anv: implement VK_KHR_timeline_semaphore
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/debug.h"
36 #include "util/build_id.h"
37 #include "util/disk_cache.h"
38 #include "util/mesa-sha1.h"
39 #include "util/os_file.h"
40 #include "util/u_atomic.h"
41 #include "util/u_string.h"
42 #include "util/xmlpool.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_aux_map.h"
46 #include "common/gen_defines.h"
47 #include "compiler/glsl_types.h"
48
49 #include "genxml/gen7_pack.h"
50
51 static const char anv_dri_options_xml[] =
52 DRI_CONF_BEGIN
53 DRI_CONF_SECTION_PERFORMANCE
54 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
55 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
56 DRI_CONF_SECTION_END
57 DRI_CONF_END;
58
59 /* This is probably far to big but it reflects the max size used for messages
60 * in OpenGLs KHR_debug.
61 */
62 #define MAX_DEBUG_MESSAGE_LENGTH 4096
63
64 static void
65 compiler_debug_log(void *data, const char *fmt, ...)
66 {
67 char str[MAX_DEBUG_MESSAGE_LENGTH];
68 struct anv_device *device = (struct anv_device *)data;
69
70 if (list_is_empty(&device->instance->debug_report_callbacks.callbacks))
71 return;
72
73 va_list args;
74 va_start(args, fmt);
75 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
76 va_end(args);
77
78 vk_debug_report(&device->instance->debug_report_callbacks,
79 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
80 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
81 0, 0, 0, "anv", str);
82 }
83
84 static void
85 compiler_perf_log(void *data, const char *fmt, ...)
86 {
87 va_list args;
88 va_start(args, fmt);
89
90 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
91 intel_logd_v(fmt, args);
92
93 va_end(args);
94 }
95
96 static uint64_t
97 anv_compute_heap_size(int fd, uint64_t gtt_size)
98 {
99 /* Query the total ram from the system */
100 struct sysinfo info;
101 sysinfo(&info);
102
103 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
104
105 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
106 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
107 */
108 uint64_t available_ram;
109 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
110 available_ram = total_ram / 2;
111 else
112 available_ram = total_ram * 3 / 4;
113
114 /* We also want to leave some padding for things we allocate in the driver,
115 * so don't go over 3/4 of the GTT either.
116 */
117 uint64_t available_gtt = gtt_size * 3 / 4;
118
119 return MIN2(available_ram, available_gtt);
120 }
121
122 static VkResult
123 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
124 {
125 uint64_t gtt_size;
126 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
127 &gtt_size) == -1) {
128 /* If, for whatever reason, we can't actually get the GTT size from the
129 * kernel (too old?) fall back to the aperture size.
130 */
131 anv_perf_warn(NULL, NULL,
132 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
133
134 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
135 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
136 "failed to get aperture size: %m");
137 }
138 }
139
140 device->supports_48bit_addresses = (device->info.gen >= 8) &&
141 gtt_size > (4ULL << 30 /* GiB */);
142
143 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
144
145 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
146 /* When running with an overridden PCI ID, we may get a GTT size from
147 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
148 * address support can still fail. Just clamp the address space size to
149 * 2 GiB if we don't have 48-bit support.
150 */
151 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
152 "not support for 48-bit addresses",
153 __FILE__, __LINE__);
154 heap_size = 2ull << 30;
155 }
156
157 if (heap_size <= 3ull * (1ull << 30)) {
158 /* In this case, everything fits nicely into the 32-bit address space,
159 * so there's no need for supporting 48bit addresses on client-allocated
160 * memory objects.
161 */
162 device->memory.heap_count = 1;
163 device->memory.heaps[0] = (struct anv_memory_heap) {
164 .vma_start = LOW_HEAP_MIN_ADDRESS,
165 .vma_size = LOW_HEAP_SIZE,
166 .size = heap_size,
167 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
168 .supports_48bit_addresses = false,
169 };
170 } else {
171 /* Not everything will fit nicely into a 32-bit address space. In this
172 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
173 * larger 48-bit heap. If we're in this case, then we have a total heap
174 * size larger than 3GiB which most likely means they have 8 GiB of
175 * video memory and so carving off 1 GiB for the 32-bit heap should be
176 * reasonable.
177 */
178 const uint64_t heap_size_32bit = 1ull << 30;
179 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
180
181 assert(device->supports_48bit_addresses);
182
183 device->memory.heap_count = 2;
184 device->memory.heaps[0] = (struct anv_memory_heap) {
185 .vma_start = HIGH_HEAP_MIN_ADDRESS,
186 /* Leave the last 4GiB out of the high vma range, so that no state
187 * base address + size can overflow 48 bits. For more information see
188 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
189 */
190 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
191 .size = heap_size_48bit,
192 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
193 .supports_48bit_addresses = true,
194 };
195 device->memory.heaps[1] = (struct anv_memory_heap) {
196 .vma_start = LOW_HEAP_MIN_ADDRESS,
197 .vma_size = LOW_HEAP_SIZE,
198 .size = heap_size_32bit,
199 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
200 .supports_48bit_addresses = false,
201 };
202 }
203
204 uint32_t type_count = 0;
205 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
206 uint32_t valid_buffer_usage = ~0;
207
208 /* There appears to be a hardware issue in the VF cache where it only
209 * considers the bottom 32 bits of memory addresses. If you happen to
210 * have two vertex buffers which get placed exactly 4 GiB apart and use
211 * them in back-to-back draw calls, you can get collisions. In order to
212 * solve this problem, we require vertex and index buffers be bound to
213 * memory allocated out of the 32-bit heap.
214 */
215 if (device->memory.heaps[heap].supports_48bit_addresses) {
216 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
217 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
218 }
219
220 if (device->info.has_llc) {
221 /* Big core GPUs share LLC with the CPU and thus one memory type can be
222 * both cached and coherent at the same time.
223 */
224 device->memory.types[type_count++] = (struct anv_memory_type) {
225 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
226 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
227 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
228 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
229 .heapIndex = heap,
230 .valid_buffer_usage = valid_buffer_usage,
231 };
232 } else {
233 /* The spec requires that we expose a host-visible, coherent memory
234 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
235 * to give the application a choice between cached, but not coherent and
236 * coherent but uncached (WC though).
237 */
238 device->memory.types[type_count++] = (struct anv_memory_type) {
239 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
240 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
241 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
242 .heapIndex = heap,
243 .valid_buffer_usage = valid_buffer_usage,
244 };
245 device->memory.types[type_count++] = (struct anv_memory_type) {
246 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
247 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
248 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
249 .heapIndex = heap,
250 .valid_buffer_usage = valid_buffer_usage,
251 };
252 }
253 }
254 device->memory.type_count = type_count;
255
256 return VK_SUCCESS;
257 }
258
259 static VkResult
260 anv_physical_device_init_uuids(struct anv_physical_device *device)
261 {
262 const struct build_id_note *note =
263 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
264 if (!note) {
265 return vk_errorf(device->instance, device,
266 VK_ERROR_INITIALIZATION_FAILED,
267 "Failed to find build-id");
268 }
269
270 unsigned build_id_len = build_id_length(note);
271 if (build_id_len < 20) {
272 return vk_errorf(device->instance, device,
273 VK_ERROR_INITIALIZATION_FAILED,
274 "build-id too short. It needs to be a SHA");
275 }
276
277 memcpy(device->driver_build_sha1, build_id_data(note), 20);
278
279 struct mesa_sha1 sha1_ctx;
280 uint8_t sha1[20];
281 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
282
283 /* The pipeline cache UUID is used for determining when a pipeline cache is
284 * invalid. It needs both a driver build and the PCI ID of the device.
285 */
286 _mesa_sha1_init(&sha1_ctx);
287 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
288 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
289 sizeof(device->chipset_id));
290 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
291 sizeof(device->always_use_bindless));
292 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
293 sizeof(device->has_a64_buffer_access));
294 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
295 sizeof(device->has_bindless_images));
296 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
297 sizeof(device->has_bindless_samplers));
298 _mesa_sha1_final(&sha1_ctx, sha1);
299 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
300
301 /* The driver UUID is used for determining sharability of images and memory
302 * between two Vulkan instances in separate processes. People who want to
303 * share memory need to also check the device UUID (below) so all this
304 * needs to be is the build-id.
305 */
306 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
307
308 /* The device UUID uniquely identifies the given device within the machine.
309 * Since we never have more than one device, this doesn't need to be a real
310 * UUID. However, on the off-chance that someone tries to use this to
311 * cache pre-tiled images or something of the like, we use the PCI ID and
312 * some bits of ISL info to ensure that this is safe.
313 */
314 _mesa_sha1_init(&sha1_ctx);
315 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
316 sizeof(device->chipset_id));
317 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
318 sizeof(device->isl_dev.has_bit6_swizzling));
319 _mesa_sha1_final(&sha1_ctx, sha1);
320 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
321
322 return VK_SUCCESS;
323 }
324
325 static void
326 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
327 {
328 #ifdef ENABLE_SHADER_CACHE
329 char renderer[10];
330 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
331 device->chipset_id);
332 assert(len == sizeof(renderer) - 2);
333
334 char timestamp[41];
335 _mesa_sha1_format(timestamp, device->driver_build_sha1);
336
337 const uint64_t driver_flags =
338 brw_get_compiler_config_value(device->compiler);
339 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
340 #else
341 device->disk_cache = NULL;
342 #endif
343 }
344
345 static void
346 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
347 {
348 #ifdef ENABLE_SHADER_CACHE
349 if (device->disk_cache)
350 disk_cache_destroy(device->disk_cache);
351 #else
352 assert(device->disk_cache == NULL);
353 #endif
354 }
355
356 static uint64_t
357 get_available_system_memory()
358 {
359 char *meminfo = os_read_file("/proc/meminfo");
360 if (!meminfo)
361 return 0;
362
363 char *str = strstr(meminfo, "MemAvailable:");
364 if (!str) {
365 free(meminfo);
366 return 0;
367 }
368
369 uint64_t kb_mem_available;
370 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
371 free(meminfo);
372 return kb_mem_available << 10;
373 }
374
375 free(meminfo);
376 return 0;
377 }
378
379 static VkResult
380 anv_physical_device_init(struct anv_physical_device *device,
381 struct anv_instance *instance,
382 drmDevicePtr drm_device)
383 {
384 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
385 const char *path = drm_device->nodes[DRM_NODE_RENDER];
386 VkResult result;
387 int fd;
388 int master_fd = -1;
389
390 brw_process_intel_debug_variable();
391
392 fd = open(path, O_RDWR | O_CLOEXEC);
393 if (fd < 0)
394 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
395
396 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
397 device->instance = instance;
398
399 assert(strlen(path) < ARRAY_SIZE(device->path));
400 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
401
402 if (!gen_get_device_info_from_fd(fd, &device->info)) {
403 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
404 goto fail;
405 }
406 device->chipset_id = device->info.chipset_id;
407 device->no_hw = device->info.no_hw;
408
409 if (getenv("INTEL_NO_HW") != NULL)
410 device->no_hw = true;
411
412 device->pci_info.domain = drm_device->businfo.pci->domain;
413 device->pci_info.bus = drm_device->businfo.pci->bus;
414 device->pci_info.device = drm_device->businfo.pci->dev;
415 device->pci_info.function = drm_device->businfo.pci->func;
416
417 device->name = gen_get_device_name(device->chipset_id);
418
419 if (device->info.is_haswell) {
420 intel_logw("Haswell Vulkan support is incomplete");
421 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
422 intel_logw("Ivy Bridge Vulkan support is incomplete");
423 } else if (device->info.gen == 7 && device->info.is_baytrail) {
424 intel_logw("Bay Trail Vulkan support is incomplete");
425 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
426 /* Gen8-11 fully supported */
427 } else if (device->info.gen == 12) {
428 intel_logw("Vulkan is not yet fully supported on gen12");
429 } else {
430 result = vk_errorf(device->instance, device,
431 VK_ERROR_INCOMPATIBLE_DRIVER,
432 "Vulkan not yet supported on %s", device->name);
433 goto fail;
434 }
435
436 device->cmd_parser_version = -1;
437 if (device->info.gen == 7) {
438 device->cmd_parser_version =
439 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
440 if (device->cmd_parser_version == -1) {
441 result = vk_errorf(device->instance, device,
442 VK_ERROR_INITIALIZATION_FAILED,
443 "failed to get command parser version");
444 goto fail;
445 }
446 }
447
448 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
449 result = vk_errorf(device->instance, device,
450 VK_ERROR_INITIALIZATION_FAILED,
451 "kernel missing gem wait");
452 goto fail;
453 }
454
455 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
456 result = vk_errorf(device->instance, device,
457 VK_ERROR_INITIALIZATION_FAILED,
458 "kernel missing execbuf2");
459 goto fail;
460 }
461
462 if (!device->info.has_llc &&
463 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
464 result = vk_errorf(device->instance, device,
465 VK_ERROR_INITIALIZATION_FAILED,
466 "kernel missing wc mmap");
467 goto fail;
468 }
469
470 result = anv_physical_device_init_heaps(device, fd);
471 if (result != VK_SUCCESS)
472 goto fail;
473
474 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
475 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
476 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
477 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
478 device->has_syncobj_wait = device->has_syncobj &&
479 anv_gem_supports_syncobj_wait(fd);
480 device->has_context_priority = anv_gem_has_context_priority(fd);
481
482 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
483 && device->supports_48bit_addresses;
484
485 device->has_context_isolation =
486 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
487
488 device->always_use_bindless =
489 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
490
491 /* We first got the A64 messages on broadwell and we can only use them if
492 * we can pass addresses directly into the shader which requires softpin.
493 */
494 device->has_a64_buffer_access = device->info.gen >= 8 &&
495 device->use_softpin;
496
497 /* We first get bindless image access on Skylake and we can only really do
498 * it if we don't have any relocations so we need softpin.
499 */
500 device->has_bindless_images = device->info.gen >= 9 &&
501 device->use_softpin;
502
503 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
504 * because it's just a matter of setting the sampler address in the sample
505 * message header. However, we've not bothered to wire it up for vec4 so
506 * we leave it disabled on gen7.
507 */
508 device->has_bindless_samplers = device->info.gen >= 8;
509
510 device->has_mem_available = get_available_system_memory() != 0;
511
512 /* Starting with Gen10, the timestamp frequency of the command streamer may
513 * vary from one part to another. We can query the value from the kernel.
514 */
515 if (device->info.gen >= 10) {
516 int timestamp_frequency =
517 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
518
519 if (timestamp_frequency < 0)
520 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
521 else
522 device->info.timestamp_frequency = timestamp_frequency;
523 }
524
525 /* GENs prior to 8 do not support EU/Subslice info */
526 if (device->info.gen >= 8) {
527 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
528 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
529
530 /* Without this information, we cannot get the right Braswell
531 * brandstrings, and we have to use conservative numbers for GPGPU on
532 * many platforms, but otherwise, things will just work.
533 */
534 if (device->subslice_total < 1 || device->eu_total < 1) {
535 intel_logw("Kernel 4.1 required to properly query GPU properties");
536 }
537 } else if (device->info.gen == 7) {
538 device->subslice_total = 1 << (device->info.gt - 1);
539 }
540
541 if (device->info.is_cherryview &&
542 device->subslice_total > 0 && device->eu_total > 0) {
543 /* Logical CS threads = EUs per subslice * num threads per EU */
544 uint32_t max_cs_threads =
545 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
546
547 /* Fuse configurations may give more threads than expected, never less. */
548 if (max_cs_threads > device->info.max_cs_threads)
549 device->info.max_cs_threads = max_cs_threads;
550 }
551
552 device->compiler = brw_compiler_create(NULL, &device->info);
553 if (device->compiler == NULL) {
554 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
555 goto fail;
556 }
557 device->compiler->shader_debug_log = compiler_debug_log;
558 device->compiler->shader_perf_log = compiler_perf_log;
559 device->compiler->supports_pull_constants = false;
560 device->compiler->constant_buffer_0_is_relative =
561 device->info.gen < 8 || !device->has_context_isolation;
562 device->compiler->supports_shader_constants = true;
563
564 /* Broadwell PRM says:
565 *
566 * "Before Gen8, there was a historical configuration control field to
567 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
568 * different places: TILECTL[1:0], ARB_MODE[5:4], and
569 * DISP_ARB_CTL[14:13].
570 *
571 * For Gen8 and subsequent generations, the swizzle fields are all
572 * reserved, and the CPU's memory controller performs all address
573 * swizzling modifications."
574 */
575 bool swizzled =
576 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
577
578 isl_device_init(&device->isl_dev, &device->info, swizzled);
579
580 result = anv_physical_device_init_uuids(device);
581 if (result != VK_SUCCESS)
582 goto fail;
583
584 anv_physical_device_init_disk_cache(device);
585
586 if (instance->enabled_extensions.KHR_display) {
587 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
588 if (master_fd >= 0) {
589 /* prod the device with a GETPARAM call which will fail if
590 * we don't have permission to even render on this device
591 */
592 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
593 close(master_fd);
594 master_fd = -1;
595 }
596 }
597 }
598 device->master_fd = master_fd;
599
600 result = anv_init_wsi(device);
601 if (result != VK_SUCCESS) {
602 ralloc_free(device->compiler);
603 anv_physical_device_free_disk_cache(device);
604 goto fail;
605 }
606
607 device->perf = anv_get_perf(&device->info, fd);
608
609 anv_physical_device_get_supported_extensions(device,
610 &device->supported_extensions);
611
612
613 device->local_fd = fd;
614
615 return VK_SUCCESS;
616
617 fail:
618 close(fd);
619 if (master_fd != -1)
620 close(master_fd);
621 return result;
622 }
623
624 static void
625 anv_physical_device_finish(struct anv_physical_device *device)
626 {
627 anv_finish_wsi(device);
628 anv_physical_device_free_disk_cache(device);
629 ralloc_free(device->compiler);
630 ralloc_free(device->perf);
631 close(device->local_fd);
632 if (device->master_fd >= 0)
633 close(device->master_fd);
634 }
635
636 static void *
637 default_alloc_func(void *pUserData, size_t size, size_t align,
638 VkSystemAllocationScope allocationScope)
639 {
640 return malloc(size);
641 }
642
643 static void *
644 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
645 size_t align, VkSystemAllocationScope allocationScope)
646 {
647 return realloc(pOriginal, size);
648 }
649
650 static void
651 default_free_func(void *pUserData, void *pMemory)
652 {
653 free(pMemory);
654 }
655
656 static const VkAllocationCallbacks default_alloc = {
657 .pUserData = NULL,
658 .pfnAllocation = default_alloc_func,
659 .pfnReallocation = default_realloc_func,
660 .pfnFree = default_free_func,
661 };
662
663 VkResult anv_EnumerateInstanceExtensionProperties(
664 const char* pLayerName,
665 uint32_t* pPropertyCount,
666 VkExtensionProperties* pProperties)
667 {
668 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
669
670 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
671 if (anv_instance_extensions_supported.extensions[i]) {
672 vk_outarray_append(&out, prop) {
673 *prop = anv_instance_extensions[i];
674 }
675 }
676 }
677
678 return vk_outarray_status(&out);
679 }
680
681 VkResult anv_CreateInstance(
682 const VkInstanceCreateInfo* pCreateInfo,
683 const VkAllocationCallbacks* pAllocator,
684 VkInstance* pInstance)
685 {
686 struct anv_instance *instance;
687 VkResult result;
688
689 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
690
691 struct anv_instance_extension_table enabled_extensions = {};
692 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
693 int idx;
694 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
695 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
696 anv_instance_extensions[idx].extensionName) == 0)
697 break;
698 }
699
700 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
701 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
702
703 if (!anv_instance_extensions_supported.extensions[idx])
704 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
705
706 enabled_extensions.extensions[idx] = true;
707 }
708
709 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
710 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
711 if (!instance)
712 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
713
714 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
715
716 if (pAllocator)
717 instance->alloc = *pAllocator;
718 else
719 instance->alloc = default_alloc;
720
721 instance->app_info = (struct anv_app_info) { .api_version = 0 };
722 if (pCreateInfo->pApplicationInfo) {
723 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
724
725 instance->app_info.app_name =
726 vk_strdup(&instance->alloc, app->pApplicationName,
727 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
728 instance->app_info.app_version = app->applicationVersion;
729
730 instance->app_info.engine_name =
731 vk_strdup(&instance->alloc, app->pEngineName,
732 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
733 instance->app_info.engine_version = app->engineVersion;
734
735 instance->app_info.api_version = app->apiVersion;
736 }
737
738 if (instance->app_info.api_version == 0)
739 instance->app_info.api_version = VK_API_VERSION_1_0;
740
741 instance->enabled_extensions = enabled_extensions;
742
743 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
744 /* Vulkan requires that entrypoints for extensions which have not been
745 * enabled must not be advertised.
746 */
747 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
748 &instance->enabled_extensions)) {
749 instance->dispatch.entrypoints[i] = NULL;
750 } else {
751 instance->dispatch.entrypoints[i] =
752 anv_instance_dispatch_table.entrypoints[i];
753 }
754 }
755
756 struct anv_physical_device *pdevice = &instance->physicalDevice;
757 for (unsigned i = 0; i < ARRAY_SIZE(pdevice->dispatch.entrypoints); i++) {
758 /* Vulkan requires that entrypoints for extensions which have not been
759 * enabled must not be advertised.
760 */
761 if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
762 &instance->enabled_extensions)) {
763 pdevice->dispatch.entrypoints[i] = NULL;
764 } else {
765 pdevice->dispatch.entrypoints[i] =
766 anv_physical_device_dispatch_table.entrypoints[i];
767 }
768 }
769
770 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
771 /* Vulkan requires that entrypoints for extensions which have not been
772 * enabled must not be advertised.
773 */
774 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
775 &instance->enabled_extensions, NULL)) {
776 instance->device_dispatch.entrypoints[i] = NULL;
777 } else {
778 instance->device_dispatch.entrypoints[i] =
779 anv_device_dispatch_table.entrypoints[i];
780 }
781 }
782
783 instance->physicalDeviceCount = -1;
784
785 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
786 if (result != VK_SUCCESS) {
787 vk_free2(&default_alloc, pAllocator, instance);
788 return vk_error(result);
789 }
790
791 instance->pipeline_cache_enabled =
792 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
793
794 glsl_type_singleton_init_or_ref();
795
796 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
797
798 driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
799 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
800 0, "anv", NULL,
801 instance->app_info.engine_name,
802 instance->app_info.engine_version);
803
804 *pInstance = anv_instance_to_handle(instance);
805
806 return VK_SUCCESS;
807 }
808
809 void anv_DestroyInstance(
810 VkInstance _instance,
811 const VkAllocationCallbacks* pAllocator)
812 {
813 ANV_FROM_HANDLE(anv_instance, instance, _instance);
814
815 if (!instance)
816 return;
817
818 if (instance->physicalDeviceCount > 0) {
819 /* We support at most one physical device. */
820 assert(instance->physicalDeviceCount == 1);
821 anv_physical_device_finish(&instance->physicalDevice);
822 }
823
824 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
825 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
826
827 VG(VALGRIND_DESTROY_MEMPOOL(instance));
828
829 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
830
831 glsl_type_singleton_decref();
832
833 driDestroyOptionCache(&instance->dri_options);
834 driDestroyOptionInfo(&instance->available_dri_options);
835
836 vk_free(&instance->alloc, instance);
837 }
838
839 static VkResult
840 anv_enumerate_devices(struct anv_instance *instance)
841 {
842 /* TODO: Check for more devices ? */
843 drmDevicePtr devices[8];
844 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
845 int max_devices;
846
847 instance->physicalDeviceCount = 0;
848
849 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
850 if (max_devices < 1)
851 return VK_ERROR_INCOMPATIBLE_DRIVER;
852
853 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
854 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
855 devices[i]->bustype == DRM_BUS_PCI &&
856 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
857
858 result = anv_physical_device_init(&instance->physicalDevice,
859 instance, devices[i]);
860 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
861 break;
862 }
863 }
864 drmFreeDevices(devices, max_devices);
865
866 if (result == VK_SUCCESS)
867 instance->physicalDeviceCount = 1;
868
869 return result;
870 }
871
872 static VkResult
873 anv_instance_ensure_physical_device(struct anv_instance *instance)
874 {
875 if (instance->physicalDeviceCount < 0) {
876 VkResult result = anv_enumerate_devices(instance);
877 if (result != VK_SUCCESS &&
878 result != VK_ERROR_INCOMPATIBLE_DRIVER)
879 return result;
880 }
881
882 return VK_SUCCESS;
883 }
884
885 VkResult anv_EnumeratePhysicalDevices(
886 VkInstance _instance,
887 uint32_t* pPhysicalDeviceCount,
888 VkPhysicalDevice* pPhysicalDevices)
889 {
890 ANV_FROM_HANDLE(anv_instance, instance, _instance);
891 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
892
893 VkResult result = anv_instance_ensure_physical_device(instance);
894 if (result != VK_SUCCESS)
895 return result;
896
897 if (instance->physicalDeviceCount == 0)
898 return VK_SUCCESS;
899
900 assert(instance->physicalDeviceCount == 1);
901 vk_outarray_append(&out, i) {
902 *i = anv_physical_device_to_handle(&instance->physicalDevice);
903 }
904
905 return vk_outarray_status(&out);
906 }
907
908 VkResult anv_EnumeratePhysicalDeviceGroups(
909 VkInstance _instance,
910 uint32_t* pPhysicalDeviceGroupCount,
911 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
912 {
913 ANV_FROM_HANDLE(anv_instance, instance, _instance);
914 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
915 pPhysicalDeviceGroupCount);
916
917 VkResult result = anv_instance_ensure_physical_device(instance);
918 if (result != VK_SUCCESS)
919 return result;
920
921 if (instance->physicalDeviceCount == 0)
922 return VK_SUCCESS;
923
924 assert(instance->physicalDeviceCount == 1);
925
926 vk_outarray_append(&out, p) {
927 p->physicalDeviceCount = 1;
928 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
929 p->physicalDevices[0] =
930 anv_physical_device_to_handle(&instance->physicalDevice);
931 p->subsetAllocation = false;
932
933 vk_foreach_struct(ext, p->pNext)
934 anv_debug_ignored_stype(ext->sType);
935 }
936
937 return vk_outarray_status(&out);
938 }
939
940 void anv_GetPhysicalDeviceFeatures(
941 VkPhysicalDevice physicalDevice,
942 VkPhysicalDeviceFeatures* pFeatures)
943 {
944 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
945
946 *pFeatures = (VkPhysicalDeviceFeatures) {
947 .robustBufferAccess = true,
948 .fullDrawIndexUint32 = true,
949 .imageCubeArray = true,
950 .independentBlend = true,
951 .geometryShader = true,
952 .tessellationShader = true,
953 .sampleRateShading = true,
954 .dualSrcBlend = true,
955 .logicOp = true,
956 .multiDrawIndirect = true,
957 .drawIndirectFirstInstance = true,
958 .depthClamp = true,
959 .depthBiasClamp = true,
960 .fillModeNonSolid = true,
961 .depthBounds = pdevice->info.gen >= 12,
962 .wideLines = true,
963 .largePoints = true,
964 .alphaToOne = true,
965 .multiViewport = true,
966 .samplerAnisotropy = true,
967 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
968 pdevice->info.is_baytrail,
969 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
970 .textureCompressionBC = true,
971 .occlusionQueryPrecise = true,
972 .pipelineStatisticsQuery = true,
973 .fragmentStoresAndAtomics = true,
974 .shaderTessellationAndGeometryPointSize = true,
975 .shaderImageGatherExtended = true,
976 .shaderStorageImageExtendedFormats = true,
977 .shaderStorageImageMultisample = false,
978 .shaderStorageImageReadWithoutFormat = false,
979 .shaderStorageImageWriteWithoutFormat = true,
980 .shaderUniformBufferArrayDynamicIndexing = true,
981 .shaderSampledImageArrayDynamicIndexing = true,
982 .shaderStorageBufferArrayDynamicIndexing = true,
983 .shaderStorageImageArrayDynamicIndexing = true,
984 .shaderClipDistance = true,
985 .shaderCullDistance = true,
986 .shaderFloat64 = pdevice->info.gen >= 8 &&
987 pdevice->info.has_64bit_types,
988 .shaderInt64 = pdevice->info.gen >= 8 &&
989 pdevice->info.has_64bit_types,
990 .shaderInt16 = pdevice->info.gen >= 8,
991 .shaderResourceMinLod = pdevice->info.gen >= 9,
992 .variableMultisampleRate = true,
993 .inheritedQueries = true,
994 };
995
996 /* We can't do image stores in vec4 shaders */
997 pFeatures->vertexPipelineStoresAndAtomics =
998 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
999 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
1000
1001 struct anv_app_info *app_info = &pdevice->instance->app_info;
1002
1003 /* The new DOOM and Wolfenstein games require depthBounds without
1004 * checking for it. They seem to run fine without it so just claim it's
1005 * there and accept the consequences.
1006 */
1007 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
1008 pFeatures->depthBounds = true;
1009 }
1010
1011 void anv_GetPhysicalDeviceFeatures2(
1012 VkPhysicalDevice physicalDevice,
1013 VkPhysicalDeviceFeatures2* pFeatures)
1014 {
1015 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1016 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1017
1018 vk_foreach_struct(ext, pFeatures->pNext) {
1019 switch (ext->sType) {
1020 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
1021 VkPhysicalDevice8BitStorageFeaturesKHR *features =
1022 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
1023 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
1024 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
1025 features->storagePushConstant8 = pdevice->info.gen >= 8;
1026 break;
1027 }
1028
1029 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1030 VkPhysicalDevice16BitStorageFeatures *features =
1031 (VkPhysicalDevice16BitStorageFeatures *)ext;
1032 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
1033 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
1034 features->storagePushConstant16 = pdevice->info.gen >= 8;
1035 features->storageInputOutput16 = false;
1036 break;
1037 }
1038
1039 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1040 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1041 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1042 features->bufferDeviceAddressCaptureReplay = false;
1043 features->bufferDeviceAddressMultiDevice = false;
1044 break;
1045 }
1046
1047 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1048 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1049 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1050 features->computeDerivativeGroupQuads = true;
1051 features->computeDerivativeGroupLinear = true;
1052 break;
1053 }
1054
1055 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1056 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1057 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1058 features->conditionalRendering = pdevice->info.gen >= 8 ||
1059 pdevice->info.is_haswell;
1060 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1061 pdevice->info.is_haswell;
1062 break;
1063 }
1064
1065 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1066 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1067 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1068 features->depthClipEnable = true;
1069 break;
1070 }
1071
1072 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1073 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1074 features->shaderFloat16 = pdevice->info.gen >= 8;
1075 features->shaderInt8 = pdevice->info.gen >= 8;
1076 break;
1077 }
1078
1079 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1080 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1081 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1082 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1083 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1084 features->fragmentShaderShadingRateInterlock = false;
1085 break;
1086 }
1087
1088 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1089 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1090 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1091 features->hostQueryReset = true;
1092 break;
1093 }
1094
1095 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1096 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1097 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1098 features->shaderInputAttachmentArrayDynamicIndexing = false;
1099 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1100 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1101 features->shaderUniformBufferArrayNonUniformIndexing = false;
1102 features->shaderSampledImageArrayNonUniformIndexing = true;
1103 features->shaderStorageBufferArrayNonUniformIndexing = true;
1104 features->shaderStorageImageArrayNonUniformIndexing = true;
1105 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1106 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1107 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1108 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1109 features->descriptorBindingSampledImageUpdateAfterBind = true;
1110 features->descriptorBindingStorageImageUpdateAfterBind = true;
1111 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1112 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1113 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1114 features->descriptorBindingUpdateUnusedWhilePending = true;
1115 features->descriptorBindingPartiallyBound = true;
1116 features->descriptorBindingVariableDescriptorCount = false;
1117 features->runtimeDescriptorArray = true;
1118 break;
1119 }
1120
1121 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1122 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1123 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1124 features->indexTypeUint8 = true;
1125 break;
1126 }
1127
1128 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1129 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1130 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1131 features->inlineUniformBlock = true;
1132 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1133 break;
1134 }
1135
1136 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1137 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1138 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1139 features->rectangularLines = true;
1140 features->bresenhamLines = true;
1141 features->smoothLines = true;
1142 features->stippledRectangularLines = false;
1143 features->stippledBresenhamLines = true;
1144 features->stippledSmoothLines = false;
1145 break;
1146 }
1147
1148 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1149 VkPhysicalDeviceMultiviewFeatures *features =
1150 (VkPhysicalDeviceMultiviewFeatures *)ext;
1151 features->multiview = true;
1152 features->multiviewGeometryShader = true;
1153 features->multiviewTessellationShader = true;
1154 break;
1155 }
1156
1157 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1158 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1159 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1160 features->imagelessFramebuffer = true;
1161 break;
1162 }
1163
1164 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1165 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1166 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1167 features->pipelineExecutableInfo = true;
1168 break;
1169 }
1170
1171 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1172 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1173 features->protectedMemory = false;
1174 break;
1175 }
1176
1177 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1178 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1179 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1180 features->samplerYcbcrConversion = true;
1181 break;
1182 }
1183
1184 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1185 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1186 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1187 features->scalarBlockLayout = true;
1188 break;
1189 }
1190
1191 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: {
1192 VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *features =
1193 (VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *)ext;
1194 features->separateDepthStencilLayouts = true;
1195 break;
1196 }
1197
1198 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1199 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1200 features->shaderBufferInt64Atomics =
1201 pdevice->info.gen >= 9 && pdevice->use_softpin;
1202 features->shaderSharedInt64Atomics = VK_FALSE;
1203 break;
1204 }
1205
1206 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1207 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1208 features->shaderDemoteToHelperInvocation = true;
1209 break;
1210 }
1211
1212 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1213 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1214 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1215 features->shaderSubgroupClock = true;
1216 features->shaderDeviceClock = false;
1217 break;
1218 }
1219
1220 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1221 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1222 features->shaderDrawParameters = true;
1223 break;
1224 }
1225
1226 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
1227 VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
1228 (VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
1229 features->shaderSubgroupExtendedTypes = true;
1230 break;
1231 }
1232
1233 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1234 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1235 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1236 features->subgroupSizeControl = true;
1237 features->computeFullSubgroups = true;
1238 break;
1239 }
1240
1241 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1242 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1243 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1244 features->texelBufferAlignment = true;
1245 break;
1246 }
1247
1248 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES_KHR: {
1249 VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *features =
1250 (VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *) ext;
1251 features->timelineSemaphore = true;
1252 break;
1253 }
1254
1255 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1256 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1257 features->variablePointersStorageBuffer = true;
1258 features->variablePointers = true;
1259 break;
1260 }
1261
1262 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1263 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1264 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1265 features->transformFeedback = true;
1266 features->geometryStreams = true;
1267 break;
1268 }
1269
1270 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1271 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1272 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1273 features->uniformBufferStandardLayout = true;
1274 break;
1275 }
1276
1277 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1278 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1279 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1280 features->vertexAttributeInstanceRateDivisor = true;
1281 features->vertexAttributeInstanceRateZeroDivisor = true;
1282 break;
1283 }
1284
1285 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR: {
1286 VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *features = (void *)ext;
1287 features->vulkanMemoryModel = true;
1288 features->vulkanMemoryModelDeviceScope = true;
1289 features->vulkanMemoryModelAvailabilityVisibilityChains = true;
1290 break;
1291 }
1292
1293 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1294 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1295 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1296 features->ycbcrImageArrays = true;
1297 break;
1298 }
1299
1300 default:
1301 anv_debug_ignored_stype(ext->sType);
1302 break;
1303 }
1304 }
1305 }
1306
1307 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1308
1309 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1310 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1311
1312 void anv_GetPhysicalDeviceProperties(
1313 VkPhysicalDevice physicalDevice,
1314 VkPhysicalDeviceProperties* pProperties)
1315 {
1316 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1317 const struct gen_device_info *devinfo = &pdevice->info;
1318
1319 /* See assertions made when programming the buffer surface state. */
1320 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1321 (1ul << 30) : (1ul << 27);
1322
1323 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1324 const uint32_t max_textures =
1325 pdevice->has_bindless_images ? UINT16_MAX : 128;
1326 const uint32_t max_samplers =
1327 pdevice->has_bindless_samplers ? UINT16_MAX :
1328 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1329 const uint32_t max_images =
1330 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1331
1332 /* If we can use bindless for everything, claim a high per-stage limit,
1333 * otherwise use the binding table size, minus the slots reserved for
1334 * render targets and one slot for the descriptor buffer. */
1335 const uint32_t max_per_stage =
1336 pdevice->has_bindless_images && pdevice->has_a64_buffer_access
1337 ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
1338
1339 const uint32_t max_workgroup_size = 32 * devinfo->max_cs_threads;
1340
1341 VkSampleCountFlags sample_counts =
1342 isl_device_get_sample_counts(&pdevice->isl_dev);
1343
1344
1345 VkPhysicalDeviceLimits limits = {
1346 .maxImageDimension1D = (1 << 14),
1347 .maxImageDimension2D = (1 << 14),
1348 .maxImageDimension3D = (1 << 11),
1349 .maxImageDimensionCube = (1 << 14),
1350 .maxImageArrayLayers = (1 << 11),
1351 .maxTexelBufferElements = 128 * 1024 * 1024,
1352 .maxUniformBufferRange = (1ul << 27),
1353 .maxStorageBufferRange = max_raw_buffer_sz,
1354 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1355 .maxMemoryAllocationCount = UINT32_MAX,
1356 .maxSamplerAllocationCount = 64 * 1024,
1357 .bufferImageGranularity = 64, /* A cache line */
1358 .sparseAddressSpaceSize = 0,
1359 .maxBoundDescriptorSets = MAX_SETS,
1360 .maxPerStageDescriptorSamplers = max_samplers,
1361 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1362 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1363 .maxPerStageDescriptorSampledImages = max_textures,
1364 .maxPerStageDescriptorStorageImages = max_images,
1365 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1366 .maxPerStageResources = max_per_stage,
1367 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1368 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1369 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1370 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1371 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1372 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1373 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1374 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1375 .maxVertexInputAttributes = MAX_VBS,
1376 .maxVertexInputBindings = MAX_VBS,
1377 .maxVertexInputAttributeOffset = 2047,
1378 .maxVertexInputBindingStride = 2048,
1379 .maxVertexOutputComponents = 128,
1380 .maxTessellationGenerationLevel = 64,
1381 .maxTessellationPatchSize = 32,
1382 .maxTessellationControlPerVertexInputComponents = 128,
1383 .maxTessellationControlPerVertexOutputComponents = 128,
1384 .maxTessellationControlPerPatchOutputComponents = 128,
1385 .maxTessellationControlTotalOutputComponents = 2048,
1386 .maxTessellationEvaluationInputComponents = 128,
1387 .maxTessellationEvaluationOutputComponents = 128,
1388 .maxGeometryShaderInvocations = 32,
1389 .maxGeometryInputComponents = 64,
1390 .maxGeometryOutputComponents = 128,
1391 .maxGeometryOutputVertices = 256,
1392 .maxGeometryTotalOutputComponents = 1024,
1393 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1394 .maxFragmentOutputAttachments = 8,
1395 .maxFragmentDualSrcAttachments = 1,
1396 .maxFragmentCombinedOutputResources = 8,
1397 .maxComputeSharedMemorySize = 64 * 1024,
1398 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1399 .maxComputeWorkGroupInvocations = max_workgroup_size,
1400 .maxComputeWorkGroupSize = {
1401 max_workgroup_size,
1402 max_workgroup_size,
1403 max_workgroup_size,
1404 },
1405 .subPixelPrecisionBits = 8,
1406 .subTexelPrecisionBits = 8,
1407 .mipmapPrecisionBits = 8,
1408 .maxDrawIndexedIndexValue = UINT32_MAX,
1409 .maxDrawIndirectCount = UINT32_MAX,
1410 .maxSamplerLodBias = 16,
1411 .maxSamplerAnisotropy = 16,
1412 .maxViewports = MAX_VIEWPORTS,
1413 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1414 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1415 .viewportSubPixelBits = 13, /* We take a float? */
1416 .minMemoryMapAlignment = 4096, /* A page */
1417 /* The dataport requires texel alignment so we need to assume a worst
1418 * case of R32G32B32A32 which is 16 bytes.
1419 */
1420 .minTexelBufferOffsetAlignment = 16,
1421 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1422 .minUniformBufferOffsetAlignment = 32,
1423 .minStorageBufferOffsetAlignment = 4,
1424 .minTexelOffset = -8,
1425 .maxTexelOffset = 7,
1426 .minTexelGatherOffset = -32,
1427 .maxTexelGatherOffset = 31,
1428 .minInterpolationOffset = -0.5,
1429 .maxInterpolationOffset = 0.4375,
1430 .subPixelInterpolationOffsetBits = 4,
1431 .maxFramebufferWidth = (1 << 14),
1432 .maxFramebufferHeight = (1 << 14),
1433 .maxFramebufferLayers = (1 << 11),
1434 .framebufferColorSampleCounts = sample_counts,
1435 .framebufferDepthSampleCounts = sample_counts,
1436 .framebufferStencilSampleCounts = sample_counts,
1437 .framebufferNoAttachmentsSampleCounts = sample_counts,
1438 .maxColorAttachments = MAX_RTS,
1439 .sampledImageColorSampleCounts = sample_counts,
1440 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1441 .sampledImageDepthSampleCounts = sample_counts,
1442 .sampledImageStencilSampleCounts = sample_counts,
1443 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1444 .maxSampleMaskWords = 1,
1445 .timestampComputeAndGraphics = true,
1446 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1447 .maxClipDistances = 8,
1448 .maxCullDistances = 8,
1449 .maxCombinedClipAndCullDistances = 8,
1450 .discreteQueuePriorities = 2,
1451 .pointSizeRange = { 0.125, 255.875 },
1452 .lineWidthRange = {
1453 0.0,
1454 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1455 2047.9921875 : 7.9921875,
1456 },
1457 .pointSizeGranularity = (1.0 / 8.0),
1458 .lineWidthGranularity = (1.0 / 128.0),
1459 .strictLines = false,
1460 .standardSampleLocations = true,
1461 .optimalBufferCopyOffsetAlignment = 128,
1462 .optimalBufferCopyRowPitchAlignment = 128,
1463 .nonCoherentAtomSize = 64,
1464 };
1465
1466 *pProperties = (VkPhysicalDeviceProperties) {
1467 .apiVersion = anv_physical_device_api_version(pdevice),
1468 .driverVersion = vk_get_driver_version(),
1469 .vendorID = 0x8086,
1470 .deviceID = pdevice->chipset_id,
1471 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1472 .limits = limits,
1473 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1474 };
1475
1476 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1477 "%s", pdevice->name);
1478 memcpy(pProperties->pipelineCacheUUID,
1479 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1480 }
1481
1482 void anv_GetPhysicalDeviceProperties2(
1483 VkPhysicalDevice physicalDevice,
1484 VkPhysicalDeviceProperties2* pProperties)
1485 {
1486 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1487
1488 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1489
1490 vk_foreach_struct(ext, pProperties->pNext) {
1491 switch (ext->sType) {
1492 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1493 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1494 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1495
1496 /* We support all of the depth resolve modes */
1497 props->supportedDepthResolveModes =
1498 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1499 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1500 VK_RESOLVE_MODE_MIN_BIT_KHR |
1501 VK_RESOLVE_MODE_MAX_BIT_KHR;
1502
1503 /* Average doesn't make sense for stencil so we don't support that */
1504 props->supportedStencilResolveModes =
1505 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1506 if (pdevice->info.gen >= 8) {
1507 /* The advanced stencil resolve modes currently require stencil
1508 * sampling be supported by the hardware.
1509 */
1510 props->supportedStencilResolveModes |=
1511 VK_RESOLVE_MODE_MIN_BIT_KHR |
1512 VK_RESOLVE_MODE_MAX_BIT_KHR;
1513 }
1514
1515 props->independentResolveNone = true;
1516 props->independentResolve = true;
1517 break;
1518 }
1519
1520 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1521 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1522 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1523
1524 /* It's a bit hard to exactly map our implementation to the limits
1525 * described here. The bindless surface handle in the extended
1526 * message descriptors is 20 bits and it's an index into the table of
1527 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1528 * address. Given that most things consume two surface states per
1529 * view (general/sampled for textures and write-only/read-write for
1530 * images), we claim 2^19 things.
1531 *
1532 * For SSBOs, we just use A64 messages so there is no real limit
1533 * there beyond the limit on the total size of a descriptor set.
1534 */
1535 const unsigned max_bindless_views = 1 << 19;
1536
1537 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1538 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1539 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1540 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1541 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1542 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1543 props->robustBufferAccessUpdateAfterBind = true;
1544 props->quadDivergentImplicitLod = false;
1545 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1546 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1547 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1548 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1549 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1550 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1551 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1552 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1553 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1554 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1555 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1556 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1557 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1558 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1559 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1560 break;
1561 }
1562
1563 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1564 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1565 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1566
1567 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1568 snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1569 "Intel open-source Mesa driver");
1570
1571 snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1572 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1573
1574 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1575 .major = 1,
1576 .minor = 1,
1577 .subminor = 2,
1578 .patch = 0,
1579 };
1580 break;
1581 }
1582
1583 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1584 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1585 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1586 /* Userptr needs page aligned memory. */
1587 props->minImportedHostPointerAlignment = 4096;
1588 break;
1589 }
1590
1591 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1592 VkPhysicalDeviceIDProperties *id_props =
1593 (VkPhysicalDeviceIDProperties *)ext;
1594 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1595 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1596 /* The LUID is for Windows. */
1597 id_props->deviceLUIDValid = false;
1598 break;
1599 }
1600
1601 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1602 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1603 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1604 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1605 props->maxPerStageDescriptorInlineUniformBlocks =
1606 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1607 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1608 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1609 props->maxDescriptorSetInlineUniformBlocks =
1610 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1611 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1612 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1613 break;
1614 }
1615
1616 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1617 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1618 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1619 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1620 * Sampling Rules - Legacy Mode", it says the following:
1621 *
1622 * "Note that the device divides a pixel into a 16x16 array of
1623 * subpixels, referenced by their upper left corners."
1624 *
1625 * This is the only known reference in the PRMs to the subpixel
1626 * precision of line rasterization and a "16x16 array of subpixels"
1627 * implies 4 subpixel precision bits. Empirical testing has shown
1628 * that 4 subpixel precision bits applies to all line rasterization
1629 * types.
1630 */
1631 props->lineSubPixelPrecisionBits = 4;
1632 break;
1633 }
1634
1635 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1636 VkPhysicalDeviceMaintenance3Properties *props =
1637 (VkPhysicalDeviceMaintenance3Properties *)ext;
1638 /* This value doesn't matter for us today as our per-stage
1639 * descriptors are the real limit.
1640 */
1641 props->maxPerSetDescriptors = 1024;
1642 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1643 break;
1644 }
1645
1646 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1647 VkPhysicalDeviceMultiviewProperties *properties =
1648 (VkPhysicalDeviceMultiviewProperties *)ext;
1649 properties->maxMultiviewViewCount = 16;
1650 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1651 break;
1652 }
1653
1654 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1655 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1656 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1657 properties->pciDomain = pdevice->pci_info.domain;
1658 properties->pciBus = pdevice->pci_info.bus;
1659 properties->pciDevice = pdevice->pci_info.device;
1660 properties->pciFunction = pdevice->pci_info.function;
1661 break;
1662 }
1663
1664 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1665 VkPhysicalDevicePointClippingProperties *properties =
1666 (VkPhysicalDevicePointClippingProperties *) ext;
1667 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1668 break;
1669 }
1670
1671 #pragma GCC diagnostic push
1672 #pragma GCC diagnostic ignored "-Wswitch"
1673 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1674 VkPhysicalDevicePresentationPropertiesANDROID *props =
1675 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1676 props->sharedImage = VK_FALSE;
1677 break;
1678 }
1679 #pragma GCC diagnostic pop
1680
1681 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1682 VkPhysicalDeviceProtectedMemoryProperties *props =
1683 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1684 props->protectedNoFault = false;
1685 break;
1686 }
1687
1688 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1689 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1690 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1691
1692 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1693 break;
1694 }
1695
1696 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1697 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1698 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1699 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1700 properties->filterMinmaxSingleComponentFormats = true;
1701 break;
1702 }
1703
1704 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1705 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1706
1707 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1708
1709 VkShaderStageFlags scalar_stages = 0;
1710 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1711 if (pdevice->compiler->scalar_stage[stage])
1712 scalar_stages |= mesa_to_vk_shader_stage(stage);
1713 }
1714 properties->supportedStages = scalar_stages;
1715
1716 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1717 VK_SUBGROUP_FEATURE_VOTE_BIT |
1718 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1719 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1720 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1721 VK_SUBGROUP_FEATURE_QUAD_BIT;
1722 if (pdevice->info.gen >= 8) {
1723 /* TODO: There's no technical reason why these can't be made to
1724 * work on gen7 but they don't at the moment so it's best to leave
1725 * the feature disabled than enabled and broken.
1726 */
1727 properties->supportedOperations |=
1728 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1729 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1730 }
1731 properties->quadOperationsInAllStages = pdevice->info.gen >= 8;
1732 break;
1733 }
1734
1735 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1736 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1737 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1738 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1739 props->minSubgroupSize = 8;
1740 props->maxSubgroupSize = 32;
1741 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1742 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1743 break;
1744 }
1745 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
1746 VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
1747 properties->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1748 properties->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
1749
1750 /* Broadwell does not support HF denorms and there are restrictions
1751 * other gens. According to Kabylake's PRM:
1752 *
1753 * "math - Extended Math Function
1754 * [...]
1755 * Restriction : Half-float denorms are always retained."
1756 */
1757 properties->shaderDenormFlushToZeroFloat16 = false;
1758 properties->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
1759 properties->shaderRoundingModeRTEFloat16 = true;
1760 properties->shaderRoundingModeRTZFloat16 = true;
1761 properties->shaderSignedZeroInfNanPreserveFloat16 = true;
1762
1763 properties->shaderDenormFlushToZeroFloat32 = true;
1764 properties->shaderDenormPreserveFloat32 = true;
1765 properties->shaderRoundingModeRTEFloat32 = true;
1766 properties->shaderRoundingModeRTZFloat32 = true;
1767 properties->shaderSignedZeroInfNanPreserveFloat32 = true;
1768
1769 properties->shaderDenormFlushToZeroFloat64 = true;
1770 properties->shaderDenormPreserveFloat64 = true;
1771 properties->shaderRoundingModeRTEFloat64 = true;
1772 properties->shaderRoundingModeRTZFloat64 = true;
1773 properties->shaderSignedZeroInfNanPreserveFloat64 = true;
1774 break;
1775 }
1776
1777 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1778 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1779 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1780
1781 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1782 * Base Address:
1783 *
1784 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1785 * specifies the base address of the first element of the surface,
1786 * computed in software by adding the surface base address to the
1787 * byte offset of the element in the buffer. The base address must
1788 * be aligned to element size."
1789 *
1790 * The typed dataport messages require that things be texel aligned.
1791 * Otherwise, we may just load/store the wrong data or, in the worst
1792 * case, there may be hangs.
1793 */
1794 props->storageTexelBufferOffsetAlignmentBytes = 16;
1795 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1796
1797 /* The sampler, however, is much more forgiving and it can handle
1798 * arbitrary byte alignment for linear and buffer surfaces. It's
1799 * hard to find a good PRM citation for this but years of empirical
1800 * experience demonstrate that this is true.
1801 */
1802 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1803 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1804 break;
1805 }
1806
1807 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES_KHR: {
1808 VkPhysicalDeviceTimelineSemaphorePropertiesKHR *props =
1809 (VkPhysicalDeviceTimelineSemaphorePropertiesKHR *) ext;
1810 props->maxTimelineSemaphoreValueDifference = UINT64_MAX;
1811 break;
1812 }
1813
1814 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1815 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1816 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1817
1818 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1819 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1820 props->maxTransformFeedbackBufferSize = (1ull << 32);
1821 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1822 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1823 props->maxTransformFeedbackBufferDataStride = 2048;
1824 props->transformFeedbackQueries = true;
1825 props->transformFeedbackStreamsLinesTriangles = false;
1826 props->transformFeedbackRasterizationStreamSelect = false;
1827 props->transformFeedbackDraw = true;
1828 break;
1829 }
1830
1831 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1832 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1833 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1834 /* We have to restrict this a bit for multiview */
1835 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1836 break;
1837 }
1838
1839 default:
1840 anv_debug_ignored_stype(ext->sType);
1841 break;
1842 }
1843 }
1844 }
1845
1846 /* We support exactly one queue family. */
1847 static const VkQueueFamilyProperties
1848 anv_queue_family_properties = {
1849 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1850 VK_QUEUE_COMPUTE_BIT |
1851 VK_QUEUE_TRANSFER_BIT,
1852 .queueCount = 1,
1853 .timestampValidBits = 36, /* XXX: Real value here */
1854 .minImageTransferGranularity = { 1, 1, 1 },
1855 };
1856
1857 void anv_GetPhysicalDeviceQueueFamilyProperties(
1858 VkPhysicalDevice physicalDevice,
1859 uint32_t* pCount,
1860 VkQueueFamilyProperties* pQueueFamilyProperties)
1861 {
1862 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1863
1864 vk_outarray_append(&out, p) {
1865 *p = anv_queue_family_properties;
1866 }
1867 }
1868
1869 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1870 VkPhysicalDevice physicalDevice,
1871 uint32_t* pQueueFamilyPropertyCount,
1872 VkQueueFamilyProperties2* pQueueFamilyProperties)
1873 {
1874
1875 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1876
1877 vk_outarray_append(&out, p) {
1878 p->queueFamilyProperties = anv_queue_family_properties;
1879
1880 vk_foreach_struct(s, p->pNext) {
1881 anv_debug_ignored_stype(s->sType);
1882 }
1883 }
1884 }
1885
1886 void anv_GetPhysicalDeviceMemoryProperties(
1887 VkPhysicalDevice physicalDevice,
1888 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1889 {
1890 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1891
1892 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1893 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1894 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1895 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1896 .heapIndex = physical_device->memory.types[i].heapIndex,
1897 };
1898 }
1899
1900 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1901 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1902 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1903 .size = physical_device->memory.heaps[i].size,
1904 .flags = physical_device->memory.heaps[i].flags,
1905 };
1906 }
1907 }
1908
1909 static void
1910 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1911 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1912 {
1913 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1914 uint64_t sys_available = get_available_system_memory();
1915 assert(sys_available > 0);
1916
1917 VkDeviceSize total_heaps_size = 0;
1918 for (size_t i = 0; i < device->memory.heap_count; i++)
1919 total_heaps_size += device->memory.heaps[i].size;
1920
1921 for (size_t i = 0; i < device->memory.heap_count; i++) {
1922 VkDeviceSize heap_size = device->memory.heaps[i].size;
1923 VkDeviceSize heap_used = device->memory.heaps[i].used;
1924 VkDeviceSize heap_budget;
1925
1926 double heap_proportion = (double) heap_size / total_heaps_size;
1927 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1928
1929 /*
1930 * Let's not incite the app to starve the system: report at most 90% of
1931 * available system memory.
1932 */
1933 uint64_t heap_available = sys_available_prop * 9 / 10;
1934 heap_budget = MIN2(heap_size, heap_used + heap_available);
1935
1936 /*
1937 * Round down to the nearest MB
1938 */
1939 heap_budget &= ~((1ull << 20) - 1);
1940
1941 /*
1942 * The heapBudget value must be non-zero for array elements less than
1943 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1944 * value must be less than or equal to VkMemoryHeap::size for each heap.
1945 */
1946 assert(0 < heap_budget && heap_budget <= heap_size);
1947
1948 memoryBudget->heapUsage[i] = heap_used;
1949 memoryBudget->heapBudget[i] = heap_budget;
1950 }
1951
1952 /* The heapBudget and heapUsage values must be zero for array elements
1953 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1954 */
1955 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1956 memoryBudget->heapBudget[i] = 0;
1957 memoryBudget->heapUsage[i] = 0;
1958 }
1959 }
1960
1961 void anv_GetPhysicalDeviceMemoryProperties2(
1962 VkPhysicalDevice physicalDevice,
1963 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1964 {
1965 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1966 &pMemoryProperties->memoryProperties);
1967
1968 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1969 switch (ext->sType) {
1970 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1971 anv_get_memory_budget(physicalDevice, (void*)ext);
1972 break;
1973 default:
1974 anv_debug_ignored_stype(ext->sType);
1975 break;
1976 }
1977 }
1978 }
1979
1980 void
1981 anv_GetDeviceGroupPeerMemoryFeatures(
1982 VkDevice device,
1983 uint32_t heapIndex,
1984 uint32_t localDeviceIndex,
1985 uint32_t remoteDeviceIndex,
1986 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1987 {
1988 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1989 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1990 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1991 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1992 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1993 }
1994
1995 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1996 VkInstance _instance,
1997 const char* pName)
1998 {
1999 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2000
2001 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
2002 * when we have to return valid function pointers, NULL, or it's left
2003 * undefined. See the table for exact details.
2004 */
2005 if (pName == NULL)
2006 return NULL;
2007
2008 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
2009 if (strcmp(pName, "vk" #entrypoint) == 0) \
2010 return (PFN_vkVoidFunction)anv_##entrypoint
2011
2012 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
2013 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
2014 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
2015 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
2016
2017 #undef LOOKUP_ANV_ENTRYPOINT
2018
2019 if (instance == NULL)
2020 return NULL;
2021
2022 int idx = anv_get_instance_entrypoint_index(pName);
2023 if (idx >= 0)
2024 return instance->dispatch.entrypoints[idx];
2025
2026 idx = anv_get_physical_device_entrypoint_index(pName);
2027 if (idx >= 0)
2028 return instance->physicalDevice.dispatch.entrypoints[idx];
2029
2030 idx = anv_get_device_entrypoint_index(pName);
2031 if (idx >= 0)
2032 return instance->device_dispatch.entrypoints[idx];
2033
2034 return NULL;
2035 }
2036
2037 /* With version 1+ of the loader interface the ICD should expose
2038 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
2039 */
2040 PUBLIC
2041 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2042 VkInstance instance,
2043 const char* pName);
2044
2045 PUBLIC
2046 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2047 VkInstance instance,
2048 const char* pName)
2049 {
2050 return anv_GetInstanceProcAddr(instance, pName);
2051 }
2052
2053 PFN_vkVoidFunction anv_GetDeviceProcAddr(
2054 VkDevice _device,
2055 const char* pName)
2056 {
2057 ANV_FROM_HANDLE(anv_device, device, _device);
2058
2059 if (!device || !pName)
2060 return NULL;
2061
2062 int idx = anv_get_device_entrypoint_index(pName);
2063 if (idx < 0)
2064 return NULL;
2065
2066 return device->dispatch.entrypoints[idx];
2067 }
2068
2069 /* With version 4+ of the loader interface the ICD should expose
2070 * vk_icdGetPhysicalDeviceProcAddr()
2071 */
2072 PUBLIC
2073 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
2074 VkInstance _instance,
2075 const char* pName);
2076
2077 PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
2078 VkInstance _instance,
2079 const char* pName)
2080 {
2081 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2082
2083 if (!pName || !instance)
2084 return NULL;
2085
2086 int idx = anv_get_physical_device_entrypoint_index(pName);
2087 if (idx < 0)
2088 return NULL;
2089
2090 return instance->physicalDevice.dispatch.entrypoints[idx];
2091 }
2092
2093
2094 VkResult
2095 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
2096 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
2097 const VkAllocationCallbacks* pAllocator,
2098 VkDebugReportCallbackEXT* pCallback)
2099 {
2100 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2101 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2102 pCreateInfo, pAllocator, &instance->alloc,
2103 pCallback);
2104 }
2105
2106 void
2107 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
2108 VkDebugReportCallbackEXT _callback,
2109 const VkAllocationCallbacks* pAllocator)
2110 {
2111 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2112 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2113 _callback, pAllocator, &instance->alloc);
2114 }
2115
2116 void
2117 anv_DebugReportMessageEXT(VkInstance _instance,
2118 VkDebugReportFlagsEXT flags,
2119 VkDebugReportObjectTypeEXT objectType,
2120 uint64_t object,
2121 size_t location,
2122 int32_t messageCode,
2123 const char* pLayerPrefix,
2124 const char* pMessage)
2125 {
2126 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2127 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2128 object, location, messageCode, pLayerPrefix, pMessage);
2129 }
2130
2131 static struct anv_state
2132 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2133 {
2134 struct anv_state state;
2135
2136 state = anv_state_pool_alloc(pool, size, align);
2137 memcpy(state.map, p, size);
2138
2139 return state;
2140 }
2141
2142 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
2143 * straightforward 32-bit float color in the first 64 bytes. Instead of using
2144 * a nice float/integer union like Gen8+, Haswell specifies the integer border
2145 * color as a separate entry /after/ the float color. The layout of this entry
2146 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
2147 *
2148 * Since we don't know the format/bpp, we can't make any of the border colors
2149 * containing '1' work for all formats, as it would be in the wrong place for
2150 * some of them. We opt to make 32-bit integers work as this seems like the
2151 * most common option. Fortunately, transparent black works regardless, as
2152 * all zeroes is the same in every bit-size.
2153 */
2154 struct hsw_border_color {
2155 float float32[4];
2156 uint32_t _pad0[12];
2157 uint32_t uint32[4];
2158 uint32_t _pad1[108];
2159 };
2160
2161 struct gen8_border_color {
2162 union {
2163 float float32[4];
2164 uint32_t uint32[4];
2165 };
2166 /* Pad out to 64 bytes */
2167 uint32_t _pad[12];
2168 };
2169
2170 static void
2171 anv_device_init_border_colors(struct anv_device *device)
2172 {
2173 if (device->info.is_haswell) {
2174 static const struct hsw_border_color border_colors[] = {
2175 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2176 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2177 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2178 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2179 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2180 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2181 };
2182
2183 device->border_colors =
2184 anv_state_pool_emit_data(&device->dynamic_state_pool,
2185 sizeof(border_colors), 512, border_colors);
2186 } else {
2187 static const struct gen8_border_color border_colors[] = {
2188 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2189 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2190 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2191 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2192 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2193 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2194 };
2195
2196 device->border_colors =
2197 anv_state_pool_emit_data(&device->dynamic_state_pool,
2198 sizeof(border_colors), 64, border_colors);
2199 }
2200 }
2201
2202 static VkResult
2203 anv_device_init_trivial_batch(struct anv_device *device)
2204 {
2205 VkResult result = anv_device_alloc_bo(device, 4096,
2206 ANV_BO_ALLOC_MAPPED,
2207 &device->trivial_batch_bo);
2208 if (result != VK_SUCCESS)
2209 return result;
2210
2211 struct anv_batch batch = {
2212 .start = device->trivial_batch_bo->map,
2213 .next = device->trivial_batch_bo->map,
2214 .end = device->trivial_batch_bo->map + 4096,
2215 };
2216
2217 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2218 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2219
2220 if (!device->info.has_llc)
2221 gen_clflush_range(batch.start, batch.next - batch.start);
2222
2223 return VK_SUCCESS;
2224 }
2225
2226 VkResult anv_EnumerateDeviceExtensionProperties(
2227 VkPhysicalDevice physicalDevice,
2228 const char* pLayerName,
2229 uint32_t* pPropertyCount,
2230 VkExtensionProperties* pProperties)
2231 {
2232 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2233 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2234
2235 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2236 if (device->supported_extensions.extensions[i]) {
2237 vk_outarray_append(&out, prop) {
2238 *prop = anv_device_extensions[i];
2239 }
2240 }
2241 }
2242
2243 return vk_outarray_status(&out);
2244 }
2245
2246 static void
2247 anv_device_init_dispatch(struct anv_device *device)
2248 {
2249 const struct anv_device_dispatch_table *genX_table;
2250 switch (device->info.gen) {
2251 case 12:
2252 genX_table = &gen12_device_dispatch_table;
2253 break;
2254 case 11:
2255 genX_table = &gen11_device_dispatch_table;
2256 break;
2257 case 10:
2258 genX_table = &gen10_device_dispatch_table;
2259 break;
2260 case 9:
2261 genX_table = &gen9_device_dispatch_table;
2262 break;
2263 case 8:
2264 genX_table = &gen8_device_dispatch_table;
2265 break;
2266 case 7:
2267 if (device->info.is_haswell)
2268 genX_table = &gen75_device_dispatch_table;
2269 else
2270 genX_table = &gen7_device_dispatch_table;
2271 break;
2272 default:
2273 unreachable("unsupported gen\n");
2274 }
2275
2276 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2277 /* Vulkan requires that entrypoints for extensions which have not been
2278 * enabled must not be advertised.
2279 */
2280 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
2281 &device->instance->enabled_extensions,
2282 &device->enabled_extensions)) {
2283 device->dispatch.entrypoints[i] = NULL;
2284 } else if (genX_table->entrypoints[i]) {
2285 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2286 } else {
2287 device->dispatch.entrypoints[i] =
2288 anv_device_dispatch_table.entrypoints[i];
2289 }
2290 }
2291 }
2292
2293 static int
2294 vk_priority_to_gen(int priority)
2295 {
2296 switch (priority) {
2297 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2298 return GEN_CONTEXT_LOW_PRIORITY;
2299 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2300 return GEN_CONTEXT_MEDIUM_PRIORITY;
2301 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2302 return GEN_CONTEXT_HIGH_PRIORITY;
2303 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2304 return GEN_CONTEXT_REALTIME_PRIORITY;
2305 default:
2306 unreachable("Invalid priority");
2307 }
2308 }
2309
2310 static VkResult
2311 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2312 {
2313 VkResult result = anv_device_alloc_bo(device, 4096,
2314 ANV_BO_ALLOC_MAPPED,
2315 &device->hiz_clear_bo);
2316 if (result != VK_SUCCESS)
2317 return result;
2318
2319 union isl_color_value hiz_clear = { .u32 = { 0, } };
2320 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2321
2322 memcpy(device->hiz_clear_bo->map, hiz_clear.u32, sizeof(hiz_clear.u32));
2323
2324 if (!device->info.has_llc)
2325 gen_clflush_range(device->hiz_clear_bo->map, sizeof(hiz_clear.u32));
2326
2327 return VK_SUCCESS;
2328 }
2329
2330 static bool
2331 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2332 struct anv_block_pool *pool,
2333 uint64_t address)
2334 {
2335 anv_block_pool_foreach_bo(bo, pool) {
2336 uint64_t bo_address = gen_48b_address(bo->offset);
2337 if (address >= bo_address && address < (bo_address + bo->size)) {
2338 *ret = (struct gen_batch_decode_bo) {
2339 .addr = bo_address,
2340 .size = bo->size,
2341 .map = bo->map,
2342 };
2343 return true;
2344 }
2345 }
2346 return false;
2347 }
2348
2349 /* Finding a buffer for batch decoding */
2350 static struct gen_batch_decode_bo
2351 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2352 {
2353 struct anv_device *device = v_batch;
2354 struct gen_batch_decode_bo ret_bo = {};
2355
2356 assert(ppgtt);
2357
2358 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2359 return ret_bo;
2360 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2361 return ret_bo;
2362 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2363 return ret_bo;
2364 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2365 return ret_bo;
2366
2367 if (!device->cmd_buffer_being_decoded)
2368 return (struct gen_batch_decode_bo) { };
2369
2370 struct anv_batch_bo **bo;
2371
2372 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2373 /* The decoder zeroes out the top 16 bits, so we need to as well */
2374 uint64_t bo_address = (*bo)->bo->offset & (~0ull >> 16);
2375
2376 if (address >= bo_address && address < bo_address + (*bo)->bo->size) {
2377 return (struct gen_batch_decode_bo) {
2378 .addr = bo_address,
2379 .size = (*bo)->bo->size,
2380 .map = (*bo)->bo->map,
2381 };
2382 }
2383 }
2384
2385 return (struct gen_batch_decode_bo) { };
2386 }
2387
2388 struct gen_aux_map_buffer {
2389 struct gen_buffer base;
2390 struct anv_state state;
2391 };
2392
2393 static struct gen_buffer *
2394 gen_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
2395 {
2396 struct gen_aux_map_buffer *buf = malloc(sizeof(struct gen_aux_map_buffer));
2397 if (!buf)
2398 return NULL;
2399
2400 struct anv_device *device = (struct anv_device*)driver_ctx;
2401 assert(device->instance->physicalDevice.supports_48bit_addresses &&
2402 device->instance->physicalDevice.use_softpin);
2403
2404 struct anv_state_pool *pool = &device->dynamic_state_pool;
2405 buf->state = anv_state_pool_alloc(pool, size, size);
2406
2407 buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset;
2408 buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size;
2409 buf->base.map = buf->state.map;
2410 buf->base.driver_bo = &buf->state;
2411 return &buf->base;
2412 }
2413
2414 static void
2415 gen_aux_map_buffer_free(void *driver_ctx, struct gen_buffer *buffer)
2416 {
2417 struct gen_aux_map_buffer *buf = (struct gen_aux_map_buffer*)buffer;
2418 struct anv_device *device = (struct anv_device*)driver_ctx;
2419 struct anv_state_pool *pool = &device->dynamic_state_pool;
2420 anv_state_pool_free(pool, buf->state);
2421 free(buf);
2422 }
2423
2424 static struct gen_mapped_pinned_buffer_alloc aux_map_allocator = {
2425 .alloc = gen_aux_map_buffer_alloc,
2426 .free = gen_aux_map_buffer_free,
2427 };
2428
2429 VkResult anv_CreateDevice(
2430 VkPhysicalDevice physicalDevice,
2431 const VkDeviceCreateInfo* pCreateInfo,
2432 const VkAllocationCallbacks* pAllocator,
2433 VkDevice* pDevice)
2434 {
2435 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2436 VkResult result;
2437 struct anv_device *device;
2438
2439 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2440
2441 struct anv_device_extension_table enabled_extensions = { };
2442 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2443 int idx;
2444 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2445 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2446 anv_device_extensions[idx].extensionName) == 0)
2447 break;
2448 }
2449
2450 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2451 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2452
2453 if (!physical_device->supported_extensions.extensions[idx])
2454 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2455
2456 enabled_extensions.extensions[idx] = true;
2457 }
2458
2459 /* Check enabled features */
2460 if (pCreateInfo->pEnabledFeatures) {
2461 VkPhysicalDeviceFeatures supported_features;
2462 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2463 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2464 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2465 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2466 for (uint32_t i = 0; i < num_features; i++) {
2467 if (enabled_feature[i] && !supported_feature[i])
2468 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2469 }
2470 }
2471
2472 /* Check requested queues and fail if we are requested to create any
2473 * queues with flags we don't support.
2474 */
2475 assert(pCreateInfo->queueCreateInfoCount > 0);
2476 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2477 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2478 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2479 }
2480
2481 /* Check if client specified queue priority. */
2482 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2483 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2484 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2485
2486 VkQueueGlobalPriorityEXT priority =
2487 queue_priority ? queue_priority->globalPriority :
2488 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2489
2490 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2491 sizeof(*device), 8,
2492 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2493 if (!device)
2494 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2495
2496 if (INTEL_DEBUG & DEBUG_BATCH) {
2497 const unsigned decode_flags =
2498 GEN_BATCH_DECODE_FULL |
2499 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2500 GEN_BATCH_DECODE_OFFSETS |
2501 GEN_BATCH_DECODE_FLOATS;
2502
2503 gen_batch_decode_ctx_init(&device->decoder_ctx,
2504 &physical_device->info,
2505 stderr, decode_flags, NULL,
2506 decode_get_bo, NULL, device);
2507 }
2508
2509 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2510 device->instance = physical_device->instance;
2511 device->chipset_id = physical_device->chipset_id;
2512 device->no_hw = physical_device->no_hw;
2513 device->_lost = false;
2514
2515 if (pAllocator)
2516 device->alloc = *pAllocator;
2517 else
2518 device->alloc = physical_device->instance->alloc;
2519
2520 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2521 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2522 if (device->fd == -1) {
2523 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2524 goto fail_device;
2525 }
2526
2527 device->context_id = anv_gem_create_context(device);
2528 if (device->context_id == -1) {
2529 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2530 goto fail_fd;
2531 }
2532
2533 result = anv_queue_init(device, &device->queue);
2534 if (result != VK_SUCCESS)
2535 goto fail_context_id;
2536
2537 if (physical_device->use_softpin) {
2538 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2539 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2540 goto fail_queue;
2541 }
2542
2543 /* keep the page with address zero out of the allocator */
2544 struct anv_memory_heap *low_heap =
2545 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2546 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2547 device->vma_lo_available = low_heap->size;
2548
2549 struct anv_memory_heap *high_heap =
2550 &physical_device->memory.heaps[0];
2551 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2552 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2553 high_heap->size;
2554 }
2555
2556 list_inithead(&device->memory_objects);
2557
2558 /* As per spec, the driver implementation may deny requests to acquire
2559 * a priority above the default priority (MEDIUM) if the caller does not
2560 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2561 * is returned.
2562 */
2563 if (physical_device->has_context_priority) {
2564 int err = anv_gem_set_context_param(device->fd, device->context_id,
2565 I915_CONTEXT_PARAM_PRIORITY,
2566 vk_priority_to_gen(priority));
2567 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2568 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2569 goto fail_vmas;
2570 }
2571 }
2572
2573 device->info = physical_device->info;
2574 device->isl_dev = physical_device->isl_dev;
2575
2576 /* On Broadwell and later, we can use batch chaining to more efficiently
2577 * implement growing command buffers. Prior to Haswell, the kernel
2578 * command parser gets in the way and we have to fall back to growing
2579 * the batch.
2580 */
2581 device->can_chain_batches = device->info.gen >= 8;
2582
2583 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2584 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2585 device->enabled_extensions = enabled_extensions;
2586
2587 anv_device_init_dispatch(device);
2588
2589 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2590 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2591 goto fail_queue;
2592 }
2593
2594 pthread_condattr_t condattr;
2595 if (pthread_condattr_init(&condattr) != 0) {
2596 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2597 goto fail_mutex;
2598 }
2599 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2600 pthread_condattr_destroy(&condattr);
2601 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2602 goto fail_mutex;
2603 }
2604 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2605 pthread_condattr_destroy(&condattr);
2606 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2607 goto fail_mutex;
2608 }
2609 pthread_condattr_destroy(&condattr);
2610
2611 uint64_t bo_flags =
2612 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2613 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2614 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2615 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2616
2617 result = anv_bo_cache_init(&device->bo_cache);
2618 if (result != VK_SUCCESS)
2619 goto fail_queue_cond;
2620
2621 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2622
2623 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2624 DYNAMIC_STATE_POOL_MIN_ADDRESS, 16384);
2625 if (result != VK_SUCCESS)
2626 goto fail_batch_bo_pool;
2627
2628 result = anv_state_pool_init(&device->instruction_state_pool, device,
2629 INSTRUCTION_STATE_POOL_MIN_ADDRESS, 16384);
2630 if (result != VK_SUCCESS)
2631 goto fail_dynamic_state_pool;
2632
2633 result = anv_state_pool_init(&device->surface_state_pool, device,
2634 SURFACE_STATE_POOL_MIN_ADDRESS, 4096);
2635 if (result != VK_SUCCESS)
2636 goto fail_instruction_state_pool;
2637
2638 if (physical_device->use_softpin) {
2639 result = anv_state_pool_init(&device->binding_table_pool, device,
2640 BINDING_TABLE_POOL_MIN_ADDRESS, 4096);
2641 if (result != VK_SUCCESS)
2642 goto fail_surface_state_pool;
2643 }
2644
2645 if (device->info.gen >= 12) {
2646 device->aux_map_ctx = gen_aux_map_init(device, &aux_map_allocator,
2647 &physical_device->info);
2648 if (!device->aux_map_ctx)
2649 goto fail_binding_table_pool;
2650 }
2651
2652 result = anv_device_alloc_bo(device, 4096, 0, &device->workaround_bo);
2653 if (result != VK_SUCCESS)
2654 goto fail_surface_aux_map_pool;
2655
2656 result = anv_device_init_trivial_batch(device);
2657 if (result != VK_SUCCESS)
2658 goto fail_workaround_bo;
2659
2660 if (device->info.gen >= 10) {
2661 result = anv_device_init_hiz_clear_value_bo(device);
2662 if (result != VK_SUCCESS)
2663 goto fail_trivial_batch_bo;
2664 }
2665
2666 anv_scratch_pool_init(device, &device->scratch_pool);
2667
2668 switch (device->info.gen) {
2669 case 7:
2670 if (!device->info.is_haswell)
2671 result = gen7_init_device_state(device);
2672 else
2673 result = gen75_init_device_state(device);
2674 break;
2675 case 8:
2676 result = gen8_init_device_state(device);
2677 break;
2678 case 9:
2679 result = gen9_init_device_state(device);
2680 break;
2681 case 10:
2682 result = gen10_init_device_state(device);
2683 break;
2684 case 11:
2685 result = gen11_init_device_state(device);
2686 break;
2687 case 12:
2688 result = gen12_init_device_state(device);
2689 break;
2690 default:
2691 /* Shouldn't get here as we don't create physical devices for any other
2692 * gens. */
2693 unreachable("unhandled gen");
2694 }
2695 if (result != VK_SUCCESS)
2696 goto fail_workaround_bo;
2697
2698 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2699
2700 anv_device_init_blorp(device);
2701
2702 anv_device_init_border_colors(device);
2703
2704 anv_device_perf_init(device);
2705
2706 *pDevice = anv_device_to_handle(device);
2707
2708 return VK_SUCCESS;
2709
2710 fail_workaround_bo:
2711 anv_scratch_pool_finish(device, &device->scratch_pool);
2712 if (device->info.gen >= 10)
2713 anv_device_release_bo(device, device->hiz_clear_bo);
2714 anv_device_release_bo(device, device->workaround_bo);
2715 fail_trivial_batch_bo:
2716 anv_device_release_bo(device, device->trivial_batch_bo);
2717 fail_surface_aux_map_pool:
2718 if (device->info.gen >= 12) {
2719 gen_aux_map_finish(device->aux_map_ctx);
2720 device->aux_map_ctx = NULL;
2721 }
2722 fail_binding_table_pool:
2723 if (physical_device->use_softpin)
2724 anv_state_pool_finish(&device->binding_table_pool);
2725 fail_surface_state_pool:
2726 anv_state_pool_finish(&device->surface_state_pool);
2727 fail_instruction_state_pool:
2728 anv_state_pool_finish(&device->instruction_state_pool);
2729 fail_dynamic_state_pool:
2730 anv_state_pool_finish(&device->dynamic_state_pool);
2731 fail_batch_bo_pool:
2732 anv_bo_pool_finish(&device->batch_bo_pool);
2733 anv_bo_cache_finish(&device->bo_cache);
2734 fail_queue_cond:
2735 pthread_cond_destroy(&device->queue_submit);
2736 fail_mutex:
2737 pthread_mutex_destroy(&device->mutex);
2738 fail_vmas:
2739 if (physical_device->use_softpin) {
2740 util_vma_heap_finish(&device->vma_hi);
2741 util_vma_heap_finish(&device->vma_lo);
2742 }
2743 fail_queue:
2744 anv_queue_finish(&device->queue);
2745 fail_context_id:
2746 anv_gem_destroy_context(device, device->context_id);
2747 fail_fd:
2748 close(device->fd);
2749 fail_device:
2750 vk_free(&device->alloc, device);
2751
2752 return result;
2753 }
2754
2755 void anv_DestroyDevice(
2756 VkDevice _device,
2757 const VkAllocationCallbacks* pAllocator)
2758 {
2759 ANV_FROM_HANDLE(anv_device, device, _device);
2760 struct anv_physical_device *physical_device;
2761
2762 if (!device)
2763 return;
2764
2765 physical_device = &device->instance->physicalDevice;
2766
2767 anv_device_finish_blorp(device);
2768
2769 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2770
2771 anv_queue_finish(&device->queue);
2772
2773 #ifdef HAVE_VALGRIND
2774 /* We only need to free these to prevent valgrind errors. The backing
2775 * BO will go away in a couple of lines so we don't actually leak.
2776 */
2777 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2778 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
2779 #endif
2780
2781 anv_scratch_pool_finish(device, &device->scratch_pool);
2782
2783 anv_device_release_bo(device, device->workaround_bo);
2784 anv_device_release_bo(device, device->trivial_batch_bo);
2785 if (device->info.gen >= 10)
2786 anv_device_release_bo(device, device->hiz_clear_bo);
2787
2788 if (device->info.gen >= 12) {
2789 gen_aux_map_finish(device->aux_map_ctx);
2790 device->aux_map_ctx = NULL;
2791 }
2792
2793 if (physical_device->use_softpin)
2794 anv_state_pool_finish(&device->binding_table_pool);
2795 anv_state_pool_finish(&device->surface_state_pool);
2796 anv_state_pool_finish(&device->instruction_state_pool);
2797 anv_state_pool_finish(&device->dynamic_state_pool);
2798
2799 anv_bo_pool_finish(&device->batch_bo_pool);
2800
2801 anv_bo_cache_finish(&device->bo_cache);
2802
2803 if (physical_device->use_softpin) {
2804 util_vma_heap_finish(&device->vma_hi);
2805 util_vma_heap_finish(&device->vma_lo);
2806 }
2807
2808 pthread_cond_destroy(&device->queue_submit);
2809 pthread_mutex_destroy(&device->mutex);
2810
2811 anv_gem_destroy_context(device, device->context_id);
2812
2813 if (INTEL_DEBUG & DEBUG_BATCH)
2814 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2815
2816 close(device->fd);
2817
2818 vk_free(&device->alloc, device);
2819 }
2820
2821 VkResult anv_EnumerateInstanceLayerProperties(
2822 uint32_t* pPropertyCount,
2823 VkLayerProperties* pProperties)
2824 {
2825 if (pProperties == NULL) {
2826 *pPropertyCount = 0;
2827 return VK_SUCCESS;
2828 }
2829
2830 /* None supported at this time */
2831 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2832 }
2833
2834 VkResult anv_EnumerateDeviceLayerProperties(
2835 VkPhysicalDevice physicalDevice,
2836 uint32_t* pPropertyCount,
2837 VkLayerProperties* pProperties)
2838 {
2839 if (pProperties == NULL) {
2840 *pPropertyCount = 0;
2841 return VK_SUCCESS;
2842 }
2843
2844 /* None supported at this time */
2845 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2846 }
2847
2848 void anv_GetDeviceQueue(
2849 VkDevice _device,
2850 uint32_t queueNodeIndex,
2851 uint32_t queueIndex,
2852 VkQueue* pQueue)
2853 {
2854 const VkDeviceQueueInfo2 info = {
2855 .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
2856 .pNext = NULL,
2857 .flags = 0,
2858 .queueFamilyIndex = queueNodeIndex,
2859 .queueIndex = queueIndex,
2860 };
2861
2862 anv_GetDeviceQueue2(_device, &info, pQueue);
2863 }
2864
2865 void anv_GetDeviceQueue2(
2866 VkDevice _device,
2867 const VkDeviceQueueInfo2* pQueueInfo,
2868 VkQueue* pQueue)
2869 {
2870 ANV_FROM_HANDLE(anv_device, device, _device);
2871
2872 assert(pQueueInfo->queueIndex == 0);
2873
2874 if (pQueueInfo->flags == device->queue.flags)
2875 *pQueue = anv_queue_to_handle(&device->queue);
2876 else
2877 *pQueue = NULL;
2878 }
2879
2880 VkResult
2881 _anv_device_set_lost(struct anv_device *device,
2882 const char *file, int line,
2883 const char *msg, ...)
2884 {
2885 VkResult err;
2886 va_list ap;
2887
2888 p_atomic_inc(&device->_lost);
2889
2890 va_start(ap, msg);
2891 err = __vk_errorv(device->instance, device,
2892 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2893 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2894 va_end(ap);
2895
2896 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2897 abort();
2898
2899 return err;
2900 }
2901
2902 VkResult
2903 _anv_queue_set_lost(struct anv_queue *queue,
2904 const char *file, int line,
2905 const char *msg, ...)
2906 {
2907 VkResult err;
2908 va_list ap;
2909
2910 p_atomic_inc(&queue->device->_lost);
2911
2912 va_start(ap, msg);
2913 err = __vk_errorv(queue->device->instance, queue->device,
2914 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2915 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2916 va_end(ap);
2917
2918 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2919 abort();
2920
2921 return err;
2922 }
2923
2924 VkResult
2925 anv_device_query_status(struct anv_device *device)
2926 {
2927 /* This isn't likely as most of the callers of this function already check
2928 * for it. However, it doesn't hurt to check and it potentially lets us
2929 * avoid an ioctl.
2930 */
2931 if (anv_device_is_lost(device))
2932 return VK_ERROR_DEVICE_LOST;
2933
2934 uint32_t active, pending;
2935 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2936 if (ret == -1) {
2937 /* We don't know the real error. */
2938 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2939 }
2940
2941 if (active) {
2942 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2943 } else if (pending) {
2944 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2945 }
2946
2947 return VK_SUCCESS;
2948 }
2949
2950 VkResult
2951 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2952 {
2953 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2954 * Other usages of the BO (such as on different hardware) will not be
2955 * flagged as "busy" by this ioctl. Use with care.
2956 */
2957 int ret = anv_gem_busy(device, bo->gem_handle);
2958 if (ret == 1) {
2959 return VK_NOT_READY;
2960 } else if (ret == -1) {
2961 /* We don't know the real error. */
2962 return anv_device_set_lost(device, "gem wait failed: %m");
2963 }
2964
2965 /* Query for device status after the busy call. If the BO we're checking
2966 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2967 * client because it clearly doesn't have valid data. Yes, this most
2968 * likely means an ioctl, but we just did an ioctl to query the busy status
2969 * so it's no great loss.
2970 */
2971 return anv_device_query_status(device);
2972 }
2973
2974 VkResult
2975 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2976 int64_t timeout)
2977 {
2978 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2979 if (ret == -1 && errno == ETIME) {
2980 return VK_TIMEOUT;
2981 } else if (ret == -1) {
2982 /* We don't know the real error. */
2983 return anv_device_set_lost(device, "gem wait failed: %m");
2984 }
2985
2986 /* Query for device status after the wait. If the BO we're waiting on got
2987 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2988 * because it clearly doesn't have valid data. Yes, this most likely means
2989 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2990 */
2991 return anv_device_query_status(device);
2992 }
2993
2994 VkResult anv_DeviceWaitIdle(
2995 VkDevice _device)
2996 {
2997 ANV_FROM_HANDLE(anv_device, device, _device);
2998
2999 if (anv_device_is_lost(device))
3000 return VK_ERROR_DEVICE_LOST;
3001
3002 return anv_queue_submit_simple_batch(&device->queue, NULL);
3003 }
3004
3005 bool
3006 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
3007 {
3008 if (!(bo->flags & EXEC_OBJECT_PINNED))
3009 return true;
3010
3011 pthread_mutex_lock(&device->vma_mutex);
3012
3013 bo->offset = 0;
3014
3015 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
3016 device->vma_hi_available >= bo->size) {
3017 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
3018 if (addr) {
3019 bo->offset = gen_canonical_address(addr);
3020 assert(addr == gen_48b_address(bo->offset));
3021 device->vma_hi_available -= bo->size;
3022 }
3023 }
3024
3025 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
3026 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
3027 if (addr) {
3028 bo->offset = gen_canonical_address(addr);
3029 assert(addr == gen_48b_address(bo->offset));
3030 device->vma_lo_available -= bo->size;
3031 }
3032 }
3033
3034 pthread_mutex_unlock(&device->vma_mutex);
3035
3036 return bo->offset != 0;
3037 }
3038
3039 void
3040 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
3041 {
3042 if (!(bo->flags & EXEC_OBJECT_PINNED))
3043 return;
3044
3045 const uint64_t addr_48b = gen_48b_address(bo->offset);
3046
3047 pthread_mutex_lock(&device->vma_mutex);
3048
3049 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
3050 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
3051 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
3052 device->vma_lo_available += bo->size;
3053 } else {
3054 ASSERTED const struct anv_physical_device *physical_device =
3055 &device->instance->physicalDevice;
3056 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
3057 addr_48b < (physical_device->memory.heaps[0].vma_start +
3058 physical_device->memory.heaps[0].vma_size));
3059 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
3060 device->vma_hi_available += bo->size;
3061 }
3062
3063 pthread_mutex_unlock(&device->vma_mutex);
3064
3065 bo->offset = 0;
3066 }
3067
3068 VkResult anv_AllocateMemory(
3069 VkDevice _device,
3070 const VkMemoryAllocateInfo* pAllocateInfo,
3071 const VkAllocationCallbacks* pAllocator,
3072 VkDeviceMemory* pMem)
3073 {
3074 ANV_FROM_HANDLE(anv_device, device, _device);
3075 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3076 struct anv_device_memory *mem;
3077 VkResult result = VK_SUCCESS;
3078
3079 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
3080
3081 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
3082 assert(pAllocateInfo->allocationSize > 0);
3083
3084 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
3085 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
3086
3087 /* FINISHME: Fail if allocation request exceeds heap size. */
3088
3089 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
3090 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3091 if (mem == NULL)
3092 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3093
3094 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3095 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
3096 mem->map = NULL;
3097 mem->map_size = 0;
3098 mem->ahw = NULL;
3099 mem->host_ptr = NULL;
3100
3101 enum anv_bo_alloc_flags alloc_flags = 0;
3102
3103 assert(mem->type->heapIndex < pdevice->memory.heap_count);
3104 if (!pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
3105 alloc_flags |= ANV_BO_ALLOC_32BIT_ADDRESS;
3106
3107 const struct wsi_memory_allocate_info *wsi_info =
3108 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
3109 if (wsi_info && wsi_info->implicit_sync) {
3110 /* We need to set the WRITE flag on window system buffers so that GEM
3111 * will know we're writing to them and synchronize uses on other rings
3112 * (eg if the display server uses the blitter ring).
3113 */
3114 alloc_flags |= ANV_BO_ALLOC_IMPLICIT_SYNC |
3115 ANV_BO_ALLOC_IMPLICIT_WRITE;
3116 }
3117
3118 const VkExportMemoryAllocateInfo *export_info =
3119 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
3120
3121 /* Check if we need to support Android HW buffer export. If so,
3122 * create AHardwareBuffer and import memory from it.
3123 */
3124 bool android_export = false;
3125 if (export_info && export_info->handleTypes &
3126 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
3127 android_export = true;
3128
3129 /* Android memory import. */
3130 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
3131 vk_find_struct_const(pAllocateInfo->pNext,
3132 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
3133
3134 if (ahw_import_info) {
3135 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
3136 if (result != VK_SUCCESS)
3137 goto fail;
3138
3139 goto success;
3140 } else if (android_export) {
3141 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
3142 if (result != VK_SUCCESS)
3143 goto fail;
3144
3145 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
3146 .buffer = mem->ahw,
3147 };
3148 result = anv_import_ahw_memory(_device, mem, &import_info);
3149 if (result != VK_SUCCESS)
3150 goto fail;
3151
3152 goto success;
3153 }
3154
3155 const VkImportMemoryFdInfoKHR *fd_info =
3156 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
3157
3158 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3159 * ignored.
3160 */
3161 if (fd_info && fd_info->handleType) {
3162 /* At the moment, we support only the below handle types. */
3163 assert(fd_info->handleType ==
3164 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3165 fd_info->handleType ==
3166 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3167
3168 result = anv_device_import_bo(device, fd_info->fd, alloc_flags,
3169 &mem->bo);
3170 if (result != VK_SUCCESS)
3171 goto fail;
3172
3173 VkDeviceSize aligned_alloc_size =
3174 align_u64(pAllocateInfo->allocationSize, 4096);
3175
3176 /* For security purposes, we reject importing the bo if it's smaller
3177 * than the requested allocation size. This prevents a malicious client
3178 * from passing a buffer to a trusted client, lying about the size, and
3179 * telling the trusted client to try and texture from an image that goes
3180 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3181 * in the trusted client. The trusted client can protect itself against
3182 * this sort of attack but only if it can trust the buffer size.
3183 */
3184 if (mem->bo->size < aligned_alloc_size) {
3185 result = vk_errorf(device->instance, device,
3186 VK_ERROR_INVALID_EXTERNAL_HANDLE,
3187 "aligned allocationSize too large for "
3188 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3189 "%"PRIu64"B > %"PRIu64"B",
3190 aligned_alloc_size, mem->bo->size);
3191 anv_device_release_bo(device, mem->bo);
3192 goto fail;
3193 }
3194
3195 /* From the Vulkan spec:
3196 *
3197 * "Importing memory from a file descriptor transfers ownership of
3198 * the file descriptor from the application to the Vulkan
3199 * implementation. The application must not perform any operations on
3200 * the file descriptor after a successful import."
3201 *
3202 * If the import fails, we leave the file descriptor open.
3203 */
3204 close(fd_info->fd);
3205 goto success;
3206 }
3207
3208 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
3209 vk_find_struct_const(pAllocateInfo->pNext,
3210 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
3211 if (host_ptr_info && host_ptr_info->handleType) {
3212 if (host_ptr_info->handleType ==
3213 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3214 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3215 goto fail;
3216 }
3217
3218 assert(host_ptr_info->handleType ==
3219 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3220
3221 result = anv_device_import_bo_from_host_ptr(device,
3222 host_ptr_info->pHostPointer,
3223 pAllocateInfo->allocationSize,
3224 alloc_flags,
3225 &mem->bo);
3226
3227 if (result != VK_SUCCESS)
3228 goto fail;
3229
3230 mem->host_ptr = host_ptr_info->pHostPointer;
3231 goto success;
3232 }
3233
3234 /* Regular allocate (not importing memory). */
3235
3236 if (export_info && export_info->handleTypes)
3237 alloc_flags |= ANV_BO_ALLOC_EXTERNAL;
3238
3239 result = anv_device_alloc_bo(device, pAllocateInfo->allocationSize,
3240 alloc_flags, &mem->bo);
3241 if (result != VK_SUCCESS)
3242 goto fail;
3243
3244 const VkMemoryDedicatedAllocateInfo *dedicated_info =
3245 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
3246 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3247 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3248
3249 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3250 * the BO. In this case, we have a dedicated allocation.
3251 */
3252 if (image->needs_set_tiling) {
3253 const uint32_t i915_tiling =
3254 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3255 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3256 image->planes[0].surface.isl.row_pitch_B,
3257 i915_tiling);
3258 if (ret) {
3259 anv_device_release_bo(device, mem->bo);
3260 return vk_errorf(device->instance, NULL,
3261 VK_ERROR_OUT_OF_DEVICE_MEMORY,
3262 "failed to set BO tiling: %m");
3263 }
3264 }
3265 }
3266
3267 success:
3268 pthread_mutex_lock(&device->mutex);
3269 list_addtail(&mem->link, &device->memory_objects);
3270 pthread_mutex_unlock(&device->mutex);
3271
3272 *pMem = anv_device_memory_to_handle(mem);
3273
3274 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3275 mem->bo->size);
3276
3277 return VK_SUCCESS;
3278
3279 fail:
3280 vk_free2(&device->alloc, pAllocator, mem);
3281
3282 return result;
3283 }
3284
3285 VkResult anv_GetMemoryFdKHR(
3286 VkDevice device_h,
3287 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3288 int* pFd)
3289 {
3290 ANV_FROM_HANDLE(anv_device, dev, device_h);
3291 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3292
3293 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3294
3295 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3296 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3297
3298 return anv_device_export_bo(dev, mem->bo, pFd);
3299 }
3300
3301 VkResult anv_GetMemoryFdPropertiesKHR(
3302 VkDevice _device,
3303 VkExternalMemoryHandleTypeFlagBits handleType,
3304 int fd,
3305 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3306 {
3307 ANV_FROM_HANDLE(anv_device, device, _device);
3308 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3309
3310 switch (handleType) {
3311 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3312 /* dma-buf can be imported as any memory type */
3313 pMemoryFdProperties->memoryTypeBits =
3314 (1 << pdevice->memory.type_count) - 1;
3315 return VK_SUCCESS;
3316
3317 default:
3318 /* The valid usage section for this function says:
3319 *
3320 * "handleType must not be one of the handle types defined as
3321 * opaque."
3322 *
3323 * So opaque handle types fall into the default "unsupported" case.
3324 */
3325 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3326 }
3327 }
3328
3329 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3330 VkDevice _device,
3331 VkExternalMemoryHandleTypeFlagBits handleType,
3332 const void* pHostPointer,
3333 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3334 {
3335 ANV_FROM_HANDLE(anv_device, device, _device);
3336
3337 assert(pMemoryHostPointerProperties->sType ==
3338 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3339
3340 switch (handleType) {
3341 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
3342 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3343
3344 /* Host memory can be imported as any memory type. */
3345 pMemoryHostPointerProperties->memoryTypeBits =
3346 (1ull << pdevice->memory.type_count) - 1;
3347
3348 return VK_SUCCESS;
3349 }
3350 default:
3351 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3352 }
3353 }
3354
3355 void anv_FreeMemory(
3356 VkDevice _device,
3357 VkDeviceMemory _mem,
3358 const VkAllocationCallbacks* pAllocator)
3359 {
3360 ANV_FROM_HANDLE(anv_device, device, _device);
3361 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3362 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3363
3364 if (mem == NULL)
3365 return;
3366
3367 pthread_mutex_lock(&device->mutex);
3368 list_del(&mem->link);
3369 pthread_mutex_unlock(&device->mutex);
3370
3371 if (mem->map)
3372 anv_UnmapMemory(_device, _mem);
3373
3374 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3375 -mem->bo->size);
3376
3377 anv_device_release_bo(device, mem->bo);
3378
3379 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3380 if (mem->ahw)
3381 AHardwareBuffer_release(mem->ahw);
3382 #endif
3383
3384 vk_free2(&device->alloc, pAllocator, mem);
3385 }
3386
3387 VkResult anv_MapMemory(
3388 VkDevice _device,
3389 VkDeviceMemory _memory,
3390 VkDeviceSize offset,
3391 VkDeviceSize size,
3392 VkMemoryMapFlags flags,
3393 void** ppData)
3394 {
3395 ANV_FROM_HANDLE(anv_device, device, _device);
3396 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3397
3398 if (mem == NULL) {
3399 *ppData = NULL;
3400 return VK_SUCCESS;
3401 }
3402
3403 if (mem->host_ptr) {
3404 *ppData = mem->host_ptr + offset;
3405 return VK_SUCCESS;
3406 }
3407
3408 if (size == VK_WHOLE_SIZE)
3409 size = mem->bo->size - offset;
3410
3411 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3412 *
3413 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3414 * assert(size != 0);
3415 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3416 * equal to the size of the memory minus offset
3417 */
3418 assert(size > 0);
3419 assert(offset + size <= mem->bo->size);
3420
3421 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3422 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3423 * at a time is valid. We could just mmap up front and return an offset
3424 * pointer here, but that may exhaust virtual memory on 32 bit
3425 * userspace. */
3426
3427 uint32_t gem_flags = 0;
3428
3429 if (!device->info.has_llc &&
3430 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3431 gem_flags |= I915_MMAP_WC;
3432
3433 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3434 uint64_t map_offset = offset & ~4095ull;
3435 assert(offset >= map_offset);
3436 uint64_t map_size = (offset + size) - map_offset;
3437
3438 /* Let's map whole pages */
3439 map_size = align_u64(map_size, 4096);
3440
3441 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3442 map_offset, map_size, gem_flags);
3443 if (map == MAP_FAILED)
3444 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3445
3446 mem->map = map;
3447 mem->map_size = map_size;
3448
3449 *ppData = mem->map + (offset - map_offset);
3450
3451 return VK_SUCCESS;
3452 }
3453
3454 void anv_UnmapMemory(
3455 VkDevice _device,
3456 VkDeviceMemory _memory)
3457 {
3458 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3459
3460 if (mem == NULL || mem->host_ptr)
3461 return;
3462
3463 anv_gem_munmap(mem->map, mem->map_size);
3464
3465 mem->map = NULL;
3466 mem->map_size = 0;
3467 }
3468
3469 static void
3470 clflush_mapped_ranges(struct anv_device *device,
3471 uint32_t count,
3472 const VkMappedMemoryRange *ranges)
3473 {
3474 for (uint32_t i = 0; i < count; i++) {
3475 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3476 if (ranges[i].offset >= mem->map_size)
3477 continue;
3478
3479 gen_clflush_range(mem->map + ranges[i].offset,
3480 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3481 }
3482 }
3483
3484 VkResult anv_FlushMappedMemoryRanges(
3485 VkDevice _device,
3486 uint32_t memoryRangeCount,
3487 const VkMappedMemoryRange* pMemoryRanges)
3488 {
3489 ANV_FROM_HANDLE(anv_device, device, _device);
3490
3491 if (device->info.has_llc)
3492 return VK_SUCCESS;
3493
3494 /* Make sure the writes we're flushing have landed. */
3495 __builtin_ia32_mfence();
3496
3497 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3498
3499 return VK_SUCCESS;
3500 }
3501
3502 VkResult anv_InvalidateMappedMemoryRanges(
3503 VkDevice _device,
3504 uint32_t memoryRangeCount,
3505 const VkMappedMemoryRange* pMemoryRanges)
3506 {
3507 ANV_FROM_HANDLE(anv_device, device, _device);
3508
3509 if (device->info.has_llc)
3510 return VK_SUCCESS;
3511
3512 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3513
3514 /* Make sure no reads get moved up above the invalidate. */
3515 __builtin_ia32_mfence();
3516
3517 return VK_SUCCESS;
3518 }
3519
3520 void anv_GetBufferMemoryRequirements(
3521 VkDevice _device,
3522 VkBuffer _buffer,
3523 VkMemoryRequirements* pMemoryRequirements)
3524 {
3525 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3526 ANV_FROM_HANDLE(anv_device, device, _device);
3527 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3528
3529 /* The Vulkan spec (git aaed022) says:
3530 *
3531 * memoryTypeBits is a bitfield and contains one bit set for every
3532 * supported memory type for the resource. The bit `1<<i` is set if and
3533 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3534 * structure for the physical device is supported.
3535 */
3536 uint32_t memory_types = 0;
3537 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3538 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3539 if ((valid_usage & buffer->usage) == buffer->usage)
3540 memory_types |= (1u << i);
3541 }
3542
3543 /* Base alignment requirement of a cache line */
3544 uint32_t alignment = 16;
3545
3546 /* We need an alignment of 32 for pushing UBOs */
3547 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3548 alignment = MAX2(alignment, 32);
3549
3550 pMemoryRequirements->size = buffer->size;
3551 pMemoryRequirements->alignment = alignment;
3552
3553 /* Storage and Uniform buffers should have their size aligned to
3554 * 32-bits to avoid boundary checks when last DWord is not complete.
3555 * This would ensure that not internal padding would be needed for
3556 * 16-bit types.
3557 */
3558 if (device->robust_buffer_access &&
3559 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3560 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3561 pMemoryRequirements->size = align_u64(buffer->size, 4);
3562
3563 pMemoryRequirements->memoryTypeBits = memory_types;
3564 }
3565
3566 void anv_GetBufferMemoryRequirements2(
3567 VkDevice _device,
3568 const VkBufferMemoryRequirementsInfo2* pInfo,
3569 VkMemoryRequirements2* pMemoryRequirements)
3570 {
3571 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3572 &pMemoryRequirements->memoryRequirements);
3573
3574 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3575 switch (ext->sType) {
3576 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3577 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3578 requirements->prefersDedicatedAllocation = false;
3579 requirements->requiresDedicatedAllocation = false;
3580 break;
3581 }
3582
3583 default:
3584 anv_debug_ignored_stype(ext->sType);
3585 break;
3586 }
3587 }
3588 }
3589
3590 void anv_GetImageMemoryRequirements(
3591 VkDevice _device,
3592 VkImage _image,
3593 VkMemoryRequirements* pMemoryRequirements)
3594 {
3595 ANV_FROM_HANDLE(anv_image, image, _image);
3596 ANV_FROM_HANDLE(anv_device, device, _device);
3597 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3598
3599 /* The Vulkan spec (git aaed022) says:
3600 *
3601 * memoryTypeBits is a bitfield and contains one bit set for every
3602 * supported memory type for the resource. The bit `1<<i` is set if and
3603 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3604 * structure for the physical device is supported.
3605 *
3606 * All types are currently supported for images.
3607 */
3608 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3609
3610 /* We must have image allocated or imported at this point. According to the
3611 * specification, external images must have been bound to memory before
3612 * calling GetImageMemoryRequirements.
3613 */
3614 assert(image->size > 0);
3615
3616 pMemoryRequirements->size = image->size;
3617 pMemoryRequirements->alignment = image->alignment;
3618 pMemoryRequirements->memoryTypeBits = memory_types;
3619 }
3620
3621 void anv_GetImageMemoryRequirements2(
3622 VkDevice _device,
3623 const VkImageMemoryRequirementsInfo2* pInfo,
3624 VkMemoryRequirements2* pMemoryRequirements)
3625 {
3626 ANV_FROM_HANDLE(anv_device, device, _device);
3627 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3628
3629 anv_GetImageMemoryRequirements(_device, pInfo->image,
3630 &pMemoryRequirements->memoryRequirements);
3631
3632 vk_foreach_struct_const(ext, pInfo->pNext) {
3633 switch (ext->sType) {
3634 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3635 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3636 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3637 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3638 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3639 plane_reqs->planeAspect);
3640
3641 assert(image->planes[plane].offset == 0);
3642
3643 /* The Vulkan spec (git aaed022) says:
3644 *
3645 * memoryTypeBits is a bitfield and contains one bit set for every
3646 * supported memory type for the resource. The bit `1<<i` is set
3647 * if and only if the memory type `i` in the
3648 * VkPhysicalDeviceMemoryProperties structure for the physical
3649 * device is supported.
3650 *
3651 * All types are currently supported for images.
3652 */
3653 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3654 (1ull << pdevice->memory.type_count) - 1;
3655
3656 /* We must have image allocated or imported at this point. According to the
3657 * specification, external images must have been bound to memory before
3658 * calling GetImageMemoryRequirements.
3659 */
3660 assert(image->planes[plane].size > 0);
3661
3662 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3663 pMemoryRequirements->memoryRequirements.alignment =
3664 image->planes[plane].alignment;
3665 break;
3666 }
3667
3668 default:
3669 anv_debug_ignored_stype(ext->sType);
3670 break;
3671 }
3672 }
3673
3674 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3675 switch (ext->sType) {
3676 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3677 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3678 if (image->needs_set_tiling || image->external_format) {
3679 /* If we need to set the tiling for external consumers, we need a
3680 * dedicated allocation.
3681 *
3682 * See also anv_AllocateMemory.
3683 */
3684 requirements->prefersDedicatedAllocation = true;
3685 requirements->requiresDedicatedAllocation = true;
3686 } else {
3687 requirements->prefersDedicatedAllocation = false;
3688 requirements->requiresDedicatedAllocation = false;
3689 }
3690 break;
3691 }
3692
3693 default:
3694 anv_debug_ignored_stype(ext->sType);
3695 break;
3696 }
3697 }
3698 }
3699
3700 void anv_GetImageSparseMemoryRequirements(
3701 VkDevice device,
3702 VkImage image,
3703 uint32_t* pSparseMemoryRequirementCount,
3704 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3705 {
3706 *pSparseMemoryRequirementCount = 0;
3707 }
3708
3709 void anv_GetImageSparseMemoryRequirements2(
3710 VkDevice device,
3711 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3712 uint32_t* pSparseMemoryRequirementCount,
3713 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3714 {
3715 *pSparseMemoryRequirementCount = 0;
3716 }
3717
3718 void anv_GetDeviceMemoryCommitment(
3719 VkDevice device,
3720 VkDeviceMemory memory,
3721 VkDeviceSize* pCommittedMemoryInBytes)
3722 {
3723 *pCommittedMemoryInBytes = 0;
3724 }
3725
3726 static void
3727 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3728 {
3729 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3730 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3731
3732 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3733
3734 if (mem) {
3735 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3736 buffer->address = (struct anv_address) {
3737 .bo = mem->bo,
3738 .offset = pBindInfo->memoryOffset,
3739 };
3740 } else {
3741 buffer->address = ANV_NULL_ADDRESS;
3742 }
3743 }
3744
3745 VkResult anv_BindBufferMemory(
3746 VkDevice device,
3747 VkBuffer buffer,
3748 VkDeviceMemory memory,
3749 VkDeviceSize memoryOffset)
3750 {
3751 anv_bind_buffer_memory(
3752 &(VkBindBufferMemoryInfo) {
3753 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3754 .buffer = buffer,
3755 .memory = memory,
3756 .memoryOffset = memoryOffset,
3757 });
3758
3759 return VK_SUCCESS;
3760 }
3761
3762 VkResult anv_BindBufferMemory2(
3763 VkDevice device,
3764 uint32_t bindInfoCount,
3765 const VkBindBufferMemoryInfo* pBindInfos)
3766 {
3767 for (uint32_t i = 0; i < bindInfoCount; i++)
3768 anv_bind_buffer_memory(&pBindInfos[i]);
3769
3770 return VK_SUCCESS;
3771 }
3772
3773 VkResult anv_QueueBindSparse(
3774 VkQueue _queue,
3775 uint32_t bindInfoCount,
3776 const VkBindSparseInfo* pBindInfo,
3777 VkFence fence)
3778 {
3779 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3780 if (anv_device_is_lost(queue->device))
3781 return VK_ERROR_DEVICE_LOST;
3782
3783 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3784 }
3785
3786 // Event functions
3787
3788 VkResult anv_CreateEvent(
3789 VkDevice _device,
3790 const VkEventCreateInfo* pCreateInfo,
3791 const VkAllocationCallbacks* pAllocator,
3792 VkEvent* pEvent)
3793 {
3794 ANV_FROM_HANDLE(anv_device, device, _device);
3795 struct anv_state state;
3796 struct anv_event *event;
3797
3798 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3799
3800 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3801 sizeof(*event), 8);
3802 event = state.map;
3803 event->state = state;
3804 event->semaphore = VK_EVENT_RESET;
3805
3806 if (!device->info.has_llc) {
3807 /* Make sure the writes we're flushing have landed. */
3808 __builtin_ia32_mfence();
3809 __builtin_ia32_clflush(event);
3810 }
3811
3812 *pEvent = anv_event_to_handle(event);
3813
3814 return VK_SUCCESS;
3815 }
3816
3817 void anv_DestroyEvent(
3818 VkDevice _device,
3819 VkEvent _event,
3820 const VkAllocationCallbacks* pAllocator)
3821 {
3822 ANV_FROM_HANDLE(anv_device, device, _device);
3823 ANV_FROM_HANDLE(anv_event, event, _event);
3824
3825 if (!event)
3826 return;
3827
3828 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3829 }
3830
3831 VkResult anv_GetEventStatus(
3832 VkDevice _device,
3833 VkEvent _event)
3834 {
3835 ANV_FROM_HANDLE(anv_device, device, _device);
3836 ANV_FROM_HANDLE(anv_event, event, _event);
3837
3838 if (anv_device_is_lost(device))
3839 return VK_ERROR_DEVICE_LOST;
3840
3841 if (!device->info.has_llc) {
3842 /* Invalidate read cache before reading event written by GPU. */
3843 __builtin_ia32_clflush(event);
3844 __builtin_ia32_mfence();
3845
3846 }
3847
3848 return event->semaphore;
3849 }
3850
3851 VkResult anv_SetEvent(
3852 VkDevice _device,
3853 VkEvent _event)
3854 {
3855 ANV_FROM_HANDLE(anv_device, device, _device);
3856 ANV_FROM_HANDLE(anv_event, event, _event);
3857
3858 event->semaphore = VK_EVENT_SET;
3859
3860 if (!device->info.has_llc) {
3861 /* Make sure the writes we're flushing have landed. */
3862 __builtin_ia32_mfence();
3863 __builtin_ia32_clflush(event);
3864 }
3865
3866 return VK_SUCCESS;
3867 }
3868
3869 VkResult anv_ResetEvent(
3870 VkDevice _device,
3871 VkEvent _event)
3872 {
3873 ANV_FROM_HANDLE(anv_device, device, _device);
3874 ANV_FROM_HANDLE(anv_event, event, _event);
3875
3876 event->semaphore = VK_EVENT_RESET;
3877
3878 if (!device->info.has_llc) {
3879 /* Make sure the writes we're flushing have landed. */
3880 __builtin_ia32_mfence();
3881 __builtin_ia32_clflush(event);
3882 }
3883
3884 return VK_SUCCESS;
3885 }
3886
3887 // Buffer functions
3888
3889 VkResult anv_CreateBuffer(
3890 VkDevice _device,
3891 const VkBufferCreateInfo* pCreateInfo,
3892 const VkAllocationCallbacks* pAllocator,
3893 VkBuffer* pBuffer)
3894 {
3895 ANV_FROM_HANDLE(anv_device, device, _device);
3896 struct anv_buffer *buffer;
3897
3898 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3899
3900 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3901 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3902 if (buffer == NULL)
3903 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3904
3905 buffer->size = pCreateInfo->size;
3906 buffer->usage = pCreateInfo->usage;
3907 buffer->address = ANV_NULL_ADDRESS;
3908
3909 *pBuffer = anv_buffer_to_handle(buffer);
3910
3911 return VK_SUCCESS;
3912 }
3913
3914 void anv_DestroyBuffer(
3915 VkDevice _device,
3916 VkBuffer _buffer,
3917 const VkAllocationCallbacks* pAllocator)
3918 {
3919 ANV_FROM_HANDLE(anv_device, device, _device);
3920 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3921
3922 if (!buffer)
3923 return;
3924
3925 vk_free2(&device->alloc, pAllocator, buffer);
3926 }
3927
3928 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3929 VkDevice device,
3930 const VkBufferDeviceAddressInfoEXT* pInfo)
3931 {
3932 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3933
3934 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3935
3936 return anv_address_physical(buffer->address);
3937 }
3938
3939 void
3940 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3941 enum isl_format format,
3942 struct anv_address address,
3943 uint32_t range, uint32_t stride)
3944 {
3945 isl_buffer_fill_state(&device->isl_dev, state.map,
3946 .address = anv_address_physical(address),
3947 .mocs = device->default_mocs,
3948 .size_B = range,
3949 .format = format,
3950 .swizzle = ISL_SWIZZLE_IDENTITY,
3951 .stride_B = stride);
3952 }
3953
3954 void anv_DestroySampler(
3955 VkDevice _device,
3956 VkSampler _sampler,
3957 const VkAllocationCallbacks* pAllocator)
3958 {
3959 ANV_FROM_HANDLE(anv_device, device, _device);
3960 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3961
3962 if (!sampler)
3963 return;
3964
3965 if (sampler->bindless_state.map) {
3966 anv_state_pool_free(&device->dynamic_state_pool,
3967 sampler->bindless_state);
3968 }
3969
3970 vk_free2(&device->alloc, pAllocator, sampler);
3971 }
3972
3973 VkResult anv_CreateFramebuffer(
3974 VkDevice _device,
3975 const VkFramebufferCreateInfo* pCreateInfo,
3976 const VkAllocationCallbacks* pAllocator,
3977 VkFramebuffer* pFramebuffer)
3978 {
3979 ANV_FROM_HANDLE(anv_device, device, _device);
3980 struct anv_framebuffer *framebuffer;
3981
3982 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3983
3984 size_t size = sizeof(*framebuffer);
3985
3986 /* VK_KHR_imageless_framebuffer extension says:
3987 *
3988 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
3989 * parameter pAttachments is ignored.
3990 */
3991 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
3992 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3993 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3994 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3995 if (framebuffer == NULL)
3996 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3997
3998 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3999 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
4000 framebuffer->attachments[i] = iview;
4001 }
4002 framebuffer->attachment_count = pCreateInfo->attachmentCount;
4003 } else {
4004 assert(device->enabled_extensions.KHR_imageless_framebuffer);
4005 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
4006 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4007 if (framebuffer == NULL)
4008 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4009
4010 framebuffer->attachment_count = 0;
4011 }
4012
4013 framebuffer->width = pCreateInfo->width;
4014 framebuffer->height = pCreateInfo->height;
4015 framebuffer->layers = pCreateInfo->layers;
4016
4017 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
4018
4019 return VK_SUCCESS;
4020 }
4021
4022 void anv_DestroyFramebuffer(
4023 VkDevice _device,
4024 VkFramebuffer _fb,
4025 const VkAllocationCallbacks* pAllocator)
4026 {
4027 ANV_FROM_HANDLE(anv_device, device, _device);
4028 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
4029
4030 if (!fb)
4031 return;
4032
4033 vk_free2(&device->alloc, pAllocator, fb);
4034 }
4035
4036 static const VkTimeDomainEXT anv_time_domains[] = {
4037 VK_TIME_DOMAIN_DEVICE_EXT,
4038 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
4039 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
4040 };
4041
4042 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
4043 VkPhysicalDevice physicalDevice,
4044 uint32_t *pTimeDomainCount,
4045 VkTimeDomainEXT *pTimeDomains)
4046 {
4047 int d;
4048 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
4049
4050 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
4051 vk_outarray_append(&out, i) {
4052 *i = anv_time_domains[d];
4053 }
4054 }
4055
4056 return vk_outarray_status(&out);
4057 }
4058
4059 static uint64_t
4060 anv_clock_gettime(clockid_t clock_id)
4061 {
4062 struct timespec current;
4063 int ret;
4064
4065 ret = clock_gettime(clock_id, &current);
4066 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
4067 ret = clock_gettime(CLOCK_MONOTONIC, &current);
4068 if (ret < 0)
4069 return 0;
4070
4071 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
4072 }
4073
4074 #define TIMESTAMP 0x2358
4075
4076 VkResult anv_GetCalibratedTimestampsEXT(
4077 VkDevice _device,
4078 uint32_t timestampCount,
4079 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
4080 uint64_t *pTimestamps,
4081 uint64_t *pMaxDeviation)
4082 {
4083 ANV_FROM_HANDLE(anv_device, device, _device);
4084 uint64_t timestamp_frequency = device->info.timestamp_frequency;
4085 int ret;
4086 int d;
4087 uint64_t begin, end;
4088 uint64_t max_clock_period = 0;
4089
4090 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4091
4092 for (d = 0; d < timestampCount; d++) {
4093 switch (pTimestampInfos[d].timeDomain) {
4094 case VK_TIME_DOMAIN_DEVICE_EXT:
4095 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
4096 &pTimestamps[d]);
4097
4098 if (ret != 0) {
4099 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
4100 "register: %m");
4101 }
4102 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
4103 max_clock_period = MAX2(max_clock_period, device_period);
4104 break;
4105 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
4106 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
4107 max_clock_period = MAX2(max_clock_period, 1);
4108 break;
4109
4110 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
4111 pTimestamps[d] = begin;
4112 break;
4113 default:
4114 pTimestamps[d] = 0;
4115 break;
4116 }
4117 }
4118
4119 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4120
4121 /*
4122 * The maximum deviation is the sum of the interval over which we
4123 * perform the sampling and the maximum period of any sampled
4124 * clock. That's because the maximum skew between any two sampled
4125 * clock edges is when the sampled clock with the largest period is
4126 * sampled at the end of that period but right at the beginning of the
4127 * sampling interval and some other clock is sampled right at the
4128 * begining of its sampling period and right at the end of the
4129 * sampling interval. Let's assume the GPU has the longest clock
4130 * period and that the application is sampling GPU and monotonic:
4131 *
4132 * s e
4133 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
4134 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4135 *
4136 * g
4137 * 0 1 2 3
4138 * GPU -----_____-----_____-----_____-----_____
4139 *
4140 * m
4141 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
4142 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4143 *
4144 * Interval <----------------->
4145 * Deviation <-------------------------->
4146 *
4147 * s = read(raw) 2
4148 * g = read(GPU) 1
4149 * m = read(monotonic) 2
4150 * e = read(raw) b
4151 *
4152 * We round the sample interval up by one tick to cover sampling error
4153 * in the interval clock
4154 */
4155
4156 uint64_t sample_interval = end - begin + 1;
4157
4158 *pMaxDeviation = sample_interval + max_clock_period;
4159
4160 return VK_SUCCESS;
4161 }
4162
4163 /* vk_icd.h does not declare this function, so we declare it here to
4164 * suppress Wmissing-prototypes.
4165 */
4166 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4167 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4168
4169 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4170 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4171 {
4172 /* For the full details on loader interface versioning, see
4173 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4174 * What follows is a condensed summary, to help you navigate the large and
4175 * confusing official doc.
4176 *
4177 * - Loader interface v0 is incompatible with later versions. We don't
4178 * support it.
4179 *
4180 * - In loader interface v1:
4181 * - The first ICD entrypoint called by the loader is
4182 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4183 * entrypoint.
4184 * - The ICD must statically expose no other Vulkan symbol unless it is
4185 * linked with -Bsymbolic.
4186 * - Each dispatchable Vulkan handle created by the ICD must be
4187 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4188 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4189 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4190 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4191 * such loader-managed surfaces.
4192 *
4193 * - Loader interface v2 differs from v1 in:
4194 * - The first ICD entrypoint called by the loader is
4195 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4196 * statically expose this entrypoint.
4197 *
4198 * - Loader interface v3 differs from v2 in:
4199 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4200 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4201 * because the loader no longer does so.
4202 *
4203 * - Loader interface v4 differs from v3 in:
4204 * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
4205 */
4206 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
4207 return VK_SUCCESS;
4208 }