anv: Implement VK_EXT_texel_buffer_alignment
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/os_file.h"
41 #include "util/u_atomic.h"
42 #include "util/u_string.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_defines.h"
46 #include "compiler/glsl_types.h"
47
48 #include "genxml/gen7_pack.h"
49
50 /* This is probably far to big but it reflects the max size used for messages
51 * in OpenGLs KHR_debug.
52 */
53 #define MAX_DEBUG_MESSAGE_LENGTH 4096
54
55 static void
56 compiler_debug_log(void *data, const char *fmt, ...)
57 {
58 char str[MAX_DEBUG_MESSAGE_LENGTH];
59 struct anv_device *device = (struct anv_device *)data;
60
61 if (list_empty(&device->instance->debug_report_callbacks.callbacks))
62 return;
63
64 va_list args;
65 va_start(args, fmt);
66 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
67 va_end(args);
68
69 vk_debug_report(&device->instance->debug_report_callbacks,
70 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
71 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
72 0, 0, 0, "anv", str);
73 }
74
75 static void
76 compiler_perf_log(void *data, const char *fmt, ...)
77 {
78 va_list args;
79 va_start(args, fmt);
80
81 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
82 intel_logd_v(fmt, args);
83
84 va_end(args);
85 }
86
87 static uint64_t
88 anv_compute_heap_size(int fd, uint64_t gtt_size)
89 {
90 /* Query the total ram from the system */
91 struct sysinfo info;
92 sysinfo(&info);
93
94 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
95
96 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
97 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
98 */
99 uint64_t available_ram;
100 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
101 available_ram = total_ram / 2;
102 else
103 available_ram = total_ram * 3 / 4;
104
105 /* We also want to leave some padding for things we allocate in the driver,
106 * so don't go over 3/4 of the GTT either.
107 */
108 uint64_t available_gtt = gtt_size * 3 / 4;
109
110 return MIN2(available_ram, available_gtt);
111 }
112
113 static VkResult
114 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
115 {
116 uint64_t gtt_size;
117 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
118 &gtt_size) == -1) {
119 /* If, for whatever reason, we can't actually get the GTT size from the
120 * kernel (too old?) fall back to the aperture size.
121 */
122 anv_perf_warn(NULL, NULL,
123 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
124
125 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
126 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
127 "failed to get aperture size: %m");
128 }
129 }
130
131 device->supports_48bit_addresses = (device->info.gen >= 8) &&
132 gtt_size > (4ULL << 30 /* GiB */);
133
134 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
135
136 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
137 /* When running with an overridden PCI ID, we may get a GTT size from
138 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
139 * address support can still fail. Just clamp the address space size to
140 * 2 GiB if we don't have 48-bit support.
141 */
142 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
143 "not support for 48-bit addresses",
144 __FILE__, __LINE__);
145 heap_size = 2ull << 30;
146 }
147
148 if (heap_size <= 3ull * (1ull << 30)) {
149 /* In this case, everything fits nicely into the 32-bit address space,
150 * so there's no need for supporting 48bit addresses on client-allocated
151 * memory objects.
152 */
153 device->memory.heap_count = 1;
154 device->memory.heaps[0] = (struct anv_memory_heap) {
155 .vma_start = LOW_HEAP_MIN_ADDRESS,
156 .vma_size = LOW_HEAP_SIZE,
157 .size = heap_size,
158 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
159 .supports_48bit_addresses = false,
160 };
161 } else {
162 /* Not everything will fit nicely into a 32-bit address space. In this
163 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
164 * larger 48-bit heap. If we're in this case, then we have a total heap
165 * size larger than 3GiB which most likely means they have 8 GiB of
166 * video memory and so carving off 1 GiB for the 32-bit heap should be
167 * reasonable.
168 */
169 const uint64_t heap_size_32bit = 1ull << 30;
170 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
171
172 assert(device->supports_48bit_addresses);
173
174 device->memory.heap_count = 2;
175 device->memory.heaps[0] = (struct anv_memory_heap) {
176 .vma_start = HIGH_HEAP_MIN_ADDRESS,
177 /* Leave the last 4GiB out of the high vma range, so that no state
178 * base address + size can overflow 48 bits. For more information see
179 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
180 */
181 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
182 .size = heap_size_48bit,
183 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
184 .supports_48bit_addresses = true,
185 };
186 device->memory.heaps[1] = (struct anv_memory_heap) {
187 .vma_start = LOW_HEAP_MIN_ADDRESS,
188 .vma_size = LOW_HEAP_SIZE,
189 .size = heap_size_32bit,
190 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
191 .supports_48bit_addresses = false,
192 };
193 }
194
195 uint32_t type_count = 0;
196 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
197 uint32_t valid_buffer_usage = ~0;
198
199 /* There appears to be a hardware issue in the VF cache where it only
200 * considers the bottom 32 bits of memory addresses. If you happen to
201 * have two vertex buffers which get placed exactly 4 GiB apart and use
202 * them in back-to-back draw calls, you can get collisions. In order to
203 * solve this problem, we require vertex and index buffers be bound to
204 * memory allocated out of the 32-bit heap.
205 */
206 if (device->memory.heaps[heap].supports_48bit_addresses) {
207 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
208 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
209 }
210
211 if (device->info.has_llc) {
212 /* Big core GPUs share LLC with the CPU and thus one memory type can be
213 * both cached and coherent at the same time.
214 */
215 device->memory.types[type_count++] = (struct anv_memory_type) {
216 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
217 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
218 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
219 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
220 .heapIndex = heap,
221 .valid_buffer_usage = valid_buffer_usage,
222 };
223 } else {
224 /* The spec requires that we expose a host-visible, coherent memory
225 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
226 * to give the application a choice between cached, but not coherent and
227 * coherent but uncached (WC though).
228 */
229 device->memory.types[type_count++] = (struct anv_memory_type) {
230 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
231 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
232 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
233 .heapIndex = heap,
234 .valid_buffer_usage = valid_buffer_usage,
235 };
236 device->memory.types[type_count++] = (struct anv_memory_type) {
237 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
238 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
239 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
240 .heapIndex = heap,
241 .valid_buffer_usage = valid_buffer_usage,
242 };
243 }
244 }
245 device->memory.type_count = type_count;
246
247 return VK_SUCCESS;
248 }
249
250 static VkResult
251 anv_physical_device_init_uuids(struct anv_physical_device *device)
252 {
253 const struct build_id_note *note =
254 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
255 if (!note) {
256 return vk_errorf(device->instance, device,
257 VK_ERROR_INITIALIZATION_FAILED,
258 "Failed to find build-id");
259 }
260
261 unsigned build_id_len = build_id_length(note);
262 if (build_id_len < 20) {
263 return vk_errorf(device->instance, device,
264 VK_ERROR_INITIALIZATION_FAILED,
265 "build-id too short. It needs to be a SHA");
266 }
267
268 memcpy(device->driver_build_sha1, build_id_data(note), 20);
269
270 struct mesa_sha1 sha1_ctx;
271 uint8_t sha1[20];
272 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
273
274 /* The pipeline cache UUID is used for determining when a pipeline cache is
275 * invalid. It needs both a driver build and the PCI ID of the device.
276 */
277 _mesa_sha1_init(&sha1_ctx);
278 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
279 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
280 sizeof(device->chipset_id));
281 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
282 sizeof(device->always_use_bindless));
283 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
284 sizeof(device->has_a64_buffer_access));
285 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
286 sizeof(device->has_bindless_images));
287 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
288 sizeof(device->has_bindless_samplers));
289 _mesa_sha1_final(&sha1_ctx, sha1);
290 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
291
292 /* The driver UUID is used for determining sharability of images and memory
293 * between two Vulkan instances in separate processes. People who want to
294 * share memory need to also check the device UUID (below) so all this
295 * needs to be is the build-id.
296 */
297 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
298
299 /* The device UUID uniquely identifies the given device within the machine.
300 * Since we never have more than one device, this doesn't need to be a real
301 * UUID. However, on the off-chance that someone tries to use this to
302 * cache pre-tiled images or something of the like, we use the PCI ID and
303 * some bits of ISL info to ensure that this is safe.
304 */
305 _mesa_sha1_init(&sha1_ctx);
306 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
307 sizeof(device->chipset_id));
308 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
309 sizeof(device->isl_dev.has_bit6_swizzling));
310 _mesa_sha1_final(&sha1_ctx, sha1);
311 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
312
313 return VK_SUCCESS;
314 }
315
316 static void
317 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
318 {
319 #ifdef ENABLE_SHADER_CACHE
320 char renderer[10];
321 MAYBE_UNUSED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
322 device->chipset_id);
323 assert(len == sizeof(renderer) - 2);
324
325 char timestamp[41];
326 _mesa_sha1_format(timestamp, device->driver_build_sha1);
327
328 const uint64_t driver_flags =
329 brw_get_compiler_config_value(device->compiler);
330 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
331 #else
332 device->disk_cache = NULL;
333 #endif
334 }
335
336 static void
337 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
338 {
339 #ifdef ENABLE_SHADER_CACHE
340 if (device->disk_cache)
341 disk_cache_destroy(device->disk_cache);
342 #else
343 assert(device->disk_cache == NULL);
344 #endif
345 }
346
347 static uint64_t
348 get_available_system_memory()
349 {
350 char *meminfo = os_read_file("/proc/meminfo");
351 if (!meminfo)
352 return 0;
353
354 char *str = strstr(meminfo, "MemAvailable:");
355 if (!str) {
356 free(meminfo);
357 return 0;
358 }
359
360 uint64_t kb_mem_available;
361 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
362 free(meminfo);
363 return kb_mem_available << 10;
364 }
365
366 free(meminfo);
367 return 0;
368 }
369
370 static VkResult
371 anv_physical_device_init(struct anv_physical_device *device,
372 struct anv_instance *instance,
373 drmDevicePtr drm_device)
374 {
375 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
376 const char *path = drm_device->nodes[DRM_NODE_RENDER];
377 VkResult result;
378 int fd;
379 int master_fd = -1;
380
381 brw_process_intel_debug_variable();
382
383 fd = open(path, O_RDWR | O_CLOEXEC);
384 if (fd < 0)
385 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
386
387 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
388 device->instance = instance;
389
390 assert(strlen(path) < ARRAY_SIZE(device->path));
391 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
392
393 device->no_hw = getenv("INTEL_NO_HW") != NULL;
394
395 const int pci_id_override = gen_get_pci_device_id_override();
396 if (pci_id_override < 0) {
397 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
398 if (!device->chipset_id) {
399 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
400 goto fail;
401 }
402 } else {
403 device->chipset_id = pci_id_override;
404 device->no_hw = true;
405 }
406
407 device->pci_info.domain = drm_device->businfo.pci->domain;
408 device->pci_info.bus = drm_device->businfo.pci->bus;
409 device->pci_info.device = drm_device->businfo.pci->dev;
410 device->pci_info.function = drm_device->businfo.pci->func;
411
412 device->name = gen_get_device_name(device->chipset_id);
413 if (!gen_get_device_info(device->chipset_id, &device->info)) {
414 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
415 goto fail;
416 }
417
418 if (device->info.is_haswell) {
419 intel_logw("Haswell Vulkan support is incomplete");
420 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
421 intel_logw("Ivy Bridge Vulkan support is incomplete");
422 } else if (device->info.gen == 7 && device->info.is_baytrail) {
423 intel_logw("Bay Trail Vulkan support is incomplete");
424 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
425 /* Gen8-11 fully supported */
426 } else {
427 result = vk_errorf(device->instance, device,
428 VK_ERROR_INCOMPATIBLE_DRIVER,
429 "Vulkan not yet supported on %s", device->name);
430 goto fail;
431 }
432
433 device->cmd_parser_version = -1;
434 if (device->info.gen == 7) {
435 device->cmd_parser_version =
436 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
437 if (device->cmd_parser_version == -1) {
438 result = vk_errorf(device->instance, device,
439 VK_ERROR_INITIALIZATION_FAILED,
440 "failed to get command parser version");
441 goto fail;
442 }
443 }
444
445 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
446 result = vk_errorf(device->instance, device,
447 VK_ERROR_INITIALIZATION_FAILED,
448 "kernel missing gem wait");
449 goto fail;
450 }
451
452 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
453 result = vk_errorf(device->instance, device,
454 VK_ERROR_INITIALIZATION_FAILED,
455 "kernel missing execbuf2");
456 goto fail;
457 }
458
459 if (!device->info.has_llc &&
460 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
461 result = vk_errorf(device->instance, device,
462 VK_ERROR_INITIALIZATION_FAILED,
463 "kernel missing wc mmap");
464 goto fail;
465 }
466
467 result = anv_physical_device_init_heaps(device, fd);
468 if (result != VK_SUCCESS)
469 goto fail;
470
471 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
472 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
473 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
474 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
475 device->has_syncobj_wait = device->has_syncobj &&
476 anv_gem_supports_syncobj_wait(fd);
477 device->has_context_priority = anv_gem_has_context_priority(fd);
478
479 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
480 && device->supports_48bit_addresses;
481
482 device->has_context_isolation =
483 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
484
485 device->always_use_bindless =
486 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
487
488 /* We first got the A64 messages on broadwell and we can only use them if
489 * we can pass addresses directly into the shader which requires softpin.
490 */
491 device->has_a64_buffer_access = device->info.gen >= 8 &&
492 device->use_softpin;
493
494 /* We first get bindless image access on Skylake and we can only really do
495 * it if we don't have any relocations so we need softpin.
496 */
497 device->has_bindless_images = device->info.gen >= 9 &&
498 device->use_softpin;
499
500 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
501 * because it's just a matter of setting the sampler address in the sample
502 * message header. However, we've not bothered to wire it up for vec4 so
503 * we leave it disabled on gen7.
504 */
505 device->has_bindless_samplers = device->info.gen >= 8;
506
507 device->has_mem_available = get_available_system_memory() != 0;
508
509 /* Starting with Gen10, the timestamp frequency of the command streamer may
510 * vary from one part to another. We can query the value from the kernel.
511 */
512 if (device->info.gen >= 10) {
513 int timestamp_frequency =
514 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
515
516 if (timestamp_frequency < 0)
517 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
518 else
519 device->info.timestamp_frequency = timestamp_frequency;
520 }
521
522 /* GENs prior to 8 do not support EU/Subslice info */
523 if (device->info.gen >= 8) {
524 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
525 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
526
527 /* Without this information, we cannot get the right Braswell
528 * brandstrings, and we have to use conservative numbers for GPGPU on
529 * many platforms, but otherwise, things will just work.
530 */
531 if (device->subslice_total < 1 || device->eu_total < 1) {
532 intel_logw("Kernel 4.1 required to properly query GPU properties");
533 }
534 } else if (device->info.gen == 7) {
535 device->subslice_total = 1 << (device->info.gt - 1);
536 }
537
538 if (device->info.is_cherryview &&
539 device->subslice_total > 0 && device->eu_total > 0) {
540 /* Logical CS threads = EUs per subslice * num threads per EU */
541 uint32_t max_cs_threads =
542 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
543
544 /* Fuse configurations may give more threads than expected, never less. */
545 if (max_cs_threads > device->info.max_cs_threads)
546 device->info.max_cs_threads = max_cs_threads;
547 }
548
549 device->compiler = brw_compiler_create(NULL, &device->info);
550 if (device->compiler == NULL) {
551 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
552 goto fail;
553 }
554 device->compiler->shader_debug_log = compiler_debug_log;
555 device->compiler->shader_perf_log = compiler_perf_log;
556 device->compiler->supports_pull_constants = false;
557 device->compiler->constant_buffer_0_is_relative =
558 device->info.gen < 8 || !device->has_context_isolation;
559 device->compiler->supports_shader_constants = true;
560
561 /* Broadwell PRM says:
562 *
563 * "Before Gen8, there was a historical configuration control field to
564 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
565 * different places: TILECTL[1:0], ARB_MODE[5:4], and
566 * DISP_ARB_CTL[14:13].
567 *
568 * For Gen8 and subsequent generations, the swizzle fields are all
569 * reserved, and the CPU's memory controller performs all address
570 * swizzling modifications."
571 */
572 bool swizzled =
573 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
574
575 isl_device_init(&device->isl_dev, &device->info, swizzled);
576
577 result = anv_physical_device_init_uuids(device);
578 if (result != VK_SUCCESS)
579 goto fail;
580
581 anv_physical_device_init_disk_cache(device);
582
583 if (instance->enabled_extensions.KHR_display) {
584 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
585 if (master_fd >= 0) {
586 /* prod the device with a GETPARAM call which will fail if
587 * we don't have permission to even render on this device
588 */
589 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
590 close(master_fd);
591 master_fd = -1;
592 }
593 }
594 }
595 device->master_fd = master_fd;
596
597 result = anv_init_wsi(device);
598 if (result != VK_SUCCESS) {
599 ralloc_free(device->compiler);
600 anv_physical_device_free_disk_cache(device);
601 goto fail;
602 }
603
604 anv_physical_device_get_supported_extensions(device,
605 &device->supported_extensions);
606
607
608 device->local_fd = fd;
609
610 return VK_SUCCESS;
611
612 fail:
613 close(fd);
614 if (master_fd != -1)
615 close(master_fd);
616 return result;
617 }
618
619 static void
620 anv_physical_device_finish(struct anv_physical_device *device)
621 {
622 anv_finish_wsi(device);
623 anv_physical_device_free_disk_cache(device);
624 ralloc_free(device->compiler);
625 close(device->local_fd);
626 if (device->master_fd >= 0)
627 close(device->master_fd);
628 }
629
630 static void *
631 default_alloc_func(void *pUserData, size_t size, size_t align,
632 VkSystemAllocationScope allocationScope)
633 {
634 return malloc(size);
635 }
636
637 static void *
638 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
639 size_t align, VkSystemAllocationScope allocationScope)
640 {
641 return realloc(pOriginal, size);
642 }
643
644 static void
645 default_free_func(void *pUserData, void *pMemory)
646 {
647 free(pMemory);
648 }
649
650 static const VkAllocationCallbacks default_alloc = {
651 .pUserData = NULL,
652 .pfnAllocation = default_alloc_func,
653 .pfnReallocation = default_realloc_func,
654 .pfnFree = default_free_func,
655 };
656
657 VkResult anv_EnumerateInstanceExtensionProperties(
658 const char* pLayerName,
659 uint32_t* pPropertyCount,
660 VkExtensionProperties* pProperties)
661 {
662 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
663
664 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
665 if (anv_instance_extensions_supported.extensions[i]) {
666 vk_outarray_append(&out, prop) {
667 *prop = anv_instance_extensions[i];
668 }
669 }
670 }
671
672 return vk_outarray_status(&out);
673 }
674
675 VkResult anv_CreateInstance(
676 const VkInstanceCreateInfo* pCreateInfo,
677 const VkAllocationCallbacks* pAllocator,
678 VkInstance* pInstance)
679 {
680 struct anv_instance *instance;
681 VkResult result;
682
683 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
684
685 struct anv_instance_extension_table enabled_extensions = {};
686 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
687 int idx;
688 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
689 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
690 anv_instance_extensions[idx].extensionName) == 0)
691 break;
692 }
693
694 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
695 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
696
697 if (!anv_instance_extensions_supported.extensions[idx])
698 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
699
700 enabled_extensions.extensions[idx] = true;
701 }
702
703 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
704 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
705 if (!instance)
706 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
707
708 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
709
710 if (pAllocator)
711 instance->alloc = *pAllocator;
712 else
713 instance->alloc = default_alloc;
714
715 instance->app_info = (struct anv_app_info) { .api_version = 0 };
716 if (pCreateInfo->pApplicationInfo) {
717 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
718
719 instance->app_info.app_name =
720 vk_strdup(&instance->alloc, app->pApplicationName,
721 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
722 instance->app_info.app_version = app->applicationVersion;
723
724 instance->app_info.engine_name =
725 vk_strdup(&instance->alloc, app->pEngineName,
726 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
727 instance->app_info.engine_version = app->engineVersion;
728
729 instance->app_info.api_version = app->apiVersion;
730 }
731
732 if (instance->app_info.api_version == 0)
733 instance->app_info.api_version = VK_API_VERSION_1_0;
734
735 instance->enabled_extensions = enabled_extensions;
736
737 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
738 /* Vulkan requires that entrypoints for extensions which have not been
739 * enabled must not be advertised.
740 */
741 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
742 &instance->enabled_extensions)) {
743 instance->dispatch.entrypoints[i] = NULL;
744 } else {
745 instance->dispatch.entrypoints[i] =
746 anv_instance_dispatch_table.entrypoints[i];
747 }
748 }
749
750 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
751 /* Vulkan requires that entrypoints for extensions which have not been
752 * enabled must not be advertised.
753 */
754 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
755 &instance->enabled_extensions, NULL)) {
756 instance->device_dispatch.entrypoints[i] = NULL;
757 } else {
758 instance->device_dispatch.entrypoints[i] =
759 anv_device_dispatch_table.entrypoints[i];
760 }
761 }
762
763 instance->physicalDeviceCount = -1;
764
765 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
766 if (result != VK_SUCCESS) {
767 vk_free2(&default_alloc, pAllocator, instance);
768 return vk_error(result);
769 }
770
771 instance->pipeline_cache_enabled =
772 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
773
774 _mesa_locale_init();
775 glsl_type_singleton_init_or_ref();
776
777 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
778
779 *pInstance = anv_instance_to_handle(instance);
780
781 return VK_SUCCESS;
782 }
783
784 void anv_DestroyInstance(
785 VkInstance _instance,
786 const VkAllocationCallbacks* pAllocator)
787 {
788 ANV_FROM_HANDLE(anv_instance, instance, _instance);
789
790 if (!instance)
791 return;
792
793 if (instance->physicalDeviceCount > 0) {
794 /* We support at most one physical device. */
795 assert(instance->physicalDeviceCount == 1);
796 anv_physical_device_finish(&instance->physicalDevice);
797 }
798
799 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
800 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
801
802 VG(VALGRIND_DESTROY_MEMPOOL(instance));
803
804 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
805
806 glsl_type_singleton_decref();
807 _mesa_locale_fini();
808
809 vk_free(&instance->alloc, instance);
810 }
811
812 static VkResult
813 anv_enumerate_devices(struct anv_instance *instance)
814 {
815 /* TODO: Check for more devices ? */
816 drmDevicePtr devices[8];
817 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
818 int max_devices;
819
820 instance->physicalDeviceCount = 0;
821
822 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
823 if (max_devices < 1)
824 return VK_ERROR_INCOMPATIBLE_DRIVER;
825
826 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
827 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
828 devices[i]->bustype == DRM_BUS_PCI &&
829 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
830
831 result = anv_physical_device_init(&instance->physicalDevice,
832 instance, devices[i]);
833 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
834 break;
835 }
836 }
837 drmFreeDevices(devices, max_devices);
838
839 if (result == VK_SUCCESS)
840 instance->physicalDeviceCount = 1;
841
842 return result;
843 }
844
845 static VkResult
846 anv_instance_ensure_physical_device(struct anv_instance *instance)
847 {
848 if (instance->physicalDeviceCount < 0) {
849 VkResult result = anv_enumerate_devices(instance);
850 if (result != VK_SUCCESS &&
851 result != VK_ERROR_INCOMPATIBLE_DRIVER)
852 return result;
853 }
854
855 return VK_SUCCESS;
856 }
857
858 VkResult anv_EnumeratePhysicalDevices(
859 VkInstance _instance,
860 uint32_t* pPhysicalDeviceCount,
861 VkPhysicalDevice* pPhysicalDevices)
862 {
863 ANV_FROM_HANDLE(anv_instance, instance, _instance);
864 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
865
866 VkResult result = anv_instance_ensure_physical_device(instance);
867 if (result != VK_SUCCESS)
868 return result;
869
870 if (instance->physicalDeviceCount == 0)
871 return VK_SUCCESS;
872
873 assert(instance->physicalDeviceCount == 1);
874 vk_outarray_append(&out, i) {
875 *i = anv_physical_device_to_handle(&instance->physicalDevice);
876 }
877
878 return vk_outarray_status(&out);
879 }
880
881 VkResult anv_EnumeratePhysicalDeviceGroups(
882 VkInstance _instance,
883 uint32_t* pPhysicalDeviceGroupCount,
884 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
885 {
886 ANV_FROM_HANDLE(anv_instance, instance, _instance);
887 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
888 pPhysicalDeviceGroupCount);
889
890 VkResult result = anv_instance_ensure_physical_device(instance);
891 if (result != VK_SUCCESS)
892 return result;
893
894 if (instance->physicalDeviceCount == 0)
895 return VK_SUCCESS;
896
897 assert(instance->physicalDeviceCount == 1);
898
899 vk_outarray_append(&out, p) {
900 p->physicalDeviceCount = 1;
901 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
902 p->physicalDevices[0] =
903 anv_physical_device_to_handle(&instance->physicalDevice);
904 p->subsetAllocation = false;
905
906 vk_foreach_struct(ext, p->pNext)
907 anv_debug_ignored_stype(ext->sType);
908 }
909
910 return vk_outarray_status(&out);
911 }
912
913 void anv_GetPhysicalDeviceFeatures(
914 VkPhysicalDevice physicalDevice,
915 VkPhysicalDeviceFeatures* pFeatures)
916 {
917 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
918
919 *pFeatures = (VkPhysicalDeviceFeatures) {
920 .robustBufferAccess = true,
921 .fullDrawIndexUint32 = true,
922 .imageCubeArray = true,
923 .independentBlend = true,
924 .geometryShader = true,
925 .tessellationShader = true,
926 .sampleRateShading = true,
927 .dualSrcBlend = true,
928 .logicOp = true,
929 .multiDrawIndirect = true,
930 .drawIndirectFirstInstance = true,
931 .depthClamp = true,
932 .depthBiasClamp = true,
933 .fillModeNonSolid = true,
934 .depthBounds = false,
935 .wideLines = true,
936 .largePoints = true,
937 .alphaToOne = true,
938 .multiViewport = true,
939 .samplerAnisotropy = true,
940 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
941 pdevice->info.is_baytrail,
942 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
943 .textureCompressionBC = true,
944 .occlusionQueryPrecise = true,
945 .pipelineStatisticsQuery = true,
946 .fragmentStoresAndAtomics = true,
947 .shaderTessellationAndGeometryPointSize = true,
948 .shaderImageGatherExtended = true,
949 .shaderStorageImageExtendedFormats = true,
950 .shaderStorageImageMultisample = false,
951 .shaderStorageImageReadWithoutFormat = false,
952 .shaderStorageImageWriteWithoutFormat = true,
953 .shaderUniformBufferArrayDynamicIndexing = true,
954 .shaderSampledImageArrayDynamicIndexing = true,
955 .shaderStorageBufferArrayDynamicIndexing = true,
956 .shaderStorageImageArrayDynamicIndexing = true,
957 .shaderClipDistance = true,
958 .shaderCullDistance = true,
959 .shaderFloat64 = pdevice->info.gen >= 8 &&
960 pdevice->info.has_64bit_types,
961 .shaderInt64 = pdevice->info.gen >= 8 &&
962 pdevice->info.has_64bit_types,
963 .shaderInt16 = pdevice->info.gen >= 8,
964 .shaderResourceMinLod = pdevice->info.gen >= 9,
965 .variableMultisampleRate = true,
966 .inheritedQueries = true,
967 };
968
969 /* We can't do image stores in vec4 shaders */
970 pFeatures->vertexPipelineStoresAndAtomics =
971 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
972 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
973
974 struct anv_app_info *app_info = &pdevice->instance->app_info;
975
976 /* The new DOOM and Wolfenstein games require depthBounds without
977 * checking for it. They seem to run fine without it so just claim it's
978 * there and accept the consequences.
979 */
980 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
981 pFeatures->depthBounds = true;
982 }
983
984 void anv_GetPhysicalDeviceFeatures2(
985 VkPhysicalDevice physicalDevice,
986 VkPhysicalDeviceFeatures2* pFeatures)
987 {
988 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
989 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
990
991 vk_foreach_struct(ext, pFeatures->pNext) {
992 switch (ext->sType) {
993 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
994 VkPhysicalDevice8BitStorageFeaturesKHR *features =
995 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
996 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
997 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
998 features->storagePushConstant8 = pdevice->info.gen >= 8;
999 break;
1000 }
1001
1002 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1003 VkPhysicalDevice16BitStorageFeatures *features =
1004 (VkPhysicalDevice16BitStorageFeatures *)ext;
1005 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
1006 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
1007 features->storagePushConstant16 = pdevice->info.gen >= 8;
1008 features->storageInputOutput16 = false;
1009 break;
1010 }
1011
1012 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1013 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1014 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1015 features->bufferDeviceAddressCaptureReplay = false;
1016 features->bufferDeviceAddressMultiDevice = false;
1017 break;
1018 }
1019
1020 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1021 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1022 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1023 features->computeDerivativeGroupQuads = true;
1024 features->computeDerivativeGroupLinear = true;
1025 break;
1026 }
1027
1028 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1029 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1030 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1031 features->conditionalRendering = pdevice->info.gen >= 8 ||
1032 pdevice->info.is_haswell;
1033 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1034 pdevice->info.is_haswell;
1035 break;
1036 }
1037
1038 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1039 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1040 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1041 features->depthClipEnable = true;
1042 break;
1043 }
1044
1045 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1046 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1047 features->shaderFloat16 = pdevice->info.gen >= 8;
1048 features->shaderInt8 = pdevice->info.gen >= 8;
1049 break;
1050 }
1051
1052 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1053 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1054 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1055 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1056 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1057 features->fragmentShaderShadingRateInterlock = false;
1058 break;
1059 }
1060
1061 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1062 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1063 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1064 features->hostQueryReset = true;
1065 break;
1066 }
1067
1068 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1069 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1070 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1071 features->shaderInputAttachmentArrayDynamicIndexing = false;
1072 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1073 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1074 features->shaderUniformBufferArrayNonUniformIndexing = false;
1075 features->shaderSampledImageArrayNonUniformIndexing = true;
1076 features->shaderStorageBufferArrayNonUniformIndexing = true;
1077 features->shaderStorageImageArrayNonUniformIndexing = true;
1078 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1079 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1080 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1081 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1082 features->descriptorBindingSampledImageUpdateAfterBind = true;
1083 features->descriptorBindingStorageImageUpdateAfterBind = true;
1084 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1085 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1086 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1087 features->descriptorBindingUpdateUnusedWhilePending = true;
1088 features->descriptorBindingPartiallyBound = true;
1089 features->descriptorBindingVariableDescriptorCount = false;
1090 features->runtimeDescriptorArray = true;
1091 break;
1092 }
1093
1094 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1095 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1096 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1097 features->inlineUniformBlock = true;
1098 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1099 break;
1100 }
1101
1102 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1103 VkPhysicalDeviceMultiviewFeatures *features =
1104 (VkPhysicalDeviceMultiviewFeatures *)ext;
1105 features->multiview = true;
1106 features->multiviewGeometryShader = true;
1107 features->multiviewTessellationShader = true;
1108 break;
1109 }
1110
1111 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1112 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1113 features->protectedMemory = false;
1114 break;
1115 }
1116
1117 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1118 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1119 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1120 features->samplerYcbcrConversion = true;
1121 break;
1122 }
1123
1124 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1125 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1126 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1127 features->scalarBlockLayout = true;
1128 break;
1129 }
1130
1131 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1132 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1133 features->shaderBufferInt64Atomics =
1134 pdevice->info.gen >= 9 && pdevice->use_softpin;
1135 features->shaderSharedInt64Atomics = VK_FALSE;
1136 break;
1137 }
1138
1139 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1140 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1141 features->shaderDrawParameters = true;
1142 break;
1143 }
1144
1145 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1146 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1147 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1148 features->texelBufferAlignment = true;
1149 break;
1150 }
1151
1152 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1153 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1154 features->variablePointersStorageBuffer = true;
1155 features->variablePointers = true;
1156 break;
1157 }
1158
1159 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1160 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1161 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1162 features->transformFeedback = true;
1163 features->geometryStreams = true;
1164 break;
1165 }
1166
1167 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1168 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1169 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1170 features->uniformBufferStandardLayout = true;
1171 break;
1172 }
1173
1174 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1175 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1176 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1177 features->vertexAttributeInstanceRateDivisor = true;
1178 features->vertexAttributeInstanceRateZeroDivisor = true;
1179 break;
1180 }
1181
1182 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1183 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1184 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1185 features->ycbcrImageArrays = true;
1186 break;
1187 }
1188
1189 default:
1190 anv_debug_ignored_stype(ext->sType);
1191 break;
1192 }
1193 }
1194 }
1195
1196 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1197
1198 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1199 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1200
1201 void anv_GetPhysicalDeviceProperties(
1202 VkPhysicalDevice physicalDevice,
1203 VkPhysicalDeviceProperties* pProperties)
1204 {
1205 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1206 const struct gen_device_info *devinfo = &pdevice->info;
1207
1208 /* See assertions made when programming the buffer surface state. */
1209 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1210 (1ul << 30) : (1ul << 27);
1211
1212 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1213 const uint32_t max_textures =
1214 pdevice->has_bindless_images ? UINT16_MAX : 128;
1215 const uint32_t max_samplers =
1216 pdevice->has_bindless_samplers ? UINT16_MAX :
1217 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1218 const uint32_t max_images =
1219 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1220
1221 /* The moment we have anything bindless, claim a high per-stage limit */
1222 const uint32_t max_per_stage =
1223 pdevice->has_a64_buffer_access ? UINT32_MAX :
1224 MAX_BINDING_TABLE_SIZE - MAX_RTS;
1225
1226 VkSampleCountFlags sample_counts =
1227 isl_device_get_sample_counts(&pdevice->isl_dev);
1228
1229
1230 VkPhysicalDeviceLimits limits = {
1231 .maxImageDimension1D = (1 << 14),
1232 .maxImageDimension2D = (1 << 14),
1233 .maxImageDimension3D = (1 << 11),
1234 .maxImageDimensionCube = (1 << 14),
1235 .maxImageArrayLayers = (1 << 11),
1236 .maxTexelBufferElements = 128 * 1024 * 1024,
1237 .maxUniformBufferRange = (1ul << 27),
1238 .maxStorageBufferRange = max_raw_buffer_sz,
1239 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1240 .maxMemoryAllocationCount = UINT32_MAX,
1241 .maxSamplerAllocationCount = 64 * 1024,
1242 .bufferImageGranularity = 64, /* A cache line */
1243 .sparseAddressSpaceSize = 0,
1244 .maxBoundDescriptorSets = MAX_SETS,
1245 .maxPerStageDescriptorSamplers = max_samplers,
1246 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1247 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1248 .maxPerStageDescriptorSampledImages = max_textures,
1249 .maxPerStageDescriptorStorageImages = max_images,
1250 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1251 .maxPerStageResources = max_per_stage,
1252 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1253 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1254 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1255 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1256 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1257 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1258 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1259 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1260 .maxVertexInputAttributes = MAX_VBS,
1261 .maxVertexInputBindings = MAX_VBS,
1262 .maxVertexInputAttributeOffset = 2047,
1263 .maxVertexInputBindingStride = 2048,
1264 .maxVertexOutputComponents = 128,
1265 .maxTessellationGenerationLevel = 64,
1266 .maxTessellationPatchSize = 32,
1267 .maxTessellationControlPerVertexInputComponents = 128,
1268 .maxTessellationControlPerVertexOutputComponents = 128,
1269 .maxTessellationControlPerPatchOutputComponents = 128,
1270 .maxTessellationControlTotalOutputComponents = 2048,
1271 .maxTessellationEvaluationInputComponents = 128,
1272 .maxTessellationEvaluationOutputComponents = 128,
1273 .maxGeometryShaderInvocations = 32,
1274 .maxGeometryInputComponents = 64,
1275 .maxGeometryOutputComponents = 128,
1276 .maxGeometryOutputVertices = 256,
1277 .maxGeometryTotalOutputComponents = 1024,
1278 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1279 .maxFragmentOutputAttachments = 8,
1280 .maxFragmentDualSrcAttachments = 1,
1281 .maxFragmentCombinedOutputResources = 8,
1282 .maxComputeSharedMemorySize = 32768,
1283 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1284 .maxComputeWorkGroupInvocations = 32 * devinfo->max_cs_threads,
1285 .maxComputeWorkGroupSize = {
1286 16 * devinfo->max_cs_threads,
1287 16 * devinfo->max_cs_threads,
1288 16 * devinfo->max_cs_threads,
1289 },
1290 .subPixelPrecisionBits = 8,
1291 .subTexelPrecisionBits = 8,
1292 .mipmapPrecisionBits = 8,
1293 .maxDrawIndexedIndexValue = UINT32_MAX,
1294 .maxDrawIndirectCount = UINT32_MAX,
1295 .maxSamplerLodBias = 16,
1296 .maxSamplerAnisotropy = 16,
1297 .maxViewports = MAX_VIEWPORTS,
1298 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1299 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1300 .viewportSubPixelBits = 13, /* We take a float? */
1301 .minMemoryMapAlignment = 4096, /* A page */
1302 .minTexelBufferOffsetAlignment = 1,
1303 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1304 .minUniformBufferOffsetAlignment = 32,
1305 .minStorageBufferOffsetAlignment = 4,
1306 .minTexelOffset = -8,
1307 .maxTexelOffset = 7,
1308 .minTexelGatherOffset = -32,
1309 .maxTexelGatherOffset = 31,
1310 .minInterpolationOffset = -0.5,
1311 .maxInterpolationOffset = 0.4375,
1312 .subPixelInterpolationOffsetBits = 4,
1313 .maxFramebufferWidth = (1 << 14),
1314 .maxFramebufferHeight = (1 << 14),
1315 .maxFramebufferLayers = (1 << 11),
1316 .framebufferColorSampleCounts = sample_counts,
1317 .framebufferDepthSampleCounts = sample_counts,
1318 .framebufferStencilSampleCounts = sample_counts,
1319 .framebufferNoAttachmentsSampleCounts = sample_counts,
1320 .maxColorAttachments = MAX_RTS,
1321 .sampledImageColorSampleCounts = sample_counts,
1322 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1323 .sampledImageDepthSampleCounts = sample_counts,
1324 .sampledImageStencilSampleCounts = sample_counts,
1325 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1326 .maxSampleMaskWords = 1,
1327 .timestampComputeAndGraphics = false,
1328 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1329 .maxClipDistances = 8,
1330 .maxCullDistances = 8,
1331 .maxCombinedClipAndCullDistances = 8,
1332 .discreteQueuePriorities = 2,
1333 .pointSizeRange = { 0.125, 255.875 },
1334 .lineWidthRange = { 0.0, 7.9921875 },
1335 .pointSizeGranularity = (1.0 / 8.0),
1336 .lineWidthGranularity = (1.0 / 128.0),
1337 .strictLines = false, /* FINISHME */
1338 .standardSampleLocations = true,
1339 .optimalBufferCopyOffsetAlignment = 128,
1340 .optimalBufferCopyRowPitchAlignment = 128,
1341 .nonCoherentAtomSize = 64,
1342 };
1343
1344 *pProperties = (VkPhysicalDeviceProperties) {
1345 .apiVersion = anv_physical_device_api_version(pdevice),
1346 .driverVersion = vk_get_driver_version(),
1347 .vendorID = 0x8086,
1348 .deviceID = pdevice->chipset_id,
1349 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1350 .limits = limits,
1351 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1352 };
1353
1354 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1355 "%s", pdevice->name);
1356 memcpy(pProperties->pipelineCacheUUID,
1357 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1358 }
1359
1360 void anv_GetPhysicalDeviceProperties2(
1361 VkPhysicalDevice physicalDevice,
1362 VkPhysicalDeviceProperties2* pProperties)
1363 {
1364 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1365
1366 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1367
1368 vk_foreach_struct(ext, pProperties->pNext) {
1369 switch (ext->sType) {
1370 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1371 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1372 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1373
1374 /* We support all of the depth resolve modes */
1375 props->supportedDepthResolveModes =
1376 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1377 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1378 VK_RESOLVE_MODE_MIN_BIT_KHR |
1379 VK_RESOLVE_MODE_MAX_BIT_KHR;
1380
1381 /* Average doesn't make sense for stencil so we don't support that */
1382 props->supportedStencilResolveModes =
1383 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1384 if (pdevice->info.gen >= 8) {
1385 /* The advanced stencil resolve modes currently require stencil
1386 * sampling be supported by the hardware.
1387 */
1388 props->supportedStencilResolveModes |=
1389 VK_RESOLVE_MODE_MIN_BIT_KHR |
1390 VK_RESOLVE_MODE_MAX_BIT_KHR;
1391 }
1392
1393 props->independentResolveNone = true;
1394 props->independentResolve = true;
1395 break;
1396 }
1397
1398 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1399 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1400 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1401
1402 /* It's a bit hard to exactly map our implementation to the limits
1403 * described here. The bindless surface handle in the extended
1404 * message descriptors is 20 bits and it's an index into the table of
1405 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1406 * address. Given that most things consume two surface states per
1407 * view (general/sampled for textures and write-only/read-write for
1408 * images), we claim 2^19 things.
1409 *
1410 * For SSBOs, we just use A64 messages so there is no real limit
1411 * there beyond the limit on the total size of a descriptor set.
1412 */
1413 const unsigned max_bindless_views = 1 << 19;
1414
1415 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1416 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1417 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1418 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1419 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1420 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1421 props->robustBufferAccessUpdateAfterBind = true;
1422 props->quadDivergentImplicitLod = false;
1423 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1424 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1425 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1426 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1427 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1428 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1429 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1430 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1431 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1432 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1433 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1434 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1435 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1436 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1437 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1438 break;
1439 }
1440
1441 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1442 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1443 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1444
1445 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1446 util_snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1447 "Intel open-source Mesa driver");
1448
1449 util_snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1450 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1451
1452 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1453 .major = 1,
1454 .minor = 1,
1455 .subminor = 2,
1456 .patch = 0,
1457 };
1458 break;
1459 }
1460
1461 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1462 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1463 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1464 /* Userptr needs page aligned memory. */
1465 props->minImportedHostPointerAlignment = 4096;
1466 break;
1467 }
1468
1469 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1470 VkPhysicalDeviceIDProperties *id_props =
1471 (VkPhysicalDeviceIDProperties *)ext;
1472 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1473 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1474 /* The LUID is for Windows. */
1475 id_props->deviceLUIDValid = false;
1476 break;
1477 }
1478
1479 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1480 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1481 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1482 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1483 props->maxPerStageDescriptorInlineUniformBlocks =
1484 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1485 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1486 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1487 props->maxDescriptorSetInlineUniformBlocks =
1488 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1489 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1490 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1491 break;
1492 }
1493
1494 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1495 VkPhysicalDeviceMaintenance3Properties *props =
1496 (VkPhysicalDeviceMaintenance3Properties *)ext;
1497 /* This value doesn't matter for us today as our per-stage
1498 * descriptors are the real limit.
1499 */
1500 props->maxPerSetDescriptors = 1024;
1501 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1502 break;
1503 }
1504
1505 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1506 VkPhysicalDeviceMultiviewProperties *properties =
1507 (VkPhysicalDeviceMultiviewProperties *)ext;
1508 properties->maxMultiviewViewCount = 16;
1509 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1510 break;
1511 }
1512
1513 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1514 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1515 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1516 properties->pciDomain = pdevice->pci_info.domain;
1517 properties->pciBus = pdevice->pci_info.bus;
1518 properties->pciDevice = pdevice->pci_info.device;
1519 properties->pciFunction = pdevice->pci_info.function;
1520 break;
1521 }
1522
1523 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1524 VkPhysicalDevicePointClippingProperties *properties =
1525 (VkPhysicalDevicePointClippingProperties *) ext;
1526 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1527 break;
1528 }
1529
1530 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1531 VkPhysicalDeviceProtectedMemoryProperties *props =
1532 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1533 props->protectedNoFault = false;
1534 break;
1535 }
1536
1537 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1538 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1539 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1540
1541 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1542 break;
1543 }
1544
1545 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1546 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1547 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1548 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1549 properties->filterMinmaxSingleComponentFormats = true;
1550 break;
1551 }
1552
1553 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1554 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1555
1556 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1557
1558 VkShaderStageFlags scalar_stages = 0;
1559 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1560 if (pdevice->compiler->scalar_stage[stage])
1561 scalar_stages |= mesa_to_vk_shader_stage(stage);
1562 }
1563 properties->supportedStages = scalar_stages;
1564
1565 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1566 VK_SUBGROUP_FEATURE_VOTE_BIT |
1567 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1568 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1569 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1570 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1571 VK_SUBGROUP_FEATURE_CLUSTERED_BIT |
1572 VK_SUBGROUP_FEATURE_QUAD_BIT;
1573 properties->quadOperationsInAllStages = true;
1574 break;
1575 }
1576
1577 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1578 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1579 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1580
1581 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1582 * Base Address:
1583 *
1584 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1585 * specifies the base address of the first element of the surface,
1586 * computed in software by adding the surface base address to the
1587 * byte offset of the element in the buffer. The base address must
1588 * be aligned to element size."
1589 *
1590 * The typed dataport messages require that things be texel aligned.
1591 * Otherwise, we may just load/store the wrong data or, in the worst
1592 * case, there may be hangs.
1593 */
1594 props->storageTexelBufferOffsetAlignmentBytes = 16;
1595 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1596
1597 /* The sampler, however, is much more forgiving and it can handle
1598 * arbitrary byte alignment for linear and buffer surfaces. It's
1599 * hard to find a good PRM citation for this but years of empirical
1600 * experience demonstrate that this is true.
1601 */
1602 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1603 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1604 break;
1605 }
1606
1607 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1608 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1609 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1610
1611 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1612 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1613 props->maxTransformFeedbackBufferSize = (1ull << 32);
1614 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1615 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1616 props->maxTransformFeedbackBufferDataStride = 2048;
1617 props->transformFeedbackQueries = true;
1618 props->transformFeedbackStreamsLinesTriangles = false;
1619 props->transformFeedbackRasterizationStreamSelect = false;
1620 props->transformFeedbackDraw = true;
1621 break;
1622 }
1623
1624 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1625 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1626 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1627 /* We have to restrict this a bit for multiview */
1628 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1629 break;
1630 }
1631
1632 default:
1633 anv_debug_ignored_stype(ext->sType);
1634 break;
1635 }
1636 }
1637 }
1638
1639 /* We support exactly one queue family. */
1640 static const VkQueueFamilyProperties
1641 anv_queue_family_properties = {
1642 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1643 VK_QUEUE_COMPUTE_BIT |
1644 VK_QUEUE_TRANSFER_BIT,
1645 .queueCount = 1,
1646 .timestampValidBits = 36, /* XXX: Real value here */
1647 .minImageTransferGranularity = { 1, 1, 1 },
1648 };
1649
1650 void anv_GetPhysicalDeviceQueueFamilyProperties(
1651 VkPhysicalDevice physicalDevice,
1652 uint32_t* pCount,
1653 VkQueueFamilyProperties* pQueueFamilyProperties)
1654 {
1655 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1656
1657 vk_outarray_append(&out, p) {
1658 *p = anv_queue_family_properties;
1659 }
1660 }
1661
1662 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1663 VkPhysicalDevice physicalDevice,
1664 uint32_t* pQueueFamilyPropertyCount,
1665 VkQueueFamilyProperties2* pQueueFamilyProperties)
1666 {
1667
1668 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1669
1670 vk_outarray_append(&out, p) {
1671 p->queueFamilyProperties = anv_queue_family_properties;
1672
1673 vk_foreach_struct(s, p->pNext) {
1674 anv_debug_ignored_stype(s->sType);
1675 }
1676 }
1677 }
1678
1679 void anv_GetPhysicalDeviceMemoryProperties(
1680 VkPhysicalDevice physicalDevice,
1681 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1682 {
1683 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1684
1685 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1686 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1687 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1688 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1689 .heapIndex = physical_device->memory.types[i].heapIndex,
1690 };
1691 }
1692
1693 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1694 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1695 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1696 .size = physical_device->memory.heaps[i].size,
1697 .flags = physical_device->memory.heaps[i].flags,
1698 };
1699 }
1700 }
1701
1702 static void
1703 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1704 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1705 {
1706 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1707 uint64_t sys_available = get_available_system_memory();
1708 assert(sys_available > 0);
1709
1710 VkDeviceSize total_heaps_size = 0;
1711 for (size_t i = 0; i < device->memory.heap_count; i++)
1712 total_heaps_size += device->memory.heaps[i].size;
1713
1714 for (size_t i = 0; i < device->memory.heap_count; i++) {
1715 VkDeviceSize heap_size = device->memory.heaps[i].size;
1716 VkDeviceSize heap_used = device->memory.heaps[i].used;
1717 VkDeviceSize heap_budget;
1718
1719 double heap_proportion = (double) heap_size / total_heaps_size;
1720 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1721
1722 /*
1723 * Let's not incite the app to starve the system: report at most 90% of
1724 * available system memory.
1725 */
1726 uint64_t heap_available = sys_available_prop * 9 / 10;
1727 heap_budget = MIN2(heap_size, heap_used + heap_available);
1728
1729 /*
1730 * Round down to the nearest MB
1731 */
1732 heap_budget &= ~((1ull << 20) - 1);
1733
1734 /*
1735 * The heapBudget value must be non-zero for array elements less than
1736 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1737 * value must be less than or equal to VkMemoryHeap::size for each heap.
1738 */
1739 assert(0 < heap_budget && heap_budget <= heap_size);
1740
1741 memoryBudget->heapUsage[i] = heap_used;
1742 memoryBudget->heapBudget[i] = heap_budget;
1743 }
1744
1745 /* The heapBudget and heapUsage values must be zero for array elements
1746 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1747 */
1748 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1749 memoryBudget->heapBudget[i] = 0;
1750 memoryBudget->heapUsage[i] = 0;
1751 }
1752 }
1753
1754 void anv_GetPhysicalDeviceMemoryProperties2(
1755 VkPhysicalDevice physicalDevice,
1756 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1757 {
1758 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1759 &pMemoryProperties->memoryProperties);
1760
1761 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1762 switch (ext->sType) {
1763 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1764 anv_get_memory_budget(physicalDevice, (void*)ext);
1765 break;
1766 default:
1767 anv_debug_ignored_stype(ext->sType);
1768 break;
1769 }
1770 }
1771 }
1772
1773 void
1774 anv_GetDeviceGroupPeerMemoryFeatures(
1775 VkDevice device,
1776 uint32_t heapIndex,
1777 uint32_t localDeviceIndex,
1778 uint32_t remoteDeviceIndex,
1779 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1780 {
1781 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1782 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1783 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1784 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1785 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1786 }
1787
1788 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1789 VkInstance _instance,
1790 const char* pName)
1791 {
1792 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1793
1794 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1795 * when we have to return valid function pointers, NULL, or it's left
1796 * undefined. See the table for exact details.
1797 */
1798 if (pName == NULL)
1799 return NULL;
1800
1801 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1802 if (strcmp(pName, "vk" #entrypoint) == 0) \
1803 return (PFN_vkVoidFunction)anv_##entrypoint
1804
1805 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1806 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1807 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1808 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1809
1810 #undef LOOKUP_ANV_ENTRYPOINT
1811
1812 if (instance == NULL)
1813 return NULL;
1814
1815 int idx = anv_get_instance_entrypoint_index(pName);
1816 if (idx >= 0)
1817 return instance->dispatch.entrypoints[idx];
1818
1819 idx = anv_get_device_entrypoint_index(pName);
1820 if (idx >= 0)
1821 return instance->device_dispatch.entrypoints[idx];
1822
1823 return NULL;
1824 }
1825
1826 /* With version 1+ of the loader interface the ICD should expose
1827 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1828 */
1829 PUBLIC
1830 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1831 VkInstance instance,
1832 const char* pName);
1833
1834 PUBLIC
1835 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1836 VkInstance instance,
1837 const char* pName)
1838 {
1839 return anv_GetInstanceProcAddr(instance, pName);
1840 }
1841
1842 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1843 VkDevice _device,
1844 const char* pName)
1845 {
1846 ANV_FROM_HANDLE(anv_device, device, _device);
1847
1848 if (!device || !pName)
1849 return NULL;
1850
1851 int idx = anv_get_device_entrypoint_index(pName);
1852 if (idx < 0)
1853 return NULL;
1854
1855 return device->dispatch.entrypoints[idx];
1856 }
1857
1858 VkResult
1859 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1860 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1861 const VkAllocationCallbacks* pAllocator,
1862 VkDebugReportCallbackEXT* pCallback)
1863 {
1864 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1865 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1866 pCreateInfo, pAllocator, &instance->alloc,
1867 pCallback);
1868 }
1869
1870 void
1871 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1872 VkDebugReportCallbackEXT _callback,
1873 const VkAllocationCallbacks* pAllocator)
1874 {
1875 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1876 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1877 _callback, pAllocator, &instance->alloc);
1878 }
1879
1880 void
1881 anv_DebugReportMessageEXT(VkInstance _instance,
1882 VkDebugReportFlagsEXT flags,
1883 VkDebugReportObjectTypeEXT objectType,
1884 uint64_t object,
1885 size_t location,
1886 int32_t messageCode,
1887 const char* pLayerPrefix,
1888 const char* pMessage)
1889 {
1890 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1891 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1892 object, location, messageCode, pLayerPrefix, pMessage);
1893 }
1894
1895 static void
1896 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1897 {
1898 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1899 queue->device = device;
1900 queue->flags = 0;
1901 }
1902
1903 static void
1904 anv_queue_finish(struct anv_queue *queue)
1905 {
1906 }
1907
1908 static struct anv_state
1909 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1910 {
1911 struct anv_state state;
1912
1913 state = anv_state_pool_alloc(pool, size, align);
1914 memcpy(state.map, p, size);
1915
1916 return state;
1917 }
1918
1919 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
1920 * straightforward 32-bit float color in the first 64 bytes. Instead of using
1921 * a nice float/integer union like Gen8+, Haswell specifies the integer border
1922 * color as a separate entry /after/ the float color. The layout of this entry
1923 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
1924 *
1925 * Since we don't know the format/bpp, we can't make any of the border colors
1926 * containing '1' work for all formats, as it would be in the wrong place for
1927 * some of them. We opt to make 32-bit integers work as this seems like the
1928 * most common option. Fortunately, transparent black works regardless, as
1929 * all zeroes is the same in every bit-size.
1930 */
1931 struct hsw_border_color {
1932 float float32[4];
1933 uint32_t _pad0[12];
1934 uint32_t uint32[4];
1935 uint32_t _pad1[108];
1936 };
1937
1938 struct gen8_border_color {
1939 union {
1940 float float32[4];
1941 uint32_t uint32[4];
1942 };
1943 /* Pad out to 64 bytes */
1944 uint32_t _pad[12];
1945 };
1946
1947 static void
1948 anv_device_init_border_colors(struct anv_device *device)
1949 {
1950 if (device->info.is_haswell) {
1951 static const struct hsw_border_color border_colors[] = {
1952 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1953 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1954 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1955 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1956 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1957 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1958 };
1959
1960 device->border_colors =
1961 anv_state_pool_emit_data(&device->dynamic_state_pool,
1962 sizeof(border_colors), 512, border_colors);
1963 } else {
1964 static const struct gen8_border_color border_colors[] = {
1965 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1966 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1967 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1968 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1969 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1970 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1971 };
1972
1973 device->border_colors =
1974 anv_state_pool_emit_data(&device->dynamic_state_pool,
1975 sizeof(border_colors), 64, border_colors);
1976 }
1977 }
1978
1979 static void
1980 anv_device_init_trivial_batch(struct anv_device *device)
1981 {
1982 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1983
1984 if (device->instance->physicalDevice.has_exec_async)
1985 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
1986
1987 if (device->instance->physicalDevice.use_softpin)
1988 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
1989
1990 anv_vma_alloc(device, &device->trivial_batch_bo);
1991
1992 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
1993 0, 4096, 0);
1994
1995 struct anv_batch batch = {
1996 .start = map,
1997 .next = map,
1998 .end = map + 4096,
1999 };
2000
2001 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2002 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2003
2004 if (!device->info.has_llc)
2005 gen_clflush_range(map, batch.next - map);
2006
2007 anv_gem_munmap(map, device->trivial_batch_bo.size);
2008 }
2009
2010 VkResult anv_EnumerateDeviceExtensionProperties(
2011 VkPhysicalDevice physicalDevice,
2012 const char* pLayerName,
2013 uint32_t* pPropertyCount,
2014 VkExtensionProperties* pProperties)
2015 {
2016 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2017 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2018
2019 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2020 if (device->supported_extensions.extensions[i]) {
2021 vk_outarray_append(&out, prop) {
2022 *prop = anv_device_extensions[i];
2023 }
2024 }
2025 }
2026
2027 return vk_outarray_status(&out);
2028 }
2029
2030 static void
2031 anv_device_init_dispatch(struct anv_device *device)
2032 {
2033 const struct anv_device_dispatch_table *genX_table;
2034 switch (device->info.gen) {
2035 case 11:
2036 genX_table = &gen11_device_dispatch_table;
2037 break;
2038 case 10:
2039 genX_table = &gen10_device_dispatch_table;
2040 break;
2041 case 9:
2042 genX_table = &gen9_device_dispatch_table;
2043 break;
2044 case 8:
2045 genX_table = &gen8_device_dispatch_table;
2046 break;
2047 case 7:
2048 if (device->info.is_haswell)
2049 genX_table = &gen75_device_dispatch_table;
2050 else
2051 genX_table = &gen7_device_dispatch_table;
2052 break;
2053 default:
2054 unreachable("unsupported gen\n");
2055 }
2056
2057 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2058 /* Vulkan requires that entrypoints for extensions which have not been
2059 * enabled must not be advertised.
2060 */
2061 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
2062 &device->instance->enabled_extensions,
2063 &device->enabled_extensions)) {
2064 device->dispatch.entrypoints[i] = NULL;
2065 } else if (genX_table->entrypoints[i]) {
2066 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2067 } else {
2068 device->dispatch.entrypoints[i] =
2069 anv_device_dispatch_table.entrypoints[i];
2070 }
2071 }
2072 }
2073
2074 static int
2075 vk_priority_to_gen(int priority)
2076 {
2077 switch (priority) {
2078 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2079 return GEN_CONTEXT_LOW_PRIORITY;
2080 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2081 return GEN_CONTEXT_MEDIUM_PRIORITY;
2082 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2083 return GEN_CONTEXT_HIGH_PRIORITY;
2084 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2085 return GEN_CONTEXT_REALTIME_PRIORITY;
2086 default:
2087 unreachable("Invalid priority");
2088 }
2089 }
2090
2091 static void
2092 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2093 {
2094 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
2095
2096 if (device->instance->physicalDevice.has_exec_async)
2097 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
2098
2099 if (device->instance->physicalDevice.use_softpin)
2100 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
2101
2102 anv_vma_alloc(device, &device->hiz_clear_bo);
2103
2104 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
2105 0, 4096, 0);
2106
2107 union isl_color_value hiz_clear = { .u32 = { 0, } };
2108 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2109
2110 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
2111 anv_gem_munmap(map, device->hiz_clear_bo.size);
2112 }
2113
2114 static bool
2115 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2116 struct anv_block_pool *pool,
2117 uint64_t address)
2118 {
2119 for (uint32_t i = 0; i < pool->nbos; i++) {
2120 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
2121 uint32_t bo_size = pool->bos[i].size;
2122 if (address >= bo_address && address < (bo_address + bo_size)) {
2123 *ret = (struct gen_batch_decode_bo) {
2124 .addr = bo_address,
2125 .size = bo_size,
2126 .map = pool->bos[i].map,
2127 };
2128 return true;
2129 }
2130 }
2131 return false;
2132 }
2133
2134 /* Finding a buffer for batch decoding */
2135 static struct gen_batch_decode_bo
2136 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2137 {
2138 struct anv_device *device = v_batch;
2139 struct gen_batch_decode_bo ret_bo = {};
2140
2141 assert(ppgtt);
2142
2143 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2144 return ret_bo;
2145 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2146 return ret_bo;
2147 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2148 return ret_bo;
2149 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2150 return ret_bo;
2151
2152 if (!device->cmd_buffer_being_decoded)
2153 return (struct gen_batch_decode_bo) { };
2154
2155 struct anv_batch_bo **bo;
2156
2157 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2158 /* The decoder zeroes out the top 16 bits, so we need to as well */
2159 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
2160
2161 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
2162 return (struct gen_batch_decode_bo) {
2163 .addr = bo_address,
2164 .size = (*bo)->bo.size,
2165 .map = (*bo)->bo.map,
2166 };
2167 }
2168 }
2169
2170 return (struct gen_batch_decode_bo) { };
2171 }
2172
2173 VkResult anv_CreateDevice(
2174 VkPhysicalDevice physicalDevice,
2175 const VkDeviceCreateInfo* pCreateInfo,
2176 const VkAllocationCallbacks* pAllocator,
2177 VkDevice* pDevice)
2178 {
2179 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2180 VkResult result;
2181 struct anv_device *device;
2182
2183 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2184
2185 struct anv_device_extension_table enabled_extensions = { };
2186 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2187 int idx;
2188 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2189 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2190 anv_device_extensions[idx].extensionName) == 0)
2191 break;
2192 }
2193
2194 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2195 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2196
2197 if (!physical_device->supported_extensions.extensions[idx])
2198 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2199
2200 enabled_extensions.extensions[idx] = true;
2201 }
2202
2203 /* Check enabled features */
2204 if (pCreateInfo->pEnabledFeatures) {
2205 VkPhysicalDeviceFeatures supported_features;
2206 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2207 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2208 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2209 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2210 for (uint32_t i = 0; i < num_features; i++) {
2211 if (enabled_feature[i] && !supported_feature[i])
2212 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2213 }
2214 }
2215
2216 /* Check requested queues and fail if we are requested to create any
2217 * queues with flags we don't support.
2218 */
2219 assert(pCreateInfo->queueCreateInfoCount > 0);
2220 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2221 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2222 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2223 }
2224
2225 /* Check if client specified queue priority. */
2226 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2227 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2228 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2229
2230 VkQueueGlobalPriorityEXT priority =
2231 queue_priority ? queue_priority->globalPriority :
2232 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2233
2234 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2235 sizeof(*device), 8,
2236 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2237 if (!device)
2238 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2239
2240 if (INTEL_DEBUG & DEBUG_BATCH) {
2241 const unsigned decode_flags =
2242 GEN_BATCH_DECODE_FULL |
2243 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2244 GEN_BATCH_DECODE_OFFSETS |
2245 GEN_BATCH_DECODE_FLOATS;
2246
2247 gen_batch_decode_ctx_init(&device->decoder_ctx,
2248 &physical_device->info,
2249 stderr, decode_flags, NULL,
2250 decode_get_bo, NULL, device);
2251 }
2252
2253 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2254 device->instance = physical_device->instance;
2255 device->chipset_id = physical_device->chipset_id;
2256 device->no_hw = physical_device->no_hw;
2257 device->_lost = false;
2258
2259 if (pAllocator)
2260 device->alloc = *pAllocator;
2261 else
2262 device->alloc = physical_device->instance->alloc;
2263
2264 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2265 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2266 if (device->fd == -1) {
2267 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2268 goto fail_device;
2269 }
2270
2271 device->context_id = anv_gem_create_context(device);
2272 if (device->context_id == -1) {
2273 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2274 goto fail_fd;
2275 }
2276
2277 if (physical_device->use_softpin) {
2278 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2279 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2280 goto fail_fd;
2281 }
2282
2283 /* keep the page with address zero out of the allocator */
2284 struct anv_memory_heap *low_heap =
2285 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2286 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2287 device->vma_lo_available = low_heap->size;
2288
2289 struct anv_memory_heap *high_heap =
2290 &physical_device->memory.heaps[0];
2291 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2292 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2293 high_heap->size;
2294 }
2295
2296 list_inithead(&device->memory_objects);
2297
2298 /* As per spec, the driver implementation may deny requests to acquire
2299 * a priority above the default priority (MEDIUM) if the caller does not
2300 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2301 * is returned.
2302 */
2303 if (physical_device->has_context_priority) {
2304 int err = anv_gem_set_context_param(device->fd, device->context_id,
2305 I915_CONTEXT_PARAM_PRIORITY,
2306 vk_priority_to_gen(priority));
2307 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2308 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2309 goto fail_fd;
2310 }
2311 }
2312
2313 device->info = physical_device->info;
2314 device->isl_dev = physical_device->isl_dev;
2315
2316 /* On Broadwell and later, we can use batch chaining to more efficiently
2317 * implement growing command buffers. Prior to Haswell, the kernel
2318 * command parser gets in the way and we have to fall back to growing
2319 * the batch.
2320 */
2321 device->can_chain_batches = device->info.gen >= 8;
2322
2323 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2324 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2325 device->enabled_extensions = enabled_extensions;
2326
2327 anv_device_init_dispatch(device);
2328
2329 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2330 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2331 goto fail_context_id;
2332 }
2333
2334 pthread_condattr_t condattr;
2335 if (pthread_condattr_init(&condattr) != 0) {
2336 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2337 goto fail_mutex;
2338 }
2339 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2340 pthread_condattr_destroy(&condattr);
2341 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2342 goto fail_mutex;
2343 }
2344 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2345 pthread_condattr_destroy(&condattr);
2346 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2347 goto fail_mutex;
2348 }
2349 pthread_condattr_destroy(&condattr);
2350
2351 uint64_t bo_flags =
2352 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2353 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2354 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2355 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2356
2357 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2358
2359 result = anv_bo_cache_init(&device->bo_cache);
2360 if (result != VK_SUCCESS)
2361 goto fail_batch_bo_pool;
2362
2363 if (!physical_device->use_softpin)
2364 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2365
2366 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2367 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2368 16384,
2369 bo_flags);
2370 if (result != VK_SUCCESS)
2371 goto fail_bo_cache;
2372
2373 result = anv_state_pool_init(&device->instruction_state_pool, device,
2374 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2375 16384,
2376 bo_flags);
2377 if (result != VK_SUCCESS)
2378 goto fail_dynamic_state_pool;
2379
2380 result = anv_state_pool_init(&device->surface_state_pool, device,
2381 SURFACE_STATE_POOL_MIN_ADDRESS,
2382 4096,
2383 bo_flags);
2384 if (result != VK_SUCCESS)
2385 goto fail_instruction_state_pool;
2386
2387 if (physical_device->use_softpin) {
2388 result = anv_state_pool_init(&device->binding_table_pool, device,
2389 BINDING_TABLE_POOL_MIN_ADDRESS,
2390 4096,
2391 bo_flags);
2392 if (result != VK_SUCCESS)
2393 goto fail_surface_state_pool;
2394 }
2395
2396 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
2397 if (result != VK_SUCCESS)
2398 goto fail_binding_table_pool;
2399
2400 if (physical_device->use_softpin)
2401 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2402
2403 if (!anv_vma_alloc(device, &device->workaround_bo))
2404 goto fail_workaround_bo;
2405
2406 anv_device_init_trivial_batch(device);
2407
2408 if (device->info.gen >= 10)
2409 anv_device_init_hiz_clear_value_bo(device);
2410
2411 anv_scratch_pool_init(device, &device->scratch_pool);
2412
2413 anv_queue_init(device, &device->queue);
2414
2415 switch (device->info.gen) {
2416 case 7:
2417 if (!device->info.is_haswell)
2418 result = gen7_init_device_state(device);
2419 else
2420 result = gen75_init_device_state(device);
2421 break;
2422 case 8:
2423 result = gen8_init_device_state(device);
2424 break;
2425 case 9:
2426 result = gen9_init_device_state(device);
2427 break;
2428 case 10:
2429 result = gen10_init_device_state(device);
2430 break;
2431 case 11:
2432 result = gen11_init_device_state(device);
2433 break;
2434 default:
2435 /* Shouldn't get here as we don't create physical devices for any other
2436 * gens. */
2437 unreachable("unhandled gen");
2438 }
2439 if (result != VK_SUCCESS)
2440 goto fail_workaround_bo;
2441
2442 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2443
2444 anv_device_init_blorp(device);
2445
2446 anv_device_init_border_colors(device);
2447
2448 *pDevice = anv_device_to_handle(device);
2449
2450 return VK_SUCCESS;
2451
2452 fail_workaround_bo:
2453 anv_queue_finish(&device->queue);
2454 anv_scratch_pool_finish(device, &device->scratch_pool);
2455 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2456 anv_gem_close(device, device->workaround_bo.gem_handle);
2457 fail_binding_table_pool:
2458 if (physical_device->use_softpin)
2459 anv_state_pool_finish(&device->binding_table_pool);
2460 fail_surface_state_pool:
2461 anv_state_pool_finish(&device->surface_state_pool);
2462 fail_instruction_state_pool:
2463 anv_state_pool_finish(&device->instruction_state_pool);
2464 fail_dynamic_state_pool:
2465 anv_state_pool_finish(&device->dynamic_state_pool);
2466 fail_bo_cache:
2467 anv_bo_cache_finish(&device->bo_cache);
2468 fail_batch_bo_pool:
2469 anv_bo_pool_finish(&device->batch_bo_pool);
2470 pthread_cond_destroy(&device->queue_submit);
2471 fail_mutex:
2472 pthread_mutex_destroy(&device->mutex);
2473 fail_context_id:
2474 anv_gem_destroy_context(device, device->context_id);
2475 fail_fd:
2476 close(device->fd);
2477 fail_device:
2478 vk_free(&device->alloc, device);
2479
2480 return result;
2481 }
2482
2483 void anv_DestroyDevice(
2484 VkDevice _device,
2485 const VkAllocationCallbacks* pAllocator)
2486 {
2487 ANV_FROM_HANDLE(anv_device, device, _device);
2488 struct anv_physical_device *physical_device;
2489
2490 if (!device)
2491 return;
2492
2493 physical_device = &device->instance->physicalDevice;
2494
2495 anv_device_finish_blorp(device);
2496
2497 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2498
2499 anv_queue_finish(&device->queue);
2500
2501 #ifdef HAVE_VALGRIND
2502 /* We only need to free these to prevent valgrind errors. The backing
2503 * BO will go away in a couple of lines so we don't actually leak.
2504 */
2505 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2506 #endif
2507
2508 anv_scratch_pool_finish(device, &device->scratch_pool);
2509
2510 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2511 anv_vma_free(device, &device->workaround_bo);
2512 anv_gem_close(device, device->workaround_bo.gem_handle);
2513
2514 anv_vma_free(device, &device->trivial_batch_bo);
2515 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2516 if (device->info.gen >= 10)
2517 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2518
2519 if (physical_device->use_softpin)
2520 anv_state_pool_finish(&device->binding_table_pool);
2521 anv_state_pool_finish(&device->surface_state_pool);
2522 anv_state_pool_finish(&device->instruction_state_pool);
2523 anv_state_pool_finish(&device->dynamic_state_pool);
2524
2525 anv_bo_cache_finish(&device->bo_cache);
2526
2527 anv_bo_pool_finish(&device->batch_bo_pool);
2528
2529 pthread_cond_destroy(&device->queue_submit);
2530 pthread_mutex_destroy(&device->mutex);
2531
2532 anv_gem_destroy_context(device, device->context_id);
2533
2534 if (INTEL_DEBUG & DEBUG_BATCH)
2535 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2536
2537 close(device->fd);
2538
2539 vk_free(&device->alloc, device);
2540 }
2541
2542 VkResult anv_EnumerateInstanceLayerProperties(
2543 uint32_t* pPropertyCount,
2544 VkLayerProperties* pProperties)
2545 {
2546 if (pProperties == NULL) {
2547 *pPropertyCount = 0;
2548 return VK_SUCCESS;
2549 }
2550
2551 /* None supported at this time */
2552 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2553 }
2554
2555 VkResult anv_EnumerateDeviceLayerProperties(
2556 VkPhysicalDevice physicalDevice,
2557 uint32_t* pPropertyCount,
2558 VkLayerProperties* pProperties)
2559 {
2560 if (pProperties == NULL) {
2561 *pPropertyCount = 0;
2562 return VK_SUCCESS;
2563 }
2564
2565 /* None supported at this time */
2566 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2567 }
2568
2569 void anv_GetDeviceQueue(
2570 VkDevice _device,
2571 uint32_t queueNodeIndex,
2572 uint32_t queueIndex,
2573 VkQueue* pQueue)
2574 {
2575 ANV_FROM_HANDLE(anv_device, device, _device);
2576
2577 assert(queueIndex == 0);
2578
2579 *pQueue = anv_queue_to_handle(&device->queue);
2580 }
2581
2582 void anv_GetDeviceQueue2(
2583 VkDevice _device,
2584 const VkDeviceQueueInfo2* pQueueInfo,
2585 VkQueue* pQueue)
2586 {
2587 ANV_FROM_HANDLE(anv_device, device, _device);
2588
2589 assert(pQueueInfo->queueIndex == 0);
2590
2591 if (pQueueInfo->flags == device->queue.flags)
2592 *pQueue = anv_queue_to_handle(&device->queue);
2593 else
2594 *pQueue = NULL;
2595 }
2596
2597 VkResult
2598 _anv_device_set_lost(struct anv_device *device,
2599 const char *file, int line,
2600 const char *msg, ...)
2601 {
2602 VkResult err;
2603 va_list ap;
2604
2605 device->_lost = true;
2606
2607 va_start(ap, msg);
2608 err = __vk_errorv(device->instance, device,
2609 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2610 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2611 va_end(ap);
2612
2613 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2614 abort();
2615
2616 return err;
2617 }
2618
2619 VkResult
2620 anv_device_query_status(struct anv_device *device)
2621 {
2622 /* This isn't likely as most of the callers of this function already check
2623 * for it. However, it doesn't hurt to check and it potentially lets us
2624 * avoid an ioctl.
2625 */
2626 if (anv_device_is_lost(device))
2627 return VK_ERROR_DEVICE_LOST;
2628
2629 uint32_t active, pending;
2630 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2631 if (ret == -1) {
2632 /* We don't know the real error. */
2633 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2634 }
2635
2636 if (active) {
2637 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2638 } else if (pending) {
2639 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2640 }
2641
2642 return VK_SUCCESS;
2643 }
2644
2645 VkResult
2646 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2647 {
2648 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2649 * Other usages of the BO (such as on different hardware) will not be
2650 * flagged as "busy" by this ioctl. Use with care.
2651 */
2652 int ret = anv_gem_busy(device, bo->gem_handle);
2653 if (ret == 1) {
2654 return VK_NOT_READY;
2655 } else if (ret == -1) {
2656 /* We don't know the real error. */
2657 return anv_device_set_lost(device, "gem wait failed: %m");
2658 }
2659
2660 /* Query for device status after the busy call. If the BO we're checking
2661 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2662 * client because it clearly doesn't have valid data. Yes, this most
2663 * likely means an ioctl, but we just did an ioctl to query the busy status
2664 * so it's no great loss.
2665 */
2666 return anv_device_query_status(device);
2667 }
2668
2669 VkResult
2670 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2671 int64_t timeout)
2672 {
2673 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2674 if (ret == -1 && errno == ETIME) {
2675 return VK_TIMEOUT;
2676 } else if (ret == -1) {
2677 /* We don't know the real error. */
2678 return anv_device_set_lost(device, "gem wait failed: %m");
2679 }
2680
2681 /* Query for device status after the wait. If the BO we're waiting on got
2682 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2683 * because it clearly doesn't have valid data. Yes, this most likely means
2684 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2685 */
2686 return anv_device_query_status(device);
2687 }
2688
2689 VkResult anv_DeviceWaitIdle(
2690 VkDevice _device)
2691 {
2692 ANV_FROM_HANDLE(anv_device, device, _device);
2693 if (anv_device_is_lost(device))
2694 return VK_ERROR_DEVICE_LOST;
2695
2696 struct anv_batch batch;
2697
2698 uint32_t cmds[8];
2699 batch.start = batch.next = cmds;
2700 batch.end = (void *) cmds + sizeof(cmds);
2701
2702 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2703 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2704
2705 return anv_device_submit_simple_batch(device, &batch);
2706 }
2707
2708 bool
2709 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2710 {
2711 if (!(bo->flags & EXEC_OBJECT_PINNED))
2712 return true;
2713
2714 pthread_mutex_lock(&device->vma_mutex);
2715
2716 bo->offset = 0;
2717
2718 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2719 device->vma_hi_available >= bo->size) {
2720 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2721 if (addr) {
2722 bo->offset = gen_canonical_address(addr);
2723 assert(addr == gen_48b_address(bo->offset));
2724 device->vma_hi_available -= bo->size;
2725 }
2726 }
2727
2728 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2729 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2730 if (addr) {
2731 bo->offset = gen_canonical_address(addr);
2732 assert(addr == gen_48b_address(bo->offset));
2733 device->vma_lo_available -= bo->size;
2734 }
2735 }
2736
2737 pthread_mutex_unlock(&device->vma_mutex);
2738
2739 return bo->offset != 0;
2740 }
2741
2742 void
2743 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2744 {
2745 if (!(bo->flags & EXEC_OBJECT_PINNED))
2746 return;
2747
2748 const uint64_t addr_48b = gen_48b_address(bo->offset);
2749
2750 pthread_mutex_lock(&device->vma_mutex);
2751
2752 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2753 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2754 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2755 device->vma_lo_available += bo->size;
2756 } else {
2757 MAYBE_UNUSED const struct anv_physical_device *physical_device =
2758 &device->instance->physicalDevice;
2759 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
2760 addr_48b < (physical_device->memory.heaps[0].vma_start +
2761 physical_device->memory.heaps[0].vma_size));
2762 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2763 device->vma_hi_available += bo->size;
2764 }
2765
2766 pthread_mutex_unlock(&device->vma_mutex);
2767
2768 bo->offset = 0;
2769 }
2770
2771 VkResult
2772 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
2773 {
2774 uint32_t gem_handle = anv_gem_create(device, size);
2775 if (!gem_handle)
2776 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2777
2778 anv_bo_init(bo, gem_handle, size);
2779
2780 return VK_SUCCESS;
2781 }
2782
2783 VkResult anv_AllocateMemory(
2784 VkDevice _device,
2785 const VkMemoryAllocateInfo* pAllocateInfo,
2786 const VkAllocationCallbacks* pAllocator,
2787 VkDeviceMemory* pMem)
2788 {
2789 ANV_FROM_HANDLE(anv_device, device, _device);
2790 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2791 struct anv_device_memory *mem;
2792 VkResult result = VK_SUCCESS;
2793
2794 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
2795
2796 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
2797 assert(pAllocateInfo->allocationSize > 0);
2798
2799 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
2800 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2801
2802 /* FINISHME: Fail if allocation request exceeds heap size. */
2803
2804 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
2805 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2806 if (mem == NULL)
2807 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2808
2809 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
2810 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
2811 mem->map = NULL;
2812 mem->map_size = 0;
2813 mem->ahw = NULL;
2814 mem->host_ptr = NULL;
2815
2816 uint64_t bo_flags = 0;
2817
2818 assert(mem->type->heapIndex < pdevice->memory.heap_count);
2819 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
2820 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2821
2822 const struct wsi_memory_allocate_info *wsi_info =
2823 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2824 if (wsi_info && wsi_info->implicit_sync) {
2825 /* We need to set the WRITE flag on window system buffers so that GEM
2826 * will know we're writing to them and synchronize uses on other rings
2827 * (eg if the display server uses the blitter ring).
2828 */
2829 bo_flags |= EXEC_OBJECT_WRITE;
2830 } else if (pdevice->has_exec_async) {
2831 bo_flags |= EXEC_OBJECT_ASYNC;
2832 }
2833
2834 if (pdevice->use_softpin)
2835 bo_flags |= EXEC_OBJECT_PINNED;
2836
2837 const VkExportMemoryAllocateInfo *export_info =
2838 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
2839
2840 /* Check if we need to support Android HW buffer export. If so,
2841 * create AHardwareBuffer and import memory from it.
2842 */
2843 bool android_export = false;
2844 if (export_info && export_info->handleTypes &
2845 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
2846 android_export = true;
2847
2848 /* Android memory import. */
2849 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
2850 vk_find_struct_const(pAllocateInfo->pNext,
2851 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
2852
2853 if (ahw_import_info) {
2854 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
2855 if (result != VK_SUCCESS)
2856 goto fail;
2857
2858 goto success;
2859 } else if (android_export) {
2860 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
2861 if (result != VK_SUCCESS)
2862 goto fail;
2863
2864 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
2865 .buffer = mem->ahw,
2866 };
2867 result = anv_import_ahw_memory(_device, mem, &import_info);
2868 if (result != VK_SUCCESS)
2869 goto fail;
2870
2871 goto success;
2872 }
2873
2874 const VkImportMemoryFdInfoKHR *fd_info =
2875 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
2876
2877 /* The Vulkan spec permits handleType to be 0, in which case the struct is
2878 * ignored.
2879 */
2880 if (fd_info && fd_info->handleType) {
2881 /* At the moment, we support only the below handle types. */
2882 assert(fd_info->handleType ==
2883 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2884 fd_info->handleType ==
2885 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2886
2887 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
2888 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
2889 if (result != VK_SUCCESS)
2890 goto fail;
2891
2892 VkDeviceSize aligned_alloc_size =
2893 align_u64(pAllocateInfo->allocationSize, 4096);
2894
2895 /* For security purposes, we reject importing the bo if it's smaller
2896 * than the requested allocation size. This prevents a malicious client
2897 * from passing a buffer to a trusted client, lying about the size, and
2898 * telling the trusted client to try and texture from an image that goes
2899 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
2900 * in the trusted client. The trusted client can protect itself against
2901 * this sort of attack but only if it can trust the buffer size.
2902 */
2903 if (mem->bo->size < aligned_alloc_size) {
2904 result = vk_errorf(device->instance, device,
2905 VK_ERROR_INVALID_EXTERNAL_HANDLE,
2906 "aligned allocationSize too large for "
2907 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
2908 "%"PRIu64"B > %"PRIu64"B",
2909 aligned_alloc_size, mem->bo->size);
2910 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2911 goto fail;
2912 }
2913
2914 /* From the Vulkan spec:
2915 *
2916 * "Importing memory from a file descriptor transfers ownership of
2917 * the file descriptor from the application to the Vulkan
2918 * implementation. The application must not perform any operations on
2919 * the file descriptor after a successful import."
2920 *
2921 * If the import fails, we leave the file descriptor open.
2922 */
2923 close(fd_info->fd);
2924 goto success;
2925 }
2926
2927 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
2928 vk_find_struct_const(pAllocateInfo->pNext,
2929 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
2930 if (host_ptr_info && host_ptr_info->handleType) {
2931 if (host_ptr_info->handleType ==
2932 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
2933 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2934 goto fail;
2935 }
2936
2937 assert(host_ptr_info->handleType ==
2938 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
2939
2940 result = anv_bo_cache_import_host_ptr(
2941 device, &device->bo_cache, host_ptr_info->pHostPointer,
2942 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
2943
2944 if (result != VK_SUCCESS)
2945 goto fail;
2946
2947 mem->host_ptr = host_ptr_info->pHostPointer;
2948 goto success;
2949 }
2950
2951 /* Regular allocate (not importing memory). */
2952
2953 if (export_info && export_info->handleTypes)
2954 bo_flags |= ANV_BO_EXTERNAL;
2955
2956 result = anv_bo_cache_alloc(device, &device->bo_cache,
2957 pAllocateInfo->allocationSize, bo_flags,
2958 &mem->bo);
2959 if (result != VK_SUCCESS)
2960 goto fail;
2961
2962 const VkMemoryDedicatedAllocateInfo *dedicated_info =
2963 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
2964 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
2965 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
2966
2967 /* Some legacy (non-modifiers) consumers need the tiling to be set on
2968 * the BO. In this case, we have a dedicated allocation.
2969 */
2970 if (image->needs_set_tiling) {
2971 const uint32_t i915_tiling =
2972 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
2973 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
2974 image->planes[0].surface.isl.row_pitch_B,
2975 i915_tiling);
2976 if (ret) {
2977 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2978 return vk_errorf(device->instance, NULL,
2979 VK_ERROR_OUT_OF_DEVICE_MEMORY,
2980 "failed to set BO tiling: %m");
2981 }
2982 }
2983 }
2984
2985 success:
2986 pthread_mutex_lock(&device->mutex);
2987 list_addtail(&mem->link, &device->memory_objects);
2988 pthread_mutex_unlock(&device->mutex);
2989
2990 *pMem = anv_device_memory_to_handle(mem);
2991
2992 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
2993 mem->bo->size);
2994
2995 return VK_SUCCESS;
2996
2997 fail:
2998 vk_free2(&device->alloc, pAllocator, mem);
2999
3000 return result;
3001 }
3002
3003 VkResult anv_GetMemoryFdKHR(
3004 VkDevice device_h,
3005 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3006 int* pFd)
3007 {
3008 ANV_FROM_HANDLE(anv_device, dev, device_h);
3009 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3010
3011 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3012
3013 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3014 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3015
3016 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
3017 }
3018
3019 VkResult anv_GetMemoryFdPropertiesKHR(
3020 VkDevice _device,
3021 VkExternalMemoryHandleTypeFlagBits handleType,
3022 int fd,
3023 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3024 {
3025 ANV_FROM_HANDLE(anv_device, device, _device);
3026 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3027
3028 switch (handleType) {
3029 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3030 /* dma-buf can be imported as any memory type */
3031 pMemoryFdProperties->memoryTypeBits =
3032 (1 << pdevice->memory.type_count) - 1;
3033 return VK_SUCCESS;
3034
3035 default:
3036 /* The valid usage section for this function says:
3037 *
3038 * "handleType must not be one of the handle types defined as
3039 * opaque."
3040 *
3041 * So opaque handle types fall into the default "unsupported" case.
3042 */
3043 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3044 }
3045 }
3046
3047 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3048 VkDevice _device,
3049 VkExternalMemoryHandleTypeFlagBits handleType,
3050 const void* pHostPointer,
3051 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3052 {
3053 ANV_FROM_HANDLE(anv_device, device, _device);
3054
3055 assert(pMemoryHostPointerProperties->sType ==
3056 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3057
3058 switch (handleType) {
3059 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
3060 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3061
3062 /* Host memory can be imported as any memory type. */
3063 pMemoryHostPointerProperties->memoryTypeBits =
3064 (1ull << pdevice->memory.type_count) - 1;
3065
3066 return VK_SUCCESS;
3067 }
3068 default:
3069 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3070 }
3071 }
3072
3073 void anv_FreeMemory(
3074 VkDevice _device,
3075 VkDeviceMemory _mem,
3076 const VkAllocationCallbacks* pAllocator)
3077 {
3078 ANV_FROM_HANDLE(anv_device, device, _device);
3079 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3080 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3081
3082 if (mem == NULL)
3083 return;
3084
3085 pthread_mutex_lock(&device->mutex);
3086 list_del(&mem->link);
3087 pthread_mutex_unlock(&device->mutex);
3088
3089 if (mem->map)
3090 anv_UnmapMemory(_device, _mem);
3091
3092 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3093 -mem->bo->size);
3094
3095 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3096
3097 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3098 if (mem->ahw)
3099 AHardwareBuffer_release(mem->ahw);
3100 #endif
3101
3102 vk_free2(&device->alloc, pAllocator, mem);
3103 }
3104
3105 VkResult anv_MapMemory(
3106 VkDevice _device,
3107 VkDeviceMemory _memory,
3108 VkDeviceSize offset,
3109 VkDeviceSize size,
3110 VkMemoryMapFlags flags,
3111 void** ppData)
3112 {
3113 ANV_FROM_HANDLE(anv_device, device, _device);
3114 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3115
3116 if (mem == NULL) {
3117 *ppData = NULL;
3118 return VK_SUCCESS;
3119 }
3120
3121 if (mem->host_ptr) {
3122 *ppData = mem->host_ptr + offset;
3123 return VK_SUCCESS;
3124 }
3125
3126 if (size == VK_WHOLE_SIZE)
3127 size = mem->bo->size - offset;
3128
3129 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3130 *
3131 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3132 * assert(size != 0);
3133 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3134 * equal to the size of the memory minus offset
3135 */
3136 assert(size > 0);
3137 assert(offset + size <= mem->bo->size);
3138
3139 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3140 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3141 * at a time is valid. We could just mmap up front and return an offset
3142 * pointer here, but that may exhaust virtual memory on 32 bit
3143 * userspace. */
3144
3145 uint32_t gem_flags = 0;
3146
3147 if (!device->info.has_llc &&
3148 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3149 gem_flags |= I915_MMAP_WC;
3150
3151 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3152 uint64_t map_offset = offset & ~4095ull;
3153 assert(offset >= map_offset);
3154 uint64_t map_size = (offset + size) - map_offset;
3155
3156 /* Let's map whole pages */
3157 map_size = align_u64(map_size, 4096);
3158
3159 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3160 map_offset, map_size, gem_flags);
3161 if (map == MAP_FAILED)
3162 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3163
3164 mem->map = map;
3165 mem->map_size = map_size;
3166
3167 *ppData = mem->map + (offset - map_offset);
3168
3169 return VK_SUCCESS;
3170 }
3171
3172 void anv_UnmapMemory(
3173 VkDevice _device,
3174 VkDeviceMemory _memory)
3175 {
3176 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3177
3178 if (mem == NULL || mem->host_ptr)
3179 return;
3180
3181 anv_gem_munmap(mem->map, mem->map_size);
3182
3183 mem->map = NULL;
3184 mem->map_size = 0;
3185 }
3186
3187 static void
3188 clflush_mapped_ranges(struct anv_device *device,
3189 uint32_t count,
3190 const VkMappedMemoryRange *ranges)
3191 {
3192 for (uint32_t i = 0; i < count; i++) {
3193 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3194 if (ranges[i].offset >= mem->map_size)
3195 continue;
3196
3197 gen_clflush_range(mem->map + ranges[i].offset,
3198 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3199 }
3200 }
3201
3202 VkResult anv_FlushMappedMemoryRanges(
3203 VkDevice _device,
3204 uint32_t memoryRangeCount,
3205 const VkMappedMemoryRange* pMemoryRanges)
3206 {
3207 ANV_FROM_HANDLE(anv_device, device, _device);
3208
3209 if (device->info.has_llc)
3210 return VK_SUCCESS;
3211
3212 /* Make sure the writes we're flushing have landed. */
3213 __builtin_ia32_mfence();
3214
3215 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3216
3217 return VK_SUCCESS;
3218 }
3219
3220 VkResult anv_InvalidateMappedMemoryRanges(
3221 VkDevice _device,
3222 uint32_t memoryRangeCount,
3223 const VkMappedMemoryRange* pMemoryRanges)
3224 {
3225 ANV_FROM_HANDLE(anv_device, device, _device);
3226
3227 if (device->info.has_llc)
3228 return VK_SUCCESS;
3229
3230 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3231
3232 /* Make sure no reads get moved up above the invalidate. */
3233 __builtin_ia32_mfence();
3234
3235 return VK_SUCCESS;
3236 }
3237
3238 void anv_GetBufferMemoryRequirements(
3239 VkDevice _device,
3240 VkBuffer _buffer,
3241 VkMemoryRequirements* pMemoryRequirements)
3242 {
3243 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3244 ANV_FROM_HANDLE(anv_device, device, _device);
3245 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3246
3247 /* The Vulkan spec (git aaed022) says:
3248 *
3249 * memoryTypeBits is a bitfield and contains one bit set for every
3250 * supported memory type for the resource. The bit `1<<i` is set if and
3251 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3252 * structure for the physical device is supported.
3253 */
3254 uint32_t memory_types = 0;
3255 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3256 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3257 if ((valid_usage & buffer->usage) == buffer->usage)
3258 memory_types |= (1u << i);
3259 }
3260
3261 /* Base alignment requirement of a cache line */
3262 uint32_t alignment = 16;
3263
3264 /* We need an alignment of 32 for pushing UBOs */
3265 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3266 alignment = MAX2(alignment, 32);
3267
3268 pMemoryRequirements->size = buffer->size;
3269 pMemoryRequirements->alignment = alignment;
3270
3271 /* Storage and Uniform buffers should have their size aligned to
3272 * 32-bits to avoid boundary checks when last DWord is not complete.
3273 * This would ensure that not internal padding would be needed for
3274 * 16-bit types.
3275 */
3276 if (device->robust_buffer_access &&
3277 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3278 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3279 pMemoryRequirements->size = align_u64(buffer->size, 4);
3280
3281 pMemoryRequirements->memoryTypeBits = memory_types;
3282 }
3283
3284 void anv_GetBufferMemoryRequirements2(
3285 VkDevice _device,
3286 const VkBufferMemoryRequirementsInfo2* pInfo,
3287 VkMemoryRequirements2* pMemoryRequirements)
3288 {
3289 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3290 &pMemoryRequirements->memoryRequirements);
3291
3292 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3293 switch (ext->sType) {
3294 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3295 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3296 requirements->prefersDedicatedAllocation = false;
3297 requirements->requiresDedicatedAllocation = false;
3298 break;
3299 }
3300
3301 default:
3302 anv_debug_ignored_stype(ext->sType);
3303 break;
3304 }
3305 }
3306 }
3307
3308 void anv_GetImageMemoryRequirements(
3309 VkDevice _device,
3310 VkImage _image,
3311 VkMemoryRequirements* pMemoryRequirements)
3312 {
3313 ANV_FROM_HANDLE(anv_image, image, _image);
3314 ANV_FROM_HANDLE(anv_device, device, _device);
3315 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3316
3317 /* The Vulkan spec (git aaed022) says:
3318 *
3319 * memoryTypeBits is a bitfield and contains one bit set for every
3320 * supported memory type for the resource. The bit `1<<i` is set if and
3321 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3322 * structure for the physical device is supported.
3323 *
3324 * All types are currently supported for images.
3325 */
3326 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3327
3328 /* We must have image allocated or imported at this point. According to the
3329 * specification, external images must have been bound to memory before
3330 * calling GetImageMemoryRequirements.
3331 */
3332 assert(image->size > 0);
3333
3334 pMemoryRequirements->size = image->size;
3335 pMemoryRequirements->alignment = image->alignment;
3336 pMemoryRequirements->memoryTypeBits = memory_types;
3337 }
3338
3339 void anv_GetImageMemoryRequirements2(
3340 VkDevice _device,
3341 const VkImageMemoryRequirementsInfo2* pInfo,
3342 VkMemoryRequirements2* pMemoryRequirements)
3343 {
3344 ANV_FROM_HANDLE(anv_device, device, _device);
3345 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3346
3347 anv_GetImageMemoryRequirements(_device, pInfo->image,
3348 &pMemoryRequirements->memoryRequirements);
3349
3350 vk_foreach_struct_const(ext, pInfo->pNext) {
3351 switch (ext->sType) {
3352 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3353 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3354 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3355 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3356 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3357 plane_reqs->planeAspect);
3358
3359 assert(image->planes[plane].offset == 0);
3360
3361 /* The Vulkan spec (git aaed022) says:
3362 *
3363 * memoryTypeBits is a bitfield and contains one bit set for every
3364 * supported memory type for the resource. The bit `1<<i` is set
3365 * if and only if the memory type `i` in the
3366 * VkPhysicalDeviceMemoryProperties structure for the physical
3367 * device is supported.
3368 *
3369 * All types are currently supported for images.
3370 */
3371 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3372 (1ull << pdevice->memory.type_count) - 1;
3373
3374 /* We must have image allocated or imported at this point. According to the
3375 * specification, external images must have been bound to memory before
3376 * calling GetImageMemoryRequirements.
3377 */
3378 assert(image->planes[plane].size > 0);
3379
3380 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3381 pMemoryRequirements->memoryRequirements.alignment =
3382 image->planes[plane].alignment;
3383 break;
3384 }
3385
3386 default:
3387 anv_debug_ignored_stype(ext->sType);
3388 break;
3389 }
3390 }
3391
3392 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3393 switch (ext->sType) {
3394 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3395 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3396 if (image->needs_set_tiling || image->external_format) {
3397 /* If we need to set the tiling for external consumers, we need a
3398 * dedicated allocation.
3399 *
3400 * See also anv_AllocateMemory.
3401 */
3402 requirements->prefersDedicatedAllocation = true;
3403 requirements->requiresDedicatedAllocation = true;
3404 } else {
3405 requirements->prefersDedicatedAllocation = false;
3406 requirements->requiresDedicatedAllocation = false;
3407 }
3408 break;
3409 }
3410
3411 default:
3412 anv_debug_ignored_stype(ext->sType);
3413 break;
3414 }
3415 }
3416 }
3417
3418 void anv_GetImageSparseMemoryRequirements(
3419 VkDevice device,
3420 VkImage image,
3421 uint32_t* pSparseMemoryRequirementCount,
3422 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3423 {
3424 *pSparseMemoryRequirementCount = 0;
3425 }
3426
3427 void anv_GetImageSparseMemoryRequirements2(
3428 VkDevice device,
3429 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3430 uint32_t* pSparseMemoryRequirementCount,
3431 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3432 {
3433 *pSparseMemoryRequirementCount = 0;
3434 }
3435
3436 void anv_GetDeviceMemoryCommitment(
3437 VkDevice device,
3438 VkDeviceMemory memory,
3439 VkDeviceSize* pCommittedMemoryInBytes)
3440 {
3441 *pCommittedMemoryInBytes = 0;
3442 }
3443
3444 static void
3445 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3446 {
3447 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3448 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3449
3450 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3451
3452 if (mem) {
3453 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3454 buffer->address = (struct anv_address) {
3455 .bo = mem->bo,
3456 .offset = pBindInfo->memoryOffset,
3457 };
3458 } else {
3459 buffer->address = ANV_NULL_ADDRESS;
3460 }
3461 }
3462
3463 VkResult anv_BindBufferMemory(
3464 VkDevice device,
3465 VkBuffer buffer,
3466 VkDeviceMemory memory,
3467 VkDeviceSize memoryOffset)
3468 {
3469 anv_bind_buffer_memory(
3470 &(VkBindBufferMemoryInfo) {
3471 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3472 .buffer = buffer,
3473 .memory = memory,
3474 .memoryOffset = memoryOffset,
3475 });
3476
3477 return VK_SUCCESS;
3478 }
3479
3480 VkResult anv_BindBufferMemory2(
3481 VkDevice device,
3482 uint32_t bindInfoCount,
3483 const VkBindBufferMemoryInfo* pBindInfos)
3484 {
3485 for (uint32_t i = 0; i < bindInfoCount; i++)
3486 anv_bind_buffer_memory(&pBindInfos[i]);
3487
3488 return VK_SUCCESS;
3489 }
3490
3491 VkResult anv_QueueBindSparse(
3492 VkQueue _queue,
3493 uint32_t bindInfoCount,
3494 const VkBindSparseInfo* pBindInfo,
3495 VkFence fence)
3496 {
3497 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3498 if (anv_device_is_lost(queue->device))
3499 return VK_ERROR_DEVICE_LOST;
3500
3501 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3502 }
3503
3504 // Event functions
3505
3506 VkResult anv_CreateEvent(
3507 VkDevice _device,
3508 const VkEventCreateInfo* pCreateInfo,
3509 const VkAllocationCallbacks* pAllocator,
3510 VkEvent* pEvent)
3511 {
3512 ANV_FROM_HANDLE(anv_device, device, _device);
3513 struct anv_state state;
3514 struct anv_event *event;
3515
3516 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3517
3518 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3519 sizeof(*event), 8);
3520 event = state.map;
3521 event->state = state;
3522 event->semaphore = VK_EVENT_RESET;
3523
3524 if (!device->info.has_llc) {
3525 /* Make sure the writes we're flushing have landed. */
3526 __builtin_ia32_mfence();
3527 __builtin_ia32_clflush(event);
3528 }
3529
3530 *pEvent = anv_event_to_handle(event);
3531
3532 return VK_SUCCESS;
3533 }
3534
3535 void anv_DestroyEvent(
3536 VkDevice _device,
3537 VkEvent _event,
3538 const VkAllocationCallbacks* pAllocator)
3539 {
3540 ANV_FROM_HANDLE(anv_device, device, _device);
3541 ANV_FROM_HANDLE(anv_event, event, _event);
3542
3543 if (!event)
3544 return;
3545
3546 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3547 }
3548
3549 VkResult anv_GetEventStatus(
3550 VkDevice _device,
3551 VkEvent _event)
3552 {
3553 ANV_FROM_HANDLE(anv_device, device, _device);
3554 ANV_FROM_HANDLE(anv_event, event, _event);
3555
3556 if (anv_device_is_lost(device))
3557 return VK_ERROR_DEVICE_LOST;
3558
3559 if (!device->info.has_llc) {
3560 /* Invalidate read cache before reading event written by GPU. */
3561 __builtin_ia32_clflush(event);
3562 __builtin_ia32_mfence();
3563
3564 }
3565
3566 return event->semaphore;
3567 }
3568
3569 VkResult anv_SetEvent(
3570 VkDevice _device,
3571 VkEvent _event)
3572 {
3573 ANV_FROM_HANDLE(anv_device, device, _device);
3574 ANV_FROM_HANDLE(anv_event, event, _event);
3575
3576 event->semaphore = VK_EVENT_SET;
3577
3578 if (!device->info.has_llc) {
3579 /* Make sure the writes we're flushing have landed. */
3580 __builtin_ia32_mfence();
3581 __builtin_ia32_clflush(event);
3582 }
3583
3584 return VK_SUCCESS;
3585 }
3586
3587 VkResult anv_ResetEvent(
3588 VkDevice _device,
3589 VkEvent _event)
3590 {
3591 ANV_FROM_HANDLE(anv_device, device, _device);
3592 ANV_FROM_HANDLE(anv_event, event, _event);
3593
3594 event->semaphore = VK_EVENT_RESET;
3595
3596 if (!device->info.has_llc) {
3597 /* Make sure the writes we're flushing have landed. */
3598 __builtin_ia32_mfence();
3599 __builtin_ia32_clflush(event);
3600 }
3601
3602 return VK_SUCCESS;
3603 }
3604
3605 // Buffer functions
3606
3607 VkResult anv_CreateBuffer(
3608 VkDevice _device,
3609 const VkBufferCreateInfo* pCreateInfo,
3610 const VkAllocationCallbacks* pAllocator,
3611 VkBuffer* pBuffer)
3612 {
3613 ANV_FROM_HANDLE(anv_device, device, _device);
3614 struct anv_buffer *buffer;
3615
3616 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3617
3618 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3619 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3620 if (buffer == NULL)
3621 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3622
3623 buffer->size = pCreateInfo->size;
3624 buffer->usage = pCreateInfo->usage;
3625 buffer->address = ANV_NULL_ADDRESS;
3626
3627 *pBuffer = anv_buffer_to_handle(buffer);
3628
3629 return VK_SUCCESS;
3630 }
3631
3632 void anv_DestroyBuffer(
3633 VkDevice _device,
3634 VkBuffer _buffer,
3635 const VkAllocationCallbacks* pAllocator)
3636 {
3637 ANV_FROM_HANDLE(anv_device, device, _device);
3638 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3639
3640 if (!buffer)
3641 return;
3642
3643 vk_free2(&device->alloc, pAllocator, buffer);
3644 }
3645
3646 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3647 VkDevice device,
3648 const VkBufferDeviceAddressInfoEXT* pInfo)
3649 {
3650 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3651
3652 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3653
3654 return anv_address_physical(buffer->address);
3655 }
3656
3657 void
3658 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3659 enum isl_format format,
3660 struct anv_address address,
3661 uint32_t range, uint32_t stride)
3662 {
3663 isl_buffer_fill_state(&device->isl_dev, state.map,
3664 .address = anv_address_physical(address),
3665 .mocs = device->default_mocs,
3666 .size_B = range,
3667 .format = format,
3668 .swizzle = ISL_SWIZZLE_IDENTITY,
3669 .stride_B = stride);
3670 }
3671
3672 void anv_DestroySampler(
3673 VkDevice _device,
3674 VkSampler _sampler,
3675 const VkAllocationCallbacks* pAllocator)
3676 {
3677 ANV_FROM_HANDLE(anv_device, device, _device);
3678 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3679
3680 if (!sampler)
3681 return;
3682
3683 if (sampler->bindless_state.map) {
3684 anv_state_pool_free(&device->dynamic_state_pool,
3685 sampler->bindless_state);
3686 }
3687
3688 vk_free2(&device->alloc, pAllocator, sampler);
3689 }
3690
3691 VkResult anv_CreateFramebuffer(
3692 VkDevice _device,
3693 const VkFramebufferCreateInfo* pCreateInfo,
3694 const VkAllocationCallbacks* pAllocator,
3695 VkFramebuffer* pFramebuffer)
3696 {
3697 ANV_FROM_HANDLE(anv_device, device, _device);
3698 struct anv_framebuffer *framebuffer;
3699
3700 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3701
3702 size_t size = sizeof(*framebuffer) +
3703 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3704 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3705 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3706 if (framebuffer == NULL)
3707 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3708
3709 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3710 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3711 VkImageView _iview = pCreateInfo->pAttachments[i];
3712 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
3713 }
3714
3715 framebuffer->width = pCreateInfo->width;
3716 framebuffer->height = pCreateInfo->height;
3717 framebuffer->layers = pCreateInfo->layers;
3718
3719 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3720
3721 return VK_SUCCESS;
3722 }
3723
3724 void anv_DestroyFramebuffer(
3725 VkDevice _device,
3726 VkFramebuffer _fb,
3727 const VkAllocationCallbacks* pAllocator)
3728 {
3729 ANV_FROM_HANDLE(anv_device, device, _device);
3730 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3731
3732 if (!fb)
3733 return;
3734
3735 vk_free2(&device->alloc, pAllocator, fb);
3736 }
3737
3738 static const VkTimeDomainEXT anv_time_domains[] = {
3739 VK_TIME_DOMAIN_DEVICE_EXT,
3740 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3741 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3742 };
3743
3744 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3745 VkPhysicalDevice physicalDevice,
3746 uint32_t *pTimeDomainCount,
3747 VkTimeDomainEXT *pTimeDomains)
3748 {
3749 int d;
3750 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
3751
3752 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
3753 vk_outarray_append(&out, i) {
3754 *i = anv_time_domains[d];
3755 }
3756 }
3757
3758 return vk_outarray_status(&out);
3759 }
3760
3761 static uint64_t
3762 anv_clock_gettime(clockid_t clock_id)
3763 {
3764 struct timespec current;
3765 int ret;
3766
3767 ret = clock_gettime(clock_id, &current);
3768 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
3769 ret = clock_gettime(CLOCK_MONOTONIC, &current);
3770 if (ret < 0)
3771 return 0;
3772
3773 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
3774 }
3775
3776 #define TIMESTAMP 0x2358
3777
3778 VkResult anv_GetCalibratedTimestampsEXT(
3779 VkDevice _device,
3780 uint32_t timestampCount,
3781 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
3782 uint64_t *pTimestamps,
3783 uint64_t *pMaxDeviation)
3784 {
3785 ANV_FROM_HANDLE(anv_device, device, _device);
3786 uint64_t timestamp_frequency = device->info.timestamp_frequency;
3787 int ret;
3788 int d;
3789 uint64_t begin, end;
3790 uint64_t max_clock_period = 0;
3791
3792 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3793
3794 for (d = 0; d < timestampCount; d++) {
3795 switch (pTimestampInfos[d].timeDomain) {
3796 case VK_TIME_DOMAIN_DEVICE_EXT:
3797 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
3798 &pTimestamps[d]);
3799
3800 if (ret != 0) {
3801 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
3802 "register: %m");
3803 }
3804 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
3805 max_clock_period = MAX2(max_clock_period, device_period);
3806 break;
3807 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
3808 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
3809 max_clock_period = MAX2(max_clock_period, 1);
3810 break;
3811
3812 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
3813 pTimestamps[d] = begin;
3814 break;
3815 default:
3816 pTimestamps[d] = 0;
3817 break;
3818 }
3819 }
3820
3821 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3822
3823 /*
3824 * The maximum deviation is the sum of the interval over which we
3825 * perform the sampling and the maximum period of any sampled
3826 * clock. That's because the maximum skew between any two sampled
3827 * clock edges is when the sampled clock with the largest period is
3828 * sampled at the end of that period but right at the beginning of the
3829 * sampling interval and some other clock is sampled right at the
3830 * begining of its sampling period and right at the end of the
3831 * sampling interval. Let's assume the GPU has the longest clock
3832 * period and that the application is sampling GPU and monotonic:
3833 *
3834 * s e
3835 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
3836 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3837 *
3838 * g
3839 * 0 1 2 3
3840 * GPU -----_____-----_____-----_____-----_____
3841 *
3842 * m
3843 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
3844 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3845 *
3846 * Interval <----------------->
3847 * Deviation <-------------------------->
3848 *
3849 * s = read(raw) 2
3850 * g = read(GPU) 1
3851 * m = read(monotonic) 2
3852 * e = read(raw) b
3853 *
3854 * We round the sample interval up by one tick to cover sampling error
3855 * in the interval clock
3856 */
3857
3858 uint64_t sample_interval = end - begin + 1;
3859
3860 *pMaxDeviation = sample_interval + max_clock_period;
3861
3862 return VK_SUCCESS;
3863 }
3864
3865 /* vk_icd.h does not declare this function, so we declare it here to
3866 * suppress Wmissing-prototypes.
3867 */
3868 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3869 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
3870
3871 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3872 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
3873 {
3874 /* For the full details on loader interface versioning, see
3875 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
3876 * What follows is a condensed summary, to help you navigate the large and
3877 * confusing official doc.
3878 *
3879 * - Loader interface v0 is incompatible with later versions. We don't
3880 * support it.
3881 *
3882 * - In loader interface v1:
3883 * - The first ICD entrypoint called by the loader is
3884 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
3885 * entrypoint.
3886 * - The ICD must statically expose no other Vulkan symbol unless it is
3887 * linked with -Bsymbolic.
3888 * - Each dispatchable Vulkan handle created by the ICD must be
3889 * a pointer to a struct whose first member is VK_LOADER_DATA. The
3890 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
3891 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
3892 * vkDestroySurfaceKHR(). The ICD must be capable of working with
3893 * such loader-managed surfaces.
3894 *
3895 * - Loader interface v2 differs from v1 in:
3896 * - The first ICD entrypoint called by the loader is
3897 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
3898 * statically expose this entrypoint.
3899 *
3900 * - Loader interface v3 differs from v2 in:
3901 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
3902 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
3903 * because the loader no longer does so.
3904 */
3905 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
3906 return VK_SUCCESS;
3907 }