anv: Put image params in the descriptor set buffer on gen8 and earlier
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/u_string.h"
41 #include "git_sha1.h"
42 #include "vk_util.h"
43 #include "common/gen_defines.h"
44 #include "compiler/glsl_types.h"
45
46 #include "genxml/gen7_pack.h"
47
48 /* This is probably far to big but it reflects the max size used for messages
49 * in OpenGLs KHR_debug.
50 */
51 #define MAX_DEBUG_MESSAGE_LENGTH 4096
52
53 static void
54 compiler_debug_log(void *data, const char *fmt, ...)
55 {
56 char str[MAX_DEBUG_MESSAGE_LENGTH];
57 struct anv_device *device = (struct anv_device *)data;
58
59 if (list_empty(&device->instance->debug_report_callbacks.callbacks))
60 return;
61
62 va_list args;
63 va_start(args, fmt);
64 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
65 va_end(args);
66
67 vk_debug_report(&device->instance->debug_report_callbacks,
68 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
69 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
70 0, 0, 0, "anv", str);
71 }
72
73 static void
74 compiler_perf_log(void *data, const char *fmt, ...)
75 {
76 va_list args;
77 va_start(args, fmt);
78
79 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
80 intel_logd_v(fmt, args);
81
82 va_end(args);
83 }
84
85 static uint64_t
86 anv_compute_heap_size(int fd, uint64_t gtt_size)
87 {
88 /* Query the total ram from the system */
89 struct sysinfo info;
90 sysinfo(&info);
91
92 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
93
94 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
95 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
96 */
97 uint64_t available_ram;
98 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
99 available_ram = total_ram / 2;
100 else
101 available_ram = total_ram * 3 / 4;
102
103 /* We also want to leave some padding for things we allocate in the driver,
104 * so don't go over 3/4 of the GTT either.
105 */
106 uint64_t available_gtt = gtt_size * 3 / 4;
107
108 return MIN2(available_ram, available_gtt);
109 }
110
111 static VkResult
112 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
113 {
114 uint64_t gtt_size;
115 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
116 &gtt_size) == -1) {
117 /* If, for whatever reason, we can't actually get the GTT size from the
118 * kernel (too old?) fall back to the aperture size.
119 */
120 anv_perf_warn(NULL, NULL,
121 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
122
123 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
124 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
125 "failed to get aperture size: %m");
126 }
127 }
128
129 device->supports_48bit_addresses = (device->info.gen >= 8) &&
130 gtt_size > (4ULL << 30 /* GiB */);
131
132 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
133
134 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
135 /* When running with an overridden PCI ID, we may get a GTT size from
136 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
137 * address support can still fail. Just clamp the address space size to
138 * 2 GiB if we don't have 48-bit support.
139 */
140 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
141 "not support for 48-bit addresses",
142 __FILE__, __LINE__);
143 heap_size = 2ull << 30;
144 }
145
146 if (heap_size <= 3ull * (1ull << 30)) {
147 /* In this case, everything fits nicely into the 32-bit address space,
148 * so there's no need for supporting 48bit addresses on client-allocated
149 * memory objects.
150 */
151 device->memory.heap_count = 1;
152 device->memory.heaps[0] = (struct anv_memory_heap) {
153 .vma_start = LOW_HEAP_MIN_ADDRESS,
154 .vma_size = LOW_HEAP_SIZE,
155 .size = heap_size,
156 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
157 .supports_48bit_addresses = false,
158 };
159 } else {
160 /* Not everything will fit nicely into a 32-bit address space. In this
161 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
162 * larger 48-bit heap. If we're in this case, then we have a total heap
163 * size larger than 3GiB which most likely means they have 8 GiB of
164 * video memory and so carving off 1 GiB for the 32-bit heap should be
165 * reasonable.
166 */
167 const uint64_t heap_size_32bit = 1ull << 30;
168 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
169
170 assert(device->supports_48bit_addresses);
171
172 device->memory.heap_count = 2;
173 device->memory.heaps[0] = (struct anv_memory_heap) {
174 .vma_start = HIGH_HEAP_MIN_ADDRESS,
175 /* Leave the last 4GiB out of the high vma range, so that no state
176 * base address + size can overflow 48 bits. For more information see
177 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
178 */
179 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
180 .size = heap_size_48bit,
181 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
182 .supports_48bit_addresses = true,
183 };
184 device->memory.heaps[1] = (struct anv_memory_heap) {
185 .vma_start = LOW_HEAP_MIN_ADDRESS,
186 .vma_size = LOW_HEAP_SIZE,
187 .size = heap_size_32bit,
188 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
189 .supports_48bit_addresses = false,
190 };
191 }
192
193 uint32_t type_count = 0;
194 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
195 uint32_t valid_buffer_usage = ~0;
196
197 /* There appears to be a hardware issue in the VF cache where it only
198 * considers the bottom 32 bits of memory addresses. If you happen to
199 * have two vertex buffers which get placed exactly 4 GiB apart and use
200 * them in back-to-back draw calls, you can get collisions. In order to
201 * solve this problem, we require vertex and index buffers be bound to
202 * memory allocated out of the 32-bit heap.
203 */
204 if (device->memory.heaps[heap].supports_48bit_addresses) {
205 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
206 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
207 }
208
209 if (device->info.has_llc) {
210 /* Big core GPUs share LLC with the CPU and thus one memory type can be
211 * both cached and coherent at the same time.
212 */
213 device->memory.types[type_count++] = (struct anv_memory_type) {
214 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
215 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
216 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
217 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
218 .heapIndex = heap,
219 .valid_buffer_usage = valid_buffer_usage,
220 };
221 } else {
222 /* The spec requires that we expose a host-visible, coherent memory
223 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
224 * to give the application a choice between cached, but not coherent and
225 * coherent but uncached (WC though).
226 */
227 device->memory.types[type_count++] = (struct anv_memory_type) {
228 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
229 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
230 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
231 .heapIndex = heap,
232 .valid_buffer_usage = valid_buffer_usage,
233 };
234 device->memory.types[type_count++] = (struct anv_memory_type) {
235 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
236 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
237 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
238 .heapIndex = heap,
239 .valid_buffer_usage = valid_buffer_usage,
240 };
241 }
242 }
243 device->memory.type_count = type_count;
244
245 return VK_SUCCESS;
246 }
247
248 static VkResult
249 anv_physical_device_init_uuids(struct anv_physical_device *device)
250 {
251 const struct build_id_note *note =
252 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
253 if (!note) {
254 return vk_errorf(device->instance, device,
255 VK_ERROR_INITIALIZATION_FAILED,
256 "Failed to find build-id");
257 }
258
259 unsigned build_id_len = build_id_length(note);
260 if (build_id_len < 20) {
261 return vk_errorf(device->instance, device,
262 VK_ERROR_INITIALIZATION_FAILED,
263 "build-id too short. It needs to be a SHA");
264 }
265
266 memcpy(device->driver_build_sha1, build_id_data(note), 20);
267
268 struct mesa_sha1 sha1_ctx;
269 uint8_t sha1[20];
270 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
271
272 /* The pipeline cache UUID is used for determining when a pipeline cache is
273 * invalid. It needs both a driver build and the PCI ID of the device.
274 */
275 _mesa_sha1_init(&sha1_ctx);
276 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
277 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
278 sizeof(device->chipset_id));
279 _mesa_sha1_final(&sha1_ctx, sha1);
280 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
281
282 /* The driver UUID is used for determining sharability of images and memory
283 * between two Vulkan instances in separate processes. People who want to
284 * share memory need to also check the device UUID (below) so all this
285 * needs to be is the build-id.
286 */
287 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
288
289 /* The device UUID uniquely identifies the given device within the machine.
290 * Since we never have more than one device, this doesn't need to be a real
291 * UUID. However, on the off-chance that someone tries to use this to
292 * cache pre-tiled images or something of the like, we use the PCI ID and
293 * some bits of ISL info to ensure that this is safe.
294 */
295 _mesa_sha1_init(&sha1_ctx);
296 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
297 sizeof(device->chipset_id));
298 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
299 sizeof(device->isl_dev.has_bit6_swizzling));
300 _mesa_sha1_final(&sha1_ctx, sha1);
301 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
302
303 return VK_SUCCESS;
304 }
305
306 static void
307 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
308 {
309 #ifdef ENABLE_SHADER_CACHE
310 char renderer[10];
311 MAYBE_UNUSED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
312 device->chipset_id);
313 assert(len == sizeof(renderer) - 2);
314
315 char timestamp[41];
316 _mesa_sha1_format(timestamp, device->driver_build_sha1);
317
318 const uint64_t driver_flags =
319 brw_get_compiler_config_value(device->compiler);
320 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
321 #else
322 device->disk_cache = NULL;
323 #endif
324 }
325
326 static void
327 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
328 {
329 #ifdef ENABLE_SHADER_CACHE
330 if (device->disk_cache)
331 disk_cache_destroy(device->disk_cache);
332 #else
333 assert(device->disk_cache == NULL);
334 #endif
335 }
336
337 static VkResult
338 anv_physical_device_init(struct anv_physical_device *device,
339 struct anv_instance *instance,
340 drmDevicePtr drm_device)
341 {
342 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
343 const char *path = drm_device->nodes[DRM_NODE_RENDER];
344 VkResult result;
345 int fd;
346 int master_fd = -1;
347
348 brw_process_intel_debug_variable();
349
350 fd = open(path, O_RDWR | O_CLOEXEC);
351 if (fd < 0)
352 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
353
354 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
355 device->instance = instance;
356
357 assert(strlen(path) < ARRAY_SIZE(device->path));
358 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
359
360 device->no_hw = getenv("INTEL_NO_HW") != NULL;
361
362 const int pci_id_override = gen_get_pci_device_id_override();
363 if (pci_id_override < 0) {
364 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
365 if (!device->chipset_id) {
366 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
367 goto fail;
368 }
369 } else {
370 device->chipset_id = pci_id_override;
371 device->no_hw = true;
372 }
373
374 device->pci_info.domain = drm_device->businfo.pci->domain;
375 device->pci_info.bus = drm_device->businfo.pci->bus;
376 device->pci_info.device = drm_device->businfo.pci->dev;
377 device->pci_info.function = drm_device->businfo.pci->func;
378
379 device->name = gen_get_device_name(device->chipset_id);
380 if (!gen_get_device_info(device->chipset_id, &device->info)) {
381 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
382 goto fail;
383 }
384
385 if (device->info.is_haswell) {
386 intel_logw("Haswell Vulkan support is incomplete");
387 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
388 intel_logw("Ivy Bridge Vulkan support is incomplete");
389 } else if (device->info.gen == 7 && device->info.is_baytrail) {
390 intel_logw("Bay Trail Vulkan support is incomplete");
391 } else if (device->info.gen >= 8 && device->info.gen <= 10) {
392 /* Gen8-10 fully supported */
393 } else if (device->info.gen == 11) {
394 intel_logw("Vulkan is not yet fully supported on gen11.");
395 } else {
396 result = vk_errorf(device->instance, device,
397 VK_ERROR_INCOMPATIBLE_DRIVER,
398 "Vulkan not yet supported on %s", device->name);
399 goto fail;
400 }
401
402 device->cmd_parser_version = -1;
403 if (device->info.gen == 7) {
404 device->cmd_parser_version =
405 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
406 if (device->cmd_parser_version == -1) {
407 result = vk_errorf(device->instance, device,
408 VK_ERROR_INITIALIZATION_FAILED,
409 "failed to get command parser version");
410 goto fail;
411 }
412 }
413
414 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
415 result = vk_errorf(device->instance, device,
416 VK_ERROR_INITIALIZATION_FAILED,
417 "kernel missing gem wait");
418 goto fail;
419 }
420
421 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
422 result = vk_errorf(device->instance, device,
423 VK_ERROR_INITIALIZATION_FAILED,
424 "kernel missing execbuf2");
425 goto fail;
426 }
427
428 if (!device->info.has_llc &&
429 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
430 result = vk_errorf(device->instance, device,
431 VK_ERROR_INITIALIZATION_FAILED,
432 "kernel missing wc mmap");
433 goto fail;
434 }
435
436 result = anv_physical_device_init_heaps(device, fd);
437 if (result != VK_SUCCESS)
438 goto fail;
439
440 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
441 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
442 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
443 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
444 device->has_syncobj_wait = device->has_syncobj &&
445 anv_gem_supports_syncobj_wait(fd);
446 device->has_context_priority = anv_gem_has_context_priority(fd);
447
448 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
449 && device->supports_48bit_addresses;
450
451 device->has_context_isolation =
452 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
453
454 /* Starting with Gen10, the timestamp frequency of the command streamer may
455 * vary from one part to another. We can query the value from the kernel.
456 */
457 if (device->info.gen >= 10) {
458 int timestamp_frequency =
459 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
460
461 if (timestamp_frequency < 0)
462 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
463 else
464 device->info.timestamp_frequency = timestamp_frequency;
465 }
466
467 /* GENs prior to 8 do not support EU/Subslice info */
468 if (device->info.gen >= 8) {
469 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
470 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
471
472 /* Without this information, we cannot get the right Braswell
473 * brandstrings, and we have to use conservative numbers for GPGPU on
474 * many platforms, but otherwise, things will just work.
475 */
476 if (device->subslice_total < 1 || device->eu_total < 1) {
477 intel_logw("Kernel 4.1 required to properly query GPU properties");
478 }
479 } else if (device->info.gen == 7) {
480 device->subslice_total = 1 << (device->info.gt - 1);
481 }
482
483 if (device->info.is_cherryview &&
484 device->subslice_total > 0 && device->eu_total > 0) {
485 /* Logical CS threads = EUs per subslice * num threads per EU */
486 uint32_t max_cs_threads =
487 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
488
489 /* Fuse configurations may give more threads than expected, never less. */
490 if (max_cs_threads > device->info.max_cs_threads)
491 device->info.max_cs_threads = max_cs_threads;
492 }
493
494 device->compiler = brw_compiler_create(NULL, &device->info);
495 if (device->compiler == NULL) {
496 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
497 goto fail;
498 }
499 device->compiler->shader_debug_log = compiler_debug_log;
500 device->compiler->shader_perf_log = compiler_perf_log;
501 device->compiler->supports_pull_constants = false;
502 device->compiler->constant_buffer_0_is_relative =
503 device->info.gen < 8 || !device->has_context_isolation;
504 device->compiler->supports_shader_constants = true;
505
506 /* Broadwell PRM says:
507 *
508 * "Before Gen8, there was a historical configuration control field to
509 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
510 * different places: TILECTL[1:0], ARB_MODE[5:4], and
511 * DISP_ARB_CTL[14:13].
512 *
513 * For Gen8 and subsequent generations, the swizzle fields are all
514 * reserved, and the CPU's memory controller performs all address
515 * swizzling modifications."
516 */
517 bool swizzled =
518 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
519
520 isl_device_init(&device->isl_dev, &device->info, swizzled);
521
522 result = anv_physical_device_init_uuids(device);
523 if (result != VK_SUCCESS)
524 goto fail;
525
526 anv_physical_device_init_disk_cache(device);
527
528 if (instance->enabled_extensions.KHR_display) {
529 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
530 if (master_fd >= 0) {
531 /* prod the device with a GETPARAM call which will fail if
532 * we don't have permission to even render on this device
533 */
534 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
535 close(master_fd);
536 master_fd = -1;
537 }
538 }
539 }
540 device->master_fd = master_fd;
541
542 result = anv_init_wsi(device);
543 if (result != VK_SUCCESS) {
544 ralloc_free(device->compiler);
545 anv_physical_device_free_disk_cache(device);
546 goto fail;
547 }
548
549 anv_physical_device_get_supported_extensions(device,
550 &device->supported_extensions);
551
552
553 device->local_fd = fd;
554
555 return VK_SUCCESS;
556
557 fail:
558 close(fd);
559 if (master_fd != -1)
560 close(master_fd);
561 return result;
562 }
563
564 static void
565 anv_physical_device_finish(struct anv_physical_device *device)
566 {
567 anv_finish_wsi(device);
568 anv_physical_device_free_disk_cache(device);
569 ralloc_free(device->compiler);
570 close(device->local_fd);
571 if (device->master_fd >= 0)
572 close(device->master_fd);
573 }
574
575 static void *
576 default_alloc_func(void *pUserData, size_t size, size_t align,
577 VkSystemAllocationScope allocationScope)
578 {
579 return malloc(size);
580 }
581
582 static void *
583 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
584 size_t align, VkSystemAllocationScope allocationScope)
585 {
586 return realloc(pOriginal, size);
587 }
588
589 static void
590 default_free_func(void *pUserData, void *pMemory)
591 {
592 free(pMemory);
593 }
594
595 static const VkAllocationCallbacks default_alloc = {
596 .pUserData = NULL,
597 .pfnAllocation = default_alloc_func,
598 .pfnReallocation = default_realloc_func,
599 .pfnFree = default_free_func,
600 };
601
602 VkResult anv_EnumerateInstanceExtensionProperties(
603 const char* pLayerName,
604 uint32_t* pPropertyCount,
605 VkExtensionProperties* pProperties)
606 {
607 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
608
609 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
610 if (anv_instance_extensions_supported.extensions[i]) {
611 vk_outarray_append(&out, prop) {
612 *prop = anv_instance_extensions[i];
613 }
614 }
615 }
616
617 return vk_outarray_status(&out);
618 }
619
620 VkResult anv_CreateInstance(
621 const VkInstanceCreateInfo* pCreateInfo,
622 const VkAllocationCallbacks* pAllocator,
623 VkInstance* pInstance)
624 {
625 struct anv_instance *instance;
626 VkResult result;
627
628 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
629
630 struct anv_instance_extension_table enabled_extensions = {};
631 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
632 int idx;
633 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
634 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
635 anv_instance_extensions[idx].extensionName) == 0)
636 break;
637 }
638
639 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
640 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
641
642 if (!anv_instance_extensions_supported.extensions[idx])
643 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
644
645 enabled_extensions.extensions[idx] = true;
646 }
647
648 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
649 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
650 if (!instance)
651 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
652
653 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
654
655 if (pAllocator)
656 instance->alloc = *pAllocator;
657 else
658 instance->alloc = default_alloc;
659
660 instance->app_info = (struct anv_app_info) { .api_version = 0 };
661 if (pCreateInfo->pApplicationInfo) {
662 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
663
664 instance->app_info.app_name =
665 vk_strdup(&instance->alloc, app->pApplicationName,
666 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
667 instance->app_info.app_version = app->applicationVersion;
668
669 instance->app_info.engine_name =
670 vk_strdup(&instance->alloc, app->pEngineName,
671 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
672 instance->app_info.engine_version = app->engineVersion;
673
674 instance->app_info.api_version = app->apiVersion;
675 }
676
677 if (instance->app_info.api_version == 0)
678 instance->app_info.api_version = VK_API_VERSION_1_0;
679
680 instance->enabled_extensions = enabled_extensions;
681
682 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
683 /* Vulkan requires that entrypoints for extensions which have not been
684 * enabled must not be advertised.
685 */
686 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
687 &instance->enabled_extensions)) {
688 instance->dispatch.entrypoints[i] = NULL;
689 } else {
690 instance->dispatch.entrypoints[i] =
691 anv_instance_dispatch_table.entrypoints[i];
692 }
693 }
694
695 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
696 /* Vulkan requires that entrypoints for extensions which have not been
697 * enabled must not be advertised.
698 */
699 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
700 &instance->enabled_extensions, NULL)) {
701 instance->device_dispatch.entrypoints[i] = NULL;
702 } else {
703 instance->device_dispatch.entrypoints[i] =
704 anv_device_dispatch_table.entrypoints[i];
705 }
706 }
707
708 instance->physicalDeviceCount = -1;
709
710 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
711 if (result != VK_SUCCESS) {
712 vk_free2(&default_alloc, pAllocator, instance);
713 return vk_error(result);
714 }
715
716 instance->pipeline_cache_enabled =
717 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
718
719 _mesa_locale_init();
720 glsl_type_singleton_init_or_ref();
721
722 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
723
724 *pInstance = anv_instance_to_handle(instance);
725
726 return VK_SUCCESS;
727 }
728
729 void anv_DestroyInstance(
730 VkInstance _instance,
731 const VkAllocationCallbacks* pAllocator)
732 {
733 ANV_FROM_HANDLE(anv_instance, instance, _instance);
734
735 if (!instance)
736 return;
737
738 if (instance->physicalDeviceCount > 0) {
739 /* We support at most one physical device. */
740 assert(instance->physicalDeviceCount == 1);
741 anv_physical_device_finish(&instance->physicalDevice);
742 }
743
744 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
745 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
746
747 VG(VALGRIND_DESTROY_MEMPOOL(instance));
748
749 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
750
751 glsl_type_singleton_decref();
752 _mesa_locale_fini();
753
754 vk_free(&instance->alloc, instance);
755 }
756
757 static VkResult
758 anv_enumerate_devices(struct anv_instance *instance)
759 {
760 /* TODO: Check for more devices ? */
761 drmDevicePtr devices[8];
762 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
763 int max_devices;
764
765 instance->physicalDeviceCount = 0;
766
767 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
768 if (max_devices < 1)
769 return VK_ERROR_INCOMPATIBLE_DRIVER;
770
771 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
772 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
773 devices[i]->bustype == DRM_BUS_PCI &&
774 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
775
776 result = anv_physical_device_init(&instance->physicalDevice,
777 instance, devices[i]);
778 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
779 break;
780 }
781 }
782 drmFreeDevices(devices, max_devices);
783
784 if (result == VK_SUCCESS)
785 instance->physicalDeviceCount = 1;
786
787 return result;
788 }
789
790 static VkResult
791 anv_instance_ensure_physical_device(struct anv_instance *instance)
792 {
793 if (instance->physicalDeviceCount < 0) {
794 VkResult result = anv_enumerate_devices(instance);
795 if (result != VK_SUCCESS &&
796 result != VK_ERROR_INCOMPATIBLE_DRIVER)
797 return result;
798 }
799
800 return VK_SUCCESS;
801 }
802
803 VkResult anv_EnumeratePhysicalDevices(
804 VkInstance _instance,
805 uint32_t* pPhysicalDeviceCount,
806 VkPhysicalDevice* pPhysicalDevices)
807 {
808 ANV_FROM_HANDLE(anv_instance, instance, _instance);
809 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
810
811 VkResult result = anv_instance_ensure_physical_device(instance);
812 if (result != VK_SUCCESS)
813 return result;
814
815 if (instance->physicalDeviceCount == 0)
816 return VK_SUCCESS;
817
818 assert(instance->physicalDeviceCount == 1);
819 vk_outarray_append(&out, i) {
820 *i = anv_physical_device_to_handle(&instance->physicalDevice);
821 }
822
823 return vk_outarray_status(&out);
824 }
825
826 VkResult anv_EnumeratePhysicalDeviceGroups(
827 VkInstance _instance,
828 uint32_t* pPhysicalDeviceGroupCount,
829 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
830 {
831 ANV_FROM_HANDLE(anv_instance, instance, _instance);
832 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
833 pPhysicalDeviceGroupCount);
834
835 VkResult result = anv_instance_ensure_physical_device(instance);
836 if (result != VK_SUCCESS)
837 return result;
838
839 if (instance->physicalDeviceCount == 0)
840 return VK_SUCCESS;
841
842 assert(instance->physicalDeviceCount == 1);
843
844 vk_outarray_append(&out, p) {
845 p->physicalDeviceCount = 1;
846 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
847 p->physicalDevices[0] =
848 anv_physical_device_to_handle(&instance->physicalDevice);
849 p->subsetAllocation = false;
850
851 vk_foreach_struct(ext, p->pNext)
852 anv_debug_ignored_stype(ext->sType);
853 }
854
855 return vk_outarray_status(&out);
856 }
857
858 void anv_GetPhysicalDeviceFeatures(
859 VkPhysicalDevice physicalDevice,
860 VkPhysicalDeviceFeatures* pFeatures)
861 {
862 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
863
864 *pFeatures = (VkPhysicalDeviceFeatures) {
865 .robustBufferAccess = true,
866 .fullDrawIndexUint32 = true,
867 .imageCubeArray = true,
868 .independentBlend = true,
869 .geometryShader = true,
870 .tessellationShader = true,
871 .sampleRateShading = true,
872 .dualSrcBlend = true,
873 .logicOp = true,
874 .multiDrawIndirect = true,
875 .drawIndirectFirstInstance = true,
876 .depthClamp = true,
877 .depthBiasClamp = true,
878 .fillModeNonSolid = true,
879 .depthBounds = false,
880 .wideLines = true,
881 .largePoints = true,
882 .alphaToOne = true,
883 .multiViewport = true,
884 .samplerAnisotropy = true,
885 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
886 pdevice->info.is_baytrail,
887 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
888 .textureCompressionBC = true,
889 .occlusionQueryPrecise = true,
890 .pipelineStatisticsQuery = true,
891 .fragmentStoresAndAtomics = true,
892 .shaderTessellationAndGeometryPointSize = true,
893 .shaderImageGatherExtended = true,
894 .shaderStorageImageExtendedFormats = true,
895 .shaderStorageImageMultisample = false,
896 .shaderStorageImageReadWithoutFormat = false,
897 .shaderStorageImageWriteWithoutFormat = true,
898 .shaderUniformBufferArrayDynamicIndexing = true,
899 .shaderSampledImageArrayDynamicIndexing = true,
900 .shaderStorageBufferArrayDynamicIndexing = true,
901 .shaderStorageImageArrayDynamicIndexing = true,
902 .shaderClipDistance = true,
903 .shaderCullDistance = true,
904 .shaderFloat64 = pdevice->info.gen >= 8 &&
905 pdevice->info.has_64bit_types,
906 .shaderInt64 = pdevice->info.gen >= 8 &&
907 pdevice->info.has_64bit_types,
908 .shaderInt16 = pdevice->info.gen >= 8,
909 .shaderResourceMinLod = pdevice->info.gen >= 9,
910 .variableMultisampleRate = true,
911 .inheritedQueries = true,
912 };
913
914 /* We can't do image stores in vec4 shaders */
915 pFeatures->vertexPipelineStoresAndAtomics =
916 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
917 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
918
919 struct anv_app_info *app_info = &pdevice->instance->app_info;
920
921 /* The new DOOM and Wolfenstein games require depthBounds without
922 * checking for it. They seem to run fine without it so just claim it's
923 * there and accept the consequences.
924 */
925 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
926 pFeatures->depthBounds = true;
927 }
928
929 void anv_GetPhysicalDeviceFeatures2(
930 VkPhysicalDevice physicalDevice,
931 VkPhysicalDeviceFeatures2* pFeatures)
932 {
933 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
934 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
935
936 vk_foreach_struct(ext, pFeatures->pNext) {
937 switch (ext->sType) {
938 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
939 VkPhysicalDevice8BitStorageFeaturesKHR *features =
940 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
941 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
942 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
943 features->storagePushConstant8 = pdevice->info.gen >= 8;
944 break;
945 }
946
947 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
948 VkPhysicalDevice16BitStorageFeatures *features =
949 (VkPhysicalDevice16BitStorageFeatures *)ext;
950 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
951 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
952 features->storagePushConstant16 = pdevice->info.gen >= 8;
953 features->storageInputOutput16 = false;
954 break;
955 }
956
957 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
958 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
959 features->bufferDeviceAddress = pdevice->use_softpin &&
960 pdevice->info.gen >= 8;
961 features->bufferDeviceAddressCaptureReplay = false;
962 features->bufferDeviceAddressMultiDevice = false;
963 break;
964 }
965
966 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
967 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
968 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
969 features->computeDerivativeGroupQuads = true;
970 features->computeDerivativeGroupLinear = true;
971 break;
972 }
973
974 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
975 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
976 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
977 features->conditionalRendering = pdevice->info.gen >= 8 ||
978 pdevice->info.is_haswell;
979 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
980 pdevice->info.is_haswell;
981 break;
982 }
983
984 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
985 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
986 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
987 features->depthClipEnable = true;
988 break;
989 }
990
991 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
992 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
993 features->shaderFloat16 = pdevice->info.gen >= 8;
994 features->shaderInt8 = pdevice->info.gen >= 8;
995 break;
996 }
997
998 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
999 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1000 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1001 features->hostQueryReset = true;
1002 break;
1003 }
1004
1005 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1006 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1007 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1008 features->inlineUniformBlock = true;
1009 features->descriptorBindingInlineUniformBlockUpdateAfterBind = false;
1010 break;
1011 }
1012
1013 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1014 VkPhysicalDeviceMultiviewFeatures *features =
1015 (VkPhysicalDeviceMultiviewFeatures *)ext;
1016 features->multiview = true;
1017 features->multiviewGeometryShader = true;
1018 features->multiviewTessellationShader = true;
1019 break;
1020 }
1021
1022 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1023 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1024 features->protectedMemory = false;
1025 break;
1026 }
1027
1028 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1029 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1030 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1031 features->samplerYcbcrConversion = true;
1032 break;
1033 }
1034
1035 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1036 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1037 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1038 features->scalarBlockLayout = true;
1039 break;
1040 }
1041
1042 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1043 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1044 features->shaderDrawParameters = true;
1045 break;
1046 }
1047
1048 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1049 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1050 features->variablePointersStorageBuffer = true;
1051 features->variablePointers = true;
1052 break;
1053 }
1054
1055 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1056 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1057 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1058 features->transformFeedback = true;
1059 features->geometryStreams = true;
1060 break;
1061 }
1062
1063 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1064 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1065 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1066 features->vertexAttributeInstanceRateDivisor = true;
1067 features->vertexAttributeInstanceRateZeroDivisor = true;
1068 break;
1069 }
1070
1071 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1072 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1073 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1074 features->ycbcrImageArrays = true;
1075 break;
1076 }
1077
1078 default:
1079 anv_debug_ignored_stype(ext->sType);
1080 break;
1081 }
1082 }
1083 }
1084
1085 void anv_GetPhysicalDeviceProperties(
1086 VkPhysicalDevice physicalDevice,
1087 VkPhysicalDeviceProperties* pProperties)
1088 {
1089 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1090 const struct gen_device_info *devinfo = &pdevice->info;
1091
1092 /* See assertions made when programming the buffer surface state. */
1093 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1094 (1ul << 30) : (1ul << 27);
1095
1096 const uint32_t max_samplers = (devinfo->gen >= 8 || devinfo->is_haswell) ?
1097 128 : 16;
1098
1099 VkSampleCountFlags sample_counts =
1100 isl_device_get_sample_counts(&pdevice->isl_dev);
1101
1102
1103 VkPhysicalDeviceLimits limits = {
1104 .maxImageDimension1D = (1 << 14),
1105 .maxImageDimension2D = (1 << 14),
1106 .maxImageDimension3D = (1 << 11),
1107 .maxImageDimensionCube = (1 << 14),
1108 .maxImageArrayLayers = (1 << 11),
1109 .maxTexelBufferElements = 128 * 1024 * 1024,
1110 .maxUniformBufferRange = (1ul << 27),
1111 .maxStorageBufferRange = max_raw_buffer_sz,
1112 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1113 .maxMemoryAllocationCount = UINT32_MAX,
1114 .maxSamplerAllocationCount = 64 * 1024,
1115 .bufferImageGranularity = 64, /* A cache line */
1116 .sparseAddressSpaceSize = 0,
1117 .maxBoundDescriptorSets = MAX_SETS,
1118 .maxPerStageDescriptorSamplers = max_samplers,
1119 .maxPerStageDescriptorUniformBuffers = 64,
1120 .maxPerStageDescriptorStorageBuffers = 64,
1121 .maxPerStageDescriptorSampledImages = max_samplers,
1122 .maxPerStageDescriptorStorageImages = MAX_IMAGES,
1123 .maxPerStageDescriptorInputAttachments = 64,
1124 .maxPerStageResources = 250,
1125 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1126 .maxDescriptorSetUniformBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorUniformBuffers */
1127 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1128 .maxDescriptorSetStorageBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorStorageBuffers */
1129 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1130 .maxDescriptorSetSampledImages = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSampledImages */
1131 .maxDescriptorSetStorageImages = 6 * MAX_IMAGES, /* number of stages * maxPerStageDescriptorStorageImages */
1132 .maxDescriptorSetInputAttachments = 256,
1133 .maxVertexInputAttributes = MAX_VBS,
1134 .maxVertexInputBindings = MAX_VBS,
1135 .maxVertexInputAttributeOffset = 2047,
1136 .maxVertexInputBindingStride = 2048,
1137 .maxVertexOutputComponents = 128,
1138 .maxTessellationGenerationLevel = 64,
1139 .maxTessellationPatchSize = 32,
1140 .maxTessellationControlPerVertexInputComponents = 128,
1141 .maxTessellationControlPerVertexOutputComponents = 128,
1142 .maxTessellationControlPerPatchOutputComponents = 128,
1143 .maxTessellationControlTotalOutputComponents = 2048,
1144 .maxTessellationEvaluationInputComponents = 128,
1145 .maxTessellationEvaluationOutputComponents = 128,
1146 .maxGeometryShaderInvocations = 32,
1147 .maxGeometryInputComponents = 64,
1148 .maxGeometryOutputComponents = 128,
1149 .maxGeometryOutputVertices = 256,
1150 .maxGeometryTotalOutputComponents = 1024,
1151 .maxFragmentInputComponents = 112, /* 128 components - (POS, PSIZ, CLIP_DIST0, CLIP_DIST1) */
1152 .maxFragmentOutputAttachments = 8,
1153 .maxFragmentDualSrcAttachments = 1,
1154 .maxFragmentCombinedOutputResources = 8,
1155 .maxComputeSharedMemorySize = 32768,
1156 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1157 .maxComputeWorkGroupInvocations = 32 * devinfo->max_cs_threads,
1158 .maxComputeWorkGroupSize = {
1159 16 * devinfo->max_cs_threads,
1160 16 * devinfo->max_cs_threads,
1161 16 * devinfo->max_cs_threads,
1162 },
1163 .subPixelPrecisionBits = 8,
1164 .subTexelPrecisionBits = 8,
1165 .mipmapPrecisionBits = 8,
1166 .maxDrawIndexedIndexValue = UINT32_MAX,
1167 .maxDrawIndirectCount = UINT32_MAX,
1168 .maxSamplerLodBias = 16,
1169 .maxSamplerAnisotropy = 16,
1170 .maxViewports = MAX_VIEWPORTS,
1171 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1172 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1173 .viewportSubPixelBits = 13, /* We take a float? */
1174 .minMemoryMapAlignment = 4096, /* A page */
1175 .minTexelBufferOffsetAlignment = 1,
1176 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1177 .minUniformBufferOffsetAlignment = 32,
1178 .minStorageBufferOffsetAlignment = 4,
1179 .minTexelOffset = -8,
1180 .maxTexelOffset = 7,
1181 .minTexelGatherOffset = -32,
1182 .maxTexelGatherOffset = 31,
1183 .minInterpolationOffset = -0.5,
1184 .maxInterpolationOffset = 0.4375,
1185 .subPixelInterpolationOffsetBits = 4,
1186 .maxFramebufferWidth = (1 << 14),
1187 .maxFramebufferHeight = (1 << 14),
1188 .maxFramebufferLayers = (1 << 11),
1189 .framebufferColorSampleCounts = sample_counts,
1190 .framebufferDepthSampleCounts = sample_counts,
1191 .framebufferStencilSampleCounts = sample_counts,
1192 .framebufferNoAttachmentsSampleCounts = sample_counts,
1193 .maxColorAttachments = MAX_RTS,
1194 .sampledImageColorSampleCounts = sample_counts,
1195 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1196 .sampledImageDepthSampleCounts = sample_counts,
1197 .sampledImageStencilSampleCounts = sample_counts,
1198 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1199 .maxSampleMaskWords = 1,
1200 .timestampComputeAndGraphics = false,
1201 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1202 .maxClipDistances = 8,
1203 .maxCullDistances = 8,
1204 .maxCombinedClipAndCullDistances = 8,
1205 .discreteQueuePriorities = 2,
1206 .pointSizeRange = { 0.125, 255.875 },
1207 .lineWidthRange = { 0.0, 7.9921875 },
1208 .pointSizeGranularity = (1.0 / 8.0),
1209 .lineWidthGranularity = (1.0 / 128.0),
1210 .strictLines = false, /* FINISHME */
1211 .standardSampleLocations = true,
1212 .optimalBufferCopyOffsetAlignment = 128,
1213 .optimalBufferCopyRowPitchAlignment = 128,
1214 .nonCoherentAtomSize = 64,
1215 };
1216
1217 *pProperties = (VkPhysicalDeviceProperties) {
1218 .apiVersion = anv_physical_device_api_version(pdevice),
1219 .driverVersion = vk_get_driver_version(),
1220 .vendorID = 0x8086,
1221 .deviceID = pdevice->chipset_id,
1222 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1223 .limits = limits,
1224 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1225 };
1226
1227 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1228 "%s", pdevice->name);
1229 memcpy(pProperties->pipelineCacheUUID,
1230 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1231 }
1232
1233 void anv_GetPhysicalDeviceProperties2(
1234 VkPhysicalDevice physicalDevice,
1235 VkPhysicalDeviceProperties2* pProperties)
1236 {
1237 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1238
1239 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1240
1241 vk_foreach_struct(ext, pProperties->pNext) {
1242 switch (ext->sType) {
1243 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1244 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1245 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1246
1247 /* We support all of the depth resolve modes */
1248 props->supportedDepthResolveModes =
1249 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1250 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1251 VK_RESOLVE_MODE_MIN_BIT_KHR |
1252 VK_RESOLVE_MODE_MAX_BIT_KHR;
1253
1254 /* Average doesn't make sense for stencil so we don't support that */
1255 props->supportedStencilResolveModes =
1256 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1257 if (pdevice->info.gen >= 8) {
1258 /* The advanced stencil resolve modes currently require stencil
1259 * sampling be supported by the hardware.
1260 */
1261 props->supportedStencilResolveModes |=
1262 VK_RESOLVE_MODE_MIN_BIT_KHR |
1263 VK_RESOLVE_MODE_MAX_BIT_KHR;
1264 }
1265
1266 props->independentResolveNone = true;
1267 props->independentResolve = true;
1268 break;
1269 }
1270
1271 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1272 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1273 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1274
1275 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1276 util_snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1277 "Intel open-source Mesa driver");
1278
1279 util_snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1280 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1281
1282 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1283 .major = 1,
1284 .minor = 1,
1285 .subminor = 2,
1286 .patch = 0,
1287 };
1288 break;
1289 }
1290
1291 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1292 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1293 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1294 /* Userptr needs page aligned memory. */
1295 props->minImportedHostPointerAlignment = 4096;
1296 break;
1297 }
1298
1299 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1300 VkPhysicalDeviceIDProperties *id_props =
1301 (VkPhysicalDeviceIDProperties *)ext;
1302 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1303 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1304 /* The LUID is for Windows. */
1305 id_props->deviceLUIDValid = false;
1306 break;
1307 }
1308
1309 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1310 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1311 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1312 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1313 props->maxPerStageDescriptorInlineUniformBlocks =
1314 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1315 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1316 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1317 props->maxDescriptorSetInlineUniformBlocks =
1318 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1319 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1320 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1321 break;
1322 }
1323
1324 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1325 VkPhysicalDeviceMaintenance3Properties *props =
1326 (VkPhysicalDeviceMaintenance3Properties *)ext;
1327 /* This value doesn't matter for us today as our per-stage
1328 * descriptors are the real limit.
1329 */
1330 props->maxPerSetDescriptors = 1024;
1331 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1332 break;
1333 }
1334
1335 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1336 VkPhysicalDeviceMultiviewProperties *properties =
1337 (VkPhysicalDeviceMultiviewProperties *)ext;
1338 properties->maxMultiviewViewCount = 16;
1339 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1340 break;
1341 }
1342
1343 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1344 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1345 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1346 properties->pciDomain = pdevice->pci_info.domain;
1347 properties->pciBus = pdevice->pci_info.bus;
1348 properties->pciDevice = pdevice->pci_info.device;
1349 properties->pciFunction = pdevice->pci_info.function;
1350 break;
1351 }
1352
1353 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1354 VkPhysicalDevicePointClippingProperties *properties =
1355 (VkPhysicalDevicePointClippingProperties *) ext;
1356 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
1357 anv_finishme("Implement pop-free point clipping");
1358 break;
1359 }
1360
1361 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1362 VkPhysicalDeviceProtectedMemoryProperties *props =
1363 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1364 props->protectedNoFault = false;
1365 break;
1366 }
1367
1368 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1369 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1370 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1371
1372 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1373 break;
1374 }
1375
1376 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1377 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1378 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1379 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1380 properties->filterMinmaxSingleComponentFormats = true;
1381 break;
1382 }
1383
1384 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1385 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1386
1387 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1388
1389 VkShaderStageFlags scalar_stages = 0;
1390 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1391 if (pdevice->compiler->scalar_stage[stage])
1392 scalar_stages |= mesa_to_vk_shader_stage(stage);
1393 }
1394 properties->supportedStages = scalar_stages;
1395
1396 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1397 VK_SUBGROUP_FEATURE_VOTE_BIT |
1398 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1399 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1400 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1401 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1402 VK_SUBGROUP_FEATURE_CLUSTERED_BIT |
1403 VK_SUBGROUP_FEATURE_QUAD_BIT;
1404 properties->quadOperationsInAllStages = true;
1405 break;
1406 }
1407
1408 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1409 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1410 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1411
1412 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1413 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1414 props->maxTransformFeedbackBufferSize = (1ull << 32);
1415 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1416 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1417 props->maxTransformFeedbackBufferDataStride = 2048;
1418 props->transformFeedbackQueries = true;
1419 props->transformFeedbackStreamsLinesTriangles = false;
1420 props->transformFeedbackRasterizationStreamSelect = false;
1421 props->transformFeedbackDraw = true;
1422 break;
1423 }
1424
1425 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1426 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1427 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1428 /* We have to restrict this a bit for multiview */
1429 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1430 break;
1431 }
1432
1433 default:
1434 anv_debug_ignored_stype(ext->sType);
1435 break;
1436 }
1437 }
1438 }
1439
1440 /* We support exactly one queue family. */
1441 static const VkQueueFamilyProperties
1442 anv_queue_family_properties = {
1443 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1444 VK_QUEUE_COMPUTE_BIT |
1445 VK_QUEUE_TRANSFER_BIT,
1446 .queueCount = 1,
1447 .timestampValidBits = 36, /* XXX: Real value here */
1448 .minImageTransferGranularity = { 1, 1, 1 },
1449 };
1450
1451 void anv_GetPhysicalDeviceQueueFamilyProperties(
1452 VkPhysicalDevice physicalDevice,
1453 uint32_t* pCount,
1454 VkQueueFamilyProperties* pQueueFamilyProperties)
1455 {
1456 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1457
1458 vk_outarray_append(&out, p) {
1459 *p = anv_queue_family_properties;
1460 }
1461 }
1462
1463 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1464 VkPhysicalDevice physicalDevice,
1465 uint32_t* pQueueFamilyPropertyCount,
1466 VkQueueFamilyProperties2* pQueueFamilyProperties)
1467 {
1468
1469 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1470
1471 vk_outarray_append(&out, p) {
1472 p->queueFamilyProperties = anv_queue_family_properties;
1473
1474 vk_foreach_struct(s, p->pNext) {
1475 anv_debug_ignored_stype(s->sType);
1476 }
1477 }
1478 }
1479
1480 void anv_GetPhysicalDeviceMemoryProperties(
1481 VkPhysicalDevice physicalDevice,
1482 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1483 {
1484 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1485
1486 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1487 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1488 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1489 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1490 .heapIndex = physical_device->memory.types[i].heapIndex,
1491 };
1492 }
1493
1494 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1495 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1496 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1497 .size = physical_device->memory.heaps[i].size,
1498 .flags = physical_device->memory.heaps[i].flags,
1499 };
1500 }
1501 }
1502
1503 void anv_GetPhysicalDeviceMemoryProperties2(
1504 VkPhysicalDevice physicalDevice,
1505 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1506 {
1507 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1508 &pMemoryProperties->memoryProperties);
1509
1510 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1511 switch (ext->sType) {
1512 default:
1513 anv_debug_ignored_stype(ext->sType);
1514 break;
1515 }
1516 }
1517 }
1518
1519 void
1520 anv_GetDeviceGroupPeerMemoryFeatures(
1521 VkDevice device,
1522 uint32_t heapIndex,
1523 uint32_t localDeviceIndex,
1524 uint32_t remoteDeviceIndex,
1525 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1526 {
1527 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1528 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1529 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1530 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1531 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1532 }
1533
1534 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1535 VkInstance _instance,
1536 const char* pName)
1537 {
1538 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1539
1540 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1541 * when we have to return valid function pointers, NULL, or it's left
1542 * undefined. See the table for exact details.
1543 */
1544 if (pName == NULL)
1545 return NULL;
1546
1547 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1548 if (strcmp(pName, "vk" #entrypoint) == 0) \
1549 return (PFN_vkVoidFunction)anv_##entrypoint
1550
1551 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1552 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1553 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1554 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1555
1556 #undef LOOKUP_ANV_ENTRYPOINT
1557
1558 if (instance == NULL)
1559 return NULL;
1560
1561 int idx = anv_get_instance_entrypoint_index(pName);
1562 if (idx >= 0)
1563 return instance->dispatch.entrypoints[idx];
1564
1565 idx = anv_get_device_entrypoint_index(pName);
1566 if (idx >= 0)
1567 return instance->device_dispatch.entrypoints[idx];
1568
1569 return NULL;
1570 }
1571
1572 /* With version 1+ of the loader interface the ICD should expose
1573 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1574 */
1575 PUBLIC
1576 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1577 VkInstance instance,
1578 const char* pName);
1579
1580 PUBLIC
1581 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1582 VkInstance instance,
1583 const char* pName)
1584 {
1585 return anv_GetInstanceProcAddr(instance, pName);
1586 }
1587
1588 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1589 VkDevice _device,
1590 const char* pName)
1591 {
1592 ANV_FROM_HANDLE(anv_device, device, _device);
1593
1594 if (!device || !pName)
1595 return NULL;
1596
1597 int idx = anv_get_device_entrypoint_index(pName);
1598 if (idx < 0)
1599 return NULL;
1600
1601 return device->dispatch.entrypoints[idx];
1602 }
1603
1604 VkResult
1605 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1606 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1607 const VkAllocationCallbacks* pAllocator,
1608 VkDebugReportCallbackEXT* pCallback)
1609 {
1610 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1611 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1612 pCreateInfo, pAllocator, &instance->alloc,
1613 pCallback);
1614 }
1615
1616 void
1617 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1618 VkDebugReportCallbackEXT _callback,
1619 const VkAllocationCallbacks* pAllocator)
1620 {
1621 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1622 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1623 _callback, pAllocator, &instance->alloc);
1624 }
1625
1626 void
1627 anv_DebugReportMessageEXT(VkInstance _instance,
1628 VkDebugReportFlagsEXT flags,
1629 VkDebugReportObjectTypeEXT objectType,
1630 uint64_t object,
1631 size_t location,
1632 int32_t messageCode,
1633 const char* pLayerPrefix,
1634 const char* pMessage)
1635 {
1636 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1637 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1638 object, location, messageCode, pLayerPrefix, pMessage);
1639 }
1640
1641 static void
1642 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1643 {
1644 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1645 queue->device = device;
1646 queue->flags = 0;
1647 }
1648
1649 static void
1650 anv_queue_finish(struct anv_queue *queue)
1651 {
1652 }
1653
1654 static struct anv_state
1655 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1656 {
1657 struct anv_state state;
1658
1659 state = anv_state_pool_alloc(pool, size, align);
1660 memcpy(state.map, p, size);
1661
1662 return state;
1663 }
1664
1665 struct gen8_border_color {
1666 union {
1667 float float32[4];
1668 uint32_t uint32[4];
1669 };
1670 /* Pad out to 64 bytes */
1671 uint32_t _pad[12];
1672 };
1673
1674 static void
1675 anv_device_init_border_colors(struct anv_device *device)
1676 {
1677 static const struct gen8_border_color border_colors[] = {
1678 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1679 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1680 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1681 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1682 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1683 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1684 };
1685
1686 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
1687 sizeof(border_colors), 64,
1688 border_colors);
1689 }
1690
1691 static void
1692 anv_device_init_trivial_batch(struct anv_device *device)
1693 {
1694 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1695
1696 if (device->instance->physicalDevice.has_exec_async)
1697 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
1698
1699 if (device->instance->physicalDevice.use_softpin)
1700 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
1701
1702 anv_vma_alloc(device, &device->trivial_batch_bo);
1703
1704 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
1705 0, 4096, 0);
1706
1707 struct anv_batch batch = {
1708 .start = map,
1709 .next = map,
1710 .end = map + 4096,
1711 };
1712
1713 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1714 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1715
1716 if (!device->info.has_llc)
1717 gen_clflush_range(map, batch.next - map);
1718
1719 anv_gem_munmap(map, device->trivial_batch_bo.size);
1720 }
1721
1722 VkResult anv_EnumerateDeviceExtensionProperties(
1723 VkPhysicalDevice physicalDevice,
1724 const char* pLayerName,
1725 uint32_t* pPropertyCount,
1726 VkExtensionProperties* pProperties)
1727 {
1728 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1729 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
1730
1731 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
1732 if (device->supported_extensions.extensions[i]) {
1733 vk_outarray_append(&out, prop) {
1734 *prop = anv_device_extensions[i];
1735 }
1736 }
1737 }
1738
1739 return vk_outarray_status(&out);
1740 }
1741
1742 static void
1743 anv_device_init_dispatch(struct anv_device *device)
1744 {
1745 const struct anv_device_dispatch_table *genX_table;
1746 switch (device->info.gen) {
1747 case 11:
1748 genX_table = &gen11_device_dispatch_table;
1749 break;
1750 case 10:
1751 genX_table = &gen10_device_dispatch_table;
1752 break;
1753 case 9:
1754 genX_table = &gen9_device_dispatch_table;
1755 break;
1756 case 8:
1757 genX_table = &gen8_device_dispatch_table;
1758 break;
1759 case 7:
1760 if (device->info.is_haswell)
1761 genX_table = &gen75_device_dispatch_table;
1762 else
1763 genX_table = &gen7_device_dispatch_table;
1764 break;
1765 default:
1766 unreachable("unsupported gen\n");
1767 }
1768
1769 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
1770 /* Vulkan requires that entrypoints for extensions which have not been
1771 * enabled must not be advertised.
1772 */
1773 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
1774 &device->instance->enabled_extensions,
1775 &device->enabled_extensions)) {
1776 device->dispatch.entrypoints[i] = NULL;
1777 } else if (genX_table->entrypoints[i]) {
1778 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
1779 } else {
1780 device->dispatch.entrypoints[i] =
1781 anv_device_dispatch_table.entrypoints[i];
1782 }
1783 }
1784 }
1785
1786 static int
1787 vk_priority_to_gen(int priority)
1788 {
1789 switch (priority) {
1790 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
1791 return GEN_CONTEXT_LOW_PRIORITY;
1792 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
1793 return GEN_CONTEXT_MEDIUM_PRIORITY;
1794 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
1795 return GEN_CONTEXT_HIGH_PRIORITY;
1796 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
1797 return GEN_CONTEXT_REALTIME_PRIORITY;
1798 default:
1799 unreachable("Invalid priority");
1800 }
1801 }
1802
1803 static void
1804 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
1805 {
1806 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
1807
1808 if (device->instance->physicalDevice.has_exec_async)
1809 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
1810
1811 if (device->instance->physicalDevice.use_softpin)
1812 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
1813
1814 anv_vma_alloc(device, &device->hiz_clear_bo);
1815
1816 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
1817 0, 4096, 0);
1818
1819 union isl_color_value hiz_clear = { .u32 = { 0, } };
1820 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
1821
1822 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
1823 anv_gem_munmap(map, device->hiz_clear_bo.size);
1824 }
1825
1826 static bool
1827 get_bo_from_pool(struct gen_batch_decode_bo *ret,
1828 struct anv_block_pool *pool,
1829 uint64_t address)
1830 {
1831 for (uint32_t i = 0; i < pool->nbos; i++) {
1832 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
1833 uint32_t bo_size = pool->bos[i].size;
1834 if (address >= bo_address && address < (bo_address + bo_size)) {
1835 *ret = (struct gen_batch_decode_bo) {
1836 .addr = bo_address,
1837 .size = bo_size,
1838 .map = pool->bos[i].map,
1839 };
1840 return true;
1841 }
1842 }
1843 return false;
1844 }
1845
1846 /* Finding a buffer for batch decoding */
1847 static struct gen_batch_decode_bo
1848 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
1849 {
1850 struct anv_device *device = v_batch;
1851 struct gen_batch_decode_bo ret_bo = {};
1852
1853 assert(ppgtt);
1854
1855 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
1856 return ret_bo;
1857 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
1858 return ret_bo;
1859 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
1860 return ret_bo;
1861 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
1862 return ret_bo;
1863
1864 if (!device->cmd_buffer_being_decoded)
1865 return (struct gen_batch_decode_bo) { };
1866
1867 struct anv_batch_bo **bo;
1868
1869 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
1870 /* The decoder zeroes out the top 16 bits, so we need to as well */
1871 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
1872
1873 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
1874 return (struct gen_batch_decode_bo) {
1875 .addr = bo_address,
1876 .size = (*bo)->bo.size,
1877 .map = (*bo)->bo.map,
1878 };
1879 }
1880 }
1881
1882 return (struct gen_batch_decode_bo) { };
1883 }
1884
1885 VkResult anv_CreateDevice(
1886 VkPhysicalDevice physicalDevice,
1887 const VkDeviceCreateInfo* pCreateInfo,
1888 const VkAllocationCallbacks* pAllocator,
1889 VkDevice* pDevice)
1890 {
1891 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1892 VkResult result;
1893 struct anv_device *device;
1894
1895 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
1896
1897 struct anv_device_extension_table enabled_extensions = { };
1898 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
1899 int idx;
1900 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
1901 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
1902 anv_device_extensions[idx].extensionName) == 0)
1903 break;
1904 }
1905
1906 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
1907 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1908
1909 if (!physical_device->supported_extensions.extensions[idx])
1910 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1911
1912 enabled_extensions.extensions[idx] = true;
1913 }
1914
1915 /* Check enabled features */
1916 if (pCreateInfo->pEnabledFeatures) {
1917 VkPhysicalDeviceFeatures supported_features;
1918 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
1919 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
1920 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
1921 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
1922 for (uint32_t i = 0; i < num_features; i++) {
1923 if (enabled_feature[i] && !supported_feature[i])
1924 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
1925 }
1926 }
1927
1928 /* Check requested queues and fail if we are requested to create any
1929 * queues with flags we don't support.
1930 */
1931 assert(pCreateInfo->queueCreateInfoCount > 0);
1932 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
1933 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
1934 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
1935 }
1936
1937 /* Check if client specified queue priority. */
1938 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
1939 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
1940 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
1941
1942 VkQueueGlobalPriorityEXT priority =
1943 queue_priority ? queue_priority->globalPriority :
1944 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
1945
1946 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
1947 sizeof(*device), 8,
1948 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1949 if (!device)
1950 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1951
1952 const unsigned decode_flags =
1953 GEN_BATCH_DECODE_FULL |
1954 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
1955 GEN_BATCH_DECODE_OFFSETS |
1956 GEN_BATCH_DECODE_FLOATS;
1957
1958 gen_batch_decode_ctx_init(&device->decoder_ctx,
1959 &physical_device->info,
1960 stderr, decode_flags, NULL,
1961 decode_get_bo, NULL, device);
1962
1963 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1964 device->instance = physical_device->instance;
1965 device->chipset_id = physical_device->chipset_id;
1966 device->no_hw = physical_device->no_hw;
1967 device->_lost = false;
1968
1969 if (pAllocator)
1970 device->alloc = *pAllocator;
1971 else
1972 device->alloc = physical_device->instance->alloc;
1973
1974 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
1975 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
1976 if (device->fd == -1) {
1977 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1978 goto fail_device;
1979 }
1980
1981 device->context_id = anv_gem_create_context(device);
1982 if (device->context_id == -1) {
1983 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1984 goto fail_fd;
1985 }
1986
1987 if (physical_device->use_softpin) {
1988 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
1989 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1990 goto fail_fd;
1991 }
1992
1993 /* keep the page with address zero out of the allocator */
1994 struct anv_memory_heap *low_heap =
1995 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
1996 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
1997 device->vma_lo_available = low_heap->size;
1998
1999 struct anv_memory_heap *high_heap =
2000 &physical_device->memory.heaps[0];
2001 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2002 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2003 high_heap->size;
2004 }
2005
2006 list_inithead(&device->memory_objects);
2007
2008 /* As per spec, the driver implementation may deny requests to acquire
2009 * a priority above the default priority (MEDIUM) if the caller does not
2010 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2011 * is returned.
2012 */
2013 if (physical_device->has_context_priority) {
2014 int err = anv_gem_set_context_param(device->fd, device->context_id,
2015 I915_CONTEXT_PARAM_PRIORITY,
2016 vk_priority_to_gen(priority));
2017 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2018 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2019 goto fail_fd;
2020 }
2021 }
2022
2023 device->info = physical_device->info;
2024 device->isl_dev = physical_device->isl_dev;
2025
2026 /* On Broadwell and later, we can use batch chaining to more efficiently
2027 * implement growing command buffers. Prior to Haswell, the kernel
2028 * command parser gets in the way and we have to fall back to growing
2029 * the batch.
2030 */
2031 device->can_chain_batches = device->info.gen >= 8;
2032
2033 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2034 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2035 device->enabled_extensions = enabled_extensions;
2036
2037 anv_device_init_dispatch(device);
2038
2039 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2040 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2041 goto fail_context_id;
2042 }
2043
2044 pthread_condattr_t condattr;
2045 if (pthread_condattr_init(&condattr) != 0) {
2046 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2047 goto fail_mutex;
2048 }
2049 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2050 pthread_condattr_destroy(&condattr);
2051 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2052 goto fail_mutex;
2053 }
2054 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2055 pthread_condattr_destroy(&condattr);
2056 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2057 goto fail_mutex;
2058 }
2059 pthread_condattr_destroy(&condattr);
2060
2061 uint64_t bo_flags =
2062 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2063 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2064 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2065 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2066
2067 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2068
2069 result = anv_bo_cache_init(&device->bo_cache);
2070 if (result != VK_SUCCESS)
2071 goto fail_batch_bo_pool;
2072
2073 if (!physical_device->use_softpin)
2074 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2075
2076 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2077 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2078 16384,
2079 bo_flags);
2080 if (result != VK_SUCCESS)
2081 goto fail_bo_cache;
2082
2083 result = anv_state_pool_init(&device->instruction_state_pool, device,
2084 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2085 16384,
2086 bo_flags);
2087 if (result != VK_SUCCESS)
2088 goto fail_dynamic_state_pool;
2089
2090 result = anv_state_pool_init(&device->surface_state_pool, device,
2091 SURFACE_STATE_POOL_MIN_ADDRESS,
2092 4096,
2093 bo_flags);
2094 if (result != VK_SUCCESS)
2095 goto fail_instruction_state_pool;
2096
2097 if (physical_device->use_softpin) {
2098 result = anv_state_pool_init(&device->binding_table_pool, device,
2099 BINDING_TABLE_POOL_MIN_ADDRESS,
2100 4096,
2101 bo_flags);
2102 if (result != VK_SUCCESS)
2103 goto fail_surface_state_pool;
2104 }
2105
2106 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
2107 if (result != VK_SUCCESS)
2108 goto fail_binding_table_pool;
2109
2110 if (physical_device->use_softpin)
2111 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2112
2113 if (!anv_vma_alloc(device, &device->workaround_bo))
2114 goto fail_workaround_bo;
2115
2116 anv_device_init_trivial_batch(device);
2117
2118 if (device->info.gen >= 10)
2119 anv_device_init_hiz_clear_value_bo(device);
2120
2121 anv_scratch_pool_init(device, &device->scratch_pool);
2122
2123 anv_queue_init(device, &device->queue);
2124
2125 switch (device->info.gen) {
2126 case 7:
2127 if (!device->info.is_haswell)
2128 result = gen7_init_device_state(device);
2129 else
2130 result = gen75_init_device_state(device);
2131 break;
2132 case 8:
2133 result = gen8_init_device_state(device);
2134 break;
2135 case 9:
2136 result = gen9_init_device_state(device);
2137 break;
2138 case 10:
2139 result = gen10_init_device_state(device);
2140 break;
2141 case 11:
2142 result = gen11_init_device_state(device);
2143 break;
2144 default:
2145 /* Shouldn't get here as we don't create physical devices for any other
2146 * gens. */
2147 unreachable("unhandled gen");
2148 }
2149 if (result != VK_SUCCESS)
2150 goto fail_workaround_bo;
2151
2152 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2153
2154 anv_device_init_blorp(device);
2155
2156 anv_device_init_border_colors(device);
2157
2158 *pDevice = anv_device_to_handle(device);
2159
2160 return VK_SUCCESS;
2161
2162 fail_workaround_bo:
2163 anv_queue_finish(&device->queue);
2164 anv_scratch_pool_finish(device, &device->scratch_pool);
2165 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2166 anv_gem_close(device, device->workaround_bo.gem_handle);
2167 fail_binding_table_pool:
2168 if (physical_device->use_softpin)
2169 anv_state_pool_finish(&device->binding_table_pool);
2170 fail_surface_state_pool:
2171 anv_state_pool_finish(&device->surface_state_pool);
2172 fail_instruction_state_pool:
2173 anv_state_pool_finish(&device->instruction_state_pool);
2174 fail_dynamic_state_pool:
2175 anv_state_pool_finish(&device->dynamic_state_pool);
2176 fail_bo_cache:
2177 anv_bo_cache_finish(&device->bo_cache);
2178 fail_batch_bo_pool:
2179 anv_bo_pool_finish(&device->batch_bo_pool);
2180 pthread_cond_destroy(&device->queue_submit);
2181 fail_mutex:
2182 pthread_mutex_destroy(&device->mutex);
2183 fail_context_id:
2184 anv_gem_destroy_context(device, device->context_id);
2185 fail_fd:
2186 close(device->fd);
2187 fail_device:
2188 vk_free(&device->alloc, device);
2189
2190 return result;
2191 }
2192
2193 void anv_DestroyDevice(
2194 VkDevice _device,
2195 const VkAllocationCallbacks* pAllocator)
2196 {
2197 ANV_FROM_HANDLE(anv_device, device, _device);
2198 struct anv_physical_device *physical_device;
2199
2200 if (!device)
2201 return;
2202
2203 physical_device = &device->instance->physicalDevice;
2204
2205 anv_device_finish_blorp(device);
2206
2207 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2208
2209 anv_queue_finish(&device->queue);
2210
2211 #ifdef HAVE_VALGRIND
2212 /* We only need to free these to prevent valgrind errors. The backing
2213 * BO will go away in a couple of lines so we don't actually leak.
2214 */
2215 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2216 #endif
2217
2218 anv_scratch_pool_finish(device, &device->scratch_pool);
2219
2220 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2221 anv_vma_free(device, &device->workaround_bo);
2222 anv_gem_close(device, device->workaround_bo.gem_handle);
2223
2224 anv_vma_free(device, &device->trivial_batch_bo);
2225 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2226 if (device->info.gen >= 10)
2227 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2228
2229 if (physical_device->use_softpin)
2230 anv_state_pool_finish(&device->binding_table_pool);
2231 anv_state_pool_finish(&device->surface_state_pool);
2232 anv_state_pool_finish(&device->instruction_state_pool);
2233 anv_state_pool_finish(&device->dynamic_state_pool);
2234
2235 anv_bo_cache_finish(&device->bo_cache);
2236
2237 anv_bo_pool_finish(&device->batch_bo_pool);
2238
2239 pthread_cond_destroy(&device->queue_submit);
2240 pthread_mutex_destroy(&device->mutex);
2241
2242 anv_gem_destroy_context(device, device->context_id);
2243
2244 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2245
2246 close(device->fd);
2247
2248 vk_free(&device->alloc, device);
2249 }
2250
2251 VkResult anv_EnumerateInstanceLayerProperties(
2252 uint32_t* pPropertyCount,
2253 VkLayerProperties* pProperties)
2254 {
2255 if (pProperties == NULL) {
2256 *pPropertyCount = 0;
2257 return VK_SUCCESS;
2258 }
2259
2260 /* None supported at this time */
2261 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2262 }
2263
2264 VkResult anv_EnumerateDeviceLayerProperties(
2265 VkPhysicalDevice physicalDevice,
2266 uint32_t* pPropertyCount,
2267 VkLayerProperties* pProperties)
2268 {
2269 if (pProperties == NULL) {
2270 *pPropertyCount = 0;
2271 return VK_SUCCESS;
2272 }
2273
2274 /* None supported at this time */
2275 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2276 }
2277
2278 void anv_GetDeviceQueue(
2279 VkDevice _device,
2280 uint32_t queueNodeIndex,
2281 uint32_t queueIndex,
2282 VkQueue* pQueue)
2283 {
2284 ANV_FROM_HANDLE(anv_device, device, _device);
2285
2286 assert(queueIndex == 0);
2287
2288 *pQueue = anv_queue_to_handle(&device->queue);
2289 }
2290
2291 void anv_GetDeviceQueue2(
2292 VkDevice _device,
2293 const VkDeviceQueueInfo2* pQueueInfo,
2294 VkQueue* pQueue)
2295 {
2296 ANV_FROM_HANDLE(anv_device, device, _device);
2297
2298 assert(pQueueInfo->queueIndex == 0);
2299
2300 if (pQueueInfo->flags == device->queue.flags)
2301 *pQueue = anv_queue_to_handle(&device->queue);
2302 else
2303 *pQueue = NULL;
2304 }
2305
2306 VkResult
2307 _anv_device_set_lost(struct anv_device *device,
2308 const char *file, int line,
2309 const char *msg, ...)
2310 {
2311 VkResult err;
2312 va_list ap;
2313
2314 device->_lost = true;
2315
2316 va_start(ap, msg);
2317 err = __vk_errorv(device->instance, device,
2318 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2319 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2320 va_end(ap);
2321
2322 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2323 abort();
2324
2325 return err;
2326 }
2327
2328 VkResult
2329 anv_device_query_status(struct anv_device *device)
2330 {
2331 /* This isn't likely as most of the callers of this function already check
2332 * for it. However, it doesn't hurt to check and it potentially lets us
2333 * avoid an ioctl.
2334 */
2335 if (anv_device_is_lost(device))
2336 return VK_ERROR_DEVICE_LOST;
2337
2338 uint32_t active, pending;
2339 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2340 if (ret == -1) {
2341 /* We don't know the real error. */
2342 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2343 }
2344
2345 if (active) {
2346 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2347 } else if (pending) {
2348 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2349 }
2350
2351 return VK_SUCCESS;
2352 }
2353
2354 VkResult
2355 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2356 {
2357 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2358 * Other usages of the BO (such as on different hardware) will not be
2359 * flagged as "busy" by this ioctl. Use with care.
2360 */
2361 int ret = anv_gem_busy(device, bo->gem_handle);
2362 if (ret == 1) {
2363 return VK_NOT_READY;
2364 } else if (ret == -1) {
2365 /* We don't know the real error. */
2366 return anv_device_set_lost(device, "gem wait failed: %m");
2367 }
2368
2369 /* Query for device status after the busy call. If the BO we're checking
2370 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2371 * client because it clearly doesn't have valid data. Yes, this most
2372 * likely means an ioctl, but we just did an ioctl to query the busy status
2373 * so it's no great loss.
2374 */
2375 return anv_device_query_status(device);
2376 }
2377
2378 VkResult
2379 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2380 int64_t timeout)
2381 {
2382 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2383 if (ret == -1 && errno == ETIME) {
2384 return VK_TIMEOUT;
2385 } else if (ret == -1) {
2386 /* We don't know the real error. */
2387 return anv_device_set_lost(device, "gem wait failed: %m");
2388 }
2389
2390 /* Query for device status after the wait. If the BO we're waiting on got
2391 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2392 * because it clearly doesn't have valid data. Yes, this most likely means
2393 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2394 */
2395 return anv_device_query_status(device);
2396 }
2397
2398 VkResult anv_DeviceWaitIdle(
2399 VkDevice _device)
2400 {
2401 ANV_FROM_HANDLE(anv_device, device, _device);
2402 if (anv_device_is_lost(device))
2403 return VK_ERROR_DEVICE_LOST;
2404
2405 struct anv_batch batch;
2406
2407 uint32_t cmds[8];
2408 batch.start = batch.next = cmds;
2409 batch.end = (void *) cmds + sizeof(cmds);
2410
2411 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2412 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2413
2414 return anv_device_submit_simple_batch(device, &batch);
2415 }
2416
2417 bool
2418 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2419 {
2420 if (!(bo->flags & EXEC_OBJECT_PINNED))
2421 return true;
2422
2423 pthread_mutex_lock(&device->vma_mutex);
2424
2425 bo->offset = 0;
2426
2427 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2428 device->vma_hi_available >= bo->size) {
2429 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2430 if (addr) {
2431 bo->offset = gen_canonical_address(addr);
2432 assert(addr == gen_48b_address(bo->offset));
2433 device->vma_hi_available -= bo->size;
2434 }
2435 }
2436
2437 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2438 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2439 if (addr) {
2440 bo->offset = gen_canonical_address(addr);
2441 assert(addr == gen_48b_address(bo->offset));
2442 device->vma_lo_available -= bo->size;
2443 }
2444 }
2445
2446 pthread_mutex_unlock(&device->vma_mutex);
2447
2448 return bo->offset != 0;
2449 }
2450
2451 void
2452 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2453 {
2454 if (!(bo->flags & EXEC_OBJECT_PINNED))
2455 return;
2456
2457 const uint64_t addr_48b = gen_48b_address(bo->offset);
2458
2459 pthread_mutex_lock(&device->vma_mutex);
2460
2461 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2462 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2463 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2464 device->vma_lo_available += bo->size;
2465 } else {
2466 MAYBE_UNUSED const struct anv_physical_device *physical_device =
2467 &device->instance->physicalDevice;
2468 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
2469 addr_48b < (physical_device->memory.heaps[0].vma_start +
2470 physical_device->memory.heaps[0].vma_size));
2471 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2472 device->vma_hi_available += bo->size;
2473 }
2474
2475 pthread_mutex_unlock(&device->vma_mutex);
2476
2477 bo->offset = 0;
2478 }
2479
2480 VkResult
2481 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
2482 {
2483 uint32_t gem_handle = anv_gem_create(device, size);
2484 if (!gem_handle)
2485 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2486
2487 anv_bo_init(bo, gem_handle, size);
2488
2489 return VK_SUCCESS;
2490 }
2491
2492 VkResult anv_AllocateMemory(
2493 VkDevice _device,
2494 const VkMemoryAllocateInfo* pAllocateInfo,
2495 const VkAllocationCallbacks* pAllocator,
2496 VkDeviceMemory* pMem)
2497 {
2498 ANV_FROM_HANDLE(anv_device, device, _device);
2499 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2500 struct anv_device_memory *mem;
2501 VkResult result = VK_SUCCESS;
2502
2503 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
2504
2505 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
2506 assert(pAllocateInfo->allocationSize > 0);
2507
2508 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
2509 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2510
2511 /* FINISHME: Fail if allocation request exceeds heap size. */
2512
2513 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
2514 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2515 if (mem == NULL)
2516 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2517
2518 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
2519 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
2520 mem->map = NULL;
2521 mem->map_size = 0;
2522 mem->ahw = NULL;
2523 mem->host_ptr = NULL;
2524
2525 uint64_t bo_flags = 0;
2526
2527 assert(mem->type->heapIndex < pdevice->memory.heap_count);
2528 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
2529 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2530
2531 const struct wsi_memory_allocate_info *wsi_info =
2532 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2533 if (wsi_info && wsi_info->implicit_sync) {
2534 /* We need to set the WRITE flag on window system buffers so that GEM
2535 * will know we're writing to them and synchronize uses on other rings
2536 * (eg if the display server uses the blitter ring).
2537 */
2538 bo_flags |= EXEC_OBJECT_WRITE;
2539 } else if (pdevice->has_exec_async) {
2540 bo_flags |= EXEC_OBJECT_ASYNC;
2541 }
2542
2543 if (pdevice->use_softpin)
2544 bo_flags |= EXEC_OBJECT_PINNED;
2545
2546 const VkExportMemoryAllocateInfo *export_info =
2547 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
2548
2549 /* Check if we need to support Android HW buffer export. If so,
2550 * create AHardwareBuffer and import memory from it.
2551 */
2552 bool android_export = false;
2553 if (export_info && export_info->handleTypes &
2554 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
2555 android_export = true;
2556
2557 /* Android memory import. */
2558 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
2559 vk_find_struct_const(pAllocateInfo->pNext,
2560 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
2561
2562 if (ahw_import_info) {
2563 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
2564 if (result != VK_SUCCESS)
2565 goto fail;
2566
2567 goto success;
2568 } else if (android_export) {
2569 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
2570 if (result != VK_SUCCESS)
2571 goto fail;
2572
2573 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
2574 .buffer = mem->ahw,
2575 };
2576 result = anv_import_ahw_memory(_device, mem, &import_info);
2577 if (result != VK_SUCCESS)
2578 goto fail;
2579
2580 goto success;
2581 }
2582
2583 const VkImportMemoryFdInfoKHR *fd_info =
2584 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
2585
2586 /* The Vulkan spec permits handleType to be 0, in which case the struct is
2587 * ignored.
2588 */
2589 if (fd_info && fd_info->handleType) {
2590 /* At the moment, we support only the below handle types. */
2591 assert(fd_info->handleType ==
2592 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2593 fd_info->handleType ==
2594 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2595
2596 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
2597 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
2598 if (result != VK_SUCCESS)
2599 goto fail;
2600
2601 VkDeviceSize aligned_alloc_size =
2602 align_u64(pAllocateInfo->allocationSize, 4096);
2603
2604 /* For security purposes, we reject importing the bo if it's smaller
2605 * than the requested allocation size. This prevents a malicious client
2606 * from passing a buffer to a trusted client, lying about the size, and
2607 * telling the trusted client to try and texture from an image that goes
2608 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
2609 * in the trusted client. The trusted client can protect itself against
2610 * this sort of attack but only if it can trust the buffer size.
2611 */
2612 if (mem->bo->size < aligned_alloc_size) {
2613 result = vk_errorf(device->instance, device,
2614 VK_ERROR_INVALID_EXTERNAL_HANDLE,
2615 "aligned allocationSize too large for "
2616 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
2617 "%"PRIu64"B > %"PRIu64"B",
2618 aligned_alloc_size, mem->bo->size);
2619 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2620 goto fail;
2621 }
2622
2623 /* From the Vulkan spec:
2624 *
2625 * "Importing memory from a file descriptor transfers ownership of
2626 * the file descriptor from the application to the Vulkan
2627 * implementation. The application must not perform any operations on
2628 * the file descriptor after a successful import."
2629 *
2630 * If the import fails, we leave the file descriptor open.
2631 */
2632 close(fd_info->fd);
2633 goto success;
2634 }
2635
2636 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
2637 vk_find_struct_const(pAllocateInfo->pNext,
2638 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
2639 if (host_ptr_info && host_ptr_info->handleType) {
2640 if (host_ptr_info->handleType ==
2641 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
2642 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2643 goto fail;
2644 }
2645
2646 assert(host_ptr_info->handleType ==
2647 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
2648
2649 result = anv_bo_cache_import_host_ptr(
2650 device, &device->bo_cache, host_ptr_info->pHostPointer,
2651 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
2652
2653 if (result != VK_SUCCESS)
2654 goto fail;
2655
2656 mem->host_ptr = host_ptr_info->pHostPointer;
2657 goto success;
2658 }
2659
2660 /* Regular allocate (not importing memory). */
2661
2662 if (export_info && export_info->handleTypes)
2663 bo_flags |= ANV_BO_EXTERNAL;
2664
2665 result = anv_bo_cache_alloc(device, &device->bo_cache,
2666 pAllocateInfo->allocationSize, bo_flags,
2667 &mem->bo);
2668 if (result != VK_SUCCESS)
2669 goto fail;
2670
2671 const VkMemoryDedicatedAllocateInfo *dedicated_info =
2672 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
2673 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
2674 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
2675
2676 /* Some legacy (non-modifiers) consumers need the tiling to be set on
2677 * the BO. In this case, we have a dedicated allocation.
2678 */
2679 if (image->needs_set_tiling) {
2680 const uint32_t i915_tiling =
2681 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
2682 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
2683 image->planes[0].surface.isl.row_pitch_B,
2684 i915_tiling);
2685 if (ret) {
2686 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2687 return vk_errorf(device->instance, NULL,
2688 VK_ERROR_OUT_OF_DEVICE_MEMORY,
2689 "failed to set BO tiling: %m");
2690 }
2691 }
2692 }
2693
2694 success:
2695 pthread_mutex_lock(&device->mutex);
2696 list_addtail(&mem->link, &device->memory_objects);
2697 pthread_mutex_unlock(&device->mutex);
2698
2699 *pMem = anv_device_memory_to_handle(mem);
2700
2701 return VK_SUCCESS;
2702
2703 fail:
2704 vk_free2(&device->alloc, pAllocator, mem);
2705
2706 return result;
2707 }
2708
2709 VkResult anv_GetMemoryFdKHR(
2710 VkDevice device_h,
2711 const VkMemoryGetFdInfoKHR* pGetFdInfo,
2712 int* pFd)
2713 {
2714 ANV_FROM_HANDLE(anv_device, dev, device_h);
2715 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
2716
2717 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
2718
2719 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2720 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2721
2722 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
2723 }
2724
2725 VkResult anv_GetMemoryFdPropertiesKHR(
2726 VkDevice _device,
2727 VkExternalMemoryHandleTypeFlagBits handleType,
2728 int fd,
2729 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
2730 {
2731 ANV_FROM_HANDLE(anv_device, device, _device);
2732 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2733
2734 switch (handleType) {
2735 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
2736 /* dma-buf can be imported as any memory type */
2737 pMemoryFdProperties->memoryTypeBits =
2738 (1 << pdevice->memory.type_count) - 1;
2739 return VK_SUCCESS;
2740
2741 default:
2742 /* The valid usage section for this function says:
2743 *
2744 * "handleType must not be one of the handle types defined as
2745 * opaque."
2746 *
2747 * So opaque handle types fall into the default "unsupported" case.
2748 */
2749 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2750 }
2751 }
2752
2753 VkResult anv_GetMemoryHostPointerPropertiesEXT(
2754 VkDevice _device,
2755 VkExternalMemoryHandleTypeFlagBits handleType,
2756 const void* pHostPointer,
2757 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
2758 {
2759 ANV_FROM_HANDLE(anv_device, device, _device);
2760
2761 assert(pMemoryHostPointerProperties->sType ==
2762 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
2763
2764 switch (handleType) {
2765 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
2766 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2767
2768 /* Host memory can be imported as any memory type. */
2769 pMemoryHostPointerProperties->memoryTypeBits =
2770 (1ull << pdevice->memory.type_count) - 1;
2771
2772 return VK_SUCCESS;
2773 }
2774 default:
2775 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
2776 }
2777 }
2778
2779 void anv_FreeMemory(
2780 VkDevice _device,
2781 VkDeviceMemory _mem,
2782 const VkAllocationCallbacks* pAllocator)
2783 {
2784 ANV_FROM_HANDLE(anv_device, device, _device);
2785 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
2786
2787 if (mem == NULL)
2788 return;
2789
2790 pthread_mutex_lock(&device->mutex);
2791 list_del(&mem->link);
2792 pthread_mutex_unlock(&device->mutex);
2793
2794 if (mem->map)
2795 anv_UnmapMemory(_device, _mem);
2796
2797 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2798
2799 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
2800 if (mem->ahw)
2801 AHardwareBuffer_release(mem->ahw);
2802 #endif
2803
2804 vk_free2(&device->alloc, pAllocator, mem);
2805 }
2806
2807 VkResult anv_MapMemory(
2808 VkDevice _device,
2809 VkDeviceMemory _memory,
2810 VkDeviceSize offset,
2811 VkDeviceSize size,
2812 VkMemoryMapFlags flags,
2813 void** ppData)
2814 {
2815 ANV_FROM_HANDLE(anv_device, device, _device);
2816 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2817
2818 if (mem == NULL) {
2819 *ppData = NULL;
2820 return VK_SUCCESS;
2821 }
2822
2823 if (mem->host_ptr) {
2824 *ppData = mem->host_ptr + offset;
2825 return VK_SUCCESS;
2826 }
2827
2828 if (size == VK_WHOLE_SIZE)
2829 size = mem->bo->size - offset;
2830
2831 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
2832 *
2833 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
2834 * assert(size != 0);
2835 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
2836 * equal to the size of the memory minus offset
2837 */
2838 assert(size > 0);
2839 assert(offset + size <= mem->bo->size);
2840
2841 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
2842 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
2843 * at a time is valid. We could just mmap up front and return an offset
2844 * pointer here, but that may exhaust virtual memory on 32 bit
2845 * userspace. */
2846
2847 uint32_t gem_flags = 0;
2848
2849 if (!device->info.has_llc &&
2850 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
2851 gem_flags |= I915_MMAP_WC;
2852
2853 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
2854 uint64_t map_offset = offset & ~4095ull;
2855 assert(offset >= map_offset);
2856 uint64_t map_size = (offset + size) - map_offset;
2857
2858 /* Let's map whole pages */
2859 map_size = align_u64(map_size, 4096);
2860
2861 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
2862 map_offset, map_size, gem_flags);
2863 if (map == MAP_FAILED)
2864 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
2865
2866 mem->map = map;
2867 mem->map_size = map_size;
2868
2869 *ppData = mem->map + (offset - map_offset);
2870
2871 return VK_SUCCESS;
2872 }
2873
2874 void anv_UnmapMemory(
2875 VkDevice _device,
2876 VkDeviceMemory _memory)
2877 {
2878 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2879
2880 if (mem == NULL || mem->host_ptr)
2881 return;
2882
2883 anv_gem_munmap(mem->map, mem->map_size);
2884
2885 mem->map = NULL;
2886 mem->map_size = 0;
2887 }
2888
2889 static void
2890 clflush_mapped_ranges(struct anv_device *device,
2891 uint32_t count,
2892 const VkMappedMemoryRange *ranges)
2893 {
2894 for (uint32_t i = 0; i < count; i++) {
2895 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
2896 if (ranges[i].offset >= mem->map_size)
2897 continue;
2898
2899 gen_clflush_range(mem->map + ranges[i].offset,
2900 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
2901 }
2902 }
2903
2904 VkResult anv_FlushMappedMemoryRanges(
2905 VkDevice _device,
2906 uint32_t memoryRangeCount,
2907 const VkMappedMemoryRange* pMemoryRanges)
2908 {
2909 ANV_FROM_HANDLE(anv_device, device, _device);
2910
2911 if (device->info.has_llc)
2912 return VK_SUCCESS;
2913
2914 /* Make sure the writes we're flushing have landed. */
2915 __builtin_ia32_mfence();
2916
2917 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2918
2919 return VK_SUCCESS;
2920 }
2921
2922 VkResult anv_InvalidateMappedMemoryRanges(
2923 VkDevice _device,
2924 uint32_t memoryRangeCount,
2925 const VkMappedMemoryRange* pMemoryRanges)
2926 {
2927 ANV_FROM_HANDLE(anv_device, device, _device);
2928
2929 if (device->info.has_llc)
2930 return VK_SUCCESS;
2931
2932 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2933
2934 /* Make sure no reads get moved up above the invalidate. */
2935 __builtin_ia32_mfence();
2936
2937 return VK_SUCCESS;
2938 }
2939
2940 void anv_GetBufferMemoryRequirements(
2941 VkDevice _device,
2942 VkBuffer _buffer,
2943 VkMemoryRequirements* pMemoryRequirements)
2944 {
2945 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2946 ANV_FROM_HANDLE(anv_device, device, _device);
2947 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2948
2949 /* The Vulkan spec (git aaed022) says:
2950 *
2951 * memoryTypeBits is a bitfield and contains one bit set for every
2952 * supported memory type for the resource. The bit `1<<i` is set if and
2953 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2954 * structure for the physical device is supported.
2955 */
2956 uint32_t memory_types = 0;
2957 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
2958 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
2959 if ((valid_usage & buffer->usage) == buffer->usage)
2960 memory_types |= (1u << i);
2961 }
2962
2963 /* Base alignment requirement of a cache line */
2964 uint32_t alignment = 16;
2965
2966 /* We need an alignment of 32 for pushing UBOs */
2967 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
2968 alignment = MAX2(alignment, 32);
2969
2970 pMemoryRequirements->size = buffer->size;
2971 pMemoryRequirements->alignment = alignment;
2972
2973 /* Storage and Uniform buffers should have their size aligned to
2974 * 32-bits to avoid boundary checks when last DWord is not complete.
2975 * This would ensure that not internal padding would be needed for
2976 * 16-bit types.
2977 */
2978 if (device->robust_buffer_access &&
2979 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
2980 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
2981 pMemoryRequirements->size = align_u64(buffer->size, 4);
2982
2983 pMemoryRequirements->memoryTypeBits = memory_types;
2984 }
2985
2986 void anv_GetBufferMemoryRequirements2(
2987 VkDevice _device,
2988 const VkBufferMemoryRequirementsInfo2* pInfo,
2989 VkMemoryRequirements2* pMemoryRequirements)
2990 {
2991 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
2992 &pMemoryRequirements->memoryRequirements);
2993
2994 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2995 switch (ext->sType) {
2996 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
2997 VkMemoryDedicatedRequirements *requirements = (void *)ext;
2998 requirements->prefersDedicatedAllocation = false;
2999 requirements->requiresDedicatedAllocation = false;
3000 break;
3001 }
3002
3003 default:
3004 anv_debug_ignored_stype(ext->sType);
3005 break;
3006 }
3007 }
3008 }
3009
3010 void anv_GetImageMemoryRequirements(
3011 VkDevice _device,
3012 VkImage _image,
3013 VkMemoryRequirements* pMemoryRequirements)
3014 {
3015 ANV_FROM_HANDLE(anv_image, image, _image);
3016 ANV_FROM_HANDLE(anv_device, device, _device);
3017 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3018
3019 /* The Vulkan spec (git aaed022) says:
3020 *
3021 * memoryTypeBits is a bitfield and contains one bit set for every
3022 * supported memory type for the resource. The bit `1<<i` is set if and
3023 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3024 * structure for the physical device is supported.
3025 *
3026 * All types are currently supported for images.
3027 */
3028 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3029
3030 /* We must have image allocated or imported at this point. According to the
3031 * specification, external images must have been bound to memory before
3032 * calling GetImageMemoryRequirements.
3033 */
3034 assert(image->size > 0);
3035
3036 pMemoryRequirements->size = image->size;
3037 pMemoryRequirements->alignment = image->alignment;
3038 pMemoryRequirements->memoryTypeBits = memory_types;
3039 }
3040
3041 void anv_GetImageMemoryRequirements2(
3042 VkDevice _device,
3043 const VkImageMemoryRequirementsInfo2* pInfo,
3044 VkMemoryRequirements2* pMemoryRequirements)
3045 {
3046 ANV_FROM_HANDLE(anv_device, device, _device);
3047 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3048
3049 anv_GetImageMemoryRequirements(_device, pInfo->image,
3050 &pMemoryRequirements->memoryRequirements);
3051
3052 vk_foreach_struct_const(ext, pInfo->pNext) {
3053 switch (ext->sType) {
3054 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3055 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3056 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3057 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3058 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3059 plane_reqs->planeAspect);
3060
3061 assert(image->planes[plane].offset == 0);
3062
3063 /* The Vulkan spec (git aaed022) says:
3064 *
3065 * memoryTypeBits is a bitfield and contains one bit set for every
3066 * supported memory type for the resource. The bit `1<<i` is set
3067 * if and only if the memory type `i` in the
3068 * VkPhysicalDeviceMemoryProperties structure for the physical
3069 * device is supported.
3070 *
3071 * All types are currently supported for images.
3072 */
3073 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3074 (1ull << pdevice->memory.type_count) - 1;
3075
3076 /* We must have image allocated or imported at this point. According to the
3077 * specification, external images must have been bound to memory before
3078 * calling GetImageMemoryRequirements.
3079 */
3080 assert(image->planes[plane].size > 0);
3081
3082 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3083 pMemoryRequirements->memoryRequirements.alignment =
3084 image->planes[plane].alignment;
3085 break;
3086 }
3087
3088 default:
3089 anv_debug_ignored_stype(ext->sType);
3090 break;
3091 }
3092 }
3093
3094 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3095 switch (ext->sType) {
3096 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3097 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3098 if (image->needs_set_tiling || image->external_format) {
3099 /* If we need to set the tiling for external consumers, we need a
3100 * dedicated allocation.
3101 *
3102 * See also anv_AllocateMemory.
3103 */
3104 requirements->prefersDedicatedAllocation = true;
3105 requirements->requiresDedicatedAllocation = true;
3106 } else {
3107 requirements->prefersDedicatedAllocation = false;
3108 requirements->requiresDedicatedAllocation = false;
3109 }
3110 break;
3111 }
3112
3113 default:
3114 anv_debug_ignored_stype(ext->sType);
3115 break;
3116 }
3117 }
3118 }
3119
3120 void anv_GetImageSparseMemoryRequirements(
3121 VkDevice device,
3122 VkImage image,
3123 uint32_t* pSparseMemoryRequirementCount,
3124 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3125 {
3126 *pSparseMemoryRequirementCount = 0;
3127 }
3128
3129 void anv_GetImageSparseMemoryRequirements2(
3130 VkDevice device,
3131 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3132 uint32_t* pSparseMemoryRequirementCount,
3133 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3134 {
3135 *pSparseMemoryRequirementCount = 0;
3136 }
3137
3138 void anv_GetDeviceMemoryCommitment(
3139 VkDevice device,
3140 VkDeviceMemory memory,
3141 VkDeviceSize* pCommittedMemoryInBytes)
3142 {
3143 *pCommittedMemoryInBytes = 0;
3144 }
3145
3146 static void
3147 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3148 {
3149 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3150 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3151
3152 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3153
3154 if (mem) {
3155 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3156 buffer->address = (struct anv_address) {
3157 .bo = mem->bo,
3158 .offset = pBindInfo->memoryOffset,
3159 };
3160 } else {
3161 buffer->address = ANV_NULL_ADDRESS;
3162 }
3163 }
3164
3165 VkResult anv_BindBufferMemory(
3166 VkDevice device,
3167 VkBuffer buffer,
3168 VkDeviceMemory memory,
3169 VkDeviceSize memoryOffset)
3170 {
3171 anv_bind_buffer_memory(
3172 &(VkBindBufferMemoryInfo) {
3173 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3174 .buffer = buffer,
3175 .memory = memory,
3176 .memoryOffset = memoryOffset,
3177 });
3178
3179 return VK_SUCCESS;
3180 }
3181
3182 VkResult anv_BindBufferMemory2(
3183 VkDevice device,
3184 uint32_t bindInfoCount,
3185 const VkBindBufferMemoryInfo* pBindInfos)
3186 {
3187 for (uint32_t i = 0; i < bindInfoCount; i++)
3188 anv_bind_buffer_memory(&pBindInfos[i]);
3189
3190 return VK_SUCCESS;
3191 }
3192
3193 VkResult anv_QueueBindSparse(
3194 VkQueue _queue,
3195 uint32_t bindInfoCount,
3196 const VkBindSparseInfo* pBindInfo,
3197 VkFence fence)
3198 {
3199 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3200 if (anv_device_is_lost(queue->device))
3201 return VK_ERROR_DEVICE_LOST;
3202
3203 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3204 }
3205
3206 // Event functions
3207
3208 VkResult anv_CreateEvent(
3209 VkDevice _device,
3210 const VkEventCreateInfo* pCreateInfo,
3211 const VkAllocationCallbacks* pAllocator,
3212 VkEvent* pEvent)
3213 {
3214 ANV_FROM_HANDLE(anv_device, device, _device);
3215 struct anv_state state;
3216 struct anv_event *event;
3217
3218 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3219
3220 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3221 sizeof(*event), 8);
3222 event = state.map;
3223 event->state = state;
3224 event->semaphore = VK_EVENT_RESET;
3225
3226 if (!device->info.has_llc) {
3227 /* Make sure the writes we're flushing have landed. */
3228 __builtin_ia32_mfence();
3229 __builtin_ia32_clflush(event);
3230 }
3231
3232 *pEvent = anv_event_to_handle(event);
3233
3234 return VK_SUCCESS;
3235 }
3236
3237 void anv_DestroyEvent(
3238 VkDevice _device,
3239 VkEvent _event,
3240 const VkAllocationCallbacks* pAllocator)
3241 {
3242 ANV_FROM_HANDLE(anv_device, device, _device);
3243 ANV_FROM_HANDLE(anv_event, event, _event);
3244
3245 if (!event)
3246 return;
3247
3248 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3249 }
3250
3251 VkResult anv_GetEventStatus(
3252 VkDevice _device,
3253 VkEvent _event)
3254 {
3255 ANV_FROM_HANDLE(anv_device, device, _device);
3256 ANV_FROM_HANDLE(anv_event, event, _event);
3257
3258 if (anv_device_is_lost(device))
3259 return VK_ERROR_DEVICE_LOST;
3260
3261 if (!device->info.has_llc) {
3262 /* Invalidate read cache before reading event written by GPU. */
3263 __builtin_ia32_clflush(event);
3264 __builtin_ia32_mfence();
3265
3266 }
3267
3268 return event->semaphore;
3269 }
3270
3271 VkResult anv_SetEvent(
3272 VkDevice _device,
3273 VkEvent _event)
3274 {
3275 ANV_FROM_HANDLE(anv_device, device, _device);
3276 ANV_FROM_HANDLE(anv_event, event, _event);
3277
3278 event->semaphore = VK_EVENT_SET;
3279
3280 if (!device->info.has_llc) {
3281 /* Make sure the writes we're flushing have landed. */
3282 __builtin_ia32_mfence();
3283 __builtin_ia32_clflush(event);
3284 }
3285
3286 return VK_SUCCESS;
3287 }
3288
3289 VkResult anv_ResetEvent(
3290 VkDevice _device,
3291 VkEvent _event)
3292 {
3293 ANV_FROM_HANDLE(anv_device, device, _device);
3294 ANV_FROM_HANDLE(anv_event, event, _event);
3295
3296 event->semaphore = VK_EVENT_RESET;
3297
3298 if (!device->info.has_llc) {
3299 /* Make sure the writes we're flushing have landed. */
3300 __builtin_ia32_mfence();
3301 __builtin_ia32_clflush(event);
3302 }
3303
3304 return VK_SUCCESS;
3305 }
3306
3307 // Buffer functions
3308
3309 VkResult anv_CreateBuffer(
3310 VkDevice _device,
3311 const VkBufferCreateInfo* pCreateInfo,
3312 const VkAllocationCallbacks* pAllocator,
3313 VkBuffer* pBuffer)
3314 {
3315 ANV_FROM_HANDLE(anv_device, device, _device);
3316 struct anv_buffer *buffer;
3317
3318 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3319
3320 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3321 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3322 if (buffer == NULL)
3323 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3324
3325 buffer->size = pCreateInfo->size;
3326 buffer->usage = pCreateInfo->usage;
3327 buffer->address = ANV_NULL_ADDRESS;
3328
3329 *pBuffer = anv_buffer_to_handle(buffer);
3330
3331 return VK_SUCCESS;
3332 }
3333
3334 void anv_DestroyBuffer(
3335 VkDevice _device,
3336 VkBuffer _buffer,
3337 const VkAllocationCallbacks* pAllocator)
3338 {
3339 ANV_FROM_HANDLE(anv_device, device, _device);
3340 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3341
3342 if (!buffer)
3343 return;
3344
3345 vk_free2(&device->alloc, pAllocator, buffer);
3346 }
3347
3348 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3349 VkDevice device,
3350 const VkBufferDeviceAddressInfoEXT* pInfo)
3351 {
3352 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3353
3354 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3355
3356 return anv_address_physical(buffer->address);
3357 }
3358
3359 void
3360 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3361 enum isl_format format,
3362 struct anv_address address,
3363 uint32_t range, uint32_t stride)
3364 {
3365 isl_buffer_fill_state(&device->isl_dev, state.map,
3366 .address = anv_address_physical(address),
3367 .mocs = device->default_mocs,
3368 .size_B = range,
3369 .format = format,
3370 .swizzle = ISL_SWIZZLE_IDENTITY,
3371 .stride_B = stride);
3372 }
3373
3374 void anv_DestroySampler(
3375 VkDevice _device,
3376 VkSampler _sampler,
3377 const VkAllocationCallbacks* pAllocator)
3378 {
3379 ANV_FROM_HANDLE(anv_device, device, _device);
3380 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3381
3382 if (!sampler)
3383 return;
3384
3385 vk_free2(&device->alloc, pAllocator, sampler);
3386 }
3387
3388 VkResult anv_CreateFramebuffer(
3389 VkDevice _device,
3390 const VkFramebufferCreateInfo* pCreateInfo,
3391 const VkAllocationCallbacks* pAllocator,
3392 VkFramebuffer* pFramebuffer)
3393 {
3394 ANV_FROM_HANDLE(anv_device, device, _device);
3395 struct anv_framebuffer *framebuffer;
3396
3397 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3398
3399 size_t size = sizeof(*framebuffer) +
3400 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3401 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3402 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3403 if (framebuffer == NULL)
3404 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3405
3406 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3407 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3408 VkImageView _iview = pCreateInfo->pAttachments[i];
3409 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
3410 }
3411
3412 framebuffer->width = pCreateInfo->width;
3413 framebuffer->height = pCreateInfo->height;
3414 framebuffer->layers = pCreateInfo->layers;
3415
3416 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3417
3418 return VK_SUCCESS;
3419 }
3420
3421 void anv_DestroyFramebuffer(
3422 VkDevice _device,
3423 VkFramebuffer _fb,
3424 const VkAllocationCallbacks* pAllocator)
3425 {
3426 ANV_FROM_HANDLE(anv_device, device, _device);
3427 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3428
3429 if (!fb)
3430 return;
3431
3432 vk_free2(&device->alloc, pAllocator, fb);
3433 }
3434
3435 static const VkTimeDomainEXT anv_time_domains[] = {
3436 VK_TIME_DOMAIN_DEVICE_EXT,
3437 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3438 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3439 };
3440
3441 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3442 VkPhysicalDevice physicalDevice,
3443 uint32_t *pTimeDomainCount,
3444 VkTimeDomainEXT *pTimeDomains)
3445 {
3446 int d;
3447 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
3448
3449 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
3450 vk_outarray_append(&out, i) {
3451 *i = anv_time_domains[d];
3452 }
3453 }
3454
3455 return vk_outarray_status(&out);
3456 }
3457
3458 static uint64_t
3459 anv_clock_gettime(clockid_t clock_id)
3460 {
3461 struct timespec current;
3462 int ret;
3463
3464 ret = clock_gettime(clock_id, &current);
3465 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
3466 ret = clock_gettime(CLOCK_MONOTONIC, &current);
3467 if (ret < 0)
3468 return 0;
3469
3470 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
3471 }
3472
3473 #define TIMESTAMP 0x2358
3474
3475 VkResult anv_GetCalibratedTimestampsEXT(
3476 VkDevice _device,
3477 uint32_t timestampCount,
3478 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
3479 uint64_t *pTimestamps,
3480 uint64_t *pMaxDeviation)
3481 {
3482 ANV_FROM_HANDLE(anv_device, device, _device);
3483 uint64_t timestamp_frequency = device->info.timestamp_frequency;
3484 int ret;
3485 int d;
3486 uint64_t begin, end;
3487 uint64_t max_clock_period = 0;
3488
3489 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3490
3491 for (d = 0; d < timestampCount; d++) {
3492 switch (pTimestampInfos[d].timeDomain) {
3493 case VK_TIME_DOMAIN_DEVICE_EXT:
3494 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
3495 &pTimestamps[d]);
3496
3497 if (ret != 0) {
3498 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
3499 "register: %m");
3500 }
3501 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
3502 max_clock_period = MAX2(max_clock_period, device_period);
3503 break;
3504 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
3505 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
3506 max_clock_period = MAX2(max_clock_period, 1);
3507 break;
3508
3509 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
3510 pTimestamps[d] = begin;
3511 break;
3512 default:
3513 pTimestamps[d] = 0;
3514 break;
3515 }
3516 }
3517
3518 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3519
3520 /*
3521 * The maximum deviation is the sum of the interval over which we
3522 * perform the sampling and the maximum period of any sampled
3523 * clock. That's because the maximum skew between any two sampled
3524 * clock edges is when the sampled clock with the largest period is
3525 * sampled at the end of that period but right at the beginning of the
3526 * sampling interval and some other clock is sampled right at the
3527 * begining of its sampling period and right at the end of the
3528 * sampling interval. Let's assume the GPU has the longest clock
3529 * period and that the application is sampling GPU and monotonic:
3530 *
3531 * s e
3532 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
3533 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3534 *
3535 * g
3536 * 0 1 2 3
3537 * GPU -----_____-----_____-----_____-----_____
3538 *
3539 * m
3540 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
3541 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3542 *
3543 * Interval <----------------->
3544 * Deviation <-------------------------->
3545 *
3546 * s = read(raw) 2
3547 * g = read(GPU) 1
3548 * m = read(monotonic) 2
3549 * e = read(raw) b
3550 *
3551 * We round the sample interval up by one tick to cover sampling error
3552 * in the interval clock
3553 */
3554
3555 uint64_t sample_interval = end - begin + 1;
3556
3557 *pMaxDeviation = sample_interval + max_clock_period;
3558
3559 return VK_SUCCESS;
3560 }
3561
3562 /* vk_icd.h does not declare this function, so we declare it here to
3563 * suppress Wmissing-prototypes.
3564 */
3565 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3566 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
3567
3568 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3569 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
3570 {
3571 /* For the full details on loader interface versioning, see
3572 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
3573 * What follows is a condensed summary, to help you navigate the large and
3574 * confusing official doc.
3575 *
3576 * - Loader interface v0 is incompatible with later versions. We don't
3577 * support it.
3578 *
3579 * - In loader interface v1:
3580 * - The first ICD entrypoint called by the loader is
3581 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
3582 * entrypoint.
3583 * - The ICD must statically expose no other Vulkan symbol unless it is
3584 * linked with -Bsymbolic.
3585 * - Each dispatchable Vulkan handle created by the ICD must be
3586 * a pointer to a struct whose first member is VK_LOADER_DATA. The
3587 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
3588 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
3589 * vkDestroySurfaceKHR(). The ICD must be capable of working with
3590 * such loader-managed surfaces.
3591 *
3592 * - Loader interface v2 differs from v1 in:
3593 * - The first ICD entrypoint called by the loader is
3594 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
3595 * statically expose this entrypoint.
3596 *
3597 * - Loader interface v3 differs from v2 in:
3598 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
3599 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
3600 * because the loader no longer does so.
3601 */
3602 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
3603 return VK_SUCCESS;
3604 }