anv: Advertise VK_EXT_shader_demote_to_helper_invocation
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/os_file.h"
41 #include "util/u_atomic.h"
42 #include "util/u_string.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_defines.h"
46 #include "compiler/glsl_types.h"
47
48 #include "genxml/gen7_pack.h"
49
50 /* This is probably far to big but it reflects the max size used for messages
51 * in OpenGLs KHR_debug.
52 */
53 #define MAX_DEBUG_MESSAGE_LENGTH 4096
54
55 static void
56 compiler_debug_log(void *data, const char *fmt, ...)
57 {
58 char str[MAX_DEBUG_MESSAGE_LENGTH];
59 struct anv_device *device = (struct anv_device *)data;
60
61 if (list_empty(&device->instance->debug_report_callbacks.callbacks))
62 return;
63
64 va_list args;
65 va_start(args, fmt);
66 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
67 va_end(args);
68
69 vk_debug_report(&device->instance->debug_report_callbacks,
70 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
71 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
72 0, 0, 0, "anv", str);
73 }
74
75 static void
76 compiler_perf_log(void *data, const char *fmt, ...)
77 {
78 va_list args;
79 va_start(args, fmt);
80
81 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
82 intel_logd_v(fmt, args);
83
84 va_end(args);
85 }
86
87 static uint64_t
88 anv_compute_heap_size(int fd, uint64_t gtt_size)
89 {
90 /* Query the total ram from the system */
91 struct sysinfo info;
92 sysinfo(&info);
93
94 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
95
96 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
97 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
98 */
99 uint64_t available_ram;
100 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
101 available_ram = total_ram / 2;
102 else
103 available_ram = total_ram * 3 / 4;
104
105 /* We also want to leave some padding for things we allocate in the driver,
106 * so don't go over 3/4 of the GTT either.
107 */
108 uint64_t available_gtt = gtt_size * 3 / 4;
109
110 return MIN2(available_ram, available_gtt);
111 }
112
113 static VkResult
114 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
115 {
116 uint64_t gtt_size;
117 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
118 &gtt_size) == -1) {
119 /* If, for whatever reason, we can't actually get the GTT size from the
120 * kernel (too old?) fall back to the aperture size.
121 */
122 anv_perf_warn(NULL, NULL,
123 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
124
125 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
126 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
127 "failed to get aperture size: %m");
128 }
129 }
130
131 device->supports_48bit_addresses = (device->info.gen >= 8) &&
132 gtt_size > (4ULL << 30 /* GiB */);
133
134 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
135
136 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
137 /* When running with an overridden PCI ID, we may get a GTT size from
138 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
139 * address support can still fail. Just clamp the address space size to
140 * 2 GiB if we don't have 48-bit support.
141 */
142 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
143 "not support for 48-bit addresses",
144 __FILE__, __LINE__);
145 heap_size = 2ull << 30;
146 }
147
148 if (heap_size <= 3ull * (1ull << 30)) {
149 /* In this case, everything fits nicely into the 32-bit address space,
150 * so there's no need for supporting 48bit addresses on client-allocated
151 * memory objects.
152 */
153 device->memory.heap_count = 1;
154 device->memory.heaps[0] = (struct anv_memory_heap) {
155 .vma_start = LOW_HEAP_MIN_ADDRESS,
156 .vma_size = LOW_HEAP_SIZE,
157 .size = heap_size,
158 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
159 .supports_48bit_addresses = false,
160 };
161 } else {
162 /* Not everything will fit nicely into a 32-bit address space. In this
163 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
164 * larger 48-bit heap. If we're in this case, then we have a total heap
165 * size larger than 3GiB which most likely means they have 8 GiB of
166 * video memory and so carving off 1 GiB for the 32-bit heap should be
167 * reasonable.
168 */
169 const uint64_t heap_size_32bit = 1ull << 30;
170 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
171
172 assert(device->supports_48bit_addresses);
173
174 device->memory.heap_count = 2;
175 device->memory.heaps[0] = (struct anv_memory_heap) {
176 .vma_start = HIGH_HEAP_MIN_ADDRESS,
177 /* Leave the last 4GiB out of the high vma range, so that no state
178 * base address + size can overflow 48 bits. For more information see
179 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
180 */
181 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
182 .size = heap_size_48bit,
183 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
184 .supports_48bit_addresses = true,
185 };
186 device->memory.heaps[1] = (struct anv_memory_heap) {
187 .vma_start = LOW_HEAP_MIN_ADDRESS,
188 .vma_size = LOW_HEAP_SIZE,
189 .size = heap_size_32bit,
190 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
191 .supports_48bit_addresses = false,
192 };
193 }
194
195 uint32_t type_count = 0;
196 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
197 uint32_t valid_buffer_usage = ~0;
198
199 /* There appears to be a hardware issue in the VF cache where it only
200 * considers the bottom 32 bits of memory addresses. If you happen to
201 * have two vertex buffers which get placed exactly 4 GiB apart and use
202 * them in back-to-back draw calls, you can get collisions. In order to
203 * solve this problem, we require vertex and index buffers be bound to
204 * memory allocated out of the 32-bit heap.
205 */
206 if (device->memory.heaps[heap].supports_48bit_addresses) {
207 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
208 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
209 }
210
211 if (device->info.has_llc) {
212 /* Big core GPUs share LLC with the CPU and thus one memory type can be
213 * both cached and coherent at the same time.
214 */
215 device->memory.types[type_count++] = (struct anv_memory_type) {
216 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
217 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
218 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
219 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
220 .heapIndex = heap,
221 .valid_buffer_usage = valid_buffer_usage,
222 };
223 } else {
224 /* The spec requires that we expose a host-visible, coherent memory
225 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
226 * to give the application a choice between cached, but not coherent and
227 * coherent but uncached (WC though).
228 */
229 device->memory.types[type_count++] = (struct anv_memory_type) {
230 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
231 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
232 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
233 .heapIndex = heap,
234 .valid_buffer_usage = valid_buffer_usage,
235 };
236 device->memory.types[type_count++] = (struct anv_memory_type) {
237 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
238 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
239 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
240 .heapIndex = heap,
241 .valid_buffer_usage = valid_buffer_usage,
242 };
243 }
244 }
245 device->memory.type_count = type_count;
246
247 return VK_SUCCESS;
248 }
249
250 static VkResult
251 anv_physical_device_init_uuids(struct anv_physical_device *device)
252 {
253 const struct build_id_note *note =
254 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
255 if (!note) {
256 return vk_errorf(device->instance, device,
257 VK_ERROR_INITIALIZATION_FAILED,
258 "Failed to find build-id");
259 }
260
261 unsigned build_id_len = build_id_length(note);
262 if (build_id_len < 20) {
263 return vk_errorf(device->instance, device,
264 VK_ERROR_INITIALIZATION_FAILED,
265 "build-id too short. It needs to be a SHA");
266 }
267
268 memcpy(device->driver_build_sha1, build_id_data(note), 20);
269
270 struct mesa_sha1 sha1_ctx;
271 uint8_t sha1[20];
272 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
273
274 /* The pipeline cache UUID is used for determining when a pipeline cache is
275 * invalid. It needs both a driver build and the PCI ID of the device.
276 */
277 _mesa_sha1_init(&sha1_ctx);
278 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
279 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
280 sizeof(device->chipset_id));
281 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
282 sizeof(device->always_use_bindless));
283 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
284 sizeof(device->has_a64_buffer_access));
285 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
286 sizeof(device->has_bindless_images));
287 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
288 sizeof(device->has_bindless_samplers));
289 _mesa_sha1_final(&sha1_ctx, sha1);
290 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
291
292 /* The driver UUID is used for determining sharability of images and memory
293 * between two Vulkan instances in separate processes. People who want to
294 * share memory need to also check the device UUID (below) so all this
295 * needs to be is the build-id.
296 */
297 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
298
299 /* The device UUID uniquely identifies the given device within the machine.
300 * Since we never have more than one device, this doesn't need to be a real
301 * UUID. However, on the off-chance that someone tries to use this to
302 * cache pre-tiled images or something of the like, we use the PCI ID and
303 * some bits of ISL info to ensure that this is safe.
304 */
305 _mesa_sha1_init(&sha1_ctx);
306 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
307 sizeof(device->chipset_id));
308 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
309 sizeof(device->isl_dev.has_bit6_swizzling));
310 _mesa_sha1_final(&sha1_ctx, sha1);
311 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
312
313 return VK_SUCCESS;
314 }
315
316 static void
317 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
318 {
319 #ifdef ENABLE_SHADER_CACHE
320 char renderer[10];
321 MAYBE_UNUSED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
322 device->chipset_id);
323 assert(len == sizeof(renderer) - 2);
324
325 char timestamp[41];
326 _mesa_sha1_format(timestamp, device->driver_build_sha1);
327
328 const uint64_t driver_flags =
329 brw_get_compiler_config_value(device->compiler);
330 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
331 #else
332 device->disk_cache = NULL;
333 #endif
334 }
335
336 static void
337 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
338 {
339 #ifdef ENABLE_SHADER_CACHE
340 if (device->disk_cache)
341 disk_cache_destroy(device->disk_cache);
342 #else
343 assert(device->disk_cache == NULL);
344 #endif
345 }
346
347 static uint64_t
348 get_available_system_memory()
349 {
350 char *meminfo = os_read_file("/proc/meminfo");
351 if (!meminfo)
352 return 0;
353
354 char *str = strstr(meminfo, "MemAvailable:");
355 if (!str) {
356 free(meminfo);
357 return 0;
358 }
359
360 uint64_t kb_mem_available;
361 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
362 free(meminfo);
363 return kb_mem_available << 10;
364 }
365
366 free(meminfo);
367 return 0;
368 }
369
370 static VkResult
371 anv_physical_device_init(struct anv_physical_device *device,
372 struct anv_instance *instance,
373 drmDevicePtr drm_device)
374 {
375 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
376 const char *path = drm_device->nodes[DRM_NODE_RENDER];
377 VkResult result;
378 int fd;
379 int master_fd = -1;
380
381 brw_process_intel_debug_variable();
382
383 fd = open(path, O_RDWR | O_CLOEXEC);
384 if (fd < 0)
385 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
386
387 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
388 device->instance = instance;
389
390 assert(strlen(path) < ARRAY_SIZE(device->path));
391 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
392
393 device->no_hw = getenv("INTEL_NO_HW") != NULL;
394
395 const int pci_id_override = gen_get_pci_device_id_override();
396 if (pci_id_override < 0) {
397 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
398 if (!device->chipset_id) {
399 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
400 goto fail;
401 }
402 } else {
403 device->chipset_id = pci_id_override;
404 device->no_hw = true;
405 }
406
407 device->pci_info.domain = drm_device->businfo.pci->domain;
408 device->pci_info.bus = drm_device->businfo.pci->bus;
409 device->pci_info.device = drm_device->businfo.pci->dev;
410 device->pci_info.function = drm_device->businfo.pci->func;
411
412 device->name = gen_get_device_name(device->chipset_id);
413 if (!gen_get_device_info(device->chipset_id, &device->info)) {
414 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
415 goto fail;
416 }
417
418 if (device->info.is_haswell) {
419 intel_logw("Haswell Vulkan support is incomplete");
420 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
421 intel_logw("Ivy Bridge Vulkan support is incomplete");
422 } else if (device->info.gen == 7 && device->info.is_baytrail) {
423 intel_logw("Bay Trail Vulkan support is incomplete");
424 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
425 /* Gen8-11 fully supported */
426 } else {
427 result = vk_errorf(device->instance, device,
428 VK_ERROR_INCOMPATIBLE_DRIVER,
429 "Vulkan not yet supported on %s", device->name);
430 goto fail;
431 }
432
433 device->cmd_parser_version = -1;
434 if (device->info.gen == 7) {
435 device->cmd_parser_version =
436 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
437 if (device->cmd_parser_version == -1) {
438 result = vk_errorf(device->instance, device,
439 VK_ERROR_INITIALIZATION_FAILED,
440 "failed to get command parser version");
441 goto fail;
442 }
443 }
444
445 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
446 result = vk_errorf(device->instance, device,
447 VK_ERROR_INITIALIZATION_FAILED,
448 "kernel missing gem wait");
449 goto fail;
450 }
451
452 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
453 result = vk_errorf(device->instance, device,
454 VK_ERROR_INITIALIZATION_FAILED,
455 "kernel missing execbuf2");
456 goto fail;
457 }
458
459 if (!device->info.has_llc &&
460 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
461 result = vk_errorf(device->instance, device,
462 VK_ERROR_INITIALIZATION_FAILED,
463 "kernel missing wc mmap");
464 goto fail;
465 }
466
467 result = anv_physical_device_init_heaps(device, fd);
468 if (result != VK_SUCCESS)
469 goto fail;
470
471 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
472 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
473 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
474 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
475 device->has_syncobj_wait = device->has_syncobj &&
476 anv_gem_supports_syncobj_wait(fd);
477 device->has_context_priority = anv_gem_has_context_priority(fd);
478
479 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
480 && device->supports_48bit_addresses;
481
482 device->has_context_isolation =
483 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
484
485 device->always_use_bindless =
486 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
487
488 /* We first got the A64 messages on broadwell and we can only use them if
489 * we can pass addresses directly into the shader which requires softpin.
490 */
491 device->has_a64_buffer_access = device->info.gen >= 8 &&
492 device->use_softpin;
493
494 /* We first get bindless image access on Skylake and we can only really do
495 * it if we don't have any relocations so we need softpin.
496 */
497 device->has_bindless_images = device->info.gen >= 9 &&
498 device->use_softpin;
499
500 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
501 * because it's just a matter of setting the sampler address in the sample
502 * message header. However, we've not bothered to wire it up for vec4 so
503 * we leave it disabled on gen7.
504 */
505 device->has_bindless_samplers = device->info.gen >= 8;
506
507 device->has_mem_available = get_available_system_memory() != 0;
508
509 /* Starting with Gen10, the timestamp frequency of the command streamer may
510 * vary from one part to another. We can query the value from the kernel.
511 */
512 if (device->info.gen >= 10) {
513 int timestamp_frequency =
514 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
515
516 if (timestamp_frequency < 0)
517 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
518 else
519 device->info.timestamp_frequency = timestamp_frequency;
520 }
521
522 /* GENs prior to 8 do not support EU/Subslice info */
523 if (device->info.gen >= 8) {
524 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
525 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
526
527 /* Without this information, we cannot get the right Braswell
528 * brandstrings, and we have to use conservative numbers for GPGPU on
529 * many platforms, but otherwise, things will just work.
530 */
531 if (device->subslice_total < 1 || device->eu_total < 1) {
532 intel_logw("Kernel 4.1 required to properly query GPU properties");
533 }
534 } else if (device->info.gen == 7) {
535 device->subslice_total = 1 << (device->info.gt - 1);
536 }
537
538 if (device->info.is_cherryview &&
539 device->subslice_total > 0 && device->eu_total > 0) {
540 /* Logical CS threads = EUs per subslice * num threads per EU */
541 uint32_t max_cs_threads =
542 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
543
544 /* Fuse configurations may give more threads than expected, never less. */
545 if (max_cs_threads > device->info.max_cs_threads)
546 device->info.max_cs_threads = max_cs_threads;
547 }
548
549 device->compiler = brw_compiler_create(NULL, &device->info);
550 if (device->compiler == NULL) {
551 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
552 goto fail;
553 }
554 device->compiler->shader_debug_log = compiler_debug_log;
555 device->compiler->shader_perf_log = compiler_perf_log;
556 device->compiler->supports_pull_constants = false;
557 device->compiler->constant_buffer_0_is_relative =
558 device->info.gen < 8 || !device->has_context_isolation;
559 device->compiler->supports_shader_constants = true;
560
561 /* Broadwell PRM says:
562 *
563 * "Before Gen8, there was a historical configuration control field to
564 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
565 * different places: TILECTL[1:0], ARB_MODE[5:4], and
566 * DISP_ARB_CTL[14:13].
567 *
568 * For Gen8 and subsequent generations, the swizzle fields are all
569 * reserved, and the CPU's memory controller performs all address
570 * swizzling modifications."
571 */
572 bool swizzled =
573 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
574
575 isl_device_init(&device->isl_dev, &device->info, swizzled);
576
577 result = anv_physical_device_init_uuids(device);
578 if (result != VK_SUCCESS)
579 goto fail;
580
581 anv_physical_device_init_disk_cache(device);
582
583 if (instance->enabled_extensions.KHR_display) {
584 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
585 if (master_fd >= 0) {
586 /* prod the device with a GETPARAM call which will fail if
587 * we don't have permission to even render on this device
588 */
589 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
590 close(master_fd);
591 master_fd = -1;
592 }
593 }
594 }
595 device->master_fd = master_fd;
596
597 result = anv_init_wsi(device);
598 if (result != VK_SUCCESS) {
599 ralloc_free(device->compiler);
600 anv_physical_device_free_disk_cache(device);
601 goto fail;
602 }
603
604 anv_physical_device_get_supported_extensions(device,
605 &device->supported_extensions);
606
607
608 device->local_fd = fd;
609
610 return VK_SUCCESS;
611
612 fail:
613 close(fd);
614 if (master_fd != -1)
615 close(master_fd);
616 return result;
617 }
618
619 static void
620 anv_physical_device_finish(struct anv_physical_device *device)
621 {
622 anv_finish_wsi(device);
623 anv_physical_device_free_disk_cache(device);
624 ralloc_free(device->compiler);
625 close(device->local_fd);
626 if (device->master_fd >= 0)
627 close(device->master_fd);
628 }
629
630 static void *
631 default_alloc_func(void *pUserData, size_t size, size_t align,
632 VkSystemAllocationScope allocationScope)
633 {
634 return malloc(size);
635 }
636
637 static void *
638 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
639 size_t align, VkSystemAllocationScope allocationScope)
640 {
641 return realloc(pOriginal, size);
642 }
643
644 static void
645 default_free_func(void *pUserData, void *pMemory)
646 {
647 free(pMemory);
648 }
649
650 static const VkAllocationCallbacks default_alloc = {
651 .pUserData = NULL,
652 .pfnAllocation = default_alloc_func,
653 .pfnReallocation = default_realloc_func,
654 .pfnFree = default_free_func,
655 };
656
657 VkResult anv_EnumerateInstanceExtensionProperties(
658 const char* pLayerName,
659 uint32_t* pPropertyCount,
660 VkExtensionProperties* pProperties)
661 {
662 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
663
664 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
665 if (anv_instance_extensions_supported.extensions[i]) {
666 vk_outarray_append(&out, prop) {
667 *prop = anv_instance_extensions[i];
668 }
669 }
670 }
671
672 return vk_outarray_status(&out);
673 }
674
675 VkResult anv_CreateInstance(
676 const VkInstanceCreateInfo* pCreateInfo,
677 const VkAllocationCallbacks* pAllocator,
678 VkInstance* pInstance)
679 {
680 struct anv_instance *instance;
681 VkResult result;
682
683 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
684
685 struct anv_instance_extension_table enabled_extensions = {};
686 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
687 int idx;
688 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
689 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
690 anv_instance_extensions[idx].extensionName) == 0)
691 break;
692 }
693
694 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
695 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
696
697 if (!anv_instance_extensions_supported.extensions[idx])
698 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
699
700 enabled_extensions.extensions[idx] = true;
701 }
702
703 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
704 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
705 if (!instance)
706 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
707
708 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
709
710 if (pAllocator)
711 instance->alloc = *pAllocator;
712 else
713 instance->alloc = default_alloc;
714
715 instance->app_info = (struct anv_app_info) { .api_version = 0 };
716 if (pCreateInfo->pApplicationInfo) {
717 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
718
719 instance->app_info.app_name =
720 vk_strdup(&instance->alloc, app->pApplicationName,
721 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
722 instance->app_info.app_version = app->applicationVersion;
723
724 instance->app_info.engine_name =
725 vk_strdup(&instance->alloc, app->pEngineName,
726 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
727 instance->app_info.engine_version = app->engineVersion;
728
729 instance->app_info.api_version = app->apiVersion;
730 }
731
732 if (instance->app_info.api_version == 0)
733 instance->app_info.api_version = VK_API_VERSION_1_0;
734
735 instance->enabled_extensions = enabled_extensions;
736
737 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
738 /* Vulkan requires that entrypoints for extensions which have not been
739 * enabled must not be advertised.
740 */
741 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
742 &instance->enabled_extensions)) {
743 instance->dispatch.entrypoints[i] = NULL;
744 } else {
745 instance->dispatch.entrypoints[i] =
746 anv_instance_dispatch_table.entrypoints[i];
747 }
748 }
749
750 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
751 /* Vulkan requires that entrypoints for extensions which have not been
752 * enabled must not be advertised.
753 */
754 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
755 &instance->enabled_extensions, NULL)) {
756 instance->device_dispatch.entrypoints[i] = NULL;
757 } else {
758 instance->device_dispatch.entrypoints[i] =
759 anv_device_dispatch_table.entrypoints[i];
760 }
761 }
762
763 instance->physicalDeviceCount = -1;
764
765 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
766 if (result != VK_SUCCESS) {
767 vk_free2(&default_alloc, pAllocator, instance);
768 return vk_error(result);
769 }
770
771 instance->pipeline_cache_enabled =
772 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
773
774 _mesa_locale_init();
775 glsl_type_singleton_init_or_ref();
776
777 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
778
779 *pInstance = anv_instance_to_handle(instance);
780
781 return VK_SUCCESS;
782 }
783
784 void anv_DestroyInstance(
785 VkInstance _instance,
786 const VkAllocationCallbacks* pAllocator)
787 {
788 ANV_FROM_HANDLE(anv_instance, instance, _instance);
789
790 if (!instance)
791 return;
792
793 if (instance->physicalDeviceCount > 0) {
794 /* We support at most one physical device. */
795 assert(instance->physicalDeviceCount == 1);
796 anv_physical_device_finish(&instance->physicalDevice);
797 }
798
799 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
800 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
801
802 VG(VALGRIND_DESTROY_MEMPOOL(instance));
803
804 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
805
806 glsl_type_singleton_decref();
807 _mesa_locale_fini();
808
809 vk_free(&instance->alloc, instance);
810 }
811
812 static VkResult
813 anv_enumerate_devices(struct anv_instance *instance)
814 {
815 /* TODO: Check for more devices ? */
816 drmDevicePtr devices[8];
817 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
818 int max_devices;
819
820 instance->physicalDeviceCount = 0;
821
822 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
823 if (max_devices < 1)
824 return VK_ERROR_INCOMPATIBLE_DRIVER;
825
826 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
827 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
828 devices[i]->bustype == DRM_BUS_PCI &&
829 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
830
831 result = anv_physical_device_init(&instance->physicalDevice,
832 instance, devices[i]);
833 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
834 break;
835 }
836 }
837 drmFreeDevices(devices, max_devices);
838
839 if (result == VK_SUCCESS)
840 instance->physicalDeviceCount = 1;
841
842 return result;
843 }
844
845 static VkResult
846 anv_instance_ensure_physical_device(struct anv_instance *instance)
847 {
848 if (instance->physicalDeviceCount < 0) {
849 VkResult result = anv_enumerate_devices(instance);
850 if (result != VK_SUCCESS &&
851 result != VK_ERROR_INCOMPATIBLE_DRIVER)
852 return result;
853 }
854
855 return VK_SUCCESS;
856 }
857
858 VkResult anv_EnumeratePhysicalDevices(
859 VkInstance _instance,
860 uint32_t* pPhysicalDeviceCount,
861 VkPhysicalDevice* pPhysicalDevices)
862 {
863 ANV_FROM_HANDLE(anv_instance, instance, _instance);
864 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
865
866 VkResult result = anv_instance_ensure_physical_device(instance);
867 if (result != VK_SUCCESS)
868 return result;
869
870 if (instance->physicalDeviceCount == 0)
871 return VK_SUCCESS;
872
873 assert(instance->physicalDeviceCount == 1);
874 vk_outarray_append(&out, i) {
875 *i = anv_physical_device_to_handle(&instance->physicalDevice);
876 }
877
878 return vk_outarray_status(&out);
879 }
880
881 VkResult anv_EnumeratePhysicalDeviceGroups(
882 VkInstance _instance,
883 uint32_t* pPhysicalDeviceGroupCount,
884 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
885 {
886 ANV_FROM_HANDLE(anv_instance, instance, _instance);
887 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
888 pPhysicalDeviceGroupCount);
889
890 VkResult result = anv_instance_ensure_physical_device(instance);
891 if (result != VK_SUCCESS)
892 return result;
893
894 if (instance->physicalDeviceCount == 0)
895 return VK_SUCCESS;
896
897 assert(instance->physicalDeviceCount == 1);
898
899 vk_outarray_append(&out, p) {
900 p->physicalDeviceCount = 1;
901 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
902 p->physicalDevices[0] =
903 anv_physical_device_to_handle(&instance->physicalDevice);
904 p->subsetAllocation = false;
905
906 vk_foreach_struct(ext, p->pNext)
907 anv_debug_ignored_stype(ext->sType);
908 }
909
910 return vk_outarray_status(&out);
911 }
912
913 void anv_GetPhysicalDeviceFeatures(
914 VkPhysicalDevice physicalDevice,
915 VkPhysicalDeviceFeatures* pFeatures)
916 {
917 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
918
919 *pFeatures = (VkPhysicalDeviceFeatures) {
920 .robustBufferAccess = true,
921 .fullDrawIndexUint32 = true,
922 .imageCubeArray = true,
923 .independentBlend = true,
924 .geometryShader = true,
925 .tessellationShader = true,
926 .sampleRateShading = true,
927 .dualSrcBlend = true,
928 .logicOp = true,
929 .multiDrawIndirect = true,
930 .drawIndirectFirstInstance = true,
931 .depthClamp = true,
932 .depthBiasClamp = true,
933 .fillModeNonSolid = true,
934 .depthBounds = false,
935 .wideLines = true,
936 .largePoints = true,
937 .alphaToOne = true,
938 .multiViewport = true,
939 .samplerAnisotropy = true,
940 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
941 pdevice->info.is_baytrail,
942 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
943 .textureCompressionBC = true,
944 .occlusionQueryPrecise = true,
945 .pipelineStatisticsQuery = true,
946 .fragmentStoresAndAtomics = true,
947 .shaderTessellationAndGeometryPointSize = true,
948 .shaderImageGatherExtended = true,
949 .shaderStorageImageExtendedFormats = true,
950 .shaderStorageImageMultisample = false,
951 .shaderStorageImageReadWithoutFormat = false,
952 .shaderStorageImageWriteWithoutFormat = true,
953 .shaderUniformBufferArrayDynamicIndexing = true,
954 .shaderSampledImageArrayDynamicIndexing = true,
955 .shaderStorageBufferArrayDynamicIndexing = true,
956 .shaderStorageImageArrayDynamicIndexing = true,
957 .shaderClipDistance = true,
958 .shaderCullDistance = true,
959 .shaderFloat64 = pdevice->info.gen >= 8 &&
960 pdevice->info.has_64bit_types,
961 .shaderInt64 = pdevice->info.gen >= 8 &&
962 pdevice->info.has_64bit_types,
963 .shaderInt16 = pdevice->info.gen >= 8,
964 .shaderResourceMinLod = pdevice->info.gen >= 9,
965 .variableMultisampleRate = true,
966 .inheritedQueries = true,
967 };
968
969 /* We can't do image stores in vec4 shaders */
970 pFeatures->vertexPipelineStoresAndAtomics =
971 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
972 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
973
974 struct anv_app_info *app_info = &pdevice->instance->app_info;
975
976 /* The new DOOM and Wolfenstein games require depthBounds without
977 * checking for it. They seem to run fine without it so just claim it's
978 * there and accept the consequences.
979 */
980 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
981 pFeatures->depthBounds = true;
982 }
983
984 void anv_GetPhysicalDeviceFeatures2(
985 VkPhysicalDevice physicalDevice,
986 VkPhysicalDeviceFeatures2* pFeatures)
987 {
988 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
989 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
990
991 vk_foreach_struct(ext, pFeatures->pNext) {
992 switch (ext->sType) {
993 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
994 VkPhysicalDevice8BitStorageFeaturesKHR *features =
995 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
996 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
997 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
998 features->storagePushConstant8 = pdevice->info.gen >= 8;
999 break;
1000 }
1001
1002 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1003 VkPhysicalDevice16BitStorageFeatures *features =
1004 (VkPhysicalDevice16BitStorageFeatures *)ext;
1005 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
1006 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
1007 features->storagePushConstant16 = pdevice->info.gen >= 8;
1008 features->storageInputOutput16 = false;
1009 break;
1010 }
1011
1012 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1013 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1014 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1015 features->bufferDeviceAddressCaptureReplay = false;
1016 features->bufferDeviceAddressMultiDevice = false;
1017 break;
1018 }
1019
1020 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1021 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1022 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1023 features->computeDerivativeGroupQuads = true;
1024 features->computeDerivativeGroupLinear = true;
1025 break;
1026 }
1027
1028 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1029 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1030 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1031 features->conditionalRendering = pdevice->info.gen >= 8 ||
1032 pdevice->info.is_haswell;
1033 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1034 pdevice->info.is_haswell;
1035 break;
1036 }
1037
1038 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1039 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1040 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1041 features->depthClipEnable = true;
1042 break;
1043 }
1044
1045 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1046 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1047 features->shaderFloat16 = pdevice->info.gen >= 8;
1048 features->shaderInt8 = pdevice->info.gen >= 8;
1049 break;
1050 }
1051
1052 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1053 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1054 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1055 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1056 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1057 features->fragmentShaderShadingRateInterlock = false;
1058 break;
1059 }
1060
1061 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1062 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1063 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1064 features->hostQueryReset = true;
1065 break;
1066 }
1067
1068 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1069 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1070 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1071 features->shaderInputAttachmentArrayDynamicIndexing = false;
1072 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1073 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1074 features->shaderUniformBufferArrayNonUniformIndexing = false;
1075 features->shaderSampledImageArrayNonUniformIndexing = true;
1076 features->shaderStorageBufferArrayNonUniformIndexing = true;
1077 features->shaderStorageImageArrayNonUniformIndexing = true;
1078 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1079 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1080 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1081 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1082 features->descriptorBindingSampledImageUpdateAfterBind = true;
1083 features->descriptorBindingStorageImageUpdateAfterBind = true;
1084 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1085 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1086 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1087 features->descriptorBindingUpdateUnusedWhilePending = true;
1088 features->descriptorBindingPartiallyBound = true;
1089 features->descriptorBindingVariableDescriptorCount = false;
1090 features->runtimeDescriptorArray = true;
1091 break;
1092 }
1093
1094 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1095 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1096 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1097 features->inlineUniformBlock = true;
1098 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1099 break;
1100 }
1101
1102 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1103 VkPhysicalDeviceMultiviewFeatures *features =
1104 (VkPhysicalDeviceMultiviewFeatures *)ext;
1105 features->multiview = true;
1106 features->multiviewGeometryShader = true;
1107 features->multiviewTessellationShader = true;
1108 break;
1109 }
1110
1111 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1112 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1113 features->protectedMemory = false;
1114 break;
1115 }
1116
1117 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1118 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1119 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1120 features->samplerYcbcrConversion = true;
1121 break;
1122 }
1123
1124 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1125 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1126 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1127 features->scalarBlockLayout = true;
1128 break;
1129 }
1130
1131 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1132 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1133 features->shaderBufferInt64Atomics =
1134 pdevice->info.gen >= 9 && pdevice->use_softpin;
1135 features->shaderSharedInt64Atomics = VK_FALSE;
1136 break;
1137 }
1138
1139 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1140 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1141 features->shaderDemoteToHelperInvocation = true;
1142 break;
1143 }
1144
1145 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1146 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1147 features->shaderDrawParameters = true;
1148 break;
1149 }
1150
1151 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1152 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1153 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1154 features->texelBufferAlignment = true;
1155 break;
1156 }
1157
1158 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1159 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1160 features->variablePointersStorageBuffer = true;
1161 features->variablePointers = true;
1162 break;
1163 }
1164
1165 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1166 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1167 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1168 features->transformFeedback = true;
1169 features->geometryStreams = true;
1170 break;
1171 }
1172
1173 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1174 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1175 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1176 features->uniformBufferStandardLayout = true;
1177 break;
1178 }
1179
1180 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1181 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1182 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1183 features->vertexAttributeInstanceRateDivisor = true;
1184 features->vertexAttributeInstanceRateZeroDivisor = true;
1185 break;
1186 }
1187
1188 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1189 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1190 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1191 features->ycbcrImageArrays = true;
1192 break;
1193 }
1194
1195 default:
1196 anv_debug_ignored_stype(ext->sType);
1197 break;
1198 }
1199 }
1200 }
1201
1202 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1203
1204 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1205 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1206
1207 void anv_GetPhysicalDeviceProperties(
1208 VkPhysicalDevice physicalDevice,
1209 VkPhysicalDeviceProperties* pProperties)
1210 {
1211 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1212 const struct gen_device_info *devinfo = &pdevice->info;
1213
1214 /* See assertions made when programming the buffer surface state. */
1215 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1216 (1ul << 30) : (1ul << 27);
1217
1218 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1219 const uint32_t max_textures =
1220 pdevice->has_bindless_images ? UINT16_MAX : 128;
1221 const uint32_t max_samplers =
1222 pdevice->has_bindless_samplers ? UINT16_MAX :
1223 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1224 const uint32_t max_images =
1225 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1226
1227 /* The moment we have anything bindless, claim a high per-stage limit */
1228 const uint32_t max_per_stage =
1229 pdevice->has_a64_buffer_access ? UINT32_MAX :
1230 MAX_BINDING_TABLE_SIZE - MAX_RTS;
1231
1232 VkSampleCountFlags sample_counts =
1233 isl_device_get_sample_counts(&pdevice->isl_dev);
1234
1235
1236 VkPhysicalDeviceLimits limits = {
1237 .maxImageDimension1D = (1 << 14),
1238 .maxImageDimension2D = (1 << 14),
1239 .maxImageDimension3D = (1 << 11),
1240 .maxImageDimensionCube = (1 << 14),
1241 .maxImageArrayLayers = (1 << 11),
1242 .maxTexelBufferElements = 128 * 1024 * 1024,
1243 .maxUniformBufferRange = (1ul << 27),
1244 .maxStorageBufferRange = max_raw_buffer_sz,
1245 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1246 .maxMemoryAllocationCount = UINT32_MAX,
1247 .maxSamplerAllocationCount = 64 * 1024,
1248 .bufferImageGranularity = 64, /* A cache line */
1249 .sparseAddressSpaceSize = 0,
1250 .maxBoundDescriptorSets = MAX_SETS,
1251 .maxPerStageDescriptorSamplers = max_samplers,
1252 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1253 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1254 .maxPerStageDescriptorSampledImages = max_textures,
1255 .maxPerStageDescriptorStorageImages = max_images,
1256 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1257 .maxPerStageResources = max_per_stage,
1258 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1259 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1260 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1261 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1262 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1263 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1264 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1265 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1266 .maxVertexInputAttributes = MAX_VBS,
1267 .maxVertexInputBindings = MAX_VBS,
1268 .maxVertexInputAttributeOffset = 2047,
1269 .maxVertexInputBindingStride = 2048,
1270 .maxVertexOutputComponents = 128,
1271 .maxTessellationGenerationLevel = 64,
1272 .maxTessellationPatchSize = 32,
1273 .maxTessellationControlPerVertexInputComponents = 128,
1274 .maxTessellationControlPerVertexOutputComponents = 128,
1275 .maxTessellationControlPerPatchOutputComponents = 128,
1276 .maxTessellationControlTotalOutputComponents = 2048,
1277 .maxTessellationEvaluationInputComponents = 128,
1278 .maxTessellationEvaluationOutputComponents = 128,
1279 .maxGeometryShaderInvocations = 32,
1280 .maxGeometryInputComponents = 64,
1281 .maxGeometryOutputComponents = 128,
1282 .maxGeometryOutputVertices = 256,
1283 .maxGeometryTotalOutputComponents = 1024,
1284 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1285 .maxFragmentOutputAttachments = 8,
1286 .maxFragmentDualSrcAttachments = 1,
1287 .maxFragmentCombinedOutputResources = 8,
1288 .maxComputeSharedMemorySize = 32768,
1289 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1290 .maxComputeWorkGroupInvocations = 32 * devinfo->max_cs_threads,
1291 .maxComputeWorkGroupSize = {
1292 16 * devinfo->max_cs_threads,
1293 16 * devinfo->max_cs_threads,
1294 16 * devinfo->max_cs_threads,
1295 },
1296 .subPixelPrecisionBits = 8,
1297 .subTexelPrecisionBits = 8,
1298 .mipmapPrecisionBits = 8,
1299 .maxDrawIndexedIndexValue = UINT32_MAX,
1300 .maxDrawIndirectCount = UINT32_MAX,
1301 .maxSamplerLodBias = 16,
1302 .maxSamplerAnisotropy = 16,
1303 .maxViewports = MAX_VIEWPORTS,
1304 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1305 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1306 .viewportSubPixelBits = 13, /* We take a float? */
1307 .minMemoryMapAlignment = 4096, /* A page */
1308 /* The dataport requires texel alignment so we need to assume a worst
1309 * case of R32G32B32A32 which is 16 bytes.
1310 */
1311 .minTexelBufferOffsetAlignment = 16,
1312 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1313 .minUniformBufferOffsetAlignment = 32,
1314 .minStorageBufferOffsetAlignment = 4,
1315 .minTexelOffset = -8,
1316 .maxTexelOffset = 7,
1317 .minTexelGatherOffset = -32,
1318 .maxTexelGatherOffset = 31,
1319 .minInterpolationOffset = -0.5,
1320 .maxInterpolationOffset = 0.4375,
1321 .subPixelInterpolationOffsetBits = 4,
1322 .maxFramebufferWidth = (1 << 14),
1323 .maxFramebufferHeight = (1 << 14),
1324 .maxFramebufferLayers = (1 << 11),
1325 .framebufferColorSampleCounts = sample_counts,
1326 .framebufferDepthSampleCounts = sample_counts,
1327 .framebufferStencilSampleCounts = sample_counts,
1328 .framebufferNoAttachmentsSampleCounts = sample_counts,
1329 .maxColorAttachments = MAX_RTS,
1330 .sampledImageColorSampleCounts = sample_counts,
1331 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1332 .sampledImageDepthSampleCounts = sample_counts,
1333 .sampledImageStencilSampleCounts = sample_counts,
1334 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1335 .maxSampleMaskWords = 1,
1336 .timestampComputeAndGraphics = false,
1337 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1338 .maxClipDistances = 8,
1339 .maxCullDistances = 8,
1340 .maxCombinedClipAndCullDistances = 8,
1341 .discreteQueuePriorities = 2,
1342 .pointSizeRange = { 0.125, 255.875 },
1343 .lineWidthRange = { 0.0, 7.9921875 },
1344 .pointSizeGranularity = (1.0 / 8.0),
1345 .lineWidthGranularity = (1.0 / 128.0),
1346 .strictLines = false, /* FINISHME */
1347 .standardSampleLocations = true,
1348 .optimalBufferCopyOffsetAlignment = 128,
1349 .optimalBufferCopyRowPitchAlignment = 128,
1350 .nonCoherentAtomSize = 64,
1351 };
1352
1353 *pProperties = (VkPhysicalDeviceProperties) {
1354 .apiVersion = anv_physical_device_api_version(pdevice),
1355 .driverVersion = vk_get_driver_version(),
1356 .vendorID = 0x8086,
1357 .deviceID = pdevice->chipset_id,
1358 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1359 .limits = limits,
1360 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1361 };
1362
1363 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1364 "%s", pdevice->name);
1365 memcpy(pProperties->pipelineCacheUUID,
1366 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1367 }
1368
1369 void anv_GetPhysicalDeviceProperties2(
1370 VkPhysicalDevice physicalDevice,
1371 VkPhysicalDeviceProperties2* pProperties)
1372 {
1373 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1374
1375 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1376
1377 vk_foreach_struct(ext, pProperties->pNext) {
1378 switch (ext->sType) {
1379 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1380 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1381 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1382
1383 /* We support all of the depth resolve modes */
1384 props->supportedDepthResolveModes =
1385 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1386 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1387 VK_RESOLVE_MODE_MIN_BIT_KHR |
1388 VK_RESOLVE_MODE_MAX_BIT_KHR;
1389
1390 /* Average doesn't make sense for stencil so we don't support that */
1391 props->supportedStencilResolveModes =
1392 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1393 if (pdevice->info.gen >= 8) {
1394 /* The advanced stencil resolve modes currently require stencil
1395 * sampling be supported by the hardware.
1396 */
1397 props->supportedStencilResolveModes |=
1398 VK_RESOLVE_MODE_MIN_BIT_KHR |
1399 VK_RESOLVE_MODE_MAX_BIT_KHR;
1400 }
1401
1402 props->independentResolveNone = true;
1403 props->independentResolve = true;
1404 break;
1405 }
1406
1407 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1408 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1409 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1410
1411 /* It's a bit hard to exactly map our implementation to the limits
1412 * described here. The bindless surface handle in the extended
1413 * message descriptors is 20 bits and it's an index into the table of
1414 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1415 * address. Given that most things consume two surface states per
1416 * view (general/sampled for textures and write-only/read-write for
1417 * images), we claim 2^19 things.
1418 *
1419 * For SSBOs, we just use A64 messages so there is no real limit
1420 * there beyond the limit on the total size of a descriptor set.
1421 */
1422 const unsigned max_bindless_views = 1 << 19;
1423
1424 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1425 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1426 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1427 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1428 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1429 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1430 props->robustBufferAccessUpdateAfterBind = true;
1431 props->quadDivergentImplicitLod = false;
1432 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1433 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1434 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1435 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1436 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1437 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1438 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1439 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1440 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1441 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1442 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1443 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1444 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1445 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1446 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1447 break;
1448 }
1449
1450 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1451 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1452 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1453
1454 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1455 util_snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1456 "Intel open-source Mesa driver");
1457
1458 util_snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1459 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1460
1461 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1462 .major = 1,
1463 .minor = 1,
1464 .subminor = 2,
1465 .patch = 0,
1466 };
1467 break;
1468 }
1469
1470 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1471 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1472 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1473 /* Userptr needs page aligned memory. */
1474 props->minImportedHostPointerAlignment = 4096;
1475 break;
1476 }
1477
1478 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1479 VkPhysicalDeviceIDProperties *id_props =
1480 (VkPhysicalDeviceIDProperties *)ext;
1481 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1482 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1483 /* The LUID is for Windows. */
1484 id_props->deviceLUIDValid = false;
1485 break;
1486 }
1487
1488 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1489 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1490 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1491 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1492 props->maxPerStageDescriptorInlineUniformBlocks =
1493 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1494 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1495 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1496 props->maxDescriptorSetInlineUniformBlocks =
1497 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1498 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1499 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1500 break;
1501 }
1502
1503 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1504 VkPhysicalDeviceMaintenance3Properties *props =
1505 (VkPhysicalDeviceMaintenance3Properties *)ext;
1506 /* This value doesn't matter for us today as our per-stage
1507 * descriptors are the real limit.
1508 */
1509 props->maxPerSetDescriptors = 1024;
1510 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1511 break;
1512 }
1513
1514 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1515 VkPhysicalDeviceMultiviewProperties *properties =
1516 (VkPhysicalDeviceMultiviewProperties *)ext;
1517 properties->maxMultiviewViewCount = 16;
1518 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1519 break;
1520 }
1521
1522 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1523 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1524 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1525 properties->pciDomain = pdevice->pci_info.domain;
1526 properties->pciBus = pdevice->pci_info.bus;
1527 properties->pciDevice = pdevice->pci_info.device;
1528 properties->pciFunction = pdevice->pci_info.function;
1529 break;
1530 }
1531
1532 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1533 VkPhysicalDevicePointClippingProperties *properties =
1534 (VkPhysicalDevicePointClippingProperties *) ext;
1535 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1536 break;
1537 }
1538
1539 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1540 VkPhysicalDeviceProtectedMemoryProperties *props =
1541 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1542 props->protectedNoFault = false;
1543 break;
1544 }
1545
1546 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1547 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1548 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1549
1550 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1551 break;
1552 }
1553
1554 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1555 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1556 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1557 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1558 properties->filterMinmaxSingleComponentFormats = true;
1559 break;
1560 }
1561
1562 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1563 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1564
1565 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1566
1567 VkShaderStageFlags scalar_stages = 0;
1568 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1569 if (pdevice->compiler->scalar_stage[stage])
1570 scalar_stages |= mesa_to_vk_shader_stage(stage);
1571 }
1572 properties->supportedStages = scalar_stages;
1573
1574 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1575 VK_SUBGROUP_FEATURE_VOTE_BIT |
1576 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1577 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1578 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1579 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1580 VK_SUBGROUP_FEATURE_CLUSTERED_BIT |
1581 VK_SUBGROUP_FEATURE_QUAD_BIT;
1582 properties->quadOperationsInAllStages = true;
1583 break;
1584 }
1585
1586 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1587 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1588 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1589
1590 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1591 * Base Address:
1592 *
1593 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1594 * specifies the base address of the first element of the surface,
1595 * computed in software by adding the surface base address to the
1596 * byte offset of the element in the buffer. The base address must
1597 * be aligned to element size."
1598 *
1599 * The typed dataport messages require that things be texel aligned.
1600 * Otherwise, we may just load/store the wrong data or, in the worst
1601 * case, there may be hangs.
1602 */
1603 props->storageTexelBufferOffsetAlignmentBytes = 16;
1604 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1605
1606 /* The sampler, however, is much more forgiving and it can handle
1607 * arbitrary byte alignment for linear and buffer surfaces. It's
1608 * hard to find a good PRM citation for this but years of empirical
1609 * experience demonstrate that this is true.
1610 */
1611 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1612 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1613 break;
1614 }
1615
1616 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1617 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1618 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1619
1620 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1621 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1622 props->maxTransformFeedbackBufferSize = (1ull << 32);
1623 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1624 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1625 props->maxTransformFeedbackBufferDataStride = 2048;
1626 props->transformFeedbackQueries = true;
1627 props->transformFeedbackStreamsLinesTriangles = false;
1628 props->transformFeedbackRasterizationStreamSelect = false;
1629 props->transformFeedbackDraw = true;
1630 break;
1631 }
1632
1633 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1634 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1635 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1636 /* We have to restrict this a bit for multiview */
1637 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1638 break;
1639 }
1640
1641 default:
1642 anv_debug_ignored_stype(ext->sType);
1643 break;
1644 }
1645 }
1646 }
1647
1648 /* We support exactly one queue family. */
1649 static const VkQueueFamilyProperties
1650 anv_queue_family_properties = {
1651 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1652 VK_QUEUE_COMPUTE_BIT |
1653 VK_QUEUE_TRANSFER_BIT,
1654 .queueCount = 1,
1655 .timestampValidBits = 36, /* XXX: Real value here */
1656 .minImageTransferGranularity = { 1, 1, 1 },
1657 };
1658
1659 void anv_GetPhysicalDeviceQueueFamilyProperties(
1660 VkPhysicalDevice physicalDevice,
1661 uint32_t* pCount,
1662 VkQueueFamilyProperties* pQueueFamilyProperties)
1663 {
1664 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1665
1666 vk_outarray_append(&out, p) {
1667 *p = anv_queue_family_properties;
1668 }
1669 }
1670
1671 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1672 VkPhysicalDevice physicalDevice,
1673 uint32_t* pQueueFamilyPropertyCount,
1674 VkQueueFamilyProperties2* pQueueFamilyProperties)
1675 {
1676
1677 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1678
1679 vk_outarray_append(&out, p) {
1680 p->queueFamilyProperties = anv_queue_family_properties;
1681
1682 vk_foreach_struct(s, p->pNext) {
1683 anv_debug_ignored_stype(s->sType);
1684 }
1685 }
1686 }
1687
1688 void anv_GetPhysicalDeviceMemoryProperties(
1689 VkPhysicalDevice physicalDevice,
1690 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1691 {
1692 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1693
1694 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1695 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1696 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1697 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1698 .heapIndex = physical_device->memory.types[i].heapIndex,
1699 };
1700 }
1701
1702 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1703 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1704 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1705 .size = physical_device->memory.heaps[i].size,
1706 .flags = physical_device->memory.heaps[i].flags,
1707 };
1708 }
1709 }
1710
1711 static void
1712 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1713 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1714 {
1715 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1716 uint64_t sys_available = get_available_system_memory();
1717 assert(sys_available > 0);
1718
1719 VkDeviceSize total_heaps_size = 0;
1720 for (size_t i = 0; i < device->memory.heap_count; i++)
1721 total_heaps_size += device->memory.heaps[i].size;
1722
1723 for (size_t i = 0; i < device->memory.heap_count; i++) {
1724 VkDeviceSize heap_size = device->memory.heaps[i].size;
1725 VkDeviceSize heap_used = device->memory.heaps[i].used;
1726 VkDeviceSize heap_budget;
1727
1728 double heap_proportion = (double) heap_size / total_heaps_size;
1729 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1730
1731 /*
1732 * Let's not incite the app to starve the system: report at most 90% of
1733 * available system memory.
1734 */
1735 uint64_t heap_available = sys_available_prop * 9 / 10;
1736 heap_budget = MIN2(heap_size, heap_used + heap_available);
1737
1738 /*
1739 * Round down to the nearest MB
1740 */
1741 heap_budget &= ~((1ull << 20) - 1);
1742
1743 /*
1744 * The heapBudget value must be non-zero for array elements less than
1745 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1746 * value must be less than or equal to VkMemoryHeap::size for each heap.
1747 */
1748 assert(0 < heap_budget && heap_budget <= heap_size);
1749
1750 memoryBudget->heapUsage[i] = heap_used;
1751 memoryBudget->heapBudget[i] = heap_budget;
1752 }
1753
1754 /* The heapBudget and heapUsage values must be zero for array elements
1755 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1756 */
1757 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1758 memoryBudget->heapBudget[i] = 0;
1759 memoryBudget->heapUsage[i] = 0;
1760 }
1761 }
1762
1763 void anv_GetPhysicalDeviceMemoryProperties2(
1764 VkPhysicalDevice physicalDevice,
1765 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1766 {
1767 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1768 &pMemoryProperties->memoryProperties);
1769
1770 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1771 switch (ext->sType) {
1772 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1773 anv_get_memory_budget(physicalDevice, (void*)ext);
1774 break;
1775 default:
1776 anv_debug_ignored_stype(ext->sType);
1777 break;
1778 }
1779 }
1780 }
1781
1782 void
1783 anv_GetDeviceGroupPeerMemoryFeatures(
1784 VkDevice device,
1785 uint32_t heapIndex,
1786 uint32_t localDeviceIndex,
1787 uint32_t remoteDeviceIndex,
1788 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1789 {
1790 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1791 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1792 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1793 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1794 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1795 }
1796
1797 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1798 VkInstance _instance,
1799 const char* pName)
1800 {
1801 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1802
1803 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1804 * when we have to return valid function pointers, NULL, or it's left
1805 * undefined. See the table for exact details.
1806 */
1807 if (pName == NULL)
1808 return NULL;
1809
1810 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1811 if (strcmp(pName, "vk" #entrypoint) == 0) \
1812 return (PFN_vkVoidFunction)anv_##entrypoint
1813
1814 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1815 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1816 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1817 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1818
1819 #undef LOOKUP_ANV_ENTRYPOINT
1820
1821 if (instance == NULL)
1822 return NULL;
1823
1824 int idx = anv_get_instance_entrypoint_index(pName);
1825 if (idx >= 0)
1826 return instance->dispatch.entrypoints[idx];
1827
1828 idx = anv_get_device_entrypoint_index(pName);
1829 if (idx >= 0)
1830 return instance->device_dispatch.entrypoints[idx];
1831
1832 return NULL;
1833 }
1834
1835 /* With version 1+ of the loader interface the ICD should expose
1836 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1837 */
1838 PUBLIC
1839 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1840 VkInstance instance,
1841 const char* pName);
1842
1843 PUBLIC
1844 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1845 VkInstance instance,
1846 const char* pName)
1847 {
1848 return anv_GetInstanceProcAddr(instance, pName);
1849 }
1850
1851 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1852 VkDevice _device,
1853 const char* pName)
1854 {
1855 ANV_FROM_HANDLE(anv_device, device, _device);
1856
1857 if (!device || !pName)
1858 return NULL;
1859
1860 int idx = anv_get_device_entrypoint_index(pName);
1861 if (idx < 0)
1862 return NULL;
1863
1864 return device->dispatch.entrypoints[idx];
1865 }
1866
1867 VkResult
1868 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1869 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1870 const VkAllocationCallbacks* pAllocator,
1871 VkDebugReportCallbackEXT* pCallback)
1872 {
1873 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1874 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1875 pCreateInfo, pAllocator, &instance->alloc,
1876 pCallback);
1877 }
1878
1879 void
1880 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1881 VkDebugReportCallbackEXT _callback,
1882 const VkAllocationCallbacks* pAllocator)
1883 {
1884 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1885 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1886 _callback, pAllocator, &instance->alloc);
1887 }
1888
1889 void
1890 anv_DebugReportMessageEXT(VkInstance _instance,
1891 VkDebugReportFlagsEXT flags,
1892 VkDebugReportObjectTypeEXT objectType,
1893 uint64_t object,
1894 size_t location,
1895 int32_t messageCode,
1896 const char* pLayerPrefix,
1897 const char* pMessage)
1898 {
1899 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1900 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1901 object, location, messageCode, pLayerPrefix, pMessage);
1902 }
1903
1904 static void
1905 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1906 {
1907 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1908 queue->device = device;
1909 queue->flags = 0;
1910 }
1911
1912 static void
1913 anv_queue_finish(struct anv_queue *queue)
1914 {
1915 }
1916
1917 static struct anv_state
1918 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1919 {
1920 struct anv_state state;
1921
1922 state = anv_state_pool_alloc(pool, size, align);
1923 memcpy(state.map, p, size);
1924
1925 return state;
1926 }
1927
1928 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
1929 * straightforward 32-bit float color in the first 64 bytes. Instead of using
1930 * a nice float/integer union like Gen8+, Haswell specifies the integer border
1931 * color as a separate entry /after/ the float color. The layout of this entry
1932 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
1933 *
1934 * Since we don't know the format/bpp, we can't make any of the border colors
1935 * containing '1' work for all formats, as it would be in the wrong place for
1936 * some of them. We opt to make 32-bit integers work as this seems like the
1937 * most common option. Fortunately, transparent black works regardless, as
1938 * all zeroes is the same in every bit-size.
1939 */
1940 struct hsw_border_color {
1941 float float32[4];
1942 uint32_t _pad0[12];
1943 uint32_t uint32[4];
1944 uint32_t _pad1[108];
1945 };
1946
1947 struct gen8_border_color {
1948 union {
1949 float float32[4];
1950 uint32_t uint32[4];
1951 };
1952 /* Pad out to 64 bytes */
1953 uint32_t _pad[12];
1954 };
1955
1956 static void
1957 anv_device_init_border_colors(struct anv_device *device)
1958 {
1959 if (device->info.is_haswell) {
1960 static const struct hsw_border_color border_colors[] = {
1961 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1962 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1963 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1964 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1965 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1966 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1967 };
1968
1969 device->border_colors =
1970 anv_state_pool_emit_data(&device->dynamic_state_pool,
1971 sizeof(border_colors), 512, border_colors);
1972 } else {
1973 static const struct gen8_border_color border_colors[] = {
1974 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1975 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1976 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1977 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1978 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1979 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1980 };
1981
1982 device->border_colors =
1983 anv_state_pool_emit_data(&device->dynamic_state_pool,
1984 sizeof(border_colors), 64, border_colors);
1985 }
1986 }
1987
1988 static void
1989 anv_device_init_trivial_batch(struct anv_device *device)
1990 {
1991 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1992
1993 if (device->instance->physicalDevice.has_exec_async)
1994 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
1995
1996 if (device->instance->physicalDevice.use_softpin)
1997 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
1998
1999 anv_vma_alloc(device, &device->trivial_batch_bo);
2000
2001 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
2002 0, 4096, 0);
2003
2004 struct anv_batch batch = {
2005 .start = map,
2006 .next = map,
2007 .end = map + 4096,
2008 };
2009
2010 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2011 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2012
2013 if (!device->info.has_llc)
2014 gen_clflush_range(map, batch.next - map);
2015
2016 anv_gem_munmap(map, device->trivial_batch_bo.size);
2017 }
2018
2019 VkResult anv_EnumerateDeviceExtensionProperties(
2020 VkPhysicalDevice physicalDevice,
2021 const char* pLayerName,
2022 uint32_t* pPropertyCount,
2023 VkExtensionProperties* pProperties)
2024 {
2025 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2026 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2027
2028 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2029 if (device->supported_extensions.extensions[i]) {
2030 vk_outarray_append(&out, prop) {
2031 *prop = anv_device_extensions[i];
2032 }
2033 }
2034 }
2035
2036 return vk_outarray_status(&out);
2037 }
2038
2039 static void
2040 anv_device_init_dispatch(struct anv_device *device)
2041 {
2042 const struct anv_device_dispatch_table *genX_table;
2043 switch (device->info.gen) {
2044 case 11:
2045 genX_table = &gen11_device_dispatch_table;
2046 break;
2047 case 10:
2048 genX_table = &gen10_device_dispatch_table;
2049 break;
2050 case 9:
2051 genX_table = &gen9_device_dispatch_table;
2052 break;
2053 case 8:
2054 genX_table = &gen8_device_dispatch_table;
2055 break;
2056 case 7:
2057 if (device->info.is_haswell)
2058 genX_table = &gen75_device_dispatch_table;
2059 else
2060 genX_table = &gen7_device_dispatch_table;
2061 break;
2062 default:
2063 unreachable("unsupported gen\n");
2064 }
2065
2066 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2067 /* Vulkan requires that entrypoints for extensions which have not been
2068 * enabled must not be advertised.
2069 */
2070 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
2071 &device->instance->enabled_extensions,
2072 &device->enabled_extensions)) {
2073 device->dispatch.entrypoints[i] = NULL;
2074 } else if (genX_table->entrypoints[i]) {
2075 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2076 } else {
2077 device->dispatch.entrypoints[i] =
2078 anv_device_dispatch_table.entrypoints[i];
2079 }
2080 }
2081 }
2082
2083 static int
2084 vk_priority_to_gen(int priority)
2085 {
2086 switch (priority) {
2087 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2088 return GEN_CONTEXT_LOW_PRIORITY;
2089 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2090 return GEN_CONTEXT_MEDIUM_PRIORITY;
2091 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2092 return GEN_CONTEXT_HIGH_PRIORITY;
2093 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2094 return GEN_CONTEXT_REALTIME_PRIORITY;
2095 default:
2096 unreachable("Invalid priority");
2097 }
2098 }
2099
2100 static void
2101 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2102 {
2103 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
2104
2105 if (device->instance->physicalDevice.has_exec_async)
2106 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
2107
2108 if (device->instance->physicalDevice.use_softpin)
2109 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
2110
2111 anv_vma_alloc(device, &device->hiz_clear_bo);
2112
2113 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
2114 0, 4096, 0);
2115
2116 union isl_color_value hiz_clear = { .u32 = { 0, } };
2117 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2118
2119 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
2120 anv_gem_munmap(map, device->hiz_clear_bo.size);
2121 }
2122
2123 static bool
2124 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2125 struct anv_block_pool *pool,
2126 uint64_t address)
2127 {
2128 for (uint32_t i = 0; i < pool->nbos; i++) {
2129 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
2130 uint32_t bo_size = pool->bos[i].size;
2131 if (address >= bo_address && address < (bo_address + bo_size)) {
2132 *ret = (struct gen_batch_decode_bo) {
2133 .addr = bo_address,
2134 .size = bo_size,
2135 .map = pool->bos[i].map,
2136 };
2137 return true;
2138 }
2139 }
2140 return false;
2141 }
2142
2143 /* Finding a buffer for batch decoding */
2144 static struct gen_batch_decode_bo
2145 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2146 {
2147 struct anv_device *device = v_batch;
2148 struct gen_batch_decode_bo ret_bo = {};
2149
2150 assert(ppgtt);
2151
2152 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2153 return ret_bo;
2154 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2155 return ret_bo;
2156 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2157 return ret_bo;
2158 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2159 return ret_bo;
2160
2161 if (!device->cmd_buffer_being_decoded)
2162 return (struct gen_batch_decode_bo) { };
2163
2164 struct anv_batch_bo **bo;
2165
2166 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2167 /* The decoder zeroes out the top 16 bits, so we need to as well */
2168 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
2169
2170 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
2171 return (struct gen_batch_decode_bo) {
2172 .addr = bo_address,
2173 .size = (*bo)->bo.size,
2174 .map = (*bo)->bo.map,
2175 };
2176 }
2177 }
2178
2179 return (struct gen_batch_decode_bo) { };
2180 }
2181
2182 VkResult anv_CreateDevice(
2183 VkPhysicalDevice physicalDevice,
2184 const VkDeviceCreateInfo* pCreateInfo,
2185 const VkAllocationCallbacks* pAllocator,
2186 VkDevice* pDevice)
2187 {
2188 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2189 VkResult result;
2190 struct anv_device *device;
2191
2192 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2193
2194 struct anv_device_extension_table enabled_extensions = { };
2195 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2196 int idx;
2197 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2198 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2199 anv_device_extensions[idx].extensionName) == 0)
2200 break;
2201 }
2202
2203 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2204 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2205
2206 if (!physical_device->supported_extensions.extensions[idx])
2207 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2208
2209 enabled_extensions.extensions[idx] = true;
2210 }
2211
2212 /* Check enabled features */
2213 if (pCreateInfo->pEnabledFeatures) {
2214 VkPhysicalDeviceFeatures supported_features;
2215 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2216 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2217 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2218 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2219 for (uint32_t i = 0; i < num_features; i++) {
2220 if (enabled_feature[i] && !supported_feature[i])
2221 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2222 }
2223 }
2224
2225 /* Check requested queues and fail if we are requested to create any
2226 * queues with flags we don't support.
2227 */
2228 assert(pCreateInfo->queueCreateInfoCount > 0);
2229 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2230 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2231 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2232 }
2233
2234 /* Check if client specified queue priority. */
2235 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2236 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2237 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2238
2239 VkQueueGlobalPriorityEXT priority =
2240 queue_priority ? queue_priority->globalPriority :
2241 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2242
2243 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2244 sizeof(*device), 8,
2245 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2246 if (!device)
2247 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2248
2249 if (INTEL_DEBUG & DEBUG_BATCH) {
2250 const unsigned decode_flags =
2251 GEN_BATCH_DECODE_FULL |
2252 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2253 GEN_BATCH_DECODE_OFFSETS |
2254 GEN_BATCH_DECODE_FLOATS;
2255
2256 gen_batch_decode_ctx_init(&device->decoder_ctx,
2257 &physical_device->info,
2258 stderr, decode_flags, NULL,
2259 decode_get_bo, NULL, device);
2260 }
2261
2262 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2263 device->instance = physical_device->instance;
2264 device->chipset_id = physical_device->chipset_id;
2265 device->no_hw = physical_device->no_hw;
2266 device->_lost = false;
2267
2268 if (pAllocator)
2269 device->alloc = *pAllocator;
2270 else
2271 device->alloc = physical_device->instance->alloc;
2272
2273 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2274 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2275 if (device->fd == -1) {
2276 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2277 goto fail_device;
2278 }
2279
2280 device->context_id = anv_gem_create_context(device);
2281 if (device->context_id == -1) {
2282 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2283 goto fail_fd;
2284 }
2285
2286 if (physical_device->use_softpin) {
2287 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2288 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2289 goto fail_fd;
2290 }
2291
2292 /* keep the page with address zero out of the allocator */
2293 struct anv_memory_heap *low_heap =
2294 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2295 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2296 device->vma_lo_available = low_heap->size;
2297
2298 struct anv_memory_heap *high_heap =
2299 &physical_device->memory.heaps[0];
2300 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2301 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2302 high_heap->size;
2303 }
2304
2305 list_inithead(&device->memory_objects);
2306
2307 /* As per spec, the driver implementation may deny requests to acquire
2308 * a priority above the default priority (MEDIUM) if the caller does not
2309 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2310 * is returned.
2311 */
2312 if (physical_device->has_context_priority) {
2313 int err = anv_gem_set_context_param(device->fd, device->context_id,
2314 I915_CONTEXT_PARAM_PRIORITY,
2315 vk_priority_to_gen(priority));
2316 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2317 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2318 goto fail_fd;
2319 }
2320 }
2321
2322 device->info = physical_device->info;
2323 device->isl_dev = physical_device->isl_dev;
2324
2325 /* On Broadwell and later, we can use batch chaining to more efficiently
2326 * implement growing command buffers. Prior to Haswell, the kernel
2327 * command parser gets in the way and we have to fall back to growing
2328 * the batch.
2329 */
2330 device->can_chain_batches = device->info.gen >= 8;
2331
2332 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2333 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2334 device->enabled_extensions = enabled_extensions;
2335
2336 anv_device_init_dispatch(device);
2337
2338 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2339 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2340 goto fail_context_id;
2341 }
2342
2343 pthread_condattr_t condattr;
2344 if (pthread_condattr_init(&condattr) != 0) {
2345 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2346 goto fail_mutex;
2347 }
2348 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2349 pthread_condattr_destroy(&condattr);
2350 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2351 goto fail_mutex;
2352 }
2353 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2354 pthread_condattr_destroy(&condattr);
2355 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2356 goto fail_mutex;
2357 }
2358 pthread_condattr_destroy(&condattr);
2359
2360 uint64_t bo_flags =
2361 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2362 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2363 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2364 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2365
2366 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2367
2368 result = anv_bo_cache_init(&device->bo_cache);
2369 if (result != VK_SUCCESS)
2370 goto fail_batch_bo_pool;
2371
2372 if (!physical_device->use_softpin)
2373 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2374
2375 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2376 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2377 16384,
2378 bo_flags);
2379 if (result != VK_SUCCESS)
2380 goto fail_bo_cache;
2381
2382 result = anv_state_pool_init(&device->instruction_state_pool, device,
2383 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2384 16384,
2385 bo_flags);
2386 if (result != VK_SUCCESS)
2387 goto fail_dynamic_state_pool;
2388
2389 result = anv_state_pool_init(&device->surface_state_pool, device,
2390 SURFACE_STATE_POOL_MIN_ADDRESS,
2391 4096,
2392 bo_flags);
2393 if (result != VK_SUCCESS)
2394 goto fail_instruction_state_pool;
2395
2396 if (physical_device->use_softpin) {
2397 result = anv_state_pool_init(&device->binding_table_pool, device,
2398 BINDING_TABLE_POOL_MIN_ADDRESS,
2399 4096,
2400 bo_flags);
2401 if (result != VK_SUCCESS)
2402 goto fail_surface_state_pool;
2403 }
2404
2405 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
2406 if (result != VK_SUCCESS)
2407 goto fail_binding_table_pool;
2408
2409 if (physical_device->use_softpin)
2410 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2411
2412 if (!anv_vma_alloc(device, &device->workaround_bo))
2413 goto fail_workaround_bo;
2414
2415 anv_device_init_trivial_batch(device);
2416
2417 if (device->info.gen >= 10)
2418 anv_device_init_hiz_clear_value_bo(device);
2419
2420 anv_scratch_pool_init(device, &device->scratch_pool);
2421
2422 anv_queue_init(device, &device->queue);
2423
2424 switch (device->info.gen) {
2425 case 7:
2426 if (!device->info.is_haswell)
2427 result = gen7_init_device_state(device);
2428 else
2429 result = gen75_init_device_state(device);
2430 break;
2431 case 8:
2432 result = gen8_init_device_state(device);
2433 break;
2434 case 9:
2435 result = gen9_init_device_state(device);
2436 break;
2437 case 10:
2438 result = gen10_init_device_state(device);
2439 break;
2440 case 11:
2441 result = gen11_init_device_state(device);
2442 break;
2443 default:
2444 /* Shouldn't get here as we don't create physical devices for any other
2445 * gens. */
2446 unreachable("unhandled gen");
2447 }
2448 if (result != VK_SUCCESS)
2449 goto fail_workaround_bo;
2450
2451 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2452
2453 anv_device_init_blorp(device);
2454
2455 anv_device_init_border_colors(device);
2456
2457 *pDevice = anv_device_to_handle(device);
2458
2459 return VK_SUCCESS;
2460
2461 fail_workaround_bo:
2462 anv_queue_finish(&device->queue);
2463 anv_scratch_pool_finish(device, &device->scratch_pool);
2464 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2465 anv_gem_close(device, device->workaround_bo.gem_handle);
2466 fail_binding_table_pool:
2467 if (physical_device->use_softpin)
2468 anv_state_pool_finish(&device->binding_table_pool);
2469 fail_surface_state_pool:
2470 anv_state_pool_finish(&device->surface_state_pool);
2471 fail_instruction_state_pool:
2472 anv_state_pool_finish(&device->instruction_state_pool);
2473 fail_dynamic_state_pool:
2474 anv_state_pool_finish(&device->dynamic_state_pool);
2475 fail_bo_cache:
2476 anv_bo_cache_finish(&device->bo_cache);
2477 fail_batch_bo_pool:
2478 anv_bo_pool_finish(&device->batch_bo_pool);
2479 pthread_cond_destroy(&device->queue_submit);
2480 fail_mutex:
2481 pthread_mutex_destroy(&device->mutex);
2482 fail_context_id:
2483 anv_gem_destroy_context(device, device->context_id);
2484 fail_fd:
2485 close(device->fd);
2486 fail_device:
2487 vk_free(&device->alloc, device);
2488
2489 return result;
2490 }
2491
2492 void anv_DestroyDevice(
2493 VkDevice _device,
2494 const VkAllocationCallbacks* pAllocator)
2495 {
2496 ANV_FROM_HANDLE(anv_device, device, _device);
2497 struct anv_physical_device *physical_device;
2498
2499 if (!device)
2500 return;
2501
2502 physical_device = &device->instance->physicalDevice;
2503
2504 anv_device_finish_blorp(device);
2505
2506 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2507
2508 anv_queue_finish(&device->queue);
2509
2510 #ifdef HAVE_VALGRIND
2511 /* We only need to free these to prevent valgrind errors. The backing
2512 * BO will go away in a couple of lines so we don't actually leak.
2513 */
2514 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2515 #endif
2516
2517 anv_scratch_pool_finish(device, &device->scratch_pool);
2518
2519 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2520 anv_vma_free(device, &device->workaround_bo);
2521 anv_gem_close(device, device->workaround_bo.gem_handle);
2522
2523 anv_vma_free(device, &device->trivial_batch_bo);
2524 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2525 if (device->info.gen >= 10)
2526 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2527
2528 if (physical_device->use_softpin)
2529 anv_state_pool_finish(&device->binding_table_pool);
2530 anv_state_pool_finish(&device->surface_state_pool);
2531 anv_state_pool_finish(&device->instruction_state_pool);
2532 anv_state_pool_finish(&device->dynamic_state_pool);
2533
2534 anv_bo_cache_finish(&device->bo_cache);
2535
2536 anv_bo_pool_finish(&device->batch_bo_pool);
2537
2538 pthread_cond_destroy(&device->queue_submit);
2539 pthread_mutex_destroy(&device->mutex);
2540
2541 anv_gem_destroy_context(device, device->context_id);
2542
2543 if (INTEL_DEBUG & DEBUG_BATCH)
2544 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2545
2546 close(device->fd);
2547
2548 vk_free(&device->alloc, device);
2549 }
2550
2551 VkResult anv_EnumerateInstanceLayerProperties(
2552 uint32_t* pPropertyCount,
2553 VkLayerProperties* pProperties)
2554 {
2555 if (pProperties == NULL) {
2556 *pPropertyCount = 0;
2557 return VK_SUCCESS;
2558 }
2559
2560 /* None supported at this time */
2561 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2562 }
2563
2564 VkResult anv_EnumerateDeviceLayerProperties(
2565 VkPhysicalDevice physicalDevice,
2566 uint32_t* pPropertyCount,
2567 VkLayerProperties* pProperties)
2568 {
2569 if (pProperties == NULL) {
2570 *pPropertyCount = 0;
2571 return VK_SUCCESS;
2572 }
2573
2574 /* None supported at this time */
2575 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2576 }
2577
2578 void anv_GetDeviceQueue(
2579 VkDevice _device,
2580 uint32_t queueNodeIndex,
2581 uint32_t queueIndex,
2582 VkQueue* pQueue)
2583 {
2584 ANV_FROM_HANDLE(anv_device, device, _device);
2585
2586 assert(queueIndex == 0);
2587
2588 *pQueue = anv_queue_to_handle(&device->queue);
2589 }
2590
2591 void anv_GetDeviceQueue2(
2592 VkDevice _device,
2593 const VkDeviceQueueInfo2* pQueueInfo,
2594 VkQueue* pQueue)
2595 {
2596 ANV_FROM_HANDLE(anv_device, device, _device);
2597
2598 assert(pQueueInfo->queueIndex == 0);
2599
2600 if (pQueueInfo->flags == device->queue.flags)
2601 *pQueue = anv_queue_to_handle(&device->queue);
2602 else
2603 *pQueue = NULL;
2604 }
2605
2606 VkResult
2607 _anv_device_set_lost(struct anv_device *device,
2608 const char *file, int line,
2609 const char *msg, ...)
2610 {
2611 VkResult err;
2612 va_list ap;
2613
2614 device->_lost = true;
2615
2616 va_start(ap, msg);
2617 err = __vk_errorv(device->instance, device,
2618 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2619 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2620 va_end(ap);
2621
2622 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2623 abort();
2624
2625 return err;
2626 }
2627
2628 VkResult
2629 anv_device_query_status(struct anv_device *device)
2630 {
2631 /* This isn't likely as most of the callers of this function already check
2632 * for it. However, it doesn't hurt to check and it potentially lets us
2633 * avoid an ioctl.
2634 */
2635 if (anv_device_is_lost(device))
2636 return VK_ERROR_DEVICE_LOST;
2637
2638 uint32_t active, pending;
2639 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2640 if (ret == -1) {
2641 /* We don't know the real error. */
2642 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2643 }
2644
2645 if (active) {
2646 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2647 } else if (pending) {
2648 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2649 }
2650
2651 return VK_SUCCESS;
2652 }
2653
2654 VkResult
2655 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2656 {
2657 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2658 * Other usages of the BO (such as on different hardware) will not be
2659 * flagged as "busy" by this ioctl. Use with care.
2660 */
2661 int ret = anv_gem_busy(device, bo->gem_handle);
2662 if (ret == 1) {
2663 return VK_NOT_READY;
2664 } else if (ret == -1) {
2665 /* We don't know the real error. */
2666 return anv_device_set_lost(device, "gem wait failed: %m");
2667 }
2668
2669 /* Query for device status after the busy call. If the BO we're checking
2670 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2671 * client because it clearly doesn't have valid data. Yes, this most
2672 * likely means an ioctl, but we just did an ioctl to query the busy status
2673 * so it's no great loss.
2674 */
2675 return anv_device_query_status(device);
2676 }
2677
2678 VkResult
2679 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2680 int64_t timeout)
2681 {
2682 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2683 if (ret == -1 && errno == ETIME) {
2684 return VK_TIMEOUT;
2685 } else if (ret == -1) {
2686 /* We don't know the real error. */
2687 return anv_device_set_lost(device, "gem wait failed: %m");
2688 }
2689
2690 /* Query for device status after the wait. If the BO we're waiting on got
2691 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2692 * because it clearly doesn't have valid data. Yes, this most likely means
2693 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2694 */
2695 return anv_device_query_status(device);
2696 }
2697
2698 VkResult anv_DeviceWaitIdle(
2699 VkDevice _device)
2700 {
2701 ANV_FROM_HANDLE(anv_device, device, _device);
2702 if (anv_device_is_lost(device))
2703 return VK_ERROR_DEVICE_LOST;
2704
2705 struct anv_batch batch;
2706
2707 uint32_t cmds[8];
2708 batch.start = batch.next = cmds;
2709 batch.end = (void *) cmds + sizeof(cmds);
2710
2711 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2712 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2713
2714 return anv_device_submit_simple_batch(device, &batch);
2715 }
2716
2717 bool
2718 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2719 {
2720 if (!(bo->flags & EXEC_OBJECT_PINNED))
2721 return true;
2722
2723 pthread_mutex_lock(&device->vma_mutex);
2724
2725 bo->offset = 0;
2726
2727 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2728 device->vma_hi_available >= bo->size) {
2729 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2730 if (addr) {
2731 bo->offset = gen_canonical_address(addr);
2732 assert(addr == gen_48b_address(bo->offset));
2733 device->vma_hi_available -= bo->size;
2734 }
2735 }
2736
2737 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2738 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2739 if (addr) {
2740 bo->offset = gen_canonical_address(addr);
2741 assert(addr == gen_48b_address(bo->offset));
2742 device->vma_lo_available -= bo->size;
2743 }
2744 }
2745
2746 pthread_mutex_unlock(&device->vma_mutex);
2747
2748 return bo->offset != 0;
2749 }
2750
2751 void
2752 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2753 {
2754 if (!(bo->flags & EXEC_OBJECT_PINNED))
2755 return;
2756
2757 const uint64_t addr_48b = gen_48b_address(bo->offset);
2758
2759 pthread_mutex_lock(&device->vma_mutex);
2760
2761 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2762 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2763 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2764 device->vma_lo_available += bo->size;
2765 } else {
2766 MAYBE_UNUSED const struct anv_physical_device *physical_device =
2767 &device->instance->physicalDevice;
2768 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
2769 addr_48b < (physical_device->memory.heaps[0].vma_start +
2770 physical_device->memory.heaps[0].vma_size));
2771 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2772 device->vma_hi_available += bo->size;
2773 }
2774
2775 pthread_mutex_unlock(&device->vma_mutex);
2776
2777 bo->offset = 0;
2778 }
2779
2780 VkResult
2781 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
2782 {
2783 uint32_t gem_handle = anv_gem_create(device, size);
2784 if (!gem_handle)
2785 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2786
2787 anv_bo_init(bo, gem_handle, size);
2788
2789 return VK_SUCCESS;
2790 }
2791
2792 VkResult anv_AllocateMemory(
2793 VkDevice _device,
2794 const VkMemoryAllocateInfo* pAllocateInfo,
2795 const VkAllocationCallbacks* pAllocator,
2796 VkDeviceMemory* pMem)
2797 {
2798 ANV_FROM_HANDLE(anv_device, device, _device);
2799 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2800 struct anv_device_memory *mem;
2801 VkResult result = VK_SUCCESS;
2802
2803 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
2804
2805 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
2806 assert(pAllocateInfo->allocationSize > 0);
2807
2808 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
2809 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2810
2811 /* FINISHME: Fail if allocation request exceeds heap size. */
2812
2813 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
2814 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2815 if (mem == NULL)
2816 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2817
2818 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
2819 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
2820 mem->map = NULL;
2821 mem->map_size = 0;
2822 mem->ahw = NULL;
2823 mem->host_ptr = NULL;
2824
2825 uint64_t bo_flags = 0;
2826
2827 assert(mem->type->heapIndex < pdevice->memory.heap_count);
2828 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
2829 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2830
2831 const struct wsi_memory_allocate_info *wsi_info =
2832 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2833 if (wsi_info && wsi_info->implicit_sync) {
2834 /* We need to set the WRITE flag on window system buffers so that GEM
2835 * will know we're writing to them and synchronize uses on other rings
2836 * (eg if the display server uses the blitter ring).
2837 */
2838 bo_flags |= EXEC_OBJECT_WRITE;
2839 } else if (pdevice->has_exec_async) {
2840 bo_flags |= EXEC_OBJECT_ASYNC;
2841 }
2842
2843 if (pdevice->use_softpin)
2844 bo_flags |= EXEC_OBJECT_PINNED;
2845
2846 const VkExportMemoryAllocateInfo *export_info =
2847 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
2848
2849 /* Check if we need to support Android HW buffer export. If so,
2850 * create AHardwareBuffer and import memory from it.
2851 */
2852 bool android_export = false;
2853 if (export_info && export_info->handleTypes &
2854 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
2855 android_export = true;
2856
2857 /* Android memory import. */
2858 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
2859 vk_find_struct_const(pAllocateInfo->pNext,
2860 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
2861
2862 if (ahw_import_info) {
2863 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
2864 if (result != VK_SUCCESS)
2865 goto fail;
2866
2867 goto success;
2868 } else if (android_export) {
2869 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
2870 if (result != VK_SUCCESS)
2871 goto fail;
2872
2873 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
2874 .buffer = mem->ahw,
2875 };
2876 result = anv_import_ahw_memory(_device, mem, &import_info);
2877 if (result != VK_SUCCESS)
2878 goto fail;
2879
2880 goto success;
2881 }
2882
2883 const VkImportMemoryFdInfoKHR *fd_info =
2884 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
2885
2886 /* The Vulkan spec permits handleType to be 0, in which case the struct is
2887 * ignored.
2888 */
2889 if (fd_info && fd_info->handleType) {
2890 /* At the moment, we support only the below handle types. */
2891 assert(fd_info->handleType ==
2892 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2893 fd_info->handleType ==
2894 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2895
2896 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
2897 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
2898 if (result != VK_SUCCESS)
2899 goto fail;
2900
2901 VkDeviceSize aligned_alloc_size =
2902 align_u64(pAllocateInfo->allocationSize, 4096);
2903
2904 /* For security purposes, we reject importing the bo if it's smaller
2905 * than the requested allocation size. This prevents a malicious client
2906 * from passing a buffer to a trusted client, lying about the size, and
2907 * telling the trusted client to try and texture from an image that goes
2908 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
2909 * in the trusted client. The trusted client can protect itself against
2910 * this sort of attack but only if it can trust the buffer size.
2911 */
2912 if (mem->bo->size < aligned_alloc_size) {
2913 result = vk_errorf(device->instance, device,
2914 VK_ERROR_INVALID_EXTERNAL_HANDLE,
2915 "aligned allocationSize too large for "
2916 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
2917 "%"PRIu64"B > %"PRIu64"B",
2918 aligned_alloc_size, mem->bo->size);
2919 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2920 goto fail;
2921 }
2922
2923 /* From the Vulkan spec:
2924 *
2925 * "Importing memory from a file descriptor transfers ownership of
2926 * the file descriptor from the application to the Vulkan
2927 * implementation. The application must not perform any operations on
2928 * the file descriptor after a successful import."
2929 *
2930 * If the import fails, we leave the file descriptor open.
2931 */
2932 close(fd_info->fd);
2933 goto success;
2934 }
2935
2936 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
2937 vk_find_struct_const(pAllocateInfo->pNext,
2938 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
2939 if (host_ptr_info && host_ptr_info->handleType) {
2940 if (host_ptr_info->handleType ==
2941 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
2942 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2943 goto fail;
2944 }
2945
2946 assert(host_ptr_info->handleType ==
2947 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
2948
2949 result = anv_bo_cache_import_host_ptr(
2950 device, &device->bo_cache, host_ptr_info->pHostPointer,
2951 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
2952
2953 if (result != VK_SUCCESS)
2954 goto fail;
2955
2956 mem->host_ptr = host_ptr_info->pHostPointer;
2957 goto success;
2958 }
2959
2960 /* Regular allocate (not importing memory). */
2961
2962 if (export_info && export_info->handleTypes)
2963 bo_flags |= ANV_BO_EXTERNAL;
2964
2965 result = anv_bo_cache_alloc(device, &device->bo_cache,
2966 pAllocateInfo->allocationSize, bo_flags,
2967 &mem->bo);
2968 if (result != VK_SUCCESS)
2969 goto fail;
2970
2971 const VkMemoryDedicatedAllocateInfo *dedicated_info =
2972 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
2973 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
2974 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
2975
2976 /* Some legacy (non-modifiers) consumers need the tiling to be set on
2977 * the BO. In this case, we have a dedicated allocation.
2978 */
2979 if (image->needs_set_tiling) {
2980 const uint32_t i915_tiling =
2981 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
2982 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
2983 image->planes[0].surface.isl.row_pitch_B,
2984 i915_tiling);
2985 if (ret) {
2986 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2987 return vk_errorf(device->instance, NULL,
2988 VK_ERROR_OUT_OF_DEVICE_MEMORY,
2989 "failed to set BO tiling: %m");
2990 }
2991 }
2992 }
2993
2994 success:
2995 pthread_mutex_lock(&device->mutex);
2996 list_addtail(&mem->link, &device->memory_objects);
2997 pthread_mutex_unlock(&device->mutex);
2998
2999 *pMem = anv_device_memory_to_handle(mem);
3000
3001 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3002 mem->bo->size);
3003
3004 return VK_SUCCESS;
3005
3006 fail:
3007 vk_free2(&device->alloc, pAllocator, mem);
3008
3009 return result;
3010 }
3011
3012 VkResult anv_GetMemoryFdKHR(
3013 VkDevice device_h,
3014 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3015 int* pFd)
3016 {
3017 ANV_FROM_HANDLE(anv_device, dev, device_h);
3018 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3019
3020 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3021
3022 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3023 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3024
3025 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
3026 }
3027
3028 VkResult anv_GetMemoryFdPropertiesKHR(
3029 VkDevice _device,
3030 VkExternalMemoryHandleTypeFlagBits handleType,
3031 int fd,
3032 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3033 {
3034 ANV_FROM_HANDLE(anv_device, device, _device);
3035 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3036
3037 switch (handleType) {
3038 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3039 /* dma-buf can be imported as any memory type */
3040 pMemoryFdProperties->memoryTypeBits =
3041 (1 << pdevice->memory.type_count) - 1;
3042 return VK_SUCCESS;
3043
3044 default:
3045 /* The valid usage section for this function says:
3046 *
3047 * "handleType must not be one of the handle types defined as
3048 * opaque."
3049 *
3050 * So opaque handle types fall into the default "unsupported" case.
3051 */
3052 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3053 }
3054 }
3055
3056 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3057 VkDevice _device,
3058 VkExternalMemoryHandleTypeFlagBits handleType,
3059 const void* pHostPointer,
3060 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3061 {
3062 ANV_FROM_HANDLE(anv_device, device, _device);
3063
3064 assert(pMemoryHostPointerProperties->sType ==
3065 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3066
3067 switch (handleType) {
3068 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
3069 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3070
3071 /* Host memory can be imported as any memory type. */
3072 pMemoryHostPointerProperties->memoryTypeBits =
3073 (1ull << pdevice->memory.type_count) - 1;
3074
3075 return VK_SUCCESS;
3076 }
3077 default:
3078 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3079 }
3080 }
3081
3082 void anv_FreeMemory(
3083 VkDevice _device,
3084 VkDeviceMemory _mem,
3085 const VkAllocationCallbacks* pAllocator)
3086 {
3087 ANV_FROM_HANDLE(anv_device, device, _device);
3088 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3089 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3090
3091 if (mem == NULL)
3092 return;
3093
3094 pthread_mutex_lock(&device->mutex);
3095 list_del(&mem->link);
3096 pthread_mutex_unlock(&device->mutex);
3097
3098 if (mem->map)
3099 anv_UnmapMemory(_device, _mem);
3100
3101 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3102 -mem->bo->size);
3103
3104 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3105
3106 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3107 if (mem->ahw)
3108 AHardwareBuffer_release(mem->ahw);
3109 #endif
3110
3111 vk_free2(&device->alloc, pAllocator, mem);
3112 }
3113
3114 VkResult anv_MapMemory(
3115 VkDevice _device,
3116 VkDeviceMemory _memory,
3117 VkDeviceSize offset,
3118 VkDeviceSize size,
3119 VkMemoryMapFlags flags,
3120 void** ppData)
3121 {
3122 ANV_FROM_HANDLE(anv_device, device, _device);
3123 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3124
3125 if (mem == NULL) {
3126 *ppData = NULL;
3127 return VK_SUCCESS;
3128 }
3129
3130 if (mem->host_ptr) {
3131 *ppData = mem->host_ptr + offset;
3132 return VK_SUCCESS;
3133 }
3134
3135 if (size == VK_WHOLE_SIZE)
3136 size = mem->bo->size - offset;
3137
3138 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3139 *
3140 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3141 * assert(size != 0);
3142 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3143 * equal to the size of the memory minus offset
3144 */
3145 assert(size > 0);
3146 assert(offset + size <= mem->bo->size);
3147
3148 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3149 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3150 * at a time is valid. We could just mmap up front and return an offset
3151 * pointer here, but that may exhaust virtual memory on 32 bit
3152 * userspace. */
3153
3154 uint32_t gem_flags = 0;
3155
3156 if (!device->info.has_llc &&
3157 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3158 gem_flags |= I915_MMAP_WC;
3159
3160 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3161 uint64_t map_offset = offset & ~4095ull;
3162 assert(offset >= map_offset);
3163 uint64_t map_size = (offset + size) - map_offset;
3164
3165 /* Let's map whole pages */
3166 map_size = align_u64(map_size, 4096);
3167
3168 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3169 map_offset, map_size, gem_flags);
3170 if (map == MAP_FAILED)
3171 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3172
3173 mem->map = map;
3174 mem->map_size = map_size;
3175
3176 *ppData = mem->map + (offset - map_offset);
3177
3178 return VK_SUCCESS;
3179 }
3180
3181 void anv_UnmapMemory(
3182 VkDevice _device,
3183 VkDeviceMemory _memory)
3184 {
3185 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3186
3187 if (mem == NULL || mem->host_ptr)
3188 return;
3189
3190 anv_gem_munmap(mem->map, mem->map_size);
3191
3192 mem->map = NULL;
3193 mem->map_size = 0;
3194 }
3195
3196 static void
3197 clflush_mapped_ranges(struct anv_device *device,
3198 uint32_t count,
3199 const VkMappedMemoryRange *ranges)
3200 {
3201 for (uint32_t i = 0; i < count; i++) {
3202 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3203 if (ranges[i].offset >= mem->map_size)
3204 continue;
3205
3206 gen_clflush_range(mem->map + ranges[i].offset,
3207 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3208 }
3209 }
3210
3211 VkResult anv_FlushMappedMemoryRanges(
3212 VkDevice _device,
3213 uint32_t memoryRangeCount,
3214 const VkMappedMemoryRange* pMemoryRanges)
3215 {
3216 ANV_FROM_HANDLE(anv_device, device, _device);
3217
3218 if (device->info.has_llc)
3219 return VK_SUCCESS;
3220
3221 /* Make sure the writes we're flushing have landed. */
3222 __builtin_ia32_mfence();
3223
3224 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3225
3226 return VK_SUCCESS;
3227 }
3228
3229 VkResult anv_InvalidateMappedMemoryRanges(
3230 VkDevice _device,
3231 uint32_t memoryRangeCount,
3232 const VkMappedMemoryRange* pMemoryRanges)
3233 {
3234 ANV_FROM_HANDLE(anv_device, device, _device);
3235
3236 if (device->info.has_llc)
3237 return VK_SUCCESS;
3238
3239 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3240
3241 /* Make sure no reads get moved up above the invalidate. */
3242 __builtin_ia32_mfence();
3243
3244 return VK_SUCCESS;
3245 }
3246
3247 void anv_GetBufferMemoryRequirements(
3248 VkDevice _device,
3249 VkBuffer _buffer,
3250 VkMemoryRequirements* pMemoryRequirements)
3251 {
3252 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3253 ANV_FROM_HANDLE(anv_device, device, _device);
3254 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3255
3256 /* The Vulkan spec (git aaed022) says:
3257 *
3258 * memoryTypeBits is a bitfield and contains one bit set for every
3259 * supported memory type for the resource. The bit `1<<i` is set if and
3260 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3261 * structure for the physical device is supported.
3262 */
3263 uint32_t memory_types = 0;
3264 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3265 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3266 if ((valid_usage & buffer->usage) == buffer->usage)
3267 memory_types |= (1u << i);
3268 }
3269
3270 /* Base alignment requirement of a cache line */
3271 uint32_t alignment = 16;
3272
3273 /* We need an alignment of 32 for pushing UBOs */
3274 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3275 alignment = MAX2(alignment, 32);
3276
3277 pMemoryRequirements->size = buffer->size;
3278 pMemoryRequirements->alignment = alignment;
3279
3280 /* Storage and Uniform buffers should have their size aligned to
3281 * 32-bits to avoid boundary checks when last DWord is not complete.
3282 * This would ensure that not internal padding would be needed for
3283 * 16-bit types.
3284 */
3285 if (device->robust_buffer_access &&
3286 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3287 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3288 pMemoryRequirements->size = align_u64(buffer->size, 4);
3289
3290 pMemoryRequirements->memoryTypeBits = memory_types;
3291 }
3292
3293 void anv_GetBufferMemoryRequirements2(
3294 VkDevice _device,
3295 const VkBufferMemoryRequirementsInfo2* pInfo,
3296 VkMemoryRequirements2* pMemoryRequirements)
3297 {
3298 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3299 &pMemoryRequirements->memoryRequirements);
3300
3301 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3302 switch (ext->sType) {
3303 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3304 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3305 requirements->prefersDedicatedAllocation = false;
3306 requirements->requiresDedicatedAllocation = false;
3307 break;
3308 }
3309
3310 default:
3311 anv_debug_ignored_stype(ext->sType);
3312 break;
3313 }
3314 }
3315 }
3316
3317 void anv_GetImageMemoryRequirements(
3318 VkDevice _device,
3319 VkImage _image,
3320 VkMemoryRequirements* pMemoryRequirements)
3321 {
3322 ANV_FROM_HANDLE(anv_image, image, _image);
3323 ANV_FROM_HANDLE(anv_device, device, _device);
3324 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3325
3326 /* The Vulkan spec (git aaed022) says:
3327 *
3328 * memoryTypeBits is a bitfield and contains one bit set for every
3329 * supported memory type for the resource. The bit `1<<i` is set if and
3330 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3331 * structure for the physical device is supported.
3332 *
3333 * All types are currently supported for images.
3334 */
3335 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3336
3337 /* We must have image allocated or imported at this point. According to the
3338 * specification, external images must have been bound to memory before
3339 * calling GetImageMemoryRequirements.
3340 */
3341 assert(image->size > 0);
3342
3343 pMemoryRequirements->size = image->size;
3344 pMemoryRequirements->alignment = image->alignment;
3345 pMemoryRequirements->memoryTypeBits = memory_types;
3346 }
3347
3348 void anv_GetImageMemoryRequirements2(
3349 VkDevice _device,
3350 const VkImageMemoryRequirementsInfo2* pInfo,
3351 VkMemoryRequirements2* pMemoryRequirements)
3352 {
3353 ANV_FROM_HANDLE(anv_device, device, _device);
3354 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3355
3356 anv_GetImageMemoryRequirements(_device, pInfo->image,
3357 &pMemoryRequirements->memoryRequirements);
3358
3359 vk_foreach_struct_const(ext, pInfo->pNext) {
3360 switch (ext->sType) {
3361 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3362 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3363 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3364 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3365 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3366 plane_reqs->planeAspect);
3367
3368 assert(image->planes[plane].offset == 0);
3369
3370 /* The Vulkan spec (git aaed022) says:
3371 *
3372 * memoryTypeBits is a bitfield and contains one bit set for every
3373 * supported memory type for the resource. The bit `1<<i` is set
3374 * if and only if the memory type `i` in the
3375 * VkPhysicalDeviceMemoryProperties structure for the physical
3376 * device is supported.
3377 *
3378 * All types are currently supported for images.
3379 */
3380 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3381 (1ull << pdevice->memory.type_count) - 1;
3382
3383 /* We must have image allocated or imported at this point. According to the
3384 * specification, external images must have been bound to memory before
3385 * calling GetImageMemoryRequirements.
3386 */
3387 assert(image->planes[plane].size > 0);
3388
3389 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3390 pMemoryRequirements->memoryRequirements.alignment =
3391 image->planes[plane].alignment;
3392 break;
3393 }
3394
3395 default:
3396 anv_debug_ignored_stype(ext->sType);
3397 break;
3398 }
3399 }
3400
3401 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3402 switch (ext->sType) {
3403 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3404 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3405 if (image->needs_set_tiling || image->external_format) {
3406 /* If we need to set the tiling for external consumers, we need a
3407 * dedicated allocation.
3408 *
3409 * See also anv_AllocateMemory.
3410 */
3411 requirements->prefersDedicatedAllocation = true;
3412 requirements->requiresDedicatedAllocation = true;
3413 } else {
3414 requirements->prefersDedicatedAllocation = false;
3415 requirements->requiresDedicatedAllocation = false;
3416 }
3417 break;
3418 }
3419
3420 default:
3421 anv_debug_ignored_stype(ext->sType);
3422 break;
3423 }
3424 }
3425 }
3426
3427 void anv_GetImageSparseMemoryRequirements(
3428 VkDevice device,
3429 VkImage image,
3430 uint32_t* pSparseMemoryRequirementCount,
3431 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3432 {
3433 *pSparseMemoryRequirementCount = 0;
3434 }
3435
3436 void anv_GetImageSparseMemoryRequirements2(
3437 VkDevice device,
3438 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3439 uint32_t* pSparseMemoryRequirementCount,
3440 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3441 {
3442 *pSparseMemoryRequirementCount = 0;
3443 }
3444
3445 void anv_GetDeviceMemoryCommitment(
3446 VkDevice device,
3447 VkDeviceMemory memory,
3448 VkDeviceSize* pCommittedMemoryInBytes)
3449 {
3450 *pCommittedMemoryInBytes = 0;
3451 }
3452
3453 static void
3454 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3455 {
3456 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3457 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3458
3459 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3460
3461 if (mem) {
3462 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3463 buffer->address = (struct anv_address) {
3464 .bo = mem->bo,
3465 .offset = pBindInfo->memoryOffset,
3466 };
3467 } else {
3468 buffer->address = ANV_NULL_ADDRESS;
3469 }
3470 }
3471
3472 VkResult anv_BindBufferMemory(
3473 VkDevice device,
3474 VkBuffer buffer,
3475 VkDeviceMemory memory,
3476 VkDeviceSize memoryOffset)
3477 {
3478 anv_bind_buffer_memory(
3479 &(VkBindBufferMemoryInfo) {
3480 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3481 .buffer = buffer,
3482 .memory = memory,
3483 .memoryOffset = memoryOffset,
3484 });
3485
3486 return VK_SUCCESS;
3487 }
3488
3489 VkResult anv_BindBufferMemory2(
3490 VkDevice device,
3491 uint32_t bindInfoCount,
3492 const VkBindBufferMemoryInfo* pBindInfos)
3493 {
3494 for (uint32_t i = 0; i < bindInfoCount; i++)
3495 anv_bind_buffer_memory(&pBindInfos[i]);
3496
3497 return VK_SUCCESS;
3498 }
3499
3500 VkResult anv_QueueBindSparse(
3501 VkQueue _queue,
3502 uint32_t bindInfoCount,
3503 const VkBindSparseInfo* pBindInfo,
3504 VkFence fence)
3505 {
3506 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3507 if (anv_device_is_lost(queue->device))
3508 return VK_ERROR_DEVICE_LOST;
3509
3510 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3511 }
3512
3513 // Event functions
3514
3515 VkResult anv_CreateEvent(
3516 VkDevice _device,
3517 const VkEventCreateInfo* pCreateInfo,
3518 const VkAllocationCallbacks* pAllocator,
3519 VkEvent* pEvent)
3520 {
3521 ANV_FROM_HANDLE(anv_device, device, _device);
3522 struct anv_state state;
3523 struct anv_event *event;
3524
3525 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3526
3527 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3528 sizeof(*event), 8);
3529 event = state.map;
3530 event->state = state;
3531 event->semaphore = VK_EVENT_RESET;
3532
3533 if (!device->info.has_llc) {
3534 /* Make sure the writes we're flushing have landed. */
3535 __builtin_ia32_mfence();
3536 __builtin_ia32_clflush(event);
3537 }
3538
3539 *pEvent = anv_event_to_handle(event);
3540
3541 return VK_SUCCESS;
3542 }
3543
3544 void anv_DestroyEvent(
3545 VkDevice _device,
3546 VkEvent _event,
3547 const VkAllocationCallbacks* pAllocator)
3548 {
3549 ANV_FROM_HANDLE(anv_device, device, _device);
3550 ANV_FROM_HANDLE(anv_event, event, _event);
3551
3552 if (!event)
3553 return;
3554
3555 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3556 }
3557
3558 VkResult anv_GetEventStatus(
3559 VkDevice _device,
3560 VkEvent _event)
3561 {
3562 ANV_FROM_HANDLE(anv_device, device, _device);
3563 ANV_FROM_HANDLE(anv_event, event, _event);
3564
3565 if (anv_device_is_lost(device))
3566 return VK_ERROR_DEVICE_LOST;
3567
3568 if (!device->info.has_llc) {
3569 /* Invalidate read cache before reading event written by GPU. */
3570 __builtin_ia32_clflush(event);
3571 __builtin_ia32_mfence();
3572
3573 }
3574
3575 return event->semaphore;
3576 }
3577
3578 VkResult anv_SetEvent(
3579 VkDevice _device,
3580 VkEvent _event)
3581 {
3582 ANV_FROM_HANDLE(anv_device, device, _device);
3583 ANV_FROM_HANDLE(anv_event, event, _event);
3584
3585 event->semaphore = VK_EVENT_SET;
3586
3587 if (!device->info.has_llc) {
3588 /* Make sure the writes we're flushing have landed. */
3589 __builtin_ia32_mfence();
3590 __builtin_ia32_clflush(event);
3591 }
3592
3593 return VK_SUCCESS;
3594 }
3595
3596 VkResult anv_ResetEvent(
3597 VkDevice _device,
3598 VkEvent _event)
3599 {
3600 ANV_FROM_HANDLE(anv_device, device, _device);
3601 ANV_FROM_HANDLE(anv_event, event, _event);
3602
3603 event->semaphore = VK_EVENT_RESET;
3604
3605 if (!device->info.has_llc) {
3606 /* Make sure the writes we're flushing have landed. */
3607 __builtin_ia32_mfence();
3608 __builtin_ia32_clflush(event);
3609 }
3610
3611 return VK_SUCCESS;
3612 }
3613
3614 // Buffer functions
3615
3616 VkResult anv_CreateBuffer(
3617 VkDevice _device,
3618 const VkBufferCreateInfo* pCreateInfo,
3619 const VkAllocationCallbacks* pAllocator,
3620 VkBuffer* pBuffer)
3621 {
3622 ANV_FROM_HANDLE(anv_device, device, _device);
3623 struct anv_buffer *buffer;
3624
3625 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3626
3627 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3628 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3629 if (buffer == NULL)
3630 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3631
3632 buffer->size = pCreateInfo->size;
3633 buffer->usage = pCreateInfo->usage;
3634 buffer->address = ANV_NULL_ADDRESS;
3635
3636 *pBuffer = anv_buffer_to_handle(buffer);
3637
3638 return VK_SUCCESS;
3639 }
3640
3641 void anv_DestroyBuffer(
3642 VkDevice _device,
3643 VkBuffer _buffer,
3644 const VkAllocationCallbacks* pAllocator)
3645 {
3646 ANV_FROM_HANDLE(anv_device, device, _device);
3647 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3648
3649 if (!buffer)
3650 return;
3651
3652 vk_free2(&device->alloc, pAllocator, buffer);
3653 }
3654
3655 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3656 VkDevice device,
3657 const VkBufferDeviceAddressInfoEXT* pInfo)
3658 {
3659 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3660
3661 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3662
3663 return anv_address_physical(buffer->address);
3664 }
3665
3666 void
3667 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3668 enum isl_format format,
3669 struct anv_address address,
3670 uint32_t range, uint32_t stride)
3671 {
3672 isl_buffer_fill_state(&device->isl_dev, state.map,
3673 .address = anv_address_physical(address),
3674 .mocs = device->default_mocs,
3675 .size_B = range,
3676 .format = format,
3677 .swizzle = ISL_SWIZZLE_IDENTITY,
3678 .stride_B = stride);
3679 }
3680
3681 void anv_DestroySampler(
3682 VkDevice _device,
3683 VkSampler _sampler,
3684 const VkAllocationCallbacks* pAllocator)
3685 {
3686 ANV_FROM_HANDLE(anv_device, device, _device);
3687 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3688
3689 if (!sampler)
3690 return;
3691
3692 if (sampler->bindless_state.map) {
3693 anv_state_pool_free(&device->dynamic_state_pool,
3694 sampler->bindless_state);
3695 }
3696
3697 vk_free2(&device->alloc, pAllocator, sampler);
3698 }
3699
3700 VkResult anv_CreateFramebuffer(
3701 VkDevice _device,
3702 const VkFramebufferCreateInfo* pCreateInfo,
3703 const VkAllocationCallbacks* pAllocator,
3704 VkFramebuffer* pFramebuffer)
3705 {
3706 ANV_FROM_HANDLE(anv_device, device, _device);
3707 struct anv_framebuffer *framebuffer;
3708
3709 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3710
3711 size_t size = sizeof(*framebuffer) +
3712 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3713 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3714 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3715 if (framebuffer == NULL)
3716 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3717
3718 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3719 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3720 VkImageView _iview = pCreateInfo->pAttachments[i];
3721 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
3722 }
3723
3724 framebuffer->width = pCreateInfo->width;
3725 framebuffer->height = pCreateInfo->height;
3726 framebuffer->layers = pCreateInfo->layers;
3727
3728 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3729
3730 return VK_SUCCESS;
3731 }
3732
3733 void anv_DestroyFramebuffer(
3734 VkDevice _device,
3735 VkFramebuffer _fb,
3736 const VkAllocationCallbacks* pAllocator)
3737 {
3738 ANV_FROM_HANDLE(anv_device, device, _device);
3739 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3740
3741 if (!fb)
3742 return;
3743
3744 vk_free2(&device->alloc, pAllocator, fb);
3745 }
3746
3747 static const VkTimeDomainEXT anv_time_domains[] = {
3748 VK_TIME_DOMAIN_DEVICE_EXT,
3749 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3750 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3751 };
3752
3753 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3754 VkPhysicalDevice physicalDevice,
3755 uint32_t *pTimeDomainCount,
3756 VkTimeDomainEXT *pTimeDomains)
3757 {
3758 int d;
3759 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
3760
3761 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
3762 vk_outarray_append(&out, i) {
3763 *i = anv_time_domains[d];
3764 }
3765 }
3766
3767 return vk_outarray_status(&out);
3768 }
3769
3770 static uint64_t
3771 anv_clock_gettime(clockid_t clock_id)
3772 {
3773 struct timespec current;
3774 int ret;
3775
3776 ret = clock_gettime(clock_id, &current);
3777 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
3778 ret = clock_gettime(CLOCK_MONOTONIC, &current);
3779 if (ret < 0)
3780 return 0;
3781
3782 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
3783 }
3784
3785 #define TIMESTAMP 0x2358
3786
3787 VkResult anv_GetCalibratedTimestampsEXT(
3788 VkDevice _device,
3789 uint32_t timestampCount,
3790 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
3791 uint64_t *pTimestamps,
3792 uint64_t *pMaxDeviation)
3793 {
3794 ANV_FROM_HANDLE(anv_device, device, _device);
3795 uint64_t timestamp_frequency = device->info.timestamp_frequency;
3796 int ret;
3797 int d;
3798 uint64_t begin, end;
3799 uint64_t max_clock_period = 0;
3800
3801 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3802
3803 for (d = 0; d < timestampCount; d++) {
3804 switch (pTimestampInfos[d].timeDomain) {
3805 case VK_TIME_DOMAIN_DEVICE_EXT:
3806 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
3807 &pTimestamps[d]);
3808
3809 if (ret != 0) {
3810 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
3811 "register: %m");
3812 }
3813 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
3814 max_clock_period = MAX2(max_clock_period, device_period);
3815 break;
3816 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
3817 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
3818 max_clock_period = MAX2(max_clock_period, 1);
3819 break;
3820
3821 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
3822 pTimestamps[d] = begin;
3823 break;
3824 default:
3825 pTimestamps[d] = 0;
3826 break;
3827 }
3828 }
3829
3830 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3831
3832 /*
3833 * The maximum deviation is the sum of the interval over which we
3834 * perform the sampling and the maximum period of any sampled
3835 * clock. That's because the maximum skew between any two sampled
3836 * clock edges is when the sampled clock with the largest period is
3837 * sampled at the end of that period but right at the beginning of the
3838 * sampling interval and some other clock is sampled right at the
3839 * begining of its sampling period and right at the end of the
3840 * sampling interval. Let's assume the GPU has the longest clock
3841 * period and that the application is sampling GPU and monotonic:
3842 *
3843 * s e
3844 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
3845 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3846 *
3847 * g
3848 * 0 1 2 3
3849 * GPU -----_____-----_____-----_____-----_____
3850 *
3851 * m
3852 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
3853 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3854 *
3855 * Interval <----------------->
3856 * Deviation <-------------------------->
3857 *
3858 * s = read(raw) 2
3859 * g = read(GPU) 1
3860 * m = read(monotonic) 2
3861 * e = read(raw) b
3862 *
3863 * We round the sample interval up by one tick to cover sampling error
3864 * in the interval clock
3865 */
3866
3867 uint64_t sample_interval = end - begin + 1;
3868
3869 *pMaxDeviation = sample_interval + max_clock_period;
3870
3871 return VK_SUCCESS;
3872 }
3873
3874 /* vk_icd.h does not declare this function, so we declare it here to
3875 * suppress Wmissing-prototypes.
3876 */
3877 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3878 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
3879
3880 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3881 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
3882 {
3883 /* For the full details on loader interface versioning, see
3884 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
3885 * What follows is a condensed summary, to help you navigate the large and
3886 * confusing official doc.
3887 *
3888 * - Loader interface v0 is incompatible with later versions. We don't
3889 * support it.
3890 *
3891 * - In loader interface v1:
3892 * - The first ICD entrypoint called by the loader is
3893 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
3894 * entrypoint.
3895 * - The ICD must statically expose no other Vulkan symbol unless it is
3896 * linked with -Bsymbolic.
3897 * - Each dispatchable Vulkan handle created by the ICD must be
3898 * a pointer to a struct whose first member is VK_LOADER_DATA. The
3899 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
3900 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
3901 * vkDestroySurfaceKHR(). The ICD must be capable of working with
3902 * such loader-managed surfaces.
3903 *
3904 * - Loader interface v2 differs from v1 in:
3905 * - The first ICD entrypoint called by the loader is
3906 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
3907 * statically expose this entrypoint.
3908 *
3909 * - Loader interface v3 differs from v2 in:
3910 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
3911 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
3912 * because the loader no longer does so.
3913 */
3914 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
3915 return VK_SUCCESS;
3916 }