anv: Advertise VK_EXT_image_robustness
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/debug.h"
36 #include "util/build_id.h"
37 #include "util/disk_cache.h"
38 #include "util/mesa-sha1.h"
39 #include "util/os_file.h"
40 #include "util/u_atomic.h"
41 #include "util/u_string.h"
42 #include "util/driconf.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_aux_map.h"
46 #include "common/gen_defines.h"
47 #include "compiler/glsl_types.h"
48
49 #include "genxml/gen7_pack.h"
50
51 static const char anv_dri_options_xml[] =
52 DRI_CONF_BEGIN
53 DRI_CONF_SECTION_PERFORMANCE
54 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
55 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
56 DRI_CONF_SECTION_END
57
58 DRI_CONF_SECTION_DEBUG
59 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
60 DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST("false")
61 DRI_CONF_SECTION_END
62 DRI_CONF_END;
63
64 /* This is probably far to big but it reflects the max size used for messages
65 * in OpenGLs KHR_debug.
66 */
67 #define MAX_DEBUG_MESSAGE_LENGTH 4096
68
69 /* Render engine timestamp register */
70 #define TIMESTAMP 0x2358
71
72 static void
73 compiler_debug_log(void *data, const char *fmt, ...)
74 {
75 char str[MAX_DEBUG_MESSAGE_LENGTH];
76 struct anv_device *device = (struct anv_device *)data;
77 struct anv_instance *instance = device->physical->instance;
78
79 if (list_is_empty(&instance->debug_report_callbacks.callbacks))
80 return;
81
82 va_list args;
83 va_start(args, fmt);
84 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
85 va_end(args);
86
87 vk_debug_report(&instance->debug_report_callbacks,
88 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
89 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
90 0, 0, 0, "anv", str);
91 }
92
93 static void
94 compiler_perf_log(void *data, const char *fmt, ...)
95 {
96 va_list args;
97 va_start(args, fmt);
98
99 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
100 intel_logd_v(fmt, args);
101
102 va_end(args);
103 }
104
105 static uint64_t
106 anv_compute_heap_size(int fd, uint64_t gtt_size)
107 {
108 /* Query the total ram from the system */
109 struct sysinfo info;
110 sysinfo(&info);
111
112 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
113
114 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
115 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
116 */
117 uint64_t available_ram;
118 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
119 available_ram = total_ram / 2;
120 else
121 available_ram = total_ram * 3 / 4;
122
123 /* We also want to leave some padding for things we allocate in the driver,
124 * so don't go over 3/4 of the GTT either.
125 */
126 uint64_t available_gtt = gtt_size * 3 / 4;
127
128 return MIN2(available_ram, available_gtt);
129 }
130
131 static VkResult
132 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
133 {
134 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
135 &device->gtt_size) == -1) {
136 /* If, for whatever reason, we can't actually get the GTT size from the
137 * kernel (too old?) fall back to the aperture size.
138 */
139 anv_perf_warn(NULL, NULL,
140 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
141
142 if (gen_get_aperture_size(fd, &device->gtt_size) == -1) {
143 return vk_errorfi(device->instance, NULL,
144 VK_ERROR_INITIALIZATION_FAILED,
145 "failed to get aperture size: %m");
146 }
147 }
148
149 /* We only allow 48-bit addresses with softpin because knowing the actual
150 * address is required for the vertex cache flush workaround.
151 */
152 device->supports_48bit_addresses = (device->info.gen >= 8) &&
153 device->has_softpin &&
154 device->gtt_size > (4ULL << 30 /* GiB */);
155
156 uint64_t heap_size = anv_compute_heap_size(fd, device->gtt_size);
157
158 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
159 /* When running with an overridden PCI ID, we may get a GTT size from
160 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
161 * address support can still fail. Just clamp the address space size to
162 * 2 GiB if we don't have 48-bit support.
163 */
164 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
165 "not support for 48-bit addresses",
166 __FILE__, __LINE__);
167 heap_size = 2ull << 30;
168 }
169
170 device->memory.heap_count = 1;
171 device->memory.heaps[0] = (struct anv_memory_heap) {
172 .size = heap_size,
173 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
174 };
175
176 uint32_t type_count = 0;
177 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
178 if (device->info.has_llc) {
179 /* Big core GPUs share LLC with the CPU and thus one memory type can be
180 * both cached and coherent at the same time.
181 */
182 device->memory.types[type_count++] = (struct anv_memory_type) {
183 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
184 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
185 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
186 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
187 .heapIndex = heap,
188 };
189 } else {
190 /* The spec requires that we expose a host-visible, coherent memory
191 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
192 * to give the application a choice between cached, but not coherent and
193 * coherent but uncached (WC though).
194 */
195 device->memory.types[type_count++] = (struct anv_memory_type) {
196 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
197 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
198 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
199 .heapIndex = heap,
200 };
201 device->memory.types[type_count++] = (struct anv_memory_type) {
202 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
203 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
204 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
205 .heapIndex = heap,
206 };
207 }
208 }
209 device->memory.type_count = type_count;
210
211 return VK_SUCCESS;
212 }
213
214 static VkResult
215 anv_physical_device_init_uuids(struct anv_physical_device *device)
216 {
217 const struct build_id_note *note =
218 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
219 if (!note) {
220 return vk_errorfi(device->instance, NULL,
221 VK_ERROR_INITIALIZATION_FAILED,
222 "Failed to find build-id");
223 }
224
225 unsigned build_id_len = build_id_length(note);
226 if (build_id_len < 20) {
227 return vk_errorfi(device->instance, NULL,
228 VK_ERROR_INITIALIZATION_FAILED,
229 "build-id too short. It needs to be a SHA");
230 }
231
232 memcpy(device->driver_build_sha1, build_id_data(note), 20);
233
234 struct mesa_sha1 sha1_ctx;
235 uint8_t sha1[20];
236 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
237
238 /* The pipeline cache UUID is used for determining when a pipeline cache is
239 * invalid. It needs both a driver build and the PCI ID of the device.
240 */
241 _mesa_sha1_init(&sha1_ctx);
242 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
243 _mesa_sha1_update(&sha1_ctx, &device->info.chipset_id,
244 sizeof(device->info.chipset_id));
245 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
246 sizeof(device->always_use_bindless));
247 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
248 sizeof(device->has_a64_buffer_access));
249 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
250 sizeof(device->has_bindless_images));
251 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
252 sizeof(device->has_bindless_samplers));
253 _mesa_sha1_final(&sha1_ctx, sha1);
254 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
255
256 /* The driver UUID is used for determining sharability of images and memory
257 * between two Vulkan instances in separate processes. People who want to
258 * share memory need to also check the device UUID (below) so all this
259 * needs to be is the build-id.
260 */
261 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
262
263 /* The device UUID uniquely identifies the given device within the machine.
264 * Since we never have more than one device, this doesn't need to be a real
265 * UUID. However, on the off-chance that someone tries to use this to
266 * cache pre-tiled images or something of the like, we use the PCI ID and
267 * some bits of ISL info to ensure that this is safe.
268 */
269 _mesa_sha1_init(&sha1_ctx);
270 _mesa_sha1_update(&sha1_ctx, &device->info.chipset_id,
271 sizeof(device->info.chipset_id));
272 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
273 sizeof(device->isl_dev.has_bit6_swizzling));
274 _mesa_sha1_final(&sha1_ctx, sha1);
275 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
276
277 return VK_SUCCESS;
278 }
279
280 static void
281 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
282 {
283 #ifdef ENABLE_SHADER_CACHE
284 char renderer[10];
285 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
286 device->info.chipset_id);
287 assert(len == sizeof(renderer) - 2);
288
289 char timestamp[41];
290 _mesa_sha1_format(timestamp, device->driver_build_sha1);
291
292 const uint64_t driver_flags =
293 brw_get_compiler_config_value(device->compiler);
294 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
295 #else
296 device->disk_cache = NULL;
297 #endif
298 }
299
300 static void
301 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
302 {
303 #ifdef ENABLE_SHADER_CACHE
304 if (device->disk_cache)
305 disk_cache_destroy(device->disk_cache);
306 #else
307 assert(device->disk_cache == NULL);
308 #endif
309 }
310
311 static uint64_t
312 get_available_system_memory()
313 {
314 char *meminfo = os_read_file("/proc/meminfo", NULL);
315 if (!meminfo)
316 return 0;
317
318 char *str = strstr(meminfo, "MemAvailable:");
319 if (!str) {
320 free(meminfo);
321 return 0;
322 }
323
324 uint64_t kb_mem_available;
325 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
326 free(meminfo);
327 return kb_mem_available << 10;
328 }
329
330 free(meminfo);
331 return 0;
332 }
333
334 static VkResult
335 anv_physical_device_try_create(struct anv_instance *instance,
336 drmDevicePtr drm_device,
337 struct anv_physical_device **device_out)
338 {
339 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
340 const char *path = drm_device->nodes[DRM_NODE_RENDER];
341 VkResult result;
342 int fd;
343 int master_fd = -1;
344
345 brw_process_intel_debug_variable();
346
347 fd = open(path, O_RDWR | O_CLOEXEC);
348 if (fd < 0)
349 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
350
351 struct gen_device_info devinfo;
352 if (!gen_get_device_info_from_fd(fd, &devinfo)) {
353 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
354 goto fail_fd;
355 }
356
357 const char *device_name = gen_get_device_name(devinfo.chipset_id);
358
359 if (devinfo.is_haswell) {
360 intel_logw("Haswell Vulkan support is incomplete");
361 } else if (devinfo.gen == 7 && !devinfo.is_baytrail) {
362 intel_logw("Ivy Bridge Vulkan support is incomplete");
363 } else if (devinfo.gen == 7 && devinfo.is_baytrail) {
364 intel_logw("Bay Trail Vulkan support is incomplete");
365 } else if (devinfo.gen >= 8 && devinfo.gen <= 11) {
366 /* Gen8-11 fully supported */
367 } else if (devinfo.gen == 12) {
368 intel_logw("Vulkan is not yet fully supported on gen12");
369 } else {
370 result = vk_errorfi(instance, NULL, VK_ERROR_INCOMPATIBLE_DRIVER,
371 "Vulkan not yet supported on %s", device_name);
372 goto fail_fd;
373 }
374
375 struct anv_physical_device *device =
376 vk_alloc(&instance->alloc, sizeof(*device), 8,
377 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
378 if (device == NULL) {
379 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
380 goto fail_fd;
381 }
382
383 vk_object_base_init(NULL, &device->base, VK_OBJECT_TYPE_PHYSICAL_DEVICE);
384 device->instance = instance;
385
386 assert(strlen(path) < ARRAY_SIZE(device->path));
387 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
388
389 device->info = devinfo;
390 device->name = device_name;
391
392 device->no_hw = device->info.no_hw;
393 if (getenv("INTEL_NO_HW") != NULL)
394 device->no_hw = true;
395
396 device->pci_info.domain = drm_device->businfo.pci->domain;
397 device->pci_info.bus = drm_device->businfo.pci->bus;
398 device->pci_info.device = drm_device->businfo.pci->dev;
399 device->pci_info.function = drm_device->businfo.pci->func;
400
401 device->cmd_parser_version = -1;
402 if (device->info.gen == 7) {
403 device->cmd_parser_version =
404 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
405 if (device->cmd_parser_version == -1) {
406 result = vk_errorfi(device->instance, NULL,
407 VK_ERROR_INITIALIZATION_FAILED,
408 "failed to get command parser version");
409 goto fail_alloc;
410 }
411 }
412
413 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
414 result = vk_errorfi(device->instance, NULL,
415 VK_ERROR_INITIALIZATION_FAILED,
416 "kernel missing gem wait");
417 goto fail_alloc;
418 }
419
420 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
421 result = vk_errorfi(device->instance, NULL,
422 VK_ERROR_INITIALIZATION_FAILED,
423 "kernel missing execbuf2");
424 goto fail_alloc;
425 }
426
427 if (!device->info.has_llc &&
428 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
429 result = vk_errorfi(device->instance, NULL,
430 VK_ERROR_INITIALIZATION_FAILED,
431 "kernel missing wc mmap");
432 goto fail_alloc;
433 }
434
435 device->has_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN);
436 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
437 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
438 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
439 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
440 device->has_syncobj_wait = device->has_syncobj &&
441 anv_gem_supports_syncobj_wait(fd);
442 device->has_context_priority = anv_gem_has_context_priority(fd);
443
444 result = anv_physical_device_init_heaps(device, fd);
445 if (result != VK_SUCCESS)
446 goto fail_alloc;
447
448 device->use_softpin = device->has_softpin &&
449 device->supports_48bit_addresses;
450
451 device->has_context_isolation =
452 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
453
454 device->always_use_bindless =
455 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
456
457 device->use_call_secondary =
458 device->use_softpin &&
459 !env_var_as_boolean("ANV_DISABLE_SECONDARY_CMD_BUFFER_CALLS", false);
460
461 /* We first got the A64 messages on broadwell and we can only use them if
462 * we can pass addresses directly into the shader which requires softpin.
463 */
464 device->has_a64_buffer_access = device->info.gen >= 8 &&
465 device->use_softpin;
466
467 /* We first get bindless image access on Skylake and we can only really do
468 * it if we don't have any relocations so we need softpin.
469 */
470 device->has_bindless_images = device->info.gen >= 9 &&
471 device->use_softpin;
472
473 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
474 * because it's just a matter of setting the sampler address in the sample
475 * message header. However, we've not bothered to wire it up for vec4 so
476 * we leave it disabled on gen7.
477 */
478 device->has_bindless_samplers = device->info.gen >= 8;
479
480 device->has_implicit_ccs = device->info.has_aux_map;
481
482 /* Check if we can read the GPU timestamp register from the CPU */
483 uint64_t u64_ignore;
484 device->has_reg_timestamp = anv_gem_reg_read(fd, TIMESTAMP | I915_REG_READ_8B_WA,
485 &u64_ignore) == 0;
486
487 device->has_mem_available = get_available_system_memory() != 0;
488
489 device->always_flush_cache =
490 driQueryOptionb(&instance->dri_options, "always_flush_cache");
491
492 device->has_mmap_offset =
493 anv_gem_get_param(fd, I915_PARAM_MMAP_GTT_VERSION) >= 4;
494
495 /* GENs prior to 8 do not support EU/Subslice info */
496 if (device->info.gen >= 8) {
497 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
498 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
499
500 /* Without this information, we cannot get the right Braswell
501 * brandstrings, and we have to use conservative numbers for GPGPU on
502 * many platforms, but otherwise, things will just work.
503 */
504 if (device->subslice_total < 1 || device->eu_total < 1) {
505 intel_logw("Kernel 4.1 required to properly query GPU properties");
506 }
507 } else if (device->info.gen == 7) {
508 device->subslice_total = 1 << (device->info.gt - 1);
509 }
510
511 if (device->info.is_cherryview &&
512 device->subslice_total > 0 && device->eu_total > 0) {
513 /* Logical CS threads = EUs per subslice * num threads per EU */
514 uint32_t max_cs_threads =
515 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
516
517 /* Fuse configurations may give more threads than expected, never less. */
518 if (max_cs_threads > device->info.max_cs_threads)
519 device->info.max_cs_threads = max_cs_threads;
520 }
521
522 device->compiler = brw_compiler_create(NULL, &device->info);
523 if (device->compiler == NULL) {
524 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
525 goto fail_alloc;
526 }
527 device->compiler->shader_debug_log = compiler_debug_log;
528 device->compiler->shader_perf_log = compiler_perf_log;
529 device->compiler->supports_pull_constants = false;
530 device->compiler->constant_buffer_0_is_relative =
531 device->info.gen < 8 || !device->has_context_isolation;
532 device->compiler->supports_shader_constants = true;
533 device->compiler->compact_params = false;
534
535 /* Broadwell PRM says:
536 *
537 * "Before Gen8, there was a historical configuration control field to
538 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
539 * different places: TILECTL[1:0], ARB_MODE[5:4], and
540 * DISP_ARB_CTL[14:13].
541 *
542 * For Gen8 and subsequent generations, the swizzle fields are all
543 * reserved, and the CPU's memory controller performs all address
544 * swizzling modifications."
545 */
546 bool swizzled =
547 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
548
549 isl_device_init(&device->isl_dev, &device->info, swizzled);
550
551 result = anv_physical_device_init_uuids(device);
552 if (result != VK_SUCCESS)
553 goto fail_compiler;
554
555 anv_physical_device_init_disk_cache(device);
556
557 if (instance->enabled_extensions.KHR_display) {
558 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
559 if (master_fd >= 0) {
560 /* prod the device with a GETPARAM call which will fail if
561 * we don't have permission to even render on this device
562 */
563 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
564 close(master_fd);
565 master_fd = -1;
566 }
567 }
568 }
569 device->master_fd = master_fd;
570
571 result = anv_init_wsi(device);
572 if (result != VK_SUCCESS)
573 goto fail_disk_cache;
574
575 device->perf = anv_get_perf(&device->info, fd);
576
577 anv_physical_device_get_supported_extensions(device,
578 &device->supported_extensions);
579
580
581 device->local_fd = fd;
582
583 *device_out = device;
584
585 return VK_SUCCESS;
586
587 fail_disk_cache:
588 anv_physical_device_free_disk_cache(device);
589 fail_compiler:
590 ralloc_free(device->compiler);
591 fail_alloc:
592 vk_free(&instance->alloc, device);
593 fail_fd:
594 close(fd);
595 if (master_fd != -1)
596 close(master_fd);
597 return result;
598 }
599
600 static void
601 anv_physical_device_destroy(struct anv_physical_device *device)
602 {
603 anv_finish_wsi(device);
604 anv_physical_device_free_disk_cache(device);
605 ralloc_free(device->compiler);
606 ralloc_free(device->perf);
607 close(device->local_fd);
608 if (device->master_fd >= 0)
609 close(device->master_fd);
610 vk_object_base_finish(&device->base);
611 vk_free(&device->instance->alloc, device);
612 }
613
614 static void *
615 default_alloc_func(void *pUserData, size_t size, size_t align,
616 VkSystemAllocationScope allocationScope)
617 {
618 return malloc(size);
619 }
620
621 static void *
622 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
623 size_t align, VkSystemAllocationScope allocationScope)
624 {
625 return realloc(pOriginal, size);
626 }
627
628 static void
629 default_free_func(void *pUserData, void *pMemory)
630 {
631 free(pMemory);
632 }
633
634 static const VkAllocationCallbacks default_alloc = {
635 .pUserData = NULL,
636 .pfnAllocation = default_alloc_func,
637 .pfnReallocation = default_realloc_func,
638 .pfnFree = default_free_func,
639 };
640
641 VkResult anv_EnumerateInstanceExtensionProperties(
642 const char* pLayerName,
643 uint32_t* pPropertyCount,
644 VkExtensionProperties* pProperties)
645 {
646 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
647
648 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
649 if (anv_instance_extensions_supported.extensions[i]) {
650 vk_outarray_append(&out, prop) {
651 *prop = anv_instance_extensions[i];
652 }
653 }
654 }
655
656 return vk_outarray_status(&out);
657 }
658
659 VkResult anv_CreateInstance(
660 const VkInstanceCreateInfo* pCreateInfo,
661 const VkAllocationCallbacks* pAllocator,
662 VkInstance* pInstance)
663 {
664 struct anv_instance *instance;
665 VkResult result;
666
667 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
668
669 struct anv_instance_extension_table enabled_extensions = {};
670 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
671 int idx;
672 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
673 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
674 anv_instance_extensions[idx].extensionName) == 0)
675 break;
676 }
677
678 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
679 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
680
681 if (!anv_instance_extensions_supported.extensions[idx])
682 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
683
684 enabled_extensions.extensions[idx] = true;
685 }
686
687 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
688 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
689 if (!instance)
690 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
691
692 vk_object_base_init(NULL, &instance->base, VK_OBJECT_TYPE_INSTANCE);
693
694 if (pAllocator)
695 instance->alloc = *pAllocator;
696 else
697 instance->alloc = default_alloc;
698
699 instance->app_info = (struct anv_app_info) { .api_version = 0 };
700 if (pCreateInfo->pApplicationInfo) {
701 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
702
703 instance->app_info.app_name =
704 vk_strdup(&instance->alloc, app->pApplicationName,
705 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
706 instance->app_info.app_version = app->applicationVersion;
707
708 instance->app_info.engine_name =
709 vk_strdup(&instance->alloc, app->pEngineName,
710 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
711 instance->app_info.engine_version = app->engineVersion;
712
713 instance->app_info.api_version = app->apiVersion;
714 }
715
716 if (instance->app_info.api_version == 0)
717 instance->app_info.api_version = VK_API_VERSION_1_0;
718
719 instance->enabled_extensions = enabled_extensions;
720
721 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
722 /* Vulkan requires that entrypoints for extensions which have not been
723 * enabled must not be advertised.
724 */
725 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
726 &instance->enabled_extensions)) {
727 instance->dispatch.entrypoints[i] = NULL;
728 } else {
729 instance->dispatch.entrypoints[i] =
730 anv_instance_dispatch_table.entrypoints[i];
731 }
732 }
733
734 for (unsigned i = 0; i < ARRAY_SIZE(instance->physical_device_dispatch.entrypoints); i++) {
735 /* Vulkan requires that entrypoints for extensions which have not been
736 * enabled must not be advertised.
737 */
738 if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
739 &instance->enabled_extensions)) {
740 instance->physical_device_dispatch.entrypoints[i] = NULL;
741 } else {
742 instance->physical_device_dispatch.entrypoints[i] =
743 anv_physical_device_dispatch_table.entrypoints[i];
744 }
745 }
746
747 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
748 /* Vulkan requires that entrypoints for extensions which have not been
749 * enabled must not be advertised.
750 */
751 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
752 &instance->enabled_extensions, NULL)) {
753 instance->device_dispatch.entrypoints[i] = NULL;
754 } else {
755 instance->device_dispatch.entrypoints[i] =
756 anv_device_dispatch_table.entrypoints[i];
757 }
758 }
759
760 instance->physical_devices_enumerated = false;
761 list_inithead(&instance->physical_devices);
762
763 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
764 if (result != VK_SUCCESS) {
765 vk_free2(&default_alloc, pAllocator, instance);
766 return vk_error(result);
767 }
768
769 instance->pipeline_cache_enabled =
770 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
771
772 glsl_type_singleton_init_or_ref();
773
774 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
775
776 driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
777 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
778 0, "anv", NULL,
779 instance->app_info.engine_name,
780 instance->app_info.engine_version);
781
782 *pInstance = anv_instance_to_handle(instance);
783
784 return VK_SUCCESS;
785 }
786
787 void anv_DestroyInstance(
788 VkInstance _instance,
789 const VkAllocationCallbacks* pAllocator)
790 {
791 ANV_FROM_HANDLE(anv_instance, instance, _instance);
792
793 if (!instance)
794 return;
795
796 list_for_each_entry_safe(struct anv_physical_device, pdevice,
797 &instance->physical_devices, link)
798 anv_physical_device_destroy(pdevice);
799
800 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
801 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
802
803 VG(VALGRIND_DESTROY_MEMPOOL(instance));
804
805 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
806
807 glsl_type_singleton_decref();
808
809 driDestroyOptionCache(&instance->dri_options);
810 driDestroyOptionInfo(&instance->available_dri_options);
811
812 vk_object_base_finish(&instance->base);
813 vk_free(&instance->alloc, instance);
814 }
815
816 static VkResult
817 anv_enumerate_physical_devices(struct anv_instance *instance)
818 {
819 if (instance->physical_devices_enumerated)
820 return VK_SUCCESS;
821
822 instance->physical_devices_enumerated = true;
823
824 /* TODO: Check for more devices ? */
825 drmDevicePtr devices[8];
826 int max_devices;
827
828 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
829 if (max_devices < 1)
830 return VK_SUCCESS;
831
832 VkResult result = VK_SUCCESS;
833 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
834 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
835 devices[i]->bustype == DRM_BUS_PCI &&
836 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
837
838 struct anv_physical_device *pdevice;
839 result = anv_physical_device_try_create(instance, devices[i],
840 &pdevice);
841 /* Incompatible DRM device, skip. */
842 if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
843 result = VK_SUCCESS;
844 continue;
845 }
846
847 /* Error creating the physical device, report the error. */
848 if (result != VK_SUCCESS)
849 break;
850
851 list_addtail(&pdevice->link, &instance->physical_devices);
852 }
853 }
854 drmFreeDevices(devices, max_devices);
855
856 /* If we successfully enumerated any devices, call it success */
857 return result;
858 }
859
860 VkResult anv_EnumeratePhysicalDevices(
861 VkInstance _instance,
862 uint32_t* pPhysicalDeviceCount,
863 VkPhysicalDevice* pPhysicalDevices)
864 {
865 ANV_FROM_HANDLE(anv_instance, instance, _instance);
866 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
867
868 VkResult result = anv_enumerate_physical_devices(instance);
869 if (result != VK_SUCCESS)
870 return result;
871
872 list_for_each_entry(struct anv_physical_device, pdevice,
873 &instance->physical_devices, link) {
874 vk_outarray_append(&out, i) {
875 *i = anv_physical_device_to_handle(pdevice);
876 }
877 }
878
879 return vk_outarray_status(&out);
880 }
881
882 VkResult anv_EnumeratePhysicalDeviceGroups(
883 VkInstance _instance,
884 uint32_t* pPhysicalDeviceGroupCount,
885 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
886 {
887 ANV_FROM_HANDLE(anv_instance, instance, _instance);
888 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
889 pPhysicalDeviceGroupCount);
890
891 VkResult result = anv_enumerate_physical_devices(instance);
892 if (result != VK_SUCCESS)
893 return result;
894
895 list_for_each_entry(struct anv_physical_device, pdevice,
896 &instance->physical_devices, link) {
897 vk_outarray_append(&out, p) {
898 p->physicalDeviceCount = 1;
899 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
900 p->physicalDevices[0] = anv_physical_device_to_handle(pdevice);
901 p->subsetAllocation = false;
902
903 vk_foreach_struct(ext, p->pNext)
904 anv_debug_ignored_stype(ext->sType);
905 }
906 }
907
908 return vk_outarray_status(&out);
909 }
910
911 void anv_GetPhysicalDeviceFeatures(
912 VkPhysicalDevice physicalDevice,
913 VkPhysicalDeviceFeatures* pFeatures)
914 {
915 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
916
917 *pFeatures = (VkPhysicalDeviceFeatures) {
918 .robustBufferAccess = true,
919 .fullDrawIndexUint32 = true,
920 .imageCubeArray = true,
921 .independentBlend = true,
922 .geometryShader = true,
923 .tessellationShader = true,
924 .sampleRateShading = true,
925 .dualSrcBlend = true,
926 .logicOp = true,
927 .multiDrawIndirect = true,
928 .drawIndirectFirstInstance = true,
929 .depthClamp = true,
930 .depthBiasClamp = true,
931 .fillModeNonSolid = true,
932 .depthBounds = pdevice->info.gen >= 12,
933 .wideLines = true,
934 .largePoints = true,
935 .alphaToOne = true,
936 .multiViewport = true,
937 .samplerAnisotropy = true,
938 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
939 pdevice->info.is_baytrail,
940 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
941 .textureCompressionBC = true,
942 .occlusionQueryPrecise = true,
943 .pipelineStatisticsQuery = true,
944 .fragmentStoresAndAtomics = true,
945 .shaderTessellationAndGeometryPointSize = true,
946 .shaderImageGatherExtended = true,
947 .shaderStorageImageExtendedFormats = true,
948 .shaderStorageImageMultisample = false,
949 .shaderStorageImageReadWithoutFormat = false,
950 .shaderStorageImageWriteWithoutFormat = true,
951 .shaderUniformBufferArrayDynamicIndexing = true,
952 .shaderSampledImageArrayDynamicIndexing = true,
953 .shaderStorageBufferArrayDynamicIndexing = true,
954 .shaderStorageImageArrayDynamicIndexing = true,
955 .shaderClipDistance = true,
956 .shaderCullDistance = true,
957 .shaderFloat64 = pdevice->info.gen >= 8 &&
958 pdevice->info.has_64bit_float,
959 .shaderInt64 = pdevice->info.gen >= 8 &&
960 pdevice->info.has_64bit_int,
961 .shaderInt16 = pdevice->info.gen >= 8,
962 .shaderResourceMinLod = pdevice->info.gen >= 9,
963 .variableMultisampleRate = true,
964 .inheritedQueries = true,
965 };
966
967 /* We can't do image stores in vec4 shaders */
968 pFeatures->vertexPipelineStoresAndAtomics =
969 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
970 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
971
972 struct anv_app_info *app_info = &pdevice->instance->app_info;
973
974 /* The new DOOM and Wolfenstein games require depthBounds without
975 * checking for it. They seem to run fine without it so just claim it's
976 * there and accept the consequences.
977 */
978 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
979 pFeatures->depthBounds = true;
980 }
981
982 static void
983 anv_get_physical_device_features_1_1(struct anv_physical_device *pdevice,
984 VkPhysicalDeviceVulkan11Features *f)
985 {
986 assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES);
987
988 f->storageBuffer16BitAccess = pdevice->info.gen >= 8;
989 f->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
990 f->storagePushConstant16 = pdevice->info.gen >= 8;
991 f->storageInputOutput16 = false;
992 f->multiview = true;
993 f->multiviewGeometryShader = true;
994 f->multiviewTessellationShader = true;
995 f->variablePointersStorageBuffer = true;
996 f->variablePointers = true;
997 f->protectedMemory = false;
998 f->samplerYcbcrConversion = true;
999 f->shaderDrawParameters = true;
1000 }
1001
1002 static void
1003 anv_get_physical_device_features_1_2(struct anv_physical_device *pdevice,
1004 VkPhysicalDeviceVulkan12Features *f)
1005 {
1006 assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES);
1007
1008 f->samplerMirrorClampToEdge = true;
1009 f->drawIndirectCount = true;
1010 f->storageBuffer8BitAccess = pdevice->info.gen >= 8;
1011 f->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
1012 f->storagePushConstant8 = pdevice->info.gen >= 8;
1013 f->shaderBufferInt64Atomics = pdevice->info.gen >= 9 &&
1014 pdevice->use_softpin;
1015 f->shaderSharedInt64Atomics = false;
1016 f->shaderFloat16 = pdevice->info.gen >= 8;
1017 f->shaderInt8 = pdevice->info.gen >= 8;
1018
1019 bool descIndexing = pdevice->has_a64_buffer_access &&
1020 pdevice->has_bindless_images;
1021 f->descriptorIndexing = descIndexing;
1022 f->shaderInputAttachmentArrayDynamicIndexing = false;
1023 f->shaderUniformTexelBufferArrayDynamicIndexing = descIndexing;
1024 f->shaderStorageTexelBufferArrayDynamicIndexing = descIndexing;
1025 f->shaderUniformBufferArrayNonUniformIndexing = false;
1026 f->shaderSampledImageArrayNonUniformIndexing = descIndexing;
1027 f->shaderStorageBufferArrayNonUniformIndexing = descIndexing;
1028 f->shaderStorageImageArrayNonUniformIndexing = descIndexing;
1029 f->shaderInputAttachmentArrayNonUniformIndexing = false;
1030 f->shaderUniformTexelBufferArrayNonUniformIndexing = descIndexing;
1031 f->shaderStorageTexelBufferArrayNonUniformIndexing = descIndexing;
1032 f->descriptorBindingUniformBufferUpdateAfterBind = false;
1033 f->descriptorBindingSampledImageUpdateAfterBind = descIndexing;
1034 f->descriptorBindingStorageImageUpdateAfterBind = descIndexing;
1035 f->descriptorBindingStorageBufferUpdateAfterBind = descIndexing;
1036 f->descriptorBindingUniformTexelBufferUpdateAfterBind = descIndexing;
1037 f->descriptorBindingStorageTexelBufferUpdateAfterBind = descIndexing;
1038 f->descriptorBindingUpdateUnusedWhilePending = descIndexing;
1039 f->descriptorBindingPartiallyBound = descIndexing;
1040 f->descriptorBindingVariableDescriptorCount = false;
1041 f->runtimeDescriptorArray = descIndexing;
1042
1043 f->samplerFilterMinmax = pdevice->info.gen >= 9;
1044 f->scalarBlockLayout = true;
1045 f->imagelessFramebuffer = true;
1046 f->uniformBufferStandardLayout = true;
1047 f->shaderSubgroupExtendedTypes = true;
1048 f->separateDepthStencilLayouts = true;
1049 f->hostQueryReset = true;
1050 f->timelineSemaphore = true;
1051 f->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1052 f->bufferDeviceAddressCaptureReplay = pdevice->has_a64_buffer_access;
1053 f->bufferDeviceAddressMultiDevice = false;
1054 f->vulkanMemoryModel = true;
1055 f->vulkanMemoryModelDeviceScope = true;
1056 f->vulkanMemoryModelAvailabilityVisibilityChains = true;
1057 f->shaderOutputViewportIndex = true;
1058 f->shaderOutputLayer = true;
1059 f->subgroupBroadcastDynamicId = true;
1060 }
1061
1062 void anv_GetPhysicalDeviceFeatures2(
1063 VkPhysicalDevice physicalDevice,
1064 VkPhysicalDeviceFeatures2* pFeatures)
1065 {
1066 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1067 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1068
1069 VkPhysicalDeviceVulkan11Features core_1_1 = {
1070 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES,
1071 };
1072 anv_get_physical_device_features_1_1(pdevice, &core_1_1);
1073
1074 VkPhysicalDeviceVulkan12Features core_1_2 = {
1075 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
1076 };
1077 anv_get_physical_device_features_1_2(pdevice, &core_1_2);
1078
1079 #define CORE_FEATURE(major, minor, feature) \
1080 features->feature = core_##major##_##minor.feature
1081
1082
1083 vk_foreach_struct(ext, pFeatures->pNext) {
1084 switch (ext->sType) {
1085 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
1086 VkPhysicalDevice8BitStorageFeaturesKHR *features =
1087 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
1088 CORE_FEATURE(1, 2, storageBuffer8BitAccess);
1089 CORE_FEATURE(1, 2, uniformAndStorageBuffer8BitAccess);
1090 CORE_FEATURE(1, 2, storagePushConstant8);
1091 break;
1092 }
1093
1094 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1095 VkPhysicalDevice16BitStorageFeatures *features =
1096 (VkPhysicalDevice16BitStorageFeatures *)ext;
1097 CORE_FEATURE(1, 1, storageBuffer16BitAccess);
1098 CORE_FEATURE(1, 1, uniformAndStorageBuffer16BitAccess);
1099 CORE_FEATURE(1, 1, storagePushConstant16);
1100 CORE_FEATURE(1, 1, storageInputOutput16);
1101 break;
1102 }
1103
1104 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1105 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1106 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1107 features->bufferDeviceAddressCaptureReplay = false;
1108 features->bufferDeviceAddressMultiDevice = false;
1109 break;
1110 }
1111
1112 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_KHR: {
1113 VkPhysicalDeviceBufferDeviceAddressFeaturesKHR *features = (void *)ext;
1114 CORE_FEATURE(1, 2, bufferDeviceAddress);
1115 CORE_FEATURE(1, 2, bufferDeviceAddressCaptureReplay);
1116 CORE_FEATURE(1, 2, bufferDeviceAddressMultiDevice);
1117 break;
1118 }
1119
1120 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1121 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1122 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1123 features->computeDerivativeGroupQuads = true;
1124 features->computeDerivativeGroupLinear = true;
1125 break;
1126 }
1127
1128 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1129 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1130 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1131 features->conditionalRendering = pdevice->info.gen >= 8 ||
1132 pdevice->info.is_haswell;
1133 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1134 pdevice->info.is_haswell;
1135 break;
1136 }
1137
1138 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT: {
1139 VkPhysicalDeviceCustomBorderColorFeaturesEXT *features =
1140 (VkPhysicalDeviceCustomBorderColorFeaturesEXT *)ext;
1141 features->customBorderColors = pdevice->info.gen >= 8;
1142 features->customBorderColorWithoutFormat = pdevice->info.gen >= 8;
1143 break;
1144 }
1145
1146 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1147 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1148 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1149 features->depthClipEnable = true;
1150 break;
1151 }
1152
1153 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1154 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1155 CORE_FEATURE(1, 2, shaderFloat16);
1156 CORE_FEATURE(1, 2, shaderInt8);
1157 break;
1158 }
1159
1160 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1161 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1162 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1163 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1164 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1165 features->fragmentShaderShadingRateInterlock = false;
1166 break;
1167 }
1168
1169 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1170 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1171 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1172 CORE_FEATURE(1, 2, hostQueryReset);
1173 break;
1174 }
1175
1176 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1177 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1178 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1179 CORE_FEATURE(1, 2, shaderInputAttachmentArrayDynamicIndexing);
1180 CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayDynamicIndexing);
1181 CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayDynamicIndexing);
1182 CORE_FEATURE(1, 2, shaderUniformBufferArrayNonUniformIndexing);
1183 CORE_FEATURE(1, 2, shaderSampledImageArrayNonUniformIndexing);
1184 CORE_FEATURE(1, 2, shaderStorageBufferArrayNonUniformIndexing);
1185 CORE_FEATURE(1, 2, shaderStorageImageArrayNonUniformIndexing);
1186 CORE_FEATURE(1, 2, shaderInputAttachmentArrayNonUniformIndexing);
1187 CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayNonUniformIndexing);
1188 CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayNonUniformIndexing);
1189 CORE_FEATURE(1, 2, descriptorBindingUniformBufferUpdateAfterBind);
1190 CORE_FEATURE(1, 2, descriptorBindingSampledImageUpdateAfterBind);
1191 CORE_FEATURE(1, 2, descriptorBindingStorageImageUpdateAfterBind);
1192 CORE_FEATURE(1, 2, descriptorBindingStorageBufferUpdateAfterBind);
1193 CORE_FEATURE(1, 2, descriptorBindingUniformTexelBufferUpdateAfterBind);
1194 CORE_FEATURE(1, 2, descriptorBindingStorageTexelBufferUpdateAfterBind);
1195 CORE_FEATURE(1, 2, descriptorBindingUpdateUnusedWhilePending);
1196 CORE_FEATURE(1, 2, descriptorBindingPartiallyBound);
1197 CORE_FEATURE(1, 2, descriptorBindingVariableDescriptorCount);
1198 CORE_FEATURE(1, 2, runtimeDescriptorArray);
1199 break;
1200 }
1201
1202 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_ROBUSTNESS_FEATURES_EXT: {
1203 VkPhysicalDeviceImageRobustnessFeaturesEXT *features =
1204 (VkPhysicalDeviceImageRobustnessFeaturesEXT *)ext;
1205 features->robustImageAccess = true;
1206 break;
1207 }
1208
1209 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1210 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1211 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1212 features->indexTypeUint8 = true;
1213 break;
1214 }
1215
1216 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1217 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1218 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1219 features->inlineUniformBlock = true;
1220 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1221 break;
1222 }
1223
1224 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1225 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1226 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1227 features->rectangularLines = true;
1228 features->bresenhamLines = true;
1229 /* Support for Smooth lines with MSAA was removed on gen11. From the
1230 * BSpec section "Multisample ModesState" table for "AA Line Support
1231 * Requirements":
1232 *
1233 * GEN10:BUG:######## NUM_MULTISAMPLES == 1
1234 *
1235 * Fortunately, this isn't a case most people care about.
1236 */
1237 features->smoothLines = pdevice->info.gen < 10;
1238 features->stippledRectangularLines = false;
1239 features->stippledBresenhamLines = true;
1240 features->stippledSmoothLines = false;
1241 break;
1242 }
1243
1244 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1245 VkPhysicalDeviceMultiviewFeatures *features =
1246 (VkPhysicalDeviceMultiviewFeatures *)ext;
1247 CORE_FEATURE(1, 1, multiview);
1248 CORE_FEATURE(1, 1, multiviewGeometryShader);
1249 CORE_FEATURE(1, 1, multiviewTessellationShader);
1250 break;
1251 }
1252
1253 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1254 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1255 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1256 CORE_FEATURE(1, 2, imagelessFramebuffer);
1257 break;
1258 }
1259
1260 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_FEATURES_KHR: {
1261 VkPhysicalDevicePerformanceQueryFeaturesKHR *feature =
1262 (VkPhysicalDevicePerformanceQueryFeaturesKHR *)ext;
1263 feature->performanceCounterQueryPools = true;
1264 /* HW only supports a single configuration at a time. */
1265 feature->performanceCounterMultipleQueryPools = false;
1266 break;
1267 }
1268
1269 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_CREATION_CACHE_CONTROL_FEATURES_EXT: {
1270 VkPhysicalDevicePipelineCreationCacheControlFeaturesEXT *features =
1271 (VkPhysicalDevicePipelineCreationCacheControlFeaturesEXT *)ext;
1272 features->pipelineCreationCacheControl = true;
1273 break;
1274 }
1275
1276 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1277 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1278 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1279 features->pipelineExecutableInfo = true;
1280 break;
1281 }
1282
1283 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIVATE_DATA_FEATURES_EXT: {
1284 VkPhysicalDevicePrivateDataFeaturesEXT *features = (void *)ext;
1285 features->privateData = true;
1286 break;
1287 }
1288
1289 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1290 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1291 CORE_FEATURE(1, 1, protectedMemory);
1292 break;
1293 }
1294
1295 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT: {
1296 VkPhysicalDeviceRobustness2FeaturesEXT *features = (void *)ext;
1297 features->robustBufferAccess2 = true;
1298 features->robustImageAccess2 = true;
1299 features->nullDescriptor = true;
1300 break;
1301 }
1302
1303 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1304 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1305 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1306 CORE_FEATURE(1, 1, samplerYcbcrConversion);
1307 break;
1308 }
1309
1310 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1311 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1312 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1313 CORE_FEATURE(1, 2, scalarBlockLayout);
1314 break;
1315 }
1316
1317 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: {
1318 VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *features =
1319 (VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *)ext;
1320 CORE_FEATURE(1, 2, separateDepthStencilLayouts);
1321 break;
1322 }
1323
1324 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1325 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1326 CORE_FEATURE(1, 2, shaderBufferInt64Atomics);
1327 CORE_FEATURE(1, 2, shaderSharedInt64Atomics);
1328 break;
1329 }
1330
1331 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1332 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1333 features->shaderDemoteToHelperInvocation = true;
1334 break;
1335 }
1336
1337 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1338 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1339 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1340 features->shaderSubgroupClock = true;
1341 features->shaderDeviceClock = false;
1342 break;
1343 }
1344
1345 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1346 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1347 CORE_FEATURE(1, 1, shaderDrawParameters);
1348 break;
1349 }
1350
1351 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
1352 VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
1353 (VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
1354 CORE_FEATURE(1, 2, shaderSubgroupExtendedTypes);
1355 break;
1356 }
1357
1358 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1359 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1360 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1361 features->subgroupSizeControl = true;
1362 features->computeFullSubgroups = true;
1363 break;
1364 }
1365
1366 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1367 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1368 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1369 features->texelBufferAlignment = true;
1370 break;
1371 }
1372
1373 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES_KHR: {
1374 VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *features =
1375 (VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *) ext;
1376 CORE_FEATURE(1, 2, timelineSemaphore);
1377 break;
1378 }
1379
1380 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1381 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1382 CORE_FEATURE(1, 1, variablePointersStorageBuffer);
1383 CORE_FEATURE(1, 1, variablePointers);
1384 break;
1385 }
1386
1387 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1388 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1389 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1390 features->transformFeedback = true;
1391 features->geometryStreams = true;
1392 break;
1393 }
1394
1395 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1396 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1397 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1398 CORE_FEATURE(1, 2, uniformBufferStandardLayout);
1399 break;
1400 }
1401
1402 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1403 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1404 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1405 features->vertexAttributeInstanceRateDivisor = true;
1406 features->vertexAttributeInstanceRateZeroDivisor = true;
1407 break;
1408 }
1409
1410 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES:
1411 anv_get_physical_device_features_1_1(pdevice, (void *)ext);
1412 break;
1413
1414 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES:
1415 anv_get_physical_device_features_1_2(pdevice, (void *)ext);
1416 break;
1417
1418 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR: {
1419 VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *features = (void *)ext;
1420 CORE_FEATURE(1, 2, vulkanMemoryModel);
1421 CORE_FEATURE(1, 2, vulkanMemoryModelDeviceScope);
1422 CORE_FEATURE(1, 2, vulkanMemoryModelAvailabilityVisibilityChains);
1423 break;
1424 }
1425
1426 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1427 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1428 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1429 features->ycbcrImageArrays = true;
1430 break;
1431 }
1432
1433 default:
1434 anv_debug_ignored_stype(ext->sType);
1435 break;
1436 }
1437 }
1438
1439 #undef CORE_FEATURE
1440 }
1441
1442 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1443
1444 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1445 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1446
1447 #define MAX_CUSTOM_BORDER_COLORS 4096
1448
1449 void anv_GetPhysicalDeviceProperties(
1450 VkPhysicalDevice physicalDevice,
1451 VkPhysicalDeviceProperties* pProperties)
1452 {
1453 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1454 const struct gen_device_info *devinfo = &pdevice->info;
1455
1456 /* See assertions made when programming the buffer surface state. */
1457 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1458 (1ul << 30) : (1ul << 27);
1459
1460 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1461 const uint32_t max_textures =
1462 pdevice->has_bindless_images ? UINT16_MAX : 128;
1463 const uint32_t max_samplers =
1464 pdevice->has_bindless_samplers ? UINT16_MAX :
1465 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1466 const uint32_t max_images =
1467 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1468
1469 /* If we can use bindless for everything, claim a high per-stage limit,
1470 * otherwise use the binding table size, minus the slots reserved for
1471 * render targets and one slot for the descriptor buffer. */
1472 const uint32_t max_per_stage =
1473 pdevice->has_bindless_images && pdevice->has_a64_buffer_access
1474 ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
1475
1476 /* Limit max_threads to 64 for the GPGPU_WALKER command */
1477 const uint32_t max_workgroup_size = 32 * MIN2(64, devinfo->max_cs_threads);
1478
1479 VkSampleCountFlags sample_counts =
1480 isl_device_get_sample_counts(&pdevice->isl_dev);
1481
1482
1483 VkPhysicalDeviceLimits limits = {
1484 .maxImageDimension1D = (1 << 14),
1485 .maxImageDimension2D = (1 << 14),
1486 .maxImageDimension3D = (1 << 11),
1487 .maxImageDimensionCube = (1 << 14),
1488 .maxImageArrayLayers = (1 << 11),
1489 .maxTexelBufferElements = 128 * 1024 * 1024,
1490 .maxUniformBufferRange = (1ul << 27),
1491 .maxStorageBufferRange = max_raw_buffer_sz,
1492 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1493 .maxMemoryAllocationCount = UINT32_MAX,
1494 .maxSamplerAllocationCount = 64 * 1024,
1495 .bufferImageGranularity = 64, /* A cache line */
1496 .sparseAddressSpaceSize = 0,
1497 .maxBoundDescriptorSets = MAX_SETS,
1498 .maxPerStageDescriptorSamplers = max_samplers,
1499 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1500 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1501 .maxPerStageDescriptorSampledImages = max_textures,
1502 .maxPerStageDescriptorStorageImages = max_images,
1503 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1504 .maxPerStageResources = max_per_stage,
1505 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1506 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1507 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1508 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1509 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1510 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1511 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1512 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1513 .maxVertexInputAttributes = MAX_VBS,
1514 .maxVertexInputBindings = MAX_VBS,
1515 .maxVertexInputAttributeOffset = 2047,
1516 .maxVertexInputBindingStride = 2048,
1517 .maxVertexOutputComponents = 128,
1518 .maxTessellationGenerationLevel = 64,
1519 .maxTessellationPatchSize = 32,
1520 .maxTessellationControlPerVertexInputComponents = 128,
1521 .maxTessellationControlPerVertexOutputComponents = 128,
1522 .maxTessellationControlPerPatchOutputComponents = 128,
1523 .maxTessellationControlTotalOutputComponents = 2048,
1524 .maxTessellationEvaluationInputComponents = 128,
1525 .maxTessellationEvaluationOutputComponents = 128,
1526 .maxGeometryShaderInvocations = 32,
1527 .maxGeometryInputComponents = 64,
1528 .maxGeometryOutputComponents = 128,
1529 .maxGeometryOutputVertices = 256,
1530 .maxGeometryTotalOutputComponents = 1024,
1531 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1532 .maxFragmentOutputAttachments = 8,
1533 .maxFragmentDualSrcAttachments = 1,
1534 .maxFragmentCombinedOutputResources = 8,
1535 .maxComputeSharedMemorySize = 64 * 1024,
1536 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1537 .maxComputeWorkGroupInvocations = max_workgroup_size,
1538 .maxComputeWorkGroupSize = {
1539 max_workgroup_size,
1540 max_workgroup_size,
1541 max_workgroup_size,
1542 },
1543 .subPixelPrecisionBits = 8,
1544 .subTexelPrecisionBits = 8,
1545 .mipmapPrecisionBits = 8,
1546 .maxDrawIndexedIndexValue = UINT32_MAX,
1547 .maxDrawIndirectCount = UINT32_MAX,
1548 .maxSamplerLodBias = 16,
1549 .maxSamplerAnisotropy = 16,
1550 .maxViewports = MAX_VIEWPORTS,
1551 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1552 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1553 .viewportSubPixelBits = 13, /* We take a float? */
1554 .minMemoryMapAlignment = 4096, /* A page */
1555 /* The dataport requires texel alignment so we need to assume a worst
1556 * case of R32G32B32A32 which is 16 bytes.
1557 */
1558 .minTexelBufferOffsetAlignment = 16,
1559 .minUniformBufferOffsetAlignment = ANV_UBO_ALIGNMENT,
1560 .minStorageBufferOffsetAlignment = 4,
1561 .minTexelOffset = -8,
1562 .maxTexelOffset = 7,
1563 .minTexelGatherOffset = -32,
1564 .maxTexelGatherOffset = 31,
1565 .minInterpolationOffset = -0.5,
1566 .maxInterpolationOffset = 0.4375,
1567 .subPixelInterpolationOffsetBits = 4,
1568 .maxFramebufferWidth = (1 << 14),
1569 .maxFramebufferHeight = (1 << 14),
1570 .maxFramebufferLayers = (1 << 11),
1571 .framebufferColorSampleCounts = sample_counts,
1572 .framebufferDepthSampleCounts = sample_counts,
1573 .framebufferStencilSampleCounts = sample_counts,
1574 .framebufferNoAttachmentsSampleCounts = sample_counts,
1575 .maxColorAttachments = MAX_RTS,
1576 .sampledImageColorSampleCounts = sample_counts,
1577 .sampledImageIntegerSampleCounts = sample_counts,
1578 .sampledImageDepthSampleCounts = sample_counts,
1579 .sampledImageStencilSampleCounts = sample_counts,
1580 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1581 .maxSampleMaskWords = 1,
1582 .timestampComputeAndGraphics = true,
1583 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1584 .maxClipDistances = 8,
1585 .maxCullDistances = 8,
1586 .maxCombinedClipAndCullDistances = 8,
1587 .discreteQueuePriorities = 2,
1588 .pointSizeRange = { 0.125, 255.875 },
1589 .lineWidthRange = {
1590 0.0,
1591 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1592 2047.9921875 : 7.9921875,
1593 },
1594 .pointSizeGranularity = (1.0 / 8.0),
1595 .lineWidthGranularity = (1.0 / 128.0),
1596 .strictLines = false,
1597 .standardSampleLocations = true,
1598 .optimalBufferCopyOffsetAlignment = 128,
1599 .optimalBufferCopyRowPitchAlignment = 128,
1600 .nonCoherentAtomSize = 64,
1601 };
1602
1603 *pProperties = (VkPhysicalDeviceProperties) {
1604 .apiVersion = anv_physical_device_api_version(pdevice),
1605 .driverVersion = vk_get_driver_version(),
1606 .vendorID = 0x8086,
1607 .deviceID = pdevice->info.chipset_id,
1608 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1609 .limits = limits,
1610 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1611 };
1612
1613 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1614 "%s", pdevice->name);
1615 memcpy(pProperties->pipelineCacheUUID,
1616 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1617 }
1618
1619 static void
1620 anv_get_physical_device_properties_1_1(struct anv_physical_device *pdevice,
1621 VkPhysicalDeviceVulkan11Properties *p)
1622 {
1623 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES);
1624
1625 memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1626 memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1627 memset(p->deviceLUID, 0, VK_LUID_SIZE);
1628 p->deviceNodeMask = 0;
1629 p->deviceLUIDValid = false;
1630
1631 p->subgroupSize = BRW_SUBGROUP_SIZE;
1632 VkShaderStageFlags scalar_stages = 0;
1633 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1634 if (pdevice->compiler->scalar_stage[stage])
1635 scalar_stages |= mesa_to_vk_shader_stage(stage);
1636 }
1637 p->subgroupSupportedStages = scalar_stages;
1638 p->subgroupSupportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1639 VK_SUBGROUP_FEATURE_VOTE_BIT |
1640 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1641 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1642 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1643 VK_SUBGROUP_FEATURE_QUAD_BIT;
1644 if (pdevice->info.gen >= 8) {
1645 /* TODO: There's no technical reason why these can't be made to
1646 * work on gen7 but they don't at the moment so it's best to leave
1647 * the feature disabled than enabled and broken.
1648 */
1649 p->subgroupSupportedOperations |= VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1650 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1651 }
1652 p->subgroupQuadOperationsInAllStages = pdevice->info.gen >= 8;
1653
1654 p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1655 p->maxMultiviewViewCount = 16;
1656 p->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1657 p->protectedNoFault = false;
1658 /* This value doesn't matter for us today as our per-stage descriptors are
1659 * the real limit.
1660 */
1661 p->maxPerSetDescriptors = 1024;
1662 p->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1663 }
1664
1665 static void
1666 anv_get_physical_device_properties_1_2(struct anv_physical_device *pdevice,
1667 VkPhysicalDeviceVulkan12Properties *p)
1668 {
1669 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES);
1670
1671 p->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1672 memset(p->driverName, 0, sizeof(p->driverName));
1673 snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1674 "Intel open-source Mesa driver");
1675 memset(p->driverInfo, 0, sizeof(p->driverInfo));
1676 snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1677 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1678 p->conformanceVersion = (VkConformanceVersionKHR) {
1679 .major = 1,
1680 .minor = 2,
1681 .subminor = 0,
1682 .patch = 0,
1683 };
1684
1685 p->denormBehaviorIndependence =
1686 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1687 p->roundingModeIndependence =
1688 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
1689
1690 /* Broadwell does not support HF denorms and there are restrictions
1691 * other gens. According to Kabylake's PRM:
1692 *
1693 * "math - Extended Math Function
1694 * [...]
1695 * Restriction : Half-float denorms are always retained."
1696 */
1697 p->shaderDenormFlushToZeroFloat16 = false;
1698 p->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
1699 p->shaderRoundingModeRTEFloat16 = true;
1700 p->shaderRoundingModeRTZFloat16 = true;
1701 p->shaderSignedZeroInfNanPreserveFloat16 = true;
1702
1703 p->shaderDenormFlushToZeroFloat32 = true;
1704 p->shaderDenormPreserveFloat32 = true;
1705 p->shaderRoundingModeRTEFloat32 = true;
1706 p->shaderRoundingModeRTZFloat32 = true;
1707 p->shaderSignedZeroInfNanPreserveFloat32 = true;
1708
1709 p->shaderDenormFlushToZeroFloat64 = true;
1710 p->shaderDenormPreserveFloat64 = true;
1711 p->shaderRoundingModeRTEFloat64 = true;
1712 p->shaderRoundingModeRTZFloat64 = true;
1713 p->shaderSignedZeroInfNanPreserveFloat64 = true;
1714
1715 /* It's a bit hard to exactly map our implementation to the limits
1716 * described here. The bindless surface handle in the extended
1717 * message descriptors is 20 bits and it's an index into the table of
1718 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1719 * address. Given that most things consume two surface states per
1720 * view (general/sampled for textures and write-only/read-write for
1721 * images), we claim 2^19 things.
1722 *
1723 * For SSBOs, we just use A64 messages so there is no real limit
1724 * there beyond the limit on the total size of a descriptor set.
1725 */
1726 const unsigned max_bindless_views = 1 << 19;
1727 p->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1728 p->shaderUniformBufferArrayNonUniformIndexingNative = false;
1729 p->shaderSampledImageArrayNonUniformIndexingNative = false;
1730 p->shaderStorageBufferArrayNonUniformIndexingNative = true;
1731 p->shaderStorageImageArrayNonUniformIndexingNative = false;
1732 p->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1733 p->robustBufferAccessUpdateAfterBind = true;
1734 p->quadDivergentImplicitLod = false;
1735 p->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1736 p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1737 p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1738 p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1739 p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1740 p->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1741 p->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1742 p->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1743 p->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1744 p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1745 p->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1746 p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1747 p->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1748 p->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1749 p->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1750
1751 /* We support all of the depth resolve modes */
1752 p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1753 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1754 VK_RESOLVE_MODE_MIN_BIT_KHR |
1755 VK_RESOLVE_MODE_MAX_BIT_KHR;
1756 /* Average doesn't make sense for stencil so we don't support that */
1757 p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1758 if (pdevice->info.gen >= 8) {
1759 /* The advanced stencil resolve modes currently require stencil
1760 * sampling be supported by the hardware.
1761 */
1762 p->supportedStencilResolveModes |= VK_RESOLVE_MODE_MIN_BIT_KHR |
1763 VK_RESOLVE_MODE_MAX_BIT_KHR;
1764 }
1765 p->independentResolveNone = true;
1766 p->independentResolve = true;
1767
1768 p->filterMinmaxSingleComponentFormats = pdevice->info.gen >= 9;
1769 p->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1770
1771 p->maxTimelineSemaphoreValueDifference = UINT64_MAX;
1772
1773 p->framebufferIntegerColorSampleCounts =
1774 isl_device_get_sample_counts(&pdevice->isl_dev);
1775 }
1776
1777 void anv_GetPhysicalDeviceProperties2(
1778 VkPhysicalDevice physicalDevice,
1779 VkPhysicalDeviceProperties2* pProperties)
1780 {
1781 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1782
1783 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1784
1785 VkPhysicalDeviceVulkan11Properties core_1_1 = {
1786 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES,
1787 };
1788 anv_get_physical_device_properties_1_1(pdevice, &core_1_1);
1789
1790 VkPhysicalDeviceVulkan12Properties core_1_2 = {
1791 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES,
1792 };
1793 anv_get_physical_device_properties_1_2(pdevice, &core_1_2);
1794
1795 #define CORE_RENAMED_PROPERTY(major, minor, ext_property, core_property) \
1796 memcpy(&properties->ext_property, &core_##major##_##minor.core_property, \
1797 sizeof(core_##major##_##minor.core_property))
1798
1799 #define CORE_PROPERTY(major, minor, property) \
1800 CORE_RENAMED_PROPERTY(major, minor, property, property)
1801
1802 vk_foreach_struct(ext, pProperties->pNext) {
1803 switch (ext->sType) {
1804 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_PROPERTIES_EXT: {
1805 VkPhysicalDeviceCustomBorderColorPropertiesEXT *properties =
1806 (VkPhysicalDeviceCustomBorderColorPropertiesEXT *)ext;
1807 properties->maxCustomBorderColorSamplers = MAX_CUSTOM_BORDER_COLORS;
1808 break;
1809 }
1810
1811 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1812 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *properties =
1813 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1814 CORE_PROPERTY(1, 2, supportedDepthResolveModes);
1815 CORE_PROPERTY(1, 2, supportedStencilResolveModes);
1816 CORE_PROPERTY(1, 2, independentResolveNone);
1817 CORE_PROPERTY(1, 2, independentResolve);
1818 break;
1819 }
1820
1821 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1822 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *properties =
1823 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1824 CORE_PROPERTY(1, 2, maxUpdateAfterBindDescriptorsInAllPools);
1825 CORE_PROPERTY(1, 2, shaderUniformBufferArrayNonUniformIndexingNative);
1826 CORE_PROPERTY(1, 2, shaderSampledImageArrayNonUniformIndexingNative);
1827 CORE_PROPERTY(1, 2, shaderStorageBufferArrayNonUniformIndexingNative);
1828 CORE_PROPERTY(1, 2, shaderStorageImageArrayNonUniformIndexingNative);
1829 CORE_PROPERTY(1, 2, shaderInputAttachmentArrayNonUniformIndexingNative);
1830 CORE_PROPERTY(1, 2, robustBufferAccessUpdateAfterBind);
1831 CORE_PROPERTY(1, 2, quadDivergentImplicitLod);
1832 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSamplers);
1833 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindUniformBuffers);
1834 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageBuffers);
1835 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSampledImages);
1836 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageImages);
1837 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindInputAttachments);
1838 CORE_PROPERTY(1, 2, maxPerStageUpdateAfterBindResources);
1839 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSamplers);
1840 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffers);
1841 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffersDynamic);
1842 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffers);
1843 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffersDynamic);
1844 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSampledImages);
1845 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageImages);
1846 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindInputAttachments);
1847 break;
1848 }
1849
1850 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1851 VkPhysicalDeviceDriverPropertiesKHR *properties =
1852 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1853 CORE_PROPERTY(1, 2, driverID);
1854 CORE_PROPERTY(1, 2, driverName);
1855 CORE_PROPERTY(1, 2, driverInfo);
1856 CORE_PROPERTY(1, 2, conformanceVersion);
1857 break;
1858 }
1859
1860 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1861 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1862 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1863 /* Userptr needs page aligned memory. */
1864 props->minImportedHostPointerAlignment = 4096;
1865 break;
1866 }
1867
1868 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1869 VkPhysicalDeviceIDProperties *properties =
1870 (VkPhysicalDeviceIDProperties *)ext;
1871 CORE_PROPERTY(1, 1, deviceUUID);
1872 CORE_PROPERTY(1, 1, driverUUID);
1873 CORE_PROPERTY(1, 1, deviceLUID);
1874 CORE_PROPERTY(1, 1, deviceLUIDValid);
1875 break;
1876 }
1877
1878 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1879 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1880 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1881 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1882 props->maxPerStageDescriptorInlineUniformBlocks =
1883 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1884 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1885 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1886 props->maxDescriptorSetInlineUniformBlocks =
1887 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1888 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1889 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1890 break;
1891 }
1892
1893 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1894 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1895 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1896 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1897 * Sampling Rules - Legacy Mode", it says the following:
1898 *
1899 * "Note that the device divides a pixel into a 16x16 array of
1900 * subpixels, referenced by their upper left corners."
1901 *
1902 * This is the only known reference in the PRMs to the subpixel
1903 * precision of line rasterization and a "16x16 array of subpixels"
1904 * implies 4 subpixel precision bits. Empirical testing has shown
1905 * that 4 subpixel precision bits applies to all line rasterization
1906 * types.
1907 */
1908 props->lineSubPixelPrecisionBits = 4;
1909 break;
1910 }
1911
1912 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1913 VkPhysicalDeviceMaintenance3Properties *properties =
1914 (VkPhysicalDeviceMaintenance3Properties *)ext;
1915 /* This value doesn't matter for us today as our per-stage
1916 * descriptors are the real limit.
1917 */
1918 CORE_PROPERTY(1, 1, maxPerSetDescriptors);
1919 CORE_PROPERTY(1, 1, maxMemoryAllocationSize);
1920 break;
1921 }
1922
1923 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1924 VkPhysicalDeviceMultiviewProperties *properties =
1925 (VkPhysicalDeviceMultiviewProperties *)ext;
1926 CORE_PROPERTY(1, 1, maxMultiviewViewCount);
1927 CORE_PROPERTY(1, 1, maxMultiviewInstanceIndex);
1928 break;
1929 }
1930
1931 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1932 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1933 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1934 properties->pciDomain = pdevice->pci_info.domain;
1935 properties->pciBus = pdevice->pci_info.bus;
1936 properties->pciDevice = pdevice->pci_info.device;
1937 properties->pciFunction = pdevice->pci_info.function;
1938 break;
1939 }
1940
1941 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_PROPERTIES_KHR: {
1942 VkPhysicalDevicePerformanceQueryPropertiesKHR *properties =
1943 (VkPhysicalDevicePerformanceQueryPropertiesKHR *)ext;
1944 /* We could support this by spawning a shader to do the equation
1945 * normalization.
1946 */
1947 properties->allowCommandBufferQueryCopies = false;
1948 break;
1949 }
1950
1951 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1952 VkPhysicalDevicePointClippingProperties *properties =
1953 (VkPhysicalDevicePointClippingProperties *) ext;
1954 CORE_PROPERTY(1, 1, pointClippingBehavior);
1955 break;
1956 }
1957
1958 #pragma GCC diagnostic push
1959 #pragma GCC diagnostic ignored "-Wswitch"
1960 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1961 VkPhysicalDevicePresentationPropertiesANDROID *props =
1962 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1963 props->sharedImage = VK_FALSE;
1964 break;
1965 }
1966 #pragma GCC diagnostic pop
1967
1968 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1969 VkPhysicalDeviceProtectedMemoryProperties *properties =
1970 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1971 CORE_PROPERTY(1, 1, protectedNoFault);
1972 break;
1973 }
1974
1975 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1976 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1977 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1978 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1979 break;
1980 }
1981
1982 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_PROPERTIES_EXT: {
1983 VkPhysicalDeviceRobustness2PropertiesEXT *properties = (void *)ext;
1984 properties->robustStorageBufferAccessSizeAlignment =
1985 ANV_SSBO_BOUNDS_CHECK_ALIGNMENT;
1986 properties->robustUniformBufferAccessSizeAlignment =
1987 ANV_UBO_ALIGNMENT;
1988 break;
1989 }
1990
1991 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1992 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1993 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1994 CORE_PROPERTY(1, 2, filterMinmaxImageComponentMapping);
1995 CORE_PROPERTY(1, 2, filterMinmaxSingleComponentFormats);
1996 break;
1997 }
1998
1999 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
2000 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
2001 CORE_PROPERTY(1, 1, subgroupSize);
2002 CORE_RENAMED_PROPERTY(1, 1, supportedStages,
2003 subgroupSupportedStages);
2004 CORE_RENAMED_PROPERTY(1, 1, supportedOperations,
2005 subgroupSupportedOperations);
2006 CORE_RENAMED_PROPERTY(1, 1, quadOperationsInAllStages,
2007 subgroupQuadOperationsInAllStages);
2008 break;
2009 }
2010
2011 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
2012 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
2013 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
2014 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
2015 props->minSubgroupSize = 8;
2016 props->maxSubgroupSize = 32;
2017 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
2018 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
2019 break;
2020 }
2021 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
2022 VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
2023 CORE_PROPERTY(1, 2, denormBehaviorIndependence);
2024 CORE_PROPERTY(1, 2, roundingModeIndependence);
2025 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat16);
2026 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat16);
2027 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat16);
2028 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat16);
2029 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat16);
2030 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat32);
2031 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat32);
2032 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat32);
2033 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat32);
2034 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat32);
2035 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat64);
2036 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat64);
2037 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat64);
2038 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat64);
2039 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat64);
2040 break;
2041 }
2042
2043 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
2044 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
2045 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
2046
2047 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
2048 * Base Address:
2049 *
2050 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
2051 * specifies the base address of the first element of the surface,
2052 * computed in software by adding the surface base address to the
2053 * byte offset of the element in the buffer. The base address must
2054 * be aligned to element size."
2055 *
2056 * The typed dataport messages require that things be texel aligned.
2057 * Otherwise, we may just load/store the wrong data or, in the worst
2058 * case, there may be hangs.
2059 */
2060 props->storageTexelBufferOffsetAlignmentBytes = 16;
2061 props->storageTexelBufferOffsetSingleTexelAlignment = true;
2062
2063 /* The sampler, however, is much more forgiving and it can handle
2064 * arbitrary byte alignment for linear and buffer surfaces. It's
2065 * hard to find a good PRM citation for this but years of empirical
2066 * experience demonstrate that this is true.
2067 */
2068 props->uniformTexelBufferOffsetAlignmentBytes = 1;
2069 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
2070 break;
2071 }
2072
2073 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES_KHR: {
2074 VkPhysicalDeviceTimelineSemaphorePropertiesKHR *properties =
2075 (VkPhysicalDeviceTimelineSemaphorePropertiesKHR *) ext;
2076 CORE_PROPERTY(1, 2, maxTimelineSemaphoreValueDifference);
2077 break;
2078 }
2079
2080 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
2081 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
2082 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
2083
2084 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
2085 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
2086 props->maxTransformFeedbackBufferSize = (1ull << 32);
2087 props->maxTransformFeedbackStreamDataSize = 128 * 4;
2088 props->maxTransformFeedbackBufferDataSize = 128 * 4;
2089 props->maxTransformFeedbackBufferDataStride = 2048;
2090 props->transformFeedbackQueries = true;
2091 props->transformFeedbackStreamsLinesTriangles = false;
2092 props->transformFeedbackRasterizationStreamSelect = false;
2093 props->transformFeedbackDraw = true;
2094 break;
2095 }
2096
2097 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
2098 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
2099 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
2100 /* We have to restrict this a bit for multiview */
2101 props->maxVertexAttribDivisor = UINT32_MAX / 16;
2102 break;
2103 }
2104
2105 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES:
2106 anv_get_physical_device_properties_1_1(pdevice, (void *)ext);
2107 break;
2108
2109 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES:
2110 anv_get_physical_device_properties_1_2(pdevice, (void *)ext);
2111 break;
2112
2113 default:
2114 anv_debug_ignored_stype(ext->sType);
2115 break;
2116 }
2117 }
2118
2119 #undef CORE_RENAMED_PROPERTY
2120 #undef CORE_PROPERTY
2121 }
2122
2123 /* We support exactly one queue family. */
2124 static const VkQueueFamilyProperties
2125 anv_queue_family_properties = {
2126 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
2127 VK_QUEUE_COMPUTE_BIT |
2128 VK_QUEUE_TRANSFER_BIT,
2129 .queueCount = 1,
2130 .timestampValidBits = 36, /* XXX: Real value here */
2131 .minImageTransferGranularity = { 1, 1, 1 },
2132 };
2133
2134 void anv_GetPhysicalDeviceQueueFamilyProperties(
2135 VkPhysicalDevice physicalDevice,
2136 uint32_t* pCount,
2137 VkQueueFamilyProperties* pQueueFamilyProperties)
2138 {
2139 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
2140
2141 vk_outarray_append(&out, p) {
2142 *p = anv_queue_family_properties;
2143 }
2144 }
2145
2146 void anv_GetPhysicalDeviceQueueFamilyProperties2(
2147 VkPhysicalDevice physicalDevice,
2148 uint32_t* pQueueFamilyPropertyCount,
2149 VkQueueFamilyProperties2* pQueueFamilyProperties)
2150 {
2151
2152 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
2153
2154 vk_outarray_append(&out, p) {
2155 p->queueFamilyProperties = anv_queue_family_properties;
2156
2157 vk_foreach_struct(s, p->pNext) {
2158 anv_debug_ignored_stype(s->sType);
2159 }
2160 }
2161 }
2162
2163 void anv_GetPhysicalDeviceMemoryProperties(
2164 VkPhysicalDevice physicalDevice,
2165 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
2166 {
2167 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2168
2169 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
2170 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
2171 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
2172 .propertyFlags = physical_device->memory.types[i].propertyFlags,
2173 .heapIndex = physical_device->memory.types[i].heapIndex,
2174 };
2175 }
2176
2177 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
2178 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
2179 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
2180 .size = physical_device->memory.heaps[i].size,
2181 .flags = physical_device->memory.heaps[i].flags,
2182 };
2183 }
2184 }
2185
2186 static void
2187 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
2188 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
2189 {
2190 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2191 uint64_t sys_available = get_available_system_memory();
2192 assert(sys_available > 0);
2193
2194 VkDeviceSize total_heaps_size = 0;
2195 for (size_t i = 0; i < device->memory.heap_count; i++)
2196 total_heaps_size += device->memory.heaps[i].size;
2197
2198 for (size_t i = 0; i < device->memory.heap_count; i++) {
2199 VkDeviceSize heap_size = device->memory.heaps[i].size;
2200 VkDeviceSize heap_used = device->memory.heaps[i].used;
2201 VkDeviceSize heap_budget;
2202
2203 double heap_proportion = (double) heap_size / total_heaps_size;
2204 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
2205
2206 /*
2207 * Let's not incite the app to starve the system: report at most 90% of
2208 * available system memory.
2209 */
2210 uint64_t heap_available = sys_available_prop * 9 / 10;
2211 heap_budget = MIN2(heap_size, heap_used + heap_available);
2212
2213 /*
2214 * Round down to the nearest MB
2215 */
2216 heap_budget &= ~((1ull << 20) - 1);
2217
2218 /*
2219 * The heapBudget value must be non-zero for array elements less than
2220 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
2221 * value must be less than or equal to VkMemoryHeap::size for each heap.
2222 */
2223 assert(0 < heap_budget && heap_budget <= heap_size);
2224
2225 memoryBudget->heapUsage[i] = heap_used;
2226 memoryBudget->heapBudget[i] = heap_budget;
2227 }
2228
2229 /* The heapBudget and heapUsage values must be zero for array elements
2230 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
2231 */
2232 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
2233 memoryBudget->heapBudget[i] = 0;
2234 memoryBudget->heapUsage[i] = 0;
2235 }
2236 }
2237
2238 void anv_GetPhysicalDeviceMemoryProperties2(
2239 VkPhysicalDevice physicalDevice,
2240 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
2241 {
2242 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
2243 &pMemoryProperties->memoryProperties);
2244
2245 vk_foreach_struct(ext, pMemoryProperties->pNext) {
2246 switch (ext->sType) {
2247 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
2248 anv_get_memory_budget(physicalDevice, (void*)ext);
2249 break;
2250 default:
2251 anv_debug_ignored_stype(ext->sType);
2252 break;
2253 }
2254 }
2255 }
2256
2257 void
2258 anv_GetDeviceGroupPeerMemoryFeatures(
2259 VkDevice device,
2260 uint32_t heapIndex,
2261 uint32_t localDeviceIndex,
2262 uint32_t remoteDeviceIndex,
2263 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
2264 {
2265 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
2266 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
2267 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
2268 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
2269 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
2270 }
2271
2272 PFN_vkVoidFunction anv_GetInstanceProcAddr(
2273 VkInstance _instance,
2274 const char* pName)
2275 {
2276 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2277
2278 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
2279 * when we have to return valid function pointers, NULL, or it's left
2280 * undefined. See the table for exact details.
2281 */
2282 if (pName == NULL)
2283 return NULL;
2284
2285 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
2286 if (strcmp(pName, "vk" #entrypoint) == 0) \
2287 return (PFN_vkVoidFunction)anv_##entrypoint
2288
2289 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
2290 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
2291 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
2292 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
2293
2294 /* GetInstanceProcAddr() can also be called with a NULL instance.
2295 * See https://gitlab.khronos.org/vulkan/vulkan/issues/2057
2296 */
2297 LOOKUP_ANV_ENTRYPOINT(GetInstanceProcAddr);
2298
2299 #undef LOOKUP_ANV_ENTRYPOINT
2300
2301 if (instance == NULL)
2302 return NULL;
2303
2304 int idx = anv_get_instance_entrypoint_index(pName);
2305 if (idx >= 0)
2306 return instance->dispatch.entrypoints[idx];
2307
2308 idx = anv_get_physical_device_entrypoint_index(pName);
2309 if (idx >= 0)
2310 return instance->physical_device_dispatch.entrypoints[idx];
2311
2312 idx = anv_get_device_entrypoint_index(pName);
2313 if (idx >= 0)
2314 return instance->device_dispatch.entrypoints[idx];
2315
2316 return NULL;
2317 }
2318
2319 /* With version 1+ of the loader interface the ICD should expose
2320 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
2321 */
2322 PUBLIC
2323 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2324 VkInstance instance,
2325 const char* pName);
2326
2327 PUBLIC
2328 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2329 VkInstance instance,
2330 const char* pName)
2331 {
2332 return anv_GetInstanceProcAddr(instance, pName);
2333 }
2334
2335 PFN_vkVoidFunction anv_GetDeviceProcAddr(
2336 VkDevice _device,
2337 const char* pName)
2338 {
2339 ANV_FROM_HANDLE(anv_device, device, _device);
2340
2341 if (!device || !pName)
2342 return NULL;
2343
2344 int idx = anv_get_device_entrypoint_index(pName);
2345 if (idx < 0)
2346 return NULL;
2347
2348 return device->dispatch.entrypoints[idx];
2349 }
2350
2351 /* With version 4+ of the loader interface the ICD should expose
2352 * vk_icdGetPhysicalDeviceProcAddr()
2353 */
2354 PUBLIC
2355 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
2356 VkInstance _instance,
2357 const char* pName);
2358
2359 PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
2360 VkInstance _instance,
2361 const char* pName)
2362 {
2363 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2364
2365 if (!pName || !instance)
2366 return NULL;
2367
2368 int idx = anv_get_physical_device_entrypoint_index(pName);
2369 if (idx < 0)
2370 return NULL;
2371
2372 return instance->physical_device_dispatch.entrypoints[idx];
2373 }
2374
2375
2376 VkResult
2377 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
2378 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
2379 const VkAllocationCallbacks* pAllocator,
2380 VkDebugReportCallbackEXT* pCallback)
2381 {
2382 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2383 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2384 pCreateInfo, pAllocator, &instance->alloc,
2385 pCallback);
2386 }
2387
2388 void
2389 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
2390 VkDebugReportCallbackEXT _callback,
2391 const VkAllocationCallbacks* pAllocator)
2392 {
2393 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2394 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2395 _callback, pAllocator, &instance->alloc);
2396 }
2397
2398 void
2399 anv_DebugReportMessageEXT(VkInstance _instance,
2400 VkDebugReportFlagsEXT flags,
2401 VkDebugReportObjectTypeEXT objectType,
2402 uint64_t object,
2403 size_t location,
2404 int32_t messageCode,
2405 const char* pLayerPrefix,
2406 const char* pMessage)
2407 {
2408 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2409 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2410 object, location, messageCode, pLayerPrefix, pMessage);
2411 }
2412
2413 static struct anv_state
2414 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2415 {
2416 struct anv_state state;
2417
2418 state = anv_state_pool_alloc(pool, size, align);
2419 memcpy(state.map, p, size);
2420
2421 return state;
2422 }
2423
2424 static void
2425 anv_device_init_border_colors(struct anv_device *device)
2426 {
2427 if (device->info.is_haswell) {
2428 static const struct hsw_border_color border_colors[] = {
2429 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2430 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2431 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2432 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2433 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2434 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2435 };
2436
2437 device->border_colors =
2438 anv_state_pool_emit_data(&device->dynamic_state_pool,
2439 sizeof(border_colors), 512, border_colors);
2440 } else {
2441 static const struct gen8_border_color border_colors[] = {
2442 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2443 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2444 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2445 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2446 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2447 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2448 };
2449
2450 device->border_colors =
2451 anv_state_pool_emit_data(&device->dynamic_state_pool,
2452 sizeof(border_colors), 64, border_colors);
2453 }
2454 }
2455
2456 static VkResult
2457 anv_device_init_trivial_batch(struct anv_device *device)
2458 {
2459 VkResult result = anv_device_alloc_bo(device, 4096,
2460 ANV_BO_ALLOC_MAPPED,
2461 0 /* explicit_address */,
2462 &device->trivial_batch_bo);
2463 if (result != VK_SUCCESS)
2464 return result;
2465
2466 struct anv_batch batch = {
2467 .start = device->trivial_batch_bo->map,
2468 .next = device->trivial_batch_bo->map,
2469 .end = device->trivial_batch_bo->map + 4096,
2470 };
2471
2472 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2473 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2474
2475 if (!device->info.has_llc)
2476 gen_clflush_range(batch.start, batch.next - batch.start);
2477
2478 return VK_SUCCESS;
2479 }
2480
2481 VkResult anv_EnumerateDeviceExtensionProperties(
2482 VkPhysicalDevice physicalDevice,
2483 const char* pLayerName,
2484 uint32_t* pPropertyCount,
2485 VkExtensionProperties* pProperties)
2486 {
2487 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2488 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2489
2490 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2491 if (device->supported_extensions.extensions[i]) {
2492 vk_outarray_append(&out, prop) {
2493 *prop = anv_device_extensions[i];
2494 }
2495 }
2496 }
2497
2498 return vk_outarray_status(&out);
2499 }
2500
2501 static int
2502 vk_priority_to_gen(int priority)
2503 {
2504 switch (priority) {
2505 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2506 return GEN_CONTEXT_LOW_PRIORITY;
2507 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2508 return GEN_CONTEXT_MEDIUM_PRIORITY;
2509 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2510 return GEN_CONTEXT_HIGH_PRIORITY;
2511 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2512 return GEN_CONTEXT_REALTIME_PRIORITY;
2513 default:
2514 unreachable("Invalid priority");
2515 }
2516 }
2517
2518 static VkResult
2519 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2520 {
2521 VkResult result = anv_device_alloc_bo(device, 4096,
2522 ANV_BO_ALLOC_MAPPED,
2523 0 /* explicit_address */,
2524 &device->hiz_clear_bo);
2525 if (result != VK_SUCCESS)
2526 return result;
2527
2528 union isl_color_value hiz_clear = { .u32 = { 0, } };
2529 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2530
2531 memcpy(device->hiz_clear_bo->map, hiz_clear.u32, sizeof(hiz_clear.u32));
2532
2533 if (!device->info.has_llc)
2534 gen_clflush_range(device->hiz_clear_bo->map, sizeof(hiz_clear.u32));
2535
2536 return VK_SUCCESS;
2537 }
2538
2539 static bool
2540 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2541 struct anv_block_pool *pool,
2542 uint64_t address)
2543 {
2544 anv_block_pool_foreach_bo(bo, pool) {
2545 uint64_t bo_address = gen_48b_address(bo->offset);
2546 if (address >= bo_address && address < (bo_address + bo->size)) {
2547 *ret = (struct gen_batch_decode_bo) {
2548 .addr = bo_address,
2549 .size = bo->size,
2550 .map = bo->map,
2551 };
2552 return true;
2553 }
2554 }
2555 return false;
2556 }
2557
2558 /* Finding a buffer for batch decoding */
2559 static struct gen_batch_decode_bo
2560 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2561 {
2562 struct anv_device *device = v_batch;
2563 struct gen_batch_decode_bo ret_bo = {};
2564
2565 assert(ppgtt);
2566
2567 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2568 return ret_bo;
2569 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2570 return ret_bo;
2571 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2572 return ret_bo;
2573 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2574 return ret_bo;
2575
2576 if (!device->cmd_buffer_being_decoded)
2577 return (struct gen_batch_decode_bo) { };
2578
2579 struct anv_batch_bo **bo;
2580
2581 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2582 /* The decoder zeroes out the top 16 bits, so we need to as well */
2583 uint64_t bo_address = (*bo)->bo->offset & (~0ull >> 16);
2584
2585 if (address >= bo_address && address < bo_address + (*bo)->bo->size) {
2586 return (struct gen_batch_decode_bo) {
2587 .addr = bo_address,
2588 .size = (*bo)->bo->size,
2589 .map = (*bo)->bo->map,
2590 };
2591 }
2592 }
2593
2594 return (struct gen_batch_decode_bo) { };
2595 }
2596
2597 struct gen_aux_map_buffer {
2598 struct gen_buffer base;
2599 struct anv_state state;
2600 };
2601
2602 static struct gen_buffer *
2603 gen_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
2604 {
2605 struct gen_aux_map_buffer *buf = malloc(sizeof(struct gen_aux_map_buffer));
2606 if (!buf)
2607 return NULL;
2608
2609 struct anv_device *device = (struct anv_device*)driver_ctx;
2610 assert(device->physical->supports_48bit_addresses &&
2611 device->physical->use_softpin);
2612
2613 struct anv_state_pool *pool = &device->dynamic_state_pool;
2614 buf->state = anv_state_pool_alloc(pool, size, size);
2615
2616 buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset;
2617 buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size;
2618 buf->base.map = buf->state.map;
2619 buf->base.driver_bo = &buf->state;
2620 return &buf->base;
2621 }
2622
2623 static void
2624 gen_aux_map_buffer_free(void *driver_ctx, struct gen_buffer *buffer)
2625 {
2626 struct gen_aux_map_buffer *buf = (struct gen_aux_map_buffer*)buffer;
2627 struct anv_device *device = (struct anv_device*)driver_ctx;
2628 struct anv_state_pool *pool = &device->dynamic_state_pool;
2629 anv_state_pool_free(pool, buf->state);
2630 free(buf);
2631 }
2632
2633 static struct gen_mapped_pinned_buffer_alloc aux_map_allocator = {
2634 .alloc = gen_aux_map_buffer_alloc,
2635 .free = gen_aux_map_buffer_free,
2636 };
2637
2638 static VkResult
2639 check_physical_device_features(VkPhysicalDevice physicalDevice,
2640 const VkPhysicalDeviceFeatures *features)
2641 {
2642 VkPhysicalDeviceFeatures supported_features;
2643 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2644 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2645 VkBool32 *enabled_feature = (VkBool32 *)features;
2646 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2647 for (uint32_t i = 0; i < num_features; i++) {
2648 if (enabled_feature[i] && !supported_feature[i])
2649 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2650 }
2651
2652 return VK_SUCCESS;
2653 }
2654
2655 VkResult anv_CreateDevice(
2656 VkPhysicalDevice physicalDevice,
2657 const VkDeviceCreateInfo* pCreateInfo,
2658 const VkAllocationCallbacks* pAllocator,
2659 VkDevice* pDevice)
2660 {
2661 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2662 VkResult result;
2663 struct anv_device *device;
2664
2665 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2666
2667 struct anv_device_extension_table enabled_extensions = { };
2668 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2669 int idx;
2670 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2671 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2672 anv_device_extensions[idx].extensionName) == 0)
2673 break;
2674 }
2675
2676 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2677 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2678
2679 if (!physical_device->supported_extensions.extensions[idx])
2680 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2681
2682 enabled_extensions.extensions[idx] = true;
2683 }
2684
2685 /* Check enabled features */
2686 bool robust_buffer_access = false;
2687 if (pCreateInfo->pEnabledFeatures) {
2688 result = check_physical_device_features(physicalDevice,
2689 pCreateInfo->pEnabledFeatures);
2690 if (result != VK_SUCCESS)
2691 return result;
2692
2693 if (pCreateInfo->pEnabledFeatures->robustBufferAccess)
2694 robust_buffer_access = true;
2695 }
2696
2697 vk_foreach_struct_const(ext, pCreateInfo->pNext) {
2698 switch (ext->sType) {
2699 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: {
2700 const VkPhysicalDeviceFeatures2 *features = (const void *)ext;
2701 result = check_physical_device_features(physicalDevice,
2702 &features->features);
2703 if (result != VK_SUCCESS)
2704 return result;
2705
2706 if (features->features.robustBufferAccess)
2707 robust_buffer_access = true;
2708 break;
2709 }
2710
2711 default:
2712 /* Don't warn */
2713 break;
2714 }
2715 }
2716
2717 /* Check requested queues and fail if we are requested to create any
2718 * queues with flags we don't support.
2719 */
2720 assert(pCreateInfo->queueCreateInfoCount > 0);
2721 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2722 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2723 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2724 }
2725
2726 /* Check if client specified queue priority. */
2727 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2728 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2729 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2730
2731 VkQueueGlobalPriorityEXT priority =
2732 queue_priority ? queue_priority->globalPriority :
2733 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2734
2735 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2736 sizeof(*device), 8,
2737 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2738 if (!device)
2739 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2740
2741 vk_device_init(&device->vk, pCreateInfo,
2742 &physical_device->instance->alloc, pAllocator);
2743
2744 if (INTEL_DEBUG & DEBUG_BATCH) {
2745 const unsigned decode_flags =
2746 GEN_BATCH_DECODE_FULL |
2747 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2748 GEN_BATCH_DECODE_OFFSETS |
2749 GEN_BATCH_DECODE_FLOATS;
2750
2751 gen_batch_decode_ctx_init(&device->decoder_ctx,
2752 &physical_device->info,
2753 stderr, decode_flags, NULL,
2754 decode_get_bo, NULL, device);
2755 }
2756
2757 device->physical = physical_device;
2758 device->no_hw = physical_device->no_hw;
2759 device->_lost = false;
2760
2761 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2762 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2763 if (device->fd == -1) {
2764 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2765 goto fail_device;
2766 }
2767
2768 device->context_id = anv_gem_create_context(device);
2769 if (device->context_id == -1) {
2770 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2771 goto fail_fd;
2772 }
2773
2774 result = anv_queue_init(device, &device->queue);
2775 if (result != VK_SUCCESS)
2776 goto fail_context_id;
2777
2778 if (physical_device->use_softpin) {
2779 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2780 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2781 goto fail_queue;
2782 }
2783
2784 /* keep the page with address zero out of the allocator */
2785 util_vma_heap_init(&device->vma_lo,
2786 LOW_HEAP_MIN_ADDRESS, LOW_HEAP_SIZE);
2787
2788 util_vma_heap_init(&device->vma_cva, CLIENT_VISIBLE_HEAP_MIN_ADDRESS,
2789 CLIENT_VISIBLE_HEAP_SIZE);
2790
2791 /* Leave the last 4GiB out of the high vma range, so that no state
2792 * base address + size can overflow 48 bits. For more information see
2793 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
2794 */
2795 util_vma_heap_init(&device->vma_hi, HIGH_HEAP_MIN_ADDRESS,
2796 physical_device->gtt_size - (1ull << 32) -
2797 HIGH_HEAP_MIN_ADDRESS);
2798 }
2799
2800 list_inithead(&device->memory_objects);
2801
2802 /* As per spec, the driver implementation may deny requests to acquire
2803 * a priority above the default priority (MEDIUM) if the caller does not
2804 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2805 * is returned.
2806 */
2807 if (physical_device->has_context_priority) {
2808 int err = anv_gem_set_context_param(device->fd, device->context_id,
2809 I915_CONTEXT_PARAM_PRIORITY,
2810 vk_priority_to_gen(priority));
2811 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2812 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2813 goto fail_vmas;
2814 }
2815 }
2816
2817 device->info = physical_device->info;
2818 device->isl_dev = physical_device->isl_dev;
2819
2820 /* On Broadwell and later, we can use batch chaining to more efficiently
2821 * implement growing command buffers. Prior to Haswell, the kernel
2822 * command parser gets in the way and we have to fall back to growing
2823 * the batch.
2824 */
2825 device->can_chain_batches = device->info.gen >= 8;
2826
2827 device->robust_buffer_access = robust_buffer_access;
2828 device->enabled_extensions = enabled_extensions;
2829
2830 const struct anv_instance *instance = physical_device->instance;
2831 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2832 /* Vulkan requires that entrypoints for extensions which have not been
2833 * enabled must not be advertised.
2834 */
2835 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
2836 &instance->enabled_extensions,
2837 &device->enabled_extensions)) {
2838 device->dispatch.entrypoints[i] = NULL;
2839 } else {
2840 device->dispatch.entrypoints[i] =
2841 anv_resolve_device_entrypoint(&device->info, i);
2842 }
2843 }
2844
2845 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2846 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2847 goto fail_queue;
2848 }
2849
2850 pthread_condattr_t condattr;
2851 if (pthread_condattr_init(&condattr) != 0) {
2852 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2853 goto fail_mutex;
2854 }
2855 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2856 pthread_condattr_destroy(&condattr);
2857 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2858 goto fail_mutex;
2859 }
2860 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2861 pthread_condattr_destroy(&condattr);
2862 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2863 goto fail_mutex;
2864 }
2865 pthread_condattr_destroy(&condattr);
2866
2867 result = anv_bo_cache_init(&device->bo_cache);
2868 if (result != VK_SUCCESS)
2869 goto fail_queue_cond;
2870
2871 anv_bo_pool_init(&device->batch_bo_pool, device);
2872
2873 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2874 DYNAMIC_STATE_POOL_MIN_ADDRESS, 0, 16384);
2875 if (result != VK_SUCCESS)
2876 goto fail_batch_bo_pool;
2877
2878 if (device->info.gen >= 8) {
2879 /* The border color pointer is limited to 24 bits, so we need to make
2880 * sure that any such color used at any point in the program doesn't
2881 * exceed that limit.
2882 * We achieve that by reserving all the custom border colors we support
2883 * right off the bat, so they are close to the base address.
2884 */
2885 anv_state_reserved_pool_init(&device->custom_border_colors,
2886 &device->dynamic_state_pool,
2887 sizeof(struct gen8_border_color),
2888 MAX_CUSTOM_BORDER_COLORS, 64);
2889 }
2890
2891 result = anv_state_pool_init(&device->instruction_state_pool, device,
2892 INSTRUCTION_STATE_POOL_MIN_ADDRESS, 0, 16384);
2893 if (result != VK_SUCCESS)
2894 goto fail_dynamic_state_pool;
2895
2896 result = anv_state_pool_init(&device->surface_state_pool, device,
2897 SURFACE_STATE_POOL_MIN_ADDRESS, 0, 4096);
2898 if (result != VK_SUCCESS)
2899 goto fail_instruction_state_pool;
2900
2901 if (physical_device->use_softpin) {
2902 int64_t bt_pool_offset = (int64_t)BINDING_TABLE_POOL_MIN_ADDRESS -
2903 (int64_t)SURFACE_STATE_POOL_MIN_ADDRESS;
2904 assert(INT32_MIN < bt_pool_offset && bt_pool_offset < 0);
2905 result = anv_state_pool_init(&device->binding_table_pool, device,
2906 SURFACE_STATE_POOL_MIN_ADDRESS,
2907 bt_pool_offset, 4096);
2908 if (result != VK_SUCCESS)
2909 goto fail_surface_state_pool;
2910 }
2911
2912 if (device->info.has_aux_map) {
2913 device->aux_map_ctx = gen_aux_map_init(device, &aux_map_allocator,
2914 &physical_device->info);
2915 if (!device->aux_map_ctx)
2916 goto fail_binding_table_pool;
2917 }
2918
2919 result = anv_device_alloc_bo(device, 4096,
2920 ANV_BO_ALLOC_CAPTURE | ANV_BO_ALLOC_MAPPED /* flags */,
2921 0 /* explicit_address */,
2922 &device->workaround_bo);
2923 if (result != VK_SUCCESS)
2924 goto fail_surface_aux_map_pool;
2925
2926 device->workaround_address = (struct anv_address) {
2927 .bo = device->workaround_bo,
2928 .offset = align_u32(
2929 intel_debug_write_identifiers(device->workaround_bo->map,
2930 device->workaround_bo->size,
2931 "Anv") + 8, 8),
2932 };
2933
2934 if (!device->info.has_llc) {
2935 gen_clflush_range(device->workaround_bo->map,
2936 device->workaround_address.offset);
2937 }
2938
2939 result = anv_device_init_trivial_batch(device);
2940 if (result != VK_SUCCESS)
2941 goto fail_workaround_bo;
2942
2943 /* Allocate a null surface state at surface state offset 0. This makes
2944 * NULL descriptor handling trivial because we can just memset structures
2945 * to zero and they have a valid descriptor.
2946 */
2947 device->null_surface_state =
2948 anv_state_pool_alloc(&device->surface_state_pool,
2949 device->isl_dev.ss.size,
2950 device->isl_dev.ss.align);
2951 isl_null_fill_state(&device->isl_dev, device->null_surface_state.map,
2952 isl_extent3d(1, 1, 1) /* This shouldn't matter */);
2953 assert(device->null_surface_state.offset == 0);
2954
2955 if (device->info.gen >= 10) {
2956 result = anv_device_init_hiz_clear_value_bo(device);
2957 if (result != VK_SUCCESS)
2958 goto fail_trivial_batch_bo;
2959 }
2960
2961 anv_scratch_pool_init(device, &device->scratch_pool);
2962
2963 switch (device->info.gen) {
2964 case 7:
2965 if (!device->info.is_haswell)
2966 result = gen7_init_device_state(device);
2967 else
2968 result = gen75_init_device_state(device);
2969 break;
2970 case 8:
2971 result = gen8_init_device_state(device);
2972 break;
2973 case 9:
2974 result = gen9_init_device_state(device);
2975 break;
2976 case 10:
2977 result = gen10_init_device_state(device);
2978 break;
2979 case 11:
2980 result = gen11_init_device_state(device);
2981 break;
2982 case 12:
2983 result = gen12_init_device_state(device);
2984 break;
2985 default:
2986 /* Shouldn't get here as we don't create physical devices for any other
2987 * gens. */
2988 unreachable("unhandled gen");
2989 }
2990 if (result != VK_SUCCESS)
2991 goto fail_clear_value_bo;
2992
2993 anv_pipeline_cache_init(&device->default_pipeline_cache, device,
2994 true /* cache_enabled */, false /* external_sync */);
2995
2996 anv_device_init_blorp(device);
2997
2998 anv_device_init_border_colors(device);
2999
3000 anv_device_perf_init(device);
3001
3002 *pDevice = anv_device_to_handle(device);
3003
3004 return VK_SUCCESS;
3005
3006 fail_clear_value_bo:
3007 if (device->info.gen >= 10)
3008 anv_device_release_bo(device, device->hiz_clear_bo);
3009 anv_scratch_pool_finish(device, &device->scratch_pool);
3010 fail_trivial_batch_bo:
3011 anv_device_release_bo(device, device->trivial_batch_bo);
3012 fail_workaround_bo:
3013 anv_device_release_bo(device, device->workaround_bo);
3014 fail_surface_aux_map_pool:
3015 if (device->info.has_aux_map) {
3016 gen_aux_map_finish(device->aux_map_ctx);
3017 device->aux_map_ctx = NULL;
3018 }
3019 fail_binding_table_pool:
3020 if (physical_device->use_softpin)
3021 anv_state_pool_finish(&device->binding_table_pool);
3022 fail_surface_state_pool:
3023 anv_state_pool_finish(&device->surface_state_pool);
3024 fail_instruction_state_pool:
3025 anv_state_pool_finish(&device->instruction_state_pool);
3026 fail_dynamic_state_pool:
3027 if (device->info.gen >= 8)
3028 anv_state_reserved_pool_finish(&device->custom_border_colors);
3029 anv_state_pool_finish(&device->dynamic_state_pool);
3030 fail_batch_bo_pool:
3031 anv_bo_pool_finish(&device->batch_bo_pool);
3032 anv_bo_cache_finish(&device->bo_cache);
3033 fail_queue_cond:
3034 pthread_cond_destroy(&device->queue_submit);
3035 fail_mutex:
3036 pthread_mutex_destroy(&device->mutex);
3037 fail_vmas:
3038 if (physical_device->use_softpin) {
3039 util_vma_heap_finish(&device->vma_hi);
3040 util_vma_heap_finish(&device->vma_cva);
3041 util_vma_heap_finish(&device->vma_lo);
3042 }
3043 fail_queue:
3044 anv_queue_finish(&device->queue);
3045 fail_context_id:
3046 anv_gem_destroy_context(device, device->context_id);
3047 fail_fd:
3048 close(device->fd);
3049 fail_device:
3050 vk_free(&device->vk.alloc, device);
3051
3052 return result;
3053 }
3054
3055 void anv_DestroyDevice(
3056 VkDevice _device,
3057 const VkAllocationCallbacks* pAllocator)
3058 {
3059 ANV_FROM_HANDLE(anv_device, device, _device);
3060
3061 if (!device)
3062 return;
3063
3064 anv_device_finish_blorp(device);
3065
3066 anv_pipeline_cache_finish(&device->default_pipeline_cache);
3067
3068 anv_queue_finish(&device->queue);
3069
3070 #ifdef HAVE_VALGRIND
3071 /* We only need to free these to prevent valgrind errors. The backing
3072 * BO will go away in a couple of lines so we don't actually leak.
3073 */
3074 if (device->info.gen >= 8)
3075 anv_state_reserved_pool_finish(&device->custom_border_colors);
3076 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
3077 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
3078 #endif
3079
3080 anv_scratch_pool_finish(device, &device->scratch_pool);
3081
3082 anv_device_release_bo(device, device->workaround_bo);
3083 anv_device_release_bo(device, device->trivial_batch_bo);
3084 if (device->info.gen >= 10)
3085 anv_device_release_bo(device, device->hiz_clear_bo);
3086
3087 if (device->info.has_aux_map) {
3088 gen_aux_map_finish(device->aux_map_ctx);
3089 device->aux_map_ctx = NULL;
3090 }
3091
3092 if (device->physical->use_softpin)
3093 anv_state_pool_finish(&device->binding_table_pool);
3094 anv_state_pool_finish(&device->surface_state_pool);
3095 anv_state_pool_finish(&device->instruction_state_pool);
3096 anv_state_pool_finish(&device->dynamic_state_pool);
3097
3098 anv_bo_pool_finish(&device->batch_bo_pool);
3099
3100 anv_bo_cache_finish(&device->bo_cache);
3101
3102 if (device->physical->use_softpin) {
3103 util_vma_heap_finish(&device->vma_hi);
3104 util_vma_heap_finish(&device->vma_cva);
3105 util_vma_heap_finish(&device->vma_lo);
3106 }
3107
3108 pthread_cond_destroy(&device->queue_submit);
3109 pthread_mutex_destroy(&device->mutex);
3110
3111 anv_gem_destroy_context(device, device->context_id);
3112
3113 if (INTEL_DEBUG & DEBUG_BATCH)
3114 gen_batch_decode_ctx_finish(&device->decoder_ctx);
3115
3116 close(device->fd);
3117
3118 vk_device_finish(&device->vk);
3119 vk_free(&device->vk.alloc, device);
3120 }
3121
3122 VkResult anv_EnumerateInstanceLayerProperties(
3123 uint32_t* pPropertyCount,
3124 VkLayerProperties* pProperties)
3125 {
3126 if (pProperties == NULL) {
3127 *pPropertyCount = 0;
3128 return VK_SUCCESS;
3129 }
3130
3131 /* None supported at this time */
3132 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
3133 }
3134
3135 VkResult anv_EnumerateDeviceLayerProperties(
3136 VkPhysicalDevice physicalDevice,
3137 uint32_t* pPropertyCount,
3138 VkLayerProperties* pProperties)
3139 {
3140 if (pProperties == NULL) {
3141 *pPropertyCount = 0;
3142 return VK_SUCCESS;
3143 }
3144
3145 /* None supported at this time */
3146 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
3147 }
3148
3149 void anv_GetDeviceQueue(
3150 VkDevice _device,
3151 uint32_t queueNodeIndex,
3152 uint32_t queueIndex,
3153 VkQueue* pQueue)
3154 {
3155 const VkDeviceQueueInfo2 info = {
3156 .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
3157 .pNext = NULL,
3158 .flags = 0,
3159 .queueFamilyIndex = queueNodeIndex,
3160 .queueIndex = queueIndex,
3161 };
3162
3163 anv_GetDeviceQueue2(_device, &info, pQueue);
3164 }
3165
3166 void anv_GetDeviceQueue2(
3167 VkDevice _device,
3168 const VkDeviceQueueInfo2* pQueueInfo,
3169 VkQueue* pQueue)
3170 {
3171 ANV_FROM_HANDLE(anv_device, device, _device);
3172
3173 assert(pQueueInfo->queueIndex == 0);
3174
3175 if (pQueueInfo->flags == device->queue.flags)
3176 *pQueue = anv_queue_to_handle(&device->queue);
3177 else
3178 *pQueue = NULL;
3179 }
3180
3181 VkResult
3182 _anv_device_set_lost(struct anv_device *device,
3183 const char *file, int line,
3184 const char *msg, ...)
3185 {
3186 VkResult err;
3187 va_list ap;
3188
3189 p_atomic_inc(&device->_lost);
3190
3191 va_start(ap, msg);
3192 err = __vk_errorv(device->physical->instance, device,
3193 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
3194 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
3195 va_end(ap);
3196
3197 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
3198 abort();
3199
3200 return err;
3201 }
3202
3203 VkResult
3204 _anv_queue_set_lost(struct anv_queue *queue,
3205 const char *file, int line,
3206 const char *msg, ...)
3207 {
3208 VkResult err;
3209 va_list ap;
3210
3211 p_atomic_inc(&queue->device->_lost);
3212
3213 va_start(ap, msg);
3214 err = __vk_errorv(queue->device->physical->instance, queue->device,
3215 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
3216 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
3217 va_end(ap);
3218
3219 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
3220 abort();
3221
3222 return err;
3223 }
3224
3225 VkResult
3226 anv_device_query_status(struct anv_device *device)
3227 {
3228 /* This isn't likely as most of the callers of this function already check
3229 * for it. However, it doesn't hurt to check and it potentially lets us
3230 * avoid an ioctl.
3231 */
3232 if (anv_device_is_lost(device))
3233 return VK_ERROR_DEVICE_LOST;
3234
3235 uint32_t active, pending;
3236 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
3237 if (ret == -1) {
3238 /* We don't know the real error. */
3239 return anv_device_set_lost(device, "get_reset_stats failed: %m");
3240 }
3241
3242 if (active) {
3243 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
3244 } else if (pending) {
3245 return anv_device_set_lost(device, "GPU hung with commands in-flight");
3246 }
3247
3248 return VK_SUCCESS;
3249 }
3250
3251 VkResult
3252 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
3253 {
3254 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
3255 * Other usages of the BO (such as on different hardware) will not be
3256 * flagged as "busy" by this ioctl. Use with care.
3257 */
3258 int ret = anv_gem_busy(device, bo->gem_handle);
3259 if (ret == 1) {
3260 return VK_NOT_READY;
3261 } else if (ret == -1) {
3262 /* We don't know the real error. */
3263 return anv_device_set_lost(device, "gem wait failed: %m");
3264 }
3265
3266 /* Query for device status after the busy call. If the BO we're checking
3267 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
3268 * client because it clearly doesn't have valid data. Yes, this most
3269 * likely means an ioctl, but we just did an ioctl to query the busy status
3270 * so it's no great loss.
3271 */
3272 return anv_device_query_status(device);
3273 }
3274
3275 VkResult
3276 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
3277 int64_t timeout)
3278 {
3279 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
3280 if (ret == -1 && errno == ETIME) {
3281 return VK_TIMEOUT;
3282 } else if (ret == -1) {
3283 /* We don't know the real error. */
3284 return anv_device_set_lost(device, "gem wait failed: %m");
3285 }
3286
3287 /* Query for device status after the wait. If the BO we're waiting on got
3288 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
3289 * because it clearly doesn't have valid data. Yes, this most likely means
3290 * an ioctl, but we just did an ioctl to wait so it's no great loss.
3291 */
3292 return anv_device_query_status(device);
3293 }
3294
3295 VkResult anv_DeviceWaitIdle(
3296 VkDevice _device)
3297 {
3298 ANV_FROM_HANDLE(anv_device, device, _device);
3299
3300 if (anv_device_is_lost(device))
3301 return VK_ERROR_DEVICE_LOST;
3302
3303 return anv_queue_submit_simple_batch(&device->queue, NULL);
3304 }
3305
3306 uint64_t
3307 anv_vma_alloc(struct anv_device *device,
3308 uint64_t size, uint64_t align,
3309 enum anv_bo_alloc_flags alloc_flags,
3310 uint64_t client_address)
3311 {
3312 pthread_mutex_lock(&device->vma_mutex);
3313
3314 uint64_t addr = 0;
3315
3316 if (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) {
3317 if (client_address) {
3318 if (util_vma_heap_alloc_addr(&device->vma_cva,
3319 client_address, size)) {
3320 addr = client_address;
3321 }
3322 } else {
3323 addr = util_vma_heap_alloc(&device->vma_cva, size, align);
3324 }
3325 /* We don't want to fall back to other heaps */
3326 goto done;
3327 }
3328
3329 assert(client_address == 0);
3330
3331 if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS))
3332 addr = util_vma_heap_alloc(&device->vma_hi, size, align);
3333
3334 if (addr == 0)
3335 addr = util_vma_heap_alloc(&device->vma_lo, size, align);
3336
3337 done:
3338 pthread_mutex_unlock(&device->vma_mutex);
3339
3340 assert(addr == gen_48b_address(addr));
3341 return gen_canonical_address(addr);
3342 }
3343
3344 void
3345 anv_vma_free(struct anv_device *device,
3346 uint64_t address, uint64_t size)
3347 {
3348 const uint64_t addr_48b = gen_48b_address(address);
3349
3350 pthread_mutex_lock(&device->vma_mutex);
3351
3352 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
3353 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
3354 util_vma_heap_free(&device->vma_lo, addr_48b, size);
3355 } else if (addr_48b >= CLIENT_VISIBLE_HEAP_MIN_ADDRESS &&
3356 addr_48b <= CLIENT_VISIBLE_HEAP_MAX_ADDRESS) {
3357 util_vma_heap_free(&device->vma_cva, addr_48b, size);
3358 } else {
3359 assert(addr_48b >= HIGH_HEAP_MIN_ADDRESS);
3360 util_vma_heap_free(&device->vma_hi, addr_48b, size);
3361 }
3362
3363 pthread_mutex_unlock(&device->vma_mutex);
3364 }
3365
3366 VkResult anv_AllocateMemory(
3367 VkDevice _device,
3368 const VkMemoryAllocateInfo* pAllocateInfo,
3369 const VkAllocationCallbacks* pAllocator,
3370 VkDeviceMemory* pMem)
3371 {
3372 ANV_FROM_HANDLE(anv_device, device, _device);
3373 struct anv_physical_device *pdevice = device->physical;
3374 struct anv_device_memory *mem;
3375 VkResult result = VK_SUCCESS;
3376
3377 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
3378
3379 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
3380 assert(pAllocateInfo->allocationSize > 0);
3381
3382 VkDeviceSize aligned_alloc_size =
3383 align_u64(pAllocateInfo->allocationSize, 4096);
3384
3385 if (aligned_alloc_size > MAX_MEMORY_ALLOCATION_SIZE)
3386 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3387
3388 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3389 struct anv_memory_type *mem_type =
3390 &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
3391 assert(mem_type->heapIndex < pdevice->memory.heap_count);
3392 struct anv_memory_heap *mem_heap =
3393 &pdevice->memory.heaps[mem_type->heapIndex];
3394
3395 uint64_t mem_heap_used = p_atomic_read(&mem_heap->used);
3396 if (mem_heap_used + aligned_alloc_size > mem_heap->size)
3397 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3398
3399 mem = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*mem), 8,
3400 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3401 if (mem == NULL)
3402 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3403
3404 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3405 vk_object_base_init(&device->vk, &mem->base, VK_OBJECT_TYPE_DEVICE_MEMORY);
3406 mem->type = mem_type;
3407 mem->map = NULL;
3408 mem->map_size = 0;
3409 mem->ahw = NULL;
3410 mem->host_ptr = NULL;
3411
3412 enum anv_bo_alloc_flags alloc_flags = 0;
3413
3414 const VkExportMemoryAllocateInfo *export_info = NULL;
3415 const VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info = NULL;
3416 const VkImportMemoryFdInfoKHR *fd_info = NULL;
3417 const VkImportMemoryHostPointerInfoEXT *host_ptr_info = NULL;
3418 const VkMemoryDedicatedAllocateInfo *dedicated_info = NULL;
3419 VkMemoryAllocateFlags vk_flags = 0;
3420 uint64_t client_address = 0;
3421
3422 vk_foreach_struct_const(ext, pAllocateInfo->pNext) {
3423 switch (ext->sType) {
3424 case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO:
3425 export_info = (void *)ext;
3426 break;
3427
3428 case VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID:
3429 ahw_import_info = (void *)ext;
3430 break;
3431
3432 case VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR:
3433 fd_info = (void *)ext;
3434 break;
3435
3436 case VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT:
3437 host_ptr_info = (void *)ext;
3438 break;
3439
3440 case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO: {
3441 const VkMemoryAllocateFlagsInfo *flags_info = (void *)ext;
3442 vk_flags = flags_info->flags;
3443 break;
3444 }
3445
3446 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO:
3447 dedicated_info = (void *)ext;
3448 break;
3449
3450 case VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO_KHR: {
3451 const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *addr_info =
3452 (const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *)ext;
3453 client_address = addr_info->opaqueCaptureAddress;
3454 break;
3455 }
3456
3457 default:
3458 anv_debug_ignored_stype(ext->sType);
3459 break;
3460 }
3461 }
3462
3463 /* By default, we want all VkDeviceMemory objects to support CCS */
3464 if (device->physical->has_implicit_ccs)
3465 alloc_flags |= ANV_BO_ALLOC_IMPLICIT_CCS;
3466
3467 if (vk_flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR)
3468 alloc_flags |= ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS;
3469
3470 if ((export_info && export_info->handleTypes) ||
3471 (fd_info && fd_info->handleType) ||
3472 (host_ptr_info && host_ptr_info->handleType)) {
3473 /* Anything imported or exported is EXTERNAL */
3474 alloc_flags |= ANV_BO_ALLOC_EXTERNAL;
3475
3476 /* We can't have implicit CCS on external memory with an AUX-table.
3477 * Doing so would require us to sync the aux tables across processes
3478 * which is impractical.
3479 */
3480 if (device->info.has_aux_map)
3481 alloc_flags &= ~ANV_BO_ALLOC_IMPLICIT_CCS;
3482 }
3483
3484 /* Check if we need to support Android HW buffer export. If so,
3485 * create AHardwareBuffer and import memory from it.
3486 */
3487 bool android_export = false;
3488 if (export_info && export_info->handleTypes &
3489 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
3490 android_export = true;
3491
3492 if (ahw_import_info) {
3493 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
3494 if (result != VK_SUCCESS)
3495 goto fail;
3496
3497 goto success;
3498 } else if (android_export) {
3499 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
3500 if (result != VK_SUCCESS)
3501 goto fail;
3502
3503 const VkImportAndroidHardwareBufferInfoANDROID import_info = {
3504 .buffer = mem->ahw,
3505 };
3506 result = anv_import_ahw_memory(_device, mem, &import_info);
3507 if (result != VK_SUCCESS)
3508 goto fail;
3509
3510 goto success;
3511 }
3512
3513 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3514 * ignored.
3515 */
3516 if (fd_info && fd_info->handleType) {
3517 /* At the moment, we support only the below handle types. */
3518 assert(fd_info->handleType ==
3519 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3520 fd_info->handleType ==
3521 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3522
3523 result = anv_device_import_bo(device, fd_info->fd, alloc_flags,
3524 client_address, &mem->bo);
3525 if (result != VK_SUCCESS)
3526 goto fail;
3527
3528 /* For security purposes, we reject importing the bo if it's smaller
3529 * than the requested allocation size. This prevents a malicious client
3530 * from passing a buffer to a trusted client, lying about the size, and
3531 * telling the trusted client to try and texture from an image that goes
3532 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3533 * in the trusted client. The trusted client can protect itself against
3534 * this sort of attack but only if it can trust the buffer size.
3535 */
3536 if (mem->bo->size < aligned_alloc_size) {
3537 result = vk_errorf(device, device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
3538 "aligned allocationSize too large for "
3539 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3540 "%"PRIu64"B > %"PRIu64"B",
3541 aligned_alloc_size, mem->bo->size);
3542 anv_device_release_bo(device, mem->bo);
3543 goto fail;
3544 }
3545
3546 /* From the Vulkan spec:
3547 *
3548 * "Importing memory from a file descriptor transfers ownership of
3549 * the file descriptor from the application to the Vulkan
3550 * implementation. The application must not perform any operations on
3551 * the file descriptor after a successful import."
3552 *
3553 * If the import fails, we leave the file descriptor open.
3554 */
3555 close(fd_info->fd);
3556 goto success;
3557 }
3558
3559 if (host_ptr_info && host_ptr_info->handleType) {
3560 if (host_ptr_info->handleType ==
3561 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3562 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3563 goto fail;
3564 }
3565
3566 assert(host_ptr_info->handleType ==
3567 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3568
3569 result = anv_device_import_bo_from_host_ptr(device,
3570 host_ptr_info->pHostPointer,
3571 pAllocateInfo->allocationSize,
3572 alloc_flags,
3573 client_address,
3574 &mem->bo);
3575 if (result != VK_SUCCESS)
3576 goto fail;
3577
3578 mem->host_ptr = host_ptr_info->pHostPointer;
3579 goto success;
3580 }
3581
3582 /* Regular allocate (not importing memory). */
3583
3584 result = anv_device_alloc_bo(device, pAllocateInfo->allocationSize,
3585 alloc_flags, client_address, &mem->bo);
3586 if (result != VK_SUCCESS)
3587 goto fail;
3588
3589 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3590 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3591
3592 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3593 * the BO. In this case, we have a dedicated allocation.
3594 */
3595 if (image->needs_set_tiling) {
3596 const uint32_t i915_tiling =
3597 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3598 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3599 image->planes[0].surface.isl.row_pitch_B,
3600 i915_tiling);
3601 if (ret) {
3602 anv_device_release_bo(device, mem->bo);
3603 result = vk_errorf(device, device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
3604 "failed to set BO tiling: %m");
3605 goto fail;
3606 }
3607 }
3608 }
3609
3610 success:
3611 mem_heap_used = p_atomic_add_return(&mem_heap->used, mem->bo->size);
3612 if (mem_heap_used > mem_heap->size) {
3613 p_atomic_add(&mem_heap->used, -mem->bo->size);
3614 anv_device_release_bo(device, mem->bo);
3615 result = vk_errorf(device, device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
3616 "Out of heap memory");
3617 goto fail;
3618 }
3619
3620 pthread_mutex_lock(&device->mutex);
3621 list_addtail(&mem->link, &device->memory_objects);
3622 pthread_mutex_unlock(&device->mutex);
3623
3624 *pMem = anv_device_memory_to_handle(mem);
3625
3626 return VK_SUCCESS;
3627
3628 fail:
3629 vk_free2(&device->vk.alloc, pAllocator, mem);
3630
3631 return result;
3632 }
3633
3634 VkResult anv_GetMemoryFdKHR(
3635 VkDevice device_h,
3636 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3637 int* pFd)
3638 {
3639 ANV_FROM_HANDLE(anv_device, dev, device_h);
3640 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3641
3642 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3643
3644 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3645 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3646
3647 return anv_device_export_bo(dev, mem->bo, pFd);
3648 }
3649
3650 VkResult anv_GetMemoryFdPropertiesKHR(
3651 VkDevice _device,
3652 VkExternalMemoryHandleTypeFlagBits handleType,
3653 int fd,
3654 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3655 {
3656 ANV_FROM_HANDLE(anv_device, device, _device);
3657
3658 switch (handleType) {
3659 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3660 /* dma-buf can be imported as any memory type */
3661 pMemoryFdProperties->memoryTypeBits =
3662 (1 << device->physical->memory.type_count) - 1;
3663 return VK_SUCCESS;
3664
3665 default:
3666 /* The valid usage section for this function says:
3667 *
3668 * "handleType must not be one of the handle types defined as
3669 * opaque."
3670 *
3671 * So opaque handle types fall into the default "unsupported" case.
3672 */
3673 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3674 }
3675 }
3676
3677 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3678 VkDevice _device,
3679 VkExternalMemoryHandleTypeFlagBits handleType,
3680 const void* pHostPointer,
3681 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3682 {
3683 ANV_FROM_HANDLE(anv_device, device, _device);
3684
3685 assert(pMemoryHostPointerProperties->sType ==
3686 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3687
3688 switch (handleType) {
3689 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT:
3690 /* Host memory can be imported as any memory type. */
3691 pMemoryHostPointerProperties->memoryTypeBits =
3692 (1ull << device->physical->memory.type_count) - 1;
3693
3694 return VK_SUCCESS;
3695
3696 default:
3697 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3698 }
3699 }
3700
3701 void anv_FreeMemory(
3702 VkDevice _device,
3703 VkDeviceMemory _mem,
3704 const VkAllocationCallbacks* pAllocator)
3705 {
3706 ANV_FROM_HANDLE(anv_device, device, _device);
3707 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3708
3709 if (mem == NULL)
3710 return;
3711
3712 pthread_mutex_lock(&device->mutex);
3713 list_del(&mem->link);
3714 pthread_mutex_unlock(&device->mutex);
3715
3716 if (mem->map)
3717 anv_UnmapMemory(_device, _mem);
3718
3719 p_atomic_add(&device->physical->memory.heaps[mem->type->heapIndex].used,
3720 -mem->bo->size);
3721
3722 anv_device_release_bo(device, mem->bo);
3723
3724 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3725 if (mem->ahw)
3726 AHardwareBuffer_release(mem->ahw);
3727 #endif
3728
3729 vk_object_base_finish(&mem->base);
3730 vk_free2(&device->vk.alloc, pAllocator, mem);
3731 }
3732
3733 VkResult anv_MapMemory(
3734 VkDevice _device,
3735 VkDeviceMemory _memory,
3736 VkDeviceSize offset,
3737 VkDeviceSize size,
3738 VkMemoryMapFlags flags,
3739 void** ppData)
3740 {
3741 ANV_FROM_HANDLE(anv_device, device, _device);
3742 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3743
3744 if (mem == NULL) {
3745 *ppData = NULL;
3746 return VK_SUCCESS;
3747 }
3748
3749 if (mem->host_ptr) {
3750 *ppData = mem->host_ptr + offset;
3751 return VK_SUCCESS;
3752 }
3753
3754 if (size == VK_WHOLE_SIZE)
3755 size = mem->bo->size - offset;
3756
3757 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3758 *
3759 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3760 * assert(size != 0);
3761 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3762 * equal to the size of the memory minus offset
3763 */
3764 assert(size > 0);
3765 assert(offset + size <= mem->bo->size);
3766
3767 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3768 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3769 * at a time is valid. We could just mmap up front and return an offset
3770 * pointer here, but that may exhaust virtual memory on 32 bit
3771 * userspace. */
3772
3773 uint32_t gem_flags = 0;
3774
3775 if (!device->info.has_llc &&
3776 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3777 gem_flags |= I915_MMAP_WC;
3778
3779 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3780 uint64_t map_offset;
3781 if (!device->physical->has_mmap_offset)
3782 map_offset = offset & ~4095ull;
3783 else
3784 map_offset = 0;
3785 assert(offset >= map_offset);
3786 uint64_t map_size = (offset + size) - map_offset;
3787
3788 /* Let's map whole pages */
3789 map_size = align_u64(map_size, 4096);
3790
3791 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3792 map_offset, map_size, gem_flags);
3793 if (map == MAP_FAILED)
3794 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3795
3796 mem->map = map;
3797 mem->map_size = map_size;
3798
3799 *ppData = mem->map + (offset - map_offset);
3800
3801 return VK_SUCCESS;
3802 }
3803
3804 void anv_UnmapMemory(
3805 VkDevice _device,
3806 VkDeviceMemory _memory)
3807 {
3808 ANV_FROM_HANDLE(anv_device, device, _device);
3809 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3810
3811 if (mem == NULL || mem->host_ptr)
3812 return;
3813
3814 anv_gem_munmap(device, mem->map, mem->map_size);
3815
3816 mem->map = NULL;
3817 mem->map_size = 0;
3818 }
3819
3820 static void
3821 clflush_mapped_ranges(struct anv_device *device,
3822 uint32_t count,
3823 const VkMappedMemoryRange *ranges)
3824 {
3825 for (uint32_t i = 0; i < count; i++) {
3826 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3827 if (ranges[i].offset >= mem->map_size)
3828 continue;
3829
3830 gen_clflush_range(mem->map + ranges[i].offset,
3831 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3832 }
3833 }
3834
3835 VkResult anv_FlushMappedMemoryRanges(
3836 VkDevice _device,
3837 uint32_t memoryRangeCount,
3838 const VkMappedMemoryRange* pMemoryRanges)
3839 {
3840 ANV_FROM_HANDLE(anv_device, device, _device);
3841
3842 if (device->info.has_llc)
3843 return VK_SUCCESS;
3844
3845 /* Make sure the writes we're flushing have landed. */
3846 __builtin_ia32_mfence();
3847
3848 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3849
3850 return VK_SUCCESS;
3851 }
3852
3853 VkResult anv_InvalidateMappedMemoryRanges(
3854 VkDevice _device,
3855 uint32_t memoryRangeCount,
3856 const VkMappedMemoryRange* pMemoryRanges)
3857 {
3858 ANV_FROM_HANDLE(anv_device, device, _device);
3859
3860 if (device->info.has_llc)
3861 return VK_SUCCESS;
3862
3863 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3864
3865 /* Make sure no reads get moved up above the invalidate. */
3866 __builtin_ia32_mfence();
3867
3868 return VK_SUCCESS;
3869 }
3870
3871 void anv_GetBufferMemoryRequirements(
3872 VkDevice _device,
3873 VkBuffer _buffer,
3874 VkMemoryRequirements* pMemoryRequirements)
3875 {
3876 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3877 ANV_FROM_HANDLE(anv_device, device, _device);
3878
3879 /* The Vulkan spec (git aaed022) says:
3880 *
3881 * memoryTypeBits is a bitfield and contains one bit set for every
3882 * supported memory type for the resource. The bit `1<<i` is set if and
3883 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3884 * structure for the physical device is supported.
3885 */
3886 uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
3887
3888 /* Base alignment requirement of a cache line */
3889 uint32_t alignment = 16;
3890
3891 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3892 alignment = MAX2(alignment, ANV_UBO_ALIGNMENT);
3893
3894 pMemoryRequirements->size = buffer->size;
3895 pMemoryRequirements->alignment = alignment;
3896
3897 /* Storage and Uniform buffers should have their size aligned to
3898 * 32-bits to avoid boundary checks when last DWord is not complete.
3899 * This would ensure that not internal padding would be needed for
3900 * 16-bit types.
3901 */
3902 if (device->robust_buffer_access &&
3903 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3904 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3905 pMemoryRequirements->size = align_u64(buffer->size, 4);
3906
3907 pMemoryRequirements->memoryTypeBits = memory_types;
3908 }
3909
3910 void anv_GetBufferMemoryRequirements2(
3911 VkDevice _device,
3912 const VkBufferMemoryRequirementsInfo2* pInfo,
3913 VkMemoryRequirements2* pMemoryRequirements)
3914 {
3915 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3916 &pMemoryRequirements->memoryRequirements);
3917
3918 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3919 switch (ext->sType) {
3920 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3921 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3922 requirements->prefersDedicatedAllocation = false;
3923 requirements->requiresDedicatedAllocation = false;
3924 break;
3925 }
3926
3927 default:
3928 anv_debug_ignored_stype(ext->sType);
3929 break;
3930 }
3931 }
3932 }
3933
3934 void anv_GetImageMemoryRequirements(
3935 VkDevice _device,
3936 VkImage _image,
3937 VkMemoryRequirements* pMemoryRequirements)
3938 {
3939 ANV_FROM_HANDLE(anv_image, image, _image);
3940 ANV_FROM_HANDLE(anv_device, device, _device);
3941
3942 /* The Vulkan spec (git aaed022) says:
3943 *
3944 * memoryTypeBits is a bitfield and contains one bit set for every
3945 * supported memory type for the resource. The bit `1<<i` is set if and
3946 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3947 * structure for the physical device is supported.
3948 *
3949 * All types are currently supported for images.
3950 */
3951 uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
3952
3953 pMemoryRequirements->size = image->size;
3954 pMemoryRequirements->alignment = image->alignment;
3955 pMemoryRequirements->memoryTypeBits = memory_types;
3956 }
3957
3958 void anv_GetImageMemoryRequirements2(
3959 VkDevice _device,
3960 const VkImageMemoryRequirementsInfo2* pInfo,
3961 VkMemoryRequirements2* pMemoryRequirements)
3962 {
3963 ANV_FROM_HANDLE(anv_device, device, _device);
3964 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3965
3966 anv_GetImageMemoryRequirements(_device, pInfo->image,
3967 &pMemoryRequirements->memoryRequirements);
3968
3969 vk_foreach_struct_const(ext, pInfo->pNext) {
3970 switch (ext->sType) {
3971 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3972 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3973 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3974 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3975 plane_reqs->planeAspect);
3976
3977 assert(image->planes[plane].offset == 0);
3978
3979 /* The Vulkan spec (git aaed022) says:
3980 *
3981 * memoryTypeBits is a bitfield and contains one bit set for every
3982 * supported memory type for the resource. The bit `1<<i` is set
3983 * if and only if the memory type `i` in the
3984 * VkPhysicalDeviceMemoryProperties structure for the physical
3985 * device is supported.
3986 *
3987 * All types are currently supported for images.
3988 */
3989 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3990 (1ull << device->physical->memory.type_count) - 1;
3991
3992 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3993 pMemoryRequirements->memoryRequirements.alignment =
3994 image->planes[plane].alignment;
3995 break;
3996 }
3997
3998 default:
3999 anv_debug_ignored_stype(ext->sType);
4000 break;
4001 }
4002 }
4003
4004 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
4005 switch (ext->sType) {
4006 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
4007 VkMemoryDedicatedRequirements *requirements = (void *)ext;
4008 if (image->needs_set_tiling || image->external_format) {
4009 /* If we need to set the tiling for external consumers, we need a
4010 * dedicated allocation.
4011 *
4012 * See also anv_AllocateMemory.
4013 */
4014 requirements->prefersDedicatedAllocation = true;
4015 requirements->requiresDedicatedAllocation = true;
4016 } else {
4017 requirements->prefersDedicatedAllocation = false;
4018 requirements->requiresDedicatedAllocation = false;
4019 }
4020 break;
4021 }
4022
4023 default:
4024 anv_debug_ignored_stype(ext->sType);
4025 break;
4026 }
4027 }
4028 }
4029
4030 void anv_GetImageSparseMemoryRequirements(
4031 VkDevice device,
4032 VkImage image,
4033 uint32_t* pSparseMemoryRequirementCount,
4034 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
4035 {
4036 *pSparseMemoryRequirementCount = 0;
4037 }
4038
4039 void anv_GetImageSparseMemoryRequirements2(
4040 VkDevice device,
4041 const VkImageSparseMemoryRequirementsInfo2* pInfo,
4042 uint32_t* pSparseMemoryRequirementCount,
4043 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
4044 {
4045 *pSparseMemoryRequirementCount = 0;
4046 }
4047
4048 void anv_GetDeviceMemoryCommitment(
4049 VkDevice device,
4050 VkDeviceMemory memory,
4051 VkDeviceSize* pCommittedMemoryInBytes)
4052 {
4053 *pCommittedMemoryInBytes = 0;
4054 }
4055
4056 static void
4057 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
4058 {
4059 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
4060 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
4061
4062 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
4063
4064 if (mem) {
4065 buffer->address = (struct anv_address) {
4066 .bo = mem->bo,
4067 .offset = pBindInfo->memoryOffset,
4068 };
4069 } else {
4070 buffer->address = ANV_NULL_ADDRESS;
4071 }
4072 }
4073
4074 VkResult anv_BindBufferMemory(
4075 VkDevice device,
4076 VkBuffer buffer,
4077 VkDeviceMemory memory,
4078 VkDeviceSize memoryOffset)
4079 {
4080 anv_bind_buffer_memory(
4081 &(VkBindBufferMemoryInfo) {
4082 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
4083 .buffer = buffer,
4084 .memory = memory,
4085 .memoryOffset = memoryOffset,
4086 });
4087
4088 return VK_SUCCESS;
4089 }
4090
4091 VkResult anv_BindBufferMemory2(
4092 VkDevice device,
4093 uint32_t bindInfoCount,
4094 const VkBindBufferMemoryInfo* pBindInfos)
4095 {
4096 for (uint32_t i = 0; i < bindInfoCount; i++)
4097 anv_bind_buffer_memory(&pBindInfos[i]);
4098
4099 return VK_SUCCESS;
4100 }
4101
4102 VkResult anv_QueueBindSparse(
4103 VkQueue _queue,
4104 uint32_t bindInfoCount,
4105 const VkBindSparseInfo* pBindInfo,
4106 VkFence fence)
4107 {
4108 ANV_FROM_HANDLE(anv_queue, queue, _queue);
4109 if (anv_device_is_lost(queue->device))
4110 return VK_ERROR_DEVICE_LOST;
4111
4112 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
4113 }
4114
4115 // Event functions
4116
4117 VkResult anv_CreateEvent(
4118 VkDevice _device,
4119 const VkEventCreateInfo* pCreateInfo,
4120 const VkAllocationCallbacks* pAllocator,
4121 VkEvent* pEvent)
4122 {
4123 ANV_FROM_HANDLE(anv_device, device, _device);
4124 struct anv_event *event;
4125
4126 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
4127
4128 event = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*event), 8,
4129 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4130 if (event == NULL)
4131 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4132
4133 vk_object_base_init(&device->vk, &event->base, VK_OBJECT_TYPE_EVENT);
4134 event->state = anv_state_pool_alloc(&device->dynamic_state_pool,
4135 sizeof(uint64_t), 8);
4136 *(uint64_t *)event->state.map = VK_EVENT_RESET;
4137
4138 *pEvent = anv_event_to_handle(event);
4139
4140 return VK_SUCCESS;
4141 }
4142
4143 void anv_DestroyEvent(
4144 VkDevice _device,
4145 VkEvent _event,
4146 const VkAllocationCallbacks* pAllocator)
4147 {
4148 ANV_FROM_HANDLE(anv_device, device, _device);
4149 ANV_FROM_HANDLE(anv_event, event, _event);
4150
4151 if (!event)
4152 return;
4153
4154 anv_state_pool_free(&device->dynamic_state_pool, event->state);
4155
4156 vk_object_base_finish(&event->base);
4157 vk_free2(&device->vk.alloc, pAllocator, event);
4158 }
4159
4160 VkResult anv_GetEventStatus(
4161 VkDevice _device,
4162 VkEvent _event)
4163 {
4164 ANV_FROM_HANDLE(anv_device, device, _device);
4165 ANV_FROM_HANDLE(anv_event, event, _event);
4166
4167 if (anv_device_is_lost(device))
4168 return VK_ERROR_DEVICE_LOST;
4169
4170 return *(uint64_t *)event->state.map;
4171 }
4172
4173 VkResult anv_SetEvent(
4174 VkDevice _device,
4175 VkEvent _event)
4176 {
4177 ANV_FROM_HANDLE(anv_event, event, _event);
4178
4179 *(uint64_t *)event->state.map = VK_EVENT_SET;
4180
4181 return VK_SUCCESS;
4182 }
4183
4184 VkResult anv_ResetEvent(
4185 VkDevice _device,
4186 VkEvent _event)
4187 {
4188 ANV_FROM_HANDLE(anv_event, event, _event);
4189
4190 *(uint64_t *)event->state.map = VK_EVENT_RESET;
4191
4192 return VK_SUCCESS;
4193 }
4194
4195 // Buffer functions
4196
4197 VkResult anv_CreateBuffer(
4198 VkDevice _device,
4199 const VkBufferCreateInfo* pCreateInfo,
4200 const VkAllocationCallbacks* pAllocator,
4201 VkBuffer* pBuffer)
4202 {
4203 ANV_FROM_HANDLE(anv_device, device, _device);
4204 struct anv_buffer *buffer;
4205
4206 /* Don't allow creating buffers bigger than our address space. The real
4207 * issue here is that we may align up the buffer size and we don't want
4208 * doing so to cause roll-over. However, no one has any business
4209 * allocating a buffer larger than our GTT size.
4210 */
4211 if (pCreateInfo->size > device->physical->gtt_size)
4212 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
4213
4214 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
4215
4216 buffer = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*buffer), 8,
4217 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4218 if (buffer == NULL)
4219 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4220
4221 vk_object_base_init(&device->vk, &buffer->base, VK_OBJECT_TYPE_BUFFER);
4222 buffer->size = pCreateInfo->size;
4223 buffer->usage = pCreateInfo->usage;
4224 buffer->address = ANV_NULL_ADDRESS;
4225
4226 *pBuffer = anv_buffer_to_handle(buffer);
4227
4228 return VK_SUCCESS;
4229 }
4230
4231 void anv_DestroyBuffer(
4232 VkDevice _device,
4233 VkBuffer _buffer,
4234 const VkAllocationCallbacks* pAllocator)
4235 {
4236 ANV_FROM_HANDLE(anv_device, device, _device);
4237 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4238
4239 if (!buffer)
4240 return;
4241
4242 vk_object_base_finish(&buffer->base);
4243 vk_free2(&device->vk.alloc, pAllocator, buffer);
4244 }
4245
4246 VkDeviceAddress anv_GetBufferDeviceAddress(
4247 VkDevice device,
4248 const VkBufferDeviceAddressInfoKHR* pInfo)
4249 {
4250 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
4251
4252 assert(!anv_address_is_null(buffer->address));
4253 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
4254
4255 return anv_address_physical(buffer->address);
4256 }
4257
4258 uint64_t anv_GetBufferOpaqueCaptureAddress(
4259 VkDevice device,
4260 const VkBufferDeviceAddressInfoKHR* pInfo)
4261 {
4262 return 0;
4263 }
4264
4265 uint64_t anv_GetDeviceMemoryOpaqueCaptureAddress(
4266 VkDevice device,
4267 const VkDeviceMemoryOpaqueCaptureAddressInfoKHR* pInfo)
4268 {
4269 ANV_FROM_HANDLE(anv_device_memory, memory, pInfo->memory);
4270
4271 assert(memory->bo->flags & EXEC_OBJECT_PINNED);
4272 assert(memory->bo->has_client_visible_address);
4273
4274 return gen_48b_address(memory->bo->offset);
4275 }
4276
4277 void
4278 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
4279 enum isl_format format,
4280 struct anv_address address,
4281 uint32_t range, uint32_t stride)
4282 {
4283 isl_buffer_fill_state(&device->isl_dev, state.map,
4284 .address = anv_address_physical(address),
4285 .mocs = device->isl_dev.mocs.internal,
4286 .size_B = range,
4287 .format = format,
4288 .swizzle = ISL_SWIZZLE_IDENTITY,
4289 .stride_B = stride);
4290 }
4291
4292 void anv_DestroySampler(
4293 VkDevice _device,
4294 VkSampler _sampler,
4295 const VkAllocationCallbacks* pAllocator)
4296 {
4297 ANV_FROM_HANDLE(anv_device, device, _device);
4298 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
4299
4300 if (!sampler)
4301 return;
4302
4303 if (sampler->bindless_state.map) {
4304 anv_state_pool_free(&device->dynamic_state_pool,
4305 sampler->bindless_state);
4306 }
4307
4308 if (sampler->custom_border_color.map) {
4309 anv_state_reserved_pool_free(&device->custom_border_colors,
4310 sampler->custom_border_color);
4311 }
4312
4313 vk_object_base_finish(&sampler->base);
4314 vk_free2(&device->vk.alloc, pAllocator, sampler);
4315 }
4316
4317 VkResult anv_CreateFramebuffer(
4318 VkDevice _device,
4319 const VkFramebufferCreateInfo* pCreateInfo,
4320 const VkAllocationCallbacks* pAllocator,
4321 VkFramebuffer* pFramebuffer)
4322 {
4323 ANV_FROM_HANDLE(anv_device, device, _device);
4324 struct anv_framebuffer *framebuffer;
4325
4326 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
4327
4328 size_t size = sizeof(*framebuffer);
4329
4330 /* VK_KHR_imageless_framebuffer extension says:
4331 *
4332 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
4333 * parameter pAttachments is ignored.
4334 */
4335 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
4336 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
4337 framebuffer = vk_alloc2(&device->vk.alloc, pAllocator, size, 8,
4338 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4339 if (framebuffer == NULL)
4340 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4341
4342 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
4343 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
4344 framebuffer->attachments[i] = iview;
4345 }
4346 framebuffer->attachment_count = pCreateInfo->attachmentCount;
4347 } else {
4348 framebuffer = vk_alloc2(&device->vk.alloc, pAllocator, size, 8,
4349 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4350 if (framebuffer == NULL)
4351 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4352
4353 framebuffer->attachment_count = 0;
4354 }
4355
4356 vk_object_base_init(&device->vk, &framebuffer->base,
4357 VK_OBJECT_TYPE_FRAMEBUFFER);
4358
4359 framebuffer->width = pCreateInfo->width;
4360 framebuffer->height = pCreateInfo->height;
4361 framebuffer->layers = pCreateInfo->layers;
4362
4363 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
4364
4365 return VK_SUCCESS;
4366 }
4367
4368 void anv_DestroyFramebuffer(
4369 VkDevice _device,
4370 VkFramebuffer _fb,
4371 const VkAllocationCallbacks* pAllocator)
4372 {
4373 ANV_FROM_HANDLE(anv_device, device, _device);
4374 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
4375
4376 if (!fb)
4377 return;
4378
4379 vk_object_base_finish(&fb->base);
4380 vk_free2(&device->vk.alloc, pAllocator, fb);
4381 }
4382
4383 static const VkTimeDomainEXT anv_time_domains[] = {
4384 VK_TIME_DOMAIN_DEVICE_EXT,
4385 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
4386 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
4387 };
4388
4389 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
4390 VkPhysicalDevice physicalDevice,
4391 uint32_t *pTimeDomainCount,
4392 VkTimeDomainEXT *pTimeDomains)
4393 {
4394 int d;
4395 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
4396
4397 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
4398 vk_outarray_append(&out, i) {
4399 *i = anv_time_domains[d];
4400 }
4401 }
4402
4403 return vk_outarray_status(&out);
4404 }
4405
4406 static uint64_t
4407 anv_clock_gettime(clockid_t clock_id)
4408 {
4409 struct timespec current;
4410 int ret;
4411
4412 ret = clock_gettime(clock_id, &current);
4413 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
4414 ret = clock_gettime(CLOCK_MONOTONIC, &current);
4415 if (ret < 0)
4416 return 0;
4417
4418 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
4419 }
4420
4421 VkResult anv_GetCalibratedTimestampsEXT(
4422 VkDevice _device,
4423 uint32_t timestampCount,
4424 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
4425 uint64_t *pTimestamps,
4426 uint64_t *pMaxDeviation)
4427 {
4428 ANV_FROM_HANDLE(anv_device, device, _device);
4429 uint64_t timestamp_frequency = device->info.timestamp_frequency;
4430 int ret;
4431 int d;
4432 uint64_t begin, end;
4433 uint64_t max_clock_period = 0;
4434
4435 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4436
4437 for (d = 0; d < timestampCount; d++) {
4438 switch (pTimestampInfos[d].timeDomain) {
4439 case VK_TIME_DOMAIN_DEVICE_EXT:
4440 ret = anv_gem_reg_read(device->fd, TIMESTAMP | I915_REG_READ_8B_WA,
4441 &pTimestamps[d]);
4442
4443 if (ret != 0) {
4444 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
4445 "register: %m");
4446 }
4447 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
4448 max_clock_period = MAX2(max_clock_period, device_period);
4449 break;
4450 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
4451 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
4452 max_clock_period = MAX2(max_clock_period, 1);
4453 break;
4454
4455 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
4456 pTimestamps[d] = begin;
4457 break;
4458 default:
4459 pTimestamps[d] = 0;
4460 break;
4461 }
4462 }
4463
4464 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4465
4466 /*
4467 * The maximum deviation is the sum of the interval over which we
4468 * perform the sampling and the maximum period of any sampled
4469 * clock. That's because the maximum skew between any two sampled
4470 * clock edges is when the sampled clock with the largest period is
4471 * sampled at the end of that period but right at the beginning of the
4472 * sampling interval and some other clock is sampled right at the
4473 * begining of its sampling period and right at the end of the
4474 * sampling interval. Let's assume the GPU has the longest clock
4475 * period and that the application is sampling GPU and monotonic:
4476 *
4477 * s e
4478 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
4479 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4480 *
4481 * g
4482 * 0 1 2 3
4483 * GPU -----_____-----_____-----_____-----_____
4484 *
4485 * m
4486 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
4487 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4488 *
4489 * Interval <----------------->
4490 * Deviation <-------------------------->
4491 *
4492 * s = read(raw) 2
4493 * g = read(GPU) 1
4494 * m = read(monotonic) 2
4495 * e = read(raw) b
4496 *
4497 * We round the sample interval up by one tick to cover sampling error
4498 * in the interval clock
4499 */
4500
4501 uint64_t sample_interval = end - begin + 1;
4502
4503 *pMaxDeviation = sample_interval + max_clock_period;
4504
4505 return VK_SUCCESS;
4506 }
4507
4508 /* vk_icd.h does not declare this function, so we declare it here to
4509 * suppress Wmissing-prototypes.
4510 */
4511 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4512 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4513
4514 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4515 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4516 {
4517 /* For the full details on loader interface versioning, see
4518 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4519 * What follows is a condensed summary, to help you navigate the large and
4520 * confusing official doc.
4521 *
4522 * - Loader interface v0 is incompatible with later versions. We don't
4523 * support it.
4524 *
4525 * - In loader interface v1:
4526 * - The first ICD entrypoint called by the loader is
4527 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4528 * entrypoint.
4529 * - The ICD must statically expose no other Vulkan symbol unless it is
4530 * linked with -Bsymbolic.
4531 * - Each dispatchable Vulkan handle created by the ICD must be
4532 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4533 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4534 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4535 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4536 * such loader-managed surfaces.
4537 *
4538 * - Loader interface v2 differs from v1 in:
4539 * - The first ICD entrypoint called by the loader is
4540 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4541 * statically expose this entrypoint.
4542 *
4543 * - Loader interface v3 differs from v2 in:
4544 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4545 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4546 * because the loader no longer does so.
4547 *
4548 * - Loader interface v4 differs from v3 in:
4549 * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
4550 */
4551 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
4552 return VK_SUCCESS;
4553 }
4554
4555 VkResult anv_CreatePrivateDataSlotEXT(
4556 VkDevice _device,
4557 const VkPrivateDataSlotCreateInfoEXT* pCreateInfo,
4558 const VkAllocationCallbacks* pAllocator,
4559 VkPrivateDataSlotEXT* pPrivateDataSlot)
4560 {
4561 ANV_FROM_HANDLE(anv_device, device, _device);
4562 return vk_private_data_slot_create(&device->vk, pCreateInfo, pAllocator,
4563 pPrivateDataSlot);
4564 }
4565
4566 void anv_DestroyPrivateDataSlotEXT(
4567 VkDevice _device,
4568 VkPrivateDataSlotEXT privateDataSlot,
4569 const VkAllocationCallbacks* pAllocator)
4570 {
4571 ANV_FROM_HANDLE(anv_device, device, _device);
4572 vk_private_data_slot_destroy(&device->vk, privateDataSlot, pAllocator);
4573 }
4574
4575 VkResult anv_SetPrivateDataEXT(
4576 VkDevice _device,
4577 VkObjectType objectType,
4578 uint64_t objectHandle,
4579 VkPrivateDataSlotEXT privateDataSlot,
4580 uint64_t data)
4581 {
4582 ANV_FROM_HANDLE(anv_device, device, _device);
4583 return vk_object_base_set_private_data(&device->vk,
4584 objectType, objectHandle,
4585 privateDataSlot, data);
4586 }
4587
4588 void anv_GetPrivateDataEXT(
4589 VkDevice _device,
4590 VkObjectType objectType,
4591 uint64_t objectHandle,
4592 VkPrivateDataSlotEXT privateDataSlot,
4593 uint64_t* pData)
4594 {
4595 ANV_FROM_HANDLE(anv_device, device, _device);
4596 vk_object_base_get_private_data(&device->vk,
4597 objectType, objectHandle,
4598 privateDataSlot, pData);
4599 }