intel/compiler: Add a flag to avoid compacting push constants
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/debug.h"
36 #include "util/build_id.h"
37 #include "util/disk_cache.h"
38 #include "util/mesa-sha1.h"
39 #include "util/os_file.h"
40 #include "util/u_atomic.h"
41 #include "util/u_string.h"
42 #include "util/xmlpool.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_aux_map.h"
46 #include "common/gen_defines.h"
47 #include "compiler/glsl_types.h"
48
49 #include "genxml/gen7_pack.h"
50
51 static const char anv_dri_options_xml[] =
52 DRI_CONF_BEGIN
53 DRI_CONF_SECTION_PERFORMANCE
54 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
55 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
56 DRI_CONF_SECTION_END
57 DRI_CONF_END;
58
59 /* This is probably far to big but it reflects the max size used for messages
60 * in OpenGLs KHR_debug.
61 */
62 #define MAX_DEBUG_MESSAGE_LENGTH 4096
63
64 static void
65 compiler_debug_log(void *data, const char *fmt, ...)
66 {
67 char str[MAX_DEBUG_MESSAGE_LENGTH];
68 struct anv_device *device = (struct anv_device *)data;
69
70 if (list_is_empty(&device->instance->debug_report_callbacks.callbacks))
71 return;
72
73 va_list args;
74 va_start(args, fmt);
75 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
76 va_end(args);
77
78 vk_debug_report(&device->instance->debug_report_callbacks,
79 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
80 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
81 0, 0, 0, "anv", str);
82 }
83
84 static void
85 compiler_perf_log(void *data, const char *fmt, ...)
86 {
87 va_list args;
88 va_start(args, fmt);
89
90 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
91 intel_logd_v(fmt, args);
92
93 va_end(args);
94 }
95
96 static uint64_t
97 anv_compute_heap_size(int fd, uint64_t gtt_size)
98 {
99 /* Query the total ram from the system */
100 struct sysinfo info;
101 sysinfo(&info);
102
103 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
104
105 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
106 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
107 */
108 uint64_t available_ram;
109 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
110 available_ram = total_ram / 2;
111 else
112 available_ram = total_ram * 3 / 4;
113
114 /* We also want to leave some padding for things we allocate in the driver,
115 * so don't go over 3/4 of the GTT either.
116 */
117 uint64_t available_gtt = gtt_size * 3 / 4;
118
119 return MIN2(available_ram, available_gtt);
120 }
121
122 static VkResult
123 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
124 {
125 uint64_t gtt_size;
126 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
127 &gtt_size) == -1) {
128 /* If, for whatever reason, we can't actually get the GTT size from the
129 * kernel (too old?) fall back to the aperture size.
130 */
131 anv_perf_warn(NULL, NULL,
132 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
133
134 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
135 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
136 "failed to get aperture size: %m");
137 }
138 }
139
140 device->supports_48bit_addresses = (device->info.gen >= 8) &&
141 gtt_size > (4ULL << 30 /* GiB */);
142
143 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
144
145 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
146 /* When running with an overridden PCI ID, we may get a GTT size from
147 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
148 * address support can still fail. Just clamp the address space size to
149 * 2 GiB if we don't have 48-bit support.
150 */
151 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
152 "not support for 48-bit addresses",
153 __FILE__, __LINE__);
154 heap_size = 2ull << 30;
155 }
156
157 if (heap_size <= 3ull * (1ull << 30)) {
158 /* In this case, everything fits nicely into the 32-bit address space,
159 * so there's no need for supporting 48bit addresses on client-allocated
160 * memory objects.
161 */
162 device->memory.heap_count = 1;
163 device->memory.heaps[0] = (struct anv_memory_heap) {
164 .vma_start = LOW_HEAP_MIN_ADDRESS,
165 .vma_size = LOW_HEAP_SIZE,
166 .size = heap_size,
167 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
168 .supports_48bit_addresses = false,
169 };
170 } else {
171 /* Not everything will fit nicely into a 32-bit address space. In this
172 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
173 * larger 48-bit heap. If we're in this case, then we have a total heap
174 * size larger than 3GiB which most likely means they have 8 GiB of
175 * video memory and so carving off 1 GiB for the 32-bit heap should be
176 * reasonable.
177 */
178 const uint64_t heap_size_32bit = 1ull << 30;
179 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
180
181 assert(device->supports_48bit_addresses);
182
183 device->memory.heap_count = 2;
184 device->memory.heaps[0] = (struct anv_memory_heap) {
185 .vma_start = HIGH_HEAP_MIN_ADDRESS,
186 /* Leave the last 4GiB out of the high vma range, so that no state
187 * base address + size can overflow 48 bits. For more information see
188 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
189 */
190 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
191 .size = heap_size_48bit,
192 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
193 .supports_48bit_addresses = true,
194 };
195 device->memory.heaps[1] = (struct anv_memory_heap) {
196 .vma_start = LOW_HEAP_MIN_ADDRESS,
197 .vma_size = LOW_HEAP_SIZE,
198 .size = heap_size_32bit,
199 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
200 .supports_48bit_addresses = false,
201 };
202 }
203
204 uint32_t type_count = 0;
205 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
206 uint32_t valid_buffer_usage = ~0;
207
208 /* There appears to be a hardware issue in the VF cache where it only
209 * considers the bottom 32 bits of memory addresses. If you happen to
210 * have two vertex buffers which get placed exactly 4 GiB apart and use
211 * them in back-to-back draw calls, you can get collisions. In order to
212 * solve this problem, we require vertex and index buffers be bound to
213 * memory allocated out of the 32-bit heap.
214 */
215 if (device->memory.heaps[heap].supports_48bit_addresses) {
216 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
217 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
218 }
219
220 if (device->info.has_llc) {
221 /* Big core GPUs share LLC with the CPU and thus one memory type can be
222 * both cached and coherent at the same time.
223 */
224 device->memory.types[type_count++] = (struct anv_memory_type) {
225 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
226 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
227 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
228 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
229 .heapIndex = heap,
230 .valid_buffer_usage = valid_buffer_usage,
231 };
232 } else {
233 /* The spec requires that we expose a host-visible, coherent memory
234 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
235 * to give the application a choice between cached, but not coherent and
236 * coherent but uncached (WC though).
237 */
238 device->memory.types[type_count++] = (struct anv_memory_type) {
239 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
240 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
241 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
242 .heapIndex = heap,
243 .valid_buffer_usage = valid_buffer_usage,
244 };
245 device->memory.types[type_count++] = (struct anv_memory_type) {
246 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
247 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
248 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
249 .heapIndex = heap,
250 .valid_buffer_usage = valid_buffer_usage,
251 };
252 }
253 }
254 device->memory.type_count = type_count;
255
256 return VK_SUCCESS;
257 }
258
259 static VkResult
260 anv_physical_device_init_uuids(struct anv_physical_device *device)
261 {
262 const struct build_id_note *note =
263 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
264 if (!note) {
265 return vk_errorf(device->instance, device,
266 VK_ERROR_INITIALIZATION_FAILED,
267 "Failed to find build-id");
268 }
269
270 unsigned build_id_len = build_id_length(note);
271 if (build_id_len < 20) {
272 return vk_errorf(device->instance, device,
273 VK_ERROR_INITIALIZATION_FAILED,
274 "build-id too short. It needs to be a SHA");
275 }
276
277 memcpy(device->driver_build_sha1, build_id_data(note), 20);
278
279 struct mesa_sha1 sha1_ctx;
280 uint8_t sha1[20];
281 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
282
283 /* The pipeline cache UUID is used for determining when a pipeline cache is
284 * invalid. It needs both a driver build and the PCI ID of the device.
285 */
286 _mesa_sha1_init(&sha1_ctx);
287 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
288 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
289 sizeof(device->chipset_id));
290 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
291 sizeof(device->always_use_bindless));
292 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
293 sizeof(device->has_a64_buffer_access));
294 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
295 sizeof(device->has_bindless_images));
296 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
297 sizeof(device->has_bindless_samplers));
298 _mesa_sha1_final(&sha1_ctx, sha1);
299 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
300
301 /* The driver UUID is used for determining sharability of images and memory
302 * between two Vulkan instances in separate processes. People who want to
303 * share memory need to also check the device UUID (below) so all this
304 * needs to be is the build-id.
305 */
306 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
307
308 /* The device UUID uniquely identifies the given device within the machine.
309 * Since we never have more than one device, this doesn't need to be a real
310 * UUID. However, on the off-chance that someone tries to use this to
311 * cache pre-tiled images or something of the like, we use the PCI ID and
312 * some bits of ISL info to ensure that this is safe.
313 */
314 _mesa_sha1_init(&sha1_ctx);
315 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
316 sizeof(device->chipset_id));
317 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
318 sizeof(device->isl_dev.has_bit6_swizzling));
319 _mesa_sha1_final(&sha1_ctx, sha1);
320 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
321
322 return VK_SUCCESS;
323 }
324
325 static void
326 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
327 {
328 #ifdef ENABLE_SHADER_CACHE
329 char renderer[10];
330 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
331 device->chipset_id);
332 assert(len == sizeof(renderer) - 2);
333
334 char timestamp[41];
335 _mesa_sha1_format(timestamp, device->driver_build_sha1);
336
337 const uint64_t driver_flags =
338 brw_get_compiler_config_value(device->compiler);
339 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
340 #else
341 device->disk_cache = NULL;
342 #endif
343 }
344
345 static void
346 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
347 {
348 #ifdef ENABLE_SHADER_CACHE
349 if (device->disk_cache)
350 disk_cache_destroy(device->disk_cache);
351 #else
352 assert(device->disk_cache == NULL);
353 #endif
354 }
355
356 static uint64_t
357 get_available_system_memory()
358 {
359 char *meminfo = os_read_file("/proc/meminfo");
360 if (!meminfo)
361 return 0;
362
363 char *str = strstr(meminfo, "MemAvailable:");
364 if (!str) {
365 free(meminfo);
366 return 0;
367 }
368
369 uint64_t kb_mem_available;
370 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
371 free(meminfo);
372 return kb_mem_available << 10;
373 }
374
375 free(meminfo);
376 return 0;
377 }
378
379 static VkResult
380 anv_physical_device_init(struct anv_physical_device *device,
381 struct anv_instance *instance,
382 drmDevicePtr drm_device)
383 {
384 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
385 const char *path = drm_device->nodes[DRM_NODE_RENDER];
386 VkResult result;
387 int fd;
388 int master_fd = -1;
389
390 brw_process_intel_debug_variable();
391
392 fd = open(path, O_RDWR | O_CLOEXEC);
393 if (fd < 0)
394 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
395
396 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
397 device->instance = instance;
398
399 assert(strlen(path) < ARRAY_SIZE(device->path));
400 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
401
402 if (!gen_get_device_info_from_fd(fd, &device->info)) {
403 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
404 goto fail;
405 }
406 device->chipset_id = device->info.chipset_id;
407 device->no_hw = device->info.no_hw;
408
409 if (getenv("INTEL_NO_HW") != NULL)
410 device->no_hw = true;
411
412 device->pci_info.domain = drm_device->businfo.pci->domain;
413 device->pci_info.bus = drm_device->businfo.pci->bus;
414 device->pci_info.device = drm_device->businfo.pci->dev;
415 device->pci_info.function = drm_device->businfo.pci->func;
416
417 device->name = gen_get_device_name(device->chipset_id);
418
419 if (device->info.is_haswell) {
420 intel_logw("Haswell Vulkan support is incomplete");
421 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
422 intel_logw("Ivy Bridge Vulkan support is incomplete");
423 } else if (device->info.gen == 7 && device->info.is_baytrail) {
424 intel_logw("Bay Trail Vulkan support is incomplete");
425 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
426 /* Gen8-11 fully supported */
427 } else if (device->info.gen == 12) {
428 intel_logw("Vulkan is not yet fully supported on gen12");
429 } else {
430 result = vk_errorf(device->instance, device,
431 VK_ERROR_INCOMPATIBLE_DRIVER,
432 "Vulkan not yet supported on %s", device->name);
433 goto fail;
434 }
435
436 device->cmd_parser_version = -1;
437 if (device->info.gen == 7) {
438 device->cmd_parser_version =
439 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
440 if (device->cmd_parser_version == -1) {
441 result = vk_errorf(device->instance, device,
442 VK_ERROR_INITIALIZATION_FAILED,
443 "failed to get command parser version");
444 goto fail;
445 }
446 }
447
448 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
449 result = vk_errorf(device->instance, device,
450 VK_ERROR_INITIALIZATION_FAILED,
451 "kernel missing gem wait");
452 goto fail;
453 }
454
455 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
456 result = vk_errorf(device->instance, device,
457 VK_ERROR_INITIALIZATION_FAILED,
458 "kernel missing execbuf2");
459 goto fail;
460 }
461
462 if (!device->info.has_llc &&
463 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
464 result = vk_errorf(device->instance, device,
465 VK_ERROR_INITIALIZATION_FAILED,
466 "kernel missing wc mmap");
467 goto fail;
468 }
469
470 result = anv_physical_device_init_heaps(device, fd);
471 if (result != VK_SUCCESS)
472 goto fail;
473
474 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
475 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
476 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
477 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
478 device->has_syncobj_wait = device->has_syncobj &&
479 anv_gem_supports_syncobj_wait(fd);
480 device->has_context_priority = anv_gem_has_context_priority(fd);
481
482 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
483 && device->supports_48bit_addresses;
484
485 device->has_context_isolation =
486 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
487
488 device->always_use_bindless =
489 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
490
491 /* We first got the A64 messages on broadwell and we can only use them if
492 * we can pass addresses directly into the shader which requires softpin.
493 */
494 device->has_a64_buffer_access = device->info.gen >= 8 &&
495 device->use_softpin;
496
497 /* We first get bindless image access on Skylake and we can only really do
498 * it if we don't have any relocations so we need softpin.
499 */
500 device->has_bindless_images = device->info.gen >= 9 &&
501 device->use_softpin;
502
503 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
504 * because it's just a matter of setting the sampler address in the sample
505 * message header. However, we've not bothered to wire it up for vec4 so
506 * we leave it disabled on gen7.
507 */
508 device->has_bindless_samplers = device->info.gen >= 8;
509
510 device->has_mem_available = get_available_system_memory() != 0;
511
512 /* Starting with Gen10, the timestamp frequency of the command streamer may
513 * vary from one part to another. We can query the value from the kernel.
514 */
515 if (device->info.gen >= 10) {
516 int timestamp_frequency =
517 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
518
519 if (timestamp_frequency < 0)
520 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
521 else
522 device->info.timestamp_frequency = timestamp_frequency;
523 }
524
525 /* GENs prior to 8 do not support EU/Subslice info */
526 if (device->info.gen >= 8) {
527 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
528 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
529
530 /* Without this information, we cannot get the right Braswell
531 * brandstrings, and we have to use conservative numbers for GPGPU on
532 * many platforms, but otherwise, things will just work.
533 */
534 if (device->subslice_total < 1 || device->eu_total < 1) {
535 intel_logw("Kernel 4.1 required to properly query GPU properties");
536 }
537 } else if (device->info.gen == 7) {
538 device->subslice_total = 1 << (device->info.gt - 1);
539 }
540
541 if (device->info.is_cherryview &&
542 device->subslice_total > 0 && device->eu_total > 0) {
543 /* Logical CS threads = EUs per subslice * num threads per EU */
544 uint32_t max_cs_threads =
545 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
546
547 /* Fuse configurations may give more threads than expected, never less. */
548 if (max_cs_threads > device->info.max_cs_threads)
549 device->info.max_cs_threads = max_cs_threads;
550 }
551
552 device->compiler = brw_compiler_create(NULL, &device->info);
553 if (device->compiler == NULL) {
554 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
555 goto fail;
556 }
557 device->compiler->shader_debug_log = compiler_debug_log;
558 device->compiler->shader_perf_log = compiler_perf_log;
559 device->compiler->supports_pull_constants = false;
560 device->compiler->constant_buffer_0_is_relative =
561 device->info.gen < 8 || !device->has_context_isolation;
562 device->compiler->supports_shader_constants = true;
563 device->compiler->compact_params = true;
564
565 /* Broadwell PRM says:
566 *
567 * "Before Gen8, there was a historical configuration control field to
568 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
569 * different places: TILECTL[1:0], ARB_MODE[5:4], and
570 * DISP_ARB_CTL[14:13].
571 *
572 * For Gen8 and subsequent generations, the swizzle fields are all
573 * reserved, and the CPU's memory controller performs all address
574 * swizzling modifications."
575 */
576 bool swizzled =
577 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
578
579 isl_device_init(&device->isl_dev, &device->info, swizzled);
580
581 result = anv_physical_device_init_uuids(device);
582 if (result != VK_SUCCESS)
583 goto fail;
584
585 anv_physical_device_init_disk_cache(device);
586
587 if (instance->enabled_extensions.KHR_display) {
588 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
589 if (master_fd >= 0) {
590 /* prod the device with a GETPARAM call which will fail if
591 * we don't have permission to even render on this device
592 */
593 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
594 close(master_fd);
595 master_fd = -1;
596 }
597 }
598 }
599 device->master_fd = master_fd;
600
601 result = anv_init_wsi(device);
602 if (result != VK_SUCCESS) {
603 ralloc_free(device->compiler);
604 anv_physical_device_free_disk_cache(device);
605 goto fail;
606 }
607
608 device->perf = anv_get_perf(&device->info, fd);
609
610 anv_physical_device_get_supported_extensions(device,
611 &device->supported_extensions);
612
613
614 device->local_fd = fd;
615
616 return VK_SUCCESS;
617
618 fail:
619 close(fd);
620 if (master_fd != -1)
621 close(master_fd);
622 return result;
623 }
624
625 static void
626 anv_physical_device_finish(struct anv_physical_device *device)
627 {
628 anv_finish_wsi(device);
629 anv_physical_device_free_disk_cache(device);
630 ralloc_free(device->compiler);
631 ralloc_free(device->perf);
632 close(device->local_fd);
633 if (device->master_fd >= 0)
634 close(device->master_fd);
635 }
636
637 static void *
638 default_alloc_func(void *pUserData, size_t size, size_t align,
639 VkSystemAllocationScope allocationScope)
640 {
641 return malloc(size);
642 }
643
644 static void *
645 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
646 size_t align, VkSystemAllocationScope allocationScope)
647 {
648 return realloc(pOriginal, size);
649 }
650
651 static void
652 default_free_func(void *pUserData, void *pMemory)
653 {
654 free(pMemory);
655 }
656
657 static const VkAllocationCallbacks default_alloc = {
658 .pUserData = NULL,
659 .pfnAllocation = default_alloc_func,
660 .pfnReallocation = default_realloc_func,
661 .pfnFree = default_free_func,
662 };
663
664 VkResult anv_EnumerateInstanceExtensionProperties(
665 const char* pLayerName,
666 uint32_t* pPropertyCount,
667 VkExtensionProperties* pProperties)
668 {
669 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
670
671 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
672 if (anv_instance_extensions_supported.extensions[i]) {
673 vk_outarray_append(&out, prop) {
674 *prop = anv_instance_extensions[i];
675 }
676 }
677 }
678
679 return vk_outarray_status(&out);
680 }
681
682 VkResult anv_CreateInstance(
683 const VkInstanceCreateInfo* pCreateInfo,
684 const VkAllocationCallbacks* pAllocator,
685 VkInstance* pInstance)
686 {
687 struct anv_instance *instance;
688 VkResult result;
689
690 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
691
692 struct anv_instance_extension_table enabled_extensions = {};
693 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
694 int idx;
695 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
696 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
697 anv_instance_extensions[idx].extensionName) == 0)
698 break;
699 }
700
701 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
702 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
703
704 if (!anv_instance_extensions_supported.extensions[idx])
705 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
706
707 enabled_extensions.extensions[idx] = true;
708 }
709
710 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
711 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
712 if (!instance)
713 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
714
715 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
716
717 if (pAllocator)
718 instance->alloc = *pAllocator;
719 else
720 instance->alloc = default_alloc;
721
722 instance->app_info = (struct anv_app_info) { .api_version = 0 };
723 if (pCreateInfo->pApplicationInfo) {
724 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
725
726 instance->app_info.app_name =
727 vk_strdup(&instance->alloc, app->pApplicationName,
728 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
729 instance->app_info.app_version = app->applicationVersion;
730
731 instance->app_info.engine_name =
732 vk_strdup(&instance->alloc, app->pEngineName,
733 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
734 instance->app_info.engine_version = app->engineVersion;
735
736 instance->app_info.api_version = app->apiVersion;
737 }
738
739 if (instance->app_info.api_version == 0)
740 instance->app_info.api_version = VK_API_VERSION_1_0;
741
742 instance->enabled_extensions = enabled_extensions;
743
744 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
745 /* Vulkan requires that entrypoints for extensions which have not been
746 * enabled must not be advertised.
747 */
748 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
749 &instance->enabled_extensions)) {
750 instance->dispatch.entrypoints[i] = NULL;
751 } else {
752 instance->dispatch.entrypoints[i] =
753 anv_instance_dispatch_table.entrypoints[i];
754 }
755 }
756
757 struct anv_physical_device *pdevice = &instance->physicalDevice;
758 for (unsigned i = 0; i < ARRAY_SIZE(pdevice->dispatch.entrypoints); i++) {
759 /* Vulkan requires that entrypoints for extensions which have not been
760 * enabled must not be advertised.
761 */
762 if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
763 &instance->enabled_extensions)) {
764 pdevice->dispatch.entrypoints[i] = NULL;
765 } else {
766 pdevice->dispatch.entrypoints[i] =
767 anv_physical_device_dispatch_table.entrypoints[i];
768 }
769 }
770
771 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
772 /* Vulkan requires that entrypoints for extensions which have not been
773 * enabled must not be advertised.
774 */
775 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
776 &instance->enabled_extensions, NULL)) {
777 instance->device_dispatch.entrypoints[i] = NULL;
778 } else {
779 instance->device_dispatch.entrypoints[i] =
780 anv_device_dispatch_table.entrypoints[i];
781 }
782 }
783
784 instance->physicalDeviceCount = -1;
785
786 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
787 if (result != VK_SUCCESS) {
788 vk_free2(&default_alloc, pAllocator, instance);
789 return vk_error(result);
790 }
791
792 instance->pipeline_cache_enabled =
793 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
794
795 glsl_type_singleton_init_or_ref();
796
797 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
798
799 driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
800 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
801 0, "anv", NULL,
802 instance->app_info.engine_name,
803 instance->app_info.engine_version);
804
805 *pInstance = anv_instance_to_handle(instance);
806
807 return VK_SUCCESS;
808 }
809
810 void anv_DestroyInstance(
811 VkInstance _instance,
812 const VkAllocationCallbacks* pAllocator)
813 {
814 ANV_FROM_HANDLE(anv_instance, instance, _instance);
815
816 if (!instance)
817 return;
818
819 if (instance->physicalDeviceCount > 0) {
820 /* We support at most one physical device. */
821 assert(instance->physicalDeviceCount == 1);
822 anv_physical_device_finish(&instance->physicalDevice);
823 }
824
825 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
826 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
827
828 VG(VALGRIND_DESTROY_MEMPOOL(instance));
829
830 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
831
832 glsl_type_singleton_decref();
833
834 driDestroyOptionCache(&instance->dri_options);
835 driDestroyOptionInfo(&instance->available_dri_options);
836
837 vk_free(&instance->alloc, instance);
838 }
839
840 static VkResult
841 anv_enumerate_devices(struct anv_instance *instance)
842 {
843 /* TODO: Check for more devices ? */
844 drmDevicePtr devices[8];
845 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
846 int max_devices;
847
848 instance->physicalDeviceCount = 0;
849
850 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
851 if (max_devices < 1)
852 return VK_ERROR_INCOMPATIBLE_DRIVER;
853
854 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
855 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
856 devices[i]->bustype == DRM_BUS_PCI &&
857 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
858
859 result = anv_physical_device_init(&instance->physicalDevice,
860 instance, devices[i]);
861 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
862 break;
863 }
864 }
865 drmFreeDevices(devices, max_devices);
866
867 if (result == VK_SUCCESS)
868 instance->physicalDeviceCount = 1;
869
870 return result;
871 }
872
873 static VkResult
874 anv_instance_ensure_physical_device(struct anv_instance *instance)
875 {
876 if (instance->physicalDeviceCount < 0) {
877 VkResult result = anv_enumerate_devices(instance);
878 if (result != VK_SUCCESS &&
879 result != VK_ERROR_INCOMPATIBLE_DRIVER)
880 return result;
881 }
882
883 return VK_SUCCESS;
884 }
885
886 VkResult anv_EnumeratePhysicalDevices(
887 VkInstance _instance,
888 uint32_t* pPhysicalDeviceCount,
889 VkPhysicalDevice* pPhysicalDevices)
890 {
891 ANV_FROM_HANDLE(anv_instance, instance, _instance);
892 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
893
894 VkResult result = anv_instance_ensure_physical_device(instance);
895 if (result != VK_SUCCESS)
896 return result;
897
898 if (instance->physicalDeviceCount == 0)
899 return VK_SUCCESS;
900
901 assert(instance->physicalDeviceCount == 1);
902 vk_outarray_append(&out, i) {
903 *i = anv_physical_device_to_handle(&instance->physicalDevice);
904 }
905
906 return vk_outarray_status(&out);
907 }
908
909 VkResult anv_EnumeratePhysicalDeviceGroups(
910 VkInstance _instance,
911 uint32_t* pPhysicalDeviceGroupCount,
912 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
913 {
914 ANV_FROM_HANDLE(anv_instance, instance, _instance);
915 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
916 pPhysicalDeviceGroupCount);
917
918 VkResult result = anv_instance_ensure_physical_device(instance);
919 if (result != VK_SUCCESS)
920 return result;
921
922 if (instance->physicalDeviceCount == 0)
923 return VK_SUCCESS;
924
925 assert(instance->physicalDeviceCount == 1);
926
927 vk_outarray_append(&out, p) {
928 p->physicalDeviceCount = 1;
929 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
930 p->physicalDevices[0] =
931 anv_physical_device_to_handle(&instance->physicalDevice);
932 p->subsetAllocation = false;
933
934 vk_foreach_struct(ext, p->pNext)
935 anv_debug_ignored_stype(ext->sType);
936 }
937
938 return vk_outarray_status(&out);
939 }
940
941 void anv_GetPhysicalDeviceFeatures(
942 VkPhysicalDevice physicalDevice,
943 VkPhysicalDeviceFeatures* pFeatures)
944 {
945 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
946
947 *pFeatures = (VkPhysicalDeviceFeatures) {
948 .robustBufferAccess = true,
949 .fullDrawIndexUint32 = true,
950 .imageCubeArray = true,
951 .independentBlend = true,
952 .geometryShader = true,
953 .tessellationShader = true,
954 .sampleRateShading = true,
955 .dualSrcBlend = true,
956 .logicOp = true,
957 .multiDrawIndirect = true,
958 .drawIndirectFirstInstance = true,
959 .depthClamp = true,
960 .depthBiasClamp = true,
961 .fillModeNonSolid = true,
962 .depthBounds = pdevice->info.gen >= 12,
963 .wideLines = true,
964 .largePoints = true,
965 .alphaToOne = true,
966 .multiViewport = true,
967 .samplerAnisotropy = true,
968 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
969 pdevice->info.is_baytrail,
970 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
971 .textureCompressionBC = true,
972 .occlusionQueryPrecise = true,
973 .pipelineStatisticsQuery = true,
974 .fragmentStoresAndAtomics = true,
975 .shaderTessellationAndGeometryPointSize = true,
976 .shaderImageGatherExtended = true,
977 .shaderStorageImageExtendedFormats = true,
978 .shaderStorageImageMultisample = false,
979 .shaderStorageImageReadWithoutFormat = false,
980 .shaderStorageImageWriteWithoutFormat = true,
981 .shaderUniformBufferArrayDynamicIndexing = true,
982 .shaderSampledImageArrayDynamicIndexing = true,
983 .shaderStorageBufferArrayDynamicIndexing = true,
984 .shaderStorageImageArrayDynamicIndexing = true,
985 .shaderClipDistance = true,
986 .shaderCullDistance = true,
987 .shaderFloat64 = pdevice->info.gen >= 8 &&
988 pdevice->info.has_64bit_types,
989 .shaderInt64 = pdevice->info.gen >= 8 &&
990 pdevice->info.has_64bit_types,
991 .shaderInt16 = pdevice->info.gen >= 8,
992 .shaderResourceMinLod = pdevice->info.gen >= 9,
993 .variableMultisampleRate = true,
994 .inheritedQueries = true,
995 };
996
997 /* We can't do image stores in vec4 shaders */
998 pFeatures->vertexPipelineStoresAndAtomics =
999 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
1000 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
1001
1002 struct anv_app_info *app_info = &pdevice->instance->app_info;
1003
1004 /* The new DOOM and Wolfenstein games require depthBounds without
1005 * checking for it. They seem to run fine without it so just claim it's
1006 * there and accept the consequences.
1007 */
1008 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
1009 pFeatures->depthBounds = true;
1010 }
1011
1012 void anv_GetPhysicalDeviceFeatures2(
1013 VkPhysicalDevice physicalDevice,
1014 VkPhysicalDeviceFeatures2* pFeatures)
1015 {
1016 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1017 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1018
1019 vk_foreach_struct(ext, pFeatures->pNext) {
1020 switch (ext->sType) {
1021 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
1022 VkPhysicalDevice8BitStorageFeaturesKHR *features =
1023 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
1024 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
1025 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
1026 features->storagePushConstant8 = pdevice->info.gen >= 8;
1027 break;
1028 }
1029
1030 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1031 VkPhysicalDevice16BitStorageFeatures *features =
1032 (VkPhysicalDevice16BitStorageFeatures *)ext;
1033 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
1034 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
1035 features->storagePushConstant16 = pdevice->info.gen >= 8;
1036 features->storageInputOutput16 = false;
1037 break;
1038 }
1039
1040 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1041 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1042 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1043 features->bufferDeviceAddressCaptureReplay = false;
1044 features->bufferDeviceAddressMultiDevice = false;
1045 break;
1046 }
1047
1048 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1049 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1050 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1051 features->computeDerivativeGroupQuads = true;
1052 features->computeDerivativeGroupLinear = true;
1053 break;
1054 }
1055
1056 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1057 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1058 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1059 features->conditionalRendering = pdevice->info.gen >= 8 ||
1060 pdevice->info.is_haswell;
1061 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1062 pdevice->info.is_haswell;
1063 break;
1064 }
1065
1066 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1067 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1068 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1069 features->depthClipEnable = true;
1070 break;
1071 }
1072
1073 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1074 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1075 features->shaderFloat16 = pdevice->info.gen >= 8;
1076 features->shaderInt8 = pdevice->info.gen >= 8;
1077 break;
1078 }
1079
1080 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1081 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1082 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1083 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1084 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1085 features->fragmentShaderShadingRateInterlock = false;
1086 break;
1087 }
1088
1089 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1090 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1091 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1092 features->hostQueryReset = true;
1093 break;
1094 }
1095
1096 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1097 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1098 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1099 features->shaderInputAttachmentArrayDynamicIndexing = false;
1100 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1101 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1102 features->shaderUniformBufferArrayNonUniformIndexing = false;
1103 features->shaderSampledImageArrayNonUniformIndexing = true;
1104 features->shaderStorageBufferArrayNonUniformIndexing = true;
1105 features->shaderStorageImageArrayNonUniformIndexing = true;
1106 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1107 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1108 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1109 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1110 features->descriptorBindingSampledImageUpdateAfterBind = true;
1111 features->descriptorBindingStorageImageUpdateAfterBind = true;
1112 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1113 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1114 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1115 features->descriptorBindingUpdateUnusedWhilePending = true;
1116 features->descriptorBindingPartiallyBound = true;
1117 features->descriptorBindingVariableDescriptorCount = false;
1118 features->runtimeDescriptorArray = true;
1119 break;
1120 }
1121
1122 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1123 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1124 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1125 features->indexTypeUint8 = true;
1126 break;
1127 }
1128
1129 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1130 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1131 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1132 features->inlineUniformBlock = true;
1133 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1134 break;
1135 }
1136
1137 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1138 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1139 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1140 features->rectangularLines = true;
1141 features->bresenhamLines = true;
1142 features->smoothLines = true;
1143 features->stippledRectangularLines = false;
1144 features->stippledBresenhamLines = true;
1145 features->stippledSmoothLines = false;
1146 break;
1147 }
1148
1149 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1150 VkPhysicalDeviceMultiviewFeatures *features =
1151 (VkPhysicalDeviceMultiviewFeatures *)ext;
1152 features->multiview = true;
1153 features->multiviewGeometryShader = true;
1154 features->multiviewTessellationShader = true;
1155 break;
1156 }
1157
1158 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1159 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1160 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1161 features->imagelessFramebuffer = true;
1162 break;
1163 }
1164
1165 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1166 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1167 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1168 features->pipelineExecutableInfo = true;
1169 break;
1170 }
1171
1172 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1173 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1174 features->protectedMemory = false;
1175 break;
1176 }
1177
1178 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1179 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1180 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1181 features->samplerYcbcrConversion = true;
1182 break;
1183 }
1184
1185 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1186 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1187 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1188 features->scalarBlockLayout = true;
1189 break;
1190 }
1191
1192 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: {
1193 VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *features =
1194 (VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *)ext;
1195 features->separateDepthStencilLayouts = true;
1196 break;
1197 }
1198
1199 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1200 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1201 features->shaderBufferInt64Atomics =
1202 pdevice->info.gen >= 9 && pdevice->use_softpin;
1203 features->shaderSharedInt64Atomics = VK_FALSE;
1204 break;
1205 }
1206
1207 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1208 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1209 features->shaderDemoteToHelperInvocation = true;
1210 break;
1211 }
1212
1213 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1214 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1215 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1216 features->shaderSubgroupClock = true;
1217 features->shaderDeviceClock = false;
1218 break;
1219 }
1220
1221 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1222 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1223 features->shaderDrawParameters = true;
1224 break;
1225 }
1226
1227 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
1228 VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
1229 (VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
1230 features->shaderSubgroupExtendedTypes = true;
1231 break;
1232 }
1233
1234 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1235 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1236 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1237 features->subgroupSizeControl = true;
1238 features->computeFullSubgroups = true;
1239 break;
1240 }
1241
1242 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1243 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1244 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1245 features->texelBufferAlignment = true;
1246 break;
1247 }
1248
1249 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES_KHR: {
1250 VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *features =
1251 (VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *) ext;
1252 features->timelineSemaphore = true;
1253 break;
1254 }
1255
1256 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1257 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1258 features->variablePointersStorageBuffer = true;
1259 features->variablePointers = true;
1260 break;
1261 }
1262
1263 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1264 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1265 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1266 features->transformFeedback = true;
1267 features->geometryStreams = true;
1268 break;
1269 }
1270
1271 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1272 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1273 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1274 features->uniformBufferStandardLayout = true;
1275 break;
1276 }
1277
1278 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1279 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1280 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1281 features->vertexAttributeInstanceRateDivisor = true;
1282 features->vertexAttributeInstanceRateZeroDivisor = true;
1283 break;
1284 }
1285
1286 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR: {
1287 VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *features = (void *)ext;
1288 features->vulkanMemoryModel = true;
1289 features->vulkanMemoryModelDeviceScope = true;
1290 features->vulkanMemoryModelAvailabilityVisibilityChains = true;
1291 break;
1292 }
1293
1294 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1295 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1296 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1297 features->ycbcrImageArrays = true;
1298 break;
1299 }
1300
1301 default:
1302 anv_debug_ignored_stype(ext->sType);
1303 break;
1304 }
1305 }
1306 }
1307
1308 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1309
1310 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1311 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1312
1313 void anv_GetPhysicalDeviceProperties(
1314 VkPhysicalDevice physicalDevice,
1315 VkPhysicalDeviceProperties* pProperties)
1316 {
1317 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1318 const struct gen_device_info *devinfo = &pdevice->info;
1319
1320 /* See assertions made when programming the buffer surface state. */
1321 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1322 (1ul << 30) : (1ul << 27);
1323
1324 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1325 const uint32_t max_textures =
1326 pdevice->has_bindless_images ? UINT16_MAX : 128;
1327 const uint32_t max_samplers =
1328 pdevice->has_bindless_samplers ? UINT16_MAX :
1329 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1330 const uint32_t max_images =
1331 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1332
1333 /* If we can use bindless for everything, claim a high per-stage limit,
1334 * otherwise use the binding table size, minus the slots reserved for
1335 * render targets and one slot for the descriptor buffer. */
1336 const uint32_t max_per_stage =
1337 pdevice->has_bindless_images && pdevice->has_a64_buffer_access
1338 ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
1339
1340 const uint32_t max_workgroup_size = 32 * devinfo->max_cs_threads;
1341
1342 VkSampleCountFlags sample_counts =
1343 isl_device_get_sample_counts(&pdevice->isl_dev);
1344
1345
1346 VkPhysicalDeviceLimits limits = {
1347 .maxImageDimension1D = (1 << 14),
1348 .maxImageDimension2D = (1 << 14),
1349 .maxImageDimension3D = (1 << 11),
1350 .maxImageDimensionCube = (1 << 14),
1351 .maxImageArrayLayers = (1 << 11),
1352 .maxTexelBufferElements = 128 * 1024 * 1024,
1353 .maxUniformBufferRange = (1ul << 27),
1354 .maxStorageBufferRange = max_raw_buffer_sz,
1355 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1356 .maxMemoryAllocationCount = UINT32_MAX,
1357 .maxSamplerAllocationCount = 64 * 1024,
1358 .bufferImageGranularity = 64, /* A cache line */
1359 .sparseAddressSpaceSize = 0,
1360 .maxBoundDescriptorSets = MAX_SETS,
1361 .maxPerStageDescriptorSamplers = max_samplers,
1362 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1363 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1364 .maxPerStageDescriptorSampledImages = max_textures,
1365 .maxPerStageDescriptorStorageImages = max_images,
1366 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1367 .maxPerStageResources = max_per_stage,
1368 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1369 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1370 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1371 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1372 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1373 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1374 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1375 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1376 .maxVertexInputAttributes = MAX_VBS,
1377 .maxVertexInputBindings = MAX_VBS,
1378 .maxVertexInputAttributeOffset = 2047,
1379 .maxVertexInputBindingStride = 2048,
1380 .maxVertexOutputComponents = 128,
1381 .maxTessellationGenerationLevel = 64,
1382 .maxTessellationPatchSize = 32,
1383 .maxTessellationControlPerVertexInputComponents = 128,
1384 .maxTessellationControlPerVertexOutputComponents = 128,
1385 .maxTessellationControlPerPatchOutputComponents = 128,
1386 .maxTessellationControlTotalOutputComponents = 2048,
1387 .maxTessellationEvaluationInputComponents = 128,
1388 .maxTessellationEvaluationOutputComponents = 128,
1389 .maxGeometryShaderInvocations = 32,
1390 .maxGeometryInputComponents = 64,
1391 .maxGeometryOutputComponents = 128,
1392 .maxGeometryOutputVertices = 256,
1393 .maxGeometryTotalOutputComponents = 1024,
1394 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1395 .maxFragmentOutputAttachments = 8,
1396 .maxFragmentDualSrcAttachments = 1,
1397 .maxFragmentCombinedOutputResources = 8,
1398 .maxComputeSharedMemorySize = 64 * 1024,
1399 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1400 .maxComputeWorkGroupInvocations = max_workgroup_size,
1401 .maxComputeWorkGroupSize = {
1402 max_workgroup_size,
1403 max_workgroup_size,
1404 max_workgroup_size,
1405 },
1406 .subPixelPrecisionBits = 8,
1407 .subTexelPrecisionBits = 8,
1408 .mipmapPrecisionBits = 8,
1409 .maxDrawIndexedIndexValue = UINT32_MAX,
1410 .maxDrawIndirectCount = UINT32_MAX,
1411 .maxSamplerLodBias = 16,
1412 .maxSamplerAnisotropy = 16,
1413 .maxViewports = MAX_VIEWPORTS,
1414 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1415 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1416 .viewportSubPixelBits = 13, /* We take a float? */
1417 .minMemoryMapAlignment = 4096, /* A page */
1418 /* The dataport requires texel alignment so we need to assume a worst
1419 * case of R32G32B32A32 which is 16 bytes.
1420 */
1421 .minTexelBufferOffsetAlignment = 16,
1422 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1423 .minUniformBufferOffsetAlignment = 32,
1424 .minStorageBufferOffsetAlignment = 4,
1425 .minTexelOffset = -8,
1426 .maxTexelOffset = 7,
1427 .minTexelGatherOffset = -32,
1428 .maxTexelGatherOffset = 31,
1429 .minInterpolationOffset = -0.5,
1430 .maxInterpolationOffset = 0.4375,
1431 .subPixelInterpolationOffsetBits = 4,
1432 .maxFramebufferWidth = (1 << 14),
1433 .maxFramebufferHeight = (1 << 14),
1434 .maxFramebufferLayers = (1 << 11),
1435 .framebufferColorSampleCounts = sample_counts,
1436 .framebufferDepthSampleCounts = sample_counts,
1437 .framebufferStencilSampleCounts = sample_counts,
1438 .framebufferNoAttachmentsSampleCounts = sample_counts,
1439 .maxColorAttachments = MAX_RTS,
1440 .sampledImageColorSampleCounts = sample_counts,
1441 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1442 .sampledImageDepthSampleCounts = sample_counts,
1443 .sampledImageStencilSampleCounts = sample_counts,
1444 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1445 .maxSampleMaskWords = 1,
1446 .timestampComputeAndGraphics = true,
1447 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1448 .maxClipDistances = 8,
1449 .maxCullDistances = 8,
1450 .maxCombinedClipAndCullDistances = 8,
1451 .discreteQueuePriorities = 2,
1452 .pointSizeRange = { 0.125, 255.875 },
1453 .lineWidthRange = {
1454 0.0,
1455 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1456 2047.9921875 : 7.9921875,
1457 },
1458 .pointSizeGranularity = (1.0 / 8.0),
1459 .lineWidthGranularity = (1.0 / 128.0),
1460 .strictLines = false,
1461 .standardSampleLocations = true,
1462 .optimalBufferCopyOffsetAlignment = 128,
1463 .optimalBufferCopyRowPitchAlignment = 128,
1464 .nonCoherentAtomSize = 64,
1465 };
1466
1467 *pProperties = (VkPhysicalDeviceProperties) {
1468 .apiVersion = anv_physical_device_api_version(pdevice),
1469 .driverVersion = vk_get_driver_version(),
1470 .vendorID = 0x8086,
1471 .deviceID = pdevice->chipset_id,
1472 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1473 .limits = limits,
1474 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1475 };
1476
1477 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1478 "%s", pdevice->name);
1479 memcpy(pProperties->pipelineCacheUUID,
1480 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1481 }
1482
1483 void anv_GetPhysicalDeviceProperties2(
1484 VkPhysicalDevice physicalDevice,
1485 VkPhysicalDeviceProperties2* pProperties)
1486 {
1487 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1488
1489 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1490
1491 vk_foreach_struct(ext, pProperties->pNext) {
1492 switch (ext->sType) {
1493 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1494 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1495 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1496
1497 /* We support all of the depth resolve modes */
1498 props->supportedDepthResolveModes =
1499 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1500 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1501 VK_RESOLVE_MODE_MIN_BIT_KHR |
1502 VK_RESOLVE_MODE_MAX_BIT_KHR;
1503
1504 /* Average doesn't make sense for stencil so we don't support that */
1505 props->supportedStencilResolveModes =
1506 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1507 if (pdevice->info.gen >= 8) {
1508 /* The advanced stencil resolve modes currently require stencil
1509 * sampling be supported by the hardware.
1510 */
1511 props->supportedStencilResolveModes |=
1512 VK_RESOLVE_MODE_MIN_BIT_KHR |
1513 VK_RESOLVE_MODE_MAX_BIT_KHR;
1514 }
1515
1516 props->independentResolveNone = true;
1517 props->independentResolve = true;
1518 break;
1519 }
1520
1521 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1522 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1523 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1524
1525 /* It's a bit hard to exactly map our implementation to the limits
1526 * described here. The bindless surface handle in the extended
1527 * message descriptors is 20 bits and it's an index into the table of
1528 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1529 * address. Given that most things consume two surface states per
1530 * view (general/sampled for textures and write-only/read-write for
1531 * images), we claim 2^19 things.
1532 *
1533 * For SSBOs, we just use A64 messages so there is no real limit
1534 * there beyond the limit on the total size of a descriptor set.
1535 */
1536 const unsigned max_bindless_views = 1 << 19;
1537
1538 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1539 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1540 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1541 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1542 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1543 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1544 props->robustBufferAccessUpdateAfterBind = true;
1545 props->quadDivergentImplicitLod = false;
1546 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1547 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1548 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1549 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1550 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1551 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1552 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1553 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1554 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1555 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1556 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1557 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1558 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1559 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1560 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1561 break;
1562 }
1563
1564 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1565 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1566 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1567
1568 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1569 snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1570 "Intel open-source Mesa driver");
1571
1572 snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1573 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1574
1575 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1576 .major = 1,
1577 .minor = 1,
1578 .subminor = 2,
1579 .patch = 0,
1580 };
1581 break;
1582 }
1583
1584 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1585 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1586 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1587 /* Userptr needs page aligned memory. */
1588 props->minImportedHostPointerAlignment = 4096;
1589 break;
1590 }
1591
1592 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1593 VkPhysicalDeviceIDProperties *id_props =
1594 (VkPhysicalDeviceIDProperties *)ext;
1595 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1596 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1597 /* The LUID is for Windows. */
1598 id_props->deviceLUIDValid = false;
1599 break;
1600 }
1601
1602 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1603 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1604 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1605 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1606 props->maxPerStageDescriptorInlineUniformBlocks =
1607 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1608 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1609 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1610 props->maxDescriptorSetInlineUniformBlocks =
1611 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1612 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1613 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1614 break;
1615 }
1616
1617 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1618 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1619 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1620 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1621 * Sampling Rules - Legacy Mode", it says the following:
1622 *
1623 * "Note that the device divides a pixel into a 16x16 array of
1624 * subpixels, referenced by their upper left corners."
1625 *
1626 * This is the only known reference in the PRMs to the subpixel
1627 * precision of line rasterization and a "16x16 array of subpixels"
1628 * implies 4 subpixel precision bits. Empirical testing has shown
1629 * that 4 subpixel precision bits applies to all line rasterization
1630 * types.
1631 */
1632 props->lineSubPixelPrecisionBits = 4;
1633 break;
1634 }
1635
1636 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1637 VkPhysicalDeviceMaintenance3Properties *props =
1638 (VkPhysicalDeviceMaintenance3Properties *)ext;
1639 /* This value doesn't matter for us today as our per-stage
1640 * descriptors are the real limit.
1641 */
1642 props->maxPerSetDescriptors = 1024;
1643 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1644 break;
1645 }
1646
1647 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1648 VkPhysicalDeviceMultiviewProperties *properties =
1649 (VkPhysicalDeviceMultiviewProperties *)ext;
1650 properties->maxMultiviewViewCount = 16;
1651 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1652 break;
1653 }
1654
1655 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1656 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1657 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1658 properties->pciDomain = pdevice->pci_info.domain;
1659 properties->pciBus = pdevice->pci_info.bus;
1660 properties->pciDevice = pdevice->pci_info.device;
1661 properties->pciFunction = pdevice->pci_info.function;
1662 break;
1663 }
1664
1665 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1666 VkPhysicalDevicePointClippingProperties *properties =
1667 (VkPhysicalDevicePointClippingProperties *) ext;
1668 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1669 break;
1670 }
1671
1672 #pragma GCC diagnostic push
1673 #pragma GCC diagnostic ignored "-Wswitch"
1674 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1675 VkPhysicalDevicePresentationPropertiesANDROID *props =
1676 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1677 props->sharedImage = VK_FALSE;
1678 break;
1679 }
1680 #pragma GCC diagnostic pop
1681
1682 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1683 VkPhysicalDeviceProtectedMemoryProperties *props =
1684 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1685 props->protectedNoFault = false;
1686 break;
1687 }
1688
1689 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1690 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1691 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1692
1693 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1694 break;
1695 }
1696
1697 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1698 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1699 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1700 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1701 properties->filterMinmaxSingleComponentFormats = true;
1702 break;
1703 }
1704
1705 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1706 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1707
1708 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1709
1710 VkShaderStageFlags scalar_stages = 0;
1711 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1712 if (pdevice->compiler->scalar_stage[stage])
1713 scalar_stages |= mesa_to_vk_shader_stage(stage);
1714 }
1715 properties->supportedStages = scalar_stages;
1716
1717 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1718 VK_SUBGROUP_FEATURE_VOTE_BIT |
1719 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1720 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1721 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1722 VK_SUBGROUP_FEATURE_QUAD_BIT;
1723 if (pdevice->info.gen >= 8) {
1724 /* TODO: There's no technical reason why these can't be made to
1725 * work on gen7 but they don't at the moment so it's best to leave
1726 * the feature disabled than enabled and broken.
1727 */
1728 properties->supportedOperations |=
1729 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1730 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1731 }
1732 properties->quadOperationsInAllStages = pdevice->info.gen >= 8;
1733 break;
1734 }
1735
1736 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1737 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1738 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1739 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1740 props->minSubgroupSize = 8;
1741 props->maxSubgroupSize = 32;
1742 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1743 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1744 break;
1745 }
1746 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
1747 VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
1748 properties->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1749 properties->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
1750
1751 /* Broadwell does not support HF denorms and there are restrictions
1752 * other gens. According to Kabylake's PRM:
1753 *
1754 * "math - Extended Math Function
1755 * [...]
1756 * Restriction : Half-float denorms are always retained."
1757 */
1758 properties->shaderDenormFlushToZeroFloat16 = false;
1759 properties->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
1760 properties->shaderRoundingModeRTEFloat16 = true;
1761 properties->shaderRoundingModeRTZFloat16 = true;
1762 properties->shaderSignedZeroInfNanPreserveFloat16 = true;
1763
1764 properties->shaderDenormFlushToZeroFloat32 = true;
1765 properties->shaderDenormPreserveFloat32 = true;
1766 properties->shaderRoundingModeRTEFloat32 = true;
1767 properties->shaderRoundingModeRTZFloat32 = true;
1768 properties->shaderSignedZeroInfNanPreserveFloat32 = true;
1769
1770 properties->shaderDenormFlushToZeroFloat64 = true;
1771 properties->shaderDenormPreserveFloat64 = true;
1772 properties->shaderRoundingModeRTEFloat64 = true;
1773 properties->shaderRoundingModeRTZFloat64 = true;
1774 properties->shaderSignedZeroInfNanPreserveFloat64 = true;
1775 break;
1776 }
1777
1778 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1779 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1780 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1781
1782 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1783 * Base Address:
1784 *
1785 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1786 * specifies the base address of the first element of the surface,
1787 * computed in software by adding the surface base address to the
1788 * byte offset of the element in the buffer. The base address must
1789 * be aligned to element size."
1790 *
1791 * The typed dataport messages require that things be texel aligned.
1792 * Otherwise, we may just load/store the wrong data or, in the worst
1793 * case, there may be hangs.
1794 */
1795 props->storageTexelBufferOffsetAlignmentBytes = 16;
1796 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1797
1798 /* The sampler, however, is much more forgiving and it can handle
1799 * arbitrary byte alignment for linear and buffer surfaces. It's
1800 * hard to find a good PRM citation for this but years of empirical
1801 * experience demonstrate that this is true.
1802 */
1803 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1804 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1805 break;
1806 }
1807
1808 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES_KHR: {
1809 VkPhysicalDeviceTimelineSemaphorePropertiesKHR *props =
1810 (VkPhysicalDeviceTimelineSemaphorePropertiesKHR *) ext;
1811 props->maxTimelineSemaphoreValueDifference = UINT64_MAX;
1812 break;
1813 }
1814
1815 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1816 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1817 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1818
1819 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1820 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1821 props->maxTransformFeedbackBufferSize = (1ull << 32);
1822 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1823 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1824 props->maxTransformFeedbackBufferDataStride = 2048;
1825 props->transformFeedbackQueries = true;
1826 props->transformFeedbackStreamsLinesTriangles = false;
1827 props->transformFeedbackRasterizationStreamSelect = false;
1828 props->transformFeedbackDraw = true;
1829 break;
1830 }
1831
1832 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1833 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1834 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1835 /* We have to restrict this a bit for multiview */
1836 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1837 break;
1838 }
1839
1840 default:
1841 anv_debug_ignored_stype(ext->sType);
1842 break;
1843 }
1844 }
1845 }
1846
1847 /* We support exactly one queue family. */
1848 static const VkQueueFamilyProperties
1849 anv_queue_family_properties = {
1850 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1851 VK_QUEUE_COMPUTE_BIT |
1852 VK_QUEUE_TRANSFER_BIT,
1853 .queueCount = 1,
1854 .timestampValidBits = 36, /* XXX: Real value here */
1855 .minImageTransferGranularity = { 1, 1, 1 },
1856 };
1857
1858 void anv_GetPhysicalDeviceQueueFamilyProperties(
1859 VkPhysicalDevice physicalDevice,
1860 uint32_t* pCount,
1861 VkQueueFamilyProperties* pQueueFamilyProperties)
1862 {
1863 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1864
1865 vk_outarray_append(&out, p) {
1866 *p = anv_queue_family_properties;
1867 }
1868 }
1869
1870 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1871 VkPhysicalDevice physicalDevice,
1872 uint32_t* pQueueFamilyPropertyCount,
1873 VkQueueFamilyProperties2* pQueueFamilyProperties)
1874 {
1875
1876 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1877
1878 vk_outarray_append(&out, p) {
1879 p->queueFamilyProperties = anv_queue_family_properties;
1880
1881 vk_foreach_struct(s, p->pNext) {
1882 anv_debug_ignored_stype(s->sType);
1883 }
1884 }
1885 }
1886
1887 void anv_GetPhysicalDeviceMemoryProperties(
1888 VkPhysicalDevice physicalDevice,
1889 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1890 {
1891 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1892
1893 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1894 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1895 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1896 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1897 .heapIndex = physical_device->memory.types[i].heapIndex,
1898 };
1899 }
1900
1901 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1902 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1903 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1904 .size = physical_device->memory.heaps[i].size,
1905 .flags = physical_device->memory.heaps[i].flags,
1906 };
1907 }
1908 }
1909
1910 static void
1911 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1912 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1913 {
1914 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1915 uint64_t sys_available = get_available_system_memory();
1916 assert(sys_available > 0);
1917
1918 VkDeviceSize total_heaps_size = 0;
1919 for (size_t i = 0; i < device->memory.heap_count; i++)
1920 total_heaps_size += device->memory.heaps[i].size;
1921
1922 for (size_t i = 0; i < device->memory.heap_count; i++) {
1923 VkDeviceSize heap_size = device->memory.heaps[i].size;
1924 VkDeviceSize heap_used = device->memory.heaps[i].used;
1925 VkDeviceSize heap_budget;
1926
1927 double heap_proportion = (double) heap_size / total_heaps_size;
1928 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1929
1930 /*
1931 * Let's not incite the app to starve the system: report at most 90% of
1932 * available system memory.
1933 */
1934 uint64_t heap_available = sys_available_prop * 9 / 10;
1935 heap_budget = MIN2(heap_size, heap_used + heap_available);
1936
1937 /*
1938 * Round down to the nearest MB
1939 */
1940 heap_budget &= ~((1ull << 20) - 1);
1941
1942 /*
1943 * The heapBudget value must be non-zero for array elements less than
1944 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1945 * value must be less than or equal to VkMemoryHeap::size for each heap.
1946 */
1947 assert(0 < heap_budget && heap_budget <= heap_size);
1948
1949 memoryBudget->heapUsage[i] = heap_used;
1950 memoryBudget->heapBudget[i] = heap_budget;
1951 }
1952
1953 /* The heapBudget and heapUsage values must be zero for array elements
1954 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1955 */
1956 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1957 memoryBudget->heapBudget[i] = 0;
1958 memoryBudget->heapUsage[i] = 0;
1959 }
1960 }
1961
1962 void anv_GetPhysicalDeviceMemoryProperties2(
1963 VkPhysicalDevice physicalDevice,
1964 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1965 {
1966 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1967 &pMemoryProperties->memoryProperties);
1968
1969 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1970 switch (ext->sType) {
1971 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1972 anv_get_memory_budget(physicalDevice, (void*)ext);
1973 break;
1974 default:
1975 anv_debug_ignored_stype(ext->sType);
1976 break;
1977 }
1978 }
1979 }
1980
1981 void
1982 anv_GetDeviceGroupPeerMemoryFeatures(
1983 VkDevice device,
1984 uint32_t heapIndex,
1985 uint32_t localDeviceIndex,
1986 uint32_t remoteDeviceIndex,
1987 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1988 {
1989 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1990 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1991 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1992 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1993 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1994 }
1995
1996 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1997 VkInstance _instance,
1998 const char* pName)
1999 {
2000 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2001
2002 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
2003 * when we have to return valid function pointers, NULL, or it's left
2004 * undefined. See the table for exact details.
2005 */
2006 if (pName == NULL)
2007 return NULL;
2008
2009 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
2010 if (strcmp(pName, "vk" #entrypoint) == 0) \
2011 return (PFN_vkVoidFunction)anv_##entrypoint
2012
2013 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
2014 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
2015 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
2016 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
2017
2018 #undef LOOKUP_ANV_ENTRYPOINT
2019
2020 if (instance == NULL)
2021 return NULL;
2022
2023 int idx = anv_get_instance_entrypoint_index(pName);
2024 if (idx >= 0)
2025 return instance->dispatch.entrypoints[idx];
2026
2027 idx = anv_get_physical_device_entrypoint_index(pName);
2028 if (idx >= 0)
2029 return instance->physicalDevice.dispatch.entrypoints[idx];
2030
2031 idx = anv_get_device_entrypoint_index(pName);
2032 if (idx >= 0)
2033 return instance->device_dispatch.entrypoints[idx];
2034
2035 return NULL;
2036 }
2037
2038 /* With version 1+ of the loader interface the ICD should expose
2039 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
2040 */
2041 PUBLIC
2042 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2043 VkInstance instance,
2044 const char* pName);
2045
2046 PUBLIC
2047 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2048 VkInstance instance,
2049 const char* pName)
2050 {
2051 return anv_GetInstanceProcAddr(instance, pName);
2052 }
2053
2054 PFN_vkVoidFunction anv_GetDeviceProcAddr(
2055 VkDevice _device,
2056 const char* pName)
2057 {
2058 ANV_FROM_HANDLE(anv_device, device, _device);
2059
2060 if (!device || !pName)
2061 return NULL;
2062
2063 int idx = anv_get_device_entrypoint_index(pName);
2064 if (idx < 0)
2065 return NULL;
2066
2067 return device->dispatch.entrypoints[idx];
2068 }
2069
2070 /* With version 4+ of the loader interface the ICD should expose
2071 * vk_icdGetPhysicalDeviceProcAddr()
2072 */
2073 PUBLIC
2074 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
2075 VkInstance _instance,
2076 const char* pName);
2077
2078 PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
2079 VkInstance _instance,
2080 const char* pName)
2081 {
2082 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2083
2084 if (!pName || !instance)
2085 return NULL;
2086
2087 int idx = anv_get_physical_device_entrypoint_index(pName);
2088 if (idx < 0)
2089 return NULL;
2090
2091 return instance->physicalDevice.dispatch.entrypoints[idx];
2092 }
2093
2094
2095 VkResult
2096 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
2097 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
2098 const VkAllocationCallbacks* pAllocator,
2099 VkDebugReportCallbackEXT* pCallback)
2100 {
2101 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2102 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2103 pCreateInfo, pAllocator, &instance->alloc,
2104 pCallback);
2105 }
2106
2107 void
2108 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
2109 VkDebugReportCallbackEXT _callback,
2110 const VkAllocationCallbacks* pAllocator)
2111 {
2112 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2113 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2114 _callback, pAllocator, &instance->alloc);
2115 }
2116
2117 void
2118 anv_DebugReportMessageEXT(VkInstance _instance,
2119 VkDebugReportFlagsEXT flags,
2120 VkDebugReportObjectTypeEXT objectType,
2121 uint64_t object,
2122 size_t location,
2123 int32_t messageCode,
2124 const char* pLayerPrefix,
2125 const char* pMessage)
2126 {
2127 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2128 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2129 object, location, messageCode, pLayerPrefix, pMessage);
2130 }
2131
2132 static struct anv_state
2133 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2134 {
2135 struct anv_state state;
2136
2137 state = anv_state_pool_alloc(pool, size, align);
2138 memcpy(state.map, p, size);
2139
2140 return state;
2141 }
2142
2143 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
2144 * straightforward 32-bit float color in the first 64 bytes. Instead of using
2145 * a nice float/integer union like Gen8+, Haswell specifies the integer border
2146 * color as a separate entry /after/ the float color. The layout of this entry
2147 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
2148 *
2149 * Since we don't know the format/bpp, we can't make any of the border colors
2150 * containing '1' work for all formats, as it would be in the wrong place for
2151 * some of them. We opt to make 32-bit integers work as this seems like the
2152 * most common option. Fortunately, transparent black works regardless, as
2153 * all zeroes is the same in every bit-size.
2154 */
2155 struct hsw_border_color {
2156 float float32[4];
2157 uint32_t _pad0[12];
2158 uint32_t uint32[4];
2159 uint32_t _pad1[108];
2160 };
2161
2162 struct gen8_border_color {
2163 union {
2164 float float32[4];
2165 uint32_t uint32[4];
2166 };
2167 /* Pad out to 64 bytes */
2168 uint32_t _pad[12];
2169 };
2170
2171 static void
2172 anv_device_init_border_colors(struct anv_device *device)
2173 {
2174 if (device->info.is_haswell) {
2175 static const struct hsw_border_color border_colors[] = {
2176 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2177 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2178 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2179 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2180 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2181 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2182 };
2183
2184 device->border_colors =
2185 anv_state_pool_emit_data(&device->dynamic_state_pool,
2186 sizeof(border_colors), 512, border_colors);
2187 } else {
2188 static const struct gen8_border_color border_colors[] = {
2189 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2190 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2191 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2192 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2193 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2194 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2195 };
2196
2197 device->border_colors =
2198 anv_state_pool_emit_data(&device->dynamic_state_pool,
2199 sizeof(border_colors), 64, border_colors);
2200 }
2201 }
2202
2203 static VkResult
2204 anv_device_init_trivial_batch(struct anv_device *device)
2205 {
2206 VkResult result = anv_device_alloc_bo(device, 4096,
2207 ANV_BO_ALLOC_MAPPED,
2208 &device->trivial_batch_bo);
2209 if (result != VK_SUCCESS)
2210 return result;
2211
2212 struct anv_batch batch = {
2213 .start = device->trivial_batch_bo->map,
2214 .next = device->trivial_batch_bo->map,
2215 .end = device->trivial_batch_bo->map + 4096,
2216 };
2217
2218 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2219 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2220
2221 if (!device->info.has_llc)
2222 gen_clflush_range(batch.start, batch.next - batch.start);
2223
2224 return VK_SUCCESS;
2225 }
2226
2227 VkResult anv_EnumerateDeviceExtensionProperties(
2228 VkPhysicalDevice physicalDevice,
2229 const char* pLayerName,
2230 uint32_t* pPropertyCount,
2231 VkExtensionProperties* pProperties)
2232 {
2233 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2234 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2235
2236 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2237 if (device->supported_extensions.extensions[i]) {
2238 vk_outarray_append(&out, prop) {
2239 *prop = anv_device_extensions[i];
2240 }
2241 }
2242 }
2243
2244 return vk_outarray_status(&out);
2245 }
2246
2247 static void
2248 anv_device_init_dispatch(struct anv_device *device)
2249 {
2250 const struct anv_device_dispatch_table *genX_table;
2251 switch (device->info.gen) {
2252 case 12:
2253 genX_table = &gen12_device_dispatch_table;
2254 break;
2255 case 11:
2256 genX_table = &gen11_device_dispatch_table;
2257 break;
2258 case 10:
2259 genX_table = &gen10_device_dispatch_table;
2260 break;
2261 case 9:
2262 genX_table = &gen9_device_dispatch_table;
2263 break;
2264 case 8:
2265 genX_table = &gen8_device_dispatch_table;
2266 break;
2267 case 7:
2268 if (device->info.is_haswell)
2269 genX_table = &gen75_device_dispatch_table;
2270 else
2271 genX_table = &gen7_device_dispatch_table;
2272 break;
2273 default:
2274 unreachable("unsupported gen\n");
2275 }
2276
2277 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2278 /* Vulkan requires that entrypoints for extensions which have not been
2279 * enabled must not be advertised.
2280 */
2281 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
2282 &device->instance->enabled_extensions,
2283 &device->enabled_extensions)) {
2284 device->dispatch.entrypoints[i] = NULL;
2285 } else if (genX_table->entrypoints[i]) {
2286 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2287 } else {
2288 device->dispatch.entrypoints[i] =
2289 anv_device_dispatch_table.entrypoints[i];
2290 }
2291 }
2292 }
2293
2294 static int
2295 vk_priority_to_gen(int priority)
2296 {
2297 switch (priority) {
2298 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2299 return GEN_CONTEXT_LOW_PRIORITY;
2300 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2301 return GEN_CONTEXT_MEDIUM_PRIORITY;
2302 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2303 return GEN_CONTEXT_HIGH_PRIORITY;
2304 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2305 return GEN_CONTEXT_REALTIME_PRIORITY;
2306 default:
2307 unreachable("Invalid priority");
2308 }
2309 }
2310
2311 static VkResult
2312 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2313 {
2314 VkResult result = anv_device_alloc_bo(device, 4096,
2315 ANV_BO_ALLOC_MAPPED,
2316 &device->hiz_clear_bo);
2317 if (result != VK_SUCCESS)
2318 return result;
2319
2320 union isl_color_value hiz_clear = { .u32 = { 0, } };
2321 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2322
2323 memcpy(device->hiz_clear_bo->map, hiz_clear.u32, sizeof(hiz_clear.u32));
2324
2325 if (!device->info.has_llc)
2326 gen_clflush_range(device->hiz_clear_bo->map, sizeof(hiz_clear.u32));
2327
2328 return VK_SUCCESS;
2329 }
2330
2331 static bool
2332 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2333 struct anv_block_pool *pool,
2334 uint64_t address)
2335 {
2336 anv_block_pool_foreach_bo(bo, pool) {
2337 uint64_t bo_address = gen_48b_address(bo->offset);
2338 if (address >= bo_address && address < (bo_address + bo->size)) {
2339 *ret = (struct gen_batch_decode_bo) {
2340 .addr = bo_address,
2341 .size = bo->size,
2342 .map = bo->map,
2343 };
2344 return true;
2345 }
2346 }
2347 return false;
2348 }
2349
2350 /* Finding a buffer for batch decoding */
2351 static struct gen_batch_decode_bo
2352 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2353 {
2354 struct anv_device *device = v_batch;
2355 struct gen_batch_decode_bo ret_bo = {};
2356
2357 assert(ppgtt);
2358
2359 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2360 return ret_bo;
2361 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2362 return ret_bo;
2363 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2364 return ret_bo;
2365 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2366 return ret_bo;
2367
2368 if (!device->cmd_buffer_being_decoded)
2369 return (struct gen_batch_decode_bo) { };
2370
2371 struct anv_batch_bo **bo;
2372
2373 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2374 /* The decoder zeroes out the top 16 bits, so we need to as well */
2375 uint64_t bo_address = (*bo)->bo->offset & (~0ull >> 16);
2376
2377 if (address >= bo_address && address < bo_address + (*bo)->bo->size) {
2378 return (struct gen_batch_decode_bo) {
2379 .addr = bo_address,
2380 .size = (*bo)->bo->size,
2381 .map = (*bo)->bo->map,
2382 };
2383 }
2384 }
2385
2386 return (struct gen_batch_decode_bo) { };
2387 }
2388
2389 struct gen_aux_map_buffer {
2390 struct gen_buffer base;
2391 struct anv_state state;
2392 };
2393
2394 static struct gen_buffer *
2395 gen_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
2396 {
2397 struct gen_aux_map_buffer *buf = malloc(sizeof(struct gen_aux_map_buffer));
2398 if (!buf)
2399 return NULL;
2400
2401 struct anv_device *device = (struct anv_device*)driver_ctx;
2402 assert(device->instance->physicalDevice.supports_48bit_addresses &&
2403 device->instance->physicalDevice.use_softpin);
2404
2405 struct anv_state_pool *pool = &device->dynamic_state_pool;
2406 buf->state = anv_state_pool_alloc(pool, size, size);
2407
2408 buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset;
2409 buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size;
2410 buf->base.map = buf->state.map;
2411 buf->base.driver_bo = &buf->state;
2412 return &buf->base;
2413 }
2414
2415 static void
2416 gen_aux_map_buffer_free(void *driver_ctx, struct gen_buffer *buffer)
2417 {
2418 struct gen_aux_map_buffer *buf = (struct gen_aux_map_buffer*)buffer;
2419 struct anv_device *device = (struct anv_device*)driver_ctx;
2420 struct anv_state_pool *pool = &device->dynamic_state_pool;
2421 anv_state_pool_free(pool, buf->state);
2422 free(buf);
2423 }
2424
2425 static struct gen_mapped_pinned_buffer_alloc aux_map_allocator = {
2426 .alloc = gen_aux_map_buffer_alloc,
2427 .free = gen_aux_map_buffer_free,
2428 };
2429
2430 VkResult anv_CreateDevice(
2431 VkPhysicalDevice physicalDevice,
2432 const VkDeviceCreateInfo* pCreateInfo,
2433 const VkAllocationCallbacks* pAllocator,
2434 VkDevice* pDevice)
2435 {
2436 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2437 VkResult result;
2438 struct anv_device *device;
2439
2440 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2441
2442 struct anv_device_extension_table enabled_extensions = { };
2443 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2444 int idx;
2445 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2446 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2447 anv_device_extensions[idx].extensionName) == 0)
2448 break;
2449 }
2450
2451 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2452 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2453
2454 if (!physical_device->supported_extensions.extensions[idx])
2455 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2456
2457 enabled_extensions.extensions[idx] = true;
2458 }
2459
2460 /* Check enabled features */
2461 if (pCreateInfo->pEnabledFeatures) {
2462 VkPhysicalDeviceFeatures supported_features;
2463 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2464 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2465 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2466 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2467 for (uint32_t i = 0; i < num_features; i++) {
2468 if (enabled_feature[i] && !supported_feature[i])
2469 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2470 }
2471 }
2472
2473 /* Check requested queues and fail if we are requested to create any
2474 * queues with flags we don't support.
2475 */
2476 assert(pCreateInfo->queueCreateInfoCount > 0);
2477 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2478 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2479 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2480 }
2481
2482 /* Check if client specified queue priority. */
2483 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2484 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2485 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2486
2487 VkQueueGlobalPriorityEXT priority =
2488 queue_priority ? queue_priority->globalPriority :
2489 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2490
2491 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2492 sizeof(*device), 8,
2493 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2494 if (!device)
2495 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2496
2497 if (INTEL_DEBUG & DEBUG_BATCH) {
2498 const unsigned decode_flags =
2499 GEN_BATCH_DECODE_FULL |
2500 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2501 GEN_BATCH_DECODE_OFFSETS |
2502 GEN_BATCH_DECODE_FLOATS;
2503
2504 gen_batch_decode_ctx_init(&device->decoder_ctx,
2505 &physical_device->info,
2506 stderr, decode_flags, NULL,
2507 decode_get_bo, NULL, device);
2508 }
2509
2510 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2511 device->instance = physical_device->instance;
2512 device->chipset_id = physical_device->chipset_id;
2513 device->no_hw = physical_device->no_hw;
2514 device->_lost = false;
2515
2516 if (pAllocator)
2517 device->alloc = *pAllocator;
2518 else
2519 device->alloc = physical_device->instance->alloc;
2520
2521 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2522 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2523 if (device->fd == -1) {
2524 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2525 goto fail_device;
2526 }
2527
2528 device->context_id = anv_gem_create_context(device);
2529 if (device->context_id == -1) {
2530 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2531 goto fail_fd;
2532 }
2533
2534 result = anv_queue_init(device, &device->queue);
2535 if (result != VK_SUCCESS)
2536 goto fail_context_id;
2537
2538 if (physical_device->use_softpin) {
2539 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2540 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2541 goto fail_queue;
2542 }
2543
2544 /* keep the page with address zero out of the allocator */
2545 struct anv_memory_heap *low_heap =
2546 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2547 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2548 device->vma_lo_available = low_heap->size;
2549
2550 struct anv_memory_heap *high_heap =
2551 &physical_device->memory.heaps[0];
2552 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2553 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2554 high_heap->size;
2555 }
2556
2557 list_inithead(&device->memory_objects);
2558
2559 /* As per spec, the driver implementation may deny requests to acquire
2560 * a priority above the default priority (MEDIUM) if the caller does not
2561 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2562 * is returned.
2563 */
2564 if (physical_device->has_context_priority) {
2565 int err = anv_gem_set_context_param(device->fd, device->context_id,
2566 I915_CONTEXT_PARAM_PRIORITY,
2567 vk_priority_to_gen(priority));
2568 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2569 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2570 goto fail_vmas;
2571 }
2572 }
2573
2574 device->info = physical_device->info;
2575 device->isl_dev = physical_device->isl_dev;
2576
2577 /* On Broadwell and later, we can use batch chaining to more efficiently
2578 * implement growing command buffers. Prior to Haswell, the kernel
2579 * command parser gets in the way and we have to fall back to growing
2580 * the batch.
2581 */
2582 device->can_chain_batches = device->info.gen >= 8;
2583
2584 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2585 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2586 device->enabled_extensions = enabled_extensions;
2587
2588 anv_device_init_dispatch(device);
2589
2590 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2591 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2592 goto fail_queue;
2593 }
2594
2595 pthread_condattr_t condattr;
2596 if (pthread_condattr_init(&condattr) != 0) {
2597 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2598 goto fail_mutex;
2599 }
2600 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2601 pthread_condattr_destroy(&condattr);
2602 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2603 goto fail_mutex;
2604 }
2605 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2606 pthread_condattr_destroy(&condattr);
2607 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2608 goto fail_mutex;
2609 }
2610 pthread_condattr_destroy(&condattr);
2611
2612 uint64_t bo_flags =
2613 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2614 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2615 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2616 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2617
2618 result = anv_bo_cache_init(&device->bo_cache);
2619 if (result != VK_SUCCESS)
2620 goto fail_queue_cond;
2621
2622 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2623
2624 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2625 DYNAMIC_STATE_POOL_MIN_ADDRESS, 16384);
2626 if (result != VK_SUCCESS)
2627 goto fail_batch_bo_pool;
2628
2629 result = anv_state_pool_init(&device->instruction_state_pool, device,
2630 INSTRUCTION_STATE_POOL_MIN_ADDRESS, 16384);
2631 if (result != VK_SUCCESS)
2632 goto fail_dynamic_state_pool;
2633
2634 result = anv_state_pool_init(&device->surface_state_pool, device,
2635 SURFACE_STATE_POOL_MIN_ADDRESS, 4096);
2636 if (result != VK_SUCCESS)
2637 goto fail_instruction_state_pool;
2638
2639 if (physical_device->use_softpin) {
2640 result = anv_state_pool_init(&device->binding_table_pool, device,
2641 BINDING_TABLE_POOL_MIN_ADDRESS, 4096);
2642 if (result != VK_SUCCESS)
2643 goto fail_surface_state_pool;
2644 }
2645
2646 if (device->info.gen >= 12) {
2647 device->aux_map_ctx = gen_aux_map_init(device, &aux_map_allocator,
2648 &physical_device->info);
2649 if (!device->aux_map_ctx)
2650 goto fail_binding_table_pool;
2651 }
2652
2653 result = anv_device_alloc_bo(device, 4096, 0, &device->workaround_bo);
2654 if (result != VK_SUCCESS)
2655 goto fail_surface_aux_map_pool;
2656
2657 result = anv_device_init_trivial_batch(device);
2658 if (result != VK_SUCCESS)
2659 goto fail_workaround_bo;
2660
2661 if (device->info.gen >= 10) {
2662 result = anv_device_init_hiz_clear_value_bo(device);
2663 if (result != VK_SUCCESS)
2664 goto fail_trivial_batch_bo;
2665 }
2666
2667 anv_scratch_pool_init(device, &device->scratch_pool);
2668
2669 switch (device->info.gen) {
2670 case 7:
2671 if (!device->info.is_haswell)
2672 result = gen7_init_device_state(device);
2673 else
2674 result = gen75_init_device_state(device);
2675 break;
2676 case 8:
2677 result = gen8_init_device_state(device);
2678 break;
2679 case 9:
2680 result = gen9_init_device_state(device);
2681 break;
2682 case 10:
2683 result = gen10_init_device_state(device);
2684 break;
2685 case 11:
2686 result = gen11_init_device_state(device);
2687 break;
2688 case 12:
2689 result = gen12_init_device_state(device);
2690 break;
2691 default:
2692 /* Shouldn't get here as we don't create physical devices for any other
2693 * gens. */
2694 unreachable("unhandled gen");
2695 }
2696 if (result != VK_SUCCESS)
2697 goto fail_workaround_bo;
2698
2699 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2700
2701 anv_device_init_blorp(device);
2702
2703 anv_device_init_border_colors(device);
2704
2705 anv_device_perf_init(device);
2706
2707 *pDevice = anv_device_to_handle(device);
2708
2709 return VK_SUCCESS;
2710
2711 fail_workaround_bo:
2712 anv_scratch_pool_finish(device, &device->scratch_pool);
2713 if (device->info.gen >= 10)
2714 anv_device_release_bo(device, device->hiz_clear_bo);
2715 anv_device_release_bo(device, device->workaround_bo);
2716 fail_trivial_batch_bo:
2717 anv_device_release_bo(device, device->trivial_batch_bo);
2718 fail_surface_aux_map_pool:
2719 if (device->info.gen >= 12) {
2720 gen_aux_map_finish(device->aux_map_ctx);
2721 device->aux_map_ctx = NULL;
2722 }
2723 fail_binding_table_pool:
2724 if (physical_device->use_softpin)
2725 anv_state_pool_finish(&device->binding_table_pool);
2726 fail_surface_state_pool:
2727 anv_state_pool_finish(&device->surface_state_pool);
2728 fail_instruction_state_pool:
2729 anv_state_pool_finish(&device->instruction_state_pool);
2730 fail_dynamic_state_pool:
2731 anv_state_pool_finish(&device->dynamic_state_pool);
2732 fail_batch_bo_pool:
2733 anv_bo_pool_finish(&device->batch_bo_pool);
2734 anv_bo_cache_finish(&device->bo_cache);
2735 fail_queue_cond:
2736 pthread_cond_destroy(&device->queue_submit);
2737 fail_mutex:
2738 pthread_mutex_destroy(&device->mutex);
2739 fail_vmas:
2740 if (physical_device->use_softpin) {
2741 util_vma_heap_finish(&device->vma_hi);
2742 util_vma_heap_finish(&device->vma_lo);
2743 }
2744 fail_queue:
2745 anv_queue_finish(&device->queue);
2746 fail_context_id:
2747 anv_gem_destroy_context(device, device->context_id);
2748 fail_fd:
2749 close(device->fd);
2750 fail_device:
2751 vk_free(&device->alloc, device);
2752
2753 return result;
2754 }
2755
2756 void anv_DestroyDevice(
2757 VkDevice _device,
2758 const VkAllocationCallbacks* pAllocator)
2759 {
2760 ANV_FROM_HANDLE(anv_device, device, _device);
2761 struct anv_physical_device *physical_device;
2762
2763 if (!device)
2764 return;
2765
2766 physical_device = &device->instance->physicalDevice;
2767
2768 anv_device_finish_blorp(device);
2769
2770 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2771
2772 anv_queue_finish(&device->queue);
2773
2774 #ifdef HAVE_VALGRIND
2775 /* We only need to free these to prevent valgrind errors. The backing
2776 * BO will go away in a couple of lines so we don't actually leak.
2777 */
2778 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2779 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
2780 #endif
2781
2782 anv_scratch_pool_finish(device, &device->scratch_pool);
2783
2784 anv_device_release_bo(device, device->workaround_bo);
2785 anv_device_release_bo(device, device->trivial_batch_bo);
2786 if (device->info.gen >= 10)
2787 anv_device_release_bo(device, device->hiz_clear_bo);
2788
2789 if (device->info.gen >= 12) {
2790 gen_aux_map_finish(device->aux_map_ctx);
2791 device->aux_map_ctx = NULL;
2792 }
2793
2794 if (physical_device->use_softpin)
2795 anv_state_pool_finish(&device->binding_table_pool);
2796 anv_state_pool_finish(&device->surface_state_pool);
2797 anv_state_pool_finish(&device->instruction_state_pool);
2798 anv_state_pool_finish(&device->dynamic_state_pool);
2799
2800 anv_bo_pool_finish(&device->batch_bo_pool);
2801
2802 anv_bo_cache_finish(&device->bo_cache);
2803
2804 if (physical_device->use_softpin) {
2805 util_vma_heap_finish(&device->vma_hi);
2806 util_vma_heap_finish(&device->vma_lo);
2807 }
2808
2809 pthread_cond_destroy(&device->queue_submit);
2810 pthread_mutex_destroy(&device->mutex);
2811
2812 anv_gem_destroy_context(device, device->context_id);
2813
2814 if (INTEL_DEBUG & DEBUG_BATCH)
2815 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2816
2817 close(device->fd);
2818
2819 vk_free(&device->alloc, device);
2820 }
2821
2822 VkResult anv_EnumerateInstanceLayerProperties(
2823 uint32_t* pPropertyCount,
2824 VkLayerProperties* pProperties)
2825 {
2826 if (pProperties == NULL) {
2827 *pPropertyCount = 0;
2828 return VK_SUCCESS;
2829 }
2830
2831 /* None supported at this time */
2832 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2833 }
2834
2835 VkResult anv_EnumerateDeviceLayerProperties(
2836 VkPhysicalDevice physicalDevice,
2837 uint32_t* pPropertyCount,
2838 VkLayerProperties* pProperties)
2839 {
2840 if (pProperties == NULL) {
2841 *pPropertyCount = 0;
2842 return VK_SUCCESS;
2843 }
2844
2845 /* None supported at this time */
2846 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2847 }
2848
2849 void anv_GetDeviceQueue(
2850 VkDevice _device,
2851 uint32_t queueNodeIndex,
2852 uint32_t queueIndex,
2853 VkQueue* pQueue)
2854 {
2855 const VkDeviceQueueInfo2 info = {
2856 .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
2857 .pNext = NULL,
2858 .flags = 0,
2859 .queueFamilyIndex = queueNodeIndex,
2860 .queueIndex = queueIndex,
2861 };
2862
2863 anv_GetDeviceQueue2(_device, &info, pQueue);
2864 }
2865
2866 void anv_GetDeviceQueue2(
2867 VkDevice _device,
2868 const VkDeviceQueueInfo2* pQueueInfo,
2869 VkQueue* pQueue)
2870 {
2871 ANV_FROM_HANDLE(anv_device, device, _device);
2872
2873 assert(pQueueInfo->queueIndex == 0);
2874
2875 if (pQueueInfo->flags == device->queue.flags)
2876 *pQueue = anv_queue_to_handle(&device->queue);
2877 else
2878 *pQueue = NULL;
2879 }
2880
2881 VkResult
2882 _anv_device_set_lost(struct anv_device *device,
2883 const char *file, int line,
2884 const char *msg, ...)
2885 {
2886 VkResult err;
2887 va_list ap;
2888
2889 p_atomic_inc(&device->_lost);
2890
2891 va_start(ap, msg);
2892 err = __vk_errorv(device->instance, device,
2893 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2894 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2895 va_end(ap);
2896
2897 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2898 abort();
2899
2900 return err;
2901 }
2902
2903 VkResult
2904 _anv_queue_set_lost(struct anv_queue *queue,
2905 const char *file, int line,
2906 const char *msg, ...)
2907 {
2908 VkResult err;
2909 va_list ap;
2910
2911 p_atomic_inc(&queue->device->_lost);
2912
2913 va_start(ap, msg);
2914 err = __vk_errorv(queue->device->instance, queue->device,
2915 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2916 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2917 va_end(ap);
2918
2919 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2920 abort();
2921
2922 return err;
2923 }
2924
2925 VkResult
2926 anv_device_query_status(struct anv_device *device)
2927 {
2928 /* This isn't likely as most of the callers of this function already check
2929 * for it. However, it doesn't hurt to check and it potentially lets us
2930 * avoid an ioctl.
2931 */
2932 if (anv_device_is_lost(device))
2933 return VK_ERROR_DEVICE_LOST;
2934
2935 uint32_t active, pending;
2936 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2937 if (ret == -1) {
2938 /* We don't know the real error. */
2939 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2940 }
2941
2942 if (active) {
2943 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2944 } else if (pending) {
2945 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2946 }
2947
2948 return VK_SUCCESS;
2949 }
2950
2951 VkResult
2952 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2953 {
2954 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2955 * Other usages of the BO (such as on different hardware) will not be
2956 * flagged as "busy" by this ioctl. Use with care.
2957 */
2958 int ret = anv_gem_busy(device, bo->gem_handle);
2959 if (ret == 1) {
2960 return VK_NOT_READY;
2961 } else if (ret == -1) {
2962 /* We don't know the real error. */
2963 return anv_device_set_lost(device, "gem wait failed: %m");
2964 }
2965
2966 /* Query for device status after the busy call. If the BO we're checking
2967 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2968 * client because it clearly doesn't have valid data. Yes, this most
2969 * likely means an ioctl, but we just did an ioctl to query the busy status
2970 * so it's no great loss.
2971 */
2972 return anv_device_query_status(device);
2973 }
2974
2975 VkResult
2976 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2977 int64_t timeout)
2978 {
2979 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2980 if (ret == -1 && errno == ETIME) {
2981 return VK_TIMEOUT;
2982 } else if (ret == -1) {
2983 /* We don't know the real error. */
2984 return anv_device_set_lost(device, "gem wait failed: %m");
2985 }
2986
2987 /* Query for device status after the wait. If the BO we're waiting on got
2988 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2989 * because it clearly doesn't have valid data. Yes, this most likely means
2990 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2991 */
2992 return anv_device_query_status(device);
2993 }
2994
2995 VkResult anv_DeviceWaitIdle(
2996 VkDevice _device)
2997 {
2998 ANV_FROM_HANDLE(anv_device, device, _device);
2999
3000 if (anv_device_is_lost(device))
3001 return VK_ERROR_DEVICE_LOST;
3002
3003 return anv_queue_submit_simple_batch(&device->queue, NULL);
3004 }
3005
3006 bool
3007 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
3008 {
3009 if (!(bo->flags & EXEC_OBJECT_PINNED))
3010 return true;
3011
3012 pthread_mutex_lock(&device->vma_mutex);
3013
3014 bo->offset = 0;
3015
3016 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
3017 device->vma_hi_available >= bo->size) {
3018 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
3019 if (addr) {
3020 bo->offset = gen_canonical_address(addr);
3021 assert(addr == gen_48b_address(bo->offset));
3022 device->vma_hi_available -= bo->size;
3023 }
3024 }
3025
3026 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
3027 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
3028 if (addr) {
3029 bo->offset = gen_canonical_address(addr);
3030 assert(addr == gen_48b_address(bo->offset));
3031 device->vma_lo_available -= bo->size;
3032 }
3033 }
3034
3035 pthread_mutex_unlock(&device->vma_mutex);
3036
3037 return bo->offset != 0;
3038 }
3039
3040 void
3041 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
3042 {
3043 if (!(bo->flags & EXEC_OBJECT_PINNED))
3044 return;
3045
3046 const uint64_t addr_48b = gen_48b_address(bo->offset);
3047
3048 pthread_mutex_lock(&device->vma_mutex);
3049
3050 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
3051 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
3052 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
3053 device->vma_lo_available += bo->size;
3054 } else {
3055 ASSERTED const struct anv_physical_device *physical_device =
3056 &device->instance->physicalDevice;
3057 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
3058 addr_48b < (physical_device->memory.heaps[0].vma_start +
3059 physical_device->memory.heaps[0].vma_size));
3060 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
3061 device->vma_hi_available += bo->size;
3062 }
3063
3064 pthread_mutex_unlock(&device->vma_mutex);
3065
3066 bo->offset = 0;
3067 }
3068
3069 VkResult anv_AllocateMemory(
3070 VkDevice _device,
3071 const VkMemoryAllocateInfo* pAllocateInfo,
3072 const VkAllocationCallbacks* pAllocator,
3073 VkDeviceMemory* pMem)
3074 {
3075 ANV_FROM_HANDLE(anv_device, device, _device);
3076 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3077 struct anv_device_memory *mem;
3078 VkResult result = VK_SUCCESS;
3079
3080 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
3081
3082 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
3083 assert(pAllocateInfo->allocationSize > 0);
3084
3085 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
3086 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
3087
3088 /* FINISHME: Fail if allocation request exceeds heap size. */
3089
3090 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
3091 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3092 if (mem == NULL)
3093 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3094
3095 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3096 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
3097 mem->map = NULL;
3098 mem->map_size = 0;
3099 mem->ahw = NULL;
3100 mem->host_ptr = NULL;
3101
3102 enum anv_bo_alloc_flags alloc_flags = 0;
3103
3104 assert(mem->type->heapIndex < pdevice->memory.heap_count);
3105 if (!pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
3106 alloc_flags |= ANV_BO_ALLOC_32BIT_ADDRESS;
3107
3108 const struct wsi_memory_allocate_info *wsi_info =
3109 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
3110 if (wsi_info && wsi_info->implicit_sync) {
3111 /* We need to set the WRITE flag on window system buffers so that GEM
3112 * will know we're writing to them and synchronize uses on other rings
3113 * (eg if the display server uses the blitter ring).
3114 */
3115 alloc_flags |= ANV_BO_ALLOC_IMPLICIT_SYNC |
3116 ANV_BO_ALLOC_IMPLICIT_WRITE;
3117 }
3118
3119 const VkExportMemoryAllocateInfo *export_info =
3120 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
3121
3122 /* Check if we need to support Android HW buffer export. If so,
3123 * create AHardwareBuffer and import memory from it.
3124 */
3125 bool android_export = false;
3126 if (export_info && export_info->handleTypes &
3127 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
3128 android_export = true;
3129
3130 /* Android memory import. */
3131 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
3132 vk_find_struct_const(pAllocateInfo->pNext,
3133 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
3134
3135 if (ahw_import_info) {
3136 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
3137 if (result != VK_SUCCESS)
3138 goto fail;
3139
3140 goto success;
3141 } else if (android_export) {
3142 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
3143 if (result != VK_SUCCESS)
3144 goto fail;
3145
3146 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
3147 .buffer = mem->ahw,
3148 };
3149 result = anv_import_ahw_memory(_device, mem, &import_info);
3150 if (result != VK_SUCCESS)
3151 goto fail;
3152
3153 goto success;
3154 }
3155
3156 const VkImportMemoryFdInfoKHR *fd_info =
3157 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
3158
3159 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3160 * ignored.
3161 */
3162 if (fd_info && fd_info->handleType) {
3163 /* At the moment, we support only the below handle types. */
3164 assert(fd_info->handleType ==
3165 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3166 fd_info->handleType ==
3167 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3168
3169 result = anv_device_import_bo(device, fd_info->fd, alloc_flags,
3170 &mem->bo);
3171 if (result != VK_SUCCESS)
3172 goto fail;
3173
3174 VkDeviceSize aligned_alloc_size =
3175 align_u64(pAllocateInfo->allocationSize, 4096);
3176
3177 /* For security purposes, we reject importing the bo if it's smaller
3178 * than the requested allocation size. This prevents a malicious client
3179 * from passing a buffer to a trusted client, lying about the size, and
3180 * telling the trusted client to try and texture from an image that goes
3181 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3182 * in the trusted client. The trusted client can protect itself against
3183 * this sort of attack but only if it can trust the buffer size.
3184 */
3185 if (mem->bo->size < aligned_alloc_size) {
3186 result = vk_errorf(device->instance, device,
3187 VK_ERROR_INVALID_EXTERNAL_HANDLE,
3188 "aligned allocationSize too large for "
3189 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3190 "%"PRIu64"B > %"PRIu64"B",
3191 aligned_alloc_size, mem->bo->size);
3192 anv_device_release_bo(device, mem->bo);
3193 goto fail;
3194 }
3195
3196 /* From the Vulkan spec:
3197 *
3198 * "Importing memory from a file descriptor transfers ownership of
3199 * the file descriptor from the application to the Vulkan
3200 * implementation. The application must not perform any operations on
3201 * the file descriptor after a successful import."
3202 *
3203 * If the import fails, we leave the file descriptor open.
3204 */
3205 close(fd_info->fd);
3206 goto success;
3207 }
3208
3209 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
3210 vk_find_struct_const(pAllocateInfo->pNext,
3211 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
3212 if (host_ptr_info && host_ptr_info->handleType) {
3213 if (host_ptr_info->handleType ==
3214 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3215 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3216 goto fail;
3217 }
3218
3219 assert(host_ptr_info->handleType ==
3220 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3221
3222 result = anv_device_import_bo_from_host_ptr(device,
3223 host_ptr_info->pHostPointer,
3224 pAllocateInfo->allocationSize,
3225 alloc_flags,
3226 &mem->bo);
3227
3228 if (result != VK_SUCCESS)
3229 goto fail;
3230
3231 mem->host_ptr = host_ptr_info->pHostPointer;
3232 goto success;
3233 }
3234
3235 /* Regular allocate (not importing memory). */
3236
3237 if (export_info && export_info->handleTypes)
3238 alloc_flags |= ANV_BO_ALLOC_EXTERNAL;
3239
3240 result = anv_device_alloc_bo(device, pAllocateInfo->allocationSize,
3241 alloc_flags, &mem->bo);
3242 if (result != VK_SUCCESS)
3243 goto fail;
3244
3245 const VkMemoryDedicatedAllocateInfo *dedicated_info =
3246 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
3247 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3248 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3249
3250 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3251 * the BO. In this case, we have a dedicated allocation.
3252 */
3253 if (image->needs_set_tiling) {
3254 const uint32_t i915_tiling =
3255 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3256 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3257 image->planes[0].surface.isl.row_pitch_B,
3258 i915_tiling);
3259 if (ret) {
3260 anv_device_release_bo(device, mem->bo);
3261 return vk_errorf(device->instance, NULL,
3262 VK_ERROR_OUT_OF_DEVICE_MEMORY,
3263 "failed to set BO tiling: %m");
3264 }
3265 }
3266 }
3267
3268 success:
3269 pthread_mutex_lock(&device->mutex);
3270 list_addtail(&mem->link, &device->memory_objects);
3271 pthread_mutex_unlock(&device->mutex);
3272
3273 *pMem = anv_device_memory_to_handle(mem);
3274
3275 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3276 mem->bo->size);
3277
3278 return VK_SUCCESS;
3279
3280 fail:
3281 vk_free2(&device->alloc, pAllocator, mem);
3282
3283 return result;
3284 }
3285
3286 VkResult anv_GetMemoryFdKHR(
3287 VkDevice device_h,
3288 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3289 int* pFd)
3290 {
3291 ANV_FROM_HANDLE(anv_device, dev, device_h);
3292 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3293
3294 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3295
3296 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3297 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3298
3299 return anv_device_export_bo(dev, mem->bo, pFd);
3300 }
3301
3302 VkResult anv_GetMemoryFdPropertiesKHR(
3303 VkDevice _device,
3304 VkExternalMemoryHandleTypeFlagBits handleType,
3305 int fd,
3306 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3307 {
3308 ANV_FROM_HANDLE(anv_device, device, _device);
3309 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3310
3311 switch (handleType) {
3312 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3313 /* dma-buf can be imported as any memory type */
3314 pMemoryFdProperties->memoryTypeBits =
3315 (1 << pdevice->memory.type_count) - 1;
3316 return VK_SUCCESS;
3317
3318 default:
3319 /* The valid usage section for this function says:
3320 *
3321 * "handleType must not be one of the handle types defined as
3322 * opaque."
3323 *
3324 * So opaque handle types fall into the default "unsupported" case.
3325 */
3326 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3327 }
3328 }
3329
3330 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3331 VkDevice _device,
3332 VkExternalMemoryHandleTypeFlagBits handleType,
3333 const void* pHostPointer,
3334 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3335 {
3336 ANV_FROM_HANDLE(anv_device, device, _device);
3337
3338 assert(pMemoryHostPointerProperties->sType ==
3339 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3340
3341 switch (handleType) {
3342 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
3343 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3344
3345 /* Host memory can be imported as any memory type. */
3346 pMemoryHostPointerProperties->memoryTypeBits =
3347 (1ull << pdevice->memory.type_count) - 1;
3348
3349 return VK_SUCCESS;
3350 }
3351 default:
3352 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3353 }
3354 }
3355
3356 void anv_FreeMemory(
3357 VkDevice _device,
3358 VkDeviceMemory _mem,
3359 const VkAllocationCallbacks* pAllocator)
3360 {
3361 ANV_FROM_HANDLE(anv_device, device, _device);
3362 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3363 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3364
3365 if (mem == NULL)
3366 return;
3367
3368 pthread_mutex_lock(&device->mutex);
3369 list_del(&mem->link);
3370 pthread_mutex_unlock(&device->mutex);
3371
3372 if (mem->map)
3373 anv_UnmapMemory(_device, _mem);
3374
3375 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3376 -mem->bo->size);
3377
3378 anv_device_release_bo(device, mem->bo);
3379
3380 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3381 if (mem->ahw)
3382 AHardwareBuffer_release(mem->ahw);
3383 #endif
3384
3385 vk_free2(&device->alloc, pAllocator, mem);
3386 }
3387
3388 VkResult anv_MapMemory(
3389 VkDevice _device,
3390 VkDeviceMemory _memory,
3391 VkDeviceSize offset,
3392 VkDeviceSize size,
3393 VkMemoryMapFlags flags,
3394 void** ppData)
3395 {
3396 ANV_FROM_HANDLE(anv_device, device, _device);
3397 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3398
3399 if (mem == NULL) {
3400 *ppData = NULL;
3401 return VK_SUCCESS;
3402 }
3403
3404 if (mem->host_ptr) {
3405 *ppData = mem->host_ptr + offset;
3406 return VK_SUCCESS;
3407 }
3408
3409 if (size == VK_WHOLE_SIZE)
3410 size = mem->bo->size - offset;
3411
3412 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3413 *
3414 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3415 * assert(size != 0);
3416 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3417 * equal to the size of the memory minus offset
3418 */
3419 assert(size > 0);
3420 assert(offset + size <= mem->bo->size);
3421
3422 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3423 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3424 * at a time is valid. We could just mmap up front and return an offset
3425 * pointer here, but that may exhaust virtual memory on 32 bit
3426 * userspace. */
3427
3428 uint32_t gem_flags = 0;
3429
3430 if (!device->info.has_llc &&
3431 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3432 gem_flags |= I915_MMAP_WC;
3433
3434 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3435 uint64_t map_offset = offset & ~4095ull;
3436 assert(offset >= map_offset);
3437 uint64_t map_size = (offset + size) - map_offset;
3438
3439 /* Let's map whole pages */
3440 map_size = align_u64(map_size, 4096);
3441
3442 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3443 map_offset, map_size, gem_flags);
3444 if (map == MAP_FAILED)
3445 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3446
3447 mem->map = map;
3448 mem->map_size = map_size;
3449
3450 *ppData = mem->map + (offset - map_offset);
3451
3452 return VK_SUCCESS;
3453 }
3454
3455 void anv_UnmapMemory(
3456 VkDevice _device,
3457 VkDeviceMemory _memory)
3458 {
3459 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3460
3461 if (mem == NULL || mem->host_ptr)
3462 return;
3463
3464 anv_gem_munmap(mem->map, mem->map_size);
3465
3466 mem->map = NULL;
3467 mem->map_size = 0;
3468 }
3469
3470 static void
3471 clflush_mapped_ranges(struct anv_device *device,
3472 uint32_t count,
3473 const VkMappedMemoryRange *ranges)
3474 {
3475 for (uint32_t i = 0; i < count; i++) {
3476 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3477 if (ranges[i].offset >= mem->map_size)
3478 continue;
3479
3480 gen_clflush_range(mem->map + ranges[i].offset,
3481 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3482 }
3483 }
3484
3485 VkResult anv_FlushMappedMemoryRanges(
3486 VkDevice _device,
3487 uint32_t memoryRangeCount,
3488 const VkMappedMemoryRange* pMemoryRanges)
3489 {
3490 ANV_FROM_HANDLE(anv_device, device, _device);
3491
3492 if (device->info.has_llc)
3493 return VK_SUCCESS;
3494
3495 /* Make sure the writes we're flushing have landed. */
3496 __builtin_ia32_mfence();
3497
3498 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3499
3500 return VK_SUCCESS;
3501 }
3502
3503 VkResult anv_InvalidateMappedMemoryRanges(
3504 VkDevice _device,
3505 uint32_t memoryRangeCount,
3506 const VkMappedMemoryRange* pMemoryRanges)
3507 {
3508 ANV_FROM_HANDLE(anv_device, device, _device);
3509
3510 if (device->info.has_llc)
3511 return VK_SUCCESS;
3512
3513 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3514
3515 /* Make sure no reads get moved up above the invalidate. */
3516 __builtin_ia32_mfence();
3517
3518 return VK_SUCCESS;
3519 }
3520
3521 void anv_GetBufferMemoryRequirements(
3522 VkDevice _device,
3523 VkBuffer _buffer,
3524 VkMemoryRequirements* pMemoryRequirements)
3525 {
3526 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3527 ANV_FROM_HANDLE(anv_device, device, _device);
3528 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3529
3530 /* The Vulkan spec (git aaed022) says:
3531 *
3532 * memoryTypeBits is a bitfield and contains one bit set for every
3533 * supported memory type for the resource. The bit `1<<i` is set if and
3534 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3535 * structure for the physical device is supported.
3536 */
3537 uint32_t memory_types = 0;
3538 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3539 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3540 if ((valid_usage & buffer->usage) == buffer->usage)
3541 memory_types |= (1u << i);
3542 }
3543
3544 /* Base alignment requirement of a cache line */
3545 uint32_t alignment = 16;
3546
3547 /* We need an alignment of 32 for pushing UBOs */
3548 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3549 alignment = MAX2(alignment, 32);
3550
3551 pMemoryRequirements->size = buffer->size;
3552 pMemoryRequirements->alignment = alignment;
3553
3554 /* Storage and Uniform buffers should have their size aligned to
3555 * 32-bits to avoid boundary checks when last DWord is not complete.
3556 * This would ensure that not internal padding would be needed for
3557 * 16-bit types.
3558 */
3559 if (device->robust_buffer_access &&
3560 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3561 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3562 pMemoryRequirements->size = align_u64(buffer->size, 4);
3563
3564 pMemoryRequirements->memoryTypeBits = memory_types;
3565 }
3566
3567 void anv_GetBufferMemoryRequirements2(
3568 VkDevice _device,
3569 const VkBufferMemoryRequirementsInfo2* pInfo,
3570 VkMemoryRequirements2* pMemoryRequirements)
3571 {
3572 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3573 &pMemoryRequirements->memoryRequirements);
3574
3575 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3576 switch (ext->sType) {
3577 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3578 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3579 requirements->prefersDedicatedAllocation = false;
3580 requirements->requiresDedicatedAllocation = false;
3581 break;
3582 }
3583
3584 default:
3585 anv_debug_ignored_stype(ext->sType);
3586 break;
3587 }
3588 }
3589 }
3590
3591 void anv_GetImageMemoryRequirements(
3592 VkDevice _device,
3593 VkImage _image,
3594 VkMemoryRequirements* pMemoryRequirements)
3595 {
3596 ANV_FROM_HANDLE(anv_image, image, _image);
3597 ANV_FROM_HANDLE(anv_device, device, _device);
3598 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3599
3600 /* The Vulkan spec (git aaed022) says:
3601 *
3602 * memoryTypeBits is a bitfield and contains one bit set for every
3603 * supported memory type for the resource. The bit `1<<i` is set if and
3604 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3605 * structure for the physical device is supported.
3606 *
3607 * All types are currently supported for images.
3608 */
3609 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3610
3611 /* We must have image allocated or imported at this point. According to the
3612 * specification, external images must have been bound to memory before
3613 * calling GetImageMemoryRequirements.
3614 */
3615 assert(image->size > 0);
3616
3617 pMemoryRequirements->size = image->size;
3618 pMemoryRequirements->alignment = image->alignment;
3619 pMemoryRequirements->memoryTypeBits = memory_types;
3620 }
3621
3622 void anv_GetImageMemoryRequirements2(
3623 VkDevice _device,
3624 const VkImageMemoryRequirementsInfo2* pInfo,
3625 VkMemoryRequirements2* pMemoryRequirements)
3626 {
3627 ANV_FROM_HANDLE(anv_device, device, _device);
3628 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3629
3630 anv_GetImageMemoryRequirements(_device, pInfo->image,
3631 &pMemoryRequirements->memoryRequirements);
3632
3633 vk_foreach_struct_const(ext, pInfo->pNext) {
3634 switch (ext->sType) {
3635 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3636 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3637 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3638 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3639 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3640 plane_reqs->planeAspect);
3641
3642 assert(image->planes[plane].offset == 0);
3643
3644 /* The Vulkan spec (git aaed022) says:
3645 *
3646 * memoryTypeBits is a bitfield and contains one bit set for every
3647 * supported memory type for the resource. The bit `1<<i` is set
3648 * if and only if the memory type `i` in the
3649 * VkPhysicalDeviceMemoryProperties structure for the physical
3650 * device is supported.
3651 *
3652 * All types are currently supported for images.
3653 */
3654 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3655 (1ull << pdevice->memory.type_count) - 1;
3656
3657 /* We must have image allocated or imported at this point. According to the
3658 * specification, external images must have been bound to memory before
3659 * calling GetImageMemoryRequirements.
3660 */
3661 assert(image->planes[plane].size > 0);
3662
3663 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3664 pMemoryRequirements->memoryRequirements.alignment =
3665 image->planes[plane].alignment;
3666 break;
3667 }
3668
3669 default:
3670 anv_debug_ignored_stype(ext->sType);
3671 break;
3672 }
3673 }
3674
3675 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3676 switch (ext->sType) {
3677 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3678 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3679 if (image->needs_set_tiling || image->external_format) {
3680 /* If we need to set the tiling for external consumers, we need a
3681 * dedicated allocation.
3682 *
3683 * See also anv_AllocateMemory.
3684 */
3685 requirements->prefersDedicatedAllocation = true;
3686 requirements->requiresDedicatedAllocation = true;
3687 } else {
3688 requirements->prefersDedicatedAllocation = false;
3689 requirements->requiresDedicatedAllocation = false;
3690 }
3691 break;
3692 }
3693
3694 default:
3695 anv_debug_ignored_stype(ext->sType);
3696 break;
3697 }
3698 }
3699 }
3700
3701 void anv_GetImageSparseMemoryRequirements(
3702 VkDevice device,
3703 VkImage image,
3704 uint32_t* pSparseMemoryRequirementCount,
3705 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3706 {
3707 *pSparseMemoryRequirementCount = 0;
3708 }
3709
3710 void anv_GetImageSparseMemoryRequirements2(
3711 VkDevice device,
3712 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3713 uint32_t* pSparseMemoryRequirementCount,
3714 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3715 {
3716 *pSparseMemoryRequirementCount = 0;
3717 }
3718
3719 void anv_GetDeviceMemoryCommitment(
3720 VkDevice device,
3721 VkDeviceMemory memory,
3722 VkDeviceSize* pCommittedMemoryInBytes)
3723 {
3724 *pCommittedMemoryInBytes = 0;
3725 }
3726
3727 static void
3728 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3729 {
3730 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3731 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3732
3733 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3734
3735 if (mem) {
3736 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3737 buffer->address = (struct anv_address) {
3738 .bo = mem->bo,
3739 .offset = pBindInfo->memoryOffset,
3740 };
3741 } else {
3742 buffer->address = ANV_NULL_ADDRESS;
3743 }
3744 }
3745
3746 VkResult anv_BindBufferMemory(
3747 VkDevice device,
3748 VkBuffer buffer,
3749 VkDeviceMemory memory,
3750 VkDeviceSize memoryOffset)
3751 {
3752 anv_bind_buffer_memory(
3753 &(VkBindBufferMemoryInfo) {
3754 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3755 .buffer = buffer,
3756 .memory = memory,
3757 .memoryOffset = memoryOffset,
3758 });
3759
3760 return VK_SUCCESS;
3761 }
3762
3763 VkResult anv_BindBufferMemory2(
3764 VkDevice device,
3765 uint32_t bindInfoCount,
3766 const VkBindBufferMemoryInfo* pBindInfos)
3767 {
3768 for (uint32_t i = 0; i < bindInfoCount; i++)
3769 anv_bind_buffer_memory(&pBindInfos[i]);
3770
3771 return VK_SUCCESS;
3772 }
3773
3774 VkResult anv_QueueBindSparse(
3775 VkQueue _queue,
3776 uint32_t bindInfoCount,
3777 const VkBindSparseInfo* pBindInfo,
3778 VkFence fence)
3779 {
3780 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3781 if (anv_device_is_lost(queue->device))
3782 return VK_ERROR_DEVICE_LOST;
3783
3784 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3785 }
3786
3787 // Event functions
3788
3789 VkResult anv_CreateEvent(
3790 VkDevice _device,
3791 const VkEventCreateInfo* pCreateInfo,
3792 const VkAllocationCallbacks* pAllocator,
3793 VkEvent* pEvent)
3794 {
3795 ANV_FROM_HANDLE(anv_device, device, _device);
3796 struct anv_state state;
3797 struct anv_event *event;
3798
3799 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3800
3801 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3802 sizeof(*event), 8);
3803 event = state.map;
3804 event->state = state;
3805 event->semaphore = VK_EVENT_RESET;
3806
3807 if (!device->info.has_llc) {
3808 /* Make sure the writes we're flushing have landed. */
3809 __builtin_ia32_mfence();
3810 __builtin_ia32_clflush(event);
3811 }
3812
3813 *pEvent = anv_event_to_handle(event);
3814
3815 return VK_SUCCESS;
3816 }
3817
3818 void anv_DestroyEvent(
3819 VkDevice _device,
3820 VkEvent _event,
3821 const VkAllocationCallbacks* pAllocator)
3822 {
3823 ANV_FROM_HANDLE(anv_device, device, _device);
3824 ANV_FROM_HANDLE(anv_event, event, _event);
3825
3826 if (!event)
3827 return;
3828
3829 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3830 }
3831
3832 VkResult anv_GetEventStatus(
3833 VkDevice _device,
3834 VkEvent _event)
3835 {
3836 ANV_FROM_HANDLE(anv_device, device, _device);
3837 ANV_FROM_HANDLE(anv_event, event, _event);
3838
3839 if (anv_device_is_lost(device))
3840 return VK_ERROR_DEVICE_LOST;
3841
3842 if (!device->info.has_llc) {
3843 /* Invalidate read cache before reading event written by GPU. */
3844 __builtin_ia32_clflush(event);
3845 __builtin_ia32_mfence();
3846
3847 }
3848
3849 return event->semaphore;
3850 }
3851
3852 VkResult anv_SetEvent(
3853 VkDevice _device,
3854 VkEvent _event)
3855 {
3856 ANV_FROM_HANDLE(anv_device, device, _device);
3857 ANV_FROM_HANDLE(anv_event, event, _event);
3858
3859 event->semaphore = VK_EVENT_SET;
3860
3861 if (!device->info.has_llc) {
3862 /* Make sure the writes we're flushing have landed. */
3863 __builtin_ia32_mfence();
3864 __builtin_ia32_clflush(event);
3865 }
3866
3867 return VK_SUCCESS;
3868 }
3869
3870 VkResult anv_ResetEvent(
3871 VkDevice _device,
3872 VkEvent _event)
3873 {
3874 ANV_FROM_HANDLE(anv_device, device, _device);
3875 ANV_FROM_HANDLE(anv_event, event, _event);
3876
3877 event->semaphore = VK_EVENT_RESET;
3878
3879 if (!device->info.has_llc) {
3880 /* Make sure the writes we're flushing have landed. */
3881 __builtin_ia32_mfence();
3882 __builtin_ia32_clflush(event);
3883 }
3884
3885 return VK_SUCCESS;
3886 }
3887
3888 // Buffer functions
3889
3890 VkResult anv_CreateBuffer(
3891 VkDevice _device,
3892 const VkBufferCreateInfo* pCreateInfo,
3893 const VkAllocationCallbacks* pAllocator,
3894 VkBuffer* pBuffer)
3895 {
3896 ANV_FROM_HANDLE(anv_device, device, _device);
3897 struct anv_buffer *buffer;
3898
3899 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3900
3901 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3902 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3903 if (buffer == NULL)
3904 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3905
3906 buffer->size = pCreateInfo->size;
3907 buffer->usage = pCreateInfo->usage;
3908 buffer->address = ANV_NULL_ADDRESS;
3909
3910 *pBuffer = anv_buffer_to_handle(buffer);
3911
3912 return VK_SUCCESS;
3913 }
3914
3915 void anv_DestroyBuffer(
3916 VkDevice _device,
3917 VkBuffer _buffer,
3918 const VkAllocationCallbacks* pAllocator)
3919 {
3920 ANV_FROM_HANDLE(anv_device, device, _device);
3921 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3922
3923 if (!buffer)
3924 return;
3925
3926 vk_free2(&device->alloc, pAllocator, buffer);
3927 }
3928
3929 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3930 VkDevice device,
3931 const VkBufferDeviceAddressInfoEXT* pInfo)
3932 {
3933 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3934
3935 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3936
3937 return anv_address_physical(buffer->address);
3938 }
3939
3940 void
3941 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3942 enum isl_format format,
3943 struct anv_address address,
3944 uint32_t range, uint32_t stride)
3945 {
3946 isl_buffer_fill_state(&device->isl_dev, state.map,
3947 .address = anv_address_physical(address),
3948 .mocs = device->isl_dev.mocs.internal,
3949 .size_B = range,
3950 .format = format,
3951 .swizzle = ISL_SWIZZLE_IDENTITY,
3952 .stride_B = stride);
3953 }
3954
3955 void anv_DestroySampler(
3956 VkDevice _device,
3957 VkSampler _sampler,
3958 const VkAllocationCallbacks* pAllocator)
3959 {
3960 ANV_FROM_HANDLE(anv_device, device, _device);
3961 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3962
3963 if (!sampler)
3964 return;
3965
3966 if (sampler->bindless_state.map) {
3967 anv_state_pool_free(&device->dynamic_state_pool,
3968 sampler->bindless_state);
3969 }
3970
3971 vk_free2(&device->alloc, pAllocator, sampler);
3972 }
3973
3974 VkResult anv_CreateFramebuffer(
3975 VkDevice _device,
3976 const VkFramebufferCreateInfo* pCreateInfo,
3977 const VkAllocationCallbacks* pAllocator,
3978 VkFramebuffer* pFramebuffer)
3979 {
3980 ANV_FROM_HANDLE(anv_device, device, _device);
3981 struct anv_framebuffer *framebuffer;
3982
3983 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3984
3985 size_t size = sizeof(*framebuffer);
3986
3987 /* VK_KHR_imageless_framebuffer extension says:
3988 *
3989 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
3990 * parameter pAttachments is ignored.
3991 */
3992 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
3993 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3994 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3995 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3996 if (framebuffer == NULL)
3997 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3998
3999 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
4000 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
4001 framebuffer->attachments[i] = iview;
4002 }
4003 framebuffer->attachment_count = pCreateInfo->attachmentCount;
4004 } else {
4005 assert(device->enabled_extensions.KHR_imageless_framebuffer);
4006 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
4007 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4008 if (framebuffer == NULL)
4009 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4010
4011 framebuffer->attachment_count = 0;
4012 }
4013
4014 framebuffer->width = pCreateInfo->width;
4015 framebuffer->height = pCreateInfo->height;
4016 framebuffer->layers = pCreateInfo->layers;
4017
4018 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
4019
4020 return VK_SUCCESS;
4021 }
4022
4023 void anv_DestroyFramebuffer(
4024 VkDevice _device,
4025 VkFramebuffer _fb,
4026 const VkAllocationCallbacks* pAllocator)
4027 {
4028 ANV_FROM_HANDLE(anv_device, device, _device);
4029 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
4030
4031 if (!fb)
4032 return;
4033
4034 vk_free2(&device->alloc, pAllocator, fb);
4035 }
4036
4037 static const VkTimeDomainEXT anv_time_domains[] = {
4038 VK_TIME_DOMAIN_DEVICE_EXT,
4039 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
4040 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
4041 };
4042
4043 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
4044 VkPhysicalDevice physicalDevice,
4045 uint32_t *pTimeDomainCount,
4046 VkTimeDomainEXT *pTimeDomains)
4047 {
4048 int d;
4049 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
4050
4051 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
4052 vk_outarray_append(&out, i) {
4053 *i = anv_time_domains[d];
4054 }
4055 }
4056
4057 return vk_outarray_status(&out);
4058 }
4059
4060 static uint64_t
4061 anv_clock_gettime(clockid_t clock_id)
4062 {
4063 struct timespec current;
4064 int ret;
4065
4066 ret = clock_gettime(clock_id, &current);
4067 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
4068 ret = clock_gettime(CLOCK_MONOTONIC, &current);
4069 if (ret < 0)
4070 return 0;
4071
4072 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
4073 }
4074
4075 #define TIMESTAMP 0x2358
4076
4077 VkResult anv_GetCalibratedTimestampsEXT(
4078 VkDevice _device,
4079 uint32_t timestampCount,
4080 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
4081 uint64_t *pTimestamps,
4082 uint64_t *pMaxDeviation)
4083 {
4084 ANV_FROM_HANDLE(anv_device, device, _device);
4085 uint64_t timestamp_frequency = device->info.timestamp_frequency;
4086 int ret;
4087 int d;
4088 uint64_t begin, end;
4089 uint64_t max_clock_period = 0;
4090
4091 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4092
4093 for (d = 0; d < timestampCount; d++) {
4094 switch (pTimestampInfos[d].timeDomain) {
4095 case VK_TIME_DOMAIN_DEVICE_EXT:
4096 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
4097 &pTimestamps[d]);
4098
4099 if (ret != 0) {
4100 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
4101 "register: %m");
4102 }
4103 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
4104 max_clock_period = MAX2(max_clock_period, device_period);
4105 break;
4106 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
4107 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
4108 max_clock_period = MAX2(max_clock_period, 1);
4109 break;
4110
4111 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
4112 pTimestamps[d] = begin;
4113 break;
4114 default:
4115 pTimestamps[d] = 0;
4116 break;
4117 }
4118 }
4119
4120 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4121
4122 /*
4123 * The maximum deviation is the sum of the interval over which we
4124 * perform the sampling and the maximum period of any sampled
4125 * clock. That's because the maximum skew between any two sampled
4126 * clock edges is when the sampled clock with the largest period is
4127 * sampled at the end of that period but right at the beginning of the
4128 * sampling interval and some other clock is sampled right at the
4129 * begining of its sampling period and right at the end of the
4130 * sampling interval. Let's assume the GPU has the longest clock
4131 * period and that the application is sampling GPU and monotonic:
4132 *
4133 * s e
4134 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
4135 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4136 *
4137 * g
4138 * 0 1 2 3
4139 * GPU -----_____-----_____-----_____-----_____
4140 *
4141 * m
4142 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
4143 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4144 *
4145 * Interval <----------------->
4146 * Deviation <-------------------------->
4147 *
4148 * s = read(raw) 2
4149 * g = read(GPU) 1
4150 * m = read(monotonic) 2
4151 * e = read(raw) b
4152 *
4153 * We round the sample interval up by one tick to cover sampling error
4154 * in the interval clock
4155 */
4156
4157 uint64_t sample_interval = end - begin + 1;
4158
4159 *pMaxDeviation = sample_interval + max_clock_period;
4160
4161 return VK_SUCCESS;
4162 }
4163
4164 /* vk_icd.h does not declare this function, so we declare it here to
4165 * suppress Wmissing-prototypes.
4166 */
4167 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4168 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4169
4170 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4171 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4172 {
4173 /* For the full details on loader interface versioning, see
4174 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4175 * What follows is a condensed summary, to help you navigate the large and
4176 * confusing official doc.
4177 *
4178 * - Loader interface v0 is incompatible with later versions. We don't
4179 * support it.
4180 *
4181 * - In loader interface v1:
4182 * - The first ICD entrypoint called by the loader is
4183 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4184 * entrypoint.
4185 * - The ICD must statically expose no other Vulkan symbol unless it is
4186 * linked with -Bsymbolic.
4187 * - Each dispatchable Vulkan handle created by the ICD must be
4188 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4189 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4190 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4191 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4192 * such loader-managed surfaces.
4193 *
4194 * - Loader interface v2 differs from v1 in:
4195 * - The first ICD entrypoint called by the loader is
4196 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4197 * statically expose this entrypoint.
4198 *
4199 * - Loader interface v3 differs from v2 in:
4200 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4201 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4202 * because the loader no longer does so.
4203 *
4204 * - Loader interface v4 differs from v3 in:
4205 * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
4206 */
4207 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
4208 return VK_SUCCESS;
4209 }