CORE_PROPERTY(1, 1, maxMultiviewInstanceIndex);
1921 break;
1922 }
1923
1924 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1925 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1926 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1927 properties->pciDomain = pdevice->pci_info.domain;
1928 properties->pciBus = pdevice->pci_info.bus;
1929 properties->pciDevice = pdevice->pci_info.device;
1930 properties->pciFunction = pdevice->pci_info.function;
1931 break;
1932 }
1933
1934 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_PROPERTIES_KHR: {
1935 VkPhysicalDevicePerformanceQueryPropertiesKHR *properties =
1936 (VkPhysicalDevicePerformanceQueryPropertiesKHR *)ext;
1937 /* We could support this by spawning a shader to do the equation
1938 * normalization.
1939 */
1940 properties->allowCommandBufferQueryCopies = false;
1941 break;
1942 }
1943
1944 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1945 VkPhysicalDevicePointClippingProperties *properties =
1946 (VkPhysicalDevicePointClippingProperties *) ext;
1947 CORE_PROPERTY(1, 1, pointClippingBehavior);
1948 break;
1949 }
1950
1951 #pragma GCC diagnostic push
1952 #pragma GCC diagnostic ignored "-Wswitch"
1953 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1954 VkPhysicalDevicePresentationPropertiesANDROID *props =
1955 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1956 props->sharedImage = VK_FALSE;
1957 break;
1958 }
1959 #pragma GCC diagnostic pop
1960
1961 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1962 VkPhysicalDeviceProtectedMemoryProperties *properties =
1963 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1964 CORE_PROPERTY(1, 1, protectedNoFault);
1965 break;
1966 }
1967
1968 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1969 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1970 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1971 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1972 break;
1973 }
1974
1975 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_PROPERTIES_EXT: {
1976 VkPhysicalDeviceRobustness2PropertiesEXT *properties = (void *)ext;
1977 properties->robustStorageBufferAccessSizeAlignment =
1978 ANV_SSBO_BOUNDS_CHECK_ALIGNMENT;
1979 properties->robustUniformBufferAccessSizeAlignment =
1980 ANV_UBO_ALIGNMENT;
1981 break;
1982 }
1983
1984 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1985 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1986 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1987 CORE_PROPERTY(1, 2, filterMinmaxImageComponentMapping);
1988 CORE_PROPERTY(1, 2, filterMinmaxSingleComponentFormats);
1989 break;
1990 }
1991
1992 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1993 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1994 CORE_PROPERTY(1, 1, subgroupSize);
1995 CORE_RENAMED_PROPERTY(1, 1, supportedStages,
1996 subgroupSupportedStages);
1997 CORE_RENAMED_PROPERTY(1, 1, supportedOperations,
1998 subgroupSupportedOperations);
1999 CORE_RENAMED_PROPERTY(1, 1, quadOperationsInAllStages,
2000 subgroupQuadOperationsInAllStages);
2001 break;
2002 }
2003
2004 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
2005 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
2006 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
2007 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
2008 props->minSubgroupSize = 8;
2009 props->maxSubgroupSize = 32;
2010 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
2011 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
2012 break;
2013 }
2014 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
2015 VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
2016 CORE_PROPERTY(1, 2, denormBehaviorIndependence);
2017 CORE_PROPERTY(1, 2, roundingModeIndependence);
2018 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat16);
2019 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat16);
2020 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat16);
2021 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat16);
2022 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat16);
2023 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat32);
2024 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat32);
2025 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat32);
2026 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat32);
2027 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat32);
2028 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat64);
2029 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat64);
2030 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat64);
2031 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat64);
2032 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat64);
2033 break;
2034 }
2035
2036 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
2037 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
2038 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
2039
2040 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
2041 * Base Address:
2042 *
2043 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
2044 * specifies the base address of the first element of the surface,
2045 * computed in software by adding the surface base address to the
2046 * byte offset of the element in the buffer. The base address must
2047 * be aligned to element size."
2048 *
2049 * The typed dataport messages require that things be texel aligned.
2050 * Otherwise, we may just load/store the wrong data or, in the worst
2051 * case, there may be hangs.
2052 */
2053 props->storageTexelBufferOffsetAlignmentBytes = 16;
2054 props->storageTexelBufferOffsetSingleTexelAlignment = true;
2055
2056 /* The sampler, however, is much more forgiving and it can handle
2057 * arbitrary byte alignment for linear and buffer surfaces. It's
2058 * hard to find a good PRM citation for this but years of empirical
2059 * experience demonstrate that this is true.
2060 */
2061 props->uniformTexelBufferOffsetAlignmentBytes = 1;
2062 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
2063 break;
2064 }
2065
2066 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES_KHR: {
2067 VkPhysicalDeviceTimelineSemaphorePropertiesKHR *properties =
2068 (VkPhysicalDeviceTimelineSemaphorePropertiesKHR *) ext;
2069 CORE_PROPERTY(1, 2, maxTimelineSemaphoreValueDifference);
2070 break;
2071 }
2072
2073 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
2074 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
2075 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
2076
2077 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
2078 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
2079 props->maxTransformFeedbackBufferSize = (1ull << 32);
2080 props->maxTransformFeedbackStreamDataSize = 128 * 4;
2081 props->maxTransformFeedbackBufferDataSize = 128 * 4;
2082 props->maxTransformFeedbackBufferDataStride = 2048;
2083 props->transformFeedbackQueries = true;
2084 props->transformFeedbackStreamsLinesTriangles = false;
2085 props->transformFeedbackRasterizationStreamSelect = false;
2086 props->transformFeedbackDraw = true;
2087 break;
2088 }
2089
2090 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
2091 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
2092 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
2093 /* We have to restrict this a bit for multiview */
2094 props->maxVertexAttribDivisor = UINT32_MAX / 16;
2095 break;
2096 }
2097
2098 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES:
2099 anv_get_physical_device_properties_1_1(pdevice, (void *)ext);
2100 break;
2101
2102 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES:
2103 anv_get_physical_device_properties_1_2(pdevice, (void *)ext);
2104 break;
2105
2106 default:
2107 anv_debug_ignored_stype(ext->sType);
2108 break;
2109 }
2110 }
2111
2112 #undef CORE_RENAMED_PROPERTY
2113 #undef CORE_PROPERTY
2114 }
2115
2116 /* We support exactly one queue family. */
2117 static const VkQueueFamilyProperties
2118 anv_queue_family_properties = {
2119 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
2120 VK_QUEUE_COMPUTE_BIT |
2121 VK_QUEUE_TRANSFER_BIT,
2122 .queueCount = 1,
2123 .timestampValidBits = 36, /* XXX: Real value here */
2124 .minImageTransferGranularity = { 1, 1, 1 },
2125 };
2126
2127 void anv_GetPhysicalDeviceQueueFamilyProperties(
2128 VkPhysicalDevice physicalDevice,
2129 uint32_t* pCount,
2130 VkQueueFamilyProperties* pQueueFamilyProperties)
2131 {
2132 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
2133
2134 vk_outarray_append(&out, p) {
2135 *p = anv_queue_family_properties;
2136 }
2137 }
2138
2139 void anv_GetPhysicalDeviceQueueFamilyProperties2(
2140 VkPhysicalDevice physicalDevice,
2141 uint32_t* pQueueFamilyPropertyCount,
2142 VkQueueFamilyProperties2* pQueueFamilyProperties)
2143 {
2144
2145 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
2146
2147 vk_outarray_append(&out, p) {
2148 p->queueFamilyProperties = anv_queue_family_properties;
2149
2150 vk_foreach_struct(s, p->pNext) {
2151 anv_debug_ignored_stype(s->sType);
2152 }
2153 }
2154 }
2155
2156 void anv_GetPhysicalDeviceMemoryProperties(
2157 VkPhysicalDevice physicalDevice,
2158 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
2159 {
2160 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2161
2162 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
2163 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
2164 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
2165 .propertyFlags = physical_device->memory.types[i].propertyFlags,
2166 .heapIndex = physical_device->memory.types[i].heapIndex,
2167 };
2168 }
2169
2170 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
2171 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
2172 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
2173 .size = physical_device->memory.heaps[i].size,
2174 .flags = physical_device->memory.heaps[i].flags,
2175 };
2176 }
2177 }
2178
2179 static void
2180 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
2181 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
2182 {
2183 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2184 uint64_t sys_available = get_available_system_memory();
2185 assert(sys_available > 0);
2186
2187 VkDeviceSize total_heaps_size = 0;
2188 for (size_t i = 0; i < device->memory.heap_count; i++)
2189 total_heaps_size += device->memory.heaps[i].size;
2190
2191 for (size_t i = 0; i < device->memory.heap_count; i++) {
2192 VkDeviceSize heap_size = device->memory.heaps[i].size;
2193 VkDeviceSize heap_used = device->memory.heaps[i].used;
2194 VkDeviceSize heap_budget;
2195
2196 double heap_proportion = (double) heap_size / total_heaps_size;
2197 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
2198
2199 /*
2200 * Let's not incite the app to starve the system: report at most 90% of
2201 * available system memory.
2202 */
2203 uint64_t heap_available = sys_available_prop * 9 / 10;
2204 heap_budget = MIN2(heap_size, heap_used + heap_available);
2205
2206 /*
2207 * Round down to the nearest MB
2208 */
2209 heap_budget &= ~((1ull << 20) - 1);
2210
2211 /*
2212 * The heapBudget value must be non-zero for array elements less than
2213 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
2214 * value must be less than or equal to VkMemoryHeap::size for each heap.
2215 */
2216 assert(0 < heap_budget && heap_budget <= heap_size);
2217
2218 memoryBudget->heapUsage[i] = heap_used;
2219 memoryBudget->heapBudget[i] = heap_budget;
2220 }
2221
2222 /* The heapBudget and heapUsage values must be zero for array elements
2223 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
2224 */
2225 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
2226 memoryBudget->heapBudget[i] = 0;
2227 memoryBudget->heapUsage[i] = 0;
2228 }
2229 }
2230
2231 void anv_GetPhysicalDeviceMemoryProperties2(
2232 VkPhysicalDevice physicalDevice,
2233 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
2234 {
2235 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
2236 &pMemoryProperties->memoryProperties);
2237
2238 vk_foreach_struct(ext, pMemoryProperties->pNext) {
2239 switch (ext->sType) {
2240 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
2241 anv_get_memory_budget(physicalDevice, (void*)ext);
2242 break;
2243 default:
2244 anv_debug_ignored_stype(ext->sType);
2245 break;
2246 }
2247 }
2248 }
2249
2250 void
2251 anv_GetDeviceGroupPeerMemoryFeatures(
2252 VkDevice device,
2253 uint32_t heapIndex,
2254 uint32_t localDeviceIndex,
2255 uint32_t remoteDeviceIndex,
2256 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
2257 {
2258 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
2259 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
2260 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
2261 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
2262 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
2263 }
2264
2265 PFN_vkVoidFunction anv_GetInstanceProcAddr(
2266 VkInstance _instance,
2267 const char* pName)
2268 {
2269 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2270
2271 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
2272 * when we have to return valid function pointers, NULL, or it's left
2273 * undefined. See the table for exact details.
2274 */
2275 if (pName == NULL)
2276 return NULL;
2277
2278 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
2279 if (strcmp(pName, "vk" #entrypoint) == 0) \
2280 return (PFN_vkVoidFunction)anv_##entrypoint
2281
2282 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
2283 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
2284 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
2285 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
2286
2287 /* GetInstanceProcAddr() can also be called with a NULL instance.
2288 * See https://gitlab.khronos.org/vulkan/vulkan/issues/2057
2289 */
2290 LOOKUP_ANV_ENTRYPOINT(GetInstanceProcAddr);
2291
2292 #undef LOOKUP_ANV_ENTRYPOINT
2293
2294 if (instance == NULL)
2295 return NULL;
2296
2297 int idx = anv_get_instance_entrypoint_index(pName);
2298 if (idx >= 0)
2299 return instance->dispatch.entrypoints[idx];
2300
2301 idx = anv_get_physical_device_entrypoint_index(pName);
2302 if (idx >= 0)
2303 return instance->physical_device_dispatch.entrypoints[idx];
2304
2305 idx = anv_get_device_entrypoint_index(pName);
2306 if (idx >= 0)
2307 return instance->device_dispatch.entrypoints[idx];
2308
2309 return NULL;
2310 }
2311
2312 /* With version 1+ of the loader interface the ICD should expose
2313 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
2314 */
2315 PUBLIC
2316 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2317 VkInstance instance,
2318 const char* pName);
2319
2320 PUBLIC
2321 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2322 VkInstance instance,
2323 const char* pName)
2324 {
2325 return anv_GetInstanceProcAddr(instance, pName);
2326 }
2327
2328 PFN_vkVoidFunction anv_GetDeviceProcAddr(
2329 VkDevice _device,
2330 const char* pName)
2331 {
2332 ANV_FROM_HANDLE(anv_device, device, _device);
2333
2334 if (!device || !pName)
2335 return NULL;
2336
2337 int idx = anv_get_device_entrypoint_index(pName);
2338 if (idx < 0)
2339 return NULL;
2340
2341 return device->dispatch.entrypoints[idx];
2342 }
2343
2344 /* With version 4+ of the loader interface the ICD should expose
2345 * vk_icdGetPhysicalDeviceProcAddr()
2346 */
2347 PUBLIC
2348 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
2349 VkInstance _instance,
2350 const char* pName);
2351
2352 PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
2353 VkInstance _instance,
2354 const char* pName)
2355 {
2356 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2357
2358 if (!pName || !instance)
2359 return NULL;
2360
2361 int idx = anv_get_physical_device_entrypoint_index(pName);
2362 if (idx < 0)
2363 return NULL;
2364
2365 return instance->physical_device_dispatch.entrypoints[idx];
2366 }
2367
2368
2369 VkResult
2370 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
2371 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
2372 const VkAllocationCallbacks* pAllocator,
2373 VkDebugReportCallbackEXT* pCallback)
2374 {
2375 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2376 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2377 pCreateInfo, pAllocator, &instance->alloc,
2378 pCallback);
2379 }
2380
2381 void
2382 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
2383 VkDebugReportCallbackEXT _callback,
2384 const VkAllocationCallbacks* pAllocator)
2385 {
2386 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2387 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2388 _callback, pAllocator, &instance->alloc);
2389 }
2390
2391 void
2392 anv_DebugReportMessageEXT(VkInstance _instance,
2393 VkDebugReportFlagsEXT flags,
2394 VkDebugReportObjectTypeEXT objectType,
2395 uint64_t object,
2396 size_t location,
2397 int32_t messageCode,
2398 const char* pLayerPrefix,
2399 const char* pMessage)
2400 {
2401 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2402 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2403 object, location, messageCode, pLayerPrefix, pMessage);
2404 }
2405
2406 static struct anv_state
2407 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2408 {
2409 struct anv_state state;
2410
2411 state = anv_state_pool_alloc(pool, size, align);
2412 memcpy(state.map, p, size);
2413
2414 return state;
2415 }
2416
2417 static void
2418 anv_device_init_border_colors(struct anv_device *device)
2419 {
2420 if (device->info.is_haswell) {
2421 static const struct hsw_border_color border_colors[] = {
2422 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2423 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2424 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2425 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2426 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2427 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2428 };
2429
2430 device->border_colors =
2431 anv_state_pool_emit_data(&device->dynamic_state_pool,
2432 sizeof(border_colors), 512, border_colors);
2433 } else {
2434 static const struct gen8_border_color border_colors[] = {
2435 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2436 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2437 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2438 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2439 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2440 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2441 };
2442
2443 device->border_colors =
2444 anv_state_pool_emit_data(&device->dynamic_state_pool,
2445 sizeof(border_colors), 64, border_colors);
2446 }
2447 }
2448
2449 static VkResult
2450 anv_device_init_trivial_batch(struct anv_device *device)
2451 {
2452 VkResult result = anv_device_alloc_bo(device, 4096,
2453 ANV_BO_ALLOC_MAPPED,
2454 0 /* explicit_address */,
2455 &device->trivial_batch_bo);
2456 if (result != VK_SUCCESS)
2457 return result;
2458
2459 struct anv_batch batch = {
2460 .start = device->trivial_batch_bo->map,
2461 .next = device->trivial_batch_bo->map,
2462 .end = device->trivial_batch_bo->map + 4096,
2463 };
2464
2465 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2466 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2467
2468 if (!device->info.has_llc)
2469 gen_clflush_range(batch.start, batch.next - batch.start);
2470
2471 return VK_SUCCESS;
2472 }
2473
2474 VkResult anv_EnumerateDeviceExtensionProperties(
2475 VkPhysicalDevice physicalDevice,
2476 const char* pLayerName,
2477 uint32_t* pPropertyCount,
2478 VkExtensionProperties* pProperties)
2479 {
2480 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2481 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2482
2483 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2484 if (device->supported_extensions.extensions[i]) {
2485 vk_outarray_append(&out, prop) {
2486 *prop = anv_device_extensions[i];
2487 }
2488 }
2489 }
2490
2491 return vk_outarray_status(&out);
2492 }
2493
2494 static int
2495 vk_priority_to_gen(int priority)
2496 {
2497 switch (priority) {
2498 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2499 return GEN_CONTEXT_LOW_PRIORITY;
2500 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2501 return GEN_CONTEXT_MEDIUM_PRIORITY;
2502 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2503 return GEN_CONTEXT_HIGH_PRIORITY;
2504 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2505 return GEN_CONTEXT_REALTIME_PRIORITY;
2506 default:
2507 unreachable("Invalid priority");
2508 }
2509 }
2510
2511 static VkResult
2512 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2513 {
2514 VkResult result = anv_device_alloc_bo(device, 4096,
2515 ANV_BO_ALLOC_MAPPED,
2516 0 /* explicit_address */,
2517 &device->hiz_clear_bo);
2518 if (result != VK_SUCCESS)
2519 return result;
2520
2521 union isl_color_value hiz_clear = { .u32 = { 0, } };
2522 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2523
2524 memcpy(device->hiz_clear_bo->map, hiz_clear.u32, sizeof(hiz_clear.u32));
2525
2526 if (!device->info.has_llc)
2527 gen_clflush_range(device->hiz_clear_bo->map, sizeof(hiz_clear.u32));
2528
2529 return VK_SUCCESS;
2530 }
2531
2532 static bool
2533 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2534 struct anv_block_pool *pool,
2535 uint64_t address)
2536 {
2537 anv_block_pool_foreach_bo(bo, pool) {
2538 uint64_t bo_address = gen_48b_address(bo->offset);
2539 if (address >= bo_address && address < (bo_address + bo->size)) {
2540 *ret = (struct gen_batch_decode_bo) {
2541 .addr = bo_address,
2542 .size = bo->size,
2543 .map = bo->map,
2544 };
2545 return true;
2546 }
2547 }
2548 return false;
2549 }
2550
2551 /* Finding a buffer for batch decoding */
2552 static struct gen_batch_decode_bo
2553 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2554 {
2555 struct anv_device *device = v_batch;
2556 struct gen_batch_decode_bo ret_bo = {};
2557
2558 assert(ppgtt);
2559
2560 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2561 return ret_bo;
2562 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2563 return ret_bo;
2564 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2565 return ret_bo;
2566 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2567 return ret_bo;
2568
2569 if (!device->cmd_buffer_being_decoded)
2570 return (struct gen_batch_decode_bo) { };
2571
2572 struct anv_batch_bo **bo;
2573
2574 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2575 /* The decoder zeroes out the top 16 bits, so we need to as well */
2576 uint64_t bo_address = (*bo)->bo->offset & (~0ull >> 16);
2577
2578 if (address >= bo_address && address < bo_address + (*bo)->bo->size) {
2579 return (struct gen_batch_decode_bo) {
2580 .addr = bo_address,
2581 .size = (*bo)->bo->size,
2582 .map = (*bo)->bo->map,
2583 };
2584 }
2585 }
2586
2587 return (struct gen_batch_decode_bo) { };
2588 }
2589
2590 struct gen_aux_map_buffer {
2591 struct gen_buffer base;
2592 struct anv_state state;
2593 };
2594
2595 static struct gen_buffer *
2596 gen_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
2597 {
2598 struct gen_aux_map_buffer *buf = malloc(sizeof(struct gen_aux_map_buffer));
2599 if (!buf)
2600 return NULL;
2601
2602 struct anv_device *device = (struct anv_device*)driver_ctx;
2603 assert(device->physical->supports_48bit_addresses &&
2604 device->physical->use_softpin);
2605
2606 struct anv_state_pool *pool = &device->dynamic_state_pool;
2607 buf->state = anv_state_pool_alloc(pool, size, size);
2608
2609 buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset;
2610 buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size;
2611 buf->base.map = buf->state.map;
2612 buf->base.driver_bo = &buf->state;
2613 return &buf->base;
2614 }
2615
2616 static void
2617 gen_aux_map_buffer_free(void *driver_ctx, struct gen_buffer *buffer)
2618 {
2619 struct gen_aux_map_buffer *buf = (struct gen_aux_map_buffer*)buffer;
2620 struct anv_device *device = (struct anv_device*)driver_ctx;
2621 struct anv_state_pool *pool = &device->dynamic_state_pool;
2622 anv_state_pool_free(pool, buf->state);
2623 free(buf);
2624 }
2625
2626 static struct gen_mapped_pinned_buffer_alloc aux_map_allocator = {
2627 .alloc = gen_aux_map_buffer_alloc,
2628 .free = gen_aux_map_buffer_free,
2629 };
2630
2631 static VkResult
2632 check_physical_device_features(VkPhysicalDevice physicalDevice,
2633 const VkPhysicalDeviceFeatures *features)
2634 {
2635 VkPhysicalDeviceFeatures supported_features;
2636 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2637 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2638 VkBool32 *enabled_feature = (VkBool32 *)features;
2639 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2640 for (uint32_t i = 0; i < num_features; i++) {
2641 if (enabled_feature[i] && !supported_feature[i])
2642 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2643 }
2644
2645 return VK_SUCCESS;
2646 }
2647
2648 VkResult anv_CreateDevice(
2649 VkPhysicalDevice physicalDevice,
2650 const VkDeviceCreateInfo* pCreateInfo,
2651 const VkAllocationCallbacks* pAllocator,
2652 VkDevice* pDevice)
2653 {
2654 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2655 VkResult result;
2656 struct anv_device *device;
2657
2658 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2659
2660 struct anv_device_extension_table enabled_extensions = { };
2661 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2662 int idx;
2663 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2664 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2665 anv_device_extensions[idx].extensionName) == 0)
2666 break;
2667 }
2668
2669 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2670 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2671
2672 if (!physical_device->supported_extensions.extensions[idx])
2673 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2674
2675 enabled_extensions.extensions[idx] = true;
2676 }
2677
2678 /* Check enabled features */
2679 bool robust_buffer_access = false;
2680 if (pCreateInfo->pEnabledFeatures) {
2681 result = check_physical_device_features(physicalDevice,
2682 pCreateInfo->pEnabledFeatures);
2683 if (result != VK_SUCCESS)
2684 return result;
2685
2686 if (pCreateInfo->pEnabledFeatures->robustBufferAccess)
2687 robust_buffer_access = true;
2688 }
2689
2690 vk_foreach_struct_const(ext, pCreateInfo->pNext) {
2691 switch (ext->sType) {
2692 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: {
2693 const VkPhysicalDeviceFeatures2 *features = (const void *)ext;
2694 result = check_physical_device_features(physicalDevice,
2695 &features->features);
2696 if (result != VK_SUCCESS)
2697 return result;
2698
2699 if (features->features.robustBufferAccess)
2700 robust_buffer_access = true;
2701 break;
2702 }
2703
2704 default:
2705 /* Don't warn */
2706 break;
2707 }
2708 }
2709
2710 /* Check requested queues and fail if we are requested to create any
2711 * queues with flags we don't support.
2712 */
2713 assert(pCreateInfo->queueCreateInfoCount > 0);
2714 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2715 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2716 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2717 }
2718
2719 /* Check if client specified queue priority. */
2720 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2721 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2722 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2723
2724 VkQueueGlobalPriorityEXT priority =
2725 queue_priority ? queue_priority->globalPriority :
2726 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2727
2728 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2729 sizeof(*device), 8,
2730 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2731 if (!device)
2732 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2733
2734 vk_device_init(&device->vk, pCreateInfo,
2735 &physical_device->instance->alloc, pAllocator);
2736
2737 if (INTEL_DEBUG & DEBUG_BATCH) {
2738 const unsigned decode_flags =
2739 GEN_BATCH_DECODE_FULL |
2740 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2741 GEN_BATCH_DECODE_OFFSETS |
2742 GEN_BATCH_DECODE_FLOATS;
2743
2744 gen_batch_decode_ctx_init(&device->decoder_ctx,
2745 &physical_device->info,
2746 stderr, decode_flags, NULL,
2747 decode_get_bo, NULL, device);
2748 }
2749
2750 device->physical = physical_device;
2751 device->no_hw = physical_device->no_hw;
2752 device->_lost = false;
2753
2754 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2755 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2756 if (device->fd == -1) {
2757 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2758 goto fail_device;
2759 }
2760
2761 device->context_id = anv_gem_create_context(device);
2762 if (device->context_id == -1) {
2763 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2764 goto fail_fd;
2765 }
2766
2767 result = anv_queue_init(device, &device->queue);
2768 if (result != VK_SUCCESS)
2769 goto fail_context_id;
2770
2771 if (physical_device->use_softpin) {
2772 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2773 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2774 goto fail_queue;
2775 }
2776
2777 /* keep the page with address zero out of the allocator */
2778 util_vma_heap_init(&device->vma_lo,
2779 LOW_HEAP_MIN_ADDRESS, LOW_HEAP_SIZE);
2780
2781 util_vma_heap_init(&device->vma_cva, CLIENT_VISIBLE_HEAP_MIN_ADDRESS,
2782 CLIENT_VISIBLE_HEAP_SIZE);
2783
2784 /* Leave the last 4GiB out of the high vma range, so that no state
2785 * base address + size can overflow 48 bits. For more information see
2786 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
2787 */
2788 util_vma_heap_init(&device->vma_hi, HIGH_HEAP_MIN_ADDRESS,
2789 physical_device->gtt_size - (1ull << 32) -
2790 HIGH_HEAP_MIN_ADDRESS);
2791 }
2792
2793 list_inithead(&device->memory_objects);
2794
2795 /* As per spec, the driver implementation may deny requests to acquire
2796 * a priority above the default priority (MEDIUM) if the caller does not
2797 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2798 * is returned.
2799 */
2800 if (physical_device->has_context_priority) {
2801 int err = anv_gem_set_context_param(device->fd, device->context_id,
2802 I915_CONTEXT_PARAM_PRIORITY,
2803 vk_priority_to_gen(priority));
2804 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2805 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2806 goto fail_vmas;
2807 }
2808 }
2809
2810 device->info = physical_device->info;
2811 device->isl_dev = physical_device->isl_dev;
2812
2813 /* On Broadwell and later, we can use batch chaining to more efficiently
2814 * implement growing command buffers. Prior to Haswell, the kernel
2815 * command parser gets in the way and we have to fall back to growing
2816 * the batch.
2817 */
2818 device->can_chain_batches = device->info.gen >= 8;
2819
2820 device->robust_buffer_access = robust_buffer_access;
2821 device->enabled_extensions = enabled_extensions;
2822
2823 const struct anv_instance *instance = physical_device->instance;
2824 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2825 /* Vulkan requires that entrypoints for extensions which have not been
2826 * enabled must not be advertised.
2827 */
2828 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
2829 &instance->enabled_extensions,
2830 &device->enabled_extensions)) {
2831 device->dispatch.entrypoints[i] = NULL;
2832 } else {
2833 device->dispatch.entrypoints[i] =
2834 anv_resolve_device_entrypoint(&device->info, i);
2835 }
2836 }
2837
2838 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2839 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2840 goto fail_queue;
2841 }
2842
2843 pthread_condattr_t condattr;
2844 if (pthread_condattr_init(&condattr) != 0) {
2845 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2846 goto fail_mutex;
2847 }
2848 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2849 pthread_condattr_destroy(&condattr);
2850 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2851 goto fail_mutex;
2852 }
2853 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2854 pthread_condattr_destroy(&condattr);
2855 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2856 goto fail_mutex;
2857 }
2858 pthread_condattr_destroy(&condattr);
2859
2860 result = anv_bo_cache_init(&device->bo_cache);
2861 if (result != VK_SUCCESS)
2862 goto fail_queue_cond;
2863
2864 anv_bo_pool_init(&device->batch_bo_pool, device);
2865
2866 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2867 DYNAMIC_STATE_POOL_MIN_ADDRESS, 0, 16384);
2868 if (result != VK_SUCCESS)
2869 goto fail_batch_bo_pool;
2870
2871 if (device->info.gen >= 8) {
2872 /* The border color pointer is limited to 24 bits, so we need to make
2873 * sure that any such color used at any point in the program doesn't
2874 * exceed that limit.
2875 * We achieve that by reserving all the custom border colors we support
2876 * right off the bat, so they are close to the base address.
2877 */
2878 anv_state_reserved_pool_init(&device->custom_border_colors,
2879 &device->dynamic_state_pool,
2880 sizeof(struct gen8_border_color),
2881 MAX_CUSTOM_BORDER_COLORS, 64);
2882 }
2883
2884 result = anv_state_pool_init(&device->instruction_state_pool, device,
2885 INSTRUCTION_STATE_POOL_MIN_ADDRESS, 0, 16384);
2886 if (result != VK_SUCCESS)
2887 goto fail_dynamic_state_pool;
2888
2889 result = anv_state_pool_init(&device->surface_state_pool, device,
2890 SURFACE_STATE_POOL_MIN_ADDRESS, 0, 4096);
2891 if (result != VK_SUCCESS)
2892 goto fail_instruction_state_pool;
2893
2894 if (physical_device->use_softpin) {
2895 int64_t bt_pool_offset = (int64_t)BINDING_TABLE_POOL_MIN_ADDRESS -
2896 (int64_t)SURFACE_STATE_POOL_MIN_ADDRESS;
2897 assert(INT32_MIN < bt_pool_offset && bt_pool_offset < 0);
2898 result = anv_state_pool_init(&device->binding_table_pool, device,
2899 SURFACE_STATE_POOL_MIN_ADDRESS,
2900 bt_pool_offset, 4096);
2901 if (result != VK_SUCCESS)
2902 goto fail_surface_state_pool;
2903 }
2904
2905 if (device->info.gen >= 12) {
2906 device->aux_map_ctx = gen_aux_map_init(device, &aux_map_allocator,
2907 &physical_device->info);
2908 if (!device->aux_map_ctx)
2909 goto fail_binding_table_pool;
2910 }
2911
2912 result = anv_device_alloc_bo(device, 4096,
2913 ANV_BO_ALLOC_CAPTURE | ANV_BO_ALLOC_MAPPED /* flags */,
2914 0 /* explicit_address */,
2915 &device->workaround_bo);
2916 if (result != VK_SUCCESS)
2917 goto fail_surface_aux_map_pool;
2918
2919 device->workaround_address = (struct anv_address) {
2920 .bo = device->workaround_bo,
2921 .offset = align_u32(
2922 intel_debug_write_identifiers(device->workaround_bo->map,
2923 device->workaround_bo->size,
2924 "Anv") + 8, 8),
2925 };
2926
2927 if (!device->info.has_llc) {
2928 gen_clflush_range(device->workaround_bo->map,
2929 device->workaround_address.offset);
2930 }
2931
2932 result = anv_device_init_trivial_batch(device);
2933 if (result != VK_SUCCESS)
2934 goto fail_workaround_bo;
2935
2936 /* Allocate a null surface state at surface state offset 0. This makes
2937 * NULL descriptor handling trivial because we can just memset structures
2938 * to zero and they have a valid descriptor.
2939 */
2940 device->null_surface_state =
2941 anv_state_pool_alloc(&device->surface_state_pool,
2942 device->isl_dev.ss.size,
2943 device->isl_dev.ss.align);
2944 isl_null_fill_state(&device->isl_dev, device->null_surface_state.map,
2945 isl_extent3d(1, 1, 1) /* This shouldn't matter */);
2946 assert(device->null_surface_state.offset == 0);
2947
2948 if (device->info.gen >= 10) {
2949 result = anv_device_init_hiz_clear_value_bo(device);
2950 if (result != VK_SUCCESS)
2951 goto fail_trivial_batch_bo;
2952 }
2953
2954 anv_scratch_pool_init(device, &device->scratch_pool);
2955
2956 switch (device->info.gen) {
2957 case 7:
2958 if (!device->info.is_haswell)
2959 result = gen7_init_device_state(device);
2960 else
2961 result = gen75_init_device_state(device);
2962 break;
2963 case 8:
2964 result = gen8_init_device_state(device);
2965 break;
2966 case 9:
2967 result = gen9_init_device_state(device);
2968 break;
2969 case 10:
2970 result = gen10_init_device_state(device);
2971 break;
2972 case 11:
2973 result = gen11_init_device_state(device);
2974 break;
2975 case 12:
2976 result = gen12_init_device_state(device);
2977 break;
2978 default:
2979 /* Shouldn't get here as we don't create physical devices for any other
2980 * gens. */
2981 unreachable("unhandled gen");
2982 }
2983 if (result != VK_SUCCESS)
2984 goto fail_clear_value_bo;
2985
2986 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2987
2988 anv_device_init_blorp(device);
2989
2990 anv_device_init_border_colors(device);
2991
2992 anv_device_perf_init(device);
2993
2994 *pDevice = anv_device_to_handle(device);
2995
2996 return VK_SUCCESS;
2997
2998 fail_clear_value_bo:
2999 if (device->info.gen >= 10)
3000 anv_device_release_bo(device, device->hiz_clear_bo);
3001 anv_scratch_pool_finish(device, &device->scratch_pool);
3002 fail_trivial_batch_bo:
3003 anv_device_release_bo(device, device->trivial_batch_bo);
3004 fail_workaround_bo:
3005 anv_device_release_bo(device, device->workaround_bo);
3006 fail_surface_aux_map_pool:
3007 if (device->info.gen >= 12) {
3008 gen_aux_map_finish(device->aux_map_ctx);
3009 device->aux_map_ctx = NULL;
3010 }
3011 fail_binding_table_pool:
3012 if (physical_device->use_softpin)
3013 anv_state_pool_finish(&device->binding_table_pool);
3014 fail_surface_state_pool:
3015 anv_state_pool_finish(&device->surface_state_pool);
3016 fail_instruction_state_pool:
3017 anv_state_pool_finish(&device->instruction_state_pool);
3018 fail_dynamic_state_pool:
3019 if (device->info.gen >= 8)
3020 anv_state_reserved_pool_finish(&device->custom_border_colors);
3021 anv_state_pool_finish(&device->dynamic_state_pool);
3022 fail_batch_bo_pool:
3023 anv_bo_pool_finish(&device->batch_bo_pool);
3024 anv_bo_cache_finish(&device->bo_cache);
3025 fail_queue_cond:
3026 pthread_cond_destroy(&device->queue_submit);
3027 fail_mutex:
3028 pthread_mutex_destroy(&device->mutex);
3029 fail_vmas:
3030 if (physical_device->use_softpin) {
3031 util_vma_heap_finish(&device->vma_hi);
3032 util_vma_heap_finish(&device->vma_cva);
3033 util_vma_heap_finish(&device->vma_lo);
3034 }
3035 fail_queue:
3036 anv_queue_finish(&device->queue);
3037 fail_context_id:
3038 anv_gem_destroy_context(device, device->context_id);
3039 fail_fd:
3040 close(device->fd);
3041 fail_device:
3042 vk_free(&device->vk.alloc, device);
3043
3044 return result;
3045 }
3046
3047 void anv_DestroyDevice(
3048 VkDevice _device,
3049 const VkAllocationCallbacks* pAllocator)
3050 {
3051 ANV_FROM_HANDLE(anv_device, device, _device);
3052
3053 if (!device)
3054 return;
3055
3056 anv_device_finish_blorp(device);
3057
3058 anv_pipeline_cache_finish(&device->default_pipeline_cache);
3059
3060 anv_queue_finish(&device->queue);
3061
3062 #ifdef HAVE_VALGRIND
3063 /* We only need to free these to prevent valgrind errors. The backing
3064 * BO will go away in a couple of lines so we don't actually leak.
3065 */
3066 if (device->info.gen >= 8)
3067 anv_state_reserved_pool_finish(&device->custom_border_colors);
3068 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
3069 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
3070 #endif
3071
3072 anv_scratch_pool_finish(device, &device->scratch_pool);
3073
3074 anv_device_release_bo(device, device->workaround_bo);
3075 anv_device_release_bo(device, device->trivial_batch_bo);
3076 if (device->info.gen >= 10)
3077 anv_device_release_bo(device, device->hiz_clear_bo);
3078
3079 if (device->info.gen >= 12) {
3080 gen_aux_map_finish(device->aux_map_ctx);
3081 device->aux_map_ctx = NULL;
3082 }
3083
3084 if (device->physical->use_softpin)
3085 anv_state_pool_finish(&device->binding_table_pool);
3086 anv_state_pool_finish(&device->surface_state_pool);
3087 anv_state_pool_finish(&device->instruction_state_pool);
3088 anv_state_pool_finish(&device->dynamic_state_pool);
3089
3090 anv_bo_pool_finish(&device->batch_bo_pool);
3091
3092 anv_bo_cache_finish(&device->bo_cache);
3093
3094 if (device->physical->use_softpin) {
3095 util_vma_heap_finish(&device->vma_hi);
3096 util_vma_heap_finish(&device->vma_cva);
3097 util_vma_heap_finish(&device->vma_lo);
3098 }
3099
3100 pthread_cond_destroy(&device->queue_submit);
3101 pthread_mutex_destroy(&device->mutex);
3102
3103 anv_gem_destroy_context(device, device->context_id);
3104
3105 if (INTEL_DEBUG & DEBUG_BATCH)
3106 gen_batch_decode_ctx_finish(&device->decoder_ctx);
3107
3108 close(device->fd);
3109
3110 vk_device_finish(&device->vk);
3111 vk_free(&device->vk.alloc, device);
3112 }
3113
3114 VkResult anv_EnumerateInstanceLayerProperties(
3115 uint32_t* pPropertyCount,
3116 VkLayerProperties* pProperties)
3117 {
3118 if (pProperties == NULL) {
3119 *pPropertyCount = 0;
3120 return VK_SUCCESS;
3121 }
3122
3123 /* None supported at this time */
3124 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
3125 }
3126
3127 VkResult anv_EnumerateDeviceLayerProperties(
3128 VkPhysicalDevice physicalDevice,
3129 uint32_t* pPropertyCount,
3130 VkLayerProperties* pProperties)
3131 {
3132 if (pProperties == NULL) {
3133 *pPropertyCount = 0;
3134 return VK_SUCCESS;
3135 }
3136
3137 /* None supported at this time */
3138 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
3139 }
3140
3141 void anv_GetDeviceQueue(
3142 VkDevice _device,
3143 uint32_t queueNodeIndex,
3144 uint32_t queueIndex,
3145 VkQueue* pQueue)
3146 {
3147 const VkDeviceQueueInfo2 info = {
3148 .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
3149 .pNext = NULL,
3150 .flags = 0,
3151 .queueFamilyIndex = queueNodeIndex,
3152 .queueIndex = queueIndex,
3153 };
3154
3155 anv_GetDeviceQueue2(_device, &info, pQueue);
3156 }
3157
3158 void anv_GetDeviceQueue2(
3159 VkDevice _device,
3160 const VkDeviceQueueInfo2* pQueueInfo,
3161 VkQueue* pQueue)
3162 {
3163 ANV_FROM_HANDLE(anv_device, device, _device);
3164
3165 assert(pQueueInfo->queueIndex == 0);
3166
3167 if (pQueueInfo->flags == device->queue.flags)
3168 *pQueue = anv_queue_to_handle(&device->queue);
3169 else
3170 *pQueue = NULL;
3171 }
3172
3173 VkResult
3174 _anv_device_set_lost(struct anv_device *device,
3175 const char *file, int line,
3176 const char *msg, ...)
3177 {
3178 VkResult err;
3179 va_list ap;
3180
3181 p_atomic_inc(&device->_lost);
3182
3183 va_start(ap, msg);
3184 err = __vk_errorv(device->physical->instance, device,
3185 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
3186 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
3187 va_end(ap);
3188
3189 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
3190 abort();
3191
3192 return err;
3193 }
3194
3195 VkResult
3196 _anv_queue_set_lost(struct anv_queue *queue,
3197 const char *file, int line,
3198 const char *msg, ...)
3199 {
3200 VkResult err;
3201 va_list ap;
3202
3203 p_atomic_inc(&queue->device->_lost);
3204
3205 va_start(ap, msg);
3206 err = __vk_errorv(queue->device->physical->instance, queue->device,
3207 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
3208 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
3209 va_end(ap);
3210
3211 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
3212 abort();
3213
3214 return err;
3215 }
3216
3217 VkResult
3218 anv_device_query_status(struct anv_device *device)
3219 {
3220 /* This isn't likely as most of the callers of this function already check
3221 * for it. However, it doesn't hurt to check and it potentially lets us
3222 * avoid an ioctl.
3223 */
3224 if (anv_device_is_lost(device))
3225 return VK_ERROR_DEVICE_LOST;
3226
3227 uint32_t active, pending;
3228 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
3229 if (ret == -1) {
3230 /* We don't know the real error. */
3231 return anv_device_set_lost(device, "get_reset_stats failed: %m");
3232 }
3233
3234 if (active) {
3235 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
3236 } else if (pending) {
3237 return anv_device_set_lost(device, "GPU hung with commands in-flight");
3238 }
3239
3240 return VK_SUCCESS;
3241 }
3242
3243 VkResult
3244 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
3245 {
3246 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
3247 * Other usages of the BO (such as on different hardware) will not be
3248 * flagged as "busy" by this ioctl. Use with care.
3249 */
3250 int ret = anv_gem_busy(device, bo->gem_handle);
3251 if (ret == 1) {
3252 return VK_NOT_READY;
3253 } else if (ret == -1) {
3254 /* We don't know the real error. */
3255 return anv_device_set_lost(device, "gem wait failed: %m");
3256 }
3257
3258 /* Query for device status after the busy call. If the BO we're checking
3259 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
3260 * client because it clearly doesn't have valid data. Yes, this most
3261 * likely means an ioctl, but we just did an ioctl to query the busy status
3262 * so it's no great loss.
3263 */
3264 return anv_device_query_status(device);
3265 }
3266
3267 VkResult
3268 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
3269 int64_t timeout)
3270 {
3271 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
3272 if (ret == -1 && errno == ETIME) {
3273 return VK_TIMEOUT;
3274 } else if (ret == -1) {
3275 /* We don't know the real error. */
3276 return anv_device_set_lost(device, "gem wait failed: %m");
3277 }
3278
3279 /* Query for device status after the wait. If the BO we're waiting on got
3280 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
3281 * because it clearly doesn't have valid data. Yes, this most likely means
3282 * an ioctl, but we just did an ioctl to wait so it's no great loss.
3283 */
3284 return anv_device_query_status(device);
3285 }
3286
3287 VkResult anv_DeviceWaitIdle(
3288 VkDevice _device)
3289 {
3290 ANV_FROM_HANDLE(anv_device, device, _device);
3291
3292 if (anv_device_is_lost(device))
3293 return VK_ERROR_DEVICE_LOST;
3294
3295 return anv_queue_submit_simple_batch(&device->queue, NULL);
3296 }
3297
3298 uint64_t
3299 anv_vma_alloc(struct anv_device *device,
3300 uint64_t size, uint64_t align,
3301 enum anv_bo_alloc_flags alloc_flags,
3302 uint64_t client_address)
3303 {
3304 pthread_mutex_lock(&device->vma_mutex);
3305
3306 uint64_t addr = 0;
3307
3308 if (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) {
3309 if (client_address) {
3310 if (util_vma_heap_alloc_addr(&device->vma_cva,
3311 client_address, size)) {
3312 addr = client_address;
3313 }
3314 } else {
3315 addr = util_vma_heap_alloc(&device->vma_cva, size, align);
3316 }
3317 /* We don't want to fall back to other heaps */
3318 goto done;
3319 }
3320
3321 assert(client_address == 0);
3322
3323 if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS))
3324 addr = util_vma_heap_alloc(&device->vma_hi, size, align);
3325
3326 if (addr == 0)
3327 addr = util_vma_heap_alloc(&device->vma_lo, size, align);
3328
3329 done:
3330 pthread_mutex_unlock(&device->vma_mutex);
3331
3332 assert(addr == gen_48b_address(addr));
3333 return gen_canonical_address(addr);
3334 }
3335
3336 void
3337 anv_vma_free(struct anv_device *device,
3338 uint64_t address, uint64_t size)
3339 {
3340 const uint64_t addr_48b = gen_48b_address(address);
3341
3342 pthread_mutex_lock(&device->vma_mutex);
3343
3344 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
3345 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
3346 util_vma_heap_free(&device->vma_lo, addr_48b, size);
3347 } else if (addr_48b >= CLIENT_VISIBLE_HEAP_MIN_ADDRESS &&
3348 addr_48b <= CLIENT_VISIBLE_HEAP_MAX_ADDRESS) {
3349 util_vma_heap_free(&device->vma_cva, addr_48b, size);
3350 } else {
3351 assert(addr_48b >= HIGH_HEAP_MIN_ADDRESS);
3352 util_vma_heap_free(&device->vma_hi, addr_48b, size);
3353 }
3354
3355 pthread_mutex_unlock(&device->vma_mutex);
3356 }
3357
3358 VkResult anv_AllocateMemory(
3359 VkDevice _device,
3360 const VkMemoryAllocateInfo* pAllocateInfo,
3361 const VkAllocationCallbacks* pAllocator,
3362 VkDeviceMemory* pMem)
3363 {
3364 ANV_FROM_HANDLE(anv_device, device, _device);
3365 struct anv_physical_device *pdevice = device->physical;
3366 struct anv_device_memory *mem;
3367 VkResult result = VK_SUCCESS;
3368
3369 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
3370
3371 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
3372 assert(pAllocateInfo->allocationSize > 0);
3373
3374 VkDeviceSize aligned_alloc_size =
3375 align_u64(pAllocateInfo->allocationSize, 4096);
3376
3377 if (aligned_alloc_size > MAX_MEMORY_ALLOCATION_SIZE)
3378 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3379
3380 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3381 struct anv_memory_type *mem_type =
3382 &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
3383 assert(mem_type->heapIndex < pdevice->memory.heap_count);
3384 struct anv_memory_heap *mem_heap =
3385 &pdevice->memory.heaps[mem_type->heapIndex];
3386
3387 uint64_t mem_heap_used = p_atomic_read(&mem_heap->used);
3388 if (mem_heap_used + aligned_alloc_size > mem_heap->size)
3389 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3390
3391 mem = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*mem), 8,
3392 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3393 if (mem == NULL)
3394 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3395
3396 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3397 vk_object_base_init(&device->vk, &mem->base, VK_OBJECT_TYPE_DEVICE_MEMORY);
3398 mem->type = mem_type;
3399 mem->map = NULL;
3400 mem->map_size = 0;
3401 mem->ahw = NULL;
3402 mem->host_ptr = NULL;
3403
3404 enum anv_bo_alloc_flags alloc_flags = 0;
3405
3406 const VkExportMemoryAllocateInfo *export_info = NULL;
3407 const VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info = NULL;
3408 const VkImportMemoryFdInfoKHR *fd_info = NULL;
3409 const VkImportMemoryHostPointerInfoEXT *host_ptr_info = NULL;
3410 const VkMemoryDedicatedAllocateInfo *dedicated_info = NULL;
3411 VkMemoryAllocateFlags vk_flags = 0;
3412 uint64_t client_address = 0;
3413
3414 vk_foreach_struct_const(ext, pAllocateInfo->pNext) {
3415 switch (ext->sType) {
3416 case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO:
3417 export_info = (void *)ext;
3418 break;
3419
3420 case VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID:
3421 ahw_import_info = (void *)ext;
3422 break;
3423
3424 case VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR:
3425 fd_info = (void *)ext;
3426 break;
3427
3428 case VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT:
3429 host_ptr_info = (void *)ext;
3430 break;
3431
3432 case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO: {
3433 const VkMemoryAllocateFlagsInfo *flags_info = (void *)ext;
3434 vk_flags = flags_info->flags;
3435 break;
3436 }
3437
3438 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO:
3439 dedicated_info = (void *)ext;
3440 break;
3441
3442 case VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO_KHR: {
3443 const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *addr_info =
3444 (const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *)ext;
3445 client_address = addr_info->opaqueCaptureAddress;
3446 break;
3447 }
3448
3449 default:
3450 anv_debug_ignored_stype(ext->sType);
3451 break;
3452 }
3453 }
3454
3455 /* By default, we want all VkDeviceMemory objects to support CCS */
3456 if (device->physical->has_implicit_ccs)
3457 alloc_flags |= ANV_BO_ALLOC_IMPLICIT_CCS;
3458
3459 if (vk_flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR)
3460 alloc_flags |= ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS;
3461
3462 if ((export_info && export_info->handleTypes) ||
3463 (fd_info && fd_info->handleType) ||
3464 (host_ptr_info && host_ptr_info->handleType)) {
3465 /* Anything imported or exported is EXTERNAL */
3466 alloc_flags |= ANV_BO_ALLOC_EXTERNAL;
3467
3468 /* We can't have implicit CCS on external memory with an AUX-table.
3469 * Doing so would require us to sync the aux tables across processes
3470 * which is impractical.
3471 */
3472 if (device->info.has_aux_map)
3473 alloc_flags &= ~ANV_BO_ALLOC_IMPLICIT_CCS;
3474 }
3475
3476 /* Check if we need to support Android HW buffer export. If so,
3477 * create AHardwareBuffer and import memory from it.
3478 */
3479 bool android_export = false;
3480 if (export_info && export_info->handleTypes &
3481 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
3482 android_export = true;
3483
3484 if (ahw_import_info) {
3485 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
3486 if (result != VK_SUCCESS)
3487 goto fail;
3488
3489 goto success;
3490 } else if (android_export) {
3491 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
3492 if (result != VK_SUCCESS)
3493 goto fail;
3494
3495 const VkImportAndroidHardwareBufferInfoANDROID import_info = {
3496 .buffer = mem->ahw,
3497 };
3498 result = anv_import_ahw_memory(_device, mem, &import_info);
3499 if (result != VK_SUCCESS)
3500 goto fail;
3501
3502 goto success;
3503 }
3504
3505 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3506 * ignored.
3507 */
3508 if (fd_info && fd_info->handleType) {
3509 /* At the moment, we support only the below handle types. */
3510 assert(fd_info->handleType ==
3511 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3512 fd_info->handleType ==
3513 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3514
3515 result = anv_device_import_bo(device, fd_info->fd, alloc_flags,
3516 client_address, &mem->bo);
3517 if (result != VK_SUCCESS)
3518 goto fail;
3519
3520 /* For security purposes, we reject importing the bo if it's smaller
3521 * than the requested allocation size. This prevents a malicious client
3522 * from passing a buffer to a trusted client, lying about the size, and
3523 * telling the trusted client to try and texture from an image that goes
3524 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3525 * in the trusted client. The trusted client can protect itself against
3526 * this sort of attack but only if it can trust the buffer size.
3527 */
3528 if (mem->bo->size < aligned_alloc_size) {
3529 result = vk_errorf(device, device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
3530 "aligned allocationSize too large for "
3531 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3532 "%"PRIu64"B > %"PRIu64"B",
3533 aligned_alloc_size, mem->bo->size);
3534 anv_device_release_bo(device, mem->bo);
3535 goto fail;
3536 }
3537
3538 /* From the Vulkan spec:
3539 *
3540 * "Importing memory from a file descriptor transfers ownership of
3541 * the file descriptor from the application to the Vulkan
3542 * implementation. The application must not perform any operations on
3543 * the file descriptor after a successful import."
3544 *
3545 * If the import fails, we leave the file descriptor open.
3546 */
3547 close(fd_info->fd);
3548 goto success;
3549 }
3550
3551 if (host_ptr_info && host_ptr_info->handleType) {
3552 if (host_ptr_info->handleType ==
3553 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3554 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3555 goto fail;
3556 }
3557
3558 assert(host_ptr_info->handleType ==
3559 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3560
3561 result = anv_device_import_bo_from_host_ptr(device,
3562 host_ptr_info->pHostPointer,
3563 pAllocateInfo->allocationSize,
3564 alloc_flags,
3565 client_address,
3566 &mem->bo);
3567 if (result != VK_SUCCESS)
3568 goto fail;
3569
3570 mem->host_ptr = host_ptr_info->pHostPointer;
3571 goto success;
3572 }
3573
3574 /* Regular allocate (not importing memory). */
3575
3576 result = anv_device_alloc_bo(device, pAllocateInfo->allocationSize,
3577 alloc_flags, client_address, &mem->bo);
3578 if (result != VK_SUCCESS)
3579 goto fail;
3580
3581 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3582 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3583
3584 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3585 * the BO. In this case, we have a dedicated allocation.
3586 */
3587 if (image->needs_set_tiling) {
3588 const uint32_t i915_tiling =
3589 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3590 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3591 image->planes[0].surface.isl.row_pitch_B,
3592 i915_tiling);
3593 if (ret) {
3594 anv_device_release_bo(device, mem->bo);
3595 result = vk_errorf(device, device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
3596 "failed to set BO tiling: %m");
3597 goto fail;
3598 }
3599 }
3600 }
3601
3602 success:
3603 mem_heap_used = p_atomic_add_return(&mem_heap->used, mem->bo->size);
3604 if (mem_heap_used > mem_heap->size) {
3605 p_atomic_add(&mem_heap->used, -mem->bo->size);
3606 anv_device_release_bo(device, mem->bo);
3607 result = vk_errorf(device, device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
3608 "Out of heap memory");
3609 goto fail;
3610 }
3611
3612 pthread_mutex_lock(&device->mutex);
3613 list_addtail(&mem->link, &device->memory_objects);
3614 pthread_mutex_unlock(&device->mutex);
3615
3616 *pMem = anv_device_memory_to_handle(mem);
3617
3618 return VK_SUCCESS;
3619
3620 fail:
3621 vk_free2(&device->vk.alloc, pAllocator, mem);
3622
3623 return result;
3624 }
3625
3626 VkResult anv_GetMemoryFdKHR(
3627 VkDevice device_h,
3628 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3629 int* pFd)
3630 {
3631 ANV_FROM_HANDLE(anv_device, dev, device_h);
3632 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3633
3634 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3635
3636 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3637 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3638
3639 return anv_device_export_bo(dev, mem->bo, pFd);
3640 }
3641
3642 VkResult anv_GetMemoryFdPropertiesKHR(
3643 VkDevice _device,
3644 VkExternalMemoryHandleTypeFlagBits handleType,
3645 int fd,
3646 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3647 {
3648 ANV_FROM_HANDLE(anv_device, device, _device);
3649
3650 switch (handleType) {
3651 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3652 /* dma-buf can be imported as any memory type */
3653 pMemoryFdProperties->memoryTypeBits =
3654 (1 << device->physical->memory.type_count) - 1;
3655 return VK_SUCCESS;
3656
3657 default:
3658 /* The valid usage section for this function says:
3659 *
3660 * "handleType must not be one of the handle types defined as
3661 * opaque."
3662 *
3663 * So opaque handle types fall into the default "unsupported" case.
3664 */
3665 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3666 }
3667 }
3668
3669 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3670 VkDevice _device,
3671 VkExternalMemoryHandleTypeFlagBits handleType,
3672 const void* pHostPointer,
3673 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3674 {
3675 ANV_FROM_HANDLE(anv_device, device, _device);
3676
3677 assert(pMemoryHostPointerProperties->sType ==
3678 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3679
3680 switch (handleType) {
3681 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT:
3682 /* Host memory can be imported as any memory type. */
3683 pMemoryHostPointerProperties->memoryTypeBits =
3684 (1ull << device->physical->memory.type_count) - 1;
3685
3686 return VK_SUCCESS;
3687
3688 default:
3689 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3690 }
3691 }
3692
3693 void anv_FreeMemory(
3694 VkDevice _device,
3695 VkDeviceMemory _mem,
3696 const VkAllocationCallbacks* pAllocator)
3697 {
3698 ANV_FROM_HANDLE(anv_device, device, _device);
3699 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3700
3701 if (mem == NULL)
3702 return;
3703
3704 pthread_mutex_lock(&device->mutex);
3705 list_del(&mem->link);
3706 pthread_mutex_unlock(&device->mutex);
3707
3708 if (mem->map)
3709 anv_UnmapMemory(_device, _mem);
3710
3711 p_atomic_add(&device->physical->memory.heaps[mem->type->heapIndex].used,
3712 -mem->bo->size);
3713
3714 anv_device_release_bo(device, mem->bo);
3715
3716 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3717 if (mem->ahw)
3718 AHardwareBuffer_release(mem->ahw);
3719 #endif
3720
3721 vk_object_base_finish(&mem->base);
3722 vk_free2(&device->vk.alloc, pAllocator, mem);
3723 }
3724
3725 VkResult anv_MapMemory(
3726 VkDevice _device,
3727 VkDeviceMemory _memory,
3728 VkDeviceSize offset,
3729 VkDeviceSize size,
3730 VkMemoryMapFlags flags,
3731 void** ppData)
3732 {
3733 ANV_FROM_HANDLE(anv_device, device, _device);
3734 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3735
3736 if (mem == NULL) {
3737 *ppData = NULL;
3738 return VK_SUCCESS;
3739 }
3740
3741 if (mem->host_ptr) {
3742 *ppData = mem->host_ptr + offset;
3743 return VK_SUCCESS;
3744 }
3745
3746 if (size == VK_WHOLE_SIZE)
3747 size = mem->bo->size - offset;
3748
3749 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3750 *
3751 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3752 * assert(size != 0);
3753 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3754 * equal to the size of the memory minus offset
3755 */
3756 assert(size > 0);
3757 assert(offset + size <= mem->bo->size);
3758
3759 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3760 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3761 * at a time is valid. We could just mmap up front and return an offset
3762 * pointer here, but that may exhaust virtual memory on 32 bit
3763 * userspace. */
3764
3765 uint32_t gem_flags = 0;
3766
3767 if (!device->info.has_llc &&
3768 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3769 gem_flags |= I915_MMAP_WC;
3770
3771 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3772 uint64_t map_offset;
3773 if (!device->physical->has_mmap_offset)
3774 map_offset = offset & ~4095ull;
3775 else
3776 map_offset = 0;
3777 assert(offset >= map_offset);
3778 uint64_t map_size = (offset + size) - map_offset;
3779
3780 /* Let's map whole pages */
3781 map_size = align_u64(map_size, 4096);
3782
3783 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3784 map_offset, map_size, gem_flags);
3785 if (map == MAP_FAILED)
3786 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3787
3788 mem->map = map;
3789 mem->map_size = map_size;
3790
3791 *ppData = mem->map + (offset - map_offset);
3792
3793 return VK_SUCCESS;
3794 }
3795
3796 void anv_UnmapMemory(
3797 VkDevice _device,
3798 VkDeviceMemory _memory)
3799 {
3800 ANV_FROM_HANDLE(anv_device, device, _device);
3801 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3802
3803 if (mem == NULL || mem->host_ptr)
3804 return;
3805
3806 anv_gem_munmap(device, mem->map, mem->map_size);
3807
3808 mem->map = NULL;
3809 mem->map_size = 0;
3810 }
3811
3812 static void
3813 clflush_mapped_ranges(struct anv_device *device,
3814 uint32_t count,
3815 const VkMappedMemoryRange *ranges)
3816 {
3817 for (uint32_t i = 0; i < count; i++) {
3818 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3819 if (ranges[i].offset >= mem->map_size)
3820 continue;
3821
3822 gen_clflush_range(mem->map + ranges[i].offset,
3823 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3824 }
3825 }
3826
3827 VkResult anv_FlushMappedMemoryRanges(
3828 VkDevice _device,
3829 uint32_t memoryRangeCount,
3830 const VkMappedMemoryRange* pMemoryRanges)
3831 {
3832 ANV_FROM_HANDLE(anv_device, device, _device);
3833
3834 if (device->info.has_llc)
3835 return VK_SUCCESS;
3836
3837 /* Make sure the writes we're flushing have landed. */
3838 __builtin_ia32_mfence();
3839
3840 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3841
3842 return VK_SUCCESS;
3843 }
3844
3845 VkResult anv_InvalidateMappedMemoryRanges(
3846 VkDevice _device,
3847 uint32_t memoryRangeCount,
3848 const VkMappedMemoryRange* pMemoryRanges)
3849 {
3850 ANV_FROM_HANDLE(anv_device, device, _device);
3851
3852 if (device->info.has_llc)
3853 return VK_SUCCESS;
3854
3855 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3856
3857 /* Make sure no reads get moved up above the invalidate. */
3858 __builtin_ia32_mfence();
3859
3860 return VK_SUCCESS;
3861 }
3862
3863 void anv_GetBufferMemoryRequirements(
3864 VkDevice _device,
3865 VkBuffer _buffer,
3866 VkMemoryRequirements* pMemoryRequirements)
3867 {
3868 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3869 ANV_FROM_HANDLE(anv_device, device, _device);
3870
3871 /* The Vulkan spec (git aaed022) says:
3872 *
3873 * memoryTypeBits is a bitfield and contains one bit set for every
3874 * supported memory type for the resource. The bit `1<<i` is set if and
3875 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3876 * structure for the physical device is supported.
3877 */
3878 uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
3879
3880 /* Base alignment requirement of a cache line */
3881 uint32_t alignment = 16;
3882
3883 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3884 alignment = MAX2(alignment, ANV_UBO_ALIGNMENT);
3885
3886 pMemoryRequirements->size = buffer->size;
3887 pMemoryRequirements->alignment = alignment;
3888
3889 /* Storage and Uniform buffers should have their size aligned to
3890 * 32-bits to avoid boundary checks when last DWord is not complete.
3891 * This would ensure that not internal padding would be needed for
3892 * 16-bit types.
3893 */
3894 if (device->robust_buffer_access &&
3895 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3896 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3897 pMemoryRequirements->size = align_u64(buffer->size, 4);
3898
3899 pMemoryRequirements->memoryTypeBits = memory_types;
3900 }
3901
3902 void anv_GetBufferMemoryRequirements2(
3903 VkDevice _device,
3904 const VkBufferMemoryRequirementsInfo2* pInfo,
3905 VkMemoryRequirements2* pMemoryRequirements)
3906 {
3907 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3908 &pMemoryRequirements->memoryRequirements);
3909
3910 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3911 switch (ext->sType) {
3912 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3913 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3914 requirements->prefersDedicatedAllocation = false;
3915 requirements->requiresDedicatedAllocation = false;
3916 break;
3917 }
3918
3919 default:
3920 anv_debug_ignored_stype(ext->sType);
3921 break;
3922 }
3923 }
3924 }
3925
3926 void anv_GetImageMemoryRequirements(
3927 VkDevice _device,
3928 VkImage _image,
3929 VkMemoryRequirements* pMemoryRequirements)
3930 {
3931 ANV_FROM_HANDLE(anv_image, image, _image);
3932 ANV_FROM_HANDLE(anv_device, device, _device);
3933
3934 /* The Vulkan spec (git aaed022) says:
3935 *
3936 * memoryTypeBits is a bitfield and contains one bit set for every
3937 * supported memory type for the resource. The bit `1<<i` is set if and
3938 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3939 * structure for the physical device is supported.
3940 *
3941 * All types are currently supported for images.
3942 */
3943 uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
3944
3945 pMemoryRequirements->size = image->size;
3946 pMemoryRequirements->alignment = image->alignment;
3947 pMemoryRequirements->memoryTypeBits = memory_types;
3948 }
3949
3950 void anv_GetImageMemoryRequirements2(
3951 VkDevice _device,
3952 const VkImageMemoryRequirementsInfo2* pInfo,
3953 VkMemoryRequirements2* pMemoryRequirements)
3954 {
3955 ANV_FROM_HANDLE(anv_device, device, _device);
3956 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3957
3958 anv_GetImageMemoryRequirements(_device, pInfo->image,
3959 &pMemoryRequirements->memoryRequirements);
3960
3961 vk_foreach_struct_const(ext, pInfo->pNext) {
3962 switch (ext->sType) {
3963 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3964 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3965 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3966 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3967 plane_reqs->planeAspect);
3968
3969 assert(image->planes[plane].offset == 0);
3970
3971 /* The Vulkan spec (git aaed022) says:
3972 *
3973 * memoryTypeBits is a bitfield and contains one bit set for every
3974 * supported memory type for the resource. The bit `1<<i` is set
3975 * if and only if the memory type `i` in the
3976 * VkPhysicalDeviceMemoryProperties structure for the physical
3977 * device is supported.
3978 *
3979 * All types are currently supported for images.
3980 */
3981 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3982 (1ull << device->physical->memory.type_count) - 1;
3983
3984 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3985 pMemoryRequirements->memoryRequirements.alignment =
3986 image->planes[plane].alignment;
3987 break;
3988 }
3989
3990 default:
3991 anv_debug_ignored_stype(ext->sType);
3992 break;
3993 }
3994 }
3995
3996 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3997 switch (ext->sType) {
3998 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3999 VkMemoryDedicatedRequirements *requirements = (void *)ext;
4000 if (image->needs_set_tiling || image->external_format) {
4001 /* If we need to set the tiling for external consumers, we need a
4002 * dedicated allocation.
4003 *
4004 * See also anv_AllocateMemory.
4005 */
4006 requirements->prefersDedicatedAllocation = true;
4007 requirements->requiresDedicatedAllocation = true;
4008 } else {
4009 requirements->prefersDedicatedAllocation = false;
4010 requirements->requiresDedicatedAllocation = false;
4011 }
4012 break;
4013 }
4014
4015 default:
4016 anv_debug_ignored_stype(ext->sType);
4017 break;
4018 }
4019 }
4020 }
4021
4022 void anv_GetImageSparseMemoryRequirements(
4023 VkDevice device,
4024 VkImage image,
4025 uint32_t* pSparseMemoryRequirementCount,
4026 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
4027 {
4028 *pSparseMemoryRequirementCount = 0;
4029 }
4030
4031 void anv_GetImageSparseMemoryRequirements2(
4032 VkDevice device,
4033 const VkImageSparseMemoryRequirementsInfo2* pInfo,
4034 uint32_t* pSparseMemoryRequirementCount,
4035 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
4036 {
4037 *pSparseMemoryRequirementCount = 0;
4038 }
4039
4040 void anv_GetDeviceMemoryCommitment(
4041 VkDevice device,
4042 VkDeviceMemory memory,
4043 VkDeviceSize* pCommittedMemoryInBytes)
4044 {
4045 *pCommittedMemoryInBytes = 0;
4046 }
4047
4048 static void
4049 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
4050 {
4051 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
4052 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
4053
4054 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
4055
4056 if (mem) {
4057 buffer->address = (struct anv_address) {
4058 .bo = mem->bo,
4059 .offset = pBindInfo->memoryOffset,
4060 };
4061 } else {
4062 buffer->address = ANV_NULL_ADDRESS;
4063 }
4064 }
4065
4066 VkResult anv_BindBufferMemory(
4067 VkDevice device,
4068 VkBuffer buffer,
4069 VkDeviceMemory memory,
4070 VkDeviceSize memoryOffset)
4071 {
4072 anv_bind_buffer_memory(
4073 &(VkBindBufferMemoryInfo) {
4074 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
4075 .buffer = buffer,
4076 .memory = memory,
4077 .memoryOffset = memoryOffset,
4078 });
4079
4080 return VK_SUCCESS;
4081 }
4082
4083 VkResult anv_BindBufferMemory2(
4084 VkDevice device,
4085 uint32_t bindInfoCount,
4086 const VkBindBufferMemoryInfo* pBindInfos)
4087 {
4088 for (uint32_t i = 0; i < bindInfoCount; i++)
4089 anv_bind_buffer_memory(&pBindInfos[i]);
4090
4091 return VK_SUCCESS;
4092 }
4093
4094 VkResult anv_QueueBindSparse(
4095 VkQueue _queue,
4096 uint32_t bindInfoCount,
4097 const VkBindSparseInfo* pBindInfo,
4098 VkFence fence)
4099 {
4100 ANV_FROM_HANDLE(anv_queue, queue, _queue);
4101 if (anv_device_is_lost(queue->device))
4102 return VK_ERROR_DEVICE_LOST;
4103
4104 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
4105 }
4106
4107 // Event functions
4108
4109 VkResult anv_CreateEvent(
4110 VkDevice _device,
4111 const VkEventCreateInfo* pCreateInfo,
4112 const VkAllocationCallbacks* pAllocator,
4113 VkEvent* pEvent)
4114 {
4115 ANV_FROM_HANDLE(anv_device, device, _device);
4116 struct anv_event *event;
4117
4118 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
4119
4120 event = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*event), 8,
4121 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4122 if (event == NULL)
4123 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4124
4125 vk_object_base_init(&device->vk, &event->base, VK_OBJECT_TYPE_EVENT);
4126 event->state = anv_state_pool_alloc(&device->dynamic_state_pool,
4127 sizeof(uint64_t), 8);
4128 *(uint64_t *)event->state.map = VK_EVENT_RESET;
4129
4130 *pEvent = anv_event_to_handle(event);
4131
4132 return VK_SUCCESS;
4133 }
4134
4135 void anv_DestroyEvent(
4136 VkDevice _device,
4137 VkEvent _event,
4138 const VkAllocationCallbacks* pAllocator)
4139 {
4140 ANV_FROM_HANDLE(anv_device, device, _device);
4141 ANV_FROM_HANDLE(anv_event, event, _event);
4142
4143 if (!event)
4144 return;
4145
4146 anv_state_pool_free(&device->dynamic_state_pool, event->state);
4147
4148 vk_object_base_finish(&event->base);
4149 vk_free2(&device->vk.alloc, pAllocator, event);
4150 }
4151
4152 VkResult anv_GetEventStatus(
4153 VkDevice _device,
4154 VkEvent _event)
4155 {
4156 ANV_FROM_HANDLE(anv_device, device, _device);
4157 ANV_FROM_HANDLE(anv_event, event, _event);
4158
4159 if (anv_device_is_lost(device))
4160 return VK_ERROR_DEVICE_LOST;
4161
4162 return *(uint64_t *)event->state.map;
4163 }
4164
4165 VkResult anv_SetEvent(
4166 VkDevice _device,
4167 VkEvent _event)
4168 {
4169 ANV_FROM_HANDLE(anv_event, event, _event);
4170
4171 *(uint64_t *)event->state.map = VK_EVENT_SET;
4172
4173 return VK_SUCCESS;
4174 }
4175
4176 VkResult anv_ResetEvent(
4177 VkDevice _device,
4178 VkEvent _event)
4179 {
4180 ANV_FROM_HANDLE(anv_event, event, _event);
4181
4182 *(uint64_t *)event->state.map = VK_EVENT_RESET;
4183
4184 return VK_SUCCESS;
4185 }
4186
4187 // Buffer functions
4188
4189 VkResult anv_CreateBuffer(
4190 VkDevice _device,
4191 const VkBufferCreateInfo* pCreateInfo,
4192 const VkAllocationCallbacks* pAllocator,
4193 VkBuffer* pBuffer)
4194 {
4195 ANV_FROM_HANDLE(anv_device, device, _device);
4196 struct anv_buffer *buffer;
4197
4198 /* Don't allow creating buffers bigger than our address space. The real
4199 * issue here is that we may align up the buffer size and we don't want
4200 * doing so to cause roll-over. However, no one has any business
4201 * allocating a buffer larger than our GTT size.
4202 */
4203 if (pCreateInfo->size > device->physical->gtt_size)
4204 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
4205
4206 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
4207
4208 buffer = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*buffer), 8,
4209 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4210 if (buffer == NULL)
4211 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4212
4213 vk_object_base_init(&device->vk, &buffer->base, VK_OBJECT_TYPE_BUFFER);
4214 buffer->size = pCreateInfo->size;
4215 buffer->usage = pCreateInfo->usage;
4216 buffer->address = ANV_NULL_ADDRESS;
4217
4218 *pBuffer = anv_buffer_to_handle(buffer);
4219
4220 return VK_SUCCESS;
4221 }
4222
4223 void anv_DestroyBuffer(
4224 VkDevice _device,
4225 VkBuffer _buffer,
4226 const VkAllocationCallbacks* pAllocator)
4227 {
4228 ANV_FROM_HANDLE(anv_device, device, _device);
4229 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4230
4231 if (!buffer)
4232 return;
4233
4234 vk_object_base_finish(&buffer->base);
4235 vk_free2(&device->vk.alloc, pAllocator, buffer);
4236 }
4237
4238 VkDeviceAddress anv_GetBufferDeviceAddress(
4239 VkDevice device,
4240 const VkBufferDeviceAddressInfoKHR* pInfo)
4241 {
4242 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
4243
4244 assert(!anv_address_is_null(buffer->address));
4245 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
4246
4247 return anv_address_physical(buffer->address);
4248 }
4249
4250 uint64_t anv_GetBufferOpaqueCaptureAddress(
4251 VkDevice device,
4252 const VkBufferDeviceAddressInfoKHR* pInfo)
4253 {
4254 return 0;
4255 }
4256
4257 uint64_t anv_GetDeviceMemoryOpaqueCaptureAddress(
4258 VkDevice device,
4259 const VkDeviceMemoryOpaqueCaptureAddressInfoKHR* pInfo)
4260 {
4261 ANV_FROM_HANDLE(anv_device_memory, memory, pInfo->memory);
4262
4263 assert(memory->bo->flags & EXEC_OBJECT_PINNED);
4264 assert(memory->bo->has_client_visible_address);
4265
4266 return gen_48b_address(memory->bo->offset);
4267 }
4268
4269 void
4270 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
4271 enum isl_format format,
4272 struct anv_address address,
4273 uint32_t range, uint32_t stride)
4274 {
4275 isl_buffer_fill_state(&device->isl_dev, state.map,
4276 .address = anv_address_physical(address),
4277 .mocs = device->isl_dev.mocs.internal,
4278 .size_B = range,
4279 .format = format,
4280 .swizzle = ISL_SWIZZLE_IDENTITY,
4281 .stride_B = stride);
4282 }
4283
4284 void anv_DestroySampler(
4285 VkDevice _device,
4286 VkSampler _sampler,
4287 const VkAllocationCallbacks* pAllocator)
4288 {
4289 ANV_FROM_HANDLE(anv_device, device, _device);
4290 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
4291
4292 if (!sampler)
4293 return;
4294
4295 if (sampler->bindless_state.map) {
4296 anv_state_pool_free(&device->dynamic_state_pool,
4297 sampler->bindless_state);
4298 }
4299
4300 if (sampler->custom_border_color.map) {
4301 anv_state_reserved_pool_free(&device->custom_border_colors,
4302 sampler->custom_border_color);
4303 }
4304
4305 vk_object_base_finish(&sampler->base);
4306 vk_free2(&device->vk.alloc, pAllocator, sampler);
4307 }
4308
4309 VkResult anv_CreateFramebuffer(
4310 VkDevice _device,
4311 const VkFramebufferCreateInfo* pCreateInfo,
4312 const VkAllocationCallbacks* pAllocator,
4313 VkFramebuffer* pFramebuffer)
4314 {
4315 ANV_FROM_HANDLE(anv_device, device, _device);
4316 struct anv_framebuffer *framebuffer;
4317
4318 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
4319
4320 size_t size = sizeof(*framebuffer);
4321
4322 /* VK_KHR_imageless_framebuffer extension says:
4323 *
4324 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
4325 * parameter pAttachments is ignored.
4326 */
4327 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
4328 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
4329 framebuffer = vk_alloc2(&device->vk.alloc, pAllocator, size, 8,
4330 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4331 if (framebuffer == NULL)
4332 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4333
4334 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
4335 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
4336 framebuffer->attachments[i] = iview;
4337 }
4338 framebuffer->attachment_count = pCreateInfo->attachmentCount;
4339 } else {
4340 framebuffer = vk_alloc2(&device->vk.alloc, pAllocator, size, 8,
4341 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4342 if (framebuffer == NULL)
4343 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4344
4345 framebuffer->attachment_count = 0;
4346 }
4347
4348 vk_object_base_init(&device->vk, &framebuffer->base,
4349 VK_OBJECT_TYPE_FRAMEBUFFER);
4350
4351 framebuffer->width = pCreateInfo->width;
4352 framebuffer->height = pCreateInfo->height;
4353 framebuffer->layers = pCreateInfo->layers;
4354
4355 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
4356
4357 return VK_SUCCESS;
4358 }
4359
4360 void anv_DestroyFramebuffer(
4361 VkDevice _device,
4362 VkFramebuffer _fb,
4363 const VkAllocationCallbacks* pAllocator)
4364 {
4365 ANV_FROM_HANDLE(anv_device, device, _device);
4366 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
4367
4368 if (!fb)
4369 return;
4370
4371 vk_object_base_finish(&fb->base);
4372 vk_free2(&device->vk.alloc, pAllocator, fb);
4373 }
4374
4375 static const VkTimeDomainEXT anv_time_domains[] = {
4376 VK_TIME_DOMAIN_DEVICE_EXT,
4377 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
4378 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
4379 };
4380
4381 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
4382 VkPhysicalDevice physicalDevice,
4383 uint32_t *pTimeDomainCount,
4384 VkTimeDomainEXT *pTimeDomains)
4385 {
4386 int d;
4387 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
4388
4389 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
4390 vk_outarray_append(&out, i) {
4391 *i = anv_time_domains[d];
4392 }
4393 }
4394
4395 return vk_outarray_status(&out);
4396 }
4397
4398 static uint64_t
4399 anv_clock_gettime(clockid_t clock_id)
4400 {
4401 struct timespec current;
4402 int ret;
4403
4404 ret = clock_gettime(clock_id, &current);
4405 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
4406 ret = clock_gettime(CLOCK_MONOTONIC, &current);
4407 if (ret < 0)
4408 return 0;
4409
4410 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
4411 }
4412
4413 VkResult anv_GetCalibratedTimestampsEXT(
4414 VkDevice _device,
4415 uint32_t timestampCount,
4416 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
4417 uint64_t *pTimestamps,
4418 uint64_t *pMaxDeviation)
4419 {
4420 ANV_FROM_HANDLE(anv_device, device, _device);
4421 uint64_t timestamp_frequency = device->info.timestamp_frequency;
4422 int ret;
4423 int d;
4424 uint64_t begin, end;
4425 uint64_t max_clock_period = 0;
4426
4427 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4428
4429 for (d = 0; d < timestampCount; d++) {
4430 switch (pTimestampInfos[d].timeDomain) {
4431 case VK_TIME_DOMAIN_DEVICE_EXT:
4432 ret = anv_gem_reg_read(device->fd, TIMESTAMP | I915_REG_READ_8B_WA,
4433 &pTimestamps[d]);
4434
4435 if (ret != 0) {
4436 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
4437 "register: %m");
4438 }
4439 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
4440 max_clock_period = MAX2(max_clock_period, device_period);
4441 break;
4442 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
4443 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
4444 max_clock_period = MAX2(max_clock_period, 1);
4445 break;
4446
4447 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
4448 pTimestamps[d] = begin;
4449 break;
4450 default:
4451 pTimestamps[d] = 0;
4452 break;
4453 }
4454 }
4455
4456 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4457
4458 /*
4459 * The maximum deviation is the sum of the interval over which we
4460 * perform the sampling and the maximum period of any sampled
4461 * clock. That's because the maximum skew between any two sampled
4462 * clock edges is when the sampled clock with the largest period is
4463 * sampled at the end of that period but right at the beginning of the
4464 * sampling interval and some other clock is sampled right at the
4465 * begining of its sampling period and right at the end of the
4466 * sampling interval. Let's assume the GPU has the longest clock
4467 * period and that the application is sampling GPU and monotonic:
4468 *
4469 * s e
4470 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
4471 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4472 *
4473 * g
4474 * 0 1 2 3
4475 * GPU -----_____-----_____-----_____-----_____
4476 *
4477 * m
4478 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
4479 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4480 *
4481 * Interval <----------------->
4482 * Deviation <-------------------------->
4483 *
4484 * s = read(raw) 2
4485 * g = read(GPU) 1
4486 * m = read(monotonic) 2
4487 * e = read(raw) b
4488 *
4489 * We round the sample interval up by one tick to cover sampling error
4490 * in the interval clock
4491 */
4492
4493 uint64_t sample_interval = end - begin + 1;
4494
4495 *pMaxDeviation = sample_interval + max_clock_period;
4496
4497 return VK_SUCCESS;
4498 }
4499
4500 /* vk_icd.h does not declare this function, so we declare it here to
4501 * suppress Wmissing-prototypes.
4502 */
4503 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4504 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4505
4506 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4507 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4508 {
4509 /* For the full details on loader interface versioning, see
4510 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4511 * What follows is a condensed summary, to help you navigate the large and
4512 * confusing official doc.
4513 *
4514 * - Loader interface v0 is incompatible with later versions. We don't
4515 * support it.
4516 *
4517 * - In loader interface v1:
4518 * - The first ICD entrypoint called by the loader is
4519 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4520 * entrypoint.
4521 * - The ICD must statically expose no other Vulkan symbol unless it is
4522 * linked with -Bsymbolic.
4523 * - Each dispatchable Vulkan handle created by the ICD must be
4524 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4525 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4526 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4527 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4528 * such loader-managed surfaces.
4529 *
4530 * - Loader interface v2 differs from v1 in:
4531 * - The first ICD entrypoint called by the loader is
4532 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4533 * statically expose this entrypoint.
4534 *
4535 * - Loader interface v3 differs from v2 in:
4536 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4537 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4538 * because the loader no longer does so.
4539 *
4540 * - Loader interface v4 differs from v3 in:
4541 * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
4542 */
4543 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
4544 return VK_SUCCESS;
4545 }
4546
4547 VkResult anv_CreatePrivateDataSlotEXT(
4548 VkDevice _device,
4549 const VkPrivateDataSlotCreateInfoEXT* pCreateInfo,
4550 const VkAllocationCallbacks* pAllocator,
4551 VkPrivateDataSlotEXT* pPrivateDataSlot)
4552 {
4553 ANV_FROM_HANDLE(anv_device, device, _device);
4554 return vk_private_data_slot_create(&device->vk, pCreateInfo, pAllocator,
4555 pPrivateDataSlot);
4556 }
4557
4558 void anv_DestroyPrivateDataSlotEXT(
4559 VkDevice _device,
4560 VkPrivateDataSlotEXT privateDataSlot,
4561 const VkAllocationCallbacks* pAllocator)
4562 {
4563 ANV_FROM_HANDLE(anv_device, device, _device);
4564 vk_private_data_slot_destroy(&device->vk, privateDataSlot, pAllocator);
4565 }
4566
4567 VkResult anv_SetPrivateDataEXT(
4568 VkDevice _device,
4569 VkObjectType objectType,
4570 uint64_t objectHandle,
4571 VkPrivateDataSlotEXT privateDataSlot,
4572 uint64_t data)
4573 {
4574 ANV_FROM_HANDLE(anv_device, device, _device);
4575 return vk_object_base_set_private_data(&device->vk,
4576 objectType, objectHandle,
4577 privateDataSlot, data);
4578 }
4579
4580 void anv_GetPrivateDataEXT(
4581 VkDevice _device,
4582 VkObjectType objectType,
4583 uint64_t objectHandle,
4584 VkPrivateDataSlotEXT privateDataSlot,
4585 uint64_t* pData)
4586 {
4587 ANV_FROM_HANDLE(anv_device, device, _device);
4588 vk_object_base_get_private_data(&device->vk,
4589 objectType, objectHandle,
4590 privateDataSlot, pData);
4591 }