anv/device: expose VK_KHR_shader_float16_int8 in gen8+
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/u_string.h"
41 #include "git_sha1.h"
42 #include "vk_util.h"
43 #include "common/gen_defines.h"
44 #include "compiler/glsl_types.h"
45
46 #include "genxml/gen7_pack.h"
47
48 /* This is probably far to big but it reflects the max size used for messages
49 * in OpenGLs KHR_debug.
50 */
51 #define MAX_DEBUG_MESSAGE_LENGTH 4096
52
53 static void
54 compiler_debug_log(void *data, const char *fmt, ...)
55 {
56 char str[MAX_DEBUG_MESSAGE_LENGTH];
57 struct anv_device *device = (struct anv_device *)data;
58
59 if (list_empty(&device->instance->debug_report_callbacks.callbacks))
60 return;
61
62 va_list args;
63 va_start(args, fmt);
64 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
65 va_end(args);
66
67 vk_debug_report(&device->instance->debug_report_callbacks,
68 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
69 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
70 0, 0, 0, "anv", str);
71 }
72
73 static void
74 compiler_perf_log(void *data, const char *fmt, ...)
75 {
76 va_list args;
77 va_start(args, fmt);
78
79 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
80 intel_logd_v(fmt, args);
81
82 va_end(args);
83 }
84
85 static uint64_t
86 anv_compute_heap_size(int fd, uint64_t gtt_size)
87 {
88 /* Query the total ram from the system */
89 struct sysinfo info;
90 sysinfo(&info);
91
92 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
93
94 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
95 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
96 */
97 uint64_t available_ram;
98 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
99 available_ram = total_ram / 2;
100 else
101 available_ram = total_ram * 3 / 4;
102
103 /* We also want to leave some padding for things we allocate in the driver,
104 * so don't go over 3/4 of the GTT either.
105 */
106 uint64_t available_gtt = gtt_size * 3 / 4;
107
108 return MIN2(available_ram, available_gtt);
109 }
110
111 static VkResult
112 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
113 {
114 uint64_t gtt_size;
115 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
116 &gtt_size) == -1) {
117 /* If, for whatever reason, we can't actually get the GTT size from the
118 * kernel (too old?) fall back to the aperture size.
119 */
120 anv_perf_warn(NULL, NULL,
121 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
122
123 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
124 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
125 "failed to get aperture size: %m");
126 }
127 }
128
129 device->supports_48bit_addresses = (device->info.gen >= 8) &&
130 gtt_size > (4ULL << 30 /* GiB */);
131
132 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
133
134 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
135 /* When running with an overridden PCI ID, we may get a GTT size from
136 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
137 * address support can still fail. Just clamp the address space size to
138 * 2 GiB if we don't have 48-bit support.
139 */
140 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
141 "not support for 48-bit addresses",
142 __FILE__, __LINE__);
143 heap_size = 2ull << 30;
144 }
145
146 if (heap_size <= 3ull * (1ull << 30)) {
147 /* In this case, everything fits nicely into the 32-bit address space,
148 * so there's no need for supporting 48bit addresses on client-allocated
149 * memory objects.
150 */
151 device->memory.heap_count = 1;
152 device->memory.heaps[0] = (struct anv_memory_heap) {
153 .vma_start = LOW_HEAP_MIN_ADDRESS,
154 .vma_size = LOW_HEAP_SIZE,
155 .size = heap_size,
156 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
157 .supports_48bit_addresses = false,
158 };
159 } else {
160 /* Not everything will fit nicely into a 32-bit address space. In this
161 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
162 * larger 48-bit heap. If we're in this case, then we have a total heap
163 * size larger than 3GiB which most likely means they have 8 GiB of
164 * video memory and so carving off 1 GiB for the 32-bit heap should be
165 * reasonable.
166 */
167 const uint64_t heap_size_32bit = 1ull << 30;
168 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
169
170 assert(device->supports_48bit_addresses);
171
172 device->memory.heap_count = 2;
173 device->memory.heaps[0] = (struct anv_memory_heap) {
174 .vma_start = HIGH_HEAP_MIN_ADDRESS,
175 /* Leave the last 4GiB out of the high vma range, so that no state
176 * base address + size can overflow 48 bits. For more information see
177 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
178 */
179 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
180 .size = heap_size_48bit,
181 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
182 .supports_48bit_addresses = true,
183 };
184 device->memory.heaps[1] = (struct anv_memory_heap) {
185 .vma_start = LOW_HEAP_MIN_ADDRESS,
186 .vma_size = LOW_HEAP_SIZE,
187 .size = heap_size_32bit,
188 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
189 .supports_48bit_addresses = false,
190 };
191 }
192
193 uint32_t type_count = 0;
194 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
195 uint32_t valid_buffer_usage = ~0;
196
197 /* There appears to be a hardware issue in the VF cache where it only
198 * considers the bottom 32 bits of memory addresses. If you happen to
199 * have two vertex buffers which get placed exactly 4 GiB apart and use
200 * them in back-to-back draw calls, you can get collisions. In order to
201 * solve this problem, we require vertex and index buffers be bound to
202 * memory allocated out of the 32-bit heap.
203 */
204 if (device->memory.heaps[heap].supports_48bit_addresses) {
205 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
206 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
207 }
208
209 if (device->info.has_llc) {
210 /* Big core GPUs share LLC with the CPU and thus one memory type can be
211 * both cached and coherent at the same time.
212 */
213 device->memory.types[type_count++] = (struct anv_memory_type) {
214 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
215 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
216 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
217 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
218 .heapIndex = heap,
219 .valid_buffer_usage = valid_buffer_usage,
220 };
221 } else {
222 /* The spec requires that we expose a host-visible, coherent memory
223 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
224 * to give the application a choice between cached, but not coherent and
225 * coherent but uncached (WC though).
226 */
227 device->memory.types[type_count++] = (struct anv_memory_type) {
228 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
229 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
230 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
231 .heapIndex = heap,
232 .valid_buffer_usage = valid_buffer_usage,
233 };
234 device->memory.types[type_count++] = (struct anv_memory_type) {
235 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
236 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
237 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
238 .heapIndex = heap,
239 .valid_buffer_usage = valid_buffer_usage,
240 };
241 }
242 }
243 device->memory.type_count = type_count;
244
245 return VK_SUCCESS;
246 }
247
248 static VkResult
249 anv_physical_device_init_uuids(struct anv_physical_device *device)
250 {
251 const struct build_id_note *note =
252 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
253 if (!note) {
254 return vk_errorf(device->instance, device,
255 VK_ERROR_INITIALIZATION_FAILED,
256 "Failed to find build-id");
257 }
258
259 unsigned build_id_len = build_id_length(note);
260 if (build_id_len < 20) {
261 return vk_errorf(device->instance, device,
262 VK_ERROR_INITIALIZATION_FAILED,
263 "build-id too short. It needs to be a SHA");
264 }
265
266 memcpy(device->driver_build_sha1, build_id_data(note), 20);
267
268 struct mesa_sha1 sha1_ctx;
269 uint8_t sha1[20];
270 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
271
272 /* The pipeline cache UUID is used for determining when a pipeline cache is
273 * invalid. It needs both a driver build and the PCI ID of the device.
274 */
275 _mesa_sha1_init(&sha1_ctx);
276 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
277 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
278 sizeof(device->chipset_id));
279 _mesa_sha1_final(&sha1_ctx, sha1);
280 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
281
282 /* The driver UUID is used for determining sharability of images and memory
283 * between two Vulkan instances in separate processes. People who want to
284 * share memory need to also check the device UUID (below) so all this
285 * needs to be is the build-id.
286 */
287 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
288
289 /* The device UUID uniquely identifies the given device within the machine.
290 * Since we never have more than one device, this doesn't need to be a real
291 * UUID. However, on the off-chance that someone tries to use this to
292 * cache pre-tiled images or something of the like, we use the PCI ID and
293 * some bits of ISL info to ensure that this is safe.
294 */
295 _mesa_sha1_init(&sha1_ctx);
296 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
297 sizeof(device->chipset_id));
298 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
299 sizeof(device->isl_dev.has_bit6_swizzling));
300 _mesa_sha1_final(&sha1_ctx, sha1);
301 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
302
303 return VK_SUCCESS;
304 }
305
306 static void
307 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
308 {
309 #ifdef ENABLE_SHADER_CACHE
310 char renderer[10];
311 MAYBE_UNUSED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
312 device->chipset_id);
313 assert(len == sizeof(renderer) - 2);
314
315 char timestamp[41];
316 _mesa_sha1_format(timestamp, device->driver_build_sha1);
317
318 const uint64_t driver_flags =
319 brw_get_compiler_config_value(device->compiler);
320 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
321 #else
322 device->disk_cache = NULL;
323 #endif
324 }
325
326 static void
327 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
328 {
329 #ifdef ENABLE_SHADER_CACHE
330 if (device->disk_cache)
331 disk_cache_destroy(device->disk_cache);
332 #else
333 assert(device->disk_cache == NULL);
334 #endif
335 }
336
337 static VkResult
338 anv_physical_device_init(struct anv_physical_device *device,
339 struct anv_instance *instance,
340 drmDevicePtr drm_device)
341 {
342 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
343 const char *path = drm_device->nodes[DRM_NODE_RENDER];
344 VkResult result;
345 int fd;
346 int master_fd = -1;
347
348 brw_process_intel_debug_variable();
349
350 fd = open(path, O_RDWR | O_CLOEXEC);
351 if (fd < 0)
352 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
353
354 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
355 device->instance = instance;
356
357 assert(strlen(path) < ARRAY_SIZE(device->path));
358 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
359
360 device->no_hw = getenv("INTEL_NO_HW") != NULL;
361
362 const int pci_id_override = gen_get_pci_device_id_override();
363 if (pci_id_override < 0) {
364 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
365 if (!device->chipset_id) {
366 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
367 goto fail;
368 }
369 } else {
370 device->chipset_id = pci_id_override;
371 device->no_hw = true;
372 }
373
374 device->pci_info.domain = drm_device->businfo.pci->domain;
375 device->pci_info.bus = drm_device->businfo.pci->bus;
376 device->pci_info.device = drm_device->businfo.pci->dev;
377 device->pci_info.function = drm_device->businfo.pci->func;
378
379 device->name = gen_get_device_name(device->chipset_id);
380 if (!gen_get_device_info(device->chipset_id, &device->info)) {
381 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
382 goto fail;
383 }
384
385 if (device->info.is_haswell) {
386 intel_logw("Haswell Vulkan support is incomplete");
387 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
388 intel_logw("Ivy Bridge Vulkan support is incomplete");
389 } else if (device->info.gen == 7 && device->info.is_baytrail) {
390 intel_logw("Bay Trail Vulkan support is incomplete");
391 } else if (device->info.gen >= 8 && device->info.gen <= 10) {
392 /* Gen8-10 fully supported */
393 } else if (device->info.gen == 11) {
394 intel_logw("Vulkan is not yet fully supported on gen11.");
395 } else {
396 result = vk_errorf(device->instance, device,
397 VK_ERROR_INCOMPATIBLE_DRIVER,
398 "Vulkan not yet supported on %s", device->name);
399 goto fail;
400 }
401
402 device->cmd_parser_version = -1;
403 if (device->info.gen == 7) {
404 device->cmd_parser_version =
405 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
406 if (device->cmd_parser_version == -1) {
407 result = vk_errorf(device->instance, device,
408 VK_ERROR_INITIALIZATION_FAILED,
409 "failed to get command parser version");
410 goto fail;
411 }
412 }
413
414 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
415 result = vk_errorf(device->instance, device,
416 VK_ERROR_INITIALIZATION_FAILED,
417 "kernel missing gem wait");
418 goto fail;
419 }
420
421 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
422 result = vk_errorf(device->instance, device,
423 VK_ERROR_INITIALIZATION_FAILED,
424 "kernel missing execbuf2");
425 goto fail;
426 }
427
428 if (!device->info.has_llc &&
429 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
430 result = vk_errorf(device->instance, device,
431 VK_ERROR_INITIALIZATION_FAILED,
432 "kernel missing wc mmap");
433 goto fail;
434 }
435
436 result = anv_physical_device_init_heaps(device, fd);
437 if (result != VK_SUCCESS)
438 goto fail;
439
440 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
441 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
442 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
443 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
444 device->has_syncobj_wait = device->has_syncobj &&
445 anv_gem_supports_syncobj_wait(fd);
446 device->has_context_priority = anv_gem_has_context_priority(fd);
447
448 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
449 && device->supports_48bit_addresses;
450
451 device->has_context_isolation =
452 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
453
454 /* Starting with Gen10, the timestamp frequency of the command streamer may
455 * vary from one part to another. We can query the value from the kernel.
456 */
457 if (device->info.gen >= 10) {
458 int timestamp_frequency =
459 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
460
461 if (timestamp_frequency < 0)
462 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
463 else
464 device->info.timestamp_frequency = timestamp_frequency;
465 }
466
467 /* GENs prior to 8 do not support EU/Subslice info */
468 if (device->info.gen >= 8) {
469 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
470 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
471
472 /* Without this information, we cannot get the right Braswell
473 * brandstrings, and we have to use conservative numbers for GPGPU on
474 * many platforms, but otherwise, things will just work.
475 */
476 if (device->subslice_total < 1 || device->eu_total < 1) {
477 intel_logw("Kernel 4.1 required to properly query GPU properties");
478 }
479 } else if (device->info.gen == 7) {
480 device->subslice_total = 1 << (device->info.gt - 1);
481 }
482
483 if (device->info.is_cherryview &&
484 device->subslice_total > 0 && device->eu_total > 0) {
485 /* Logical CS threads = EUs per subslice * num threads per EU */
486 uint32_t max_cs_threads =
487 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
488
489 /* Fuse configurations may give more threads than expected, never less. */
490 if (max_cs_threads > device->info.max_cs_threads)
491 device->info.max_cs_threads = max_cs_threads;
492 }
493
494 device->compiler = brw_compiler_create(NULL, &device->info);
495 if (device->compiler == NULL) {
496 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
497 goto fail;
498 }
499 device->compiler->shader_debug_log = compiler_debug_log;
500 device->compiler->shader_perf_log = compiler_perf_log;
501 device->compiler->supports_pull_constants = false;
502 device->compiler->constant_buffer_0_is_relative =
503 device->info.gen < 8 || !device->has_context_isolation;
504 device->compiler->supports_shader_constants = true;
505
506 /* Broadwell PRM says:
507 *
508 * "Before Gen8, there was a historical configuration control field to
509 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
510 * different places: TILECTL[1:0], ARB_MODE[5:4], and
511 * DISP_ARB_CTL[14:13].
512 *
513 * For Gen8 and subsequent generations, the swizzle fields are all
514 * reserved, and the CPU's memory controller performs all address
515 * swizzling modifications."
516 */
517 bool swizzled =
518 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
519
520 isl_device_init(&device->isl_dev, &device->info, swizzled);
521
522 result = anv_physical_device_init_uuids(device);
523 if (result != VK_SUCCESS)
524 goto fail;
525
526 anv_physical_device_init_disk_cache(device);
527
528 if (instance->enabled_extensions.KHR_display) {
529 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
530 if (master_fd >= 0) {
531 /* prod the device with a GETPARAM call which will fail if
532 * we don't have permission to even render on this device
533 */
534 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
535 close(master_fd);
536 master_fd = -1;
537 }
538 }
539 }
540 device->master_fd = master_fd;
541
542 result = anv_init_wsi(device);
543 if (result != VK_SUCCESS) {
544 ralloc_free(device->compiler);
545 anv_physical_device_free_disk_cache(device);
546 goto fail;
547 }
548
549 anv_physical_device_get_supported_extensions(device,
550 &device->supported_extensions);
551
552
553 device->local_fd = fd;
554
555 return VK_SUCCESS;
556
557 fail:
558 close(fd);
559 if (master_fd != -1)
560 close(master_fd);
561 return result;
562 }
563
564 static void
565 anv_physical_device_finish(struct anv_physical_device *device)
566 {
567 anv_finish_wsi(device);
568 anv_physical_device_free_disk_cache(device);
569 ralloc_free(device->compiler);
570 close(device->local_fd);
571 if (device->master_fd >= 0)
572 close(device->master_fd);
573 }
574
575 static void *
576 default_alloc_func(void *pUserData, size_t size, size_t align,
577 VkSystemAllocationScope allocationScope)
578 {
579 return malloc(size);
580 }
581
582 static void *
583 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
584 size_t align, VkSystemAllocationScope allocationScope)
585 {
586 return realloc(pOriginal, size);
587 }
588
589 static void
590 default_free_func(void *pUserData, void *pMemory)
591 {
592 free(pMemory);
593 }
594
595 static const VkAllocationCallbacks default_alloc = {
596 .pUserData = NULL,
597 .pfnAllocation = default_alloc_func,
598 .pfnReallocation = default_realloc_func,
599 .pfnFree = default_free_func,
600 };
601
602 VkResult anv_EnumerateInstanceExtensionProperties(
603 const char* pLayerName,
604 uint32_t* pPropertyCount,
605 VkExtensionProperties* pProperties)
606 {
607 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
608
609 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
610 if (anv_instance_extensions_supported.extensions[i]) {
611 vk_outarray_append(&out, prop) {
612 *prop = anv_instance_extensions[i];
613 }
614 }
615 }
616
617 return vk_outarray_status(&out);
618 }
619
620 VkResult anv_CreateInstance(
621 const VkInstanceCreateInfo* pCreateInfo,
622 const VkAllocationCallbacks* pAllocator,
623 VkInstance* pInstance)
624 {
625 struct anv_instance *instance;
626 VkResult result;
627
628 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
629
630 struct anv_instance_extension_table enabled_extensions = {};
631 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
632 int idx;
633 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
634 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
635 anv_instance_extensions[idx].extensionName) == 0)
636 break;
637 }
638
639 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
640 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
641
642 if (!anv_instance_extensions_supported.extensions[idx])
643 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
644
645 enabled_extensions.extensions[idx] = true;
646 }
647
648 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
649 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
650 if (!instance)
651 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
652
653 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
654
655 if (pAllocator)
656 instance->alloc = *pAllocator;
657 else
658 instance->alloc = default_alloc;
659
660 instance->app_info = (struct anv_app_info) { .api_version = 0 };
661 if (pCreateInfo->pApplicationInfo) {
662 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
663
664 instance->app_info.app_name =
665 vk_strdup(&instance->alloc, app->pApplicationName,
666 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
667 instance->app_info.app_version = app->applicationVersion;
668
669 instance->app_info.engine_name =
670 vk_strdup(&instance->alloc, app->pEngineName,
671 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
672 instance->app_info.engine_version = app->engineVersion;
673
674 instance->app_info.api_version = app->apiVersion;
675 }
676
677 if (instance->app_info.api_version == 0)
678 instance->app_info.api_version = VK_API_VERSION_1_0;
679
680 instance->enabled_extensions = enabled_extensions;
681
682 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
683 /* Vulkan requires that entrypoints for extensions which have not been
684 * enabled must not be advertised.
685 */
686 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
687 &instance->enabled_extensions)) {
688 instance->dispatch.entrypoints[i] = NULL;
689 } else {
690 instance->dispatch.entrypoints[i] =
691 anv_instance_dispatch_table.entrypoints[i];
692 }
693 }
694
695 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
696 /* Vulkan requires that entrypoints for extensions which have not been
697 * enabled must not be advertised.
698 */
699 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
700 &instance->enabled_extensions, NULL)) {
701 instance->device_dispatch.entrypoints[i] = NULL;
702 } else {
703 instance->device_dispatch.entrypoints[i] =
704 anv_device_dispatch_table.entrypoints[i];
705 }
706 }
707
708 instance->physicalDeviceCount = -1;
709
710 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
711 if (result != VK_SUCCESS) {
712 vk_free2(&default_alloc, pAllocator, instance);
713 return vk_error(result);
714 }
715
716 instance->pipeline_cache_enabled =
717 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
718
719 _mesa_locale_init();
720 glsl_type_singleton_init_or_ref();
721
722 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
723
724 *pInstance = anv_instance_to_handle(instance);
725
726 return VK_SUCCESS;
727 }
728
729 void anv_DestroyInstance(
730 VkInstance _instance,
731 const VkAllocationCallbacks* pAllocator)
732 {
733 ANV_FROM_HANDLE(anv_instance, instance, _instance);
734
735 if (!instance)
736 return;
737
738 if (instance->physicalDeviceCount > 0) {
739 /* We support at most one physical device. */
740 assert(instance->physicalDeviceCount == 1);
741 anv_physical_device_finish(&instance->physicalDevice);
742 }
743
744 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
745 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
746
747 VG(VALGRIND_DESTROY_MEMPOOL(instance));
748
749 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
750
751 glsl_type_singleton_decref();
752 _mesa_locale_fini();
753
754 vk_free(&instance->alloc, instance);
755 }
756
757 static VkResult
758 anv_enumerate_devices(struct anv_instance *instance)
759 {
760 /* TODO: Check for more devices ? */
761 drmDevicePtr devices[8];
762 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
763 int max_devices;
764
765 instance->physicalDeviceCount = 0;
766
767 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
768 if (max_devices < 1)
769 return VK_ERROR_INCOMPATIBLE_DRIVER;
770
771 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
772 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
773 devices[i]->bustype == DRM_BUS_PCI &&
774 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
775
776 result = anv_physical_device_init(&instance->physicalDevice,
777 instance, devices[i]);
778 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
779 break;
780 }
781 }
782 drmFreeDevices(devices, max_devices);
783
784 if (result == VK_SUCCESS)
785 instance->physicalDeviceCount = 1;
786
787 return result;
788 }
789
790 static VkResult
791 anv_instance_ensure_physical_device(struct anv_instance *instance)
792 {
793 if (instance->physicalDeviceCount < 0) {
794 VkResult result = anv_enumerate_devices(instance);
795 if (result != VK_SUCCESS &&
796 result != VK_ERROR_INCOMPATIBLE_DRIVER)
797 return result;
798 }
799
800 return VK_SUCCESS;
801 }
802
803 VkResult anv_EnumeratePhysicalDevices(
804 VkInstance _instance,
805 uint32_t* pPhysicalDeviceCount,
806 VkPhysicalDevice* pPhysicalDevices)
807 {
808 ANV_FROM_HANDLE(anv_instance, instance, _instance);
809 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
810
811 VkResult result = anv_instance_ensure_physical_device(instance);
812 if (result != VK_SUCCESS)
813 return result;
814
815 if (instance->physicalDeviceCount == 0)
816 return VK_SUCCESS;
817
818 assert(instance->physicalDeviceCount == 1);
819 vk_outarray_append(&out, i) {
820 *i = anv_physical_device_to_handle(&instance->physicalDevice);
821 }
822
823 return vk_outarray_status(&out);
824 }
825
826 VkResult anv_EnumeratePhysicalDeviceGroups(
827 VkInstance _instance,
828 uint32_t* pPhysicalDeviceGroupCount,
829 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
830 {
831 ANV_FROM_HANDLE(anv_instance, instance, _instance);
832 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
833 pPhysicalDeviceGroupCount);
834
835 VkResult result = anv_instance_ensure_physical_device(instance);
836 if (result != VK_SUCCESS)
837 return result;
838
839 if (instance->physicalDeviceCount == 0)
840 return VK_SUCCESS;
841
842 assert(instance->physicalDeviceCount == 1);
843
844 vk_outarray_append(&out, p) {
845 p->physicalDeviceCount = 1;
846 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
847 p->physicalDevices[0] =
848 anv_physical_device_to_handle(&instance->physicalDevice);
849 p->subsetAllocation = false;
850
851 vk_foreach_struct(ext, p->pNext)
852 anv_debug_ignored_stype(ext->sType);
853 }
854
855 return vk_outarray_status(&out);
856 }
857
858 void anv_GetPhysicalDeviceFeatures(
859 VkPhysicalDevice physicalDevice,
860 VkPhysicalDeviceFeatures* pFeatures)
861 {
862 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
863
864 *pFeatures = (VkPhysicalDeviceFeatures) {
865 .robustBufferAccess = true,
866 .fullDrawIndexUint32 = true,
867 .imageCubeArray = true,
868 .independentBlend = true,
869 .geometryShader = true,
870 .tessellationShader = true,
871 .sampleRateShading = true,
872 .dualSrcBlend = true,
873 .logicOp = true,
874 .multiDrawIndirect = true,
875 .drawIndirectFirstInstance = true,
876 .depthClamp = true,
877 .depthBiasClamp = true,
878 .fillModeNonSolid = true,
879 .depthBounds = false,
880 .wideLines = true,
881 .largePoints = true,
882 .alphaToOne = true,
883 .multiViewport = true,
884 .samplerAnisotropy = true,
885 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
886 pdevice->info.is_baytrail,
887 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
888 .textureCompressionBC = true,
889 .occlusionQueryPrecise = true,
890 .pipelineStatisticsQuery = true,
891 .fragmentStoresAndAtomics = true,
892 .shaderTessellationAndGeometryPointSize = true,
893 .shaderImageGatherExtended = true,
894 .shaderStorageImageExtendedFormats = true,
895 .shaderStorageImageMultisample = false,
896 .shaderStorageImageReadWithoutFormat = false,
897 .shaderStorageImageWriteWithoutFormat = true,
898 .shaderUniformBufferArrayDynamicIndexing = true,
899 .shaderSampledImageArrayDynamicIndexing = true,
900 .shaderStorageBufferArrayDynamicIndexing = true,
901 .shaderStorageImageArrayDynamicIndexing = true,
902 .shaderClipDistance = true,
903 .shaderCullDistance = true,
904 .shaderFloat64 = pdevice->info.gen >= 8 &&
905 pdevice->info.has_64bit_types,
906 .shaderInt64 = pdevice->info.gen >= 8 &&
907 pdevice->info.has_64bit_types,
908 .shaderInt16 = pdevice->info.gen >= 8,
909 .shaderResourceMinLod = pdevice->info.gen >= 9,
910 .variableMultisampleRate = true,
911 .inheritedQueries = true,
912 };
913
914 /* We can't do image stores in vec4 shaders */
915 pFeatures->vertexPipelineStoresAndAtomics =
916 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
917 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
918
919 struct anv_app_info *app_info = &pdevice->instance->app_info;
920
921 /* The new DOOM and Wolfenstein games require depthBounds without
922 * checking for it. They seem to run fine without it so just claim it's
923 * there and accept the consequences.
924 */
925 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
926 pFeatures->depthBounds = true;
927 }
928
929 void anv_GetPhysicalDeviceFeatures2(
930 VkPhysicalDevice physicalDevice,
931 VkPhysicalDeviceFeatures2* pFeatures)
932 {
933 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
934 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
935
936 vk_foreach_struct(ext, pFeatures->pNext) {
937 switch (ext->sType) {
938 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
939 VkPhysicalDevice8BitStorageFeaturesKHR *features =
940 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
941 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
942
943 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
944 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
945 features->storagePushConstant8 = pdevice->info.gen >= 8;
946 break;
947 }
948
949 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
950 VkPhysicalDevice16BitStorageFeatures *features =
951 (VkPhysicalDevice16BitStorageFeatures *)ext;
952 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
953 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
954 features->storagePushConstant16 = pdevice->info.gen >= 8;
955 features->storageInputOutput16 = false;
956 break;
957 }
958
959 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
960 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
961 features->bufferDeviceAddress = pdevice->use_softpin &&
962 pdevice->info.gen >= 8;
963 features->bufferDeviceAddressCaptureReplay = false;
964 features->bufferDeviceAddressMultiDevice = false;
965 break;
966 }
967
968 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
969 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
970 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
971 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
972
973 features->conditionalRendering = pdevice->info.gen >= 8 ||
974 pdevice->info.is_haswell;
975 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
976 pdevice->info.is_haswell;
977 break;
978 }
979
980 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
981 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
982 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
983 features->depthClipEnable = true;
984 break;
985 }
986
987 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
988 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
989 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
990 features->hostQueryReset = true;
991 break;
992 }
993
994 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
995 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
996 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
997 features->inlineUniformBlock = true;
998 features->descriptorBindingInlineUniformBlockUpdateAfterBind = false;
999 break;
1000 }
1001
1002 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1003 VkPhysicalDeviceMultiviewFeatures *features =
1004 (VkPhysicalDeviceMultiviewFeatures *)ext;
1005 features->multiview = true;
1006 features->multiviewGeometryShader = true;
1007 features->multiviewTessellationShader = true;
1008 break;
1009 }
1010
1011 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1012 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1013 features->protectedMemory = false;
1014 break;
1015 }
1016
1017 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1018 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1019 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1020 features->samplerYcbcrConversion = true;
1021 break;
1022 }
1023
1024 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1025 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1026 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1027 features->scalarBlockLayout = true;
1028 break;
1029 }
1030
1031 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1032 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1033 features->shaderDrawParameters = true;
1034 break;
1035 }
1036
1037 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1038 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1039 features->variablePointersStorageBuffer = true;
1040 features->variablePointers = true;
1041 break;
1042 }
1043
1044 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1045 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1046 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1047 features->transformFeedback = true;
1048 features->geometryStreams = true;
1049 break;
1050 }
1051
1052 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1053 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1054 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1055 features->vertexAttributeInstanceRateDivisor = true;
1056 features->vertexAttributeInstanceRateZeroDivisor = true;
1057 break;
1058 }
1059
1060 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1061 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1062 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1063 features->ycbcrImageArrays = true;
1064 break;
1065 }
1066
1067 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1068 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1069 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1070 features->computeDerivativeGroupQuads = true;
1071 features->computeDerivativeGroupLinear = true;
1072 break;
1073 }
1074
1075 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1076 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1077 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1078
1079 features->shaderFloat16 = pdevice->info.gen >= 8;
1080 features->shaderInt8 = pdevice->info.gen >= 8;
1081 break;
1082 }
1083
1084 default:
1085 anv_debug_ignored_stype(ext->sType);
1086 break;
1087 }
1088 }
1089 }
1090
1091 void anv_GetPhysicalDeviceProperties(
1092 VkPhysicalDevice physicalDevice,
1093 VkPhysicalDeviceProperties* pProperties)
1094 {
1095 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1096 const struct gen_device_info *devinfo = &pdevice->info;
1097
1098 /* See assertions made when programming the buffer surface state. */
1099 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1100 (1ul << 30) : (1ul << 27);
1101
1102 const uint32_t max_samplers = (devinfo->gen >= 8 || devinfo->is_haswell) ?
1103 128 : 16;
1104
1105 const uint32_t max_images = devinfo->gen < 9 ? MAX_GEN8_IMAGES : MAX_IMAGES;
1106
1107 VkSampleCountFlags sample_counts =
1108 isl_device_get_sample_counts(&pdevice->isl_dev);
1109
1110
1111 VkPhysicalDeviceLimits limits = {
1112 .maxImageDimension1D = (1 << 14),
1113 .maxImageDimension2D = (1 << 14),
1114 .maxImageDimension3D = (1 << 11),
1115 .maxImageDimensionCube = (1 << 14),
1116 .maxImageArrayLayers = (1 << 11),
1117 .maxTexelBufferElements = 128 * 1024 * 1024,
1118 .maxUniformBufferRange = (1ul << 27),
1119 .maxStorageBufferRange = max_raw_buffer_sz,
1120 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1121 .maxMemoryAllocationCount = UINT32_MAX,
1122 .maxSamplerAllocationCount = 64 * 1024,
1123 .bufferImageGranularity = 64, /* A cache line */
1124 .sparseAddressSpaceSize = 0,
1125 .maxBoundDescriptorSets = MAX_SETS,
1126 .maxPerStageDescriptorSamplers = max_samplers,
1127 .maxPerStageDescriptorUniformBuffers = 64,
1128 .maxPerStageDescriptorStorageBuffers = 64,
1129 .maxPerStageDescriptorSampledImages = max_samplers,
1130 .maxPerStageDescriptorStorageImages = max_images,
1131 .maxPerStageDescriptorInputAttachments = 64,
1132 .maxPerStageResources = 250,
1133 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1134 .maxDescriptorSetUniformBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorUniformBuffers */
1135 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1136 .maxDescriptorSetStorageBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorStorageBuffers */
1137 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1138 .maxDescriptorSetSampledImages = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSampledImages */
1139 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1140 .maxDescriptorSetInputAttachments = 256,
1141 .maxVertexInputAttributes = MAX_VBS,
1142 .maxVertexInputBindings = MAX_VBS,
1143 .maxVertexInputAttributeOffset = 2047,
1144 .maxVertexInputBindingStride = 2048,
1145 .maxVertexOutputComponents = 128,
1146 .maxTessellationGenerationLevel = 64,
1147 .maxTessellationPatchSize = 32,
1148 .maxTessellationControlPerVertexInputComponents = 128,
1149 .maxTessellationControlPerVertexOutputComponents = 128,
1150 .maxTessellationControlPerPatchOutputComponents = 128,
1151 .maxTessellationControlTotalOutputComponents = 2048,
1152 .maxTessellationEvaluationInputComponents = 128,
1153 .maxTessellationEvaluationOutputComponents = 128,
1154 .maxGeometryShaderInvocations = 32,
1155 .maxGeometryInputComponents = 64,
1156 .maxGeometryOutputComponents = 128,
1157 .maxGeometryOutputVertices = 256,
1158 .maxGeometryTotalOutputComponents = 1024,
1159 .maxFragmentInputComponents = 112, /* 128 components - (POS, PSIZ, CLIP_DIST0, CLIP_DIST1) */
1160 .maxFragmentOutputAttachments = 8,
1161 .maxFragmentDualSrcAttachments = 1,
1162 .maxFragmentCombinedOutputResources = 8,
1163 .maxComputeSharedMemorySize = 32768,
1164 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1165 .maxComputeWorkGroupInvocations = 32 * devinfo->max_cs_threads,
1166 .maxComputeWorkGroupSize = {
1167 16 * devinfo->max_cs_threads,
1168 16 * devinfo->max_cs_threads,
1169 16 * devinfo->max_cs_threads,
1170 },
1171 .subPixelPrecisionBits = 8,
1172 .subTexelPrecisionBits = 8,
1173 .mipmapPrecisionBits = 8,
1174 .maxDrawIndexedIndexValue = UINT32_MAX,
1175 .maxDrawIndirectCount = UINT32_MAX,
1176 .maxSamplerLodBias = 16,
1177 .maxSamplerAnisotropy = 16,
1178 .maxViewports = MAX_VIEWPORTS,
1179 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1180 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1181 .viewportSubPixelBits = 13, /* We take a float? */
1182 .minMemoryMapAlignment = 4096, /* A page */
1183 .minTexelBufferOffsetAlignment = 1,
1184 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1185 .minUniformBufferOffsetAlignment = 32,
1186 .minStorageBufferOffsetAlignment = 4,
1187 .minTexelOffset = -8,
1188 .maxTexelOffset = 7,
1189 .minTexelGatherOffset = -32,
1190 .maxTexelGatherOffset = 31,
1191 .minInterpolationOffset = -0.5,
1192 .maxInterpolationOffset = 0.4375,
1193 .subPixelInterpolationOffsetBits = 4,
1194 .maxFramebufferWidth = (1 << 14),
1195 .maxFramebufferHeight = (1 << 14),
1196 .maxFramebufferLayers = (1 << 11),
1197 .framebufferColorSampleCounts = sample_counts,
1198 .framebufferDepthSampleCounts = sample_counts,
1199 .framebufferStencilSampleCounts = sample_counts,
1200 .framebufferNoAttachmentsSampleCounts = sample_counts,
1201 .maxColorAttachments = MAX_RTS,
1202 .sampledImageColorSampleCounts = sample_counts,
1203 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1204 .sampledImageDepthSampleCounts = sample_counts,
1205 .sampledImageStencilSampleCounts = sample_counts,
1206 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1207 .maxSampleMaskWords = 1,
1208 .timestampComputeAndGraphics = false,
1209 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1210 .maxClipDistances = 8,
1211 .maxCullDistances = 8,
1212 .maxCombinedClipAndCullDistances = 8,
1213 .discreteQueuePriorities = 2,
1214 .pointSizeRange = { 0.125, 255.875 },
1215 .lineWidthRange = { 0.0, 7.9921875 },
1216 .pointSizeGranularity = (1.0 / 8.0),
1217 .lineWidthGranularity = (1.0 / 128.0),
1218 .strictLines = false, /* FINISHME */
1219 .standardSampleLocations = true,
1220 .optimalBufferCopyOffsetAlignment = 128,
1221 .optimalBufferCopyRowPitchAlignment = 128,
1222 .nonCoherentAtomSize = 64,
1223 };
1224
1225 *pProperties = (VkPhysicalDeviceProperties) {
1226 .apiVersion = anv_physical_device_api_version(pdevice),
1227 .driverVersion = vk_get_driver_version(),
1228 .vendorID = 0x8086,
1229 .deviceID = pdevice->chipset_id,
1230 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1231 .limits = limits,
1232 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1233 };
1234
1235 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1236 "%s", pdevice->name);
1237 memcpy(pProperties->pipelineCacheUUID,
1238 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1239 }
1240
1241 void anv_GetPhysicalDeviceProperties2(
1242 VkPhysicalDevice physicalDevice,
1243 VkPhysicalDeviceProperties2* pProperties)
1244 {
1245 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1246
1247 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1248
1249 vk_foreach_struct(ext, pProperties->pNext) {
1250 switch (ext->sType) {
1251 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1252 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1253 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1254
1255 /* We support all of the depth resolve modes */
1256 props->supportedDepthResolveModes =
1257 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1258 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1259 VK_RESOLVE_MODE_MIN_BIT_KHR |
1260 VK_RESOLVE_MODE_MAX_BIT_KHR;
1261
1262 /* Average doesn't make sense for stencil so we don't support that */
1263 props->supportedStencilResolveModes =
1264 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1265 if (pdevice->info.gen >= 8) {
1266 /* The advanced stencil resolve modes currently require stencil
1267 * sampling be supported by the hardware.
1268 */
1269 props->supportedStencilResolveModes |=
1270 VK_RESOLVE_MODE_MIN_BIT_KHR |
1271 VK_RESOLVE_MODE_MAX_BIT_KHR;
1272 }
1273
1274 props->independentResolveNone = true;
1275 props->independentResolve = true;
1276 break;
1277 }
1278
1279 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1280 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1281 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1282
1283 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1284 util_snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1285 "Intel open-source Mesa driver");
1286
1287 util_snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1288 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1289
1290 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1291 .major = 1,
1292 .minor = 1,
1293 .subminor = 2,
1294 .patch = 0,
1295 };
1296 break;
1297 }
1298
1299 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1300 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1301 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1302 /* Userptr needs page aligned memory. */
1303 props->minImportedHostPointerAlignment = 4096;
1304 break;
1305 }
1306
1307 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1308 VkPhysicalDeviceIDProperties *id_props =
1309 (VkPhysicalDeviceIDProperties *)ext;
1310 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1311 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1312 /* The LUID is for Windows. */
1313 id_props->deviceLUIDValid = false;
1314 break;
1315 }
1316
1317 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1318 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1319 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1320 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1321 props->maxPerStageDescriptorInlineUniformBlocks =
1322 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1323 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1324 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1325 props->maxDescriptorSetInlineUniformBlocks =
1326 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1327 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1328 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1329 break;
1330 }
1331
1332 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1333 VkPhysicalDeviceMaintenance3Properties *props =
1334 (VkPhysicalDeviceMaintenance3Properties *)ext;
1335 /* This value doesn't matter for us today as our per-stage
1336 * descriptors are the real limit.
1337 */
1338 props->maxPerSetDescriptors = 1024;
1339 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1340 break;
1341 }
1342
1343 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1344 VkPhysicalDeviceMultiviewProperties *properties =
1345 (VkPhysicalDeviceMultiviewProperties *)ext;
1346 properties->maxMultiviewViewCount = 16;
1347 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1348 break;
1349 }
1350
1351 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1352 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1353 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1354 properties->pciDomain = pdevice->pci_info.domain;
1355 properties->pciBus = pdevice->pci_info.bus;
1356 properties->pciDevice = pdevice->pci_info.device;
1357 properties->pciFunction = pdevice->pci_info.function;
1358 break;
1359 }
1360
1361 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1362 VkPhysicalDevicePointClippingProperties *properties =
1363 (VkPhysicalDevicePointClippingProperties *) ext;
1364 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
1365 anv_finishme("Implement pop-free point clipping");
1366 break;
1367 }
1368
1369 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1370 VkPhysicalDeviceProtectedMemoryProperties *props =
1371 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1372 props->protectedNoFault = false;
1373 break;
1374 }
1375
1376 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1377 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1378 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1379
1380 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1381 break;
1382 }
1383
1384 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1385 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1386 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1387 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1388 properties->filterMinmaxSingleComponentFormats = true;
1389 break;
1390 }
1391
1392 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1393 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1394
1395 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1396
1397 VkShaderStageFlags scalar_stages = 0;
1398 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1399 if (pdevice->compiler->scalar_stage[stage])
1400 scalar_stages |= mesa_to_vk_shader_stage(stage);
1401 }
1402 properties->supportedStages = scalar_stages;
1403
1404 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1405 VK_SUBGROUP_FEATURE_VOTE_BIT |
1406 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1407 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1408 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1409 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1410 VK_SUBGROUP_FEATURE_CLUSTERED_BIT |
1411 VK_SUBGROUP_FEATURE_QUAD_BIT;
1412 properties->quadOperationsInAllStages = true;
1413 break;
1414 }
1415
1416 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1417 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1418 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1419
1420 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1421 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1422 props->maxTransformFeedbackBufferSize = (1ull << 32);
1423 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1424 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1425 props->maxTransformFeedbackBufferDataStride = 2048;
1426 props->transformFeedbackQueries = true;
1427 props->transformFeedbackStreamsLinesTriangles = false;
1428 props->transformFeedbackRasterizationStreamSelect = false;
1429 props->transformFeedbackDraw = true;
1430 break;
1431 }
1432
1433 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1434 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1435 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1436 /* We have to restrict this a bit for multiview */
1437 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1438 break;
1439 }
1440
1441 default:
1442 anv_debug_ignored_stype(ext->sType);
1443 break;
1444 }
1445 }
1446 }
1447
1448 /* We support exactly one queue family. */
1449 static const VkQueueFamilyProperties
1450 anv_queue_family_properties = {
1451 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1452 VK_QUEUE_COMPUTE_BIT |
1453 VK_QUEUE_TRANSFER_BIT,
1454 .queueCount = 1,
1455 .timestampValidBits = 36, /* XXX: Real value here */
1456 .minImageTransferGranularity = { 1, 1, 1 },
1457 };
1458
1459 void anv_GetPhysicalDeviceQueueFamilyProperties(
1460 VkPhysicalDevice physicalDevice,
1461 uint32_t* pCount,
1462 VkQueueFamilyProperties* pQueueFamilyProperties)
1463 {
1464 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1465
1466 vk_outarray_append(&out, p) {
1467 *p = anv_queue_family_properties;
1468 }
1469 }
1470
1471 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1472 VkPhysicalDevice physicalDevice,
1473 uint32_t* pQueueFamilyPropertyCount,
1474 VkQueueFamilyProperties2* pQueueFamilyProperties)
1475 {
1476
1477 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1478
1479 vk_outarray_append(&out, p) {
1480 p->queueFamilyProperties = anv_queue_family_properties;
1481
1482 vk_foreach_struct(s, p->pNext) {
1483 anv_debug_ignored_stype(s->sType);
1484 }
1485 }
1486 }
1487
1488 void anv_GetPhysicalDeviceMemoryProperties(
1489 VkPhysicalDevice physicalDevice,
1490 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1491 {
1492 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1493
1494 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1495 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1496 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1497 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1498 .heapIndex = physical_device->memory.types[i].heapIndex,
1499 };
1500 }
1501
1502 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1503 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1504 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1505 .size = physical_device->memory.heaps[i].size,
1506 .flags = physical_device->memory.heaps[i].flags,
1507 };
1508 }
1509 }
1510
1511 void anv_GetPhysicalDeviceMemoryProperties2(
1512 VkPhysicalDevice physicalDevice,
1513 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1514 {
1515 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1516 &pMemoryProperties->memoryProperties);
1517
1518 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1519 switch (ext->sType) {
1520 default:
1521 anv_debug_ignored_stype(ext->sType);
1522 break;
1523 }
1524 }
1525 }
1526
1527 void
1528 anv_GetDeviceGroupPeerMemoryFeatures(
1529 VkDevice device,
1530 uint32_t heapIndex,
1531 uint32_t localDeviceIndex,
1532 uint32_t remoteDeviceIndex,
1533 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1534 {
1535 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1536 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1537 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1538 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1539 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1540 }
1541
1542 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1543 VkInstance _instance,
1544 const char* pName)
1545 {
1546 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1547
1548 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1549 * when we have to return valid function pointers, NULL, or it's left
1550 * undefined. See the table for exact details.
1551 */
1552 if (pName == NULL)
1553 return NULL;
1554
1555 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1556 if (strcmp(pName, "vk" #entrypoint) == 0) \
1557 return (PFN_vkVoidFunction)anv_##entrypoint
1558
1559 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1560 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1561 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1562 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1563
1564 #undef LOOKUP_ANV_ENTRYPOINT
1565
1566 if (instance == NULL)
1567 return NULL;
1568
1569 int idx = anv_get_instance_entrypoint_index(pName);
1570 if (idx >= 0)
1571 return instance->dispatch.entrypoints[idx];
1572
1573 idx = anv_get_device_entrypoint_index(pName);
1574 if (idx >= 0)
1575 return instance->device_dispatch.entrypoints[idx];
1576
1577 return NULL;
1578 }
1579
1580 /* With version 1+ of the loader interface the ICD should expose
1581 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1582 */
1583 PUBLIC
1584 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1585 VkInstance instance,
1586 const char* pName);
1587
1588 PUBLIC
1589 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1590 VkInstance instance,
1591 const char* pName)
1592 {
1593 return anv_GetInstanceProcAddr(instance, pName);
1594 }
1595
1596 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1597 VkDevice _device,
1598 const char* pName)
1599 {
1600 ANV_FROM_HANDLE(anv_device, device, _device);
1601
1602 if (!device || !pName)
1603 return NULL;
1604
1605 int idx = anv_get_device_entrypoint_index(pName);
1606 if (idx < 0)
1607 return NULL;
1608
1609 return device->dispatch.entrypoints[idx];
1610 }
1611
1612 VkResult
1613 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1614 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1615 const VkAllocationCallbacks* pAllocator,
1616 VkDebugReportCallbackEXT* pCallback)
1617 {
1618 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1619 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1620 pCreateInfo, pAllocator, &instance->alloc,
1621 pCallback);
1622 }
1623
1624 void
1625 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1626 VkDebugReportCallbackEXT _callback,
1627 const VkAllocationCallbacks* pAllocator)
1628 {
1629 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1630 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1631 _callback, pAllocator, &instance->alloc);
1632 }
1633
1634 void
1635 anv_DebugReportMessageEXT(VkInstance _instance,
1636 VkDebugReportFlagsEXT flags,
1637 VkDebugReportObjectTypeEXT objectType,
1638 uint64_t object,
1639 size_t location,
1640 int32_t messageCode,
1641 const char* pLayerPrefix,
1642 const char* pMessage)
1643 {
1644 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1645 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1646 object, location, messageCode, pLayerPrefix, pMessage);
1647 }
1648
1649 static void
1650 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1651 {
1652 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1653 queue->device = device;
1654 queue->flags = 0;
1655 }
1656
1657 static void
1658 anv_queue_finish(struct anv_queue *queue)
1659 {
1660 }
1661
1662 static struct anv_state
1663 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1664 {
1665 struct anv_state state;
1666
1667 state = anv_state_pool_alloc(pool, size, align);
1668 memcpy(state.map, p, size);
1669
1670 return state;
1671 }
1672
1673 struct gen8_border_color {
1674 union {
1675 float float32[4];
1676 uint32_t uint32[4];
1677 };
1678 /* Pad out to 64 bytes */
1679 uint32_t _pad[12];
1680 };
1681
1682 static void
1683 anv_device_init_border_colors(struct anv_device *device)
1684 {
1685 static const struct gen8_border_color border_colors[] = {
1686 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1687 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1688 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1689 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1690 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1691 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1692 };
1693
1694 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
1695 sizeof(border_colors), 64,
1696 border_colors);
1697 }
1698
1699 static void
1700 anv_device_init_trivial_batch(struct anv_device *device)
1701 {
1702 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1703
1704 if (device->instance->physicalDevice.has_exec_async)
1705 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
1706
1707 if (device->instance->physicalDevice.use_softpin)
1708 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
1709
1710 anv_vma_alloc(device, &device->trivial_batch_bo);
1711
1712 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
1713 0, 4096, 0);
1714
1715 struct anv_batch batch = {
1716 .start = map,
1717 .next = map,
1718 .end = map + 4096,
1719 };
1720
1721 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1722 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1723
1724 if (!device->info.has_llc)
1725 gen_clflush_range(map, batch.next - map);
1726
1727 anv_gem_munmap(map, device->trivial_batch_bo.size);
1728 }
1729
1730 VkResult anv_EnumerateDeviceExtensionProperties(
1731 VkPhysicalDevice physicalDevice,
1732 const char* pLayerName,
1733 uint32_t* pPropertyCount,
1734 VkExtensionProperties* pProperties)
1735 {
1736 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1737 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
1738
1739 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
1740 if (device->supported_extensions.extensions[i]) {
1741 vk_outarray_append(&out, prop) {
1742 *prop = anv_device_extensions[i];
1743 }
1744 }
1745 }
1746
1747 return vk_outarray_status(&out);
1748 }
1749
1750 static void
1751 anv_device_init_dispatch(struct anv_device *device)
1752 {
1753 const struct anv_device_dispatch_table *genX_table;
1754 switch (device->info.gen) {
1755 case 11:
1756 genX_table = &gen11_device_dispatch_table;
1757 break;
1758 case 10:
1759 genX_table = &gen10_device_dispatch_table;
1760 break;
1761 case 9:
1762 genX_table = &gen9_device_dispatch_table;
1763 break;
1764 case 8:
1765 genX_table = &gen8_device_dispatch_table;
1766 break;
1767 case 7:
1768 if (device->info.is_haswell)
1769 genX_table = &gen75_device_dispatch_table;
1770 else
1771 genX_table = &gen7_device_dispatch_table;
1772 break;
1773 default:
1774 unreachable("unsupported gen\n");
1775 }
1776
1777 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
1778 /* Vulkan requires that entrypoints for extensions which have not been
1779 * enabled must not be advertised.
1780 */
1781 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
1782 &device->instance->enabled_extensions,
1783 &device->enabled_extensions)) {
1784 device->dispatch.entrypoints[i] = NULL;
1785 } else if (genX_table->entrypoints[i]) {
1786 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
1787 } else {
1788 device->dispatch.entrypoints[i] =
1789 anv_device_dispatch_table.entrypoints[i];
1790 }
1791 }
1792 }
1793
1794 static int
1795 vk_priority_to_gen(int priority)
1796 {
1797 switch (priority) {
1798 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
1799 return GEN_CONTEXT_LOW_PRIORITY;
1800 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
1801 return GEN_CONTEXT_MEDIUM_PRIORITY;
1802 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
1803 return GEN_CONTEXT_HIGH_PRIORITY;
1804 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
1805 return GEN_CONTEXT_REALTIME_PRIORITY;
1806 default:
1807 unreachable("Invalid priority");
1808 }
1809 }
1810
1811 static void
1812 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
1813 {
1814 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
1815
1816 if (device->instance->physicalDevice.has_exec_async)
1817 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
1818
1819 if (device->instance->physicalDevice.use_softpin)
1820 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
1821
1822 anv_vma_alloc(device, &device->hiz_clear_bo);
1823
1824 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
1825 0, 4096, 0);
1826
1827 union isl_color_value hiz_clear = { .u32 = { 0, } };
1828 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
1829
1830 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
1831 anv_gem_munmap(map, device->hiz_clear_bo.size);
1832 }
1833
1834 static bool
1835 get_bo_from_pool(struct gen_batch_decode_bo *ret,
1836 struct anv_block_pool *pool,
1837 uint64_t address)
1838 {
1839 for (uint32_t i = 0; i < pool->nbos; i++) {
1840 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
1841 uint32_t bo_size = pool->bos[i].size;
1842 if (address >= bo_address && address < (bo_address + bo_size)) {
1843 *ret = (struct gen_batch_decode_bo) {
1844 .addr = bo_address,
1845 .size = bo_size,
1846 .map = pool->bos[i].map,
1847 };
1848 return true;
1849 }
1850 }
1851 return false;
1852 }
1853
1854 /* Finding a buffer for batch decoding */
1855 static struct gen_batch_decode_bo
1856 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
1857 {
1858 struct anv_device *device = v_batch;
1859 struct gen_batch_decode_bo ret_bo = {};
1860
1861 assert(ppgtt);
1862
1863 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
1864 return ret_bo;
1865 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
1866 return ret_bo;
1867 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
1868 return ret_bo;
1869 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
1870 return ret_bo;
1871
1872 if (!device->cmd_buffer_being_decoded)
1873 return (struct gen_batch_decode_bo) { };
1874
1875 struct anv_batch_bo **bo;
1876
1877 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
1878 /* The decoder zeroes out the top 16 bits, so we need to as well */
1879 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
1880
1881 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
1882 return (struct gen_batch_decode_bo) {
1883 .addr = bo_address,
1884 .size = (*bo)->bo.size,
1885 .map = (*bo)->bo.map,
1886 };
1887 }
1888 }
1889
1890 return (struct gen_batch_decode_bo) { };
1891 }
1892
1893 VkResult anv_CreateDevice(
1894 VkPhysicalDevice physicalDevice,
1895 const VkDeviceCreateInfo* pCreateInfo,
1896 const VkAllocationCallbacks* pAllocator,
1897 VkDevice* pDevice)
1898 {
1899 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1900 VkResult result;
1901 struct anv_device *device;
1902
1903 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
1904
1905 struct anv_device_extension_table enabled_extensions = { };
1906 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
1907 int idx;
1908 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
1909 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
1910 anv_device_extensions[idx].extensionName) == 0)
1911 break;
1912 }
1913
1914 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
1915 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1916
1917 if (!physical_device->supported_extensions.extensions[idx])
1918 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1919
1920 enabled_extensions.extensions[idx] = true;
1921 }
1922
1923 /* Check enabled features */
1924 if (pCreateInfo->pEnabledFeatures) {
1925 VkPhysicalDeviceFeatures supported_features;
1926 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
1927 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
1928 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
1929 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
1930 for (uint32_t i = 0; i < num_features; i++) {
1931 if (enabled_feature[i] && !supported_feature[i])
1932 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
1933 }
1934 }
1935
1936 /* Check requested queues and fail if we are requested to create any
1937 * queues with flags we don't support.
1938 */
1939 assert(pCreateInfo->queueCreateInfoCount > 0);
1940 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
1941 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
1942 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
1943 }
1944
1945 /* Check if client specified queue priority. */
1946 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
1947 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
1948 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
1949
1950 VkQueueGlobalPriorityEXT priority =
1951 queue_priority ? queue_priority->globalPriority :
1952 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
1953
1954 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
1955 sizeof(*device), 8,
1956 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1957 if (!device)
1958 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1959
1960 const unsigned decode_flags =
1961 GEN_BATCH_DECODE_FULL |
1962 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
1963 GEN_BATCH_DECODE_OFFSETS |
1964 GEN_BATCH_DECODE_FLOATS;
1965
1966 gen_batch_decode_ctx_init(&device->decoder_ctx,
1967 &physical_device->info,
1968 stderr, decode_flags, NULL,
1969 decode_get_bo, NULL, device);
1970
1971 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1972 device->instance = physical_device->instance;
1973 device->chipset_id = physical_device->chipset_id;
1974 device->no_hw = physical_device->no_hw;
1975 device->_lost = false;
1976
1977 if (pAllocator)
1978 device->alloc = *pAllocator;
1979 else
1980 device->alloc = physical_device->instance->alloc;
1981
1982 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
1983 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
1984 if (device->fd == -1) {
1985 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1986 goto fail_device;
1987 }
1988
1989 device->context_id = anv_gem_create_context(device);
1990 if (device->context_id == -1) {
1991 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1992 goto fail_fd;
1993 }
1994
1995 if (physical_device->use_softpin) {
1996 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
1997 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1998 goto fail_fd;
1999 }
2000
2001 /* keep the page with address zero out of the allocator */
2002 struct anv_memory_heap *low_heap =
2003 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2004 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2005 device->vma_lo_available = low_heap->size;
2006
2007 struct anv_memory_heap *high_heap =
2008 &physical_device->memory.heaps[0];
2009 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2010 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2011 high_heap->size;
2012 }
2013
2014 /* As per spec, the driver implementation may deny requests to acquire
2015 * a priority above the default priority (MEDIUM) if the caller does not
2016 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2017 * is returned.
2018 */
2019 if (physical_device->has_context_priority) {
2020 int err = anv_gem_set_context_param(device->fd, device->context_id,
2021 I915_CONTEXT_PARAM_PRIORITY,
2022 vk_priority_to_gen(priority));
2023 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2024 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2025 goto fail_fd;
2026 }
2027 }
2028
2029 device->info = physical_device->info;
2030 device->isl_dev = physical_device->isl_dev;
2031
2032 /* On Broadwell and later, we can use batch chaining to more efficiently
2033 * implement growing command buffers. Prior to Haswell, the kernel
2034 * command parser gets in the way and we have to fall back to growing
2035 * the batch.
2036 */
2037 device->can_chain_batches = device->info.gen >= 8;
2038
2039 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2040 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2041 device->enabled_extensions = enabled_extensions;
2042
2043 anv_device_init_dispatch(device);
2044
2045 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2046 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2047 goto fail_context_id;
2048 }
2049
2050 pthread_condattr_t condattr;
2051 if (pthread_condattr_init(&condattr) != 0) {
2052 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2053 goto fail_mutex;
2054 }
2055 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2056 pthread_condattr_destroy(&condattr);
2057 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2058 goto fail_mutex;
2059 }
2060 if (pthread_cond_init(&device->queue_submit, NULL) != 0) {
2061 pthread_condattr_destroy(&condattr);
2062 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2063 goto fail_mutex;
2064 }
2065 pthread_condattr_destroy(&condattr);
2066
2067 uint64_t bo_flags =
2068 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2069 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2070 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2071 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2072
2073 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2074
2075 result = anv_bo_cache_init(&device->bo_cache);
2076 if (result != VK_SUCCESS)
2077 goto fail_batch_bo_pool;
2078
2079 if (!physical_device->use_softpin)
2080 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2081
2082 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2083 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2084 16384,
2085 bo_flags);
2086 if (result != VK_SUCCESS)
2087 goto fail_bo_cache;
2088
2089 result = anv_state_pool_init(&device->instruction_state_pool, device,
2090 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2091 16384,
2092 bo_flags);
2093 if (result != VK_SUCCESS)
2094 goto fail_dynamic_state_pool;
2095
2096 result = anv_state_pool_init(&device->surface_state_pool, device,
2097 SURFACE_STATE_POOL_MIN_ADDRESS,
2098 4096,
2099 bo_flags);
2100 if (result != VK_SUCCESS)
2101 goto fail_instruction_state_pool;
2102
2103 if (physical_device->use_softpin) {
2104 result = anv_state_pool_init(&device->binding_table_pool, device,
2105 BINDING_TABLE_POOL_MIN_ADDRESS,
2106 4096,
2107 bo_flags);
2108 if (result != VK_SUCCESS)
2109 goto fail_surface_state_pool;
2110 }
2111
2112 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
2113 if (result != VK_SUCCESS)
2114 goto fail_binding_table_pool;
2115
2116 if (physical_device->use_softpin)
2117 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2118
2119 if (!anv_vma_alloc(device, &device->workaround_bo))
2120 goto fail_workaround_bo;
2121
2122 anv_device_init_trivial_batch(device);
2123
2124 if (device->info.gen >= 10)
2125 anv_device_init_hiz_clear_value_bo(device);
2126
2127 if (physical_device->use_softpin)
2128 device->pinned_buffers = _mesa_pointer_set_create(NULL);
2129
2130 anv_scratch_pool_init(device, &device->scratch_pool);
2131
2132 anv_queue_init(device, &device->queue);
2133
2134 switch (device->info.gen) {
2135 case 7:
2136 if (!device->info.is_haswell)
2137 result = gen7_init_device_state(device);
2138 else
2139 result = gen75_init_device_state(device);
2140 break;
2141 case 8:
2142 result = gen8_init_device_state(device);
2143 break;
2144 case 9:
2145 result = gen9_init_device_state(device);
2146 break;
2147 case 10:
2148 result = gen10_init_device_state(device);
2149 break;
2150 case 11:
2151 result = gen11_init_device_state(device);
2152 break;
2153 default:
2154 /* Shouldn't get here as we don't create physical devices for any other
2155 * gens. */
2156 unreachable("unhandled gen");
2157 }
2158 if (result != VK_SUCCESS)
2159 goto fail_workaround_bo;
2160
2161 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2162
2163 anv_device_init_blorp(device);
2164
2165 anv_device_init_border_colors(device);
2166
2167 *pDevice = anv_device_to_handle(device);
2168
2169 return VK_SUCCESS;
2170
2171 fail_workaround_bo:
2172 anv_queue_finish(&device->queue);
2173 anv_scratch_pool_finish(device, &device->scratch_pool);
2174 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2175 anv_gem_close(device, device->workaround_bo.gem_handle);
2176 fail_binding_table_pool:
2177 if (physical_device->use_softpin)
2178 anv_state_pool_finish(&device->binding_table_pool);
2179 fail_surface_state_pool:
2180 anv_state_pool_finish(&device->surface_state_pool);
2181 fail_instruction_state_pool:
2182 anv_state_pool_finish(&device->instruction_state_pool);
2183 fail_dynamic_state_pool:
2184 anv_state_pool_finish(&device->dynamic_state_pool);
2185 fail_bo_cache:
2186 anv_bo_cache_finish(&device->bo_cache);
2187 fail_batch_bo_pool:
2188 anv_bo_pool_finish(&device->batch_bo_pool);
2189 pthread_cond_destroy(&device->queue_submit);
2190 fail_mutex:
2191 pthread_mutex_destroy(&device->mutex);
2192 fail_context_id:
2193 anv_gem_destroy_context(device, device->context_id);
2194 fail_fd:
2195 close(device->fd);
2196 fail_device:
2197 vk_free(&device->alloc, device);
2198
2199 return result;
2200 }
2201
2202 void anv_DestroyDevice(
2203 VkDevice _device,
2204 const VkAllocationCallbacks* pAllocator)
2205 {
2206 ANV_FROM_HANDLE(anv_device, device, _device);
2207 struct anv_physical_device *physical_device;
2208
2209 if (!device)
2210 return;
2211
2212 physical_device = &device->instance->physicalDevice;
2213
2214 anv_device_finish_blorp(device);
2215
2216 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2217
2218 anv_queue_finish(&device->queue);
2219
2220 if (physical_device->use_softpin)
2221 _mesa_set_destroy(device->pinned_buffers, NULL);
2222
2223 #ifdef HAVE_VALGRIND
2224 /* We only need to free these to prevent valgrind errors. The backing
2225 * BO will go away in a couple of lines so we don't actually leak.
2226 */
2227 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2228 #endif
2229
2230 anv_scratch_pool_finish(device, &device->scratch_pool);
2231
2232 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2233 anv_vma_free(device, &device->workaround_bo);
2234 anv_gem_close(device, device->workaround_bo.gem_handle);
2235
2236 anv_vma_free(device, &device->trivial_batch_bo);
2237 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2238 if (device->info.gen >= 10)
2239 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2240
2241 if (physical_device->use_softpin)
2242 anv_state_pool_finish(&device->binding_table_pool);
2243 anv_state_pool_finish(&device->surface_state_pool);
2244 anv_state_pool_finish(&device->instruction_state_pool);
2245 anv_state_pool_finish(&device->dynamic_state_pool);
2246
2247 anv_bo_cache_finish(&device->bo_cache);
2248
2249 anv_bo_pool_finish(&device->batch_bo_pool);
2250
2251 pthread_cond_destroy(&device->queue_submit);
2252 pthread_mutex_destroy(&device->mutex);
2253
2254 anv_gem_destroy_context(device, device->context_id);
2255
2256 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2257
2258 close(device->fd);
2259
2260 vk_free(&device->alloc, device);
2261 }
2262
2263 VkResult anv_EnumerateInstanceLayerProperties(
2264 uint32_t* pPropertyCount,
2265 VkLayerProperties* pProperties)
2266 {
2267 if (pProperties == NULL) {
2268 *pPropertyCount = 0;
2269 return VK_SUCCESS;
2270 }
2271
2272 /* None supported at this time */
2273 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2274 }
2275
2276 VkResult anv_EnumerateDeviceLayerProperties(
2277 VkPhysicalDevice physicalDevice,
2278 uint32_t* pPropertyCount,
2279 VkLayerProperties* pProperties)
2280 {
2281 if (pProperties == NULL) {
2282 *pPropertyCount = 0;
2283 return VK_SUCCESS;
2284 }
2285
2286 /* None supported at this time */
2287 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2288 }
2289
2290 void anv_GetDeviceQueue(
2291 VkDevice _device,
2292 uint32_t queueNodeIndex,
2293 uint32_t queueIndex,
2294 VkQueue* pQueue)
2295 {
2296 ANV_FROM_HANDLE(anv_device, device, _device);
2297
2298 assert(queueIndex == 0);
2299
2300 *pQueue = anv_queue_to_handle(&device->queue);
2301 }
2302
2303 void anv_GetDeviceQueue2(
2304 VkDevice _device,
2305 const VkDeviceQueueInfo2* pQueueInfo,
2306 VkQueue* pQueue)
2307 {
2308 ANV_FROM_HANDLE(anv_device, device, _device);
2309
2310 assert(pQueueInfo->queueIndex == 0);
2311
2312 if (pQueueInfo->flags == device->queue.flags)
2313 *pQueue = anv_queue_to_handle(&device->queue);
2314 else
2315 *pQueue = NULL;
2316 }
2317
2318 VkResult
2319 _anv_device_set_lost(struct anv_device *device,
2320 const char *file, int line,
2321 const char *msg, ...)
2322 {
2323 VkResult err;
2324 va_list ap;
2325
2326 device->_lost = true;
2327
2328 va_start(ap, msg);
2329 err = __vk_errorv(device->instance, device,
2330 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2331 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2332 va_end(ap);
2333
2334 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2335 abort();
2336
2337 return err;
2338 }
2339
2340 VkResult
2341 anv_device_query_status(struct anv_device *device)
2342 {
2343 /* This isn't likely as most of the callers of this function already check
2344 * for it. However, it doesn't hurt to check and it potentially lets us
2345 * avoid an ioctl.
2346 */
2347 if (anv_device_is_lost(device))
2348 return VK_ERROR_DEVICE_LOST;
2349
2350 uint32_t active, pending;
2351 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2352 if (ret == -1) {
2353 /* We don't know the real error. */
2354 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2355 }
2356
2357 if (active) {
2358 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2359 } else if (pending) {
2360 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2361 }
2362
2363 return VK_SUCCESS;
2364 }
2365
2366 VkResult
2367 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2368 {
2369 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2370 * Other usages of the BO (such as on different hardware) will not be
2371 * flagged as "busy" by this ioctl. Use with care.
2372 */
2373 int ret = anv_gem_busy(device, bo->gem_handle);
2374 if (ret == 1) {
2375 return VK_NOT_READY;
2376 } else if (ret == -1) {
2377 /* We don't know the real error. */
2378 return anv_device_set_lost(device, "gem wait failed: %m");
2379 }
2380
2381 /* Query for device status after the busy call. If the BO we're checking
2382 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2383 * client because it clearly doesn't have valid data. Yes, this most
2384 * likely means an ioctl, but we just did an ioctl to query the busy status
2385 * so it's no great loss.
2386 */
2387 return anv_device_query_status(device);
2388 }
2389
2390 VkResult
2391 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2392 int64_t timeout)
2393 {
2394 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2395 if (ret == -1 && errno == ETIME) {
2396 return VK_TIMEOUT;
2397 } else if (ret == -1) {
2398 /* We don't know the real error. */
2399 return anv_device_set_lost(device, "gem wait failed: %m");
2400 }
2401
2402 /* Query for device status after the wait. If the BO we're waiting on got
2403 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2404 * because it clearly doesn't have valid data. Yes, this most likely means
2405 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2406 */
2407 return anv_device_query_status(device);
2408 }
2409
2410 VkResult anv_DeviceWaitIdle(
2411 VkDevice _device)
2412 {
2413 ANV_FROM_HANDLE(anv_device, device, _device);
2414 if (anv_device_is_lost(device))
2415 return VK_ERROR_DEVICE_LOST;
2416
2417 struct anv_batch batch;
2418
2419 uint32_t cmds[8];
2420 batch.start = batch.next = cmds;
2421 batch.end = (void *) cmds + sizeof(cmds);
2422
2423 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2424 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2425
2426 return anv_device_submit_simple_batch(device, &batch);
2427 }
2428
2429 bool
2430 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2431 {
2432 if (!(bo->flags & EXEC_OBJECT_PINNED))
2433 return true;
2434
2435 pthread_mutex_lock(&device->vma_mutex);
2436
2437 bo->offset = 0;
2438
2439 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2440 device->vma_hi_available >= bo->size) {
2441 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2442 if (addr) {
2443 bo->offset = gen_canonical_address(addr);
2444 assert(addr == gen_48b_address(bo->offset));
2445 device->vma_hi_available -= bo->size;
2446 }
2447 }
2448
2449 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2450 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2451 if (addr) {
2452 bo->offset = gen_canonical_address(addr);
2453 assert(addr == gen_48b_address(bo->offset));
2454 device->vma_lo_available -= bo->size;
2455 }
2456 }
2457
2458 pthread_mutex_unlock(&device->vma_mutex);
2459
2460 return bo->offset != 0;
2461 }
2462
2463 void
2464 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2465 {
2466 if (!(bo->flags & EXEC_OBJECT_PINNED))
2467 return;
2468
2469 const uint64_t addr_48b = gen_48b_address(bo->offset);
2470
2471 pthread_mutex_lock(&device->vma_mutex);
2472
2473 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2474 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2475 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2476 device->vma_lo_available += bo->size;
2477 } else {
2478 MAYBE_UNUSED const struct anv_physical_device *physical_device =
2479 &device->instance->physicalDevice;
2480 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
2481 addr_48b < (physical_device->memory.heaps[0].vma_start +
2482 physical_device->memory.heaps[0].vma_size));
2483 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2484 device->vma_hi_available += bo->size;
2485 }
2486
2487 pthread_mutex_unlock(&device->vma_mutex);
2488
2489 bo->offset = 0;
2490 }
2491
2492 VkResult
2493 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
2494 {
2495 uint32_t gem_handle = anv_gem_create(device, size);
2496 if (!gem_handle)
2497 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2498
2499 anv_bo_init(bo, gem_handle, size);
2500
2501 return VK_SUCCESS;
2502 }
2503
2504 VkResult anv_AllocateMemory(
2505 VkDevice _device,
2506 const VkMemoryAllocateInfo* pAllocateInfo,
2507 const VkAllocationCallbacks* pAllocator,
2508 VkDeviceMemory* pMem)
2509 {
2510 ANV_FROM_HANDLE(anv_device, device, _device);
2511 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2512 struct anv_device_memory *mem;
2513 VkResult result = VK_SUCCESS;
2514
2515 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
2516
2517 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
2518 assert(pAllocateInfo->allocationSize > 0);
2519
2520 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
2521 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2522
2523 /* FINISHME: Fail if allocation request exceeds heap size. */
2524
2525 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
2526 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2527 if (mem == NULL)
2528 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2529
2530 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
2531 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
2532 mem->map = NULL;
2533 mem->map_size = 0;
2534 mem->ahw = NULL;
2535 mem->host_ptr = NULL;
2536
2537 uint64_t bo_flags = 0;
2538
2539 assert(mem->type->heapIndex < pdevice->memory.heap_count);
2540 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
2541 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2542
2543 const struct wsi_memory_allocate_info *wsi_info =
2544 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2545 if (wsi_info && wsi_info->implicit_sync) {
2546 /* We need to set the WRITE flag on window system buffers so that GEM
2547 * will know we're writing to them and synchronize uses on other rings
2548 * (eg if the display server uses the blitter ring).
2549 */
2550 bo_flags |= EXEC_OBJECT_WRITE;
2551 } else if (pdevice->has_exec_async) {
2552 bo_flags |= EXEC_OBJECT_ASYNC;
2553 }
2554
2555 if (pdevice->use_softpin)
2556 bo_flags |= EXEC_OBJECT_PINNED;
2557
2558 const VkExportMemoryAllocateInfo *export_info =
2559 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
2560
2561 /* Check if we need to support Android HW buffer export. If so,
2562 * create AHardwareBuffer and import memory from it.
2563 */
2564 bool android_export = false;
2565 if (export_info && export_info->handleTypes &
2566 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
2567 android_export = true;
2568
2569 /* Android memory import. */
2570 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
2571 vk_find_struct_const(pAllocateInfo->pNext,
2572 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
2573
2574 if (ahw_import_info) {
2575 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
2576 if (result != VK_SUCCESS)
2577 goto fail;
2578
2579 goto success;
2580 } else if (android_export) {
2581 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
2582 if (result != VK_SUCCESS)
2583 goto fail;
2584
2585 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
2586 .buffer = mem->ahw,
2587 };
2588 result = anv_import_ahw_memory(_device, mem, &import_info);
2589 if (result != VK_SUCCESS)
2590 goto fail;
2591
2592 goto success;
2593 }
2594
2595 const VkImportMemoryFdInfoKHR *fd_info =
2596 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
2597
2598 /* The Vulkan spec permits handleType to be 0, in which case the struct is
2599 * ignored.
2600 */
2601 if (fd_info && fd_info->handleType) {
2602 /* At the moment, we support only the below handle types. */
2603 assert(fd_info->handleType ==
2604 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2605 fd_info->handleType ==
2606 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2607
2608 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
2609 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
2610 if (result != VK_SUCCESS)
2611 goto fail;
2612
2613 VkDeviceSize aligned_alloc_size =
2614 align_u64(pAllocateInfo->allocationSize, 4096);
2615
2616 /* For security purposes, we reject importing the bo if it's smaller
2617 * than the requested allocation size. This prevents a malicious client
2618 * from passing a buffer to a trusted client, lying about the size, and
2619 * telling the trusted client to try and texture from an image that goes
2620 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
2621 * in the trusted client. The trusted client can protect itself against
2622 * this sort of attack but only if it can trust the buffer size.
2623 */
2624 if (mem->bo->size < aligned_alloc_size) {
2625 result = vk_errorf(device->instance, device,
2626 VK_ERROR_INVALID_EXTERNAL_HANDLE,
2627 "aligned allocationSize too large for "
2628 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
2629 "%"PRIu64"B > %"PRIu64"B",
2630 aligned_alloc_size, mem->bo->size);
2631 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2632 goto fail;
2633 }
2634
2635 /* From the Vulkan spec:
2636 *
2637 * "Importing memory from a file descriptor transfers ownership of
2638 * the file descriptor from the application to the Vulkan
2639 * implementation. The application must not perform any operations on
2640 * the file descriptor after a successful import."
2641 *
2642 * If the import fails, we leave the file descriptor open.
2643 */
2644 close(fd_info->fd);
2645 goto success;
2646 }
2647
2648 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
2649 vk_find_struct_const(pAllocateInfo->pNext,
2650 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
2651 if (host_ptr_info && host_ptr_info->handleType) {
2652 if (host_ptr_info->handleType ==
2653 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
2654 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2655 goto fail;
2656 }
2657
2658 assert(host_ptr_info->handleType ==
2659 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
2660
2661 result = anv_bo_cache_import_host_ptr(
2662 device, &device->bo_cache, host_ptr_info->pHostPointer,
2663 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
2664
2665 if (result != VK_SUCCESS)
2666 goto fail;
2667
2668 mem->host_ptr = host_ptr_info->pHostPointer;
2669 goto success;
2670 }
2671
2672 /* Regular allocate (not importing memory). */
2673
2674 if (export_info && export_info->handleTypes)
2675 bo_flags |= ANV_BO_EXTERNAL;
2676
2677 result = anv_bo_cache_alloc(device, &device->bo_cache,
2678 pAllocateInfo->allocationSize, bo_flags,
2679 &mem->bo);
2680 if (result != VK_SUCCESS)
2681 goto fail;
2682
2683 const VkMemoryDedicatedAllocateInfo *dedicated_info =
2684 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
2685 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
2686 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
2687
2688 /* Some legacy (non-modifiers) consumers need the tiling to be set on
2689 * the BO. In this case, we have a dedicated allocation.
2690 */
2691 if (image->needs_set_tiling) {
2692 const uint32_t i915_tiling =
2693 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
2694 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
2695 image->planes[0].surface.isl.row_pitch_B,
2696 i915_tiling);
2697 if (ret) {
2698 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2699 return vk_errorf(device->instance, NULL,
2700 VK_ERROR_OUT_OF_DEVICE_MEMORY,
2701 "failed to set BO tiling: %m");
2702 }
2703 }
2704 }
2705
2706 success:
2707 *pMem = anv_device_memory_to_handle(mem);
2708
2709 return VK_SUCCESS;
2710
2711 fail:
2712 vk_free2(&device->alloc, pAllocator, mem);
2713
2714 return result;
2715 }
2716
2717 VkResult anv_GetMemoryFdKHR(
2718 VkDevice device_h,
2719 const VkMemoryGetFdInfoKHR* pGetFdInfo,
2720 int* pFd)
2721 {
2722 ANV_FROM_HANDLE(anv_device, dev, device_h);
2723 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
2724
2725 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
2726
2727 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2728 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2729
2730 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
2731 }
2732
2733 VkResult anv_GetMemoryFdPropertiesKHR(
2734 VkDevice _device,
2735 VkExternalMemoryHandleTypeFlagBits handleType,
2736 int fd,
2737 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
2738 {
2739 ANV_FROM_HANDLE(anv_device, device, _device);
2740 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2741
2742 switch (handleType) {
2743 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
2744 /* dma-buf can be imported as any memory type */
2745 pMemoryFdProperties->memoryTypeBits =
2746 (1 << pdevice->memory.type_count) - 1;
2747 return VK_SUCCESS;
2748
2749 default:
2750 /* The valid usage section for this function says:
2751 *
2752 * "handleType must not be one of the handle types defined as
2753 * opaque."
2754 *
2755 * So opaque handle types fall into the default "unsupported" case.
2756 */
2757 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2758 }
2759 }
2760
2761 VkResult anv_GetMemoryHostPointerPropertiesEXT(
2762 VkDevice _device,
2763 VkExternalMemoryHandleTypeFlagBits handleType,
2764 const void* pHostPointer,
2765 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
2766 {
2767 ANV_FROM_HANDLE(anv_device, device, _device);
2768
2769 assert(pMemoryHostPointerProperties->sType ==
2770 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
2771
2772 switch (handleType) {
2773 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
2774 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2775
2776 /* Host memory can be imported as any memory type. */
2777 pMemoryHostPointerProperties->memoryTypeBits =
2778 (1ull << pdevice->memory.type_count) - 1;
2779
2780 return VK_SUCCESS;
2781 }
2782 default:
2783 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
2784 }
2785 }
2786
2787 void anv_FreeMemory(
2788 VkDevice _device,
2789 VkDeviceMemory _mem,
2790 const VkAllocationCallbacks* pAllocator)
2791 {
2792 ANV_FROM_HANDLE(anv_device, device, _device);
2793 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
2794
2795 if (mem == NULL)
2796 return;
2797
2798 if (mem->map)
2799 anv_UnmapMemory(_device, _mem);
2800
2801 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2802
2803 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
2804 if (mem->ahw)
2805 AHardwareBuffer_release(mem->ahw);
2806 #endif
2807
2808 vk_free2(&device->alloc, pAllocator, mem);
2809 }
2810
2811 VkResult anv_MapMemory(
2812 VkDevice _device,
2813 VkDeviceMemory _memory,
2814 VkDeviceSize offset,
2815 VkDeviceSize size,
2816 VkMemoryMapFlags flags,
2817 void** ppData)
2818 {
2819 ANV_FROM_HANDLE(anv_device, device, _device);
2820 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2821
2822 if (mem == NULL) {
2823 *ppData = NULL;
2824 return VK_SUCCESS;
2825 }
2826
2827 if (mem->host_ptr) {
2828 *ppData = mem->host_ptr + offset;
2829 return VK_SUCCESS;
2830 }
2831
2832 if (size == VK_WHOLE_SIZE)
2833 size = mem->bo->size - offset;
2834
2835 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
2836 *
2837 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
2838 * assert(size != 0);
2839 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
2840 * equal to the size of the memory minus offset
2841 */
2842 assert(size > 0);
2843 assert(offset + size <= mem->bo->size);
2844
2845 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
2846 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
2847 * at a time is valid. We could just mmap up front and return an offset
2848 * pointer here, but that may exhaust virtual memory on 32 bit
2849 * userspace. */
2850
2851 uint32_t gem_flags = 0;
2852
2853 if (!device->info.has_llc &&
2854 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
2855 gem_flags |= I915_MMAP_WC;
2856
2857 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
2858 uint64_t map_offset = offset & ~4095ull;
2859 assert(offset >= map_offset);
2860 uint64_t map_size = (offset + size) - map_offset;
2861
2862 /* Let's map whole pages */
2863 map_size = align_u64(map_size, 4096);
2864
2865 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
2866 map_offset, map_size, gem_flags);
2867 if (map == MAP_FAILED)
2868 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
2869
2870 mem->map = map;
2871 mem->map_size = map_size;
2872
2873 *ppData = mem->map + (offset - map_offset);
2874
2875 return VK_SUCCESS;
2876 }
2877
2878 void anv_UnmapMemory(
2879 VkDevice _device,
2880 VkDeviceMemory _memory)
2881 {
2882 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2883
2884 if (mem == NULL || mem->host_ptr)
2885 return;
2886
2887 anv_gem_munmap(mem->map, mem->map_size);
2888
2889 mem->map = NULL;
2890 mem->map_size = 0;
2891 }
2892
2893 static void
2894 clflush_mapped_ranges(struct anv_device *device,
2895 uint32_t count,
2896 const VkMappedMemoryRange *ranges)
2897 {
2898 for (uint32_t i = 0; i < count; i++) {
2899 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
2900 if (ranges[i].offset >= mem->map_size)
2901 continue;
2902
2903 gen_clflush_range(mem->map + ranges[i].offset,
2904 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
2905 }
2906 }
2907
2908 VkResult anv_FlushMappedMemoryRanges(
2909 VkDevice _device,
2910 uint32_t memoryRangeCount,
2911 const VkMappedMemoryRange* pMemoryRanges)
2912 {
2913 ANV_FROM_HANDLE(anv_device, device, _device);
2914
2915 if (device->info.has_llc)
2916 return VK_SUCCESS;
2917
2918 /* Make sure the writes we're flushing have landed. */
2919 __builtin_ia32_mfence();
2920
2921 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2922
2923 return VK_SUCCESS;
2924 }
2925
2926 VkResult anv_InvalidateMappedMemoryRanges(
2927 VkDevice _device,
2928 uint32_t memoryRangeCount,
2929 const VkMappedMemoryRange* pMemoryRanges)
2930 {
2931 ANV_FROM_HANDLE(anv_device, device, _device);
2932
2933 if (device->info.has_llc)
2934 return VK_SUCCESS;
2935
2936 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2937
2938 /* Make sure no reads get moved up above the invalidate. */
2939 __builtin_ia32_mfence();
2940
2941 return VK_SUCCESS;
2942 }
2943
2944 void anv_GetBufferMemoryRequirements(
2945 VkDevice _device,
2946 VkBuffer _buffer,
2947 VkMemoryRequirements* pMemoryRequirements)
2948 {
2949 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2950 ANV_FROM_HANDLE(anv_device, device, _device);
2951 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2952
2953 /* The Vulkan spec (git aaed022) says:
2954 *
2955 * memoryTypeBits is a bitfield and contains one bit set for every
2956 * supported memory type for the resource. The bit `1<<i` is set if and
2957 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2958 * structure for the physical device is supported.
2959 */
2960 uint32_t memory_types = 0;
2961 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
2962 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
2963 if ((valid_usage & buffer->usage) == buffer->usage)
2964 memory_types |= (1u << i);
2965 }
2966
2967 /* Base alignment requirement of a cache line */
2968 uint32_t alignment = 16;
2969
2970 /* We need an alignment of 32 for pushing UBOs */
2971 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
2972 alignment = MAX2(alignment, 32);
2973
2974 pMemoryRequirements->size = buffer->size;
2975 pMemoryRequirements->alignment = alignment;
2976
2977 /* Storage and Uniform buffers should have their size aligned to
2978 * 32-bits to avoid boundary checks when last DWord is not complete.
2979 * This would ensure that not internal padding would be needed for
2980 * 16-bit types.
2981 */
2982 if (device->robust_buffer_access &&
2983 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
2984 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
2985 pMemoryRequirements->size = align_u64(buffer->size, 4);
2986
2987 pMemoryRequirements->memoryTypeBits = memory_types;
2988 }
2989
2990 void anv_GetBufferMemoryRequirements2(
2991 VkDevice _device,
2992 const VkBufferMemoryRequirementsInfo2* pInfo,
2993 VkMemoryRequirements2* pMemoryRequirements)
2994 {
2995 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
2996 &pMemoryRequirements->memoryRequirements);
2997
2998 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2999 switch (ext->sType) {
3000 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3001 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3002 requirements->prefersDedicatedAllocation = false;
3003 requirements->requiresDedicatedAllocation = false;
3004 break;
3005 }
3006
3007 default:
3008 anv_debug_ignored_stype(ext->sType);
3009 break;
3010 }
3011 }
3012 }
3013
3014 void anv_GetImageMemoryRequirements(
3015 VkDevice _device,
3016 VkImage _image,
3017 VkMemoryRequirements* pMemoryRequirements)
3018 {
3019 ANV_FROM_HANDLE(anv_image, image, _image);
3020 ANV_FROM_HANDLE(anv_device, device, _device);
3021 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3022
3023 /* The Vulkan spec (git aaed022) says:
3024 *
3025 * memoryTypeBits is a bitfield and contains one bit set for every
3026 * supported memory type for the resource. The bit `1<<i` is set if and
3027 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3028 * structure for the physical device is supported.
3029 *
3030 * All types are currently supported for images.
3031 */
3032 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3033
3034 /* We must have image allocated or imported at this point. According to the
3035 * specification, external images must have been bound to memory before
3036 * calling GetImageMemoryRequirements.
3037 */
3038 assert(image->size > 0);
3039
3040 pMemoryRequirements->size = image->size;
3041 pMemoryRequirements->alignment = image->alignment;
3042 pMemoryRequirements->memoryTypeBits = memory_types;
3043 }
3044
3045 void anv_GetImageMemoryRequirements2(
3046 VkDevice _device,
3047 const VkImageMemoryRequirementsInfo2* pInfo,
3048 VkMemoryRequirements2* pMemoryRequirements)
3049 {
3050 ANV_FROM_HANDLE(anv_device, device, _device);
3051 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3052
3053 anv_GetImageMemoryRequirements(_device, pInfo->image,
3054 &pMemoryRequirements->memoryRequirements);
3055
3056 vk_foreach_struct_const(ext, pInfo->pNext) {
3057 switch (ext->sType) {
3058 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3059 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3060 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3061 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3062 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3063 plane_reqs->planeAspect);
3064
3065 assert(image->planes[plane].offset == 0);
3066
3067 /* The Vulkan spec (git aaed022) says:
3068 *
3069 * memoryTypeBits is a bitfield and contains one bit set for every
3070 * supported memory type for the resource. The bit `1<<i` is set
3071 * if and only if the memory type `i` in the
3072 * VkPhysicalDeviceMemoryProperties structure for the physical
3073 * device is supported.
3074 *
3075 * All types are currently supported for images.
3076 */
3077 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3078 (1ull << pdevice->memory.type_count) - 1;
3079
3080 /* We must have image allocated or imported at this point. According to the
3081 * specification, external images must have been bound to memory before
3082 * calling GetImageMemoryRequirements.
3083 */
3084 assert(image->planes[plane].size > 0);
3085
3086 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3087 pMemoryRequirements->memoryRequirements.alignment =
3088 image->planes[plane].alignment;
3089 break;
3090 }
3091
3092 default:
3093 anv_debug_ignored_stype(ext->sType);
3094 break;
3095 }
3096 }
3097
3098 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3099 switch (ext->sType) {
3100 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3101 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3102 if (image->needs_set_tiling || image->external_format) {
3103 /* If we need to set the tiling for external consumers, we need a
3104 * dedicated allocation.
3105 *
3106 * See also anv_AllocateMemory.
3107 */
3108 requirements->prefersDedicatedAllocation = true;
3109 requirements->requiresDedicatedAllocation = true;
3110 } else {
3111 requirements->prefersDedicatedAllocation = false;
3112 requirements->requiresDedicatedAllocation = false;
3113 }
3114 break;
3115 }
3116
3117 default:
3118 anv_debug_ignored_stype(ext->sType);
3119 break;
3120 }
3121 }
3122 }
3123
3124 void anv_GetImageSparseMemoryRequirements(
3125 VkDevice device,
3126 VkImage image,
3127 uint32_t* pSparseMemoryRequirementCount,
3128 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3129 {
3130 *pSparseMemoryRequirementCount = 0;
3131 }
3132
3133 void anv_GetImageSparseMemoryRequirements2(
3134 VkDevice device,
3135 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3136 uint32_t* pSparseMemoryRequirementCount,
3137 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3138 {
3139 *pSparseMemoryRequirementCount = 0;
3140 }
3141
3142 void anv_GetDeviceMemoryCommitment(
3143 VkDevice device,
3144 VkDeviceMemory memory,
3145 VkDeviceSize* pCommittedMemoryInBytes)
3146 {
3147 *pCommittedMemoryInBytes = 0;
3148 }
3149
3150 static void
3151 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3152 {
3153 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3154 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3155
3156 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3157
3158 if (mem) {
3159 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3160 buffer->address = (struct anv_address) {
3161 .bo = mem->bo,
3162 .offset = pBindInfo->memoryOffset,
3163 };
3164 } else {
3165 buffer->address = ANV_NULL_ADDRESS;
3166 }
3167 }
3168
3169 VkResult anv_BindBufferMemory(
3170 VkDevice device,
3171 VkBuffer buffer,
3172 VkDeviceMemory memory,
3173 VkDeviceSize memoryOffset)
3174 {
3175 anv_bind_buffer_memory(
3176 &(VkBindBufferMemoryInfo) {
3177 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3178 .buffer = buffer,
3179 .memory = memory,
3180 .memoryOffset = memoryOffset,
3181 });
3182
3183 return VK_SUCCESS;
3184 }
3185
3186 VkResult anv_BindBufferMemory2(
3187 VkDevice device,
3188 uint32_t bindInfoCount,
3189 const VkBindBufferMemoryInfo* pBindInfos)
3190 {
3191 for (uint32_t i = 0; i < bindInfoCount; i++)
3192 anv_bind_buffer_memory(&pBindInfos[i]);
3193
3194 return VK_SUCCESS;
3195 }
3196
3197 VkResult anv_QueueBindSparse(
3198 VkQueue _queue,
3199 uint32_t bindInfoCount,
3200 const VkBindSparseInfo* pBindInfo,
3201 VkFence fence)
3202 {
3203 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3204 if (anv_device_is_lost(queue->device))
3205 return VK_ERROR_DEVICE_LOST;
3206
3207 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3208 }
3209
3210 // Event functions
3211
3212 VkResult anv_CreateEvent(
3213 VkDevice _device,
3214 const VkEventCreateInfo* pCreateInfo,
3215 const VkAllocationCallbacks* pAllocator,
3216 VkEvent* pEvent)
3217 {
3218 ANV_FROM_HANDLE(anv_device, device, _device);
3219 struct anv_state state;
3220 struct anv_event *event;
3221
3222 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3223
3224 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3225 sizeof(*event), 8);
3226 event = state.map;
3227 event->state = state;
3228 event->semaphore = VK_EVENT_RESET;
3229
3230 if (!device->info.has_llc) {
3231 /* Make sure the writes we're flushing have landed. */
3232 __builtin_ia32_mfence();
3233 __builtin_ia32_clflush(event);
3234 }
3235
3236 *pEvent = anv_event_to_handle(event);
3237
3238 return VK_SUCCESS;
3239 }
3240
3241 void anv_DestroyEvent(
3242 VkDevice _device,
3243 VkEvent _event,
3244 const VkAllocationCallbacks* pAllocator)
3245 {
3246 ANV_FROM_HANDLE(anv_device, device, _device);
3247 ANV_FROM_HANDLE(anv_event, event, _event);
3248
3249 if (!event)
3250 return;
3251
3252 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3253 }
3254
3255 VkResult anv_GetEventStatus(
3256 VkDevice _device,
3257 VkEvent _event)
3258 {
3259 ANV_FROM_HANDLE(anv_device, device, _device);
3260 ANV_FROM_HANDLE(anv_event, event, _event);
3261
3262 if (anv_device_is_lost(device))
3263 return VK_ERROR_DEVICE_LOST;
3264
3265 if (!device->info.has_llc) {
3266 /* Invalidate read cache before reading event written by GPU. */
3267 __builtin_ia32_clflush(event);
3268 __builtin_ia32_mfence();
3269
3270 }
3271
3272 return event->semaphore;
3273 }
3274
3275 VkResult anv_SetEvent(
3276 VkDevice _device,
3277 VkEvent _event)
3278 {
3279 ANV_FROM_HANDLE(anv_device, device, _device);
3280 ANV_FROM_HANDLE(anv_event, event, _event);
3281
3282 event->semaphore = VK_EVENT_SET;
3283
3284 if (!device->info.has_llc) {
3285 /* Make sure the writes we're flushing have landed. */
3286 __builtin_ia32_mfence();
3287 __builtin_ia32_clflush(event);
3288 }
3289
3290 return VK_SUCCESS;
3291 }
3292
3293 VkResult anv_ResetEvent(
3294 VkDevice _device,
3295 VkEvent _event)
3296 {
3297 ANV_FROM_HANDLE(anv_device, device, _device);
3298 ANV_FROM_HANDLE(anv_event, event, _event);
3299
3300 event->semaphore = VK_EVENT_RESET;
3301
3302 if (!device->info.has_llc) {
3303 /* Make sure the writes we're flushing have landed. */
3304 __builtin_ia32_mfence();
3305 __builtin_ia32_clflush(event);
3306 }
3307
3308 return VK_SUCCESS;
3309 }
3310
3311 // Buffer functions
3312
3313 VkResult anv_CreateBuffer(
3314 VkDevice _device,
3315 const VkBufferCreateInfo* pCreateInfo,
3316 const VkAllocationCallbacks* pAllocator,
3317 VkBuffer* pBuffer)
3318 {
3319 ANV_FROM_HANDLE(anv_device, device, _device);
3320 struct anv_buffer *buffer;
3321
3322 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3323
3324 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3325 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3326 if (buffer == NULL)
3327 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3328
3329 buffer->size = pCreateInfo->size;
3330 buffer->usage = pCreateInfo->usage;
3331 buffer->address = ANV_NULL_ADDRESS;
3332
3333 if (buffer->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT) {
3334 pthread_mutex_lock(&device->mutex);
3335 _mesa_set_add(device->pinned_buffers, buffer);
3336 pthread_mutex_unlock(&device->mutex);
3337 }
3338
3339 *pBuffer = anv_buffer_to_handle(buffer);
3340
3341 return VK_SUCCESS;
3342 }
3343
3344 void anv_DestroyBuffer(
3345 VkDevice _device,
3346 VkBuffer _buffer,
3347 const VkAllocationCallbacks* pAllocator)
3348 {
3349 ANV_FROM_HANDLE(anv_device, device, _device);
3350 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3351
3352 if (!buffer)
3353 return;
3354
3355 if (buffer->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT) {
3356 pthread_mutex_lock(&device->mutex);
3357 _mesa_set_remove_key(device->pinned_buffers, buffer);
3358 pthread_mutex_unlock(&device->mutex);
3359 }
3360
3361 vk_free2(&device->alloc, pAllocator, buffer);
3362 }
3363
3364 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3365 VkDevice device,
3366 const VkBufferDeviceAddressInfoEXT* pInfo)
3367 {
3368 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3369
3370 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3371
3372 return anv_address_physical(buffer->address);
3373 }
3374
3375 void
3376 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3377 enum isl_format format,
3378 struct anv_address address,
3379 uint32_t range, uint32_t stride)
3380 {
3381 isl_buffer_fill_state(&device->isl_dev, state.map,
3382 .address = anv_address_physical(address),
3383 .mocs = device->default_mocs,
3384 .size_B = range,
3385 .format = format,
3386 .swizzle = ISL_SWIZZLE_IDENTITY,
3387 .stride_B = stride);
3388 }
3389
3390 void anv_DestroySampler(
3391 VkDevice _device,
3392 VkSampler _sampler,
3393 const VkAllocationCallbacks* pAllocator)
3394 {
3395 ANV_FROM_HANDLE(anv_device, device, _device);
3396 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3397
3398 if (!sampler)
3399 return;
3400
3401 vk_free2(&device->alloc, pAllocator, sampler);
3402 }
3403
3404 VkResult anv_CreateFramebuffer(
3405 VkDevice _device,
3406 const VkFramebufferCreateInfo* pCreateInfo,
3407 const VkAllocationCallbacks* pAllocator,
3408 VkFramebuffer* pFramebuffer)
3409 {
3410 ANV_FROM_HANDLE(anv_device, device, _device);
3411 struct anv_framebuffer *framebuffer;
3412
3413 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3414
3415 size_t size = sizeof(*framebuffer) +
3416 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3417 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3418 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3419 if (framebuffer == NULL)
3420 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3421
3422 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3423 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3424 VkImageView _iview = pCreateInfo->pAttachments[i];
3425 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
3426 }
3427
3428 framebuffer->width = pCreateInfo->width;
3429 framebuffer->height = pCreateInfo->height;
3430 framebuffer->layers = pCreateInfo->layers;
3431
3432 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3433
3434 return VK_SUCCESS;
3435 }
3436
3437 void anv_DestroyFramebuffer(
3438 VkDevice _device,
3439 VkFramebuffer _fb,
3440 const VkAllocationCallbacks* pAllocator)
3441 {
3442 ANV_FROM_HANDLE(anv_device, device, _device);
3443 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3444
3445 if (!fb)
3446 return;
3447
3448 vk_free2(&device->alloc, pAllocator, fb);
3449 }
3450
3451 static const VkTimeDomainEXT anv_time_domains[] = {
3452 VK_TIME_DOMAIN_DEVICE_EXT,
3453 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3454 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3455 };
3456
3457 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3458 VkPhysicalDevice physicalDevice,
3459 uint32_t *pTimeDomainCount,
3460 VkTimeDomainEXT *pTimeDomains)
3461 {
3462 int d;
3463 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
3464
3465 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
3466 vk_outarray_append(&out, i) {
3467 *i = anv_time_domains[d];
3468 }
3469 }
3470
3471 return vk_outarray_status(&out);
3472 }
3473
3474 static uint64_t
3475 anv_clock_gettime(clockid_t clock_id)
3476 {
3477 struct timespec current;
3478 int ret;
3479
3480 ret = clock_gettime(clock_id, &current);
3481 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
3482 ret = clock_gettime(CLOCK_MONOTONIC, &current);
3483 if (ret < 0)
3484 return 0;
3485
3486 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
3487 }
3488
3489 #define TIMESTAMP 0x2358
3490
3491 VkResult anv_GetCalibratedTimestampsEXT(
3492 VkDevice _device,
3493 uint32_t timestampCount,
3494 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
3495 uint64_t *pTimestamps,
3496 uint64_t *pMaxDeviation)
3497 {
3498 ANV_FROM_HANDLE(anv_device, device, _device);
3499 uint64_t timestamp_frequency = device->info.timestamp_frequency;
3500 int ret;
3501 int d;
3502 uint64_t begin, end;
3503 uint64_t max_clock_period = 0;
3504
3505 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3506
3507 for (d = 0; d < timestampCount; d++) {
3508 switch (pTimestampInfos[d].timeDomain) {
3509 case VK_TIME_DOMAIN_DEVICE_EXT:
3510 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
3511 &pTimestamps[d]);
3512
3513 if (ret != 0) {
3514 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
3515 "register: %m");
3516 }
3517 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
3518 max_clock_period = MAX2(max_clock_period, device_period);
3519 break;
3520 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
3521 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
3522 max_clock_period = MAX2(max_clock_period, 1);
3523 break;
3524
3525 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
3526 pTimestamps[d] = begin;
3527 break;
3528 default:
3529 pTimestamps[d] = 0;
3530 break;
3531 }
3532 }
3533
3534 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3535
3536 /*
3537 * The maximum deviation is the sum of the interval over which we
3538 * perform the sampling and the maximum period of any sampled
3539 * clock. That's because the maximum skew between any two sampled
3540 * clock edges is when the sampled clock with the largest period is
3541 * sampled at the end of that period but right at the beginning of the
3542 * sampling interval and some other clock is sampled right at the
3543 * begining of its sampling period and right at the end of the
3544 * sampling interval. Let's assume the GPU has the longest clock
3545 * period and that the application is sampling GPU and monotonic:
3546 *
3547 * s e
3548 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
3549 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3550 *
3551 * g
3552 * 0 1 2 3
3553 * GPU -----_____-----_____-----_____-----_____
3554 *
3555 * m
3556 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
3557 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3558 *
3559 * Interval <----------------->
3560 * Deviation <-------------------------->
3561 *
3562 * s = read(raw) 2
3563 * g = read(GPU) 1
3564 * m = read(monotonic) 2
3565 * e = read(raw) b
3566 *
3567 * We round the sample interval up by one tick to cover sampling error
3568 * in the interval clock
3569 */
3570
3571 uint64_t sample_interval = end - begin + 1;
3572
3573 *pMaxDeviation = sample_interval + max_clock_period;
3574
3575 return VK_SUCCESS;
3576 }
3577
3578 /* vk_icd.h does not declare this function, so we declare it here to
3579 * suppress Wmissing-prototypes.
3580 */
3581 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3582 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
3583
3584 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3585 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
3586 {
3587 /* For the full details on loader interface versioning, see
3588 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
3589 * What follows is a condensed summary, to help you navigate the large and
3590 * confusing official doc.
3591 *
3592 * - Loader interface v0 is incompatible with later versions. We don't
3593 * support it.
3594 *
3595 * - In loader interface v1:
3596 * - The first ICD entrypoint called by the loader is
3597 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
3598 * entrypoint.
3599 * - The ICD must statically expose no other Vulkan symbol unless it is
3600 * linked with -Bsymbolic.
3601 * - Each dispatchable Vulkan handle created by the ICD must be
3602 * a pointer to a struct whose first member is VK_LOADER_DATA. The
3603 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
3604 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
3605 * vkDestroySurfaceKHR(). The ICD must be capable of working with
3606 * such loader-managed surfaces.
3607 *
3608 * - Loader interface v2 differs from v1 in:
3609 * - The first ICD entrypoint called by the loader is
3610 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
3611 * statically expose this entrypoint.
3612 *
3613 * - Loader interface v3 differs from v2 in:
3614 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
3615 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
3616 * because the loader no longer does so.
3617 */
3618 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
3619 return VK_SUCCESS;
3620 }