anv: Use anv_block_pool_foreach_bo in get_bo_from_pool
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/debug.h"
36 #include "util/build_id.h"
37 #include "util/disk_cache.h"
38 #include "util/mesa-sha1.h"
39 #include "util/os_file.h"
40 #include "util/u_atomic.h"
41 #include "util/u_string.h"
42 #include "util/xmlpool.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_aux_map.h"
46 #include "common/gen_defines.h"
47 #include "compiler/glsl_types.h"
48
49 #include "genxml/gen7_pack.h"
50
51 static const char anv_dri_options_xml[] =
52 DRI_CONF_BEGIN
53 DRI_CONF_SECTION_PERFORMANCE
54 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
55 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
56 DRI_CONF_SECTION_END
57 DRI_CONF_END;
58
59 /* This is probably far to big but it reflects the max size used for messages
60 * in OpenGLs KHR_debug.
61 */
62 #define MAX_DEBUG_MESSAGE_LENGTH 4096
63
64 static void
65 compiler_debug_log(void *data, const char *fmt, ...)
66 {
67 char str[MAX_DEBUG_MESSAGE_LENGTH];
68 struct anv_device *device = (struct anv_device *)data;
69
70 if (list_is_empty(&device->instance->debug_report_callbacks.callbacks))
71 return;
72
73 va_list args;
74 va_start(args, fmt);
75 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
76 va_end(args);
77
78 vk_debug_report(&device->instance->debug_report_callbacks,
79 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
80 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
81 0, 0, 0, "anv", str);
82 }
83
84 static void
85 compiler_perf_log(void *data, const char *fmt, ...)
86 {
87 va_list args;
88 va_start(args, fmt);
89
90 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
91 intel_logd_v(fmt, args);
92
93 va_end(args);
94 }
95
96 static uint64_t
97 anv_compute_heap_size(int fd, uint64_t gtt_size)
98 {
99 /* Query the total ram from the system */
100 struct sysinfo info;
101 sysinfo(&info);
102
103 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
104
105 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
106 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
107 */
108 uint64_t available_ram;
109 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
110 available_ram = total_ram / 2;
111 else
112 available_ram = total_ram * 3 / 4;
113
114 /* We also want to leave some padding for things we allocate in the driver,
115 * so don't go over 3/4 of the GTT either.
116 */
117 uint64_t available_gtt = gtt_size * 3 / 4;
118
119 return MIN2(available_ram, available_gtt);
120 }
121
122 static VkResult
123 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
124 {
125 uint64_t gtt_size;
126 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
127 &gtt_size) == -1) {
128 /* If, for whatever reason, we can't actually get the GTT size from the
129 * kernel (too old?) fall back to the aperture size.
130 */
131 anv_perf_warn(NULL, NULL,
132 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
133
134 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
135 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
136 "failed to get aperture size: %m");
137 }
138 }
139
140 device->supports_48bit_addresses = (device->info.gen >= 8) &&
141 gtt_size > (4ULL << 30 /* GiB */);
142
143 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
144
145 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
146 /* When running with an overridden PCI ID, we may get a GTT size from
147 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
148 * address support can still fail. Just clamp the address space size to
149 * 2 GiB if we don't have 48-bit support.
150 */
151 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
152 "not support for 48-bit addresses",
153 __FILE__, __LINE__);
154 heap_size = 2ull << 30;
155 }
156
157 if (heap_size <= 3ull * (1ull << 30)) {
158 /* In this case, everything fits nicely into the 32-bit address space,
159 * so there's no need for supporting 48bit addresses on client-allocated
160 * memory objects.
161 */
162 device->memory.heap_count = 1;
163 device->memory.heaps[0] = (struct anv_memory_heap) {
164 .vma_start = LOW_HEAP_MIN_ADDRESS,
165 .vma_size = LOW_HEAP_SIZE,
166 .size = heap_size,
167 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
168 .supports_48bit_addresses = false,
169 };
170 } else {
171 /* Not everything will fit nicely into a 32-bit address space. In this
172 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
173 * larger 48-bit heap. If we're in this case, then we have a total heap
174 * size larger than 3GiB which most likely means they have 8 GiB of
175 * video memory and so carving off 1 GiB for the 32-bit heap should be
176 * reasonable.
177 */
178 const uint64_t heap_size_32bit = 1ull << 30;
179 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
180
181 assert(device->supports_48bit_addresses);
182
183 device->memory.heap_count = 2;
184 device->memory.heaps[0] = (struct anv_memory_heap) {
185 .vma_start = HIGH_HEAP_MIN_ADDRESS,
186 /* Leave the last 4GiB out of the high vma range, so that no state
187 * base address + size can overflow 48 bits. For more information see
188 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
189 */
190 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
191 .size = heap_size_48bit,
192 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
193 .supports_48bit_addresses = true,
194 };
195 device->memory.heaps[1] = (struct anv_memory_heap) {
196 .vma_start = LOW_HEAP_MIN_ADDRESS,
197 .vma_size = LOW_HEAP_SIZE,
198 .size = heap_size_32bit,
199 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
200 .supports_48bit_addresses = false,
201 };
202 }
203
204 uint32_t type_count = 0;
205 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
206 uint32_t valid_buffer_usage = ~0;
207
208 /* There appears to be a hardware issue in the VF cache where it only
209 * considers the bottom 32 bits of memory addresses. If you happen to
210 * have two vertex buffers which get placed exactly 4 GiB apart and use
211 * them in back-to-back draw calls, you can get collisions. In order to
212 * solve this problem, we require vertex and index buffers be bound to
213 * memory allocated out of the 32-bit heap.
214 */
215 if (device->memory.heaps[heap].supports_48bit_addresses) {
216 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
217 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
218 }
219
220 if (device->info.has_llc) {
221 /* Big core GPUs share LLC with the CPU and thus one memory type can be
222 * both cached and coherent at the same time.
223 */
224 device->memory.types[type_count++] = (struct anv_memory_type) {
225 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
226 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
227 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
228 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
229 .heapIndex = heap,
230 .valid_buffer_usage = valid_buffer_usage,
231 };
232 } else {
233 /* The spec requires that we expose a host-visible, coherent memory
234 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
235 * to give the application a choice between cached, but not coherent and
236 * coherent but uncached (WC though).
237 */
238 device->memory.types[type_count++] = (struct anv_memory_type) {
239 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
240 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
241 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
242 .heapIndex = heap,
243 .valid_buffer_usage = valid_buffer_usage,
244 };
245 device->memory.types[type_count++] = (struct anv_memory_type) {
246 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
247 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
248 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
249 .heapIndex = heap,
250 .valid_buffer_usage = valid_buffer_usage,
251 };
252 }
253 }
254 device->memory.type_count = type_count;
255
256 return VK_SUCCESS;
257 }
258
259 static VkResult
260 anv_physical_device_init_uuids(struct anv_physical_device *device)
261 {
262 const struct build_id_note *note =
263 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
264 if (!note) {
265 return vk_errorf(device->instance, device,
266 VK_ERROR_INITIALIZATION_FAILED,
267 "Failed to find build-id");
268 }
269
270 unsigned build_id_len = build_id_length(note);
271 if (build_id_len < 20) {
272 return vk_errorf(device->instance, device,
273 VK_ERROR_INITIALIZATION_FAILED,
274 "build-id too short. It needs to be a SHA");
275 }
276
277 memcpy(device->driver_build_sha1, build_id_data(note), 20);
278
279 struct mesa_sha1 sha1_ctx;
280 uint8_t sha1[20];
281 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
282
283 /* The pipeline cache UUID is used for determining when a pipeline cache is
284 * invalid. It needs both a driver build and the PCI ID of the device.
285 */
286 _mesa_sha1_init(&sha1_ctx);
287 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
288 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
289 sizeof(device->chipset_id));
290 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
291 sizeof(device->always_use_bindless));
292 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
293 sizeof(device->has_a64_buffer_access));
294 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
295 sizeof(device->has_bindless_images));
296 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
297 sizeof(device->has_bindless_samplers));
298 _mesa_sha1_final(&sha1_ctx, sha1);
299 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
300
301 /* The driver UUID is used for determining sharability of images and memory
302 * between two Vulkan instances in separate processes. People who want to
303 * share memory need to also check the device UUID (below) so all this
304 * needs to be is the build-id.
305 */
306 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
307
308 /* The device UUID uniquely identifies the given device within the machine.
309 * Since we never have more than one device, this doesn't need to be a real
310 * UUID. However, on the off-chance that someone tries to use this to
311 * cache pre-tiled images or something of the like, we use the PCI ID and
312 * some bits of ISL info to ensure that this is safe.
313 */
314 _mesa_sha1_init(&sha1_ctx);
315 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
316 sizeof(device->chipset_id));
317 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
318 sizeof(device->isl_dev.has_bit6_swizzling));
319 _mesa_sha1_final(&sha1_ctx, sha1);
320 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
321
322 return VK_SUCCESS;
323 }
324
325 static void
326 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
327 {
328 #ifdef ENABLE_SHADER_CACHE
329 char renderer[10];
330 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
331 device->chipset_id);
332 assert(len == sizeof(renderer) - 2);
333
334 char timestamp[41];
335 _mesa_sha1_format(timestamp, device->driver_build_sha1);
336
337 const uint64_t driver_flags =
338 brw_get_compiler_config_value(device->compiler);
339 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
340 #else
341 device->disk_cache = NULL;
342 #endif
343 }
344
345 static void
346 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
347 {
348 #ifdef ENABLE_SHADER_CACHE
349 if (device->disk_cache)
350 disk_cache_destroy(device->disk_cache);
351 #else
352 assert(device->disk_cache == NULL);
353 #endif
354 }
355
356 static uint64_t
357 get_available_system_memory()
358 {
359 char *meminfo = os_read_file("/proc/meminfo");
360 if (!meminfo)
361 return 0;
362
363 char *str = strstr(meminfo, "MemAvailable:");
364 if (!str) {
365 free(meminfo);
366 return 0;
367 }
368
369 uint64_t kb_mem_available;
370 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
371 free(meminfo);
372 return kb_mem_available << 10;
373 }
374
375 free(meminfo);
376 return 0;
377 }
378
379 static VkResult
380 anv_physical_device_init(struct anv_physical_device *device,
381 struct anv_instance *instance,
382 drmDevicePtr drm_device)
383 {
384 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
385 const char *path = drm_device->nodes[DRM_NODE_RENDER];
386 VkResult result;
387 int fd;
388 int master_fd = -1;
389
390 brw_process_intel_debug_variable();
391
392 fd = open(path, O_RDWR | O_CLOEXEC);
393 if (fd < 0)
394 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
395
396 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
397 device->instance = instance;
398
399 assert(strlen(path) < ARRAY_SIZE(device->path));
400 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
401
402 if (!gen_get_device_info_from_fd(fd, &device->info)) {
403 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
404 goto fail;
405 }
406 device->chipset_id = device->info.chipset_id;
407 device->no_hw = device->info.no_hw;
408
409 if (getenv("INTEL_NO_HW") != NULL)
410 device->no_hw = true;
411
412 device->pci_info.domain = drm_device->businfo.pci->domain;
413 device->pci_info.bus = drm_device->businfo.pci->bus;
414 device->pci_info.device = drm_device->businfo.pci->dev;
415 device->pci_info.function = drm_device->businfo.pci->func;
416
417 device->name = gen_get_device_name(device->chipset_id);
418
419 if (device->info.is_haswell) {
420 intel_logw("Haswell Vulkan support is incomplete");
421 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
422 intel_logw("Ivy Bridge Vulkan support is incomplete");
423 } else if (device->info.gen == 7 && device->info.is_baytrail) {
424 intel_logw("Bay Trail Vulkan support is incomplete");
425 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
426 /* Gen8-11 fully supported */
427 } else if (device->info.gen == 12) {
428 intel_logw("Vulkan is not yet fully supported on gen12");
429 } else {
430 result = vk_errorf(device->instance, device,
431 VK_ERROR_INCOMPATIBLE_DRIVER,
432 "Vulkan not yet supported on %s", device->name);
433 goto fail;
434 }
435
436 device->cmd_parser_version = -1;
437 if (device->info.gen == 7) {
438 device->cmd_parser_version =
439 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
440 if (device->cmd_parser_version == -1) {
441 result = vk_errorf(device->instance, device,
442 VK_ERROR_INITIALIZATION_FAILED,
443 "failed to get command parser version");
444 goto fail;
445 }
446 }
447
448 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
449 result = vk_errorf(device->instance, device,
450 VK_ERROR_INITIALIZATION_FAILED,
451 "kernel missing gem wait");
452 goto fail;
453 }
454
455 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
456 result = vk_errorf(device->instance, device,
457 VK_ERROR_INITIALIZATION_FAILED,
458 "kernel missing execbuf2");
459 goto fail;
460 }
461
462 if (!device->info.has_llc &&
463 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
464 result = vk_errorf(device->instance, device,
465 VK_ERROR_INITIALIZATION_FAILED,
466 "kernel missing wc mmap");
467 goto fail;
468 }
469
470 result = anv_physical_device_init_heaps(device, fd);
471 if (result != VK_SUCCESS)
472 goto fail;
473
474 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
475 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
476 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
477 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
478 device->has_syncobj_wait = device->has_syncobj &&
479 anv_gem_supports_syncobj_wait(fd);
480 device->has_context_priority = anv_gem_has_context_priority(fd);
481
482 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
483 && device->supports_48bit_addresses;
484
485 device->has_context_isolation =
486 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
487
488 device->always_use_bindless =
489 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
490
491 /* We first got the A64 messages on broadwell and we can only use them if
492 * we can pass addresses directly into the shader which requires softpin.
493 */
494 device->has_a64_buffer_access = device->info.gen >= 8 &&
495 device->use_softpin;
496
497 /* We first get bindless image access on Skylake and we can only really do
498 * it if we don't have any relocations so we need softpin.
499 */
500 device->has_bindless_images = device->info.gen >= 9 &&
501 device->use_softpin;
502
503 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
504 * because it's just a matter of setting the sampler address in the sample
505 * message header. However, we've not bothered to wire it up for vec4 so
506 * we leave it disabled on gen7.
507 */
508 device->has_bindless_samplers = device->info.gen >= 8;
509
510 device->has_mem_available = get_available_system_memory() != 0;
511
512 /* Starting with Gen10, the timestamp frequency of the command streamer may
513 * vary from one part to another. We can query the value from the kernel.
514 */
515 if (device->info.gen >= 10) {
516 int timestamp_frequency =
517 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
518
519 if (timestamp_frequency < 0)
520 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
521 else
522 device->info.timestamp_frequency = timestamp_frequency;
523 }
524
525 /* GENs prior to 8 do not support EU/Subslice info */
526 if (device->info.gen >= 8) {
527 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
528 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
529
530 /* Without this information, we cannot get the right Braswell
531 * brandstrings, and we have to use conservative numbers for GPGPU on
532 * many platforms, but otherwise, things will just work.
533 */
534 if (device->subslice_total < 1 || device->eu_total < 1) {
535 intel_logw("Kernel 4.1 required to properly query GPU properties");
536 }
537 } else if (device->info.gen == 7) {
538 device->subslice_total = 1 << (device->info.gt - 1);
539 }
540
541 if (device->info.is_cherryview &&
542 device->subslice_total > 0 && device->eu_total > 0) {
543 /* Logical CS threads = EUs per subslice * num threads per EU */
544 uint32_t max_cs_threads =
545 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
546
547 /* Fuse configurations may give more threads than expected, never less. */
548 if (max_cs_threads > device->info.max_cs_threads)
549 device->info.max_cs_threads = max_cs_threads;
550 }
551
552 device->compiler = brw_compiler_create(NULL, &device->info);
553 if (device->compiler == NULL) {
554 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
555 goto fail;
556 }
557 device->compiler->shader_debug_log = compiler_debug_log;
558 device->compiler->shader_perf_log = compiler_perf_log;
559 device->compiler->supports_pull_constants = false;
560 device->compiler->constant_buffer_0_is_relative =
561 device->info.gen < 8 || !device->has_context_isolation;
562 device->compiler->supports_shader_constants = true;
563
564 /* Broadwell PRM says:
565 *
566 * "Before Gen8, there was a historical configuration control field to
567 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
568 * different places: TILECTL[1:0], ARB_MODE[5:4], and
569 * DISP_ARB_CTL[14:13].
570 *
571 * For Gen8 and subsequent generations, the swizzle fields are all
572 * reserved, and the CPU's memory controller performs all address
573 * swizzling modifications."
574 */
575 bool swizzled =
576 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
577
578 isl_device_init(&device->isl_dev, &device->info, swizzled);
579
580 result = anv_physical_device_init_uuids(device);
581 if (result != VK_SUCCESS)
582 goto fail;
583
584 anv_physical_device_init_disk_cache(device);
585
586 if (instance->enabled_extensions.KHR_display) {
587 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
588 if (master_fd >= 0) {
589 /* prod the device with a GETPARAM call which will fail if
590 * we don't have permission to even render on this device
591 */
592 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
593 close(master_fd);
594 master_fd = -1;
595 }
596 }
597 }
598 device->master_fd = master_fd;
599
600 result = anv_init_wsi(device);
601 if (result != VK_SUCCESS) {
602 ralloc_free(device->compiler);
603 anv_physical_device_free_disk_cache(device);
604 goto fail;
605 }
606
607 device->perf = anv_get_perf(&device->info, fd);
608
609 anv_physical_device_get_supported_extensions(device,
610 &device->supported_extensions);
611
612
613 device->local_fd = fd;
614
615 return VK_SUCCESS;
616
617 fail:
618 close(fd);
619 if (master_fd != -1)
620 close(master_fd);
621 return result;
622 }
623
624 static void
625 anv_physical_device_finish(struct anv_physical_device *device)
626 {
627 anv_finish_wsi(device);
628 anv_physical_device_free_disk_cache(device);
629 ralloc_free(device->compiler);
630 ralloc_free(device->perf);
631 close(device->local_fd);
632 if (device->master_fd >= 0)
633 close(device->master_fd);
634 }
635
636 static void *
637 default_alloc_func(void *pUserData, size_t size, size_t align,
638 VkSystemAllocationScope allocationScope)
639 {
640 return malloc(size);
641 }
642
643 static void *
644 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
645 size_t align, VkSystemAllocationScope allocationScope)
646 {
647 return realloc(pOriginal, size);
648 }
649
650 static void
651 default_free_func(void *pUserData, void *pMemory)
652 {
653 free(pMemory);
654 }
655
656 static const VkAllocationCallbacks default_alloc = {
657 .pUserData = NULL,
658 .pfnAllocation = default_alloc_func,
659 .pfnReallocation = default_realloc_func,
660 .pfnFree = default_free_func,
661 };
662
663 VkResult anv_EnumerateInstanceExtensionProperties(
664 const char* pLayerName,
665 uint32_t* pPropertyCount,
666 VkExtensionProperties* pProperties)
667 {
668 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
669
670 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
671 if (anv_instance_extensions_supported.extensions[i]) {
672 vk_outarray_append(&out, prop) {
673 *prop = anv_instance_extensions[i];
674 }
675 }
676 }
677
678 return vk_outarray_status(&out);
679 }
680
681 VkResult anv_CreateInstance(
682 const VkInstanceCreateInfo* pCreateInfo,
683 const VkAllocationCallbacks* pAllocator,
684 VkInstance* pInstance)
685 {
686 struct anv_instance *instance;
687 VkResult result;
688
689 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
690
691 struct anv_instance_extension_table enabled_extensions = {};
692 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
693 int idx;
694 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
695 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
696 anv_instance_extensions[idx].extensionName) == 0)
697 break;
698 }
699
700 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
701 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
702
703 if (!anv_instance_extensions_supported.extensions[idx])
704 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
705
706 enabled_extensions.extensions[idx] = true;
707 }
708
709 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
710 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
711 if (!instance)
712 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
713
714 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
715
716 if (pAllocator)
717 instance->alloc = *pAllocator;
718 else
719 instance->alloc = default_alloc;
720
721 instance->app_info = (struct anv_app_info) { .api_version = 0 };
722 if (pCreateInfo->pApplicationInfo) {
723 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
724
725 instance->app_info.app_name =
726 vk_strdup(&instance->alloc, app->pApplicationName,
727 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
728 instance->app_info.app_version = app->applicationVersion;
729
730 instance->app_info.engine_name =
731 vk_strdup(&instance->alloc, app->pEngineName,
732 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
733 instance->app_info.engine_version = app->engineVersion;
734
735 instance->app_info.api_version = app->apiVersion;
736 }
737
738 if (instance->app_info.api_version == 0)
739 instance->app_info.api_version = VK_API_VERSION_1_0;
740
741 instance->enabled_extensions = enabled_extensions;
742
743 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
744 /* Vulkan requires that entrypoints for extensions which have not been
745 * enabled must not be advertised.
746 */
747 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
748 &instance->enabled_extensions)) {
749 instance->dispatch.entrypoints[i] = NULL;
750 } else {
751 instance->dispatch.entrypoints[i] =
752 anv_instance_dispatch_table.entrypoints[i];
753 }
754 }
755
756 struct anv_physical_device *pdevice = &instance->physicalDevice;
757 for (unsigned i = 0; i < ARRAY_SIZE(pdevice->dispatch.entrypoints); i++) {
758 /* Vulkan requires that entrypoints for extensions which have not been
759 * enabled must not be advertised.
760 */
761 if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
762 &instance->enabled_extensions)) {
763 pdevice->dispatch.entrypoints[i] = NULL;
764 } else {
765 pdevice->dispatch.entrypoints[i] =
766 anv_physical_device_dispatch_table.entrypoints[i];
767 }
768 }
769
770 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
771 /* Vulkan requires that entrypoints for extensions which have not been
772 * enabled must not be advertised.
773 */
774 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
775 &instance->enabled_extensions, NULL)) {
776 instance->device_dispatch.entrypoints[i] = NULL;
777 } else {
778 instance->device_dispatch.entrypoints[i] =
779 anv_device_dispatch_table.entrypoints[i];
780 }
781 }
782
783 instance->physicalDeviceCount = -1;
784
785 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
786 if (result != VK_SUCCESS) {
787 vk_free2(&default_alloc, pAllocator, instance);
788 return vk_error(result);
789 }
790
791 instance->pipeline_cache_enabled =
792 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
793
794 glsl_type_singleton_init_or_ref();
795
796 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
797
798 driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
799 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
800 0, "anv", NULL,
801 instance->app_info.engine_name,
802 instance->app_info.engine_version);
803
804 *pInstance = anv_instance_to_handle(instance);
805
806 return VK_SUCCESS;
807 }
808
809 void anv_DestroyInstance(
810 VkInstance _instance,
811 const VkAllocationCallbacks* pAllocator)
812 {
813 ANV_FROM_HANDLE(anv_instance, instance, _instance);
814
815 if (!instance)
816 return;
817
818 if (instance->physicalDeviceCount > 0) {
819 /* We support at most one physical device. */
820 assert(instance->physicalDeviceCount == 1);
821 anv_physical_device_finish(&instance->physicalDevice);
822 }
823
824 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
825 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
826
827 VG(VALGRIND_DESTROY_MEMPOOL(instance));
828
829 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
830
831 glsl_type_singleton_decref();
832
833 driDestroyOptionCache(&instance->dri_options);
834 driDestroyOptionInfo(&instance->available_dri_options);
835
836 vk_free(&instance->alloc, instance);
837 }
838
839 static VkResult
840 anv_enumerate_devices(struct anv_instance *instance)
841 {
842 /* TODO: Check for more devices ? */
843 drmDevicePtr devices[8];
844 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
845 int max_devices;
846
847 instance->physicalDeviceCount = 0;
848
849 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
850 if (max_devices < 1)
851 return VK_ERROR_INCOMPATIBLE_DRIVER;
852
853 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
854 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
855 devices[i]->bustype == DRM_BUS_PCI &&
856 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
857
858 result = anv_physical_device_init(&instance->physicalDevice,
859 instance, devices[i]);
860 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
861 break;
862 }
863 }
864 drmFreeDevices(devices, max_devices);
865
866 if (result == VK_SUCCESS)
867 instance->physicalDeviceCount = 1;
868
869 return result;
870 }
871
872 static VkResult
873 anv_instance_ensure_physical_device(struct anv_instance *instance)
874 {
875 if (instance->physicalDeviceCount < 0) {
876 VkResult result = anv_enumerate_devices(instance);
877 if (result != VK_SUCCESS &&
878 result != VK_ERROR_INCOMPATIBLE_DRIVER)
879 return result;
880 }
881
882 return VK_SUCCESS;
883 }
884
885 VkResult anv_EnumeratePhysicalDevices(
886 VkInstance _instance,
887 uint32_t* pPhysicalDeviceCount,
888 VkPhysicalDevice* pPhysicalDevices)
889 {
890 ANV_FROM_HANDLE(anv_instance, instance, _instance);
891 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
892
893 VkResult result = anv_instance_ensure_physical_device(instance);
894 if (result != VK_SUCCESS)
895 return result;
896
897 if (instance->physicalDeviceCount == 0)
898 return VK_SUCCESS;
899
900 assert(instance->physicalDeviceCount == 1);
901 vk_outarray_append(&out, i) {
902 *i = anv_physical_device_to_handle(&instance->physicalDevice);
903 }
904
905 return vk_outarray_status(&out);
906 }
907
908 VkResult anv_EnumeratePhysicalDeviceGroups(
909 VkInstance _instance,
910 uint32_t* pPhysicalDeviceGroupCount,
911 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
912 {
913 ANV_FROM_HANDLE(anv_instance, instance, _instance);
914 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
915 pPhysicalDeviceGroupCount);
916
917 VkResult result = anv_instance_ensure_physical_device(instance);
918 if (result != VK_SUCCESS)
919 return result;
920
921 if (instance->physicalDeviceCount == 0)
922 return VK_SUCCESS;
923
924 assert(instance->physicalDeviceCount == 1);
925
926 vk_outarray_append(&out, p) {
927 p->physicalDeviceCount = 1;
928 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
929 p->physicalDevices[0] =
930 anv_physical_device_to_handle(&instance->physicalDevice);
931 p->subsetAllocation = false;
932
933 vk_foreach_struct(ext, p->pNext)
934 anv_debug_ignored_stype(ext->sType);
935 }
936
937 return vk_outarray_status(&out);
938 }
939
940 void anv_GetPhysicalDeviceFeatures(
941 VkPhysicalDevice physicalDevice,
942 VkPhysicalDeviceFeatures* pFeatures)
943 {
944 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
945
946 *pFeatures = (VkPhysicalDeviceFeatures) {
947 .robustBufferAccess = true,
948 .fullDrawIndexUint32 = true,
949 .imageCubeArray = true,
950 .independentBlend = true,
951 .geometryShader = true,
952 .tessellationShader = true,
953 .sampleRateShading = true,
954 .dualSrcBlend = true,
955 .logicOp = true,
956 .multiDrawIndirect = true,
957 .drawIndirectFirstInstance = true,
958 .depthClamp = true,
959 .depthBiasClamp = true,
960 .fillModeNonSolid = true,
961 .depthBounds = pdevice->info.gen >= 12,
962 .wideLines = true,
963 .largePoints = true,
964 .alphaToOne = true,
965 .multiViewport = true,
966 .samplerAnisotropy = true,
967 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
968 pdevice->info.is_baytrail,
969 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
970 .textureCompressionBC = true,
971 .occlusionQueryPrecise = true,
972 .pipelineStatisticsQuery = true,
973 .fragmentStoresAndAtomics = true,
974 .shaderTessellationAndGeometryPointSize = true,
975 .shaderImageGatherExtended = true,
976 .shaderStorageImageExtendedFormats = true,
977 .shaderStorageImageMultisample = false,
978 .shaderStorageImageReadWithoutFormat = false,
979 .shaderStorageImageWriteWithoutFormat = true,
980 .shaderUniformBufferArrayDynamicIndexing = true,
981 .shaderSampledImageArrayDynamicIndexing = true,
982 .shaderStorageBufferArrayDynamicIndexing = true,
983 .shaderStorageImageArrayDynamicIndexing = true,
984 .shaderClipDistance = true,
985 .shaderCullDistance = true,
986 .shaderFloat64 = pdevice->info.gen >= 8 &&
987 pdevice->info.has_64bit_types,
988 .shaderInt64 = pdevice->info.gen >= 8 &&
989 pdevice->info.has_64bit_types,
990 .shaderInt16 = pdevice->info.gen >= 8,
991 .shaderResourceMinLod = pdevice->info.gen >= 9,
992 .variableMultisampleRate = true,
993 .inheritedQueries = true,
994 };
995
996 /* We can't do image stores in vec4 shaders */
997 pFeatures->vertexPipelineStoresAndAtomics =
998 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
999 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
1000
1001 struct anv_app_info *app_info = &pdevice->instance->app_info;
1002
1003 /* The new DOOM and Wolfenstein games require depthBounds without
1004 * checking for it. They seem to run fine without it so just claim it's
1005 * there and accept the consequences.
1006 */
1007 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
1008 pFeatures->depthBounds = true;
1009 }
1010
1011 void anv_GetPhysicalDeviceFeatures2(
1012 VkPhysicalDevice physicalDevice,
1013 VkPhysicalDeviceFeatures2* pFeatures)
1014 {
1015 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1016 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1017
1018 vk_foreach_struct(ext, pFeatures->pNext) {
1019 switch (ext->sType) {
1020 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
1021 VkPhysicalDevice8BitStorageFeaturesKHR *features =
1022 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
1023 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
1024 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
1025 features->storagePushConstant8 = pdevice->info.gen >= 8;
1026 break;
1027 }
1028
1029 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1030 VkPhysicalDevice16BitStorageFeatures *features =
1031 (VkPhysicalDevice16BitStorageFeatures *)ext;
1032 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
1033 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
1034 features->storagePushConstant16 = pdevice->info.gen >= 8;
1035 features->storageInputOutput16 = false;
1036 break;
1037 }
1038
1039 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1040 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1041 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1042 features->bufferDeviceAddressCaptureReplay = false;
1043 features->bufferDeviceAddressMultiDevice = false;
1044 break;
1045 }
1046
1047 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1048 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1049 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1050 features->computeDerivativeGroupQuads = true;
1051 features->computeDerivativeGroupLinear = true;
1052 break;
1053 }
1054
1055 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1056 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1057 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1058 features->conditionalRendering = pdevice->info.gen >= 8 ||
1059 pdevice->info.is_haswell;
1060 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1061 pdevice->info.is_haswell;
1062 break;
1063 }
1064
1065 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1066 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1067 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1068 features->depthClipEnable = true;
1069 break;
1070 }
1071
1072 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1073 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1074 features->shaderFloat16 = pdevice->info.gen >= 8;
1075 features->shaderInt8 = pdevice->info.gen >= 8;
1076 break;
1077 }
1078
1079 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1080 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1081 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1082 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1083 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1084 features->fragmentShaderShadingRateInterlock = false;
1085 break;
1086 }
1087
1088 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1089 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1090 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1091 features->hostQueryReset = true;
1092 break;
1093 }
1094
1095 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1096 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1097 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1098 features->shaderInputAttachmentArrayDynamicIndexing = false;
1099 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1100 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1101 features->shaderUniformBufferArrayNonUniformIndexing = false;
1102 features->shaderSampledImageArrayNonUniformIndexing = true;
1103 features->shaderStorageBufferArrayNonUniformIndexing = true;
1104 features->shaderStorageImageArrayNonUniformIndexing = true;
1105 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1106 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1107 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1108 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1109 features->descriptorBindingSampledImageUpdateAfterBind = true;
1110 features->descriptorBindingStorageImageUpdateAfterBind = true;
1111 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1112 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1113 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1114 features->descriptorBindingUpdateUnusedWhilePending = true;
1115 features->descriptorBindingPartiallyBound = true;
1116 features->descriptorBindingVariableDescriptorCount = false;
1117 features->runtimeDescriptorArray = true;
1118 break;
1119 }
1120
1121 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1122 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1123 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1124 features->indexTypeUint8 = true;
1125 break;
1126 }
1127
1128 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1129 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1130 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1131 features->inlineUniformBlock = true;
1132 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1133 break;
1134 }
1135
1136 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1137 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1138 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1139 features->rectangularLines = true;
1140 features->bresenhamLines = true;
1141 features->smoothLines = true;
1142 features->stippledRectangularLines = false;
1143 features->stippledBresenhamLines = true;
1144 features->stippledSmoothLines = false;
1145 break;
1146 }
1147
1148 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1149 VkPhysicalDeviceMultiviewFeatures *features =
1150 (VkPhysicalDeviceMultiviewFeatures *)ext;
1151 features->multiview = true;
1152 features->multiviewGeometryShader = true;
1153 features->multiviewTessellationShader = true;
1154 break;
1155 }
1156
1157 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1158 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1159 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1160 features->imagelessFramebuffer = true;
1161 break;
1162 }
1163
1164 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1165 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1166 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1167 features->pipelineExecutableInfo = true;
1168 break;
1169 }
1170
1171 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1172 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1173 features->protectedMemory = false;
1174 break;
1175 }
1176
1177 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1178 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1179 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1180 features->samplerYcbcrConversion = true;
1181 break;
1182 }
1183
1184 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1185 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1186 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1187 features->scalarBlockLayout = true;
1188 break;
1189 }
1190
1191 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1192 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1193 features->shaderBufferInt64Atomics =
1194 pdevice->info.gen >= 9 && pdevice->use_softpin;
1195 features->shaderSharedInt64Atomics = VK_FALSE;
1196 break;
1197 }
1198
1199 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1200 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1201 features->shaderDemoteToHelperInvocation = true;
1202 break;
1203 }
1204
1205 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1206 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1207 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1208 features->shaderSubgroupClock = true;
1209 features->shaderDeviceClock = false;
1210 break;
1211 }
1212
1213 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1214 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1215 features->shaderDrawParameters = true;
1216 break;
1217 }
1218
1219 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
1220 VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
1221 (VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
1222 features->shaderSubgroupExtendedTypes = true;
1223 break;
1224 }
1225
1226 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1227 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1228 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1229 features->subgroupSizeControl = true;
1230 features->computeFullSubgroups = true;
1231 break;
1232 }
1233
1234 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1235 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1236 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1237 features->texelBufferAlignment = true;
1238 break;
1239 }
1240
1241 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1242 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1243 features->variablePointersStorageBuffer = true;
1244 features->variablePointers = true;
1245 break;
1246 }
1247
1248 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1249 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1250 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1251 features->transformFeedback = true;
1252 features->geometryStreams = true;
1253 break;
1254 }
1255
1256 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1257 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1258 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1259 features->uniformBufferStandardLayout = true;
1260 break;
1261 }
1262
1263 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1264 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1265 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1266 features->vertexAttributeInstanceRateDivisor = true;
1267 features->vertexAttributeInstanceRateZeroDivisor = true;
1268 break;
1269 }
1270
1271 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR: {
1272 VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *features = (void *)ext;
1273 features->vulkanMemoryModel = true;
1274 features->vulkanMemoryModelDeviceScope = true;
1275 features->vulkanMemoryModelAvailabilityVisibilityChains = true;
1276 break;
1277 }
1278
1279 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1280 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1281 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1282 features->ycbcrImageArrays = true;
1283 break;
1284 }
1285
1286 default:
1287 anv_debug_ignored_stype(ext->sType);
1288 break;
1289 }
1290 }
1291 }
1292
1293 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1294
1295 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1296 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1297
1298 void anv_GetPhysicalDeviceProperties(
1299 VkPhysicalDevice physicalDevice,
1300 VkPhysicalDeviceProperties* pProperties)
1301 {
1302 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1303 const struct gen_device_info *devinfo = &pdevice->info;
1304
1305 /* See assertions made when programming the buffer surface state. */
1306 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1307 (1ul << 30) : (1ul << 27);
1308
1309 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1310 const uint32_t max_textures =
1311 pdevice->has_bindless_images ? UINT16_MAX : 128;
1312 const uint32_t max_samplers =
1313 pdevice->has_bindless_samplers ? UINT16_MAX :
1314 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1315 const uint32_t max_images =
1316 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1317
1318 /* If we can use bindless for everything, claim a high per-stage limit,
1319 * otherwise use the binding table size, minus the slots reserved for
1320 * render targets and one slot for the descriptor buffer. */
1321 const uint32_t max_per_stage =
1322 pdevice->has_bindless_images && pdevice->has_a64_buffer_access
1323 ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
1324
1325 const uint32_t max_workgroup_size = 32 * devinfo->max_cs_threads;
1326
1327 VkSampleCountFlags sample_counts =
1328 isl_device_get_sample_counts(&pdevice->isl_dev);
1329
1330
1331 VkPhysicalDeviceLimits limits = {
1332 .maxImageDimension1D = (1 << 14),
1333 .maxImageDimension2D = (1 << 14),
1334 .maxImageDimension3D = (1 << 11),
1335 .maxImageDimensionCube = (1 << 14),
1336 .maxImageArrayLayers = (1 << 11),
1337 .maxTexelBufferElements = 128 * 1024 * 1024,
1338 .maxUniformBufferRange = (1ul << 27),
1339 .maxStorageBufferRange = max_raw_buffer_sz,
1340 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1341 .maxMemoryAllocationCount = UINT32_MAX,
1342 .maxSamplerAllocationCount = 64 * 1024,
1343 .bufferImageGranularity = 64, /* A cache line */
1344 .sparseAddressSpaceSize = 0,
1345 .maxBoundDescriptorSets = MAX_SETS,
1346 .maxPerStageDescriptorSamplers = max_samplers,
1347 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1348 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1349 .maxPerStageDescriptorSampledImages = max_textures,
1350 .maxPerStageDescriptorStorageImages = max_images,
1351 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1352 .maxPerStageResources = max_per_stage,
1353 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1354 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1355 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1356 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1357 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1358 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1359 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1360 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1361 .maxVertexInputAttributes = MAX_VBS,
1362 .maxVertexInputBindings = MAX_VBS,
1363 .maxVertexInputAttributeOffset = 2047,
1364 .maxVertexInputBindingStride = 2048,
1365 .maxVertexOutputComponents = 128,
1366 .maxTessellationGenerationLevel = 64,
1367 .maxTessellationPatchSize = 32,
1368 .maxTessellationControlPerVertexInputComponents = 128,
1369 .maxTessellationControlPerVertexOutputComponents = 128,
1370 .maxTessellationControlPerPatchOutputComponents = 128,
1371 .maxTessellationControlTotalOutputComponents = 2048,
1372 .maxTessellationEvaluationInputComponents = 128,
1373 .maxTessellationEvaluationOutputComponents = 128,
1374 .maxGeometryShaderInvocations = 32,
1375 .maxGeometryInputComponents = 64,
1376 .maxGeometryOutputComponents = 128,
1377 .maxGeometryOutputVertices = 256,
1378 .maxGeometryTotalOutputComponents = 1024,
1379 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1380 .maxFragmentOutputAttachments = 8,
1381 .maxFragmentDualSrcAttachments = 1,
1382 .maxFragmentCombinedOutputResources = 8,
1383 .maxComputeSharedMemorySize = 64 * 1024,
1384 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1385 .maxComputeWorkGroupInvocations = max_workgroup_size,
1386 .maxComputeWorkGroupSize = {
1387 max_workgroup_size,
1388 max_workgroup_size,
1389 max_workgroup_size,
1390 },
1391 .subPixelPrecisionBits = 8,
1392 .subTexelPrecisionBits = 8,
1393 .mipmapPrecisionBits = 8,
1394 .maxDrawIndexedIndexValue = UINT32_MAX,
1395 .maxDrawIndirectCount = UINT32_MAX,
1396 .maxSamplerLodBias = 16,
1397 .maxSamplerAnisotropy = 16,
1398 .maxViewports = MAX_VIEWPORTS,
1399 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1400 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1401 .viewportSubPixelBits = 13, /* We take a float? */
1402 .minMemoryMapAlignment = 4096, /* A page */
1403 /* The dataport requires texel alignment so we need to assume a worst
1404 * case of R32G32B32A32 which is 16 bytes.
1405 */
1406 .minTexelBufferOffsetAlignment = 16,
1407 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1408 .minUniformBufferOffsetAlignment = 32,
1409 .minStorageBufferOffsetAlignment = 4,
1410 .minTexelOffset = -8,
1411 .maxTexelOffset = 7,
1412 .minTexelGatherOffset = -32,
1413 .maxTexelGatherOffset = 31,
1414 .minInterpolationOffset = -0.5,
1415 .maxInterpolationOffset = 0.4375,
1416 .subPixelInterpolationOffsetBits = 4,
1417 .maxFramebufferWidth = (1 << 14),
1418 .maxFramebufferHeight = (1 << 14),
1419 .maxFramebufferLayers = (1 << 11),
1420 .framebufferColorSampleCounts = sample_counts,
1421 .framebufferDepthSampleCounts = sample_counts,
1422 .framebufferStencilSampleCounts = sample_counts,
1423 .framebufferNoAttachmentsSampleCounts = sample_counts,
1424 .maxColorAttachments = MAX_RTS,
1425 .sampledImageColorSampleCounts = sample_counts,
1426 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1427 .sampledImageDepthSampleCounts = sample_counts,
1428 .sampledImageStencilSampleCounts = sample_counts,
1429 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1430 .maxSampleMaskWords = 1,
1431 .timestampComputeAndGraphics = true,
1432 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1433 .maxClipDistances = 8,
1434 .maxCullDistances = 8,
1435 .maxCombinedClipAndCullDistances = 8,
1436 .discreteQueuePriorities = 2,
1437 .pointSizeRange = { 0.125, 255.875 },
1438 .lineWidthRange = {
1439 0.0,
1440 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1441 2047.9921875 : 7.9921875,
1442 },
1443 .pointSizeGranularity = (1.0 / 8.0),
1444 .lineWidthGranularity = (1.0 / 128.0),
1445 .strictLines = false,
1446 .standardSampleLocations = true,
1447 .optimalBufferCopyOffsetAlignment = 128,
1448 .optimalBufferCopyRowPitchAlignment = 128,
1449 .nonCoherentAtomSize = 64,
1450 };
1451
1452 *pProperties = (VkPhysicalDeviceProperties) {
1453 .apiVersion = anv_physical_device_api_version(pdevice),
1454 .driverVersion = vk_get_driver_version(),
1455 .vendorID = 0x8086,
1456 .deviceID = pdevice->chipset_id,
1457 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1458 .limits = limits,
1459 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1460 };
1461
1462 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1463 "%s", pdevice->name);
1464 memcpy(pProperties->pipelineCacheUUID,
1465 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1466 }
1467
1468 void anv_GetPhysicalDeviceProperties2(
1469 VkPhysicalDevice physicalDevice,
1470 VkPhysicalDeviceProperties2* pProperties)
1471 {
1472 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1473
1474 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1475
1476 vk_foreach_struct(ext, pProperties->pNext) {
1477 switch (ext->sType) {
1478 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1479 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1480 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1481
1482 /* We support all of the depth resolve modes */
1483 props->supportedDepthResolveModes =
1484 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1485 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1486 VK_RESOLVE_MODE_MIN_BIT_KHR |
1487 VK_RESOLVE_MODE_MAX_BIT_KHR;
1488
1489 /* Average doesn't make sense for stencil so we don't support that */
1490 props->supportedStencilResolveModes =
1491 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1492 if (pdevice->info.gen >= 8) {
1493 /* The advanced stencil resolve modes currently require stencil
1494 * sampling be supported by the hardware.
1495 */
1496 props->supportedStencilResolveModes |=
1497 VK_RESOLVE_MODE_MIN_BIT_KHR |
1498 VK_RESOLVE_MODE_MAX_BIT_KHR;
1499 }
1500
1501 props->independentResolveNone = true;
1502 props->independentResolve = true;
1503 break;
1504 }
1505
1506 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1507 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1508 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1509
1510 /* It's a bit hard to exactly map our implementation to the limits
1511 * described here. The bindless surface handle in the extended
1512 * message descriptors is 20 bits and it's an index into the table of
1513 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1514 * address. Given that most things consume two surface states per
1515 * view (general/sampled for textures and write-only/read-write for
1516 * images), we claim 2^19 things.
1517 *
1518 * For SSBOs, we just use A64 messages so there is no real limit
1519 * there beyond the limit on the total size of a descriptor set.
1520 */
1521 const unsigned max_bindless_views = 1 << 19;
1522
1523 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1524 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1525 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1526 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1527 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1528 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1529 props->robustBufferAccessUpdateAfterBind = true;
1530 props->quadDivergentImplicitLod = false;
1531 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1532 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1533 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1534 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1535 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1536 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1537 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1538 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1539 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1540 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1541 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1542 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1543 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1544 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1545 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1546 break;
1547 }
1548
1549 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1550 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1551 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1552
1553 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1554 snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1555 "Intel open-source Mesa driver");
1556
1557 snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1558 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1559
1560 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1561 .major = 1,
1562 .minor = 1,
1563 .subminor = 2,
1564 .patch = 0,
1565 };
1566 break;
1567 }
1568
1569 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1570 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1571 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1572 /* Userptr needs page aligned memory. */
1573 props->minImportedHostPointerAlignment = 4096;
1574 break;
1575 }
1576
1577 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1578 VkPhysicalDeviceIDProperties *id_props =
1579 (VkPhysicalDeviceIDProperties *)ext;
1580 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1581 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1582 /* The LUID is for Windows. */
1583 id_props->deviceLUIDValid = false;
1584 break;
1585 }
1586
1587 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1588 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1589 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1590 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1591 props->maxPerStageDescriptorInlineUniformBlocks =
1592 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1593 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1594 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1595 props->maxDescriptorSetInlineUniformBlocks =
1596 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1597 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1598 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1599 break;
1600 }
1601
1602 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1603 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1604 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1605 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1606 * Sampling Rules - Legacy Mode", it says the following:
1607 *
1608 * "Note that the device divides a pixel into a 16x16 array of
1609 * subpixels, referenced by their upper left corners."
1610 *
1611 * This is the only known reference in the PRMs to the subpixel
1612 * precision of line rasterization and a "16x16 array of subpixels"
1613 * implies 4 subpixel precision bits. Empirical testing has shown
1614 * that 4 subpixel precision bits applies to all line rasterization
1615 * types.
1616 */
1617 props->lineSubPixelPrecisionBits = 4;
1618 break;
1619 }
1620
1621 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1622 VkPhysicalDeviceMaintenance3Properties *props =
1623 (VkPhysicalDeviceMaintenance3Properties *)ext;
1624 /* This value doesn't matter for us today as our per-stage
1625 * descriptors are the real limit.
1626 */
1627 props->maxPerSetDescriptors = 1024;
1628 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1629 break;
1630 }
1631
1632 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1633 VkPhysicalDeviceMultiviewProperties *properties =
1634 (VkPhysicalDeviceMultiviewProperties *)ext;
1635 properties->maxMultiviewViewCount = 16;
1636 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1637 break;
1638 }
1639
1640 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1641 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1642 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1643 properties->pciDomain = pdevice->pci_info.domain;
1644 properties->pciBus = pdevice->pci_info.bus;
1645 properties->pciDevice = pdevice->pci_info.device;
1646 properties->pciFunction = pdevice->pci_info.function;
1647 break;
1648 }
1649
1650 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1651 VkPhysicalDevicePointClippingProperties *properties =
1652 (VkPhysicalDevicePointClippingProperties *) ext;
1653 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1654 break;
1655 }
1656
1657 #pragma GCC diagnostic push
1658 #pragma GCC diagnostic ignored "-Wswitch"
1659 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1660 VkPhysicalDevicePresentationPropertiesANDROID *props =
1661 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1662 props->sharedImage = VK_FALSE;
1663 break;
1664 }
1665 #pragma GCC diagnostic pop
1666
1667 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1668 VkPhysicalDeviceProtectedMemoryProperties *props =
1669 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1670 props->protectedNoFault = false;
1671 break;
1672 }
1673
1674 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1675 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1676 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1677
1678 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1679 break;
1680 }
1681
1682 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1683 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1684 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1685 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1686 properties->filterMinmaxSingleComponentFormats = true;
1687 break;
1688 }
1689
1690 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1691 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1692
1693 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1694
1695 VkShaderStageFlags scalar_stages = 0;
1696 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1697 if (pdevice->compiler->scalar_stage[stage])
1698 scalar_stages |= mesa_to_vk_shader_stage(stage);
1699 }
1700 properties->supportedStages = scalar_stages;
1701
1702 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1703 VK_SUBGROUP_FEATURE_VOTE_BIT |
1704 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1705 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1706 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1707 VK_SUBGROUP_FEATURE_QUAD_BIT;
1708 if (pdevice->info.gen >= 8) {
1709 /* TODO: There's no technical reason why these can't be made to
1710 * work on gen7 but they don't at the moment so it's best to leave
1711 * the feature disabled than enabled and broken.
1712 */
1713 properties->supportedOperations |=
1714 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1715 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1716 }
1717 properties->quadOperationsInAllStages = pdevice->info.gen >= 8;
1718 break;
1719 }
1720
1721 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1722 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1723 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1724 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1725 props->minSubgroupSize = 8;
1726 props->maxSubgroupSize = 32;
1727 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1728 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1729 break;
1730 }
1731 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
1732 VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
1733 properties->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1734 properties->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
1735
1736 /* Broadwell does not support HF denorms and there are restrictions
1737 * other gens. According to Kabylake's PRM:
1738 *
1739 * "math - Extended Math Function
1740 * [...]
1741 * Restriction : Half-float denorms are always retained."
1742 */
1743 properties->shaderDenormFlushToZeroFloat16 = false;
1744 properties->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
1745 properties->shaderRoundingModeRTEFloat16 = true;
1746 properties->shaderRoundingModeRTZFloat16 = true;
1747 properties->shaderSignedZeroInfNanPreserveFloat16 = true;
1748
1749 properties->shaderDenormFlushToZeroFloat32 = true;
1750 properties->shaderDenormPreserveFloat32 = true;
1751 properties->shaderRoundingModeRTEFloat32 = true;
1752 properties->shaderRoundingModeRTZFloat32 = true;
1753 properties->shaderSignedZeroInfNanPreserveFloat32 = true;
1754
1755 properties->shaderDenormFlushToZeroFloat64 = true;
1756 properties->shaderDenormPreserveFloat64 = true;
1757 properties->shaderRoundingModeRTEFloat64 = true;
1758 properties->shaderRoundingModeRTZFloat64 = true;
1759 properties->shaderSignedZeroInfNanPreserveFloat64 = true;
1760 break;
1761 }
1762
1763 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1764 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1765 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1766
1767 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1768 * Base Address:
1769 *
1770 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1771 * specifies the base address of the first element of the surface,
1772 * computed in software by adding the surface base address to the
1773 * byte offset of the element in the buffer. The base address must
1774 * be aligned to element size."
1775 *
1776 * The typed dataport messages require that things be texel aligned.
1777 * Otherwise, we may just load/store the wrong data or, in the worst
1778 * case, there may be hangs.
1779 */
1780 props->storageTexelBufferOffsetAlignmentBytes = 16;
1781 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1782
1783 /* The sampler, however, is much more forgiving and it can handle
1784 * arbitrary byte alignment for linear and buffer surfaces. It's
1785 * hard to find a good PRM citation for this but years of empirical
1786 * experience demonstrate that this is true.
1787 */
1788 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1789 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1790 break;
1791 }
1792
1793 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1794 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1795 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1796
1797 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1798 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1799 props->maxTransformFeedbackBufferSize = (1ull << 32);
1800 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1801 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1802 props->maxTransformFeedbackBufferDataStride = 2048;
1803 props->transformFeedbackQueries = true;
1804 props->transformFeedbackStreamsLinesTriangles = false;
1805 props->transformFeedbackRasterizationStreamSelect = false;
1806 props->transformFeedbackDraw = true;
1807 break;
1808 }
1809
1810 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1811 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1812 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1813 /* We have to restrict this a bit for multiview */
1814 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1815 break;
1816 }
1817
1818 default:
1819 anv_debug_ignored_stype(ext->sType);
1820 break;
1821 }
1822 }
1823 }
1824
1825 /* We support exactly one queue family. */
1826 static const VkQueueFamilyProperties
1827 anv_queue_family_properties = {
1828 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1829 VK_QUEUE_COMPUTE_BIT |
1830 VK_QUEUE_TRANSFER_BIT,
1831 .queueCount = 1,
1832 .timestampValidBits = 36, /* XXX: Real value here */
1833 .minImageTransferGranularity = { 1, 1, 1 },
1834 };
1835
1836 void anv_GetPhysicalDeviceQueueFamilyProperties(
1837 VkPhysicalDevice physicalDevice,
1838 uint32_t* pCount,
1839 VkQueueFamilyProperties* pQueueFamilyProperties)
1840 {
1841 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1842
1843 vk_outarray_append(&out, p) {
1844 *p = anv_queue_family_properties;
1845 }
1846 }
1847
1848 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1849 VkPhysicalDevice physicalDevice,
1850 uint32_t* pQueueFamilyPropertyCount,
1851 VkQueueFamilyProperties2* pQueueFamilyProperties)
1852 {
1853
1854 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1855
1856 vk_outarray_append(&out, p) {
1857 p->queueFamilyProperties = anv_queue_family_properties;
1858
1859 vk_foreach_struct(s, p->pNext) {
1860 anv_debug_ignored_stype(s->sType);
1861 }
1862 }
1863 }
1864
1865 void anv_GetPhysicalDeviceMemoryProperties(
1866 VkPhysicalDevice physicalDevice,
1867 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1868 {
1869 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1870
1871 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1872 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1873 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1874 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1875 .heapIndex = physical_device->memory.types[i].heapIndex,
1876 };
1877 }
1878
1879 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1880 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1881 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1882 .size = physical_device->memory.heaps[i].size,
1883 .flags = physical_device->memory.heaps[i].flags,
1884 };
1885 }
1886 }
1887
1888 static void
1889 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1890 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1891 {
1892 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1893 uint64_t sys_available = get_available_system_memory();
1894 assert(sys_available > 0);
1895
1896 VkDeviceSize total_heaps_size = 0;
1897 for (size_t i = 0; i < device->memory.heap_count; i++)
1898 total_heaps_size += device->memory.heaps[i].size;
1899
1900 for (size_t i = 0; i < device->memory.heap_count; i++) {
1901 VkDeviceSize heap_size = device->memory.heaps[i].size;
1902 VkDeviceSize heap_used = device->memory.heaps[i].used;
1903 VkDeviceSize heap_budget;
1904
1905 double heap_proportion = (double) heap_size / total_heaps_size;
1906 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1907
1908 /*
1909 * Let's not incite the app to starve the system: report at most 90% of
1910 * available system memory.
1911 */
1912 uint64_t heap_available = sys_available_prop * 9 / 10;
1913 heap_budget = MIN2(heap_size, heap_used + heap_available);
1914
1915 /*
1916 * Round down to the nearest MB
1917 */
1918 heap_budget &= ~((1ull << 20) - 1);
1919
1920 /*
1921 * The heapBudget value must be non-zero for array elements less than
1922 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1923 * value must be less than or equal to VkMemoryHeap::size for each heap.
1924 */
1925 assert(0 < heap_budget && heap_budget <= heap_size);
1926
1927 memoryBudget->heapUsage[i] = heap_used;
1928 memoryBudget->heapBudget[i] = heap_budget;
1929 }
1930
1931 /* The heapBudget and heapUsage values must be zero for array elements
1932 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1933 */
1934 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1935 memoryBudget->heapBudget[i] = 0;
1936 memoryBudget->heapUsage[i] = 0;
1937 }
1938 }
1939
1940 void anv_GetPhysicalDeviceMemoryProperties2(
1941 VkPhysicalDevice physicalDevice,
1942 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1943 {
1944 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1945 &pMemoryProperties->memoryProperties);
1946
1947 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1948 switch (ext->sType) {
1949 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1950 anv_get_memory_budget(physicalDevice, (void*)ext);
1951 break;
1952 default:
1953 anv_debug_ignored_stype(ext->sType);
1954 break;
1955 }
1956 }
1957 }
1958
1959 void
1960 anv_GetDeviceGroupPeerMemoryFeatures(
1961 VkDevice device,
1962 uint32_t heapIndex,
1963 uint32_t localDeviceIndex,
1964 uint32_t remoteDeviceIndex,
1965 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1966 {
1967 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1968 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1969 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1970 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1971 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1972 }
1973
1974 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1975 VkInstance _instance,
1976 const char* pName)
1977 {
1978 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1979
1980 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1981 * when we have to return valid function pointers, NULL, or it's left
1982 * undefined. See the table for exact details.
1983 */
1984 if (pName == NULL)
1985 return NULL;
1986
1987 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1988 if (strcmp(pName, "vk" #entrypoint) == 0) \
1989 return (PFN_vkVoidFunction)anv_##entrypoint
1990
1991 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1992 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1993 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1994 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1995
1996 #undef LOOKUP_ANV_ENTRYPOINT
1997
1998 if (instance == NULL)
1999 return NULL;
2000
2001 int idx = anv_get_instance_entrypoint_index(pName);
2002 if (idx >= 0)
2003 return instance->dispatch.entrypoints[idx];
2004
2005 idx = anv_get_physical_device_entrypoint_index(pName);
2006 if (idx >= 0)
2007 return instance->physicalDevice.dispatch.entrypoints[idx];
2008
2009 idx = anv_get_device_entrypoint_index(pName);
2010 if (idx >= 0)
2011 return instance->device_dispatch.entrypoints[idx];
2012
2013 return NULL;
2014 }
2015
2016 /* With version 1+ of the loader interface the ICD should expose
2017 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
2018 */
2019 PUBLIC
2020 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2021 VkInstance instance,
2022 const char* pName);
2023
2024 PUBLIC
2025 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2026 VkInstance instance,
2027 const char* pName)
2028 {
2029 return anv_GetInstanceProcAddr(instance, pName);
2030 }
2031
2032 PFN_vkVoidFunction anv_GetDeviceProcAddr(
2033 VkDevice _device,
2034 const char* pName)
2035 {
2036 ANV_FROM_HANDLE(anv_device, device, _device);
2037
2038 if (!device || !pName)
2039 return NULL;
2040
2041 int idx = anv_get_device_entrypoint_index(pName);
2042 if (idx < 0)
2043 return NULL;
2044
2045 return device->dispatch.entrypoints[idx];
2046 }
2047
2048 /* With version 4+ of the loader interface the ICD should expose
2049 * vk_icdGetPhysicalDeviceProcAddr()
2050 */
2051 PUBLIC
2052 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
2053 VkInstance _instance,
2054 const char* pName);
2055
2056 PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
2057 VkInstance _instance,
2058 const char* pName)
2059 {
2060 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2061
2062 if (!pName || !instance)
2063 return NULL;
2064
2065 int idx = anv_get_physical_device_entrypoint_index(pName);
2066 if (idx < 0)
2067 return NULL;
2068
2069 return instance->physicalDevice.dispatch.entrypoints[idx];
2070 }
2071
2072
2073 VkResult
2074 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
2075 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
2076 const VkAllocationCallbacks* pAllocator,
2077 VkDebugReportCallbackEXT* pCallback)
2078 {
2079 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2080 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2081 pCreateInfo, pAllocator, &instance->alloc,
2082 pCallback);
2083 }
2084
2085 void
2086 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
2087 VkDebugReportCallbackEXT _callback,
2088 const VkAllocationCallbacks* pAllocator)
2089 {
2090 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2091 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2092 _callback, pAllocator, &instance->alloc);
2093 }
2094
2095 void
2096 anv_DebugReportMessageEXT(VkInstance _instance,
2097 VkDebugReportFlagsEXT flags,
2098 VkDebugReportObjectTypeEXT objectType,
2099 uint64_t object,
2100 size_t location,
2101 int32_t messageCode,
2102 const char* pLayerPrefix,
2103 const char* pMessage)
2104 {
2105 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2106 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2107 object, location, messageCode, pLayerPrefix, pMessage);
2108 }
2109
2110 static void
2111 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
2112 {
2113 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2114 queue->device = device;
2115 queue->flags = 0;
2116 }
2117
2118 static void
2119 anv_queue_finish(struct anv_queue *queue)
2120 {
2121 }
2122
2123 static struct anv_state
2124 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2125 {
2126 struct anv_state state;
2127
2128 state = anv_state_pool_alloc(pool, size, align);
2129 memcpy(state.map, p, size);
2130
2131 return state;
2132 }
2133
2134 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
2135 * straightforward 32-bit float color in the first 64 bytes. Instead of using
2136 * a nice float/integer union like Gen8+, Haswell specifies the integer border
2137 * color as a separate entry /after/ the float color. The layout of this entry
2138 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
2139 *
2140 * Since we don't know the format/bpp, we can't make any of the border colors
2141 * containing '1' work for all formats, as it would be in the wrong place for
2142 * some of them. We opt to make 32-bit integers work as this seems like the
2143 * most common option. Fortunately, transparent black works regardless, as
2144 * all zeroes is the same in every bit-size.
2145 */
2146 struct hsw_border_color {
2147 float float32[4];
2148 uint32_t _pad0[12];
2149 uint32_t uint32[4];
2150 uint32_t _pad1[108];
2151 };
2152
2153 struct gen8_border_color {
2154 union {
2155 float float32[4];
2156 uint32_t uint32[4];
2157 };
2158 /* Pad out to 64 bytes */
2159 uint32_t _pad[12];
2160 };
2161
2162 static void
2163 anv_device_init_border_colors(struct anv_device *device)
2164 {
2165 if (device->info.is_haswell) {
2166 static const struct hsw_border_color border_colors[] = {
2167 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2168 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2169 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2170 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2171 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2172 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2173 };
2174
2175 device->border_colors =
2176 anv_state_pool_emit_data(&device->dynamic_state_pool,
2177 sizeof(border_colors), 512, border_colors);
2178 } else {
2179 static const struct gen8_border_color border_colors[] = {
2180 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2181 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2182 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2183 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2184 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2185 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2186 };
2187
2188 device->border_colors =
2189 anv_state_pool_emit_data(&device->dynamic_state_pool,
2190 sizeof(border_colors), 64, border_colors);
2191 }
2192 }
2193
2194 static void
2195 anv_device_init_trivial_batch(struct anv_device *device)
2196 {
2197 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
2198
2199 if (device->instance->physicalDevice.has_exec_async)
2200 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
2201
2202 if (device->instance->physicalDevice.use_softpin)
2203 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
2204
2205 anv_vma_alloc(device, &device->trivial_batch_bo);
2206
2207 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
2208 0, 4096, 0);
2209
2210 struct anv_batch batch = {
2211 .start = map,
2212 .next = map,
2213 .end = map + 4096,
2214 };
2215
2216 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2217 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2218
2219 if (!device->info.has_llc)
2220 gen_clflush_range(map, batch.next - map);
2221
2222 anv_gem_munmap(map, device->trivial_batch_bo.size);
2223 }
2224
2225 VkResult anv_EnumerateDeviceExtensionProperties(
2226 VkPhysicalDevice physicalDevice,
2227 const char* pLayerName,
2228 uint32_t* pPropertyCount,
2229 VkExtensionProperties* pProperties)
2230 {
2231 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2232 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2233
2234 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2235 if (device->supported_extensions.extensions[i]) {
2236 vk_outarray_append(&out, prop) {
2237 *prop = anv_device_extensions[i];
2238 }
2239 }
2240 }
2241
2242 return vk_outarray_status(&out);
2243 }
2244
2245 static void
2246 anv_device_init_dispatch(struct anv_device *device)
2247 {
2248 const struct anv_device_dispatch_table *genX_table;
2249 switch (device->info.gen) {
2250 case 12:
2251 genX_table = &gen12_device_dispatch_table;
2252 break;
2253 case 11:
2254 genX_table = &gen11_device_dispatch_table;
2255 break;
2256 case 10:
2257 genX_table = &gen10_device_dispatch_table;
2258 break;
2259 case 9:
2260 genX_table = &gen9_device_dispatch_table;
2261 break;
2262 case 8:
2263 genX_table = &gen8_device_dispatch_table;
2264 break;
2265 case 7:
2266 if (device->info.is_haswell)
2267 genX_table = &gen75_device_dispatch_table;
2268 else
2269 genX_table = &gen7_device_dispatch_table;
2270 break;
2271 default:
2272 unreachable("unsupported gen\n");
2273 }
2274
2275 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2276 /* Vulkan requires that entrypoints for extensions which have not been
2277 * enabled must not be advertised.
2278 */
2279 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
2280 &device->instance->enabled_extensions,
2281 &device->enabled_extensions)) {
2282 device->dispatch.entrypoints[i] = NULL;
2283 } else if (genX_table->entrypoints[i]) {
2284 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2285 } else {
2286 device->dispatch.entrypoints[i] =
2287 anv_device_dispatch_table.entrypoints[i];
2288 }
2289 }
2290 }
2291
2292 static int
2293 vk_priority_to_gen(int priority)
2294 {
2295 switch (priority) {
2296 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2297 return GEN_CONTEXT_LOW_PRIORITY;
2298 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2299 return GEN_CONTEXT_MEDIUM_PRIORITY;
2300 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2301 return GEN_CONTEXT_HIGH_PRIORITY;
2302 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2303 return GEN_CONTEXT_REALTIME_PRIORITY;
2304 default:
2305 unreachable("Invalid priority");
2306 }
2307 }
2308
2309 static void
2310 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2311 {
2312 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
2313
2314 if (device->instance->physicalDevice.has_exec_async)
2315 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
2316
2317 if (device->instance->physicalDevice.use_softpin)
2318 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
2319
2320 anv_vma_alloc(device, &device->hiz_clear_bo);
2321
2322 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
2323 0, 4096, 0);
2324
2325 union isl_color_value hiz_clear = { .u32 = { 0, } };
2326 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2327
2328 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
2329 anv_gem_munmap(map, device->hiz_clear_bo.size);
2330 }
2331
2332 static bool
2333 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2334 struct anv_block_pool *pool,
2335 uint64_t address)
2336 {
2337 anv_block_pool_foreach_bo(bo, pool) {
2338 uint64_t bo_address = gen_48b_address(bo->offset);
2339 if (address >= bo_address && address < (bo_address + bo->size)) {
2340 *ret = (struct gen_batch_decode_bo) {
2341 .addr = bo_address,
2342 .size = bo->size,
2343 .map = bo->map,
2344 };
2345 return true;
2346 }
2347 }
2348 return false;
2349 }
2350
2351 /* Finding a buffer for batch decoding */
2352 static struct gen_batch_decode_bo
2353 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2354 {
2355 struct anv_device *device = v_batch;
2356 struct gen_batch_decode_bo ret_bo = {};
2357
2358 assert(ppgtt);
2359
2360 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2361 return ret_bo;
2362 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2363 return ret_bo;
2364 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2365 return ret_bo;
2366 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2367 return ret_bo;
2368
2369 if (!device->cmd_buffer_being_decoded)
2370 return (struct gen_batch_decode_bo) { };
2371
2372 struct anv_batch_bo **bo;
2373
2374 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2375 /* The decoder zeroes out the top 16 bits, so we need to as well */
2376 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
2377
2378 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
2379 return (struct gen_batch_decode_bo) {
2380 .addr = bo_address,
2381 .size = (*bo)->bo.size,
2382 .map = (*bo)->bo.map,
2383 };
2384 }
2385 }
2386
2387 return (struct gen_batch_decode_bo) { };
2388 }
2389
2390 struct gen_aux_map_buffer {
2391 struct gen_buffer base;
2392 struct anv_state state;
2393 };
2394
2395 static struct gen_buffer *
2396 gen_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
2397 {
2398 struct gen_aux_map_buffer *buf = malloc(sizeof(struct gen_aux_map_buffer));
2399 if (!buf)
2400 return NULL;
2401
2402 struct anv_device *device = (struct anv_device*)driver_ctx;
2403 assert(device->instance->physicalDevice.supports_48bit_addresses &&
2404 device->instance->physicalDevice.use_softpin);
2405
2406 struct anv_state_pool *pool = &device->dynamic_state_pool;
2407 buf->state = anv_state_pool_alloc(pool, size, size);
2408
2409 buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset;
2410 buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size;
2411 buf->base.map = buf->state.map;
2412 buf->base.driver_bo = &buf->state;
2413 return &buf->base;
2414 }
2415
2416 static void
2417 gen_aux_map_buffer_free(void *driver_ctx, struct gen_buffer *buffer)
2418 {
2419 struct gen_aux_map_buffer *buf = (struct gen_aux_map_buffer*)buffer;
2420 struct anv_device *device = (struct anv_device*)driver_ctx;
2421 struct anv_state_pool *pool = &device->dynamic_state_pool;
2422 anv_state_pool_free(pool, buf->state);
2423 free(buf);
2424 }
2425
2426 static struct gen_mapped_pinned_buffer_alloc aux_map_allocator = {
2427 .alloc = gen_aux_map_buffer_alloc,
2428 .free = gen_aux_map_buffer_free,
2429 };
2430
2431 VkResult anv_CreateDevice(
2432 VkPhysicalDevice physicalDevice,
2433 const VkDeviceCreateInfo* pCreateInfo,
2434 const VkAllocationCallbacks* pAllocator,
2435 VkDevice* pDevice)
2436 {
2437 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2438 VkResult result;
2439 struct anv_device *device;
2440
2441 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2442
2443 struct anv_device_extension_table enabled_extensions = { };
2444 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2445 int idx;
2446 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2447 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2448 anv_device_extensions[idx].extensionName) == 0)
2449 break;
2450 }
2451
2452 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2453 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2454
2455 if (!physical_device->supported_extensions.extensions[idx])
2456 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2457
2458 enabled_extensions.extensions[idx] = true;
2459 }
2460
2461 /* Check enabled features */
2462 if (pCreateInfo->pEnabledFeatures) {
2463 VkPhysicalDeviceFeatures supported_features;
2464 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2465 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2466 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2467 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2468 for (uint32_t i = 0; i < num_features; i++) {
2469 if (enabled_feature[i] && !supported_feature[i])
2470 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2471 }
2472 }
2473
2474 /* Check requested queues and fail if we are requested to create any
2475 * queues with flags we don't support.
2476 */
2477 assert(pCreateInfo->queueCreateInfoCount > 0);
2478 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2479 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2480 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2481 }
2482
2483 /* Check if client specified queue priority. */
2484 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2485 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2486 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2487
2488 VkQueueGlobalPriorityEXT priority =
2489 queue_priority ? queue_priority->globalPriority :
2490 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2491
2492 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2493 sizeof(*device), 8,
2494 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2495 if (!device)
2496 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2497
2498 if (INTEL_DEBUG & DEBUG_BATCH) {
2499 const unsigned decode_flags =
2500 GEN_BATCH_DECODE_FULL |
2501 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2502 GEN_BATCH_DECODE_OFFSETS |
2503 GEN_BATCH_DECODE_FLOATS;
2504
2505 gen_batch_decode_ctx_init(&device->decoder_ctx,
2506 &physical_device->info,
2507 stderr, decode_flags, NULL,
2508 decode_get_bo, NULL, device);
2509 }
2510
2511 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2512 device->instance = physical_device->instance;
2513 device->chipset_id = physical_device->chipset_id;
2514 device->no_hw = physical_device->no_hw;
2515 device->_lost = false;
2516
2517 if (pAllocator)
2518 device->alloc = *pAllocator;
2519 else
2520 device->alloc = physical_device->instance->alloc;
2521
2522 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2523 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2524 if (device->fd == -1) {
2525 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2526 goto fail_device;
2527 }
2528
2529 device->context_id = anv_gem_create_context(device);
2530 if (device->context_id == -1) {
2531 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2532 goto fail_fd;
2533 }
2534
2535 if (physical_device->use_softpin) {
2536 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2537 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2538 goto fail_context_id;
2539 }
2540
2541 /* keep the page with address zero out of the allocator */
2542 struct anv_memory_heap *low_heap =
2543 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2544 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2545 device->vma_lo_available = low_heap->size;
2546
2547 struct anv_memory_heap *high_heap =
2548 &physical_device->memory.heaps[0];
2549 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2550 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2551 high_heap->size;
2552 }
2553
2554 list_inithead(&device->memory_objects);
2555
2556 /* As per spec, the driver implementation may deny requests to acquire
2557 * a priority above the default priority (MEDIUM) if the caller does not
2558 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2559 * is returned.
2560 */
2561 if (physical_device->has_context_priority) {
2562 int err = anv_gem_set_context_param(device->fd, device->context_id,
2563 I915_CONTEXT_PARAM_PRIORITY,
2564 vk_priority_to_gen(priority));
2565 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2566 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2567 goto fail_vmas;
2568 }
2569 }
2570
2571 device->info = physical_device->info;
2572 device->isl_dev = physical_device->isl_dev;
2573
2574 /* On Broadwell and later, we can use batch chaining to more efficiently
2575 * implement growing command buffers. Prior to Haswell, the kernel
2576 * command parser gets in the way and we have to fall back to growing
2577 * the batch.
2578 */
2579 device->can_chain_batches = device->info.gen >= 8;
2580
2581 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2582 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2583 device->enabled_extensions = enabled_extensions;
2584
2585 anv_device_init_dispatch(device);
2586
2587 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2588 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2589 goto fail_context_id;
2590 }
2591
2592 pthread_condattr_t condattr;
2593 if (pthread_condattr_init(&condattr) != 0) {
2594 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2595 goto fail_mutex;
2596 }
2597 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2598 pthread_condattr_destroy(&condattr);
2599 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2600 goto fail_mutex;
2601 }
2602 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2603 pthread_condattr_destroy(&condattr);
2604 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2605 goto fail_mutex;
2606 }
2607 pthread_condattr_destroy(&condattr);
2608
2609 uint64_t bo_flags =
2610 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2611 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2612 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2613 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2614
2615 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2616
2617 result = anv_bo_cache_init(&device->bo_cache);
2618 if (result != VK_SUCCESS)
2619 goto fail_batch_bo_pool;
2620
2621 /* For state pool BOs we have to be a bit careful about where we place them
2622 * in the GTT. There are two documented workarounds for state base address
2623 * placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset
2624 * which state that those two base addresses do not support 48-bit
2625 * addresses and need to be placed in the bottom 32-bit range.
2626 * Unfortunately, this is not quite accurate.
2627 *
2628 * The real problem is that we always set the size of our state pools in
2629 * STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most
2630 * likely significantly smaller. We do this because we do not no at the
2631 * time we emit STATE_BASE_ADDRESS whether or not we will need to expand
2632 * the pool during command buffer building so we don't actually have a
2633 * valid final size. If the address + size, as seen by STATE_BASE_ADDRESS
2634 * overflows 48 bits, the GPU appears to treat all accesses to the buffer
2635 * as being out of bounds and returns zero. For dynamic state, this
2636 * usually just leads to rendering corruptions, but shaders that are all
2637 * zero hang the GPU immediately.
2638 *
2639 * The easiest solution to do is exactly what the bogus workarounds say to
2640 * do: restrict these buffers to 32-bit addresses. We could also pin the
2641 * BO to some particular location of our choosing, but that's significantly
2642 * more work than just not setting a flag. So, we explicitly DO NOT set
2643 * the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the
2644 * hard work for us.
2645 */
2646 if (!physical_device->use_softpin)
2647 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2648
2649 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2650 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2651 16384,
2652 bo_flags);
2653 if (result != VK_SUCCESS)
2654 goto fail_bo_cache;
2655
2656 result = anv_state_pool_init(&device->instruction_state_pool, device,
2657 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2658 16384,
2659 bo_flags);
2660 if (result != VK_SUCCESS)
2661 goto fail_dynamic_state_pool;
2662
2663 result = anv_state_pool_init(&device->surface_state_pool, device,
2664 SURFACE_STATE_POOL_MIN_ADDRESS,
2665 4096,
2666 bo_flags);
2667 if (result != VK_SUCCESS)
2668 goto fail_instruction_state_pool;
2669
2670 if (physical_device->use_softpin) {
2671 result = anv_state_pool_init(&device->binding_table_pool, device,
2672 BINDING_TABLE_POOL_MIN_ADDRESS,
2673 4096,
2674 bo_flags);
2675 if (result != VK_SUCCESS)
2676 goto fail_surface_state_pool;
2677 }
2678
2679 if (device->info.gen >= 12) {
2680 device->aux_map_ctx = gen_aux_map_init(device, &aux_map_allocator,
2681 &physical_device->info);
2682 if (!device->aux_map_ctx)
2683 goto fail_binding_table_pool;
2684 }
2685
2686 result = anv_bo_init_new(&device->workaround_bo, device, 4096);
2687 if (result != VK_SUCCESS)
2688 goto fail_surface_aux_map_pool;
2689
2690 if (physical_device->use_softpin)
2691 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2692
2693 if (!anv_vma_alloc(device, &device->workaround_bo))
2694 goto fail_workaround_bo;
2695
2696 anv_device_init_trivial_batch(device);
2697
2698 if (device->info.gen >= 10)
2699 anv_device_init_hiz_clear_value_bo(device);
2700
2701 anv_scratch_pool_init(device, &device->scratch_pool);
2702
2703 anv_queue_init(device, &device->queue);
2704
2705 switch (device->info.gen) {
2706 case 7:
2707 if (!device->info.is_haswell)
2708 result = gen7_init_device_state(device);
2709 else
2710 result = gen75_init_device_state(device);
2711 break;
2712 case 8:
2713 result = gen8_init_device_state(device);
2714 break;
2715 case 9:
2716 result = gen9_init_device_state(device);
2717 break;
2718 case 10:
2719 result = gen10_init_device_state(device);
2720 break;
2721 case 11:
2722 result = gen11_init_device_state(device);
2723 break;
2724 case 12:
2725 result = gen12_init_device_state(device);
2726 break;
2727 default:
2728 /* Shouldn't get here as we don't create physical devices for any other
2729 * gens. */
2730 unreachable("unhandled gen");
2731 }
2732 if (result != VK_SUCCESS)
2733 goto fail_workaround_bo;
2734
2735 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2736
2737 anv_device_init_blorp(device);
2738
2739 anv_device_init_border_colors(device);
2740
2741 anv_device_perf_init(device);
2742
2743 *pDevice = anv_device_to_handle(device);
2744
2745 return VK_SUCCESS;
2746
2747 fail_workaround_bo:
2748 anv_queue_finish(&device->queue);
2749 anv_scratch_pool_finish(device, &device->scratch_pool);
2750 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2751 anv_gem_close(device, device->workaround_bo.gem_handle);
2752 fail_surface_aux_map_pool:
2753 if (device->info.gen >= 12) {
2754 gen_aux_map_finish(device->aux_map_ctx);
2755 device->aux_map_ctx = NULL;
2756 }
2757 fail_binding_table_pool:
2758 if (physical_device->use_softpin)
2759 anv_state_pool_finish(&device->binding_table_pool);
2760 fail_surface_state_pool:
2761 anv_state_pool_finish(&device->surface_state_pool);
2762 fail_instruction_state_pool:
2763 anv_state_pool_finish(&device->instruction_state_pool);
2764 fail_dynamic_state_pool:
2765 anv_state_pool_finish(&device->dynamic_state_pool);
2766 fail_bo_cache:
2767 anv_bo_cache_finish(&device->bo_cache);
2768 fail_batch_bo_pool:
2769 anv_bo_pool_finish(&device->batch_bo_pool);
2770 pthread_cond_destroy(&device->queue_submit);
2771 fail_mutex:
2772 pthread_mutex_destroy(&device->mutex);
2773 fail_vmas:
2774 if (physical_device->use_softpin) {
2775 util_vma_heap_finish(&device->vma_hi);
2776 util_vma_heap_finish(&device->vma_lo);
2777 }
2778 fail_context_id:
2779 anv_gem_destroy_context(device, device->context_id);
2780 fail_fd:
2781 close(device->fd);
2782 fail_device:
2783 vk_free(&device->alloc, device);
2784
2785 return result;
2786 }
2787
2788 void anv_DestroyDevice(
2789 VkDevice _device,
2790 const VkAllocationCallbacks* pAllocator)
2791 {
2792 ANV_FROM_HANDLE(anv_device, device, _device);
2793 struct anv_physical_device *physical_device;
2794
2795 if (!device)
2796 return;
2797
2798 physical_device = &device->instance->physicalDevice;
2799
2800 anv_device_finish_blorp(device);
2801
2802 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2803
2804 anv_queue_finish(&device->queue);
2805
2806 #ifdef HAVE_VALGRIND
2807 /* We only need to free these to prevent valgrind errors. The backing
2808 * BO will go away in a couple of lines so we don't actually leak.
2809 */
2810 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2811 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
2812 #endif
2813
2814 anv_scratch_pool_finish(device, &device->scratch_pool);
2815
2816 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2817 anv_vma_free(device, &device->workaround_bo);
2818 anv_gem_close(device, device->workaround_bo.gem_handle);
2819
2820 anv_vma_free(device, &device->trivial_batch_bo);
2821 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2822 if (device->info.gen >= 10)
2823 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2824
2825 if (device->info.gen >= 12) {
2826 gen_aux_map_finish(device->aux_map_ctx);
2827 device->aux_map_ctx = NULL;
2828 }
2829
2830 if (physical_device->use_softpin)
2831 anv_state_pool_finish(&device->binding_table_pool);
2832 anv_state_pool_finish(&device->surface_state_pool);
2833 anv_state_pool_finish(&device->instruction_state_pool);
2834 anv_state_pool_finish(&device->dynamic_state_pool);
2835
2836 anv_bo_cache_finish(&device->bo_cache);
2837
2838 anv_bo_pool_finish(&device->batch_bo_pool);
2839
2840 if (physical_device->use_softpin) {
2841 util_vma_heap_finish(&device->vma_hi);
2842 util_vma_heap_finish(&device->vma_lo);
2843 }
2844
2845 pthread_cond_destroy(&device->queue_submit);
2846 pthread_mutex_destroy(&device->mutex);
2847
2848 anv_gem_destroy_context(device, device->context_id);
2849
2850 if (INTEL_DEBUG & DEBUG_BATCH)
2851 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2852
2853 close(device->fd);
2854
2855 vk_free(&device->alloc, device);
2856 }
2857
2858 VkResult anv_EnumerateInstanceLayerProperties(
2859 uint32_t* pPropertyCount,
2860 VkLayerProperties* pProperties)
2861 {
2862 if (pProperties == NULL) {
2863 *pPropertyCount = 0;
2864 return VK_SUCCESS;
2865 }
2866
2867 /* None supported at this time */
2868 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2869 }
2870
2871 VkResult anv_EnumerateDeviceLayerProperties(
2872 VkPhysicalDevice physicalDevice,
2873 uint32_t* pPropertyCount,
2874 VkLayerProperties* pProperties)
2875 {
2876 if (pProperties == NULL) {
2877 *pPropertyCount = 0;
2878 return VK_SUCCESS;
2879 }
2880
2881 /* None supported at this time */
2882 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2883 }
2884
2885 void anv_GetDeviceQueue(
2886 VkDevice _device,
2887 uint32_t queueNodeIndex,
2888 uint32_t queueIndex,
2889 VkQueue* pQueue)
2890 {
2891 ANV_FROM_HANDLE(anv_device, device, _device);
2892
2893 assert(queueIndex == 0);
2894
2895 *pQueue = anv_queue_to_handle(&device->queue);
2896 }
2897
2898 void anv_GetDeviceQueue2(
2899 VkDevice _device,
2900 const VkDeviceQueueInfo2* pQueueInfo,
2901 VkQueue* pQueue)
2902 {
2903 ANV_FROM_HANDLE(anv_device, device, _device);
2904
2905 assert(pQueueInfo->queueIndex == 0);
2906
2907 if (pQueueInfo->flags == device->queue.flags)
2908 *pQueue = anv_queue_to_handle(&device->queue);
2909 else
2910 *pQueue = NULL;
2911 }
2912
2913 VkResult
2914 _anv_device_set_lost(struct anv_device *device,
2915 const char *file, int line,
2916 const char *msg, ...)
2917 {
2918 VkResult err;
2919 va_list ap;
2920
2921 device->_lost = true;
2922
2923 va_start(ap, msg);
2924 err = __vk_errorv(device->instance, device,
2925 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2926 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2927 va_end(ap);
2928
2929 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2930 abort();
2931
2932 return err;
2933 }
2934
2935 VkResult
2936 anv_device_query_status(struct anv_device *device)
2937 {
2938 /* This isn't likely as most of the callers of this function already check
2939 * for it. However, it doesn't hurt to check and it potentially lets us
2940 * avoid an ioctl.
2941 */
2942 if (anv_device_is_lost(device))
2943 return VK_ERROR_DEVICE_LOST;
2944
2945 uint32_t active, pending;
2946 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2947 if (ret == -1) {
2948 /* We don't know the real error. */
2949 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2950 }
2951
2952 if (active) {
2953 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2954 } else if (pending) {
2955 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2956 }
2957
2958 return VK_SUCCESS;
2959 }
2960
2961 VkResult
2962 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2963 {
2964 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2965 * Other usages of the BO (such as on different hardware) will not be
2966 * flagged as "busy" by this ioctl. Use with care.
2967 */
2968 int ret = anv_gem_busy(device, bo->gem_handle);
2969 if (ret == 1) {
2970 return VK_NOT_READY;
2971 } else if (ret == -1) {
2972 /* We don't know the real error. */
2973 return anv_device_set_lost(device, "gem wait failed: %m");
2974 }
2975
2976 /* Query for device status after the busy call. If the BO we're checking
2977 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2978 * client because it clearly doesn't have valid data. Yes, this most
2979 * likely means an ioctl, but we just did an ioctl to query the busy status
2980 * so it's no great loss.
2981 */
2982 return anv_device_query_status(device);
2983 }
2984
2985 VkResult
2986 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2987 int64_t timeout)
2988 {
2989 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2990 if (ret == -1 && errno == ETIME) {
2991 return VK_TIMEOUT;
2992 } else if (ret == -1) {
2993 /* We don't know the real error. */
2994 return anv_device_set_lost(device, "gem wait failed: %m");
2995 }
2996
2997 /* Query for device status after the wait. If the BO we're waiting on got
2998 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2999 * because it clearly doesn't have valid data. Yes, this most likely means
3000 * an ioctl, but we just did an ioctl to wait so it's no great loss.
3001 */
3002 return anv_device_query_status(device);
3003 }
3004
3005 VkResult anv_DeviceWaitIdle(
3006 VkDevice _device)
3007 {
3008 ANV_FROM_HANDLE(anv_device, device, _device);
3009 if (anv_device_is_lost(device))
3010 return VK_ERROR_DEVICE_LOST;
3011
3012 struct anv_batch batch;
3013
3014 uint32_t cmds[8];
3015 batch.start = batch.next = cmds;
3016 batch.end = (void *) cmds + sizeof(cmds);
3017
3018 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
3019 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
3020
3021 return anv_device_submit_simple_batch(device, &batch);
3022 }
3023
3024 bool
3025 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
3026 {
3027 if (!(bo->flags & EXEC_OBJECT_PINNED))
3028 return true;
3029
3030 pthread_mutex_lock(&device->vma_mutex);
3031
3032 bo->offset = 0;
3033
3034 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
3035 device->vma_hi_available >= bo->size) {
3036 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
3037 if (addr) {
3038 bo->offset = gen_canonical_address(addr);
3039 assert(addr == gen_48b_address(bo->offset));
3040 device->vma_hi_available -= bo->size;
3041 }
3042 }
3043
3044 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
3045 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
3046 if (addr) {
3047 bo->offset = gen_canonical_address(addr);
3048 assert(addr == gen_48b_address(bo->offset));
3049 device->vma_lo_available -= bo->size;
3050 }
3051 }
3052
3053 pthread_mutex_unlock(&device->vma_mutex);
3054
3055 return bo->offset != 0;
3056 }
3057
3058 void
3059 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
3060 {
3061 if (!(bo->flags & EXEC_OBJECT_PINNED))
3062 return;
3063
3064 const uint64_t addr_48b = gen_48b_address(bo->offset);
3065
3066 pthread_mutex_lock(&device->vma_mutex);
3067
3068 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
3069 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
3070 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
3071 device->vma_lo_available += bo->size;
3072 } else {
3073 ASSERTED const struct anv_physical_device *physical_device =
3074 &device->instance->physicalDevice;
3075 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
3076 addr_48b < (physical_device->memory.heaps[0].vma_start +
3077 physical_device->memory.heaps[0].vma_size));
3078 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
3079 device->vma_hi_available += bo->size;
3080 }
3081
3082 pthread_mutex_unlock(&device->vma_mutex);
3083
3084 bo->offset = 0;
3085 }
3086
3087 VkResult
3088 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
3089 {
3090 uint32_t gem_handle = anv_gem_create(device, size);
3091 if (!gem_handle)
3092 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3093
3094 anv_bo_init(bo, gem_handle, size);
3095
3096 return VK_SUCCESS;
3097 }
3098
3099 VkResult anv_AllocateMemory(
3100 VkDevice _device,
3101 const VkMemoryAllocateInfo* pAllocateInfo,
3102 const VkAllocationCallbacks* pAllocator,
3103 VkDeviceMemory* pMem)
3104 {
3105 ANV_FROM_HANDLE(anv_device, device, _device);
3106 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3107 struct anv_device_memory *mem;
3108 VkResult result = VK_SUCCESS;
3109
3110 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
3111
3112 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
3113 assert(pAllocateInfo->allocationSize > 0);
3114
3115 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
3116 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
3117
3118 /* FINISHME: Fail if allocation request exceeds heap size. */
3119
3120 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
3121 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3122 if (mem == NULL)
3123 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3124
3125 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3126 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
3127 mem->map = NULL;
3128 mem->map_size = 0;
3129 mem->ahw = NULL;
3130 mem->host_ptr = NULL;
3131
3132 uint64_t bo_flags = 0;
3133
3134 assert(mem->type->heapIndex < pdevice->memory.heap_count);
3135 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
3136 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
3137
3138 const struct wsi_memory_allocate_info *wsi_info =
3139 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
3140 if (wsi_info && wsi_info->implicit_sync) {
3141 /* We need to set the WRITE flag on window system buffers so that GEM
3142 * will know we're writing to them and synchronize uses on other rings
3143 * (eg if the display server uses the blitter ring).
3144 */
3145 bo_flags |= EXEC_OBJECT_WRITE;
3146 } else if (pdevice->has_exec_async) {
3147 bo_flags |= EXEC_OBJECT_ASYNC;
3148 }
3149
3150 if (pdevice->use_softpin)
3151 bo_flags |= EXEC_OBJECT_PINNED;
3152
3153 const VkExportMemoryAllocateInfo *export_info =
3154 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
3155
3156 /* Check if we need to support Android HW buffer export. If so,
3157 * create AHardwareBuffer and import memory from it.
3158 */
3159 bool android_export = false;
3160 if (export_info && export_info->handleTypes &
3161 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
3162 android_export = true;
3163
3164 /* Android memory import. */
3165 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
3166 vk_find_struct_const(pAllocateInfo->pNext,
3167 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
3168
3169 if (ahw_import_info) {
3170 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
3171 if (result != VK_SUCCESS)
3172 goto fail;
3173
3174 goto success;
3175 } else if (android_export) {
3176 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
3177 if (result != VK_SUCCESS)
3178 goto fail;
3179
3180 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
3181 .buffer = mem->ahw,
3182 };
3183 result = anv_import_ahw_memory(_device, mem, &import_info);
3184 if (result != VK_SUCCESS)
3185 goto fail;
3186
3187 goto success;
3188 }
3189
3190 const VkImportMemoryFdInfoKHR *fd_info =
3191 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
3192
3193 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3194 * ignored.
3195 */
3196 if (fd_info && fd_info->handleType) {
3197 /* At the moment, we support only the below handle types. */
3198 assert(fd_info->handleType ==
3199 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3200 fd_info->handleType ==
3201 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3202
3203 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
3204 bo_flags, &mem->bo);
3205 if (result != VK_SUCCESS)
3206 goto fail;
3207
3208 VkDeviceSize aligned_alloc_size =
3209 align_u64(pAllocateInfo->allocationSize, 4096);
3210
3211 /* For security purposes, we reject importing the bo if it's smaller
3212 * than the requested allocation size. This prevents a malicious client
3213 * from passing a buffer to a trusted client, lying about the size, and
3214 * telling the trusted client to try and texture from an image that goes
3215 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3216 * in the trusted client. The trusted client can protect itself against
3217 * this sort of attack but only if it can trust the buffer size.
3218 */
3219 if (mem->bo->size < aligned_alloc_size) {
3220 result = vk_errorf(device->instance, device,
3221 VK_ERROR_INVALID_EXTERNAL_HANDLE,
3222 "aligned allocationSize too large for "
3223 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3224 "%"PRIu64"B > %"PRIu64"B",
3225 aligned_alloc_size, mem->bo->size);
3226 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3227 goto fail;
3228 }
3229
3230 /* From the Vulkan spec:
3231 *
3232 * "Importing memory from a file descriptor transfers ownership of
3233 * the file descriptor from the application to the Vulkan
3234 * implementation. The application must not perform any operations on
3235 * the file descriptor after a successful import."
3236 *
3237 * If the import fails, we leave the file descriptor open.
3238 */
3239 close(fd_info->fd);
3240 goto success;
3241 }
3242
3243 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
3244 vk_find_struct_const(pAllocateInfo->pNext,
3245 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
3246 if (host_ptr_info && host_ptr_info->handleType) {
3247 if (host_ptr_info->handleType ==
3248 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3249 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3250 goto fail;
3251 }
3252
3253 assert(host_ptr_info->handleType ==
3254 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3255
3256 result = anv_bo_cache_import_host_ptr(
3257 device, &device->bo_cache, host_ptr_info->pHostPointer,
3258 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
3259
3260 if (result != VK_SUCCESS)
3261 goto fail;
3262
3263 mem->host_ptr = host_ptr_info->pHostPointer;
3264 goto success;
3265 }
3266
3267 /* Regular allocate (not importing memory). */
3268
3269 bool is_external = export_info && export_info->handleTypes;
3270 result = anv_bo_cache_alloc(device, &device->bo_cache,
3271 pAllocateInfo->allocationSize,
3272 bo_flags, is_external,
3273 &mem->bo);
3274 if (result != VK_SUCCESS)
3275 goto fail;
3276
3277 const VkMemoryDedicatedAllocateInfo *dedicated_info =
3278 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
3279 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3280 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3281
3282 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3283 * the BO. In this case, we have a dedicated allocation.
3284 */
3285 if (image->needs_set_tiling) {
3286 const uint32_t i915_tiling =
3287 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3288 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3289 image->planes[0].surface.isl.row_pitch_B,
3290 i915_tiling);
3291 if (ret) {
3292 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3293 return vk_errorf(device->instance, NULL,
3294 VK_ERROR_OUT_OF_DEVICE_MEMORY,
3295 "failed to set BO tiling: %m");
3296 }
3297 }
3298 }
3299
3300 success:
3301 pthread_mutex_lock(&device->mutex);
3302 list_addtail(&mem->link, &device->memory_objects);
3303 pthread_mutex_unlock(&device->mutex);
3304
3305 *pMem = anv_device_memory_to_handle(mem);
3306
3307 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3308 mem->bo->size);
3309
3310 return VK_SUCCESS;
3311
3312 fail:
3313 vk_free2(&device->alloc, pAllocator, mem);
3314
3315 return result;
3316 }
3317
3318 VkResult anv_GetMemoryFdKHR(
3319 VkDevice device_h,
3320 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3321 int* pFd)
3322 {
3323 ANV_FROM_HANDLE(anv_device, dev, device_h);
3324 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3325
3326 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3327
3328 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3329 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3330
3331 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
3332 }
3333
3334 VkResult anv_GetMemoryFdPropertiesKHR(
3335 VkDevice _device,
3336 VkExternalMemoryHandleTypeFlagBits handleType,
3337 int fd,
3338 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3339 {
3340 ANV_FROM_HANDLE(anv_device, device, _device);
3341 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3342
3343 switch (handleType) {
3344 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3345 /* dma-buf can be imported as any memory type */
3346 pMemoryFdProperties->memoryTypeBits =
3347 (1 << pdevice->memory.type_count) - 1;
3348 return VK_SUCCESS;
3349
3350 default:
3351 /* The valid usage section for this function says:
3352 *
3353 * "handleType must not be one of the handle types defined as
3354 * opaque."
3355 *
3356 * So opaque handle types fall into the default "unsupported" case.
3357 */
3358 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3359 }
3360 }
3361
3362 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3363 VkDevice _device,
3364 VkExternalMemoryHandleTypeFlagBits handleType,
3365 const void* pHostPointer,
3366 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3367 {
3368 ANV_FROM_HANDLE(anv_device, device, _device);
3369
3370 assert(pMemoryHostPointerProperties->sType ==
3371 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3372
3373 switch (handleType) {
3374 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
3375 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3376
3377 /* Host memory can be imported as any memory type. */
3378 pMemoryHostPointerProperties->memoryTypeBits =
3379 (1ull << pdevice->memory.type_count) - 1;
3380
3381 return VK_SUCCESS;
3382 }
3383 default:
3384 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3385 }
3386 }
3387
3388 void anv_FreeMemory(
3389 VkDevice _device,
3390 VkDeviceMemory _mem,
3391 const VkAllocationCallbacks* pAllocator)
3392 {
3393 ANV_FROM_HANDLE(anv_device, device, _device);
3394 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3395 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3396
3397 if (mem == NULL)
3398 return;
3399
3400 pthread_mutex_lock(&device->mutex);
3401 list_del(&mem->link);
3402 pthread_mutex_unlock(&device->mutex);
3403
3404 if (mem->map)
3405 anv_UnmapMemory(_device, _mem);
3406
3407 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3408 -mem->bo->size);
3409
3410 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3411
3412 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3413 if (mem->ahw)
3414 AHardwareBuffer_release(mem->ahw);
3415 #endif
3416
3417 vk_free2(&device->alloc, pAllocator, mem);
3418 }
3419
3420 VkResult anv_MapMemory(
3421 VkDevice _device,
3422 VkDeviceMemory _memory,
3423 VkDeviceSize offset,
3424 VkDeviceSize size,
3425 VkMemoryMapFlags flags,
3426 void** ppData)
3427 {
3428 ANV_FROM_HANDLE(anv_device, device, _device);
3429 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3430
3431 if (mem == NULL) {
3432 *ppData = NULL;
3433 return VK_SUCCESS;
3434 }
3435
3436 if (mem->host_ptr) {
3437 *ppData = mem->host_ptr + offset;
3438 return VK_SUCCESS;
3439 }
3440
3441 if (size == VK_WHOLE_SIZE)
3442 size = mem->bo->size - offset;
3443
3444 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3445 *
3446 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3447 * assert(size != 0);
3448 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3449 * equal to the size of the memory minus offset
3450 */
3451 assert(size > 0);
3452 assert(offset + size <= mem->bo->size);
3453
3454 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3455 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3456 * at a time is valid. We could just mmap up front and return an offset
3457 * pointer here, but that may exhaust virtual memory on 32 bit
3458 * userspace. */
3459
3460 uint32_t gem_flags = 0;
3461
3462 if (!device->info.has_llc &&
3463 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3464 gem_flags |= I915_MMAP_WC;
3465
3466 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3467 uint64_t map_offset = offset & ~4095ull;
3468 assert(offset >= map_offset);
3469 uint64_t map_size = (offset + size) - map_offset;
3470
3471 /* Let's map whole pages */
3472 map_size = align_u64(map_size, 4096);
3473
3474 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3475 map_offset, map_size, gem_flags);
3476 if (map == MAP_FAILED)
3477 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3478
3479 mem->map = map;
3480 mem->map_size = map_size;
3481
3482 *ppData = mem->map + (offset - map_offset);
3483
3484 return VK_SUCCESS;
3485 }
3486
3487 void anv_UnmapMemory(
3488 VkDevice _device,
3489 VkDeviceMemory _memory)
3490 {
3491 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3492
3493 if (mem == NULL || mem->host_ptr)
3494 return;
3495
3496 anv_gem_munmap(mem->map, mem->map_size);
3497
3498 mem->map = NULL;
3499 mem->map_size = 0;
3500 }
3501
3502 static void
3503 clflush_mapped_ranges(struct anv_device *device,
3504 uint32_t count,
3505 const VkMappedMemoryRange *ranges)
3506 {
3507 for (uint32_t i = 0; i < count; i++) {
3508 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3509 if (ranges[i].offset >= mem->map_size)
3510 continue;
3511
3512 gen_clflush_range(mem->map + ranges[i].offset,
3513 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3514 }
3515 }
3516
3517 VkResult anv_FlushMappedMemoryRanges(
3518 VkDevice _device,
3519 uint32_t memoryRangeCount,
3520 const VkMappedMemoryRange* pMemoryRanges)
3521 {
3522 ANV_FROM_HANDLE(anv_device, device, _device);
3523
3524 if (device->info.has_llc)
3525 return VK_SUCCESS;
3526
3527 /* Make sure the writes we're flushing have landed. */
3528 __builtin_ia32_mfence();
3529
3530 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3531
3532 return VK_SUCCESS;
3533 }
3534
3535 VkResult anv_InvalidateMappedMemoryRanges(
3536 VkDevice _device,
3537 uint32_t memoryRangeCount,
3538 const VkMappedMemoryRange* pMemoryRanges)
3539 {
3540 ANV_FROM_HANDLE(anv_device, device, _device);
3541
3542 if (device->info.has_llc)
3543 return VK_SUCCESS;
3544
3545 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3546
3547 /* Make sure no reads get moved up above the invalidate. */
3548 __builtin_ia32_mfence();
3549
3550 return VK_SUCCESS;
3551 }
3552
3553 void anv_GetBufferMemoryRequirements(
3554 VkDevice _device,
3555 VkBuffer _buffer,
3556 VkMemoryRequirements* pMemoryRequirements)
3557 {
3558 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3559 ANV_FROM_HANDLE(anv_device, device, _device);
3560 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3561
3562 /* The Vulkan spec (git aaed022) says:
3563 *
3564 * memoryTypeBits is a bitfield and contains one bit set for every
3565 * supported memory type for the resource. The bit `1<<i` is set if and
3566 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3567 * structure for the physical device is supported.
3568 */
3569 uint32_t memory_types = 0;
3570 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3571 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3572 if ((valid_usage & buffer->usage) == buffer->usage)
3573 memory_types |= (1u << i);
3574 }
3575
3576 /* Base alignment requirement of a cache line */
3577 uint32_t alignment = 16;
3578
3579 /* We need an alignment of 32 for pushing UBOs */
3580 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3581 alignment = MAX2(alignment, 32);
3582
3583 pMemoryRequirements->size = buffer->size;
3584 pMemoryRequirements->alignment = alignment;
3585
3586 /* Storage and Uniform buffers should have their size aligned to
3587 * 32-bits to avoid boundary checks when last DWord is not complete.
3588 * This would ensure that not internal padding would be needed for
3589 * 16-bit types.
3590 */
3591 if (device->robust_buffer_access &&
3592 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3593 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3594 pMemoryRequirements->size = align_u64(buffer->size, 4);
3595
3596 pMemoryRequirements->memoryTypeBits = memory_types;
3597 }
3598
3599 void anv_GetBufferMemoryRequirements2(
3600 VkDevice _device,
3601 const VkBufferMemoryRequirementsInfo2* pInfo,
3602 VkMemoryRequirements2* pMemoryRequirements)
3603 {
3604 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3605 &pMemoryRequirements->memoryRequirements);
3606
3607 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3608 switch (ext->sType) {
3609 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3610 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3611 requirements->prefersDedicatedAllocation = false;
3612 requirements->requiresDedicatedAllocation = false;
3613 break;
3614 }
3615
3616 default:
3617 anv_debug_ignored_stype(ext->sType);
3618 break;
3619 }
3620 }
3621 }
3622
3623 void anv_GetImageMemoryRequirements(
3624 VkDevice _device,
3625 VkImage _image,
3626 VkMemoryRequirements* pMemoryRequirements)
3627 {
3628 ANV_FROM_HANDLE(anv_image, image, _image);
3629 ANV_FROM_HANDLE(anv_device, device, _device);
3630 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3631
3632 /* The Vulkan spec (git aaed022) says:
3633 *
3634 * memoryTypeBits is a bitfield and contains one bit set for every
3635 * supported memory type for the resource. The bit `1<<i` is set if and
3636 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3637 * structure for the physical device is supported.
3638 *
3639 * All types are currently supported for images.
3640 */
3641 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3642
3643 /* We must have image allocated or imported at this point. According to the
3644 * specification, external images must have been bound to memory before
3645 * calling GetImageMemoryRequirements.
3646 */
3647 assert(image->size > 0);
3648
3649 pMemoryRequirements->size = image->size;
3650 pMemoryRequirements->alignment = image->alignment;
3651 pMemoryRequirements->memoryTypeBits = memory_types;
3652 }
3653
3654 void anv_GetImageMemoryRequirements2(
3655 VkDevice _device,
3656 const VkImageMemoryRequirementsInfo2* pInfo,
3657 VkMemoryRequirements2* pMemoryRequirements)
3658 {
3659 ANV_FROM_HANDLE(anv_device, device, _device);
3660 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3661
3662 anv_GetImageMemoryRequirements(_device, pInfo->image,
3663 &pMemoryRequirements->memoryRequirements);
3664
3665 vk_foreach_struct_const(ext, pInfo->pNext) {
3666 switch (ext->sType) {
3667 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3668 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3669 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3670 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3671 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3672 plane_reqs->planeAspect);
3673
3674 assert(image->planes[plane].offset == 0);
3675
3676 /* The Vulkan spec (git aaed022) says:
3677 *
3678 * memoryTypeBits is a bitfield and contains one bit set for every
3679 * supported memory type for the resource. The bit `1<<i` is set
3680 * if and only if the memory type `i` in the
3681 * VkPhysicalDeviceMemoryProperties structure for the physical
3682 * device is supported.
3683 *
3684 * All types are currently supported for images.
3685 */
3686 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3687 (1ull << pdevice->memory.type_count) - 1;
3688
3689 /* We must have image allocated or imported at this point. According to the
3690 * specification, external images must have been bound to memory before
3691 * calling GetImageMemoryRequirements.
3692 */
3693 assert(image->planes[plane].size > 0);
3694
3695 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3696 pMemoryRequirements->memoryRequirements.alignment =
3697 image->planes[plane].alignment;
3698 break;
3699 }
3700
3701 default:
3702 anv_debug_ignored_stype(ext->sType);
3703 break;
3704 }
3705 }
3706
3707 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3708 switch (ext->sType) {
3709 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3710 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3711 if (image->needs_set_tiling || image->external_format) {
3712 /* If we need to set the tiling for external consumers, we need a
3713 * dedicated allocation.
3714 *
3715 * See also anv_AllocateMemory.
3716 */
3717 requirements->prefersDedicatedAllocation = true;
3718 requirements->requiresDedicatedAllocation = true;
3719 } else {
3720 requirements->prefersDedicatedAllocation = false;
3721 requirements->requiresDedicatedAllocation = false;
3722 }
3723 break;
3724 }
3725
3726 default:
3727 anv_debug_ignored_stype(ext->sType);
3728 break;
3729 }
3730 }
3731 }
3732
3733 void anv_GetImageSparseMemoryRequirements(
3734 VkDevice device,
3735 VkImage image,
3736 uint32_t* pSparseMemoryRequirementCount,
3737 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3738 {
3739 *pSparseMemoryRequirementCount = 0;
3740 }
3741
3742 void anv_GetImageSparseMemoryRequirements2(
3743 VkDevice device,
3744 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3745 uint32_t* pSparseMemoryRequirementCount,
3746 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3747 {
3748 *pSparseMemoryRequirementCount = 0;
3749 }
3750
3751 void anv_GetDeviceMemoryCommitment(
3752 VkDevice device,
3753 VkDeviceMemory memory,
3754 VkDeviceSize* pCommittedMemoryInBytes)
3755 {
3756 *pCommittedMemoryInBytes = 0;
3757 }
3758
3759 static void
3760 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3761 {
3762 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3763 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3764
3765 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3766
3767 if (mem) {
3768 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3769 buffer->address = (struct anv_address) {
3770 .bo = mem->bo,
3771 .offset = pBindInfo->memoryOffset,
3772 };
3773 } else {
3774 buffer->address = ANV_NULL_ADDRESS;
3775 }
3776 }
3777
3778 VkResult anv_BindBufferMemory(
3779 VkDevice device,
3780 VkBuffer buffer,
3781 VkDeviceMemory memory,
3782 VkDeviceSize memoryOffset)
3783 {
3784 anv_bind_buffer_memory(
3785 &(VkBindBufferMemoryInfo) {
3786 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3787 .buffer = buffer,
3788 .memory = memory,
3789 .memoryOffset = memoryOffset,
3790 });
3791
3792 return VK_SUCCESS;
3793 }
3794
3795 VkResult anv_BindBufferMemory2(
3796 VkDevice device,
3797 uint32_t bindInfoCount,
3798 const VkBindBufferMemoryInfo* pBindInfos)
3799 {
3800 for (uint32_t i = 0; i < bindInfoCount; i++)
3801 anv_bind_buffer_memory(&pBindInfos[i]);
3802
3803 return VK_SUCCESS;
3804 }
3805
3806 VkResult anv_QueueBindSparse(
3807 VkQueue _queue,
3808 uint32_t bindInfoCount,
3809 const VkBindSparseInfo* pBindInfo,
3810 VkFence fence)
3811 {
3812 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3813 if (anv_device_is_lost(queue->device))
3814 return VK_ERROR_DEVICE_LOST;
3815
3816 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3817 }
3818
3819 // Event functions
3820
3821 VkResult anv_CreateEvent(
3822 VkDevice _device,
3823 const VkEventCreateInfo* pCreateInfo,
3824 const VkAllocationCallbacks* pAllocator,
3825 VkEvent* pEvent)
3826 {
3827 ANV_FROM_HANDLE(anv_device, device, _device);
3828 struct anv_state state;
3829 struct anv_event *event;
3830
3831 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3832
3833 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3834 sizeof(*event), 8);
3835 event = state.map;
3836 event->state = state;
3837 event->semaphore = VK_EVENT_RESET;
3838
3839 if (!device->info.has_llc) {
3840 /* Make sure the writes we're flushing have landed. */
3841 __builtin_ia32_mfence();
3842 __builtin_ia32_clflush(event);
3843 }
3844
3845 *pEvent = anv_event_to_handle(event);
3846
3847 return VK_SUCCESS;
3848 }
3849
3850 void anv_DestroyEvent(
3851 VkDevice _device,
3852 VkEvent _event,
3853 const VkAllocationCallbacks* pAllocator)
3854 {
3855 ANV_FROM_HANDLE(anv_device, device, _device);
3856 ANV_FROM_HANDLE(anv_event, event, _event);
3857
3858 if (!event)
3859 return;
3860
3861 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3862 }
3863
3864 VkResult anv_GetEventStatus(
3865 VkDevice _device,
3866 VkEvent _event)
3867 {
3868 ANV_FROM_HANDLE(anv_device, device, _device);
3869 ANV_FROM_HANDLE(anv_event, event, _event);
3870
3871 if (anv_device_is_lost(device))
3872 return VK_ERROR_DEVICE_LOST;
3873
3874 if (!device->info.has_llc) {
3875 /* Invalidate read cache before reading event written by GPU. */
3876 __builtin_ia32_clflush(event);
3877 __builtin_ia32_mfence();
3878
3879 }
3880
3881 return event->semaphore;
3882 }
3883
3884 VkResult anv_SetEvent(
3885 VkDevice _device,
3886 VkEvent _event)
3887 {
3888 ANV_FROM_HANDLE(anv_device, device, _device);
3889 ANV_FROM_HANDLE(anv_event, event, _event);
3890
3891 event->semaphore = VK_EVENT_SET;
3892
3893 if (!device->info.has_llc) {
3894 /* Make sure the writes we're flushing have landed. */
3895 __builtin_ia32_mfence();
3896 __builtin_ia32_clflush(event);
3897 }
3898
3899 return VK_SUCCESS;
3900 }
3901
3902 VkResult anv_ResetEvent(
3903 VkDevice _device,
3904 VkEvent _event)
3905 {
3906 ANV_FROM_HANDLE(anv_device, device, _device);
3907 ANV_FROM_HANDLE(anv_event, event, _event);
3908
3909 event->semaphore = VK_EVENT_RESET;
3910
3911 if (!device->info.has_llc) {
3912 /* Make sure the writes we're flushing have landed. */
3913 __builtin_ia32_mfence();
3914 __builtin_ia32_clflush(event);
3915 }
3916
3917 return VK_SUCCESS;
3918 }
3919
3920 // Buffer functions
3921
3922 VkResult anv_CreateBuffer(
3923 VkDevice _device,
3924 const VkBufferCreateInfo* pCreateInfo,
3925 const VkAllocationCallbacks* pAllocator,
3926 VkBuffer* pBuffer)
3927 {
3928 ANV_FROM_HANDLE(anv_device, device, _device);
3929 struct anv_buffer *buffer;
3930
3931 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3932
3933 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3934 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3935 if (buffer == NULL)
3936 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3937
3938 buffer->size = pCreateInfo->size;
3939 buffer->usage = pCreateInfo->usage;
3940 buffer->address = ANV_NULL_ADDRESS;
3941
3942 *pBuffer = anv_buffer_to_handle(buffer);
3943
3944 return VK_SUCCESS;
3945 }
3946
3947 void anv_DestroyBuffer(
3948 VkDevice _device,
3949 VkBuffer _buffer,
3950 const VkAllocationCallbacks* pAllocator)
3951 {
3952 ANV_FROM_HANDLE(anv_device, device, _device);
3953 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3954
3955 if (!buffer)
3956 return;
3957
3958 vk_free2(&device->alloc, pAllocator, buffer);
3959 }
3960
3961 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3962 VkDevice device,
3963 const VkBufferDeviceAddressInfoEXT* pInfo)
3964 {
3965 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3966
3967 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3968
3969 return anv_address_physical(buffer->address);
3970 }
3971
3972 void
3973 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3974 enum isl_format format,
3975 struct anv_address address,
3976 uint32_t range, uint32_t stride)
3977 {
3978 isl_buffer_fill_state(&device->isl_dev, state.map,
3979 .address = anv_address_physical(address),
3980 .mocs = device->default_mocs,
3981 .size_B = range,
3982 .format = format,
3983 .swizzle = ISL_SWIZZLE_IDENTITY,
3984 .stride_B = stride);
3985 }
3986
3987 void anv_DestroySampler(
3988 VkDevice _device,
3989 VkSampler _sampler,
3990 const VkAllocationCallbacks* pAllocator)
3991 {
3992 ANV_FROM_HANDLE(anv_device, device, _device);
3993 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3994
3995 if (!sampler)
3996 return;
3997
3998 if (sampler->bindless_state.map) {
3999 anv_state_pool_free(&device->dynamic_state_pool,
4000 sampler->bindless_state);
4001 }
4002
4003 vk_free2(&device->alloc, pAllocator, sampler);
4004 }
4005
4006 VkResult anv_CreateFramebuffer(
4007 VkDevice _device,
4008 const VkFramebufferCreateInfo* pCreateInfo,
4009 const VkAllocationCallbacks* pAllocator,
4010 VkFramebuffer* pFramebuffer)
4011 {
4012 ANV_FROM_HANDLE(anv_device, device, _device);
4013 struct anv_framebuffer *framebuffer;
4014
4015 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
4016
4017 size_t size = sizeof(*framebuffer);
4018
4019 /* VK_KHR_imageless_framebuffer extension says:
4020 *
4021 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
4022 * parameter pAttachments is ignored.
4023 */
4024 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
4025 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
4026 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
4027 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4028 if (framebuffer == NULL)
4029 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4030
4031 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
4032 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
4033 framebuffer->attachments[i] = iview;
4034 }
4035 framebuffer->attachment_count = pCreateInfo->attachmentCount;
4036 } else {
4037 assert(device->enabled_extensions.KHR_imageless_framebuffer);
4038 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
4039 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4040 if (framebuffer == NULL)
4041 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4042
4043 framebuffer->attachment_count = 0;
4044 }
4045
4046 framebuffer->width = pCreateInfo->width;
4047 framebuffer->height = pCreateInfo->height;
4048 framebuffer->layers = pCreateInfo->layers;
4049
4050 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
4051
4052 return VK_SUCCESS;
4053 }
4054
4055 void anv_DestroyFramebuffer(
4056 VkDevice _device,
4057 VkFramebuffer _fb,
4058 const VkAllocationCallbacks* pAllocator)
4059 {
4060 ANV_FROM_HANDLE(anv_device, device, _device);
4061 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
4062
4063 if (!fb)
4064 return;
4065
4066 vk_free2(&device->alloc, pAllocator, fb);
4067 }
4068
4069 static const VkTimeDomainEXT anv_time_domains[] = {
4070 VK_TIME_DOMAIN_DEVICE_EXT,
4071 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
4072 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
4073 };
4074
4075 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
4076 VkPhysicalDevice physicalDevice,
4077 uint32_t *pTimeDomainCount,
4078 VkTimeDomainEXT *pTimeDomains)
4079 {
4080 int d;
4081 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
4082
4083 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
4084 vk_outarray_append(&out, i) {
4085 *i = anv_time_domains[d];
4086 }
4087 }
4088
4089 return vk_outarray_status(&out);
4090 }
4091
4092 static uint64_t
4093 anv_clock_gettime(clockid_t clock_id)
4094 {
4095 struct timespec current;
4096 int ret;
4097
4098 ret = clock_gettime(clock_id, &current);
4099 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
4100 ret = clock_gettime(CLOCK_MONOTONIC, &current);
4101 if (ret < 0)
4102 return 0;
4103
4104 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
4105 }
4106
4107 #define TIMESTAMP 0x2358
4108
4109 VkResult anv_GetCalibratedTimestampsEXT(
4110 VkDevice _device,
4111 uint32_t timestampCount,
4112 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
4113 uint64_t *pTimestamps,
4114 uint64_t *pMaxDeviation)
4115 {
4116 ANV_FROM_HANDLE(anv_device, device, _device);
4117 uint64_t timestamp_frequency = device->info.timestamp_frequency;
4118 int ret;
4119 int d;
4120 uint64_t begin, end;
4121 uint64_t max_clock_period = 0;
4122
4123 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4124
4125 for (d = 0; d < timestampCount; d++) {
4126 switch (pTimestampInfos[d].timeDomain) {
4127 case VK_TIME_DOMAIN_DEVICE_EXT:
4128 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
4129 &pTimestamps[d]);
4130
4131 if (ret != 0) {
4132 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
4133 "register: %m");
4134 }
4135 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
4136 max_clock_period = MAX2(max_clock_period, device_period);
4137 break;
4138 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
4139 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
4140 max_clock_period = MAX2(max_clock_period, 1);
4141 break;
4142
4143 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
4144 pTimestamps[d] = begin;
4145 break;
4146 default:
4147 pTimestamps[d] = 0;
4148 break;
4149 }
4150 }
4151
4152 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4153
4154 /*
4155 * The maximum deviation is the sum of the interval over which we
4156 * perform the sampling and the maximum period of any sampled
4157 * clock. That's because the maximum skew between any two sampled
4158 * clock edges is when the sampled clock with the largest period is
4159 * sampled at the end of that period but right at the beginning of the
4160 * sampling interval and some other clock is sampled right at the
4161 * begining of its sampling period and right at the end of the
4162 * sampling interval. Let's assume the GPU has the longest clock
4163 * period and that the application is sampling GPU and monotonic:
4164 *
4165 * s e
4166 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
4167 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4168 *
4169 * g
4170 * 0 1 2 3
4171 * GPU -----_____-----_____-----_____-----_____
4172 *
4173 * m
4174 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
4175 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4176 *
4177 * Interval <----------------->
4178 * Deviation <-------------------------->
4179 *
4180 * s = read(raw) 2
4181 * g = read(GPU) 1
4182 * m = read(monotonic) 2
4183 * e = read(raw) b
4184 *
4185 * We round the sample interval up by one tick to cover sampling error
4186 * in the interval clock
4187 */
4188
4189 uint64_t sample_interval = end - begin + 1;
4190
4191 *pMaxDeviation = sample_interval + max_clock_period;
4192
4193 return VK_SUCCESS;
4194 }
4195
4196 /* vk_icd.h does not declare this function, so we declare it here to
4197 * suppress Wmissing-prototypes.
4198 */
4199 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4200 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4201
4202 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4203 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4204 {
4205 /* For the full details on loader interface versioning, see
4206 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4207 * What follows is a condensed summary, to help you navigate the large and
4208 * confusing official doc.
4209 *
4210 * - Loader interface v0 is incompatible with later versions. We don't
4211 * support it.
4212 *
4213 * - In loader interface v1:
4214 * - The first ICD entrypoint called by the loader is
4215 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4216 * entrypoint.
4217 * - The ICD must statically expose no other Vulkan symbol unless it is
4218 * linked with -Bsymbolic.
4219 * - Each dispatchable Vulkan handle created by the ICD must be
4220 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4221 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4222 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4223 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4224 * such loader-managed surfaces.
4225 *
4226 * - Loader interface v2 differs from v1 in:
4227 * - The first ICD entrypoint called by the loader is
4228 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4229 * statically expose this entrypoint.
4230 *
4231 * - Loader interface v3 differs from v2 in:
4232 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4233 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4234 * because the loader no longer does so.
4235 *
4236 * - Loader interface v4 differs from v3 in:
4237 * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
4238 */
4239 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
4240 return VK_SUCCESS;
4241 }