ab484ed0f9aeee796c2ee56003860e7527cc81f2
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32
33 #include "anv_private.h"
34 #include "util/strtod.h"
35 #include "util/debug.h"
36 #include "util/build_id.h"
37 #include "util/mesa-sha1.h"
38 #include "util/vk_util.h"
39
40 #include "genxml/gen7_pack.h"
41
42 static void
43 compiler_debug_log(void *data, const char *fmt, ...)
44 { }
45
46 static void
47 compiler_perf_log(void *data, const char *fmt, ...)
48 {
49 va_list args;
50 va_start(args, fmt);
51
52 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
53 vfprintf(stderr, fmt, args);
54
55 va_end(args);
56 }
57
58 static VkResult
59 anv_compute_heap_size(int fd, uint64_t *heap_size)
60 {
61 uint64_t gtt_size;
62 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
63 &gtt_size) == -1) {
64 /* If, for whatever reason, we can't actually get the GTT size from the
65 * kernel (too old?) fall back to the aperture size.
66 */
67 anv_perf_warn("Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
68
69 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
70 return vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
71 "failed to get aperture size: %m");
72 }
73 }
74
75 /* Query the total ram from the system */
76 struct sysinfo info;
77 sysinfo(&info);
78
79 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
80
81 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
82 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
83 */
84 uint64_t available_ram;
85 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
86 available_ram = total_ram / 2;
87 else
88 available_ram = total_ram * 3 / 4;
89
90 /* We also want to leave some padding for things we allocate in the driver,
91 * so don't go over 3/4 of the GTT either.
92 */
93 uint64_t available_gtt = gtt_size * 3 / 4;
94
95 *heap_size = MIN2(available_ram, available_gtt);
96
97 return VK_SUCCESS;
98 }
99
100 static VkResult
101 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
102 {
103 /* The kernel query only tells us whether or not the kernel supports the
104 * EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and not whether or not the
105 * hardware has actual 48bit address support.
106 */
107 device->supports_48bit_addresses =
108 (device->info.gen >= 8) && anv_gem_supports_48b_addresses(fd);
109
110 uint64_t heap_size;
111 VkResult result = anv_compute_heap_size(fd, &heap_size);
112 if (result != VK_SUCCESS)
113 return result;
114
115 if (heap_size <= 3ull * (1ull << 30)) {
116 /* In this case, everything fits nicely into the 32-bit address space,
117 * so there's no need for supporting 48bit addresses on client-allocated
118 * memory objects.
119 */
120 device->memory.heap_count = 1;
121 device->memory.heaps[0] = (struct anv_memory_heap) {
122 .size = heap_size,
123 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
124 .supports_48bit_addresses = false,
125 };
126 } else {
127 /* Not everything will fit nicely into a 32-bit address space. In this
128 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
129 * larger 48-bit heap. If we're in this case, then we have a total heap
130 * size larger than 3GiB which most likely means they have 8 GiB of
131 * video memory and so carving off 1 GiB for the 32-bit heap should be
132 * reasonable.
133 */
134 const uint64_t heap_size_32bit = 1ull << 30;
135 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
136
137 assert(device->supports_48bit_addresses);
138
139 device->memory.heap_count = 2;
140 device->memory.heaps[0] = (struct anv_memory_heap) {
141 .size = heap_size_48bit,
142 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
143 .supports_48bit_addresses = true,
144 };
145 device->memory.heaps[1] = (struct anv_memory_heap) {
146 .size = heap_size_32bit,
147 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
148 .supports_48bit_addresses = false,
149 };
150 }
151
152 uint32_t type_count = 0;
153 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
154 uint32_t valid_buffer_usage = ~0;
155
156 /* There appears to be a hardware issue in the VF cache where it only
157 * considers the bottom 32 bits of memory addresses. If you happen to
158 * have two vertex buffers which get placed exactly 4 GiB apart and use
159 * them in back-to-back draw calls, you can get collisions. In order to
160 * solve this problem, we require vertex and index buffers be bound to
161 * memory allocated out of the 32-bit heap.
162 */
163 if (device->memory.heaps[heap].supports_48bit_addresses) {
164 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
165 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
166 }
167
168 if (device->info.has_llc) {
169 /* Big core GPUs share LLC with the CPU and thus one memory type can be
170 * both cached and coherent at the same time.
171 */
172 device->memory.types[type_count++] = (struct anv_memory_type) {
173 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
174 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
175 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
176 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
177 .heapIndex = heap,
178 .valid_buffer_usage = valid_buffer_usage,
179 };
180 } else {
181 /* The spec requires that we expose a host-visible, coherent memory
182 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
183 * to give the application a choice between cached, but not coherent and
184 * coherent but uncached (WC though).
185 */
186 device->memory.types[type_count++] = (struct anv_memory_type) {
187 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
188 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
189 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
190 .heapIndex = heap,
191 .valid_buffer_usage = valid_buffer_usage,
192 };
193 device->memory.types[type_count++] = (struct anv_memory_type) {
194 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
195 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
196 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
197 .heapIndex = heap,
198 .valid_buffer_usage = valid_buffer_usage,
199 };
200 }
201 }
202 device->memory.type_count = type_count;
203
204 return VK_SUCCESS;
205 }
206
207 static VkResult
208 anv_physical_device_init_uuids(struct anv_physical_device *device)
209 {
210 const struct build_id_note *note = build_id_find_nhdr("libvulkan_intel.so");
211 if (!note) {
212 return vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
213 "Failed to find build-id");
214 }
215
216 unsigned build_id_len = build_id_length(note);
217 if (build_id_len < 20) {
218 return vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
219 "build-id too short. It needs to be a SHA");
220 }
221
222 struct mesa_sha1 sha1_ctx;
223 uint8_t sha1[20];
224 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
225
226 /* The pipeline cache UUID is used for determining when a pipeline cache is
227 * invalid. It needs both a driver build and the PCI ID of the device.
228 */
229 _mesa_sha1_init(&sha1_ctx);
230 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
231 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
232 sizeof(device->chipset_id));
233 _mesa_sha1_final(&sha1_ctx, sha1);
234 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
235
236 /* The driver UUID is used for determining sharability of images and memory
237 * between two Vulkan instances in separate processes. People who want to
238 * share memory need to also check the device UUID (below) so all this
239 * needs to be is the build-id.
240 */
241 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
242
243 /* The device UUID uniquely identifies the given device within the machine.
244 * Since we never have more than one device, this doesn't need to be a real
245 * UUID. However, on the off-chance that someone tries to use this to
246 * cache pre-tiled images or something of the like, we use the PCI ID and
247 * some bits of ISL info to ensure that this is safe.
248 */
249 _mesa_sha1_init(&sha1_ctx);
250 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
251 sizeof(device->chipset_id));
252 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
253 sizeof(device->isl_dev.has_bit6_swizzling));
254 _mesa_sha1_final(&sha1_ctx, sha1);
255 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
256
257 return VK_SUCCESS;
258 }
259
260 static VkResult
261 anv_physical_device_init(struct anv_physical_device *device,
262 struct anv_instance *instance,
263 const char *path)
264 {
265 VkResult result;
266 int fd;
267
268 fd = open(path, O_RDWR | O_CLOEXEC);
269 if (fd < 0)
270 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
271
272 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
273 device->instance = instance;
274
275 assert(strlen(path) < ARRAY_SIZE(device->path));
276 strncpy(device->path, path, ARRAY_SIZE(device->path));
277
278 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
279 if (!device->chipset_id) {
280 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
281 goto fail;
282 }
283
284 device->name = gen_get_device_name(device->chipset_id);
285 if (!gen_get_device_info(device->chipset_id, &device->info)) {
286 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
287 goto fail;
288 }
289
290 if (device->info.is_haswell) {
291 fprintf(stderr, "WARNING: Haswell Vulkan support is incomplete\n");
292 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
293 fprintf(stderr, "WARNING: Ivy Bridge Vulkan support is incomplete\n");
294 } else if (device->info.gen == 7 && device->info.is_baytrail) {
295 fprintf(stderr, "WARNING: Bay Trail Vulkan support is incomplete\n");
296 } else if (device->info.gen >= 8) {
297 /* Broadwell, Cherryview, Skylake, Broxton, Kabylake is as fully
298 * supported as anything */
299 } else {
300 result = vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
301 "Vulkan not yet supported on %s", device->name);
302 goto fail;
303 }
304
305 device->cmd_parser_version = -1;
306 if (device->info.gen == 7) {
307 device->cmd_parser_version =
308 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
309 if (device->cmd_parser_version == -1) {
310 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
311 "failed to get command parser version");
312 goto fail;
313 }
314 }
315
316 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
317 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
318 "kernel missing gem wait");
319 goto fail;
320 }
321
322 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
323 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
324 "kernel missing execbuf2");
325 goto fail;
326 }
327
328 if (!device->info.has_llc &&
329 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
330 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
331 "kernel missing wc mmap");
332 goto fail;
333 }
334
335 result = anv_physical_device_init_heaps(device, fd);
336 if (result != VK_SUCCESS)
337 goto fail;
338
339 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
340
341 bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
342
343 /* GENs prior to 8 do not support EU/Subslice info */
344 if (device->info.gen >= 8) {
345 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
346 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
347
348 /* Without this information, we cannot get the right Braswell
349 * brandstrings, and we have to use conservative numbers for GPGPU on
350 * many platforms, but otherwise, things will just work.
351 */
352 if (device->subslice_total < 1 || device->eu_total < 1) {
353 fprintf(stderr, "WARNING: Kernel 4.1 required to properly"
354 " query GPU properties.\n");
355 }
356 } else if (device->info.gen == 7) {
357 device->subslice_total = 1 << (device->info.gt - 1);
358 }
359
360 if (device->info.is_cherryview &&
361 device->subslice_total > 0 && device->eu_total > 0) {
362 /* Logical CS threads = EUs per subslice * 7 threads per EU */
363 uint32_t max_cs_threads = device->eu_total / device->subslice_total * 7;
364
365 /* Fuse configurations may give more threads than expected, never less. */
366 if (max_cs_threads > device->info.max_cs_threads)
367 device->info.max_cs_threads = max_cs_threads;
368 }
369
370 brw_process_intel_debug_variable();
371
372 device->compiler = brw_compiler_create(NULL, &device->info);
373 if (device->compiler == NULL) {
374 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
375 goto fail;
376 }
377 device->compiler->shader_debug_log = compiler_debug_log;
378 device->compiler->shader_perf_log = compiler_perf_log;
379
380 isl_device_init(&device->isl_dev, &device->info, swizzled);
381
382 result = anv_physical_device_init_uuids(device);
383 if (result != VK_SUCCESS)
384 goto fail;
385
386 result = anv_init_wsi(device);
387 if (result != VK_SUCCESS) {
388 ralloc_free(device->compiler);
389 goto fail;
390 }
391
392 device->local_fd = fd;
393 return VK_SUCCESS;
394
395 fail:
396 close(fd);
397 return result;
398 }
399
400 static void
401 anv_physical_device_finish(struct anv_physical_device *device)
402 {
403 anv_finish_wsi(device);
404 ralloc_free(device->compiler);
405 close(device->local_fd);
406 }
407
408 static const VkExtensionProperties global_extensions[] = {
409 {
410 .extensionName = VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME,
411 .specVersion = 1,
412 },
413 {
414 .extensionName = VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME,
415 .specVersion = 1,
416 },
417 {
418 .extensionName = VK_KHR_SURFACE_EXTENSION_NAME,
419 .specVersion = 25,
420 },
421 #ifdef VK_USE_PLATFORM_WAYLAND_KHR
422 {
423 .extensionName = VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME,
424 .specVersion = 5,
425 },
426 #endif
427 #ifdef VK_USE_PLATFORM_XCB_KHR
428 {
429 .extensionName = VK_KHR_XCB_SURFACE_EXTENSION_NAME,
430 .specVersion = 6,
431 },
432 #endif
433 #ifdef VK_USE_PLATFORM_XLIB_KHR
434 {
435 .extensionName = VK_KHR_XLIB_SURFACE_EXTENSION_NAME,
436 .specVersion = 6,
437 },
438 #endif
439 {
440 .extensionName = VK_KHX_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME,
441 .specVersion = 1,
442 },
443 {
444 .extensionName = VK_KHX_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME,
445 .specVersion = 1,
446 },
447 };
448
449 static const VkExtensionProperties device_extensions[] = {
450 {
451 .extensionName = VK_KHR_DESCRIPTOR_UPDATE_TEMPLATE_EXTENSION_NAME,
452 .specVersion = 1,
453 },
454 {
455 .extensionName = VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME,
456 .specVersion = 1,
457 },
458 {
459 .extensionName = VK_KHR_MAINTENANCE1_EXTENSION_NAME,
460 .specVersion = 1,
461 },
462 {
463 .extensionName = VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME,
464 .specVersion = 1,
465 },
466 {
467 .extensionName = VK_KHR_SAMPLER_MIRROR_CLAMP_TO_EDGE_EXTENSION_NAME,
468 .specVersion = 1,
469 },
470 {
471 .extensionName = VK_KHR_SHADER_DRAW_PARAMETERS_EXTENSION_NAME,
472 .specVersion = 1,
473 },
474 {
475 .extensionName = VK_KHR_SWAPCHAIN_EXTENSION_NAME,
476 .specVersion = 68,
477 },
478 {
479 .extensionName = VK_KHX_EXTERNAL_MEMORY_EXTENSION_NAME,
480 .specVersion = 1,
481 },
482 {
483 .extensionName = VK_KHX_EXTERNAL_MEMORY_FD_EXTENSION_NAME,
484 .specVersion = 1,
485 },
486 {
487 .extensionName = VK_KHX_EXTERNAL_SEMAPHORE_EXTENSION_NAME,
488 .specVersion = 1,
489 },
490 {
491 .extensionName = VK_KHX_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME,
492 .specVersion = 1,
493 },
494 {
495 .extensionName = VK_KHX_MULTIVIEW_EXTENSION_NAME,
496 .specVersion = 1,
497 },
498 };
499
500 static void *
501 default_alloc_func(void *pUserData, size_t size, size_t align,
502 VkSystemAllocationScope allocationScope)
503 {
504 return malloc(size);
505 }
506
507 static void *
508 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
509 size_t align, VkSystemAllocationScope allocationScope)
510 {
511 return realloc(pOriginal, size);
512 }
513
514 static void
515 default_free_func(void *pUserData, void *pMemory)
516 {
517 free(pMemory);
518 }
519
520 static const VkAllocationCallbacks default_alloc = {
521 .pUserData = NULL,
522 .pfnAllocation = default_alloc_func,
523 .pfnReallocation = default_realloc_func,
524 .pfnFree = default_free_func,
525 };
526
527 VkResult anv_CreateInstance(
528 const VkInstanceCreateInfo* pCreateInfo,
529 const VkAllocationCallbacks* pAllocator,
530 VkInstance* pInstance)
531 {
532 struct anv_instance *instance;
533
534 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
535
536 uint32_t client_version;
537 if (pCreateInfo->pApplicationInfo &&
538 pCreateInfo->pApplicationInfo->apiVersion != 0) {
539 client_version = pCreateInfo->pApplicationInfo->apiVersion;
540 } else {
541 client_version = VK_MAKE_VERSION(1, 0, 0);
542 }
543
544 if (VK_MAKE_VERSION(1, 0, 0) > client_version ||
545 client_version > VK_MAKE_VERSION(1, 0, 0xfff)) {
546 return vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
547 "Client requested version %d.%d.%d",
548 VK_VERSION_MAJOR(client_version),
549 VK_VERSION_MINOR(client_version),
550 VK_VERSION_PATCH(client_version));
551 }
552
553 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
554 bool found = false;
555 for (uint32_t j = 0; j < ARRAY_SIZE(global_extensions); j++) {
556 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
557 global_extensions[j].extensionName) == 0) {
558 found = true;
559 break;
560 }
561 }
562 if (!found)
563 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
564 }
565
566 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
567 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
568 if (!instance)
569 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
570
571 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
572
573 if (pAllocator)
574 instance->alloc = *pAllocator;
575 else
576 instance->alloc = default_alloc;
577
578 instance->apiVersion = client_version;
579 instance->physicalDeviceCount = -1;
580
581 _mesa_locale_init();
582
583 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
584
585 *pInstance = anv_instance_to_handle(instance);
586
587 return VK_SUCCESS;
588 }
589
590 void anv_DestroyInstance(
591 VkInstance _instance,
592 const VkAllocationCallbacks* pAllocator)
593 {
594 ANV_FROM_HANDLE(anv_instance, instance, _instance);
595
596 if (!instance)
597 return;
598
599 if (instance->physicalDeviceCount > 0) {
600 /* We support at most one physical device. */
601 assert(instance->physicalDeviceCount == 1);
602 anv_physical_device_finish(&instance->physicalDevice);
603 }
604
605 VG(VALGRIND_DESTROY_MEMPOOL(instance));
606
607 _mesa_locale_fini();
608
609 vk_free(&instance->alloc, instance);
610 }
611
612 static VkResult
613 anv_enumerate_devices(struct anv_instance *instance)
614 {
615 /* TODO: Check for more devices ? */
616 drmDevicePtr devices[8];
617 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
618 int max_devices;
619
620 instance->physicalDeviceCount = 0;
621
622 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
623 if (max_devices < 1)
624 return VK_ERROR_INCOMPATIBLE_DRIVER;
625
626 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
627 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
628 devices[i]->bustype == DRM_BUS_PCI &&
629 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
630
631 result = anv_physical_device_init(&instance->physicalDevice,
632 instance,
633 devices[i]->nodes[DRM_NODE_RENDER]);
634 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
635 break;
636 }
637 }
638 drmFreeDevices(devices, max_devices);
639
640 if (result == VK_SUCCESS)
641 instance->physicalDeviceCount = 1;
642
643 return result;
644 }
645
646
647 VkResult anv_EnumeratePhysicalDevices(
648 VkInstance _instance,
649 uint32_t* pPhysicalDeviceCount,
650 VkPhysicalDevice* pPhysicalDevices)
651 {
652 ANV_FROM_HANDLE(anv_instance, instance, _instance);
653 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
654 VkResult result;
655
656 if (instance->physicalDeviceCount < 0) {
657 result = anv_enumerate_devices(instance);
658 if (result != VK_SUCCESS &&
659 result != VK_ERROR_INCOMPATIBLE_DRIVER)
660 return result;
661 }
662
663 if (instance->physicalDeviceCount > 0) {
664 assert(instance->physicalDeviceCount == 1);
665 vk_outarray_append(&out, i) {
666 *i = anv_physical_device_to_handle(&instance->physicalDevice);
667 }
668 }
669
670 return vk_outarray_status(&out);
671 }
672
673 void anv_GetPhysicalDeviceFeatures(
674 VkPhysicalDevice physicalDevice,
675 VkPhysicalDeviceFeatures* pFeatures)
676 {
677 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
678
679 *pFeatures = (VkPhysicalDeviceFeatures) {
680 .robustBufferAccess = true,
681 .fullDrawIndexUint32 = true,
682 .imageCubeArray = true,
683 .independentBlend = true,
684 .geometryShader = true,
685 .tessellationShader = true,
686 .sampleRateShading = true,
687 .dualSrcBlend = true,
688 .logicOp = true,
689 .multiDrawIndirect = true,
690 .drawIndirectFirstInstance = true,
691 .depthClamp = true,
692 .depthBiasClamp = true,
693 .fillModeNonSolid = true,
694 .depthBounds = false,
695 .wideLines = true,
696 .largePoints = true,
697 .alphaToOne = true,
698 .multiViewport = true,
699 .samplerAnisotropy = true,
700 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
701 pdevice->info.is_baytrail,
702 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
703 .textureCompressionBC = true,
704 .occlusionQueryPrecise = true,
705 .pipelineStatisticsQuery = true,
706 .fragmentStoresAndAtomics = true,
707 .shaderTessellationAndGeometryPointSize = true,
708 .shaderImageGatherExtended = true,
709 .shaderStorageImageExtendedFormats = true,
710 .shaderStorageImageMultisample = false,
711 .shaderStorageImageReadWithoutFormat = false,
712 .shaderStorageImageWriteWithoutFormat = true,
713 .shaderUniformBufferArrayDynamicIndexing = true,
714 .shaderSampledImageArrayDynamicIndexing = true,
715 .shaderStorageBufferArrayDynamicIndexing = true,
716 .shaderStorageImageArrayDynamicIndexing = true,
717 .shaderClipDistance = true,
718 .shaderCullDistance = true,
719 .shaderFloat64 = pdevice->info.gen >= 8,
720 .shaderInt64 = pdevice->info.gen >= 8,
721 .shaderInt16 = false,
722 .shaderResourceMinLod = false,
723 .variableMultisampleRate = false,
724 .inheritedQueries = true,
725 };
726
727 /* We can't do image stores in vec4 shaders */
728 pFeatures->vertexPipelineStoresAndAtomics =
729 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
730 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
731 }
732
733 void anv_GetPhysicalDeviceFeatures2KHR(
734 VkPhysicalDevice physicalDevice,
735 VkPhysicalDeviceFeatures2KHR* pFeatures)
736 {
737 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
738
739 vk_foreach_struct(ext, pFeatures->pNext) {
740 switch (ext->sType) {
741 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES_KHX: {
742 VkPhysicalDeviceMultiviewFeaturesKHX *features =
743 (VkPhysicalDeviceMultiviewFeaturesKHX *)ext;
744 features->multiview = true;
745 features->multiviewGeometryShader = true;
746 features->multiviewTessellationShader = true;
747 break;
748 }
749
750 default:
751 anv_debug_ignored_stype(ext->sType);
752 break;
753 }
754 }
755 }
756
757 void anv_GetPhysicalDeviceProperties(
758 VkPhysicalDevice physicalDevice,
759 VkPhysicalDeviceProperties* pProperties)
760 {
761 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
762 const struct gen_device_info *devinfo = &pdevice->info;
763
764 /* See assertions made when programming the buffer surface state. */
765 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
766 (1ul << 30) : (1ul << 27);
767
768 VkSampleCountFlags sample_counts =
769 isl_device_get_sample_counts(&pdevice->isl_dev);
770
771 VkPhysicalDeviceLimits limits = {
772 .maxImageDimension1D = (1 << 14),
773 .maxImageDimension2D = (1 << 14),
774 .maxImageDimension3D = (1 << 11),
775 .maxImageDimensionCube = (1 << 14),
776 .maxImageArrayLayers = (1 << 11),
777 .maxTexelBufferElements = 128 * 1024 * 1024,
778 .maxUniformBufferRange = (1ul << 27),
779 .maxStorageBufferRange = max_raw_buffer_sz,
780 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
781 .maxMemoryAllocationCount = UINT32_MAX,
782 .maxSamplerAllocationCount = 64 * 1024,
783 .bufferImageGranularity = 64, /* A cache line */
784 .sparseAddressSpaceSize = 0,
785 .maxBoundDescriptorSets = MAX_SETS,
786 .maxPerStageDescriptorSamplers = 64,
787 .maxPerStageDescriptorUniformBuffers = 64,
788 .maxPerStageDescriptorStorageBuffers = 64,
789 .maxPerStageDescriptorSampledImages = 64,
790 .maxPerStageDescriptorStorageImages = 64,
791 .maxPerStageDescriptorInputAttachments = 64,
792 .maxPerStageResources = 128,
793 .maxDescriptorSetSamplers = 256,
794 .maxDescriptorSetUniformBuffers = 256,
795 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
796 .maxDescriptorSetStorageBuffers = 256,
797 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
798 .maxDescriptorSetSampledImages = 256,
799 .maxDescriptorSetStorageImages = 256,
800 .maxDescriptorSetInputAttachments = 256,
801 .maxVertexInputAttributes = MAX_VBS,
802 .maxVertexInputBindings = MAX_VBS,
803 .maxVertexInputAttributeOffset = 2047,
804 .maxVertexInputBindingStride = 2048,
805 .maxVertexOutputComponents = 128,
806 .maxTessellationGenerationLevel = 64,
807 .maxTessellationPatchSize = 32,
808 .maxTessellationControlPerVertexInputComponents = 128,
809 .maxTessellationControlPerVertexOutputComponents = 128,
810 .maxTessellationControlPerPatchOutputComponents = 128,
811 .maxTessellationControlTotalOutputComponents = 2048,
812 .maxTessellationEvaluationInputComponents = 128,
813 .maxTessellationEvaluationOutputComponents = 128,
814 .maxGeometryShaderInvocations = 32,
815 .maxGeometryInputComponents = 64,
816 .maxGeometryOutputComponents = 128,
817 .maxGeometryOutputVertices = 256,
818 .maxGeometryTotalOutputComponents = 1024,
819 .maxFragmentInputComponents = 128,
820 .maxFragmentOutputAttachments = 8,
821 .maxFragmentDualSrcAttachments = 1,
822 .maxFragmentCombinedOutputResources = 8,
823 .maxComputeSharedMemorySize = 32768,
824 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
825 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
826 .maxComputeWorkGroupSize = {
827 16 * devinfo->max_cs_threads,
828 16 * devinfo->max_cs_threads,
829 16 * devinfo->max_cs_threads,
830 },
831 .subPixelPrecisionBits = 4 /* FIXME */,
832 .subTexelPrecisionBits = 4 /* FIXME */,
833 .mipmapPrecisionBits = 4 /* FIXME */,
834 .maxDrawIndexedIndexValue = UINT32_MAX,
835 .maxDrawIndirectCount = UINT32_MAX,
836 .maxSamplerLodBias = 16,
837 .maxSamplerAnisotropy = 16,
838 .maxViewports = MAX_VIEWPORTS,
839 .maxViewportDimensions = { (1 << 14), (1 << 14) },
840 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
841 .viewportSubPixelBits = 13, /* We take a float? */
842 .minMemoryMapAlignment = 4096, /* A page */
843 .minTexelBufferOffsetAlignment = 1,
844 .minUniformBufferOffsetAlignment = 16,
845 .minStorageBufferOffsetAlignment = 4,
846 .minTexelOffset = -8,
847 .maxTexelOffset = 7,
848 .minTexelGatherOffset = -32,
849 .maxTexelGatherOffset = 31,
850 .minInterpolationOffset = -0.5,
851 .maxInterpolationOffset = 0.4375,
852 .subPixelInterpolationOffsetBits = 4,
853 .maxFramebufferWidth = (1 << 14),
854 .maxFramebufferHeight = (1 << 14),
855 .maxFramebufferLayers = (1 << 11),
856 .framebufferColorSampleCounts = sample_counts,
857 .framebufferDepthSampleCounts = sample_counts,
858 .framebufferStencilSampleCounts = sample_counts,
859 .framebufferNoAttachmentsSampleCounts = sample_counts,
860 .maxColorAttachments = MAX_RTS,
861 .sampledImageColorSampleCounts = sample_counts,
862 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
863 .sampledImageDepthSampleCounts = sample_counts,
864 .sampledImageStencilSampleCounts = sample_counts,
865 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
866 .maxSampleMaskWords = 1,
867 .timestampComputeAndGraphics = false,
868 .timestampPeriod = devinfo->timebase_scale,
869 .maxClipDistances = 8,
870 .maxCullDistances = 8,
871 .maxCombinedClipAndCullDistances = 8,
872 .discreteQueuePriorities = 1,
873 .pointSizeRange = { 0.125, 255.875 },
874 .lineWidthRange = { 0.0, 7.9921875 },
875 .pointSizeGranularity = (1.0 / 8.0),
876 .lineWidthGranularity = (1.0 / 128.0),
877 .strictLines = false, /* FINISHME */
878 .standardSampleLocations = true,
879 .optimalBufferCopyOffsetAlignment = 128,
880 .optimalBufferCopyRowPitchAlignment = 128,
881 .nonCoherentAtomSize = 64,
882 };
883
884 *pProperties = (VkPhysicalDeviceProperties) {
885 .apiVersion = VK_MAKE_VERSION(1, 0, 42),
886 .driverVersion = 1,
887 .vendorID = 0x8086,
888 .deviceID = pdevice->chipset_id,
889 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
890 .limits = limits,
891 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
892 };
893
894 strcpy(pProperties->deviceName, pdevice->name);
895 memcpy(pProperties->pipelineCacheUUID,
896 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
897 }
898
899 void anv_GetPhysicalDeviceProperties2KHR(
900 VkPhysicalDevice physicalDevice,
901 VkPhysicalDeviceProperties2KHR* pProperties)
902 {
903 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
904
905 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
906
907 vk_foreach_struct(ext, pProperties->pNext) {
908 switch (ext->sType) {
909 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
910 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
911 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
912
913 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
914 break;
915 }
916
917 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES_KHX: {
918 VkPhysicalDeviceIDPropertiesKHX *id_props =
919 (VkPhysicalDeviceIDPropertiesKHX *)ext;
920 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
921 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
922 /* The LUID is for Windows. */
923 id_props->deviceLUIDValid = false;
924 break;
925 }
926
927 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES_KHX: {
928 VkPhysicalDeviceMultiviewPropertiesKHX *properties =
929 (VkPhysicalDeviceMultiviewPropertiesKHX *)ext;
930 properties->maxMultiviewViewCount = 16;
931 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
932 break;
933 }
934
935 default:
936 anv_debug_ignored_stype(ext->sType);
937 break;
938 }
939 }
940 }
941
942 /* We support exactly one queue family. */
943 static const VkQueueFamilyProperties
944 anv_queue_family_properties = {
945 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
946 VK_QUEUE_COMPUTE_BIT |
947 VK_QUEUE_TRANSFER_BIT,
948 .queueCount = 1,
949 .timestampValidBits = 36, /* XXX: Real value here */
950 .minImageTransferGranularity = { 1, 1, 1 },
951 };
952
953 void anv_GetPhysicalDeviceQueueFamilyProperties(
954 VkPhysicalDevice physicalDevice,
955 uint32_t* pCount,
956 VkQueueFamilyProperties* pQueueFamilyProperties)
957 {
958 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
959
960 vk_outarray_append(&out, p) {
961 *p = anv_queue_family_properties;
962 }
963 }
964
965 void anv_GetPhysicalDeviceQueueFamilyProperties2KHR(
966 VkPhysicalDevice physicalDevice,
967 uint32_t* pQueueFamilyPropertyCount,
968 VkQueueFamilyProperties2KHR* pQueueFamilyProperties)
969 {
970
971 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
972
973 vk_outarray_append(&out, p) {
974 p->queueFamilyProperties = anv_queue_family_properties;
975
976 vk_foreach_struct(s, p->pNext) {
977 anv_debug_ignored_stype(s->sType);
978 }
979 }
980 }
981
982 void anv_GetPhysicalDeviceMemoryProperties(
983 VkPhysicalDevice physicalDevice,
984 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
985 {
986 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
987
988 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
989 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
990 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
991 .propertyFlags = physical_device->memory.types[i].propertyFlags,
992 .heapIndex = physical_device->memory.types[i].heapIndex,
993 };
994 }
995
996 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
997 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
998 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
999 .size = physical_device->memory.heaps[i].size,
1000 .flags = physical_device->memory.heaps[i].flags,
1001 };
1002 }
1003 }
1004
1005 void anv_GetPhysicalDeviceMemoryProperties2KHR(
1006 VkPhysicalDevice physicalDevice,
1007 VkPhysicalDeviceMemoryProperties2KHR* pMemoryProperties)
1008 {
1009 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1010 &pMemoryProperties->memoryProperties);
1011
1012 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1013 switch (ext->sType) {
1014 default:
1015 anv_debug_ignored_stype(ext->sType);
1016 break;
1017 }
1018 }
1019 }
1020
1021 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1022 VkInstance instance,
1023 const char* pName)
1024 {
1025 return anv_lookup_entrypoint(NULL, pName);
1026 }
1027
1028 /* With version 1+ of the loader interface the ICD should expose
1029 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1030 */
1031 PUBLIC
1032 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1033 VkInstance instance,
1034 const char* pName);
1035
1036 PUBLIC
1037 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1038 VkInstance instance,
1039 const char* pName)
1040 {
1041 return anv_GetInstanceProcAddr(instance, pName);
1042 }
1043
1044 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1045 VkDevice _device,
1046 const char* pName)
1047 {
1048 ANV_FROM_HANDLE(anv_device, device, _device);
1049 return anv_lookup_entrypoint(&device->info, pName);
1050 }
1051
1052 static void
1053 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1054 {
1055 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1056 queue->device = device;
1057 queue->pool = &device->surface_state_pool;
1058 }
1059
1060 static void
1061 anv_queue_finish(struct anv_queue *queue)
1062 {
1063 }
1064
1065 static struct anv_state
1066 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1067 {
1068 struct anv_state state;
1069
1070 state = anv_state_pool_alloc(pool, size, align);
1071 memcpy(state.map, p, size);
1072
1073 anv_state_flush(pool->block_pool.device, state);
1074
1075 return state;
1076 }
1077
1078 struct gen8_border_color {
1079 union {
1080 float float32[4];
1081 uint32_t uint32[4];
1082 };
1083 /* Pad out to 64 bytes */
1084 uint32_t _pad[12];
1085 };
1086
1087 static void
1088 anv_device_init_border_colors(struct anv_device *device)
1089 {
1090 static const struct gen8_border_color border_colors[] = {
1091 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1092 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1093 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1094 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1095 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1096 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1097 };
1098
1099 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
1100 sizeof(border_colors), 64,
1101 border_colors);
1102 }
1103
1104 VkResult anv_CreateDevice(
1105 VkPhysicalDevice physicalDevice,
1106 const VkDeviceCreateInfo* pCreateInfo,
1107 const VkAllocationCallbacks* pAllocator,
1108 VkDevice* pDevice)
1109 {
1110 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1111 VkResult result;
1112 struct anv_device *device;
1113
1114 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
1115
1116 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
1117 bool found = false;
1118 for (uint32_t j = 0; j < ARRAY_SIZE(device_extensions); j++) {
1119 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
1120 device_extensions[j].extensionName) == 0) {
1121 found = true;
1122 break;
1123 }
1124 }
1125 if (!found)
1126 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1127 }
1128
1129 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
1130 sizeof(*device), 8,
1131 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1132 if (!device)
1133 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1134
1135 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1136 device->instance = physical_device->instance;
1137 device->chipset_id = physical_device->chipset_id;
1138 device->lost = false;
1139
1140 if (pAllocator)
1141 device->alloc = *pAllocator;
1142 else
1143 device->alloc = physical_device->instance->alloc;
1144
1145 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
1146 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
1147 if (device->fd == -1) {
1148 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1149 goto fail_device;
1150 }
1151
1152 device->context_id = anv_gem_create_context(device);
1153 if (device->context_id == -1) {
1154 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1155 goto fail_fd;
1156 }
1157
1158 device->info = physical_device->info;
1159 device->isl_dev = physical_device->isl_dev;
1160
1161 /* On Broadwell and later, we can use batch chaining to more efficiently
1162 * implement growing command buffers. Prior to Haswell, the kernel
1163 * command parser gets in the way and we have to fall back to growing
1164 * the batch.
1165 */
1166 device->can_chain_batches = device->info.gen >= 8;
1167
1168 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
1169 pCreateInfo->pEnabledFeatures->robustBufferAccess;
1170
1171 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
1172 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1173 goto fail_context_id;
1174 }
1175
1176 pthread_condattr_t condattr;
1177 if (pthread_condattr_init(&condattr) != 0) {
1178 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1179 goto fail_mutex;
1180 }
1181 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
1182 pthread_condattr_destroy(&condattr);
1183 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1184 goto fail_mutex;
1185 }
1186 if (pthread_cond_init(&device->queue_submit, NULL) != 0) {
1187 pthread_condattr_destroy(&condattr);
1188 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1189 goto fail_mutex;
1190 }
1191 pthread_condattr_destroy(&condattr);
1192
1193 anv_bo_pool_init(&device->batch_bo_pool, device);
1194
1195 result = anv_bo_cache_init(&device->bo_cache);
1196 if (result != VK_SUCCESS)
1197 goto fail_batch_bo_pool;
1198
1199 result = anv_state_pool_init(&device->dynamic_state_pool, device, 16384);
1200 if (result != VK_SUCCESS)
1201 goto fail_bo_cache;
1202
1203 result = anv_state_pool_init(&device->instruction_state_pool, device, 16384);
1204 if (result != VK_SUCCESS)
1205 goto fail_dynamic_state_pool;
1206
1207 result = anv_state_pool_init(&device->surface_state_pool, device, 4096);
1208 if (result != VK_SUCCESS)
1209 goto fail_instruction_state_pool;
1210
1211 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
1212 if (result != VK_SUCCESS)
1213 goto fail_surface_state_pool;
1214
1215 anv_scratch_pool_init(device, &device->scratch_pool);
1216
1217 anv_queue_init(device, &device->queue);
1218
1219 switch (device->info.gen) {
1220 case 7:
1221 if (!device->info.is_haswell)
1222 result = gen7_init_device_state(device);
1223 else
1224 result = gen75_init_device_state(device);
1225 break;
1226 case 8:
1227 result = gen8_init_device_state(device);
1228 break;
1229 case 9:
1230 result = gen9_init_device_state(device);
1231 break;
1232 default:
1233 /* Shouldn't get here as we don't create physical devices for any other
1234 * gens. */
1235 unreachable("unhandled gen");
1236 }
1237 if (result != VK_SUCCESS)
1238 goto fail_workaround_bo;
1239
1240 anv_device_init_blorp(device);
1241
1242 anv_device_init_border_colors(device);
1243
1244 *pDevice = anv_device_to_handle(device);
1245
1246 return VK_SUCCESS;
1247
1248 fail_workaround_bo:
1249 anv_queue_finish(&device->queue);
1250 anv_scratch_pool_finish(device, &device->scratch_pool);
1251 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1252 anv_gem_close(device, device->workaround_bo.gem_handle);
1253 fail_surface_state_pool:
1254 anv_state_pool_finish(&device->surface_state_pool);
1255 fail_instruction_state_pool:
1256 anv_state_pool_finish(&device->instruction_state_pool);
1257 fail_dynamic_state_pool:
1258 anv_state_pool_finish(&device->dynamic_state_pool);
1259 fail_bo_cache:
1260 anv_bo_cache_finish(&device->bo_cache);
1261 fail_batch_bo_pool:
1262 anv_bo_pool_finish(&device->batch_bo_pool);
1263 pthread_cond_destroy(&device->queue_submit);
1264 fail_mutex:
1265 pthread_mutex_destroy(&device->mutex);
1266 fail_context_id:
1267 anv_gem_destroy_context(device, device->context_id);
1268 fail_fd:
1269 close(device->fd);
1270 fail_device:
1271 vk_free(&device->alloc, device);
1272
1273 return result;
1274 }
1275
1276 void anv_DestroyDevice(
1277 VkDevice _device,
1278 const VkAllocationCallbacks* pAllocator)
1279 {
1280 ANV_FROM_HANDLE(anv_device, device, _device);
1281
1282 if (!device)
1283 return;
1284
1285 anv_device_finish_blorp(device);
1286
1287 anv_queue_finish(&device->queue);
1288
1289 #ifdef HAVE_VALGRIND
1290 /* We only need to free these to prevent valgrind errors. The backing
1291 * BO will go away in a couple of lines so we don't actually leak.
1292 */
1293 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
1294 #endif
1295
1296 anv_scratch_pool_finish(device, &device->scratch_pool);
1297
1298 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1299 anv_gem_close(device, device->workaround_bo.gem_handle);
1300
1301 anv_state_pool_finish(&device->surface_state_pool);
1302 anv_state_pool_finish(&device->instruction_state_pool);
1303 anv_state_pool_finish(&device->dynamic_state_pool);
1304
1305 anv_bo_cache_finish(&device->bo_cache);
1306
1307 anv_bo_pool_finish(&device->batch_bo_pool);
1308
1309 pthread_cond_destroy(&device->queue_submit);
1310 pthread_mutex_destroy(&device->mutex);
1311
1312 anv_gem_destroy_context(device, device->context_id);
1313
1314 close(device->fd);
1315
1316 vk_free(&device->alloc, device);
1317 }
1318
1319 VkResult anv_EnumerateInstanceExtensionProperties(
1320 const char* pLayerName,
1321 uint32_t* pPropertyCount,
1322 VkExtensionProperties* pProperties)
1323 {
1324 if (pProperties == NULL) {
1325 *pPropertyCount = ARRAY_SIZE(global_extensions);
1326 return VK_SUCCESS;
1327 }
1328
1329 *pPropertyCount = MIN2(*pPropertyCount, ARRAY_SIZE(global_extensions));
1330 typed_memcpy(pProperties, global_extensions, *pPropertyCount);
1331
1332 if (*pPropertyCount < ARRAY_SIZE(global_extensions))
1333 return VK_INCOMPLETE;
1334
1335 return VK_SUCCESS;
1336 }
1337
1338 VkResult anv_EnumerateDeviceExtensionProperties(
1339 VkPhysicalDevice physicalDevice,
1340 const char* pLayerName,
1341 uint32_t* pPropertyCount,
1342 VkExtensionProperties* pProperties)
1343 {
1344 if (pProperties == NULL) {
1345 *pPropertyCount = ARRAY_SIZE(device_extensions);
1346 return VK_SUCCESS;
1347 }
1348
1349 *pPropertyCount = MIN2(*pPropertyCount, ARRAY_SIZE(device_extensions));
1350 typed_memcpy(pProperties, device_extensions, *pPropertyCount);
1351
1352 if (*pPropertyCount < ARRAY_SIZE(device_extensions))
1353 return VK_INCOMPLETE;
1354
1355 return VK_SUCCESS;
1356 }
1357
1358 VkResult anv_EnumerateInstanceLayerProperties(
1359 uint32_t* pPropertyCount,
1360 VkLayerProperties* pProperties)
1361 {
1362 if (pProperties == NULL) {
1363 *pPropertyCount = 0;
1364 return VK_SUCCESS;
1365 }
1366
1367 /* None supported at this time */
1368 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1369 }
1370
1371 VkResult anv_EnumerateDeviceLayerProperties(
1372 VkPhysicalDevice physicalDevice,
1373 uint32_t* pPropertyCount,
1374 VkLayerProperties* pProperties)
1375 {
1376 if (pProperties == NULL) {
1377 *pPropertyCount = 0;
1378 return VK_SUCCESS;
1379 }
1380
1381 /* None supported at this time */
1382 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1383 }
1384
1385 void anv_GetDeviceQueue(
1386 VkDevice _device,
1387 uint32_t queueNodeIndex,
1388 uint32_t queueIndex,
1389 VkQueue* pQueue)
1390 {
1391 ANV_FROM_HANDLE(anv_device, device, _device);
1392
1393 assert(queueIndex == 0);
1394
1395 *pQueue = anv_queue_to_handle(&device->queue);
1396 }
1397
1398 VkResult
1399 anv_device_query_status(struct anv_device *device)
1400 {
1401 /* This isn't likely as most of the callers of this function already check
1402 * for it. However, it doesn't hurt to check and it potentially lets us
1403 * avoid an ioctl.
1404 */
1405 if (unlikely(device->lost))
1406 return VK_ERROR_DEVICE_LOST;
1407
1408 uint32_t active, pending;
1409 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
1410 if (ret == -1) {
1411 /* We don't know the real error. */
1412 device->lost = true;
1413 return vk_errorf(VK_ERROR_DEVICE_LOST, "get_reset_stats failed: %m");
1414 }
1415
1416 if (active) {
1417 device->lost = true;
1418 return vk_errorf(VK_ERROR_DEVICE_LOST,
1419 "GPU hung on one of our command buffers");
1420 } else if (pending) {
1421 device->lost = true;
1422 return vk_errorf(VK_ERROR_DEVICE_LOST,
1423 "GPU hung with commands in-flight");
1424 }
1425
1426 return VK_SUCCESS;
1427 }
1428
1429 VkResult
1430 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
1431 {
1432 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
1433 * Other usages of the BO (such as on different hardware) will not be
1434 * flagged as "busy" by this ioctl. Use with care.
1435 */
1436 int ret = anv_gem_busy(device, bo->gem_handle);
1437 if (ret == 1) {
1438 return VK_NOT_READY;
1439 } else if (ret == -1) {
1440 /* We don't know the real error. */
1441 device->lost = true;
1442 return vk_errorf(VK_ERROR_DEVICE_LOST, "gem wait failed: %m");
1443 }
1444
1445 /* Query for device status after the busy call. If the BO we're checking
1446 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
1447 * client because it clearly doesn't have valid data. Yes, this most
1448 * likely means an ioctl, but we just did an ioctl to query the busy status
1449 * so it's no great loss.
1450 */
1451 return anv_device_query_status(device);
1452 }
1453
1454 VkResult
1455 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1456 int64_t timeout)
1457 {
1458 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
1459 if (ret == -1 && errno == ETIME) {
1460 return VK_TIMEOUT;
1461 } else if (ret == -1) {
1462 /* We don't know the real error. */
1463 device->lost = true;
1464 return vk_errorf(VK_ERROR_DEVICE_LOST, "gem wait failed: %m");
1465 }
1466
1467 /* Query for device status after the wait. If the BO we're waiting on got
1468 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
1469 * because it clearly doesn't have valid data. Yes, this most likely means
1470 * an ioctl, but we just did an ioctl to wait so it's no great loss.
1471 */
1472 return anv_device_query_status(device);
1473 }
1474
1475 VkResult anv_DeviceWaitIdle(
1476 VkDevice _device)
1477 {
1478 ANV_FROM_HANDLE(anv_device, device, _device);
1479 if (unlikely(device->lost))
1480 return VK_ERROR_DEVICE_LOST;
1481
1482 struct anv_batch batch;
1483
1484 uint32_t cmds[8];
1485 batch.start = batch.next = cmds;
1486 batch.end = (void *) cmds + sizeof(cmds);
1487
1488 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1489 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1490
1491 return anv_device_submit_simple_batch(device, &batch);
1492 }
1493
1494 VkResult
1495 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
1496 {
1497 uint32_t gem_handle = anv_gem_create(device, size);
1498 if (!gem_handle)
1499 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1500
1501 anv_bo_init(bo, gem_handle, size);
1502
1503 return VK_SUCCESS;
1504 }
1505
1506 VkResult anv_AllocateMemory(
1507 VkDevice _device,
1508 const VkMemoryAllocateInfo* pAllocateInfo,
1509 const VkAllocationCallbacks* pAllocator,
1510 VkDeviceMemory* pMem)
1511 {
1512 ANV_FROM_HANDLE(anv_device, device, _device);
1513 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1514 struct anv_device_memory *mem;
1515 VkResult result = VK_SUCCESS;
1516
1517 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
1518
1519 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
1520 assert(pAllocateInfo->allocationSize > 0);
1521
1522 /* The kernel relocation API has a limitation of a 32-bit delta value
1523 * applied to the address before it is written which, in spite of it being
1524 * unsigned, is treated as signed . Because of the way that this maps to
1525 * the Vulkan API, we cannot handle an offset into a buffer that does not
1526 * fit into a signed 32 bits. The only mechanism we have for dealing with
1527 * this at the moment is to limit all VkDeviceMemory objects to a maximum
1528 * of 2GB each. The Vulkan spec allows us to do this:
1529 *
1530 * "Some platforms may have a limit on the maximum size of a single
1531 * allocation. For example, certain systems may fail to create
1532 * allocations with a size greater than or equal to 4GB. Such a limit is
1533 * implementation-dependent, and if such a failure occurs then the error
1534 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
1535 *
1536 * We don't use vk_error here because it's not an error so much as an
1537 * indication to the application that the allocation is too large.
1538 */
1539 if (pAllocateInfo->allocationSize > (1ull << 31))
1540 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1541
1542 /* FINISHME: Fail if allocation request exceeds heap size. */
1543
1544 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
1545 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1546 if (mem == NULL)
1547 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1548
1549 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
1550 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
1551 mem->map = NULL;
1552 mem->map_size = 0;
1553
1554 const VkImportMemoryFdInfoKHX *fd_info =
1555 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHX);
1556
1557 /* The Vulkan spec permits handleType to be 0, in which case the struct is
1558 * ignored.
1559 */
1560 if (fd_info && fd_info->handleType) {
1561 /* At the moment, we only support the OPAQUE_FD memory type which is
1562 * just a GEM buffer.
1563 */
1564 assert(fd_info->handleType ==
1565 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHX);
1566
1567 result = anv_bo_cache_import(device, &device->bo_cache,
1568 fd_info->fd, pAllocateInfo->allocationSize,
1569 &mem->bo);
1570 if (result != VK_SUCCESS)
1571 goto fail;
1572 } else {
1573 result = anv_bo_cache_alloc(device, &device->bo_cache,
1574 pAllocateInfo->allocationSize,
1575 &mem->bo);
1576 if (result != VK_SUCCESS)
1577 goto fail;
1578 }
1579
1580 assert(mem->type->heapIndex < pdevice->memory.heap_count);
1581 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
1582 mem->bo->flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1583
1584 if (pdevice->has_exec_async)
1585 mem->bo->flags |= EXEC_OBJECT_ASYNC;
1586
1587 *pMem = anv_device_memory_to_handle(mem);
1588
1589 return VK_SUCCESS;
1590
1591 fail:
1592 vk_free2(&device->alloc, pAllocator, mem);
1593
1594 return result;
1595 }
1596
1597 VkResult anv_GetMemoryFdKHX(
1598 VkDevice device_h,
1599 VkDeviceMemory memory_h,
1600 VkExternalMemoryHandleTypeFlagBitsKHX handleType,
1601 int* pFd)
1602 {
1603 ANV_FROM_HANDLE(anv_device, dev, device_h);
1604 ANV_FROM_HANDLE(anv_device_memory, mem, memory_h);
1605
1606 /* We support only one handle type. */
1607 assert(handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHX);
1608
1609 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
1610 }
1611
1612 VkResult anv_GetMemoryFdPropertiesKHX(
1613 VkDevice device_h,
1614 VkExternalMemoryHandleTypeFlagBitsKHX handleType,
1615 int fd,
1616 VkMemoryFdPropertiesKHX* pMemoryFdProperties)
1617 {
1618 /* The valid usage section for this function says:
1619 *
1620 * "handleType must not be one of the handle types defined as opaque."
1621 *
1622 * Since we only handle opaque handles for now, there are no FD properties.
1623 */
1624 return VK_ERROR_INVALID_EXTERNAL_HANDLE_KHX;
1625 }
1626
1627 void anv_FreeMemory(
1628 VkDevice _device,
1629 VkDeviceMemory _mem,
1630 const VkAllocationCallbacks* pAllocator)
1631 {
1632 ANV_FROM_HANDLE(anv_device, device, _device);
1633 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
1634
1635 if (mem == NULL)
1636 return;
1637
1638 if (mem->map)
1639 anv_UnmapMemory(_device, _mem);
1640
1641 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
1642
1643 vk_free2(&device->alloc, pAllocator, mem);
1644 }
1645
1646 VkResult anv_MapMemory(
1647 VkDevice _device,
1648 VkDeviceMemory _memory,
1649 VkDeviceSize offset,
1650 VkDeviceSize size,
1651 VkMemoryMapFlags flags,
1652 void** ppData)
1653 {
1654 ANV_FROM_HANDLE(anv_device, device, _device);
1655 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1656
1657 if (mem == NULL) {
1658 *ppData = NULL;
1659 return VK_SUCCESS;
1660 }
1661
1662 if (size == VK_WHOLE_SIZE)
1663 size = mem->bo->size - offset;
1664
1665 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
1666 *
1667 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
1668 * assert(size != 0);
1669 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
1670 * equal to the size of the memory minus offset
1671 */
1672 assert(size > 0);
1673 assert(offset + size <= mem->bo->size);
1674
1675 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
1676 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
1677 * at a time is valid. We could just mmap up front and return an offset
1678 * pointer here, but that may exhaust virtual memory on 32 bit
1679 * userspace. */
1680
1681 uint32_t gem_flags = 0;
1682
1683 if (!device->info.has_llc &&
1684 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
1685 gem_flags |= I915_MMAP_WC;
1686
1687 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
1688 uint64_t map_offset = offset & ~4095ull;
1689 assert(offset >= map_offset);
1690 uint64_t map_size = (offset + size) - map_offset;
1691
1692 /* Let's map whole pages */
1693 map_size = align_u64(map_size, 4096);
1694
1695 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
1696 map_offset, map_size, gem_flags);
1697 if (map == MAP_FAILED)
1698 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
1699
1700 mem->map = map;
1701 mem->map_size = map_size;
1702
1703 *ppData = mem->map + (offset - map_offset);
1704
1705 return VK_SUCCESS;
1706 }
1707
1708 void anv_UnmapMemory(
1709 VkDevice _device,
1710 VkDeviceMemory _memory)
1711 {
1712 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1713
1714 if (mem == NULL)
1715 return;
1716
1717 anv_gem_munmap(mem->map, mem->map_size);
1718
1719 mem->map = NULL;
1720 mem->map_size = 0;
1721 }
1722
1723 static void
1724 clflush_mapped_ranges(struct anv_device *device,
1725 uint32_t count,
1726 const VkMappedMemoryRange *ranges)
1727 {
1728 for (uint32_t i = 0; i < count; i++) {
1729 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
1730 if (ranges[i].offset >= mem->map_size)
1731 continue;
1732
1733 anv_clflush_range(mem->map + ranges[i].offset,
1734 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
1735 }
1736 }
1737
1738 VkResult anv_FlushMappedMemoryRanges(
1739 VkDevice _device,
1740 uint32_t memoryRangeCount,
1741 const VkMappedMemoryRange* pMemoryRanges)
1742 {
1743 ANV_FROM_HANDLE(anv_device, device, _device);
1744
1745 if (device->info.has_llc)
1746 return VK_SUCCESS;
1747
1748 /* Make sure the writes we're flushing have landed. */
1749 __builtin_ia32_mfence();
1750
1751 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1752
1753 return VK_SUCCESS;
1754 }
1755
1756 VkResult anv_InvalidateMappedMemoryRanges(
1757 VkDevice _device,
1758 uint32_t memoryRangeCount,
1759 const VkMappedMemoryRange* pMemoryRanges)
1760 {
1761 ANV_FROM_HANDLE(anv_device, device, _device);
1762
1763 if (device->info.has_llc)
1764 return VK_SUCCESS;
1765
1766 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1767
1768 /* Make sure no reads get moved up above the invalidate. */
1769 __builtin_ia32_mfence();
1770
1771 return VK_SUCCESS;
1772 }
1773
1774 void anv_GetBufferMemoryRequirements(
1775 VkDevice _device,
1776 VkBuffer _buffer,
1777 VkMemoryRequirements* pMemoryRequirements)
1778 {
1779 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1780 ANV_FROM_HANDLE(anv_device, device, _device);
1781 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1782
1783 /* The Vulkan spec (git aaed022) says:
1784 *
1785 * memoryTypeBits is a bitfield and contains one bit set for every
1786 * supported memory type for the resource. The bit `1<<i` is set if and
1787 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1788 * structure for the physical device is supported.
1789 */
1790 uint32_t memory_types = 0;
1791 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
1792 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
1793 if ((valid_usage & buffer->usage) == buffer->usage)
1794 memory_types |= (1u << i);
1795 }
1796
1797 pMemoryRequirements->size = buffer->size;
1798 pMemoryRequirements->alignment = 16;
1799 pMemoryRequirements->memoryTypeBits = memory_types;
1800 }
1801
1802 void anv_GetImageMemoryRequirements(
1803 VkDevice _device,
1804 VkImage _image,
1805 VkMemoryRequirements* pMemoryRequirements)
1806 {
1807 ANV_FROM_HANDLE(anv_image, image, _image);
1808 ANV_FROM_HANDLE(anv_device, device, _device);
1809 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1810
1811 /* The Vulkan spec (git aaed022) says:
1812 *
1813 * memoryTypeBits is a bitfield and contains one bit set for every
1814 * supported memory type for the resource. The bit `1<<i` is set if and
1815 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1816 * structure for the physical device is supported.
1817 *
1818 * All types are currently supported for images.
1819 */
1820 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
1821
1822 pMemoryRequirements->size = image->size;
1823 pMemoryRequirements->alignment = image->alignment;
1824 pMemoryRequirements->memoryTypeBits = memory_types;
1825 }
1826
1827 void anv_GetImageSparseMemoryRequirements(
1828 VkDevice device,
1829 VkImage image,
1830 uint32_t* pSparseMemoryRequirementCount,
1831 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
1832 {
1833 *pSparseMemoryRequirementCount = 0;
1834 }
1835
1836 void anv_GetDeviceMemoryCommitment(
1837 VkDevice device,
1838 VkDeviceMemory memory,
1839 VkDeviceSize* pCommittedMemoryInBytes)
1840 {
1841 *pCommittedMemoryInBytes = 0;
1842 }
1843
1844 VkResult anv_BindBufferMemory(
1845 VkDevice device,
1846 VkBuffer _buffer,
1847 VkDeviceMemory _memory,
1848 VkDeviceSize memoryOffset)
1849 {
1850 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1851 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1852
1853 if (mem) {
1854 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
1855 buffer->bo = mem->bo;
1856 buffer->offset = memoryOffset;
1857 } else {
1858 buffer->bo = NULL;
1859 buffer->offset = 0;
1860 }
1861
1862 return VK_SUCCESS;
1863 }
1864
1865 VkResult anv_QueueBindSparse(
1866 VkQueue _queue,
1867 uint32_t bindInfoCount,
1868 const VkBindSparseInfo* pBindInfo,
1869 VkFence fence)
1870 {
1871 ANV_FROM_HANDLE(anv_queue, queue, _queue);
1872 if (unlikely(queue->device->lost))
1873 return VK_ERROR_DEVICE_LOST;
1874
1875 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
1876 }
1877
1878 // Event functions
1879
1880 VkResult anv_CreateEvent(
1881 VkDevice _device,
1882 const VkEventCreateInfo* pCreateInfo,
1883 const VkAllocationCallbacks* pAllocator,
1884 VkEvent* pEvent)
1885 {
1886 ANV_FROM_HANDLE(anv_device, device, _device);
1887 struct anv_state state;
1888 struct anv_event *event;
1889
1890 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
1891
1892 state = anv_state_pool_alloc(&device->dynamic_state_pool,
1893 sizeof(*event), 8);
1894 event = state.map;
1895 event->state = state;
1896 event->semaphore = VK_EVENT_RESET;
1897
1898 if (!device->info.has_llc) {
1899 /* Make sure the writes we're flushing have landed. */
1900 __builtin_ia32_mfence();
1901 __builtin_ia32_clflush(event);
1902 }
1903
1904 *pEvent = anv_event_to_handle(event);
1905
1906 return VK_SUCCESS;
1907 }
1908
1909 void anv_DestroyEvent(
1910 VkDevice _device,
1911 VkEvent _event,
1912 const VkAllocationCallbacks* pAllocator)
1913 {
1914 ANV_FROM_HANDLE(anv_device, device, _device);
1915 ANV_FROM_HANDLE(anv_event, event, _event);
1916
1917 if (!event)
1918 return;
1919
1920 anv_state_pool_free(&device->dynamic_state_pool, event->state);
1921 }
1922
1923 VkResult anv_GetEventStatus(
1924 VkDevice _device,
1925 VkEvent _event)
1926 {
1927 ANV_FROM_HANDLE(anv_device, device, _device);
1928 ANV_FROM_HANDLE(anv_event, event, _event);
1929
1930 if (unlikely(device->lost))
1931 return VK_ERROR_DEVICE_LOST;
1932
1933 if (!device->info.has_llc) {
1934 /* Invalidate read cache before reading event written by GPU. */
1935 __builtin_ia32_clflush(event);
1936 __builtin_ia32_mfence();
1937
1938 }
1939
1940 return event->semaphore;
1941 }
1942
1943 VkResult anv_SetEvent(
1944 VkDevice _device,
1945 VkEvent _event)
1946 {
1947 ANV_FROM_HANDLE(anv_device, device, _device);
1948 ANV_FROM_HANDLE(anv_event, event, _event);
1949
1950 event->semaphore = VK_EVENT_SET;
1951
1952 if (!device->info.has_llc) {
1953 /* Make sure the writes we're flushing have landed. */
1954 __builtin_ia32_mfence();
1955 __builtin_ia32_clflush(event);
1956 }
1957
1958 return VK_SUCCESS;
1959 }
1960
1961 VkResult anv_ResetEvent(
1962 VkDevice _device,
1963 VkEvent _event)
1964 {
1965 ANV_FROM_HANDLE(anv_device, device, _device);
1966 ANV_FROM_HANDLE(anv_event, event, _event);
1967
1968 event->semaphore = VK_EVENT_RESET;
1969
1970 if (!device->info.has_llc) {
1971 /* Make sure the writes we're flushing have landed. */
1972 __builtin_ia32_mfence();
1973 __builtin_ia32_clflush(event);
1974 }
1975
1976 return VK_SUCCESS;
1977 }
1978
1979 // Buffer functions
1980
1981 VkResult anv_CreateBuffer(
1982 VkDevice _device,
1983 const VkBufferCreateInfo* pCreateInfo,
1984 const VkAllocationCallbacks* pAllocator,
1985 VkBuffer* pBuffer)
1986 {
1987 ANV_FROM_HANDLE(anv_device, device, _device);
1988 struct anv_buffer *buffer;
1989
1990 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
1991
1992 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
1993 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1994 if (buffer == NULL)
1995 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1996
1997 buffer->size = pCreateInfo->size;
1998 buffer->usage = pCreateInfo->usage;
1999 buffer->bo = NULL;
2000 buffer->offset = 0;
2001
2002 *pBuffer = anv_buffer_to_handle(buffer);
2003
2004 return VK_SUCCESS;
2005 }
2006
2007 void anv_DestroyBuffer(
2008 VkDevice _device,
2009 VkBuffer _buffer,
2010 const VkAllocationCallbacks* pAllocator)
2011 {
2012 ANV_FROM_HANDLE(anv_device, device, _device);
2013 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2014
2015 if (!buffer)
2016 return;
2017
2018 vk_free2(&device->alloc, pAllocator, buffer);
2019 }
2020
2021 void
2022 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
2023 enum isl_format format,
2024 uint32_t offset, uint32_t range, uint32_t stride)
2025 {
2026 isl_buffer_fill_state(&device->isl_dev, state.map,
2027 .address = offset,
2028 .mocs = device->default_mocs,
2029 .size = range,
2030 .format = format,
2031 .stride = stride);
2032
2033 anv_state_flush(device, state);
2034 }
2035
2036 void anv_DestroySampler(
2037 VkDevice _device,
2038 VkSampler _sampler,
2039 const VkAllocationCallbacks* pAllocator)
2040 {
2041 ANV_FROM_HANDLE(anv_device, device, _device);
2042 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
2043
2044 if (!sampler)
2045 return;
2046
2047 vk_free2(&device->alloc, pAllocator, sampler);
2048 }
2049
2050 VkResult anv_CreateFramebuffer(
2051 VkDevice _device,
2052 const VkFramebufferCreateInfo* pCreateInfo,
2053 const VkAllocationCallbacks* pAllocator,
2054 VkFramebuffer* pFramebuffer)
2055 {
2056 ANV_FROM_HANDLE(anv_device, device, _device);
2057 struct anv_framebuffer *framebuffer;
2058
2059 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
2060
2061 size_t size = sizeof(*framebuffer) +
2062 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
2063 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
2064 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2065 if (framebuffer == NULL)
2066 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2067
2068 framebuffer->attachment_count = pCreateInfo->attachmentCount;
2069 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
2070 VkImageView _iview = pCreateInfo->pAttachments[i];
2071 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
2072 }
2073
2074 framebuffer->width = pCreateInfo->width;
2075 framebuffer->height = pCreateInfo->height;
2076 framebuffer->layers = pCreateInfo->layers;
2077
2078 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
2079
2080 return VK_SUCCESS;
2081 }
2082
2083 void anv_DestroyFramebuffer(
2084 VkDevice _device,
2085 VkFramebuffer _fb,
2086 const VkAllocationCallbacks* pAllocator)
2087 {
2088 ANV_FROM_HANDLE(anv_device, device, _device);
2089 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
2090
2091 if (!fb)
2092 return;
2093
2094 vk_free2(&device->alloc, pAllocator, fb);
2095 }
2096
2097 /* vk_icd.h does not declare this function, so we declare it here to
2098 * suppress Wmissing-prototypes.
2099 */
2100 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2101 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
2102
2103 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2104 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
2105 {
2106 /* For the full details on loader interface versioning, see
2107 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
2108 * What follows is a condensed summary, to help you navigate the large and
2109 * confusing official doc.
2110 *
2111 * - Loader interface v0 is incompatible with later versions. We don't
2112 * support it.
2113 *
2114 * - In loader interface v1:
2115 * - The first ICD entrypoint called by the loader is
2116 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
2117 * entrypoint.
2118 * - The ICD must statically expose no other Vulkan symbol unless it is
2119 * linked with -Bsymbolic.
2120 * - Each dispatchable Vulkan handle created by the ICD must be
2121 * a pointer to a struct whose first member is VK_LOADER_DATA. The
2122 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
2123 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
2124 * vkDestroySurfaceKHR(). The ICD must be capable of working with
2125 * such loader-managed surfaces.
2126 *
2127 * - Loader interface v2 differs from v1 in:
2128 * - The first ICD entrypoint called by the loader is
2129 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
2130 * statically expose this entrypoint.
2131 *
2132 * - Loader interface v3 differs from v2 in:
2133 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
2134 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
2135 * because the loader no longer does so.
2136 */
2137 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
2138 return VK_SUCCESS;
2139 }