anv: fix alignments for uniform buffers
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/debug.h"
36 #include "util/build_id.h"
37 #include "util/disk_cache.h"
38 #include "util/mesa-sha1.h"
39 #include "util/os_file.h"
40 #include "util/u_atomic.h"
41 #include "util/u_string.h"
42 #include "util/xmlpool.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_aux_map.h"
46 #include "common/gen_defines.h"
47 #include "compiler/glsl_types.h"
48
49 #include "genxml/gen7_pack.h"
50
51 static const char anv_dri_options_xml[] =
52 DRI_CONF_BEGIN
53 DRI_CONF_SECTION_PERFORMANCE
54 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
55 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
56 DRI_CONF_SECTION_END
57
58 DRI_CONF_SECTION_DEBUG
59 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
60 DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST("false")
61 DRI_CONF_SECTION_END
62 DRI_CONF_END;
63
64 /* This is probably far to big but it reflects the max size used for messages
65 * in OpenGLs KHR_debug.
66 */
67 #define MAX_DEBUG_MESSAGE_LENGTH 4096
68
69 static void
70 compiler_debug_log(void *data, const char *fmt, ...)
71 {
72 char str[MAX_DEBUG_MESSAGE_LENGTH];
73 struct anv_device *device = (struct anv_device *)data;
74 struct anv_instance *instance = device->physical->instance;
75
76 if (list_is_empty(&instance->debug_report_callbacks.callbacks))
77 return;
78
79 va_list args;
80 va_start(args, fmt);
81 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
82 va_end(args);
83
84 vk_debug_report(&instance->debug_report_callbacks,
85 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
86 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
87 0, 0, 0, "anv", str);
88 }
89
90 static void
91 compiler_perf_log(void *data, const char *fmt, ...)
92 {
93 va_list args;
94 va_start(args, fmt);
95
96 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
97 intel_logd_v(fmt, args);
98
99 va_end(args);
100 }
101
102 static uint64_t
103 anv_compute_heap_size(int fd, uint64_t gtt_size)
104 {
105 /* Query the total ram from the system */
106 struct sysinfo info;
107 sysinfo(&info);
108
109 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
110
111 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
112 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
113 */
114 uint64_t available_ram;
115 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
116 available_ram = total_ram / 2;
117 else
118 available_ram = total_ram * 3 / 4;
119
120 /* We also want to leave some padding for things we allocate in the driver,
121 * so don't go over 3/4 of the GTT either.
122 */
123 uint64_t available_gtt = gtt_size * 3 / 4;
124
125 return MIN2(available_ram, available_gtt);
126 }
127
128 static VkResult
129 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
130 {
131 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
132 &device->gtt_size) == -1) {
133 /* If, for whatever reason, we can't actually get the GTT size from the
134 * kernel (too old?) fall back to the aperture size.
135 */
136 anv_perf_warn(NULL, NULL,
137 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
138
139 if (anv_gem_get_aperture(fd, &device->gtt_size) == -1) {
140 return vk_errorfi(device->instance, NULL,
141 VK_ERROR_INITIALIZATION_FAILED,
142 "failed to get aperture size: %m");
143 }
144 }
145
146 /* We only allow 48-bit addresses with softpin because knowing the actual
147 * address is required for the vertex cache flush workaround.
148 */
149 device->supports_48bit_addresses = (device->info.gen >= 8) &&
150 device->has_softpin &&
151 device->gtt_size > (4ULL << 30 /* GiB */);
152
153 uint64_t heap_size = anv_compute_heap_size(fd, device->gtt_size);
154
155 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
156 /* When running with an overridden PCI ID, we may get a GTT size from
157 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
158 * address support can still fail. Just clamp the address space size to
159 * 2 GiB if we don't have 48-bit support.
160 */
161 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
162 "not support for 48-bit addresses",
163 __FILE__, __LINE__);
164 heap_size = 2ull << 30;
165 }
166
167 device->memory.heap_count = 1;
168 device->memory.heaps[0] = (struct anv_memory_heap) {
169 .size = heap_size,
170 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
171 };
172
173 uint32_t type_count = 0;
174 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
175 if (device->info.has_llc) {
176 /* Big core GPUs share LLC with the CPU and thus one memory type can be
177 * both cached and coherent at the same time.
178 */
179 device->memory.types[type_count++] = (struct anv_memory_type) {
180 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
181 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
182 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
183 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
184 .heapIndex = heap,
185 };
186 } else {
187 /* The spec requires that we expose a host-visible, coherent memory
188 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
189 * to give the application a choice between cached, but not coherent and
190 * coherent but uncached (WC though).
191 */
192 device->memory.types[type_count++] = (struct anv_memory_type) {
193 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
194 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
195 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
196 .heapIndex = heap,
197 };
198 device->memory.types[type_count++] = (struct anv_memory_type) {
199 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
200 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
201 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
202 .heapIndex = heap,
203 };
204 }
205 }
206 device->memory.type_count = type_count;
207
208 return VK_SUCCESS;
209 }
210
211 static VkResult
212 anv_physical_device_init_uuids(struct anv_physical_device *device)
213 {
214 const struct build_id_note *note =
215 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
216 if (!note) {
217 return vk_errorfi(device->instance, NULL,
218 VK_ERROR_INITIALIZATION_FAILED,
219 "Failed to find build-id");
220 }
221
222 unsigned build_id_len = build_id_length(note);
223 if (build_id_len < 20) {
224 return vk_errorfi(device->instance, NULL,
225 VK_ERROR_INITIALIZATION_FAILED,
226 "build-id too short. It needs to be a SHA");
227 }
228
229 memcpy(device->driver_build_sha1, build_id_data(note), 20);
230
231 struct mesa_sha1 sha1_ctx;
232 uint8_t sha1[20];
233 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
234
235 /* The pipeline cache UUID is used for determining when a pipeline cache is
236 * invalid. It needs both a driver build and the PCI ID of the device.
237 */
238 _mesa_sha1_init(&sha1_ctx);
239 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
240 _mesa_sha1_update(&sha1_ctx, &device->info.chipset_id,
241 sizeof(device->info.chipset_id));
242 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
243 sizeof(device->always_use_bindless));
244 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
245 sizeof(device->has_a64_buffer_access));
246 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
247 sizeof(device->has_bindless_images));
248 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
249 sizeof(device->has_bindless_samplers));
250 _mesa_sha1_final(&sha1_ctx, sha1);
251 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
252
253 /* The driver UUID is used for determining sharability of images and memory
254 * between two Vulkan instances in separate processes. People who want to
255 * share memory need to also check the device UUID (below) so all this
256 * needs to be is the build-id.
257 */
258 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
259
260 /* The device UUID uniquely identifies the given device within the machine.
261 * Since we never have more than one device, this doesn't need to be a real
262 * UUID. However, on the off-chance that someone tries to use this to
263 * cache pre-tiled images or something of the like, we use the PCI ID and
264 * some bits of ISL info to ensure that this is safe.
265 */
266 _mesa_sha1_init(&sha1_ctx);
267 _mesa_sha1_update(&sha1_ctx, &device->info.chipset_id,
268 sizeof(device->info.chipset_id));
269 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
270 sizeof(device->isl_dev.has_bit6_swizzling));
271 _mesa_sha1_final(&sha1_ctx, sha1);
272 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
273
274 return VK_SUCCESS;
275 }
276
277 static void
278 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
279 {
280 #ifdef ENABLE_SHADER_CACHE
281 char renderer[10];
282 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
283 device->info.chipset_id);
284 assert(len == sizeof(renderer) - 2);
285
286 char timestamp[41];
287 _mesa_sha1_format(timestamp, device->driver_build_sha1);
288
289 const uint64_t driver_flags =
290 brw_get_compiler_config_value(device->compiler);
291 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
292 #else
293 device->disk_cache = NULL;
294 #endif
295 }
296
297 static void
298 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
299 {
300 #ifdef ENABLE_SHADER_CACHE
301 if (device->disk_cache)
302 disk_cache_destroy(device->disk_cache);
303 #else
304 assert(device->disk_cache == NULL);
305 #endif
306 }
307
308 static uint64_t
309 get_available_system_memory()
310 {
311 char *meminfo = os_read_file("/proc/meminfo", NULL);
312 if (!meminfo)
313 return 0;
314
315 char *str = strstr(meminfo, "MemAvailable:");
316 if (!str) {
317 free(meminfo);
318 return 0;
319 }
320
321 uint64_t kb_mem_available;
322 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
323 free(meminfo);
324 return kb_mem_available << 10;
325 }
326
327 free(meminfo);
328 return 0;
329 }
330
331 static VkResult
332 anv_physical_device_try_create(struct anv_instance *instance,
333 drmDevicePtr drm_device,
334 struct anv_physical_device **device_out)
335 {
336 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
337 const char *path = drm_device->nodes[DRM_NODE_RENDER];
338 VkResult result;
339 int fd;
340 int master_fd = -1;
341
342 brw_process_intel_debug_variable();
343
344 fd = open(path, O_RDWR | O_CLOEXEC);
345 if (fd < 0)
346 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
347
348 struct gen_device_info devinfo;
349 if (!gen_get_device_info_from_fd(fd, &devinfo)) {
350 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
351 goto fail_fd;
352 }
353
354 const char *device_name = gen_get_device_name(devinfo.chipset_id);
355
356 if (devinfo.is_haswell) {
357 intel_logw("Haswell Vulkan support is incomplete");
358 } else if (devinfo.gen == 7 && !devinfo.is_baytrail) {
359 intel_logw("Ivy Bridge Vulkan support is incomplete");
360 } else if (devinfo.gen == 7 && devinfo.is_baytrail) {
361 intel_logw("Bay Trail Vulkan support is incomplete");
362 } else if (devinfo.gen >= 8 && devinfo.gen <= 11) {
363 /* Gen8-11 fully supported */
364 } else if (devinfo.gen == 12) {
365 intel_logw("Vulkan is not yet fully supported on gen12");
366 } else {
367 result = vk_errorfi(instance, NULL, VK_ERROR_INCOMPATIBLE_DRIVER,
368 "Vulkan not yet supported on %s", device_name);
369 goto fail_fd;
370 }
371
372 struct anv_physical_device *device =
373 vk_alloc(&instance->alloc, sizeof(*device), 8,
374 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
375 if (device == NULL) {
376 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
377 goto fail_fd;
378 }
379
380 vk_object_base_init(NULL, &device->base, VK_OBJECT_TYPE_PHYSICAL_DEVICE);
381 device->instance = instance;
382
383 assert(strlen(path) < ARRAY_SIZE(device->path));
384 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
385
386 device->info = devinfo;
387 device->name = device_name;
388
389 device->no_hw = device->info.no_hw;
390 if (getenv("INTEL_NO_HW") != NULL)
391 device->no_hw = true;
392
393 device->pci_info.domain = drm_device->businfo.pci->domain;
394 device->pci_info.bus = drm_device->businfo.pci->bus;
395 device->pci_info.device = drm_device->businfo.pci->dev;
396 device->pci_info.function = drm_device->businfo.pci->func;
397
398 device->cmd_parser_version = -1;
399 if (device->info.gen == 7) {
400 device->cmd_parser_version =
401 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
402 if (device->cmd_parser_version == -1) {
403 result = vk_errorfi(device->instance, NULL,
404 VK_ERROR_INITIALIZATION_FAILED,
405 "failed to get command parser version");
406 goto fail_alloc;
407 }
408 }
409
410 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
411 result = vk_errorfi(device->instance, NULL,
412 VK_ERROR_INITIALIZATION_FAILED,
413 "kernel missing gem wait");
414 goto fail_alloc;
415 }
416
417 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
418 result = vk_errorfi(device->instance, NULL,
419 VK_ERROR_INITIALIZATION_FAILED,
420 "kernel missing execbuf2");
421 goto fail_alloc;
422 }
423
424 if (!device->info.has_llc &&
425 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
426 result = vk_errorfi(device->instance, NULL,
427 VK_ERROR_INITIALIZATION_FAILED,
428 "kernel missing wc mmap");
429 goto fail_alloc;
430 }
431
432 device->has_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN);
433 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
434 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
435 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
436 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
437 device->has_syncobj_wait = device->has_syncobj &&
438 anv_gem_supports_syncobj_wait(fd);
439 device->has_context_priority = anv_gem_has_context_priority(fd);
440
441 result = anv_physical_device_init_heaps(device, fd);
442 if (result != VK_SUCCESS)
443 goto fail_alloc;
444
445 device->use_softpin = device->has_softpin &&
446 device->supports_48bit_addresses;
447
448 device->has_context_isolation =
449 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
450
451 device->always_use_bindless =
452 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
453
454 /* We first got the A64 messages on broadwell and we can only use them if
455 * we can pass addresses directly into the shader which requires softpin.
456 */
457 device->has_a64_buffer_access = device->info.gen >= 8 &&
458 device->use_softpin;
459
460 /* We first get bindless image access on Skylake and we can only really do
461 * it if we don't have any relocations so we need softpin.
462 */
463 device->has_bindless_images = device->info.gen >= 9 &&
464 device->use_softpin;
465
466 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
467 * because it's just a matter of setting the sampler address in the sample
468 * message header. However, we've not bothered to wire it up for vec4 so
469 * we leave it disabled on gen7.
470 */
471 device->has_bindless_samplers = device->info.gen >= 8;
472
473 device->has_implicit_ccs = device->info.has_aux_map;
474
475 device->has_mem_available = get_available_system_memory() != 0;
476
477 device->always_flush_cache =
478 driQueryOptionb(&instance->dri_options, "always_flush_cache");
479
480 device->has_mmap_offset =
481 anv_gem_get_param(fd, I915_PARAM_MMAP_GTT_VERSION) >= 4;
482
483 /* GENs prior to 8 do not support EU/Subslice info */
484 if (device->info.gen >= 8) {
485 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
486 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
487
488 /* Without this information, we cannot get the right Braswell
489 * brandstrings, and we have to use conservative numbers for GPGPU on
490 * many platforms, but otherwise, things will just work.
491 */
492 if (device->subslice_total < 1 || device->eu_total < 1) {
493 intel_logw("Kernel 4.1 required to properly query GPU properties");
494 }
495 } else if (device->info.gen == 7) {
496 device->subslice_total = 1 << (device->info.gt - 1);
497 }
498
499 if (device->info.is_cherryview &&
500 device->subslice_total > 0 && device->eu_total > 0) {
501 /* Logical CS threads = EUs per subslice * num threads per EU */
502 uint32_t max_cs_threads =
503 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
504
505 /* Fuse configurations may give more threads than expected, never less. */
506 if (max_cs_threads > device->info.max_cs_threads)
507 device->info.max_cs_threads = max_cs_threads;
508 }
509
510 device->compiler = brw_compiler_create(NULL, &device->info);
511 if (device->compiler == NULL) {
512 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
513 goto fail_alloc;
514 }
515 device->compiler->shader_debug_log = compiler_debug_log;
516 device->compiler->shader_perf_log = compiler_perf_log;
517 device->compiler->supports_pull_constants = false;
518 device->compiler->constant_buffer_0_is_relative =
519 device->info.gen < 8 || !device->has_context_isolation;
520 device->compiler->supports_shader_constants = true;
521 device->compiler->compact_params = false;
522
523 /* Broadwell PRM says:
524 *
525 * "Before Gen8, there was a historical configuration control field to
526 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
527 * different places: TILECTL[1:0], ARB_MODE[5:4], and
528 * DISP_ARB_CTL[14:13].
529 *
530 * For Gen8 and subsequent generations, the swizzle fields are all
531 * reserved, and the CPU's memory controller performs all address
532 * swizzling modifications."
533 */
534 bool swizzled =
535 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
536
537 isl_device_init(&device->isl_dev, &device->info, swizzled);
538
539 result = anv_physical_device_init_uuids(device);
540 if (result != VK_SUCCESS)
541 goto fail_compiler;
542
543 anv_physical_device_init_disk_cache(device);
544
545 if (instance->enabled_extensions.KHR_display) {
546 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
547 if (master_fd >= 0) {
548 /* prod the device with a GETPARAM call which will fail if
549 * we don't have permission to even render on this device
550 */
551 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
552 close(master_fd);
553 master_fd = -1;
554 }
555 }
556 }
557 device->master_fd = master_fd;
558
559 result = anv_init_wsi(device);
560 if (result != VK_SUCCESS)
561 goto fail_disk_cache;
562
563 device->perf = anv_get_perf(&device->info, fd);
564
565 anv_physical_device_get_supported_extensions(device,
566 &device->supported_extensions);
567
568
569 device->local_fd = fd;
570
571 *device_out = device;
572
573 return VK_SUCCESS;
574
575 fail_disk_cache:
576 anv_physical_device_free_disk_cache(device);
577 fail_compiler:
578 ralloc_free(device->compiler);
579 fail_alloc:
580 vk_free(&instance->alloc, device);
581 fail_fd:
582 close(fd);
583 if (master_fd != -1)
584 close(master_fd);
585 return result;
586 }
587
588 static void
589 anv_physical_device_destroy(struct anv_physical_device *device)
590 {
591 anv_finish_wsi(device);
592 anv_physical_device_free_disk_cache(device);
593 ralloc_free(device->compiler);
594 ralloc_free(device->perf);
595 close(device->local_fd);
596 if (device->master_fd >= 0)
597 close(device->master_fd);
598 vk_object_base_finish(&device->base);
599 vk_free(&device->instance->alloc, device);
600 }
601
602 static void *
603 default_alloc_func(void *pUserData, size_t size, size_t align,
604 VkSystemAllocationScope allocationScope)
605 {
606 return malloc(size);
607 }
608
609 static void *
610 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
611 size_t align, VkSystemAllocationScope allocationScope)
612 {
613 return realloc(pOriginal, size);
614 }
615
616 static void
617 default_free_func(void *pUserData, void *pMemory)
618 {
619 free(pMemory);
620 }
621
622 static const VkAllocationCallbacks default_alloc = {
623 .pUserData = NULL,
624 .pfnAllocation = default_alloc_func,
625 .pfnReallocation = default_realloc_func,
626 .pfnFree = default_free_func,
627 };
628
629 VkResult anv_EnumerateInstanceExtensionProperties(
630 const char* pLayerName,
631 uint32_t* pPropertyCount,
632 VkExtensionProperties* pProperties)
633 {
634 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
635
636 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
637 if (anv_instance_extensions_supported.extensions[i]) {
638 vk_outarray_append(&out, prop) {
639 *prop = anv_instance_extensions[i];
640 }
641 }
642 }
643
644 return vk_outarray_status(&out);
645 }
646
647 VkResult anv_CreateInstance(
648 const VkInstanceCreateInfo* pCreateInfo,
649 const VkAllocationCallbacks* pAllocator,
650 VkInstance* pInstance)
651 {
652 struct anv_instance *instance;
653 VkResult result;
654
655 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
656
657 struct anv_instance_extension_table enabled_extensions = {};
658 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
659 int idx;
660 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
661 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
662 anv_instance_extensions[idx].extensionName) == 0)
663 break;
664 }
665
666 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
667 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
668
669 if (!anv_instance_extensions_supported.extensions[idx])
670 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
671
672 enabled_extensions.extensions[idx] = true;
673 }
674
675 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
676 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
677 if (!instance)
678 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
679
680 vk_object_base_init(NULL, &instance->base, VK_OBJECT_TYPE_INSTANCE);
681
682 if (pAllocator)
683 instance->alloc = *pAllocator;
684 else
685 instance->alloc = default_alloc;
686
687 instance->app_info = (struct anv_app_info) { .api_version = 0 };
688 if (pCreateInfo->pApplicationInfo) {
689 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
690
691 instance->app_info.app_name =
692 vk_strdup(&instance->alloc, app->pApplicationName,
693 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
694 instance->app_info.app_version = app->applicationVersion;
695
696 instance->app_info.engine_name =
697 vk_strdup(&instance->alloc, app->pEngineName,
698 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
699 instance->app_info.engine_version = app->engineVersion;
700
701 instance->app_info.api_version = app->apiVersion;
702 }
703
704 if (instance->app_info.api_version == 0)
705 instance->app_info.api_version = VK_API_VERSION_1_0;
706
707 instance->enabled_extensions = enabled_extensions;
708
709 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
710 /* Vulkan requires that entrypoints for extensions which have not been
711 * enabled must not be advertised.
712 */
713 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
714 &instance->enabled_extensions)) {
715 instance->dispatch.entrypoints[i] = NULL;
716 } else {
717 instance->dispatch.entrypoints[i] =
718 anv_instance_dispatch_table.entrypoints[i];
719 }
720 }
721
722 for (unsigned i = 0; i < ARRAY_SIZE(instance->physical_device_dispatch.entrypoints); i++) {
723 /* Vulkan requires that entrypoints for extensions which have not been
724 * enabled must not be advertised.
725 */
726 if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
727 &instance->enabled_extensions)) {
728 instance->physical_device_dispatch.entrypoints[i] = NULL;
729 } else {
730 instance->physical_device_dispatch.entrypoints[i] =
731 anv_physical_device_dispatch_table.entrypoints[i];
732 }
733 }
734
735 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
736 /* Vulkan requires that entrypoints for extensions which have not been
737 * enabled must not be advertised.
738 */
739 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
740 &instance->enabled_extensions, NULL)) {
741 instance->device_dispatch.entrypoints[i] = NULL;
742 } else {
743 instance->device_dispatch.entrypoints[i] =
744 anv_device_dispatch_table.entrypoints[i];
745 }
746 }
747
748 instance->physical_devices_enumerated = false;
749 list_inithead(&instance->physical_devices);
750
751 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
752 if (result != VK_SUCCESS) {
753 vk_free2(&default_alloc, pAllocator, instance);
754 return vk_error(result);
755 }
756
757 instance->pipeline_cache_enabled =
758 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
759
760 glsl_type_singleton_init_or_ref();
761
762 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
763
764 driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
765 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
766 0, "anv", NULL,
767 instance->app_info.engine_name,
768 instance->app_info.engine_version);
769
770 *pInstance = anv_instance_to_handle(instance);
771
772 return VK_SUCCESS;
773 }
774
775 void anv_DestroyInstance(
776 VkInstance _instance,
777 const VkAllocationCallbacks* pAllocator)
778 {
779 ANV_FROM_HANDLE(anv_instance, instance, _instance);
780
781 if (!instance)
782 return;
783
784 list_for_each_entry_safe(struct anv_physical_device, pdevice,
785 &instance->physical_devices, link)
786 anv_physical_device_destroy(pdevice);
787
788 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
789 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
790
791 VG(VALGRIND_DESTROY_MEMPOOL(instance));
792
793 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
794
795 glsl_type_singleton_decref();
796
797 driDestroyOptionCache(&instance->dri_options);
798 driDestroyOptionInfo(&instance->available_dri_options);
799
800 vk_object_base_finish(&instance->base);
801 vk_free(&instance->alloc, instance);
802 }
803
804 static VkResult
805 anv_enumerate_physical_devices(struct anv_instance *instance)
806 {
807 if (instance->physical_devices_enumerated)
808 return VK_SUCCESS;
809
810 instance->physical_devices_enumerated = true;
811
812 /* TODO: Check for more devices ? */
813 drmDevicePtr devices[8];
814 int max_devices;
815
816 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
817 if (max_devices < 1)
818 return VK_SUCCESS;
819
820 VkResult result = VK_SUCCESS;
821 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
822 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
823 devices[i]->bustype == DRM_BUS_PCI &&
824 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
825
826 struct anv_physical_device *pdevice;
827 result = anv_physical_device_try_create(instance, devices[i],
828 &pdevice);
829 /* Incompatible DRM device, skip. */
830 if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
831 result = VK_SUCCESS;
832 continue;
833 }
834
835 /* Error creating the physical device, report the error. */
836 if (result != VK_SUCCESS)
837 break;
838
839 list_addtail(&pdevice->link, &instance->physical_devices);
840 }
841 }
842 drmFreeDevices(devices, max_devices);
843
844 /* If we successfully enumerated any devices, call it success */
845 return result;
846 }
847
848 VkResult anv_EnumeratePhysicalDevices(
849 VkInstance _instance,
850 uint32_t* pPhysicalDeviceCount,
851 VkPhysicalDevice* pPhysicalDevices)
852 {
853 ANV_FROM_HANDLE(anv_instance, instance, _instance);
854 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
855
856 VkResult result = anv_enumerate_physical_devices(instance);
857 if (result != VK_SUCCESS)
858 return result;
859
860 list_for_each_entry(struct anv_physical_device, pdevice,
861 &instance->physical_devices, link) {
862 vk_outarray_append(&out, i) {
863 *i = anv_physical_device_to_handle(pdevice);
864 }
865 }
866
867 return vk_outarray_status(&out);
868 }
869
870 VkResult anv_EnumeratePhysicalDeviceGroups(
871 VkInstance _instance,
872 uint32_t* pPhysicalDeviceGroupCount,
873 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
874 {
875 ANV_FROM_HANDLE(anv_instance, instance, _instance);
876 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
877 pPhysicalDeviceGroupCount);
878
879 VkResult result = anv_enumerate_physical_devices(instance);
880 if (result != VK_SUCCESS)
881 return result;
882
883 list_for_each_entry(struct anv_physical_device, pdevice,
884 &instance->physical_devices, link) {
885 vk_outarray_append(&out, p) {
886 p->physicalDeviceCount = 1;
887 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
888 p->physicalDevices[0] = anv_physical_device_to_handle(pdevice);
889 p->subsetAllocation = false;
890
891 vk_foreach_struct(ext, p->pNext)
892 anv_debug_ignored_stype(ext->sType);
893 }
894 }
895
896 return vk_outarray_status(&out);
897 }
898
899 void anv_GetPhysicalDeviceFeatures(
900 VkPhysicalDevice physicalDevice,
901 VkPhysicalDeviceFeatures* pFeatures)
902 {
903 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
904
905 *pFeatures = (VkPhysicalDeviceFeatures) {
906 .robustBufferAccess = true,
907 .fullDrawIndexUint32 = true,
908 .imageCubeArray = true,
909 .independentBlend = true,
910 .geometryShader = true,
911 .tessellationShader = true,
912 .sampleRateShading = true,
913 .dualSrcBlend = true,
914 .logicOp = true,
915 .multiDrawIndirect = true,
916 .drawIndirectFirstInstance = true,
917 .depthClamp = true,
918 .depthBiasClamp = true,
919 .fillModeNonSolid = true,
920 .depthBounds = pdevice->info.gen >= 12,
921 .wideLines = true,
922 .largePoints = true,
923 .alphaToOne = true,
924 .multiViewport = true,
925 .samplerAnisotropy = true,
926 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
927 pdevice->info.is_baytrail,
928 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
929 .textureCompressionBC = true,
930 .occlusionQueryPrecise = true,
931 .pipelineStatisticsQuery = true,
932 .fragmentStoresAndAtomics = true,
933 .shaderTessellationAndGeometryPointSize = true,
934 .shaderImageGatherExtended = true,
935 .shaderStorageImageExtendedFormats = true,
936 .shaderStorageImageMultisample = false,
937 .shaderStorageImageReadWithoutFormat = false,
938 .shaderStorageImageWriteWithoutFormat = true,
939 .shaderUniformBufferArrayDynamicIndexing = true,
940 .shaderSampledImageArrayDynamicIndexing = true,
941 .shaderStorageBufferArrayDynamicIndexing = true,
942 .shaderStorageImageArrayDynamicIndexing = true,
943 .shaderClipDistance = true,
944 .shaderCullDistance = true,
945 .shaderFloat64 = pdevice->info.gen >= 8 &&
946 pdevice->info.has_64bit_float,
947 .shaderInt64 = pdevice->info.gen >= 8 &&
948 pdevice->info.has_64bit_int,
949 .shaderInt16 = pdevice->info.gen >= 8,
950 .shaderResourceMinLod = pdevice->info.gen >= 9,
951 .variableMultisampleRate = true,
952 .inheritedQueries = true,
953 };
954
955 /* We can't do image stores in vec4 shaders */
956 pFeatures->vertexPipelineStoresAndAtomics =
957 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
958 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
959
960 struct anv_app_info *app_info = &pdevice->instance->app_info;
961
962 /* The new DOOM and Wolfenstein games require depthBounds without
963 * checking for it. They seem to run fine without it so just claim it's
964 * there and accept the consequences.
965 */
966 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
967 pFeatures->depthBounds = true;
968 }
969
970 static void
971 anv_get_physical_device_features_1_1(struct anv_physical_device *pdevice,
972 VkPhysicalDeviceVulkan11Features *f)
973 {
974 assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES);
975
976 f->storageBuffer16BitAccess = pdevice->info.gen >= 8;
977 f->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
978 f->storagePushConstant16 = pdevice->info.gen >= 8;
979 f->storageInputOutput16 = false;
980 f->multiview = true;
981 f->multiviewGeometryShader = true;
982 f->multiviewTessellationShader = true;
983 f->variablePointersStorageBuffer = true;
984 f->variablePointers = true;
985 f->protectedMemory = false;
986 f->samplerYcbcrConversion = true;
987 f->shaderDrawParameters = true;
988 }
989
990 static void
991 anv_get_physical_device_features_1_2(struct anv_physical_device *pdevice,
992 VkPhysicalDeviceVulkan12Features *f)
993 {
994 assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES);
995
996 f->samplerMirrorClampToEdge = true;
997 f->drawIndirectCount = true;
998 f->storageBuffer8BitAccess = pdevice->info.gen >= 8;
999 f->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
1000 f->storagePushConstant8 = pdevice->info.gen >= 8;
1001 f->shaderBufferInt64Atomics = pdevice->info.gen >= 9 &&
1002 pdevice->use_softpin;
1003 f->shaderSharedInt64Atomics = false;
1004 f->shaderFloat16 = pdevice->info.gen >= 8;
1005 f->shaderInt8 = pdevice->info.gen >= 8;
1006
1007 bool descIndexing = pdevice->has_a64_buffer_access &&
1008 pdevice->has_bindless_images;
1009 f->descriptorIndexing = descIndexing;
1010 f->shaderInputAttachmentArrayDynamicIndexing = false;
1011 f->shaderUniformTexelBufferArrayDynamicIndexing = descIndexing;
1012 f->shaderStorageTexelBufferArrayDynamicIndexing = descIndexing;
1013 f->shaderUniformBufferArrayNonUniformIndexing = false;
1014 f->shaderSampledImageArrayNonUniformIndexing = descIndexing;
1015 f->shaderStorageBufferArrayNonUniformIndexing = descIndexing;
1016 f->shaderStorageImageArrayNonUniformIndexing = descIndexing;
1017 f->shaderInputAttachmentArrayNonUniformIndexing = false;
1018 f->shaderUniformTexelBufferArrayNonUniformIndexing = descIndexing;
1019 f->shaderStorageTexelBufferArrayNonUniformIndexing = descIndexing;
1020 f->descriptorBindingUniformBufferUpdateAfterBind = false;
1021 f->descriptorBindingSampledImageUpdateAfterBind = descIndexing;
1022 f->descriptorBindingStorageImageUpdateAfterBind = descIndexing;
1023 f->descriptorBindingStorageBufferUpdateAfterBind = descIndexing;
1024 f->descriptorBindingUniformTexelBufferUpdateAfterBind = descIndexing;
1025 f->descriptorBindingStorageTexelBufferUpdateAfterBind = descIndexing;
1026 f->descriptorBindingUpdateUnusedWhilePending = descIndexing;
1027 f->descriptorBindingPartiallyBound = descIndexing;
1028 f->descriptorBindingVariableDescriptorCount = false;
1029 f->runtimeDescriptorArray = descIndexing;
1030
1031 f->samplerFilterMinmax = pdevice->info.gen >= 9;
1032 f->scalarBlockLayout = true;
1033 f->imagelessFramebuffer = true;
1034 f->uniformBufferStandardLayout = true;
1035 f->shaderSubgroupExtendedTypes = true;
1036 f->separateDepthStencilLayouts = true;
1037 f->hostQueryReset = true;
1038 f->timelineSemaphore = true;
1039 f->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1040 f->bufferDeviceAddressCaptureReplay = pdevice->has_a64_buffer_access;
1041 f->bufferDeviceAddressMultiDevice = false;
1042 f->vulkanMemoryModel = true;
1043 f->vulkanMemoryModelDeviceScope = true;
1044 f->vulkanMemoryModelAvailabilityVisibilityChains = true;
1045 f->shaderOutputViewportIndex = true;
1046 f->shaderOutputLayer = true;
1047 f->subgroupBroadcastDynamicId = true;
1048 }
1049
1050 void anv_GetPhysicalDeviceFeatures2(
1051 VkPhysicalDevice physicalDevice,
1052 VkPhysicalDeviceFeatures2* pFeatures)
1053 {
1054 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1055 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1056
1057 VkPhysicalDeviceVulkan11Features core_1_1 = {
1058 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES,
1059 };
1060 anv_get_physical_device_features_1_1(pdevice, &core_1_1);
1061
1062 VkPhysicalDeviceVulkan12Features core_1_2 = {
1063 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
1064 };
1065 anv_get_physical_device_features_1_2(pdevice, &core_1_2);
1066
1067 #define CORE_FEATURE(major, minor, feature) \
1068 features->feature = core_##major##_##minor.feature
1069
1070
1071 vk_foreach_struct(ext, pFeatures->pNext) {
1072 switch (ext->sType) {
1073 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
1074 VkPhysicalDevice8BitStorageFeaturesKHR *features =
1075 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
1076 CORE_FEATURE(1, 2, storageBuffer8BitAccess);
1077 CORE_FEATURE(1, 2, uniformAndStorageBuffer8BitAccess);
1078 CORE_FEATURE(1, 2, storagePushConstant8);
1079 break;
1080 }
1081
1082 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1083 VkPhysicalDevice16BitStorageFeatures *features =
1084 (VkPhysicalDevice16BitStorageFeatures *)ext;
1085 CORE_FEATURE(1, 1, storageBuffer16BitAccess);
1086 CORE_FEATURE(1, 1, uniformAndStorageBuffer16BitAccess);
1087 CORE_FEATURE(1, 1, storagePushConstant16);
1088 CORE_FEATURE(1, 1, storageInputOutput16);
1089 break;
1090 }
1091
1092 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1093 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1094 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1095 features->bufferDeviceAddressCaptureReplay = false;
1096 features->bufferDeviceAddressMultiDevice = false;
1097 break;
1098 }
1099
1100 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_KHR: {
1101 VkPhysicalDeviceBufferDeviceAddressFeaturesKHR *features = (void *)ext;
1102 CORE_FEATURE(1, 2, bufferDeviceAddress);
1103 CORE_FEATURE(1, 2, bufferDeviceAddressCaptureReplay);
1104 CORE_FEATURE(1, 2, bufferDeviceAddressMultiDevice);
1105 break;
1106 }
1107
1108 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1109 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1110 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1111 features->computeDerivativeGroupQuads = true;
1112 features->computeDerivativeGroupLinear = true;
1113 break;
1114 }
1115
1116 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1117 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1118 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1119 features->conditionalRendering = pdevice->info.gen >= 8 ||
1120 pdevice->info.is_haswell;
1121 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1122 pdevice->info.is_haswell;
1123 break;
1124 }
1125
1126 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1127 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1128 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1129 features->depthClipEnable = true;
1130 break;
1131 }
1132
1133 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1134 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1135 CORE_FEATURE(1, 2, shaderFloat16);
1136 CORE_FEATURE(1, 2, shaderInt8);
1137 break;
1138 }
1139
1140 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1141 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1142 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1143 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1144 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1145 features->fragmentShaderShadingRateInterlock = false;
1146 break;
1147 }
1148
1149 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1150 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1151 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1152 CORE_FEATURE(1, 2, hostQueryReset);
1153 break;
1154 }
1155
1156 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1157 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1158 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1159 CORE_FEATURE(1, 2, shaderInputAttachmentArrayDynamicIndexing);
1160 CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayDynamicIndexing);
1161 CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayDynamicIndexing);
1162 CORE_FEATURE(1, 2, shaderUniformBufferArrayNonUniformIndexing);
1163 CORE_FEATURE(1, 2, shaderSampledImageArrayNonUniformIndexing);
1164 CORE_FEATURE(1, 2, shaderStorageBufferArrayNonUniformIndexing);
1165 CORE_FEATURE(1, 2, shaderStorageImageArrayNonUniformIndexing);
1166 CORE_FEATURE(1, 2, shaderInputAttachmentArrayNonUniformIndexing);
1167 CORE_FEATURE(1, 2, shaderUniformTexelBufferArrayNonUniformIndexing);
1168 CORE_FEATURE(1, 2, shaderStorageTexelBufferArrayNonUniformIndexing);
1169 CORE_FEATURE(1, 2, descriptorBindingUniformBufferUpdateAfterBind);
1170 CORE_FEATURE(1, 2, descriptorBindingSampledImageUpdateAfterBind);
1171 CORE_FEATURE(1, 2, descriptorBindingStorageImageUpdateAfterBind);
1172 CORE_FEATURE(1, 2, descriptorBindingStorageBufferUpdateAfterBind);
1173 CORE_FEATURE(1, 2, descriptorBindingUniformTexelBufferUpdateAfterBind);
1174 CORE_FEATURE(1, 2, descriptorBindingStorageTexelBufferUpdateAfterBind);
1175 CORE_FEATURE(1, 2, descriptorBindingUpdateUnusedWhilePending);
1176 CORE_FEATURE(1, 2, descriptorBindingPartiallyBound);
1177 CORE_FEATURE(1, 2, descriptorBindingVariableDescriptorCount);
1178 CORE_FEATURE(1, 2, runtimeDescriptorArray);
1179 break;
1180 }
1181
1182 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1183 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1184 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1185 features->indexTypeUint8 = true;
1186 break;
1187 }
1188
1189 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1190 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1191 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1192 features->inlineUniformBlock = true;
1193 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1194 break;
1195 }
1196
1197 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1198 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1199 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1200 features->rectangularLines = true;
1201 features->bresenhamLines = true;
1202 /* Support for Smooth lines with MSAA was removed on gen11. From the
1203 * BSpec section "Multisample ModesState" table for "AA Line Support
1204 * Requirements":
1205 *
1206 * GEN10:BUG:######## NUM_MULTISAMPLES == 1
1207 *
1208 * Fortunately, this isn't a case most people care about.
1209 */
1210 features->smoothLines = pdevice->info.gen < 10;
1211 features->stippledRectangularLines = false;
1212 features->stippledBresenhamLines = true;
1213 features->stippledSmoothLines = false;
1214 break;
1215 }
1216
1217 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1218 VkPhysicalDeviceMultiviewFeatures *features =
1219 (VkPhysicalDeviceMultiviewFeatures *)ext;
1220 CORE_FEATURE(1, 1, multiview);
1221 CORE_FEATURE(1, 1, multiviewGeometryShader);
1222 CORE_FEATURE(1, 1, multiviewTessellationShader);
1223 break;
1224 }
1225
1226 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1227 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1228 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1229 CORE_FEATURE(1, 2, imagelessFramebuffer);
1230 break;
1231 }
1232
1233 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1234 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1235 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1236 features->pipelineExecutableInfo = true;
1237 break;
1238 }
1239
1240 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1241 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1242 CORE_FEATURE(1, 1, protectedMemory);
1243 break;
1244 }
1245
1246 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT: {
1247 VkPhysicalDeviceRobustness2FeaturesEXT *features = (void *)ext;
1248 features->robustBufferAccess2 = true;
1249 features->robustImageAccess2 = true;
1250 features->nullDescriptor = true;
1251 break;
1252 }
1253
1254 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1255 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1256 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1257 CORE_FEATURE(1, 1, samplerYcbcrConversion);
1258 break;
1259 }
1260
1261 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1262 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1263 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1264 CORE_FEATURE(1, 2, scalarBlockLayout);
1265 break;
1266 }
1267
1268 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: {
1269 VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *features =
1270 (VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *)ext;
1271 CORE_FEATURE(1, 2, separateDepthStencilLayouts);
1272 break;
1273 }
1274
1275 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1276 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1277 CORE_FEATURE(1, 2, shaderBufferInt64Atomics);
1278 CORE_FEATURE(1, 2, shaderSharedInt64Atomics);
1279 break;
1280 }
1281
1282 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1283 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1284 features->shaderDemoteToHelperInvocation = true;
1285 break;
1286 }
1287
1288 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1289 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1290 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1291 features->shaderSubgroupClock = true;
1292 features->shaderDeviceClock = false;
1293 break;
1294 }
1295
1296 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1297 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1298 CORE_FEATURE(1, 1, shaderDrawParameters);
1299 break;
1300 }
1301
1302 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
1303 VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
1304 (VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
1305 CORE_FEATURE(1, 2, shaderSubgroupExtendedTypes);
1306 break;
1307 }
1308
1309 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1310 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1311 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1312 features->subgroupSizeControl = true;
1313 features->computeFullSubgroups = true;
1314 break;
1315 }
1316
1317 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1318 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1319 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1320 features->texelBufferAlignment = true;
1321 break;
1322 }
1323
1324 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES_KHR: {
1325 VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *features =
1326 (VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *) ext;
1327 CORE_FEATURE(1, 2, timelineSemaphore);
1328 break;
1329 }
1330
1331 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1332 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1333 CORE_FEATURE(1, 1, variablePointersStorageBuffer);
1334 CORE_FEATURE(1, 1, variablePointers);
1335 break;
1336 }
1337
1338 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1339 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1340 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1341 features->transformFeedback = true;
1342 features->geometryStreams = true;
1343 break;
1344 }
1345
1346 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1347 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1348 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1349 CORE_FEATURE(1, 2, uniformBufferStandardLayout);
1350 break;
1351 }
1352
1353 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1354 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1355 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1356 features->vertexAttributeInstanceRateDivisor = true;
1357 features->vertexAttributeInstanceRateZeroDivisor = true;
1358 break;
1359 }
1360
1361 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES:
1362 anv_get_physical_device_features_1_1(pdevice, (void *)ext);
1363 break;
1364
1365 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES:
1366 anv_get_physical_device_features_1_2(pdevice, (void *)ext);
1367 break;
1368
1369 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR: {
1370 VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *features = (void *)ext;
1371 CORE_FEATURE(1, 2, vulkanMemoryModel);
1372 CORE_FEATURE(1, 2, vulkanMemoryModelDeviceScope);
1373 CORE_FEATURE(1, 2, vulkanMemoryModelAvailabilityVisibilityChains);
1374 break;
1375 }
1376
1377 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1378 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1379 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1380 features->ycbcrImageArrays = true;
1381 break;
1382 }
1383
1384 default:
1385 anv_debug_ignored_stype(ext->sType);
1386 break;
1387 }
1388 }
1389
1390 #undef CORE_FEATURE
1391 }
1392
1393 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1394
1395 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1396 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1397
1398 void anv_GetPhysicalDeviceProperties(
1399 VkPhysicalDevice physicalDevice,
1400 VkPhysicalDeviceProperties* pProperties)
1401 {
1402 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1403 const struct gen_device_info *devinfo = &pdevice->info;
1404
1405 /* See assertions made when programming the buffer surface state. */
1406 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1407 (1ul << 30) : (1ul << 27);
1408
1409 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1410 const uint32_t max_textures =
1411 pdevice->has_bindless_images ? UINT16_MAX : 128;
1412 const uint32_t max_samplers =
1413 pdevice->has_bindless_samplers ? UINT16_MAX :
1414 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1415 const uint32_t max_images =
1416 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1417
1418 /* If we can use bindless for everything, claim a high per-stage limit,
1419 * otherwise use the binding table size, minus the slots reserved for
1420 * render targets and one slot for the descriptor buffer. */
1421 const uint32_t max_per_stage =
1422 pdevice->has_bindless_images && pdevice->has_a64_buffer_access
1423 ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
1424
1425 /* Limit max_threads to 64 for the GPGPU_WALKER command */
1426 const uint32_t max_workgroup_size = 32 * MIN2(64, devinfo->max_cs_threads);
1427
1428 VkSampleCountFlags sample_counts =
1429 isl_device_get_sample_counts(&pdevice->isl_dev);
1430
1431
1432 VkPhysicalDeviceLimits limits = {
1433 .maxImageDimension1D = (1 << 14),
1434 .maxImageDimension2D = (1 << 14),
1435 .maxImageDimension3D = (1 << 11),
1436 .maxImageDimensionCube = (1 << 14),
1437 .maxImageArrayLayers = (1 << 11),
1438 .maxTexelBufferElements = 128 * 1024 * 1024,
1439 .maxUniformBufferRange = (1ul << 27),
1440 .maxStorageBufferRange = max_raw_buffer_sz,
1441 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1442 .maxMemoryAllocationCount = UINT32_MAX,
1443 .maxSamplerAllocationCount = 64 * 1024,
1444 .bufferImageGranularity = 64, /* A cache line */
1445 .sparseAddressSpaceSize = 0,
1446 .maxBoundDescriptorSets = MAX_SETS,
1447 .maxPerStageDescriptorSamplers = max_samplers,
1448 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1449 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1450 .maxPerStageDescriptorSampledImages = max_textures,
1451 .maxPerStageDescriptorStorageImages = max_images,
1452 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1453 .maxPerStageResources = max_per_stage,
1454 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1455 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1456 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1457 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1458 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1459 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1460 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1461 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1462 .maxVertexInputAttributes = MAX_VBS,
1463 .maxVertexInputBindings = MAX_VBS,
1464 .maxVertexInputAttributeOffset = 2047,
1465 .maxVertexInputBindingStride = 2048,
1466 .maxVertexOutputComponents = 128,
1467 .maxTessellationGenerationLevel = 64,
1468 .maxTessellationPatchSize = 32,
1469 .maxTessellationControlPerVertexInputComponents = 128,
1470 .maxTessellationControlPerVertexOutputComponents = 128,
1471 .maxTessellationControlPerPatchOutputComponents = 128,
1472 .maxTessellationControlTotalOutputComponents = 2048,
1473 .maxTessellationEvaluationInputComponents = 128,
1474 .maxTessellationEvaluationOutputComponents = 128,
1475 .maxGeometryShaderInvocations = 32,
1476 .maxGeometryInputComponents = 64,
1477 .maxGeometryOutputComponents = 128,
1478 .maxGeometryOutputVertices = 256,
1479 .maxGeometryTotalOutputComponents = 1024,
1480 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1481 .maxFragmentOutputAttachments = 8,
1482 .maxFragmentDualSrcAttachments = 1,
1483 .maxFragmentCombinedOutputResources = 8,
1484 .maxComputeSharedMemorySize = 64 * 1024,
1485 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1486 .maxComputeWorkGroupInvocations = max_workgroup_size,
1487 .maxComputeWorkGroupSize = {
1488 max_workgroup_size,
1489 max_workgroup_size,
1490 max_workgroup_size,
1491 },
1492 .subPixelPrecisionBits = 8,
1493 .subTexelPrecisionBits = 8,
1494 .mipmapPrecisionBits = 8,
1495 .maxDrawIndexedIndexValue = UINT32_MAX,
1496 .maxDrawIndirectCount = UINT32_MAX,
1497 .maxSamplerLodBias = 16,
1498 .maxSamplerAnisotropy = 16,
1499 .maxViewports = MAX_VIEWPORTS,
1500 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1501 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1502 .viewportSubPixelBits = 13, /* We take a float? */
1503 .minMemoryMapAlignment = 4096, /* A page */
1504 /* The dataport requires texel alignment so we need to assume a worst
1505 * case of R32G32B32A32 which is 16 bytes.
1506 */
1507 .minTexelBufferOffsetAlignment = 16,
1508 .minUniformBufferOffsetAlignment = ANV_UBO_ALIGNMENT,
1509 .minStorageBufferOffsetAlignment = 4,
1510 .minTexelOffset = -8,
1511 .maxTexelOffset = 7,
1512 .minTexelGatherOffset = -32,
1513 .maxTexelGatherOffset = 31,
1514 .minInterpolationOffset = -0.5,
1515 .maxInterpolationOffset = 0.4375,
1516 .subPixelInterpolationOffsetBits = 4,
1517 .maxFramebufferWidth = (1 << 14),
1518 .maxFramebufferHeight = (1 << 14),
1519 .maxFramebufferLayers = (1 << 11),
1520 .framebufferColorSampleCounts = sample_counts,
1521 .framebufferDepthSampleCounts = sample_counts,
1522 .framebufferStencilSampleCounts = sample_counts,
1523 .framebufferNoAttachmentsSampleCounts = sample_counts,
1524 .maxColorAttachments = MAX_RTS,
1525 .sampledImageColorSampleCounts = sample_counts,
1526 .sampledImageIntegerSampleCounts = sample_counts,
1527 .sampledImageDepthSampleCounts = sample_counts,
1528 .sampledImageStencilSampleCounts = sample_counts,
1529 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1530 .maxSampleMaskWords = 1,
1531 .timestampComputeAndGraphics = true,
1532 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1533 .maxClipDistances = 8,
1534 .maxCullDistances = 8,
1535 .maxCombinedClipAndCullDistances = 8,
1536 .discreteQueuePriorities = 2,
1537 .pointSizeRange = { 0.125, 255.875 },
1538 .lineWidthRange = {
1539 0.0,
1540 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1541 2047.9921875 : 7.9921875,
1542 },
1543 .pointSizeGranularity = (1.0 / 8.0),
1544 .lineWidthGranularity = (1.0 / 128.0),
1545 .strictLines = false,
1546 .standardSampleLocations = true,
1547 .optimalBufferCopyOffsetAlignment = 128,
1548 .optimalBufferCopyRowPitchAlignment = 128,
1549 .nonCoherentAtomSize = 64,
1550 };
1551
1552 *pProperties = (VkPhysicalDeviceProperties) {
1553 .apiVersion = anv_physical_device_api_version(pdevice),
1554 .driverVersion = vk_get_driver_version(),
1555 .vendorID = 0x8086,
1556 .deviceID = pdevice->info.chipset_id,
1557 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1558 .limits = limits,
1559 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1560 };
1561
1562 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1563 "%s", pdevice->name);
1564 memcpy(pProperties->pipelineCacheUUID,
1565 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1566 }
1567
1568 static void
1569 anv_get_physical_device_properties_1_1(struct anv_physical_device *pdevice,
1570 VkPhysicalDeviceVulkan11Properties *p)
1571 {
1572 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES);
1573
1574 memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1575 memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1576 memset(p->deviceLUID, 0, VK_LUID_SIZE);
1577 p->deviceNodeMask = 0;
1578 p->deviceLUIDValid = false;
1579
1580 p->subgroupSize = BRW_SUBGROUP_SIZE;
1581 VkShaderStageFlags scalar_stages = 0;
1582 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1583 if (pdevice->compiler->scalar_stage[stage])
1584 scalar_stages |= mesa_to_vk_shader_stage(stage);
1585 }
1586 p->subgroupSupportedStages = scalar_stages;
1587 p->subgroupSupportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1588 VK_SUBGROUP_FEATURE_VOTE_BIT |
1589 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1590 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1591 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1592 VK_SUBGROUP_FEATURE_QUAD_BIT;
1593 if (pdevice->info.gen >= 8) {
1594 /* TODO: There's no technical reason why these can't be made to
1595 * work on gen7 but they don't at the moment so it's best to leave
1596 * the feature disabled than enabled and broken.
1597 */
1598 p->subgroupSupportedOperations |= VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1599 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1600 }
1601 p->subgroupQuadOperationsInAllStages = pdevice->info.gen >= 8;
1602
1603 p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1604 p->maxMultiviewViewCount = 16;
1605 p->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1606 p->protectedNoFault = false;
1607 /* This value doesn't matter for us today as our per-stage descriptors are
1608 * the real limit.
1609 */
1610 p->maxPerSetDescriptors = 1024;
1611 p->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1612 }
1613
1614 static void
1615 anv_get_physical_device_properties_1_2(struct anv_physical_device *pdevice,
1616 VkPhysicalDeviceVulkan12Properties *p)
1617 {
1618 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES);
1619
1620 p->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1621 memset(p->driverName, 0, sizeof(p->driverName));
1622 snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1623 "Intel open-source Mesa driver");
1624 memset(p->driverInfo, 0, sizeof(p->driverInfo));
1625 snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1626 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1627 p->conformanceVersion = (VkConformanceVersionKHR) {
1628 .major = 1,
1629 .minor = 2,
1630 .subminor = 0,
1631 .patch = 0,
1632 };
1633
1634 p->denormBehaviorIndependence =
1635 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1636 p->roundingModeIndependence =
1637 VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
1638
1639 /* Broadwell does not support HF denorms and there are restrictions
1640 * other gens. According to Kabylake's PRM:
1641 *
1642 * "math - Extended Math Function
1643 * [...]
1644 * Restriction : Half-float denorms are always retained."
1645 */
1646 p->shaderDenormFlushToZeroFloat16 = false;
1647 p->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
1648 p->shaderRoundingModeRTEFloat16 = true;
1649 p->shaderRoundingModeRTZFloat16 = true;
1650 p->shaderSignedZeroInfNanPreserveFloat16 = true;
1651
1652 p->shaderDenormFlushToZeroFloat32 = true;
1653 p->shaderDenormPreserveFloat32 = true;
1654 p->shaderRoundingModeRTEFloat32 = true;
1655 p->shaderRoundingModeRTZFloat32 = true;
1656 p->shaderSignedZeroInfNanPreserveFloat32 = true;
1657
1658 p->shaderDenormFlushToZeroFloat64 = true;
1659 p->shaderDenormPreserveFloat64 = true;
1660 p->shaderRoundingModeRTEFloat64 = true;
1661 p->shaderRoundingModeRTZFloat64 = true;
1662 p->shaderSignedZeroInfNanPreserveFloat64 = true;
1663
1664 /* It's a bit hard to exactly map our implementation to the limits
1665 * described here. The bindless surface handle in the extended
1666 * message descriptors is 20 bits and it's an index into the table of
1667 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1668 * address. Given that most things consume two surface states per
1669 * view (general/sampled for textures and write-only/read-write for
1670 * images), we claim 2^19 things.
1671 *
1672 * For SSBOs, we just use A64 messages so there is no real limit
1673 * there beyond the limit on the total size of a descriptor set.
1674 */
1675 const unsigned max_bindless_views = 1 << 19;
1676 p->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1677 p->shaderUniformBufferArrayNonUniformIndexingNative = false;
1678 p->shaderSampledImageArrayNonUniformIndexingNative = false;
1679 p->shaderStorageBufferArrayNonUniformIndexingNative = true;
1680 p->shaderStorageImageArrayNonUniformIndexingNative = false;
1681 p->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1682 p->robustBufferAccessUpdateAfterBind = true;
1683 p->quadDivergentImplicitLod = false;
1684 p->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1685 p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1686 p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1687 p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1688 p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1689 p->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1690 p->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1691 p->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1692 p->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1693 p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1694 p->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1695 p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1696 p->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1697 p->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1698 p->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1699
1700 /* We support all of the depth resolve modes */
1701 p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1702 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1703 VK_RESOLVE_MODE_MIN_BIT_KHR |
1704 VK_RESOLVE_MODE_MAX_BIT_KHR;
1705 /* Average doesn't make sense for stencil so we don't support that */
1706 p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1707 if (pdevice->info.gen >= 8) {
1708 /* The advanced stencil resolve modes currently require stencil
1709 * sampling be supported by the hardware.
1710 */
1711 p->supportedStencilResolveModes |= VK_RESOLVE_MODE_MIN_BIT_KHR |
1712 VK_RESOLVE_MODE_MAX_BIT_KHR;
1713 }
1714 p->independentResolveNone = true;
1715 p->independentResolve = true;
1716
1717 p->filterMinmaxSingleComponentFormats = pdevice->info.gen >= 9;
1718 p->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1719
1720 p->maxTimelineSemaphoreValueDifference = UINT64_MAX;
1721
1722 p->framebufferIntegerColorSampleCounts =
1723 isl_device_get_sample_counts(&pdevice->isl_dev);
1724 }
1725
1726 void anv_GetPhysicalDeviceProperties2(
1727 VkPhysicalDevice physicalDevice,
1728 VkPhysicalDeviceProperties2* pProperties)
1729 {
1730 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1731
1732 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1733
1734 VkPhysicalDeviceVulkan11Properties core_1_1 = {
1735 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES,
1736 };
1737 anv_get_physical_device_properties_1_1(pdevice, &core_1_1);
1738
1739 VkPhysicalDeviceVulkan12Properties core_1_2 = {
1740 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES,
1741 };
1742 anv_get_physical_device_properties_1_2(pdevice, &core_1_2);
1743
1744 #define CORE_RENAMED_PROPERTY(major, minor, ext_property, core_property) \
1745 memcpy(&properties->ext_property, &core_##major##_##minor.core_property, \
1746 sizeof(core_##major##_##minor.core_property))
1747
1748 #define CORE_PROPERTY(major, minor, property) \
1749 CORE_RENAMED_PROPERTY(major, minor, property, property)
1750
1751 vk_foreach_struct(ext, pProperties->pNext) {
1752 switch (ext->sType) {
1753 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1754 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *properties =
1755 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1756 CORE_PROPERTY(1, 2, supportedDepthResolveModes);
1757 CORE_PROPERTY(1, 2, supportedStencilResolveModes);
1758 CORE_PROPERTY(1, 2, independentResolveNone);
1759 CORE_PROPERTY(1, 2, independentResolve);
1760 break;
1761 }
1762
1763 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1764 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *properties =
1765 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1766 CORE_PROPERTY(1, 2, maxUpdateAfterBindDescriptorsInAllPools);
1767 CORE_PROPERTY(1, 2, shaderUniformBufferArrayNonUniformIndexingNative);
1768 CORE_PROPERTY(1, 2, shaderSampledImageArrayNonUniformIndexingNative);
1769 CORE_PROPERTY(1, 2, shaderStorageBufferArrayNonUniformIndexingNative);
1770 CORE_PROPERTY(1, 2, shaderStorageImageArrayNonUniformIndexingNative);
1771 CORE_PROPERTY(1, 2, shaderInputAttachmentArrayNonUniformIndexingNative);
1772 CORE_PROPERTY(1, 2, robustBufferAccessUpdateAfterBind);
1773 CORE_PROPERTY(1, 2, quadDivergentImplicitLod);
1774 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSamplers);
1775 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindUniformBuffers);
1776 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageBuffers);
1777 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindSampledImages);
1778 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindStorageImages);
1779 CORE_PROPERTY(1, 2, maxPerStageDescriptorUpdateAfterBindInputAttachments);
1780 CORE_PROPERTY(1, 2, maxPerStageUpdateAfterBindResources);
1781 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSamplers);
1782 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffers);
1783 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindUniformBuffersDynamic);
1784 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffers);
1785 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageBuffersDynamic);
1786 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindSampledImages);
1787 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindStorageImages);
1788 CORE_PROPERTY(1, 2, maxDescriptorSetUpdateAfterBindInputAttachments);
1789 break;
1790 }
1791
1792 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1793 VkPhysicalDeviceDriverPropertiesKHR *properties =
1794 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1795 CORE_PROPERTY(1, 2, driverID);
1796 CORE_PROPERTY(1, 2, driverName);
1797 CORE_PROPERTY(1, 2, driverInfo);
1798 CORE_PROPERTY(1, 2, conformanceVersion);
1799 break;
1800 }
1801
1802 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1803 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1804 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1805 /* Userptr needs page aligned memory. */
1806 props->minImportedHostPointerAlignment = 4096;
1807 break;
1808 }
1809
1810 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1811 VkPhysicalDeviceIDProperties *properties =
1812 (VkPhysicalDeviceIDProperties *)ext;
1813 CORE_PROPERTY(1, 1, deviceUUID);
1814 CORE_PROPERTY(1, 1, driverUUID);
1815 CORE_PROPERTY(1, 1, deviceLUID);
1816 CORE_PROPERTY(1, 1, deviceLUIDValid);
1817 break;
1818 }
1819
1820 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1821 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1822 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1823 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1824 props->maxPerStageDescriptorInlineUniformBlocks =
1825 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1826 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1827 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1828 props->maxDescriptorSetInlineUniformBlocks =
1829 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1830 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1831 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1832 break;
1833 }
1834
1835 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1836 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1837 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1838 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1839 * Sampling Rules - Legacy Mode", it says the following:
1840 *
1841 * "Note that the device divides a pixel into a 16x16 array of
1842 * subpixels, referenced by their upper left corners."
1843 *
1844 * This is the only known reference in the PRMs to the subpixel
1845 * precision of line rasterization and a "16x16 array of subpixels"
1846 * implies 4 subpixel precision bits. Empirical testing has shown
1847 * that 4 subpixel precision bits applies to all line rasterization
1848 * types.
1849 */
1850 props->lineSubPixelPrecisionBits = 4;
1851 break;
1852 }
1853
1854 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1855 VkPhysicalDeviceMaintenance3Properties *properties =
1856 (VkPhysicalDeviceMaintenance3Properties *)ext;
1857 /* This value doesn't matter for us today as our per-stage
1858 * descriptors are the real limit.
1859 */
1860 CORE_PROPERTY(1, 1, maxPerSetDescriptors);
1861 CORE_PROPERTY(1, 1, maxMemoryAllocationSize);
1862 break;
1863 }
1864
1865 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1866 VkPhysicalDeviceMultiviewProperties *properties =
1867 (VkPhysicalDeviceMultiviewProperties *)ext;
1868 CORE_PROPERTY(1, 1, maxMultiviewViewCount);
1869 CORE_PROPERTY(1, 1, maxMultiviewInstanceIndex);
1870 break;
1871 }
1872
1873 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1874 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1875 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1876 properties->pciDomain = pdevice->pci_info.domain;
1877 properties->pciBus = pdevice->pci_info.bus;
1878 properties->pciDevice = pdevice->pci_info.device;
1879 properties->pciFunction = pdevice->pci_info.function;
1880 break;
1881 }
1882
1883 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1884 VkPhysicalDevicePointClippingProperties *properties =
1885 (VkPhysicalDevicePointClippingProperties *) ext;
1886 CORE_PROPERTY(1, 1, pointClippingBehavior);
1887 break;
1888 }
1889
1890 #pragma GCC diagnostic push
1891 #pragma GCC diagnostic ignored "-Wswitch"
1892 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1893 VkPhysicalDevicePresentationPropertiesANDROID *props =
1894 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1895 props->sharedImage = VK_FALSE;
1896 break;
1897 }
1898 #pragma GCC diagnostic pop
1899
1900 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1901 VkPhysicalDeviceProtectedMemoryProperties *properties =
1902 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1903 CORE_PROPERTY(1, 1, protectedNoFault);
1904 break;
1905 }
1906
1907 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1908 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1909 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1910 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1911 break;
1912 }
1913
1914 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_PROPERTIES_EXT: {
1915 VkPhysicalDeviceRobustness2PropertiesEXT *properties = (void *)ext;
1916 properties->robustStorageBufferAccessSizeAlignment =
1917 ANV_SSBO_BOUNDS_CHECK_ALIGNMENT;
1918 properties->robustUniformBufferAccessSizeAlignment =
1919 ANV_UBO_ALIGNMENT;
1920 break;
1921 }
1922
1923 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1924 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1925 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1926 CORE_PROPERTY(1, 2, filterMinmaxImageComponentMapping);
1927 CORE_PROPERTY(1, 2, filterMinmaxSingleComponentFormats);
1928 break;
1929 }
1930
1931 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1932 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1933 CORE_PROPERTY(1, 1, subgroupSize);
1934 CORE_RENAMED_PROPERTY(1, 1, supportedStages,
1935 subgroupSupportedStages);
1936 CORE_RENAMED_PROPERTY(1, 1, supportedOperations,
1937 subgroupSupportedOperations);
1938 CORE_RENAMED_PROPERTY(1, 1, quadOperationsInAllStages,
1939 subgroupQuadOperationsInAllStages);
1940 break;
1941 }
1942
1943 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1944 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1945 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1946 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1947 props->minSubgroupSize = 8;
1948 props->maxSubgroupSize = 32;
1949 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1950 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1951 break;
1952 }
1953 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
1954 VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
1955 CORE_PROPERTY(1, 2, denormBehaviorIndependence);
1956 CORE_PROPERTY(1, 2, roundingModeIndependence);
1957 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat16);
1958 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat16);
1959 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat16);
1960 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat16);
1961 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat16);
1962 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat32);
1963 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat32);
1964 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat32);
1965 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat32);
1966 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat32);
1967 CORE_PROPERTY(1, 2, shaderDenormFlushToZeroFloat64);
1968 CORE_PROPERTY(1, 2, shaderDenormPreserveFloat64);
1969 CORE_PROPERTY(1, 2, shaderRoundingModeRTEFloat64);
1970 CORE_PROPERTY(1, 2, shaderRoundingModeRTZFloat64);
1971 CORE_PROPERTY(1, 2, shaderSignedZeroInfNanPreserveFloat64);
1972 break;
1973 }
1974
1975 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1976 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1977 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1978
1979 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1980 * Base Address:
1981 *
1982 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1983 * specifies the base address of the first element of the surface,
1984 * computed in software by adding the surface base address to the
1985 * byte offset of the element in the buffer. The base address must
1986 * be aligned to element size."
1987 *
1988 * The typed dataport messages require that things be texel aligned.
1989 * Otherwise, we may just load/store the wrong data or, in the worst
1990 * case, there may be hangs.
1991 */
1992 props->storageTexelBufferOffsetAlignmentBytes = 16;
1993 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1994
1995 /* The sampler, however, is much more forgiving and it can handle
1996 * arbitrary byte alignment for linear and buffer surfaces. It's
1997 * hard to find a good PRM citation for this but years of empirical
1998 * experience demonstrate that this is true.
1999 */
2000 props->uniformTexelBufferOffsetAlignmentBytes = 1;
2001 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
2002 break;
2003 }
2004
2005 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES_KHR: {
2006 VkPhysicalDeviceTimelineSemaphorePropertiesKHR *properties =
2007 (VkPhysicalDeviceTimelineSemaphorePropertiesKHR *) ext;
2008 CORE_PROPERTY(1, 2, maxTimelineSemaphoreValueDifference);
2009 break;
2010 }
2011
2012 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
2013 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
2014 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
2015
2016 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
2017 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
2018 props->maxTransformFeedbackBufferSize = (1ull << 32);
2019 props->maxTransformFeedbackStreamDataSize = 128 * 4;
2020 props->maxTransformFeedbackBufferDataSize = 128 * 4;
2021 props->maxTransformFeedbackBufferDataStride = 2048;
2022 props->transformFeedbackQueries = true;
2023 props->transformFeedbackStreamsLinesTriangles = false;
2024 props->transformFeedbackRasterizationStreamSelect = false;
2025 props->transformFeedbackDraw = true;
2026 break;
2027 }
2028
2029 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
2030 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
2031 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
2032 /* We have to restrict this a bit for multiview */
2033 props->maxVertexAttribDivisor = UINT32_MAX / 16;
2034 break;
2035 }
2036
2037 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES:
2038 anv_get_physical_device_properties_1_1(pdevice, (void *)ext);
2039 break;
2040
2041 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES:
2042 anv_get_physical_device_properties_1_2(pdevice, (void *)ext);
2043 break;
2044
2045 default:
2046 anv_debug_ignored_stype(ext->sType);
2047 break;
2048 }
2049 }
2050
2051 #undef CORE_RENAMED_PROPERTY
2052 #undef CORE_PROPERTY
2053 }
2054
2055 /* We support exactly one queue family. */
2056 static const VkQueueFamilyProperties
2057 anv_queue_family_properties = {
2058 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
2059 VK_QUEUE_COMPUTE_BIT |
2060 VK_QUEUE_TRANSFER_BIT,
2061 .queueCount = 1,
2062 .timestampValidBits = 36, /* XXX: Real value here */
2063 .minImageTransferGranularity = { 1, 1, 1 },
2064 };
2065
2066 void anv_GetPhysicalDeviceQueueFamilyProperties(
2067 VkPhysicalDevice physicalDevice,
2068 uint32_t* pCount,
2069 VkQueueFamilyProperties* pQueueFamilyProperties)
2070 {
2071 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
2072
2073 vk_outarray_append(&out, p) {
2074 *p = anv_queue_family_properties;
2075 }
2076 }
2077
2078 void anv_GetPhysicalDeviceQueueFamilyProperties2(
2079 VkPhysicalDevice physicalDevice,
2080 uint32_t* pQueueFamilyPropertyCount,
2081 VkQueueFamilyProperties2* pQueueFamilyProperties)
2082 {
2083
2084 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
2085
2086 vk_outarray_append(&out, p) {
2087 p->queueFamilyProperties = anv_queue_family_properties;
2088
2089 vk_foreach_struct(s, p->pNext) {
2090 anv_debug_ignored_stype(s->sType);
2091 }
2092 }
2093 }
2094
2095 void anv_GetPhysicalDeviceMemoryProperties(
2096 VkPhysicalDevice physicalDevice,
2097 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
2098 {
2099 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2100
2101 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
2102 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
2103 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
2104 .propertyFlags = physical_device->memory.types[i].propertyFlags,
2105 .heapIndex = physical_device->memory.types[i].heapIndex,
2106 };
2107 }
2108
2109 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
2110 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
2111 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
2112 .size = physical_device->memory.heaps[i].size,
2113 .flags = physical_device->memory.heaps[i].flags,
2114 };
2115 }
2116 }
2117
2118 static void
2119 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
2120 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
2121 {
2122 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2123 uint64_t sys_available = get_available_system_memory();
2124 assert(sys_available > 0);
2125
2126 VkDeviceSize total_heaps_size = 0;
2127 for (size_t i = 0; i < device->memory.heap_count; i++)
2128 total_heaps_size += device->memory.heaps[i].size;
2129
2130 for (size_t i = 0; i < device->memory.heap_count; i++) {
2131 VkDeviceSize heap_size = device->memory.heaps[i].size;
2132 VkDeviceSize heap_used = device->memory.heaps[i].used;
2133 VkDeviceSize heap_budget;
2134
2135 double heap_proportion = (double) heap_size / total_heaps_size;
2136 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
2137
2138 /*
2139 * Let's not incite the app to starve the system: report at most 90% of
2140 * available system memory.
2141 */
2142 uint64_t heap_available = sys_available_prop * 9 / 10;
2143 heap_budget = MIN2(heap_size, heap_used + heap_available);
2144
2145 /*
2146 * Round down to the nearest MB
2147 */
2148 heap_budget &= ~((1ull << 20) - 1);
2149
2150 /*
2151 * The heapBudget value must be non-zero for array elements less than
2152 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
2153 * value must be less than or equal to VkMemoryHeap::size for each heap.
2154 */
2155 assert(0 < heap_budget && heap_budget <= heap_size);
2156
2157 memoryBudget->heapUsage[i] = heap_used;
2158 memoryBudget->heapBudget[i] = heap_budget;
2159 }
2160
2161 /* The heapBudget and heapUsage values must be zero for array elements
2162 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
2163 */
2164 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
2165 memoryBudget->heapBudget[i] = 0;
2166 memoryBudget->heapUsage[i] = 0;
2167 }
2168 }
2169
2170 void anv_GetPhysicalDeviceMemoryProperties2(
2171 VkPhysicalDevice physicalDevice,
2172 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
2173 {
2174 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
2175 &pMemoryProperties->memoryProperties);
2176
2177 vk_foreach_struct(ext, pMemoryProperties->pNext) {
2178 switch (ext->sType) {
2179 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
2180 anv_get_memory_budget(physicalDevice, (void*)ext);
2181 break;
2182 default:
2183 anv_debug_ignored_stype(ext->sType);
2184 break;
2185 }
2186 }
2187 }
2188
2189 void
2190 anv_GetDeviceGroupPeerMemoryFeatures(
2191 VkDevice device,
2192 uint32_t heapIndex,
2193 uint32_t localDeviceIndex,
2194 uint32_t remoteDeviceIndex,
2195 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
2196 {
2197 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
2198 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
2199 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
2200 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
2201 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
2202 }
2203
2204 PFN_vkVoidFunction anv_GetInstanceProcAddr(
2205 VkInstance _instance,
2206 const char* pName)
2207 {
2208 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2209
2210 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
2211 * when we have to return valid function pointers, NULL, or it's left
2212 * undefined. See the table for exact details.
2213 */
2214 if (pName == NULL)
2215 return NULL;
2216
2217 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
2218 if (strcmp(pName, "vk" #entrypoint) == 0) \
2219 return (PFN_vkVoidFunction)anv_##entrypoint
2220
2221 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
2222 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
2223 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
2224 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
2225
2226 /* GetInstanceProcAddr() can also be called with a NULL instance.
2227 * See https://gitlab.khronos.org/vulkan/vulkan/issues/2057
2228 */
2229 LOOKUP_ANV_ENTRYPOINT(GetInstanceProcAddr);
2230
2231 #undef LOOKUP_ANV_ENTRYPOINT
2232
2233 if (instance == NULL)
2234 return NULL;
2235
2236 int idx = anv_get_instance_entrypoint_index(pName);
2237 if (idx >= 0)
2238 return instance->dispatch.entrypoints[idx];
2239
2240 idx = anv_get_physical_device_entrypoint_index(pName);
2241 if (idx >= 0)
2242 return instance->physical_device_dispatch.entrypoints[idx];
2243
2244 idx = anv_get_device_entrypoint_index(pName);
2245 if (idx >= 0)
2246 return instance->device_dispatch.entrypoints[idx];
2247
2248 return NULL;
2249 }
2250
2251 /* With version 1+ of the loader interface the ICD should expose
2252 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
2253 */
2254 PUBLIC
2255 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2256 VkInstance instance,
2257 const char* pName);
2258
2259 PUBLIC
2260 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2261 VkInstance instance,
2262 const char* pName)
2263 {
2264 return anv_GetInstanceProcAddr(instance, pName);
2265 }
2266
2267 PFN_vkVoidFunction anv_GetDeviceProcAddr(
2268 VkDevice _device,
2269 const char* pName)
2270 {
2271 ANV_FROM_HANDLE(anv_device, device, _device);
2272
2273 if (!device || !pName)
2274 return NULL;
2275
2276 int idx = anv_get_device_entrypoint_index(pName);
2277 if (idx < 0)
2278 return NULL;
2279
2280 return device->dispatch.entrypoints[idx];
2281 }
2282
2283 /* With version 4+ of the loader interface the ICD should expose
2284 * vk_icdGetPhysicalDeviceProcAddr()
2285 */
2286 PUBLIC
2287 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
2288 VkInstance _instance,
2289 const char* pName);
2290
2291 PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
2292 VkInstance _instance,
2293 const char* pName)
2294 {
2295 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2296
2297 if (!pName || !instance)
2298 return NULL;
2299
2300 int idx = anv_get_physical_device_entrypoint_index(pName);
2301 if (idx < 0)
2302 return NULL;
2303
2304 return instance->physical_device_dispatch.entrypoints[idx];
2305 }
2306
2307
2308 VkResult
2309 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
2310 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
2311 const VkAllocationCallbacks* pAllocator,
2312 VkDebugReportCallbackEXT* pCallback)
2313 {
2314 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2315 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2316 pCreateInfo, pAllocator, &instance->alloc,
2317 pCallback);
2318 }
2319
2320 void
2321 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
2322 VkDebugReportCallbackEXT _callback,
2323 const VkAllocationCallbacks* pAllocator)
2324 {
2325 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2326 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2327 _callback, pAllocator, &instance->alloc);
2328 }
2329
2330 void
2331 anv_DebugReportMessageEXT(VkInstance _instance,
2332 VkDebugReportFlagsEXT flags,
2333 VkDebugReportObjectTypeEXT objectType,
2334 uint64_t object,
2335 size_t location,
2336 int32_t messageCode,
2337 const char* pLayerPrefix,
2338 const char* pMessage)
2339 {
2340 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2341 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2342 object, location, messageCode, pLayerPrefix, pMessage);
2343 }
2344
2345 static struct anv_state
2346 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2347 {
2348 struct anv_state state;
2349
2350 state = anv_state_pool_alloc(pool, size, align);
2351 memcpy(state.map, p, size);
2352
2353 return state;
2354 }
2355
2356 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
2357 * straightforward 32-bit float color in the first 64 bytes. Instead of using
2358 * a nice float/integer union like Gen8+, Haswell specifies the integer border
2359 * color as a separate entry /after/ the float color. The layout of this entry
2360 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
2361 *
2362 * Since we don't know the format/bpp, we can't make any of the border colors
2363 * containing '1' work for all formats, as it would be in the wrong place for
2364 * some of them. We opt to make 32-bit integers work as this seems like the
2365 * most common option. Fortunately, transparent black works regardless, as
2366 * all zeroes is the same in every bit-size.
2367 */
2368 struct hsw_border_color {
2369 float float32[4];
2370 uint32_t _pad0[12];
2371 uint32_t uint32[4];
2372 uint32_t _pad1[108];
2373 };
2374
2375 struct gen8_border_color {
2376 union {
2377 float float32[4];
2378 uint32_t uint32[4];
2379 };
2380 /* Pad out to 64 bytes */
2381 uint32_t _pad[12];
2382 };
2383
2384 static void
2385 anv_device_init_border_colors(struct anv_device *device)
2386 {
2387 if (device->info.is_haswell) {
2388 static const struct hsw_border_color border_colors[] = {
2389 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2390 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2391 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2392 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2393 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2394 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2395 };
2396
2397 device->border_colors =
2398 anv_state_pool_emit_data(&device->dynamic_state_pool,
2399 sizeof(border_colors), 512, border_colors);
2400 } else {
2401 static const struct gen8_border_color border_colors[] = {
2402 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2403 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2404 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2405 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2406 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2407 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2408 };
2409
2410 device->border_colors =
2411 anv_state_pool_emit_data(&device->dynamic_state_pool,
2412 sizeof(border_colors), 64, border_colors);
2413 }
2414 }
2415
2416 static VkResult
2417 anv_device_init_trivial_batch(struct anv_device *device)
2418 {
2419 VkResult result = anv_device_alloc_bo(device, 4096,
2420 ANV_BO_ALLOC_MAPPED,
2421 0 /* explicit_address */,
2422 &device->trivial_batch_bo);
2423 if (result != VK_SUCCESS)
2424 return result;
2425
2426 struct anv_batch batch = {
2427 .start = device->trivial_batch_bo->map,
2428 .next = device->trivial_batch_bo->map,
2429 .end = device->trivial_batch_bo->map + 4096,
2430 };
2431
2432 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2433 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2434
2435 if (!device->info.has_llc)
2436 gen_clflush_range(batch.start, batch.next - batch.start);
2437
2438 return VK_SUCCESS;
2439 }
2440
2441 VkResult anv_EnumerateDeviceExtensionProperties(
2442 VkPhysicalDevice physicalDevice,
2443 const char* pLayerName,
2444 uint32_t* pPropertyCount,
2445 VkExtensionProperties* pProperties)
2446 {
2447 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2448 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2449
2450 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2451 if (device->supported_extensions.extensions[i]) {
2452 vk_outarray_append(&out, prop) {
2453 *prop = anv_device_extensions[i];
2454 }
2455 }
2456 }
2457
2458 return vk_outarray_status(&out);
2459 }
2460
2461 static void
2462 anv_device_init_dispatch(struct anv_device *device)
2463 {
2464 const struct anv_instance *instance = device->physical->instance;
2465
2466 const struct anv_device_dispatch_table *genX_table;
2467 switch (device->info.gen) {
2468 case 12:
2469 genX_table = &gen12_device_dispatch_table;
2470 break;
2471 case 11:
2472 genX_table = &gen11_device_dispatch_table;
2473 break;
2474 case 10:
2475 genX_table = &gen10_device_dispatch_table;
2476 break;
2477 case 9:
2478 genX_table = &gen9_device_dispatch_table;
2479 break;
2480 case 8:
2481 genX_table = &gen8_device_dispatch_table;
2482 break;
2483 case 7:
2484 if (device->info.is_haswell)
2485 genX_table = &gen75_device_dispatch_table;
2486 else
2487 genX_table = &gen7_device_dispatch_table;
2488 break;
2489 default:
2490 unreachable("unsupported gen\n");
2491 }
2492
2493 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2494 /* Vulkan requires that entrypoints for extensions which have not been
2495 * enabled must not be advertised.
2496 */
2497 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
2498 &instance->enabled_extensions,
2499 &device->enabled_extensions)) {
2500 device->dispatch.entrypoints[i] = NULL;
2501 } else if (genX_table->entrypoints[i]) {
2502 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2503 } else {
2504 device->dispatch.entrypoints[i] =
2505 anv_device_dispatch_table.entrypoints[i];
2506 }
2507 }
2508 }
2509
2510 static int
2511 vk_priority_to_gen(int priority)
2512 {
2513 switch (priority) {
2514 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2515 return GEN_CONTEXT_LOW_PRIORITY;
2516 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2517 return GEN_CONTEXT_MEDIUM_PRIORITY;
2518 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2519 return GEN_CONTEXT_HIGH_PRIORITY;
2520 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2521 return GEN_CONTEXT_REALTIME_PRIORITY;
2522 default:
2523 unreachable("Invalid priority");
2524 }
2525 }
2526
2527 static VkResult
2528 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2529 {
2530 VkResult result = anv_device_alloc_bo(device, 4096,
2531 ANV_BO_ALLOC_MAPPED,
2532 0 /* explicit_address */,
2533 &device->hiz_clear_bo);
2534 if (result != VK_SUCCESS)
2535 return result;
2536
2537 union isl_color_value hiz_clear = { .u32 = { 0, } };
2538 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2539
2540 memcpy(device->hiz_clear_bo->map, hiz_clear.u32, sizeof(hiz_clear.u32));
2541
2542 if (!device->info.has_llc)
2543 gen_clflush_range(device->hiz_clear_bo->map, sizeof(hiz_clear.u32));
2544
2545 return VK_SUCCESS;
2546 }
2547
2548 static bool
2549 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2550 struct anv_block_pool *pool,
2551 uint64_t address)
2552 {
2553 anv_block_pool_foreach_bo(bo, pool) {
2554 uint64_t bo_address = gen_48b_address(bo->offset);
2555 if (address >= bo_address && address < (bo_address + bo->size)) {
2556 *ret = (struct gen_batch_decode_bo) {
2557 .addr = bo_address,
2558 .size = bo->size,
2559 .map = bo->map,
2560 };
2561 return true;
2562 }
2563 }
2564 return false;
2565 }
2566
2567 /* Finding a buffer for batch decoding */
2568 static struct gen_batch_decode_bo
2569 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2570 {
2571 struct anv_device *device = v_batch;
2572 struct gen_batch_decode_bo ret_bo = {};
2573
2574 assert(ppgtt);
2575
2576 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2577 return ret_bo;
2578 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2579 return ret_bo;
2580 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2581 return ret_bo;
2582 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2583 return ret_bo;
2584
2585 if (!device->cmd_buffer_being_decoded)
2586 return (struct gen_batch_decode_bo) { };
2587
2588 struct anv_batch_bo **bo;
2589
2590 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2591 /* The decoder zeroes out the top 16 bits, so we need to as well */
2592 uint64_t bo_address = (*bo)->bo->offset & (~0ull >> 16);
2593
2594 if (address >= bo_address && address < bo_address + (*bo)->bo->size) {
2595 return (struct gen_batch_decode_bo) {
2596 .addr = bo_address,
2597 .size = (*bo)->bo->size,
2598 .map = (*bo)->bo->map,
2599 };
2600 }
2601 }
2602
2603 return (struct gen_batch_decode_bo) { };
2604 }
2605
2606 struct gen_aux_map_buffer {
2607 struct gen_buffer base;
2608 struct anv_state state;
2609 };
2610
2611 static struct gen_buffer *
2612 gen_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
2613 {
2614 struct gen_aux_map_buffer *buf = malloc(sizeof(struct gen_aux_map_buffer));
2615 if (!buf)
2616 return NULL;
2617
2618 struct anv_device *device = (struct anv_device*)driver_ctx;
2619 assert(device->physical->supports_48bit_addresses &&
2620 device->physical->use_softpin);
2621
2622 struct anv_state_pool *pool = &device->dynamic_state_pool;
2623 buf->state = anv_state_pool_alloc(pool, size, size);
2624
2625 buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset;
2626 buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size;
2627 buf->base.map = buf->state.map;
2628 buf->base.driver_bo = &buf->state;
2629 return &buf->base;
2630 }
2631
2632 static void
2633 gen_aux_map_buffer_free(void *driver_ctx, struct gen_buffer *buffer)
2634 {
2635 struct gen_aux_map_buffer *buf = (struct gen_aux_map_buffer*)buffer;
2636 struct anv_device *device = (struct anv_device*)driver_ctx;
2637 struct anv_state_pool *pool = &device->dynamic_state_pool;
2638 anv_state_pool_free(pool, buf->state);
2639 free(buf);
2640 }
2641
2642 static struct gen_mapped_pinned_buffer_alloc aux_map_allocator = {
2643 .alloc = gen_aux_map_buffer_alloc,
2644 .free = gen_aux_map_buffer_free,
2645 };
2646
2647 static VkResult
2648 check_physical_device_features(VkPhysicalDevice physicalDevice,
2649 const VkPhysicalDeviceFeatures *features)
2650 {
2651 VkPhysicalDeviceFeatures supported_features;
2652 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2653 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2654 VkBool32 *enabled_feature = (VkBool32 *)features;
2655 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2656 for (uint32_t i = 0; i < num_features; i++) {
2657 if (enabled_feature[i] && !supported_feature[i])
2658 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2659 }
2660
2661 return VK_SUCCESS;
2662 }
2663
2664 VkResult anv_CreateDevice(
2665 VkPhysicalDevice physicalDevice,
2666 const VkDeviceCreateInfo* pCreateInfo,
2667 const VkAllocationCallbacks* pAllocator,
2668 VkDevice* pDevice)
2669 {
2670 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2671 VkResult result;
2672 struct anv_device *device;
2673
2674 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2675
2676 struct anv_device_extension_table enabled_extensions = { };
2677 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2678 int idx;
2679 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2680 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2681 anv_device_extensions[idx].extensionName) == 0)
2682 break;
2683 }
2684
2685 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2686 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2687
2688 if (!physical_device->supported_extensions.extensions[idx])
2689 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2690
2691 enabled_extensions.extensions[idx] = true;
2692 }
2693
2694 /* Check enabled features */
2695 bool robust_buffer_access = false;
2696 if (pCreateInfo->pEnabledFeatures) {
2697 result = check_physical_device_features(physicalDevice,
2698 pCreateInfo->pEnabledFeatures);
2699 if (result != VK_SUCCESS)
2700 return result;
2701
2702 if (pCreateInfo->pEnabledFeatures->robustBufferAccess)
2703 robust_buffer_access = true;
2704 }
2705
2706 vk_foreach_struct_const(ext, pCreateInfo->pNext) {
2707 switch (ext->sType) {
2708 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: {
2709 const VkPhysicalDeviceFeatures2 *features = (const void *)ext;
2710 result = check_physical_device_features(physicalDevice,
2711 &features->features);
2712 if (result != VK_SUCCESS)
2713 return result;
2714
2715 if (features->features.robustBufferAccess)
2716 robust_buffer_access = true;
2717 break;
2718 }
2719
2720 default:
2721 /* Don't warn */
2722 break;
2723 }
2724 }
2725
2726 /* Check requested queues and fail if we are requested to create any
2727 * queues with flags we don't support.
2728 */
2729 assert(pCreateInfo->queueCreateInfoCount > 0);
2730 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2731 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2732 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2733 }
2734
2735 /* Check if client specified queue priority. */
2736 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2737 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2738 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2739
2740 VkQueueGlobalPriorityEXT priority =
2741 queue_priority ? queue_priority->globalPriority :
2742 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2743
2744 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2745 sizeof(*device), 8,
2746 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2747 if (!device)
2748 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2749
2750 vk_device_init(&device->vk, pCreateInfo,
2751 &physical_device->instance->alloc, pAllocator);
2752
2753 if (INTEL_DEBUG & DEBUG_BATCH) {
2754 const unsigned decode_flags =
2755 GEN_BATCH_DECODE_FULL |
2756 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2757 GEN_BATCH_DECODE_OFFSETS |
2758 GEN_BATCH_DECODE_FLOATS;
2759
2760 gen_batch_decode_ctx_init(&device->decoder_ctx,
2761 &physical_device->info,
2762 stderr, decode_flags, NULL,
2763 decode_get_bo, NULL, device);
2764 }
2765
2766 device->physical = physical_device;
2767 device->no_hw = physical_device->no_hw;
2768 device->_lost = false;
2769
2770 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2771 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2772 if (device->fd == -1) {
2773 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2774 goto fail_device;
2775 }
2776
2777 device->context_id = anv_gem_create_context(device);
2778 if (device->context_id == -1) {
2779 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2780 goto fail_fd;
2781 }
2782
2783 result = anv_queue_init(device, &device->queue);
2784 if (result != VK_SUCCESS)
2785 goto fail_context_id;
2786
2787 if (physical_device->use_softpin) {
2788 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2789 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2790 goto fail_queue;
2791 }
2792
2793 /* keep the page with address zero out of the allocator */
2794 util_vma_heap_init(&device->vma_lo,
2795 LOW_HEAP_MIN_ADDRESS, LOW_HEAP_SIZE);
2796
2797 util_vma_heap_init(&device->vma_cva, CLIENT_VISIBLE_HEAP_MIN_ADDRESS,
2798 CLIENT_VISIBLE_HEAP_SIZE);
2799
2800 /* Leave the last 4GiB out of the high vma range, so that no state
2801 * base address + size can overflow 48 bits. For more information see
2802 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
2803 */
2804 util_vma_heap_init(&device->vma_hi, HIGH_HEAP_MIN_ADDRESS,
2805 physical_device->gtt_size - (1ull << 32) -
2806 HIGH_HEAP_MIN_ADDRESS);
2807 }
2808
2809 list_inithead(&device->memory_objects);
2810
2811 /* As per spec, the driver implementation may deny requests to acquire
2812 * a priority above the default priority (MEDIUM) if the caller does not
2813 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2814 * is returned.
2815 */
2816 if (physical_device->has_context_priority) {
2817 int err = anv_gem_set_context_param(device->fd, device->context_id,
2818 I915_CONTEXT_PARAM_PRIORITY,
2819 vk_priority_to_gen(priority));
2820 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2821 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2822 goto fail_vmas;
2823 }
2824 }
2825
2826 device->info = physical_device->info;
2827 device->isl_dev = physical_device->isl_dev;
2828
2829 /* On Broadwell and later, we can use batch chaining to more efficiently
2830 * implement growing command buffers. Prior to Haswell, the kernel
2831 * command parser gets in the way and we have to fall back to growing
2832 * the batch.
2833 */
2834 device->can_chain_batches = device->info.gen >= 8;
2835
2836 device->robust_buffer_access = robust_buffer_access;
2837 device->enabled_extensions = enabled_extensions;
2838
2839 anv_device_init_dispatch(device);
2840
2841 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2842 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2843 goto fail_queue;
2844 }
2845
2846 pthread_condattr_t condattr;
2847 if (pthread_condattr_init(&condattr) != 0) {
2848 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2849 goto fail_mutex;
2850 }
2851 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2852 pthread_condattr_destroy(&condattr);
2853 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2854 goto fail_mutex;
2855 }
2856 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2857 pthread_condattr_destroy(&condattr);
2858 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2859 goto fail_mutex;
2860 }
2861 pthread_condattr_destroy(&condattr);
2862
2863 result = anv_bo_cache_init(&device->bo_cache);
2864 if (result != VK_SUCCESS)
2865 goto fail_queue_cond;
2866
2867 anv_bo_pool_init(&device->batch_bo_pool, device);
2868
2869 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2870 DYNAMIC_STATE_POOL_MIN_ADDRESS, 16384);
2871 if (result != VK_SUCCESS)
2872 goto fail_batch_bo_pool;
2873
2874 result = anv_state_pool_init(&device->instruction_state_pool, device,
2875 INSTRUCTION_STATE_POOL_MIN_ADDRESS, 16384);
2876 if (result != VK_SUCCESS)
2877 goto fail_dynamic_state_pool;
2878
2879 result = anv_state_pool_init(&device->surface_state_pool, device,
2880 SURFACE_STATE_POOL_MIN_ADDRESS, 4096);
2881 if (result != VK_SUCCESS)
2882 goto fail_instruction_state_pool;
2883
2884 if (physical_device->use_softpin) {
2885 result = anv_state_pool_init(&device->binding_table_pool, device,
2886 BINDING_TABLE_POOL_MIN_ADDRESS, 4096);
2887 if (result != VK_SUCCESS)
2888 goto fail_surface_state_pool;
2889 }
2890
2891 if (device->info.gen >= 12) {
2892 device->aux_map_ctx = gen_aux_map_init(device, &aux_map_allocator,
2893 &physical_device->info);
2894 if (!device->aux_map_ctx)
2895 goto fail_binding_table_pool;
2896 }
2897
2898 result = anv_device_alloc_bo(device, 4096, 0 /* flags */,
2899 0 /* explicit_address */,
2900 &device->workaround_bo);
2901 if (result != VK_SUCCESS)
2902 goto fail_surface_aux_map_pool;
2903
2904 result = anv_device_init_trivial_batch(device);
2905 if (result != VK_SUCCESS)
2906 goto fail_workaround_bo;
2907
2908 /* Allocate a null surface state at surface state offset 0. This makes
2909 * NULL descriptor handling trivial because we can just memset structures
2910 * to zero and they have a valid descriptor.
2911 */
2912 device->null_surface_state =
2913 anv_state_pool_alloc(&device->surface_state_pool,
2914 device->isl_dev.ss.size,
2915 device->isl_dev.ss.align);
2916 isl_null_fill_state(&device->isl_dev, device->null_surface_state.map,
2917 isl_extent3d(1, 1, 1) /* This shouldn't matter */);
2918 assert(device->null_surface_state.offset == 0);
2919
2920 if (device->info.gen >= 10) {
2921 result = anv_device_init_hiz_clear_value_bo(device);
2922 if (result != VK_SUCCESS)
2923 goto fail_trivial_batch_bo;
2924 }
2925
2926 anv_scratch_pool_init(device, &device->scratch_pool);
2927
2928 switch (device->info.gen) {
2929 case 7:
2930 if (!device->info.is_haswell)
2931 result = gen7_init_device_state(device);
2932 else
2933 result = gen75_init_device_state(device);
2934 break;
2935 case 8:
2936 result = gen8_init_device_state(device);
2937 break;
2938 case 9:
2939 result = gen9_init_device_state(device);
2940 break;
2941 case 10:
2942 result = gen10_init_device_state(device);
2943 break;
2944 case 11:
2945 result = gen11_init_device_state(device);
2946 break;
2947 case 12:
2948 result = gen12_init_device_state(device);
2949 break;
2950 default:
2951 /* Shouldn't get here as we don't create physical devices for any other
2952 * gens. */
2953 unreachable("unhandled gen");
2954 }
2955 if (result != VK_SUCCESS)
2956 goto fail_workaround_bo;
2957
2958 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2959
2960 anv_device_init_blorp(device);
2961
2962 anv_device_init_border_colors(device);
2963
2964 anv_device_perf_init(device);
2965
2966 *pDevice = anv_device_to_handle(device);
2967
2968 return VK_SUCCESS;
2969
2970 fail_workaround_bo:
2971 anv_scratch_pool_finish(device, &device->scratch_pool);
2972 if (device->info.gen >= 10)
2973 anv_device_release_bo(device, device->hiz_clear_bo);
2974 anv_device_release_bo(device, device->workaround_bo);
2975 fail_trivial_batch_bo:
2976 anv_device_release_bo(device, device->trivial_batch_bo);
2977 fail_surface_aux_map_pool:
2978 if (device->info.gen >= 12) {
2979 gen_aux_map_finish(device->aux_map_ctx);
2980 device->aux_map_ctx = NULL;
2981 }
2982 fail_binding_table_pool:
2983 if (physical_device->use_softpin)
2984 anv_state_pool_finish(&device->binding_table_pool);
2985 fail_surface_state_pool:
2986 anv_state_pool_finish(&device->surface_state_pool);
2987 fail_instruction_state_pool:
2988 anv_state_pool_finish(&device->instruction_state_pool);
2989 fail_dynamic_state_pool:
2990 anv_state_pool_finish(&device->dynamic_state_pool);
2991 fail_batch_bo_pool:
2992 anv_bo_pool_finish(&device->batch_bo_pool);
2993 anv_bo_cache_finish(&device->bo_cache);
2994 fail_queue_cond:
2995 pthread_cond_destroy(&device->queue_submit);
2996 fail_mutex:
2997 pthread_mutex_destroy(&device->mutex);
2998 fail_vmas:
2999 if (physical_device->use_softpin) {
3000 util_vma_heap_finish(&device->vma_hi);
3001 util_vma_heap_finish(&device->vma_cva);
3002 util_vma_heap_finish(&device->vma_lo);
3003 }
3004 fail_queue:
3005 anv_queue_finish(&device->queue);
3006 fail_context_id:
3007 anv_gem_destroy_context(device, device->context_id);
3008 fail_fd:
3009 close(device->fd);
3010 fail_device:
3011 vk_free(&device->vk.alloc, device);
3012
3013 return result;
3014 }
3015
3016 void anv_DestroyDevice(
3017 VkDevice _device,
3018 const VkAllocationCallbacks* pAllocator)
3019 {
3020 ANV_FROM_HANDLE(anv_device, device, _device);
3021
3022 if (!device)
3023 return;
3024
3025 anv_device_finish_blorp(device);
3026
3027 anv_pipeline_cache_finish(&device->default_pipeline_cache);
3028
3029 anv_queue_finish(&device->queue);
3030
3031 #ifdef HAVE_VALGRIND
3032 /* We only need to free these to prevent valgrind errors. The backing
3033 * BO will go away in a couple of lines so we don't actually leak.
3034 */
3035 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
3036 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
3037 #endif
3038
3039 anv_scratch_pool_finish(device, &device->scratch_pool);
3040
3041 anv_device_release_bo(device, device->workaround_bo);
3042 anv_device_release_bo(device, device->trivial_batch_bo);
3043 if (device->info.gen >= 10)
3044 anv_device_release_bo(device, device->hiz_clear_bo);
3045
3046 if (device->info.gen >= 12) {
3047 gen_aux_map_finish(device->aux_map_ctx);
3048 device->aux_map_ctx = NULL;
3049 }
3050
3051 if (device->physical->use_softpin)
3052 anv_state_pool_finish(&device->binding_table_pool);
3053 anv_state_pool_finish(&device->surface_state_pool);
3054 anv_state_pool_finish(&device->instruction_state_pool);
3055 anv_state_pool_finish(&device->dynamic_state_pool);
3056
3057 anv_bo_pool_finish(&device->batch_bo_pool);
3058
3059 anv_bo_cache_finish(&device->bo_cache);
3060
3061 if (device->physical->use_softpin) {
3062 util_vma_heap_finish(&device->vma_hi);
3063 util_vma_heap_finish(&device->vma_cva);
3064 util_vma_heap_finish(&device->vma_lo);
3065 }
3066
3067 pthread_cond_destroy(&device->queue_submit);
3068 pthread_mutex_destroy(&device->mutex);
3069
3070 anv_gem_destroy_context(device, device->context_id);
3071
3072 if (INTEL_DEBUG & DEBUG_BATCH)
3073 gen_batch_decode_ctx_finish(&device->decoder_ctx);
3074
3075 close(device->fd);
3076
3077 vk_device_finish(&device->vk);
3078 vk_free(&device->vk.alloc, device);
3079 }
3080
3081 VkResult anv_EnumerateInstanceLayerProperties(
3082 uint32_t* pPropertyCount,
3083 VkLayerProperties* pProperties)
3084 {
3085 if (pProperties == NULL) {
3086 *pPropertyCount = 0;
3087 return VK_SUCCESS;
3088 }
3089
3090 /* None supported at this time */
3091 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
3092 }
3093
3094 VkResult anv_EnumerateDeviceLayerProperties(
3095 VkPhysicalDevice physicalDevice,
3096 uint32_t* pPropertyCount,
3097 VkLayerProperties* pProperties)
3098 {
3099 if (pProperties == NULL) {
3100 *pPropertyCount = 0;
3101 return VK_SUCCESS;
3102 }
3103
3104 /* None supported at this time */
3105 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
3106 }
3107
3108 void anv_GetDeviceQueue(
3109 VkDevice _device,
3110 uint32_t queueNodeIndex,
3111 uint32_t queueIndex,
3112 VkQueue* pQueue)
3113 {
3114 const VkDeviceQueueInfo2 info = {
3115 .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
3116 .pNext = NULL,
3117 .flags = 0,
3118 .queueFamilyIndex = queueNodeIndex,
3119 .queueIndex = queueIndex,
3120 };
3121
3122 anv_GetDeviceQueue2(_device, &info, pQueue);
3123 }
3124
3125 void anv_GetDeviceQueue2(
3126 VkDevice _device,
3127 const VkDeviceQueueInfo2* pQueueInfo,
3128 VkQueue* pQueue)
3129 {
3130 ANV_FROM_HANDLE(anv_device, device, _device);
3131
3132 assert(pQueueInfo->queueIndex == 0);
3133
3134 if (pQueueInfo->flags == device->queue.flags)
3135 *pQueue = anv_queue_to_handle(&device->queue);
3136 else
3137 *pQueue = NULL;
3138 }
3139
3140 VkResult
3141 _anv_device_set_lost(struct anv_device *device,
3142 const char *file, int line,
3143 const char *msg, ...)
3144 {
3145 VkResult err;
3146 va_list ap;
3147
3148 p_atomic_inc(&device->_lost);
3149
3150 va_start(ap, msg);
3151 err = __vk_errorv(device->physical->instance, device,
3152 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
3153 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
3154 va_end(ap);
3155
3156 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
3157 abort();
3158
3159 return err;
3160 }
3161
3162 VkResult
3163 _anv_queue_set_lost(struct anv_queue *queue,
3164 const char *file, int line,
3165 const char *msg, ...)
3166 {
3167 VkResult err;
3168 va_list ap;
3169
3170 p_atomic_inc(&queue->device->_lost);
3171
3172 va_start(ap, msg);
3173 err = __vk_errorv(queue->device->physical->instance, queue->device,
3174 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
3175 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
3176 va_end(ap);
3177
3178 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
3179 abort();
3180
3181 return err;
3182 }
3183
3184 VkResult
3185 anv_device_query_status(struct anv_device *device)
3186 {
3187 /* This isn't likely as most of the callers of this function already check
3188 * for it. However, it doesn't hurt to check and it potentially lets us
3189 * avoid an ioctl.
3190 */
3191 if (anv_device_is_lost(device))
3192 return VK_ERROR_DEVICE_LOST;
3193
3194 uint32_t active, pending;
3195 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
3196 if (ret == -1) {
3197 /* We don't know the real error. */
3198 return anv_device_set_lost(device, "get_reset_stats failed: %m");
3199 }
3200
3201 if (active) {
3202 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
3203 } else if (pending) {
3204 return anv_device_set_lost(device, "GPU hung with commands in-flight");
3205 }
3206
3207 return VK_SUCCESS;
3208 }
3209
3210 VkResult
3211 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
3212 {
3213 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
3214 * Other usages of the BO (such as on different hardware) will not be
3215 * flagged as "busy" by this ioctl. Use with care.
3216 */
3217 int ret = anv_gem_busy(device, bo->gem_handle);
3218 if (ret == 1) {
3219 return VK_NOT_READY;
3220 } else if (ret == -1) {
3221 /* We don't know the real error. */
3222 return anv_device_set_lost(device, "gem wait failed: %m");
3223 }
3224
3225 /* Query for device status after the busy call. If the BO we're checking
3226 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
3227 * client because it clearly doesn't have valid data. Yes, this most
3228 * likely means an ioctl, but we just did an ioctl to query the busy status
3229 * so it's no great loss.
3230 */
3231 return anv_device_query_status(device);
3232 }
3233
3234 VkResult
3235 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
3236 int64_t timeout)
3237 {
3238 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
3239 if (ret == -1 && errno == ETIME) {
3240 return VK_TIMEOUT;
3241 } else if (ret == -1) {
3242 /* We don't know the real error. */
3243 return anv_device_set_lost(device, "gem wait failed: %m");
3244 }
3245
3246 /* Query for device status after the wait. If the BO we're waiting on got
3247 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
3248 * because it clearly doesn't have valid data. Yes, this most likely means
3249 * an ioctl, but we just did an ioctl to wait so it's no great loss.
3250 */
3251 return anv_device_query_status(device);
3252 }
3253
3254 VkResult anv_DeviceWaitIdle(
3255 VkDevice _device)
3256 {
3257 ANV_FROM_HANDLE(anv_device, device, _device);
3258
3259 if (anv_device_is_lost(device))
3260 return VK_ERROR_DEVICE_LOST;
3261
3262 return anv_queue_submit_simple_batch(&device->queue, NULL);
3263 }
3264
3265 uint64_t
3266 anv_vma_alloc(struct anv_device *device,
3267 uint64_t size, uint64_t align,
3268 enum anv_bo_alloc_flags alloc_flags,
3269 uint64_t client_address)
3270 {
3271 pthread_mutex_lock(&device->vma_mutex);
3272
3273 uint64_t addr = 0;
3274
3275 if (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) {
3276 if (client_address) {
3277 if (util_vma_heap_alloc_addr(&device->vma_cva,
3278 client_address, size)) {
3279 addr = client_address;
3280 }
3281 } else {
3282 addr = util_vma_heap_alloc(&device->vma_cva, size, align);
3283 }
3284 /* We don't want to fall back to other heaps */
3285 goto done;
3286 }
3287
3288 assert(client_address == 0);
3289
3290 if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS))
3291 addr = util_vma_heap_alloc(&device->vma_hi, size, align);
3292
3293 if (addr == 0)
3294 addr = util_vma_heap_alloc(&device->vma_lo, size, align);
3295
3296 done:
3297 pthread_mutex_unlock(&device->vma_mutex);
3298
3299 assert(addr == gen_48b_address(addr));
3300 return gen_canonical_address(addr);
3301 }
3302
3303 void
3304 anv_vma_free(struct anv_device *device,
3305 uint64_t address, uint64_t size)
3306 {
3307 const uint64_t addr_48b = gen_48b_address(address);
3308
3309 pthread_mutex_lock(&device->vma_mutex);
3310
3311 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
3312 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
3313 util_vma_heap_free(&device->vma_lo, addr_48b, size);
3314 } else if (addr_48b >= CLIENT_VISIBLE_HEAP_MIN_ADDRESS &&
3315 addr_48b <= CLIENT_VISIBLE_HEAP_MAX_ADDRESS) {
3316 util_vma_heap_free(&device->vma_cva, addr_48b, size);
3317 } else {
3318 assert(addr_48b >= HIGH_HEAP_MIN_ADDRESS);
3319 util_vma_heap_free(&device->vma_hi, addr_48b, size);
3320 }
3321
3322 pthread_mutex_unlock(&device->vma_mutex);
3323 }
3324
3325 VkResult anv_AllocateMemory(
3326 VkDevice _device,
3327 const VkMemoryAllocateInfo* pAllocateInfo,
3328 const VkAllocationCallbacks* pAllocator,
3329 VkDeviceMemory* pMem)
3330 {
3331 ANV_FROM_HANDLE(anv_device, device, _device);
3332 struct anv_physical_device *pdevice = device->physical;
3333 struct anv_device_memory *mem;
3334 VkResult result = VK_SUCCESS;
3335
3336 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
3337
3338 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
3339 assert(pAllocateInfo->allocationSize > 0);
3340
3341 VkDeviceSize aligned_alloc_size =
3342 align_u64(pAllocateInfo->allocationSize, 4096);
3343
3344 if (aligned_alloc_size > MAX_MEMORY_ALLOCATION_SIZE)
3345 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3346
3347 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3348 struct anv_memory_type *mem_type =
3349 &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
3350 assert(mem_type->heapIndex < pdevice->memory.heap_count);
3351 struct anv_memory_heap *mem_heap =
3352 &pdevice->memory.heaps[mem_type->heapIndex];
3353
3354 uint64_t mem_heap_used = p_atomic_read(&mem_heap->used);
3355 if (mem_heap_used + aligned_alloc_size > mem_heap->size)
3356 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3357
3358 mem = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*mem), 8,
3359 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3360 if (mem == NULL)
3361 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3362
3363 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3364 vk_object_base_init(&device->vk, &mem->base, VK_OBJECT_TYPE_DEVICE_MEMORY);
3365 mem->type = mem_type;
3366 mem->map = NULL;
3367 mem->map_size = 0;
3368 mem->ahw = NULL;
3369 mem->host_ptr = NULL;
3370
3371 enum anv_bo_alloc_flags alloc_flags = 0;
3372
3373 const VkExportMemoryAllocateInfo *export_info = NULL;
3374 const VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info = NULL;
3375 const VkImportMemoryFdInfoKHR *fd_info = NULL;
3376 const VkImportMemoryHostPointerInfoEXT *host_ptr_info = NULL;
3377 const VkMemoryDedicatedAllocateInfo *dedicated_info = NULL;
3378 VkMemoryAllocateFlags vk_flags = 0;
3379 uint64_t client_address = 0;
3380
3381 vk_foreach_struct_const(ext, pAllocateInfo->pNext) {
3382 switch (ext->sType) {
3383 case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO:
3384 export_info = (void *)ext;
3385 break;
3386
3387 case VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID:
3388 ahw_import_info = (void *)ext;
3389 break;
3390
3391 case VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR:
3392 fd_info = (void *)ext;
3393 break;
3394
3395 case VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT:
3396 host_ptr_info = (void *)ext;
3397 break;
3398
3399 case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO: {
3400 const VkMemoryAllocateFlagsInfo *flags_info = (void *)ext;
3401 vk_flags = flags_info->flags;
3402 break;
3403 }
3404
3405 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO:
3406 dedicated_info = (void *)ext;
3407 break;
3408
3409 case VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO_KHR: {
3410 const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *addr_info =
3411 (const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *)ext;
3412 client_address = addr_info->opaqueCaptureAddress;
3413 break;
3414 }
3415
3416 default:
3417 anv_debug_ignored_stype(ext->sType);
3418 break;
3419 }
3420 }
3421
3422 /* By default, we want all VkDeviceMemory objects to support CCS */
3423 if (device->physical->has_implicit_ccs)
3424 alloc_flags |= ANV_BO_ALLOC_IMPLICIT_CCS;
3425
3426 if (vk_flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR)
3427 alloc_flags |= ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS;
3428
3429 if ((export_info && export_info->handleTypes) ||
3430 (fd_info && fd_info->handleType) ||
3431 (host_ptr_info && host_ptr_info->handleType)) {
3432 /* Anything imported or exported is EXTERNAL */
3433 alloc_flags |= ANV_BO_ALLOC_EXTERNAL;
3434
3435 /* We can't have implicit CCS on external memory with an AUX-table.
3436 * Doing so would require us to sync the aux tables across processes
3437 * which is impractical.
3438 */
3439 if (device->info.has_aux_map)
3440 alloc_flags &= ~ANV_BO_ALLOC_IMPLICIT_CCS;
3441 }
3442
3443 /* Check if we need to support Android HW buffer export. If so,
3444 * create AHardwareBuffer and import memory from it.
3445 */
3446 bool android_export = false;
3447 if (export_info && export_info->handleTypes &
3448 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
3449 android_export = true;
3450
3451 if (ahw_import_info) {
3452 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
3453 if (result != VK_SUCCESS)
3454 goto fail;
3455
3456 goto success;
3457 } else if (android_export) {
3458 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
3459 if (result != VK_SUCCESS)
3460 goto fail;
3461
3462 const VkImportAndroidHardwareBufferInfoANDROID import_info = {
3463 .buffer = mem->ahw,
3464 };
3465 result = anv_import_ahw_memory(_device, mem, &import_info);
3466 if (result != VK_SUCCESS)
3467 goto fail;
3468
3469 goto success;
3470 }
3471
3472 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3473 * ignored.
3474 */
3475 if (fd_info && fd_info->handleType) {
3476 /* At the moment, we support only the below handle types. */
3477 assert(fd_info->handleType ==
3478 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3479 fd_info->handleType ==
3480 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3481
3482 result = anv_device_import_bo(device, fd_info->fd, alloc_flags,
3483 client_address, &mem->bo);
3484 if (result != VK_SUCCESS)
3485 goto fail;
3486
3487 /* For security purposes, we reject importing the bo if it's smaller
3488 * than the requested allocation size. This prevents a malicious client
3489 * from passing a buffer to a trusted client, lying about the size, and
3490 * telling the trusted client to try and texture from an image that goes
3491 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3492 * in the trusted client. The trusted client can protect itself against
3493 * this sort of attack but only if it can trust the buffer size.
3494 */
3495 if (mem->bo->size < aligned_alloc_size) {
3496 result = vk_errorf(device, device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
3497 "aligned allocationSize too large for "
3498 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3499 "%"PRIu64"B > %"PRIu64"B",
3500 aligned_alloc_size, mem->bo->size);
3501 anv_device_release_bo(device, mem->bo);
3502 goto fail;
3503 }
3504
3505 /* From the Vulkan spec:
3506 *
3507 * "Importing memory from a file descriptor transfers ownership of
3508 * the file descriptor from the application to the Vulkan
3509 * implementation. The application must not perform any operations on
3510 * the file descriptor after a successful import."
3511 *
3512 * If the import fails, we leave the file descriptor open.
3513 */
3514 close(fd_info->fd);
3515 goto success;
3516 }
3517
3518 if (host_ptr_info && host_ptr_info->handleType) {
3519 if (host_ptr_info->handleType ==
3520 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3521 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3522 goto fail;
3523 }
3524
3525 assert(host_ptr_info->handleType ==
3526 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3527
3528 result = anv_device_import_bo_from_host_ptr(device,
3529 host_ptr_info->pHostPointer,
3530 pAllocateInfo->allocationSize,
3531 alloc_flags,
3532 client_address,
3533 &mem->bo);
3534 if (result != VK_SUCCESS)
3535 goto fail;
3536
3537 mem->host_ptr = host_ptr_info->pHostPointer;
3538 goto success;
3539 }
3540
3541 /* Regular allocate (not importing memory). */
3542
3543 result = anv_device_alloc_bo(device, pAllocateInfo->allocationSize,
3544 alloc_flags, client_address, &mem->bo);
3545 if (result != VK_SUCCESS)
3546 goto fail;
3547
3548 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3549 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3550
3551 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3552 * the BO. In this case, we have a dedicated allocation.
3553 */
3554 if (image->needs_set_tiling) {
3555 const uint32_t i915_tiling =
3556 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3557 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3558 image->planes[0].surface.isl.row_pitch_B,
3559 i915_tiling);
3560 if (ret) {
3561 anv_device_release_bo(device, mem->bo);
3562 result = vk_errorf(device, device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
3563 "failed to set BO tiling: %m");
3564 goto fail;
3565 }
3566 }
3567 }
3568
3569 success:
3570 mem_heap_used = p_atomic_add_return(&mem_heap->used, mem->bo->size);
3571 if (mem_heap_used > mem_heap->size) {
3572 p_atomic_add(&mem_heap->used, -mem->bo->size);
3573 anv_device_release_bo(device, mem->bo);
3574 result = vk_errorf(device, device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
3575 "Out of heap memory");
3576 goto fail;
3577 }
3578
3579 pthread_mutex_lock(&device->mutex);
3580 list_addtail(&mem->link, &device->memory_objects);
3581 pthread_mutex_unlock(&device->mutex);
3582
3583 *pMem = anv_device_memory_to_handle(mem);
3584
3585 return VK_SUCCESS;
3586
3587 fail:
3588 vk_free2(&device->vk.alloc, pAllocator, mem);
3589
3590 return result;
3591 }
3592
3593 VkResult anv_GetMemoryFdKHR(
3594 VkDevice device_h,
3595 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3596 int* pFd)
3597 {
3598 ANV_FROM_HANDLE(anv_device, dev, device_h);
3599 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3600
3601 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3602
3603 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3604 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3605
3606 return anv_device_export_bo(dev, mem->bo, pFd);
3607 }
3608
3609 VkResult anv_GetMemoryFdPropertiesKHR(
3610 VkDevice _device,
3611 VkExternalMemoryHandleTypeFlagBits handleType,
3612 int fd,
3613 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3614 {
3615 ANV_FROM_HANDLE(anv_device, device, _device);
3616
3617 switch (handleType) {
3618 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3619 /* dma-buf can be imported as any memory type */
3620 pMemoryFdProperties->memoryTypeBits =
3621 (1 << device->physical->memory.type_count) - 1;
3622 return VK_SUCCESS;
3623
3624 default:
3625 /* The valid usage section for this function says:
3626 *
3627 * "handleType must not be one of the handle types defined as
3628 * opaque."
3629 *
3630 * So opaque handle types fall into the default "unsupported" case.
3631 */
3632 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3633 }
3634 }
3635
3636 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3637 VkDevice _device,
3638 VkExternalMemoryHandleTypeFlagBits handleType,
3639 const void* pHostPointer,
3640 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3641 {
3642 ANV_FROM_HANDLE(anv_device, device, _device);
3643
3644 assert(pMemoryHostPointerProperties->sType ==
3645 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3646
3647 switch (handleType) {
3648 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT:
3649 /* Host memory can be imported as any memory type. */
3650 pMemoryHostPointerProperties->memoryTypeBits =
3651 (1ull << device->physical->memory.type_count) - 1;
3652
3653 return VK_SUCCESS;
3654
3655 default:
3656 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3657 }
3658 }
3659
3660 void anv_FreeMemory(
3661 VkDevice _device,
3662 VkDeviceMemory _mem,
3663 const VkAllocationCallbacks* pAllocator)
3664 {
3665 ANV_FROM_HANDLE(anv_device, device, _device);
3666 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3667
3668 if (mem == NULL)
3669 return;
3670
3671 pthread_mutex_lock(&device->mutex);
3672 list_del(&mem->link);
3673 pthread_mutex_unlock(&device->mutex);
3674
3675 if (mem->map)
3676 anv_UnmapMemory(_device, _mem);
3677
3678 p_atomic_add(&device->physical->memory.heaps[mem->type->heapIndex].used,
3679 -mem->bo->size);
3680
3681 anv_device_release_bo(device, mem->bo);
3682
3683 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3684 if (mem->ahw)
3685 AHardwareBuffer_release(mem->ahw);
3686 #endif
3687
3688 vk_object_base_finish(&mem->base);
3689 vk_free2(&device->vk.alloc, pAllocator, mem);
3690 }
3691
3692 VkResult anv_MapMemory(
3693 VkDevice _device,
3694 VkDeviceMemory _memory,
3695 VkDeviceSize offset,
3696 VkDeviceSize size,
3697 VkMemoryMapFlags flags,
3698 void** ppData)
3699 {
3700 ANV_FROM_HANDLE(anv_device, device, _device);
3701 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3702
3703 if (mem == NULL) {
3704 *ppData = NULL;
3705 return VK_SUCCESS;
3706 }
3707
3708 if (mem->host_ptr) {
3709 *ppData = mem->host_ptr + offset;
3710 return VK_SUCCESS;
3711 }
3712
3713 if (size == VK_WHOLE_SIZE)
3714 size = mem->bo->size - offset;
3715
3716 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3717 *
3718 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3719 * assert(size != 0);
3720 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3721 * equal to the size of the memory minus offset
3722 */
3723 assert(size > 0);
3724 assert(offset + size <= mem->bo->size);
3725
3726 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3727 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3728 * at a time is valid. We could just mmap up front and return an offset
3729 * pointer here, but that may exhaust virtual memory on 32 bit
3730 * userspace. */
3731
3732 uint32_t gem_flags = 0;
3733
3734 if (!device->info.has_llc &&
3735 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3736 gem_flags |= I915_MMAP_WC;
3737
3738 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3739 uint64_t map_offset;
3740 if (!device->physical->has_mmap_offset)
3741 map_offset = offset & ~4095ull;
3742 else
3743 map_offset = 0;
3744 assert(offset >= map_offset);
3745 uint64_t map_size = (offset + size) - map_offset;
3746
3747 /* Let's map whole pages */
3748 map_size = align_u64(map_size, 4096);
3749
3750 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3751 map_offset, map_size, gem_flags);
3752 if (map == MAP_FAILED)
3753 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3754
3755 mem->map = map;
3756 mem->map_size = map_size;
3757
3758 *ppData = mem->map + (offset - map_offset);
3759
3760 return VK_SUCCESS;
3761 }
3762
3763 void anv_UnmapMemory(
3764 VkDevice _device,
3765 VkDeviceMemory _memory)
3766 {
3767 ANV_FROM_HANDLE(anv_device, device, _device);
3768 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3769
3770 if (mem == NULL || mem->host_ptr)
3771 return;
3772
3773 anv_gem_munmap(device, mem->map, mem->map_size);
3774
3775 mem->map = NULL;
3776 mem->map_size = 0;
3777 }
3778
3779 static void
3780 clflush_mapped_ranges(struct anv_device *device,
3781 uint32_t count,
3782 const VkMappedMemoryRange *ranges)
3783 {
3784 for (uint32_t i = 0; i < count; i++) {
3785 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3786 if (ranges[i].offset >= mem->map_size)
3787 continue;
3788
3789 gen_clflush_range(mem->map + ranges[i].offset,
3790 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3791 }
3792 }
3793
3794 VkResult anv_FlushMappedMemoryRanges(
3795 VkDevice _device,
3796 uint32_t memoryRangeCount,
3797 const VkMappedMemoryRange* pMemoryRanges)
3798 {
3799 ANV_FROM_HANDLE(anv_device, device, _device);
3800
3801 if (device->info.has_llc)
3802 return VK_SUCCESS;
3803
3804 /* Make sure the writes we're flushing have landed. */
3805 __builtin_ia32_mfence();
3806
3807 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3808
3809 return VK_SUCCESS;
3810 }
3811
3812 VkResult anv_InvalidateMappedMemoryRanges(
3813 VkDevice _device,
3814 uint32_t memoryRangeCount,
3815 const VkMappedMemoryRange* pMemoryRanges)
3816 {
3817 ANV_FROM_HANDLE(anv_device, device, _device);
3818
3819 if (device->info.has_llc)
3820 return VK_SUCCESS;
3821
3822 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3823
3824 /* Make sure no reads get moved up above the invalidate. */
3825 __builtin_ia32_mfence();
3826
3827 return VK_SUCCESS;
3828 }
3829
3830 void anv_GetBufferMemoryRequirements(
3831 VkDevice _device,
3832 VkBuffer _buffer,
3833 VkMemoryRequirements* pMemoryRequirements)
3834 {
3835 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3836 ANV_FROM_HANDLE(anv_device, device, _device);
3837
3838 /* The Vulkan spec (git aaed022) says:
3839 *
3840 * memoryTypeBits is a bitfield and contains one bit set for every
3841 * supported memory type for the resource. The bit `1<<i` is set if and
3842 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3843 * structure for the physical device is supported.
3844 */
3845 uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
3846
3847 /* Base alignment requirement of a cache line */
3848 uint32_t alignment = 16;
3849
3850 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3851 alignment = MAX2(alignment, ANV_UBO_ALIGNMENT);
3852
3853 pMemoryRequirements->size = buffer->size;
3854 pMemoryRequirements->alignment = alignment;
3855
3856 /* Storage and Uniform buffers should have their size aligned to
3857 * 32-bits to avoid boundary checks when last DWord is not complete.
3858 * This would ensure that not internal padding would be needed for
3859 * 16-bit types.
3860 */
3861 if (device->robust_buffer_access &&
3862 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3863 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3864 pMemoryRequirements->size = align_u64(buffer->size, 4);
3865
3866 pMemoryRequirements->memoryTypeBits = memory_types;
3867 }
3868
3869 void anv_GetBufferMemoryRequirements2(
3870 VkDevice _device,
3871 const VkBufferMemoryRequirementsInfo2* pInfo,
3872 VkMemoryRequirements2* pMemoryRequirements)
3873 {
3874 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3875 &pMemoryRequirements->memoryRequirements);
3876
3877 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3878 switch (ext->sType) {
3879 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3880 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3881 requirements->prefersDedicatedAllocation = false;
3882 requirements->requiresDedicatedAllocation = false;
3883 break;
3884 }
3885
3886 default:
3887 anv_debug_ignored_stype(ext->sType);
3888 break;
3889 }
3890 }
3891 }
3892
3893 void anv_GetImageMemoryRequirements(
3894 VkDevice _device,
3895 VkImage _image,
3896 VkMemoryRequirements* pMemoryRequirements)
3897 {
3898 ANV_FROM_HANDLE(anv_image, image, _image);
3899 ANV_FROM_HANDLE(anv_device, device, _device);
3900
3901 /* The Vulkan spec (git aaed022) says:
3902 *
3903 * memoryTypeBits is a bitfield and contains one bit set for every
3904 * supported memory type for the resource. The bit `1<<i` is set if and
3905 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3906 * structure for the physical device is supported.
3907 *
3908 * All types are currently supported for images.
3909 */
3910 uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
3911
3912 pMemoryRequirements->size = image->size;
3913 pMemoryRequirements->alignment = image->alignment;
3914 pMemoryRequirements->memoryTypeBits = memory_types;
3915 }
3916
3917 void anv_GetImageMemoryRequirements2(
3918 VkDevice _device,
3919 const VkImageMemoryRequirementsInfo2* pInfo,
3920 VkMemoryRequirements2* pMemoryRequirements)
3921 {
3922 ANV_FROM_HANDLE(anv_device, device, _device);
3923 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3924
3925 anv_GetImageMemoryRequirements(_device, pInfo->image,
3926 &pMemoryRequirements->memoryRequirements);
3927
3928 vk_foreach_struct_const(ext, pInfo->pNext) {
3929 switch (ext->sType) {
3930 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3931 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3932 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3933 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3934 plane_reqs->planeAspect);
3935
3936 assert(image->planes[plane].offset == 0);
3937
3938 /* The Vulkan spec (git aaed022) says:
3939 *
3940 * memoryTypeBits is a bitfield and contains one bit set for every
3941 * supported memory type for the resource. The bit `1<<i` is set
3942 * if and only if the memory type `i` in the
3943 * VkPhysicalDeviceMemoryProperties structure for the physical
3944 * device is supported.
3945 *
3946 * All types are currently supported for images.
3947 */
3948 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3949 (1ull << device->physical->memory.type_count) - 1;
3950
3951 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3952 pMemoryRequirements->memoryRequirements.alignment =
3953 image->planes[plane].alignment;
3954 break;
3955 }
3956
3957 default:
3958 anv_debug_ignored_stype(ext->sType);
3959 break;
3960 }
3961 }
3962
3963 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3964 switch (ext->sType) {
3965 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3966 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3967 if (image->needs_set_tiling || image->external_format) {
3968 /* If we need to set the tiling for external consumers, we need a
3969 * dedicated allocation.
3970 *
3971 * See also anv_AllocateMemory.
3972 */
3973 requirements->prefersDedicatedAllocation = true;
3974 requirements->requiresDedicatedAllocation = true;
3975 } else {
3976 requirements->prefersDedicatedAllocation = false;
3977 requirements->requiresDedicatedAllocation = false;
3978 }
3979 break;
3980 }
3981
3982 default:
3983 anv_debug_ignored_stype(ext->sType);
3984 break;
3985 }
3986 }
3987 }
3988
3989 void anv_GetImageSparseMemoryRequirements(
3990 VkDevice device,
3991 VkImage image,
3992 uint32_t* pSparseMemoryRequirementCount,
3993 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3994 {
3995 *pSparseMemoryRequirementCount = 0;
3996 }
3997
3998 void anv_GetImageSparseMemoryRequirements2(
3999 VkDevice device,
4000 const VkImageSparseMemoryRequirementsInfo2* pInfo,
4001 uint32_t* pSparseMemoryRequirementCount,
4002 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
4003 {
4004 *pSparseMemoryRequirementCount = 0;
4005 }
4006
4007 void anv_GetDeviceMemoryCommitment(
4008 VkDevice device,
4009 VkDeviceMemory memory,
4010 VkDeviceSize* pCommittedMemoryInBytes)
4011 {
4012 *pCommittedMemoryInBytes = 0;
4013 }
4014
4015 static void
4016 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
4017 {
4018 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
4019 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
4020
4021 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
4022
4023 if (mem) {
4024 buffer->address = (struct anv_address) {
4025 .bo = mem->bo,
4026 .offset = pBindInfo->memoryOffset,
4027 };
4028 } else {
4029 buffer->address = ANV_NULL_ADDRESS;
4030 }
4031 }
4032
4033 VkResult anv_BindBufferMemory(
4034 VkDevice device,
4035 VkBuffer buffer,
4036 VkDeviceMemory memory,
4037 VkDeviceSize memoryOffset)
4038 {
4039 anv_bind_buffer_memory(
4040 &(VkBindBufferMemoryInfo) {
4041 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
4042 .buffer = buffer,
4043 .memory = memory,
4044 .memoryOffset = memoryOffset,
4045 });
4046
4047 return VK_SUCCESS;
4048 }
4049
4050 VkResult anv_BindBufferMemory2(
4051 VkDevice device,
4052 uint32_t bindInfoCount,
4053 const VkBindBufferMemoryInfo* pBindInfos)
4054 {
4055 for (uint32_t i = 0; i < bindInfoCount; i++)
4056 anv_bind_buffer_memory(&pBindInfos[i]);
4057
4058 return VK_SUCCESS;
4059 }
4060
4061 VkResult anv_QueueBindSparse(
4062 VkQueue _queue,
4063 uint32_t bindInfoCount,
4064 const VkBindSparseInfo* pBindInfo,
4065 VkFence fence)
4066 {
4067 ANV_FROM_HANDLE(anv_queue, queue, _queue);
4068 if (anv_device_is_lost(queue->device))
4069 return VK_ERROR_DEVICE_LOST;
4070
4071 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
4072 }
4073
4074 // Event functions
4075
4076 VkResult anv_CreateEvent(
4077 VkDevice _device,
4078 const VkEventCreateInfo* pCreateInfo,
4079 const VkAllocationCallbacks* pAllocator,
4080 VkEvent* pEvent)
4081 {
4082 ANV_FROM_HANDLE(anv_device, device, _device);
4083 struct anv_event *event;
4084
4085 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
4086
4087 event = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*event), 8,
4088 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4089 if (event == NULL)
4090 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4091
4092 vk_object_base_init(&device->vk, &event->base, VK_OBJECT_TYPE_EVENT);
4093 event->state = anv_state_pool_alloc(&device->dynamic_state_pool,
4094 sizeof(uint64_t), 8);
4095 *(uint64_t *)event->state.map = VK_EVENT_RESET;
4096
4097 *pEvent = anv_event_to_handle(event);
4098
4099 return VK_SUCCESS;
4100 }
4101
4102 void anv_DestroyEvent(
4103 VkDevice _device,
4104 VkEvent _event,
4105 const VkAllocationCallbacks* pAllocator)
4106 {
4107 ANV_FROM_HANDLE(anv_device, device, _device);
4108 ANV_FROM_HANDLE(anv_event, event, _event);
4109
4110 if (!event)
4111 return;
4112
4113 anv_state_pool_free(&device->dynamic_state_pool, event->state);
4114
4115 vk_object_base_finish(&event->base);
4116 vk_free2(&device->vk.alloc, pAllocator, event);
4117 }
4118
4119 VkResult anv_GetEventStatus(
4120 VkDevice _device,
4121 VkEvent _event)
4122 {
4123 ANV_FROM_HANDLE(anv_device, device, _device);
4124 ANV_FROM_HANDLE(anv_event, event, _event);
4125
4126 if (anv_device_is_lost(device))
4127 return VK_ERROR_DEVICE_LOST;
4128
4129 return *(uint64_t *)event->state.map;
4130 }
4131
4132 VkResult anv_SetEvent(
4133 VkDevice _device,
4134 VkEvent _event)
4135 {
4136 ANV_FROM_HANDLE(anv_event, event, _event);
4137
4138 *(uint64_t *)event->state.map = VK_EVENT_SET;
4139
4140 return VK_SUCCESS;
4141 }
4142
4143 VkResult anv_ResetEvent(
4144 VkDevice _device,
4145 VkEvent _event)
4146 {
4147 ANV_FROM_HANDLE(anv_event, event, _event);
4148
4149 *(uint64_t *)event->state.map = VK_EVENT_RESET;
4150
4151 return VK_SUCCESS;
4152 }
4153
4154 // Buffer functions
4155
4156 VkResult anv_CreateBuffer(
4157 VkDevice _device,
4158 const VkBufferCreateInfo* pCreateInfo,
4159 const VkAllocationCallbacks* pAllocator,
4160 VkBuffer* pBuffer)
4161 {
4162 ANV_FROM_HANDLE(anv_device, device, _device);
4163 struct anv_buffer *buffer;
4164
4165 /* Don't allow creating buffers bigger than our address space. The real
4166 * issue here is that we may align up the buffer size and we don't want
4167 * doing so to cause roll-over. However, no one has any business
4168 * allocating a buffer larger than our GTT size.
4169 */
4170 if (pCreateInfo->size > device->physical->gtt_size)
4171 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
4172
4173 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
4174
4175 buffer = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*buffer), 8,
4176 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4177 if (buffer == NULL)
4178 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4179
4180 vk_object_base_init(&device->vk, &buffer->base, VK_OBJECT_TYPE_BUFFER);
4181 buffer->size = pCreateInfo->size;
4182 buffer->usage = pCreateInfo->usage;
4183 buffer->address = ANV_NULL_ADDRESS;
4184
4185 *pBuffer = anv_buffer_to_handle(buffer);
4186
4187 return VK_SUCCESS;
4188 }
4189
4190 void anv_DestroyBuffer(
4191 VkDevice _device,
4192 VkBuffer _buffer,
4193 const VkAllocationCallbacks* pAllocator)
4194 {
4195 ANV_FROM_HANDLE(anv_device, device, _device);
4196 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4197
4198 if (!buffer)
4199 return;
4200
4201 vk_object_base_finish(&buffer->base);
4202 vk_free2(&device->vk.alloc, pAllocator, buffer);
4203 }
4204
4205 VkDeviceAddress anv_GetBufferDeviceAddress(
4206 VkDevice device,
4207 const VkBufferDeviceAddressInfoKHR* pInfo)
4208 {
4209 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
4210
4211 assert(!anv_address_is_null(buffer->address));
4212 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
4213
4214 return anv_address_physical(buffer->address);
4215 }
4216
4217 uint64_t anv_GetBufferOpaqueCaptureAddress(
4218 VkDevice device,
4219 const VkBufferDeviceAddressInfoKHR* pInfo)
4220 {
4221 return 0;
4222 }
4223
4224 uint64_t anv_GetDeviceMemoryOpaqueCaptureAddress(
4225 VkDevice device,
4226 const VkDeviceMemoryOpaqueCaptureAddressInfoKHR* pInfo)
4227 {
4228 ANV_FROM_HANDLE(anv_device_memory, memory, pInfo->memory);
4229
4230 assert(memory->bo->flags & EXEC_OBJECT_PINNED);
4231 assert(memory->bo->has_client_visible_address);
4232
4233 return gen_48b_address(memory->bo->offset);
4234 }
4235
4236 void
4237 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
4238 enum isl_format format,
4239 struct anv_address address,
4240 uint32_t range, uint32_t stride)
4241 {
4242 isl_buffer_fill_state(&device->isl_dev, state.map,
4243 .address = anv_address_physical(address),
4244 .mocs = device->isl_dev.mocs.internal,
4245 .size_B = range,
4246 .format = format,
4247 .swizzle = ISL_SWIZZLE_IDENTITY,
4248 .stride_B = stride);
4249 }
4250
4251 void anv_DestroySampler(
4252 VkDevice _device,
4253 VkSampler _sampler,
4254 const VkAllocationCallbacks* pAllocator)
4255 {
4256 ANV_FROM_HANDLE(anv_device, device, _device);
4257 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
4258
4259 if (!sampler)
4260 return;
4261
4262 if (sampler->bindless_state.map) {
4263 anv_state_pool_free(&device->dynamic_state_pool,
4264 sampler->bindless_state);
4265 }
4266
4267 vk_object_base_finish(&sampler->base);
4268 vk_free2(&device->vk.alloc, pAllocator, sampler);
4269 }
4270
4271 VkResult anv_CreateFramebuffer(
4272 VkDevice _device,
4273 const VkFramebufferCreateInfo* pCreateInfo,
4274 const VkAllocationCallbacks* pAllocator,
4275 VkFramebuffer* pFramebuffer)
4276 {
4277 ANV_FROM_HANDLE(anv_device, device, _device);
4278 struct anv_framebuffer *framebuffer;
4279
4280 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
4281
4282 size_t size = sizeof(*framebuffer);
4283
4284 /* VK_KHR_imageless_framebuffer extension says:
4285 *
4286 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
4287 * parameter pAttachments is ignored.
4288 */
4289 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
4290 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
4291 framebuffer = vk_alloc2(&device->vk.alloc, pAllocator, size, 8,
4292 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4293 if (framebuffer == NULL)
4294 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4295
4296 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
4297 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
4298 framebuffer->attachments[i] = iview;
4299 }
4300 framebuffer->attachment_count = pCreateInfo->attachmentCount;
4301 } else {
4302 framebuffer = vk_alloc2(&device->vk.alloc, pAllocator, size, 8,
4303 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4304 if (framebuffer == NULL)
4305 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4306
4307 framebuffer->attachment_count = 0;
4308 }
4309
4310 vk_object_base_init(&device->vk, &framebuffer->base,
4311 VK_OBJECT_TYPE_FRAMEBUFFER);
4312
4313 framebuffer->width = pCreateInfo->width;
4314 framebuffer->height = pCreateInfo->height;
4315 framebuffer->layers = pCreateInfo->layers;
4316
4317 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
4318
4319 return VK_SUCCESS;
4320 }
4321
4322 void anv_DestroyFramebuffer(
4323 VkDevice _device,
4324 VkFramebuffer _fb,
4325 const VkAllocationCallbacks* pAllocator)
4326 {
4327 ANV_FROM_HANDLE(anv_device, device, _device);
4328 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
4329
4330 if (!fb)
4331 return;
4332
4333 vk_object_base_finish(&fb->base);
4334 vk_free2(&device->vk.alloc, pAllocator, fb);
4335 }
4336
4337 static const VkTimeDomainEXT anv_time_domains[] = {
4338 VK_TIME_DOMAIN_DEVICE_EXT,
4339 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
4340 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
4341 };
4342
4343 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
4344 VkPhysicalDevice physicalDevice,
4345 uint32_t *pTimeDomainCount,
4346 VkTimeDomainEXT *pTimeDomains)
4347 {
4348 int d;
4349 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
4350
4351 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
4352 vk_outarray_append(&out, i) {
4353 *i = anv_time_domains[d];
4354 }
4355 }
4356
4357 return vk_outarray_status(&out);
4358 }
4359
4360 static uint64_t
4361 anv_clock_gettime(clockid_t clock_id)
4362 {
4363 struct timespec current;
4364 int ret;
4365
4366 ret = clock_gettime(clock_id, &current);
4367 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
4368 ret = clock_gettime(CLOCK_MONOTONIC, &current);
4369 if (ret < 0)
4370 return 0;
4371
4372 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
4373 }
4374
4375 #define TIMESTAMP 0x2358
4376
4377 VkResult anv_GetCalibratedTimestampsEXT(
4378 VkDevice _device,
4379 uint32_t timestampCount,
4380 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
4381 uint64_t *pTimestamps,
4382 uint64_t *pMaxDeviation)
4383 {
4384 ANV_FROM_HANDLE(anv_device, device, _device);
4385 uint64_t timestamp_frequency = device->info.timestamp_frequency;
4386 int ret;
4387 int d;
4388 uint64_t begin, end;
4389 uint64_t max_clock_period = 0;
4390
4391 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4392
4393 for (d = 0; d < timestampCount; d++) {
4394 switch (pTimestampInfos[d].timeDomain) {
4395 case VK_TIME_DOMAIN_DEVICE_EXT:
4396 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
4397 &pTimestamps[d]);
4398
4399 if (ret != 0) {
4400 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
4401 "register: %m");
4402 }
4403 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
4404 max_clock_period = MAX2(max_clock_period, device_period);
4405 break;
4406 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
4407 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
4408 max_clock_period = MAX2(max_clock_period, 1);
4409 break;
4410
4411 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
4412 pTimestamps[d] = begin;
4413 break;
4414 default:
4415 pTimestamps[d] = 0;
4416 break;
4417 }
4418 }
4419
4420 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4421
4422 /*
4423 * The maximum deviation is the sum of the interval over which we
4424 * perform the sampling and the maximum period of any sampled
4425 * clock. That's because the maximum skew between any two sampled
4426 * clock edges is when the sampled clock with the largest period is
4427 * sampled at the end of that period but right at the beginning of the
4428 * sampling interval and some other clock is sampled right at the
4429 * begining of its sampling period and right at the end of the
4430 * sampling interval. Let's assume the GPU has the longest clock
4431 * period and that the application is sampling GPU and monotonic:
4432 *
4433 * s e
4434 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
4435 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4436 *
4437 * g
4438 * 0 1 2 3
4439 * GPU -----_____-----_____-----_____-----_____
4440 *
4441 * m
4442 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
4443 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4444 *
4445 * Interval <----------------->
4446 * Deviation <-------------------------->
4447 *
4448 * s = read(raw) 2
4449 * g = read(GPU) 1
4450 * m = read(monotonic) 2
4451 * e = read(raw) b
4452 *
4453 * We round the sample interval up by one tick to cover sampling error
4454 * in the interval clock
4455 */
4456
4457 uint64_t sample_interval = end - begin + 1;
4458
4459 *pMaxDeviation = sample_interval + max_clock_period;
4460
4461 return VK_SUCCESS;
4462 }
4463
4464 /* vk_icd.h does not declare this function, so we declare it here to
4465 * suppress Wmissing-prototypes.
4466 */
4467 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4468 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4469
4470 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4471 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4472 {
4473 /* For the full details on loader interface versioning, see
4474 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4475 * What follows is a condensed summary, to help you navigate the large and
4476 * confusing official doc.
4477 *
4478 * - Loader interface v0 is incompatible with later versions. We don't
4479 * support it.
4480 *
4481 * - In loader interface v1:
4482 * - The first ICD entrypoint called by the loader is
4483 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4484 * entrypoint.
4485 * - The ICD must statically expose no other Vulkan symbol unless it is
4486 * linked with -Bsymbolic.
4487 * - Each dispatchable Vulkan handle created by the ICD must be
4488 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4489 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4490 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4491 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4492 * such loader-managed surfaces.
4493 *
4494 * - Loader interface v2 differs from v1 in:
4495 * - The first ICD entrypoint called by the loader is
4496 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4497 * statically expose this entrypoint.
4498 *
4499 * - Loader interface v3 differs from v2 in:
4500 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4501 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4502 * because the loader no longer does so.
4503 *
4504 * - Loader interface v4 differs from v3 in:
4505 * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
4506 */
4507 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
4508 return VK_SUCCESS;
4509 }