anv: Don't over-advertise descriptor indexing features
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/debug.h"
36 #include "util/build_id.h"
37 #include "util/disk_cache.h"
38 #include "util/mesa-sha1.h"
39 #include "util/os_file.h"
40 #include "util/u_atomic.h"
41 #include "util/u_string.h"
42 #include "util/xmlpool.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_aux_map.h"
46 #include "common/gen_defines.h"
47 #include "compiler/glsl_types.h"
48
49 #include "genxml/gen7_pack.h"
50
51 static const char anv_dri_options_xml[] =
52 DRI_CONF_BEGIN
53 DRI_CONF_SECTION_PERFORMANCE
54 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
55 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
56 DRI_CONF_SECTION_END
57
58 DRI_CONF_SECTION_DEBUG
59 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
60 DRI_CONF_SECTION_END
61 DRI_CONF_END;
62
63 /* This is probably far to big but it reflects the max size used for messages
64 * in OpenGLs KHR_debug.
65 */
66 #define MAX_DEBUG_MESSAGE_LENGTH 4096
67
68 static void
69 compiler_debug_log(void *data, const char *fmt, ...)
70 {
71 char str[MAX_DEBUG_MESSAGE_LENGTH];
72 struct anv_device *device = (struct anv_device *)data;
73
74 if (list_is_empty(&device->instance->debug_report_callbacks.callbacks))
75 return;
76
77 va_list args;
78 va_start(args, fmt);
79 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
80 va_end(args);
81
82 vk_debug_report(&device->instance->debug_report_callbacks,
83 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
84 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
85 0, 0, 0, "anv", str);
86 }
87
88 static void
89 compiler_perf_log(void *data, const char *fmt, ...)
90 {
91 va_list args;
92 va_start(args, fmt);
93
94 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
95 intel_logd_v(fmt, args);
96
97 va_end(args);
98 }
99
100 static uint64_t
101 anv_compute_heap_size(int fd, uint64_t gtt_size)
102 {
103 /* Query the total ram from the system */
104 struct sysinfo info;
105 sysinfo(&info);
106
107 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
108
109 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
110 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
111 */
112 uint64_t available_ram;
113 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
114 available_ram = total_ram / 2;
115 else
116 available_ram = total_ram * 3 / 4;
117
118 /* We also want to leave some padding for things we allocate in the driver,
119 * so don't go over 3/4 of the GTT either.
120 */
121 uint64_t available_gtt = gtt_size * 3 / 4;
122
123 return MIN2(available_ram, available_gtt);
124 }
125
126 static VkResult
127 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
128 {
129 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
130 &device->gtt_size) == -1) {
131 /* If, for whatever reason, we can't actually get the GTT size from the
132 * kernel (too old?) fall back to the aperture size.
133 */
134 anv_perf_warn(NULL, NULL,
135 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
136
137 if (anv_gem_get_aperture(fd, &device->gtt_size) == -1) {
138 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
139 "failed to get aperture size: %m");
140 }
141 }
142
143 /* We only allow 48-bit addresses with softpin because knowing the actual
144 * address is required for the vertex cache flush workaround.
145 */
146 device->supports_48bit_addresses = (device->info.gen >= 8) &&
147 device->has_softpin &&
148 device->gtt_size > (4ULL << 30 /* GiB */);
149
150 uint64_t heap_size = anv_compute_heap_size(fd, device->gtt_size);
151
152 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
153 /* When running with an overridden PCI ID, we may get a GTT size from
154 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
155 * address support can still fail. Just clamp the address space size to
156 * 2 GiB if we don't have 48-bit support.
157 */
158 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
159 "not support for 48-bit addresses",
160 __FILE__, __LINE__);
161 heap_size = 2ull << 30;
162 }
163
164 device->memory.heap_count = 1;
165 device->memory.heaps[0] = (struct anv_memory_heap) {
166 .size = heap_size,
167 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
168 };
169
170 uint32_t type_count = 0;
171 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
172 if (device->info.has_llc) {
173 /* Big core GPUs share LLC with the CPU and thus one memory type can be
174 * both cached and coherent at the same time.
175 */
176 device->memory.types[type_count++] = (struct anv_memory_type) {
177 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
178 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
179 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
180 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
181 .heapIndex = heap,
182 };
183 } else {
184 /* The spec requires that we expose a host-visible, coherent memory
185 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
186 * to give the application a choice between cached, but not coherent and
187 * coherent but uncached (WC though).
188 */
189 device->memory.types[type_count++] = (struct anv_memory_type) {
190 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
191 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
192 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
193 .heapIndex = heap,
194 };
195 device->memory.types[type_count++] = (struct anv_memory_type) {
196 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
197 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
198 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
199 .heapIndex = heap,
200 };
201 }
202 }
203 device->memory.type_count = type_count;
204
205 return VK_SUCCESS;
206 }
207
208 static VkResult
209 anv_physical_device_init_uuids(struct anv_physical_device *device)
210 {
211 const struct build_id_note *note =
212 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
213 if (!note) {
214 return vk_errorf(device->instance, device,
215 VK_ERROR_INITIALIZATION_FAILED,
216 "Failed to find build-id");
217 }
218
219 unsigned build_id_len = build_id_length(note);
220 if (build_id_len < 20) {
221 return vk_errorf(device->instance, device,
222 VK_ERROR_INITIALIZATION_FAILED,
223 "build-id too short. It needs to be a SHA");
224 }
225
226 memcpy(device->driver_build_sha1, build_id_data(note), 20);
227
228 struct mesa_sha1 sha1_ctx;
229 uint8_t sha1[20];
230 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
231
232 /* The pipeline cache UUID is used for determining when a pipeline cache is
233 * invalid. It needs both a driver build and the PCI ID of the device.
234 */
235 _mesa_sha1_init(&sha1_ctx);
236 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
237 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
238 sizeof(device->chipset_id));
239 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
240 sizeof(device->always_use_bindless));
241 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
242 sizeof(device->has_a64_buffer_access));
243 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
244 sizeof(device->has_bindless_images));
245 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
246 sizeof(device->has_bindless_samplers));
247 _mesa_sha1_final(&sha1_ctx, sha1);
248 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
249
250 /* The driver UUID is used for determining sharability of images and memory
251 * between two Vulkan instances in separate processes. People who want to
252 * share memory need to also check the device UUID (below) so all this
253 * needs to be is the build-id.
254 */
255 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
256
257 /* The device UUID uniquely identifies the given device within the machine.
258 * Since we never have more than one device, this doesn't need to be a real
259 * UUID. However, on the off-chance that someone tries to use this to
260 * cache pre-tiled images or something of the like, we use the PCI ID and
261 * some bits of ISL info to ensure that this is safe.
262 */
263 _mesa_sha1_init(&sha1_ctx);
264 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
265 sizeof(device->chipset_id));
266 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
267 sizeof(device->isl_dev.has_bit6_swizzling));
268 _mesa_sha1_final(&sha1_ctx, sha1);
269 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
270
271 return VK_SUCCESS;
272 }
273
274 static void
275 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
276 {
277 #ifdef ENABLE_SHADER_CACHE
278 char renderer[10];
279 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
280 device->chipset_id);
281 assert(len == sizeof(renderer) - 2);
282
283 char timestamp[41];
284 _mesa_sha1_format(timestamp, device->driver_build_sha1);
285
286 const uint64_t driver_flags =
287 brw_get_compiler_config_value(device->compiler);
288 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
289 #else
290 device->disk_cache = NULL;
291 #endif
292 }
293
294 static void
295 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
296 {
297 #ifdef ENABLE_SHADER_CACHE
298 if (device->disk_cache)
299 disk_cache_destroy(device->disk_cache);
300 #else
301 assert(device->disk_cache == NULL);
302 #endif
303 }
304
305 static uint64_t
306 get_available_system_memory()
307 {
308 char *meminfo = os_read_file("/proc/meminfo");
309 if (!meminfo)
310 return 0;
311
312 char *str = strstr(meminfo, "MemAvailable:");
313 if (!str) {
314 free(meminfo);
315 return 0;
316 }
317
318 uint64_t kb_mem_available;
319 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
320 free(meminfo);
321 return kb_mem_available << 10;
322 }
323
324 free(meminfo);
325 return 0;
326 }
327
328 static VkResult
329 anv_physical_device_init(struct anv_physical_device *device,
330 struct anv_instance *instance,
331 drmDevicePtr drm_device)
332 {
333 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
334 const char *path = drm_device->nodes[DRM_NODE_RENDER];
335 VkResult result;
336 int fd;
337 int master_fd = -1;
338
339 brw_process_intel_debug_variable();
340
341 fd = open(path, O_RDWR | O_CLOEXEC);
342 if (fd < 0)
343 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
344
345 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
346 device->instance = instance;
347
348 assert(strlen(path) < ARRAY_SIZE(device->path));
349 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
350
351 if (!gen_get_device_info_from_fd(fd, &device->info)) {
352 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
353 goto fail;
354 }
355 device->chipset_id = device->info.chipset_id;
356 device->no_hw = device->info.no_hw;
357
358 if (getenv("INTEL_NO_HW") != NULL)
359 device->no_hw = true;
360
361 device->pci_info.domain = drm_device->businfo.pci->domain;
362 device->pci_info.bus = drm_device->businfo.pci->bus;
363 device->pci_info.device = drm_device->businfo.pci->dev;
364 device->pci_info.function = drm_device->businfo.pci->func;
365
366 device->name = gen_get_device_name(device->chipset_id);
367
368 if (device->info.is_haswell) {
369 intel_logw("Haswell Vulkan support is incomplete");
370 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
371 intel_logw("Ivy Bridge Vulkan support is incomplete");
372 } else if (device->info.gen == 7 && device->info.is_baytrail) {
373 intel_logw("Bay Trail Vulkan support is incomplete");
374 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
375 /* Gen8-11 fully supported */
376 } else if (device->info.gen == 12) {
377 intel_logw("Vulkan is not yet fully supported on gen12");
378 } else {
379 result = vk_errorf(device->instance, device,
380 VK_ERROR_INCOMPATIBLE_DRIVER,
381 "Vulkan not yet supported on %s", device->name);
382 goto fail;
383 }
384
385 device->cmd_parser_version = -1;
386 if (device->info.gen == 7) {
387 device->cmd_parser_version =
388 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
389 if (device->cmd_parser_version == -1) {
390 result = vk_errorf(device->instance, device,
391 VK_ERROR_INITIALIZATION_FAILED,
392 "failed to get command parser version");
393 goto fail;
394 }
395 }
396
397 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
398 result = vk_errorf(device->instance, device,
399 VK_ERROR_INITIALIZATION_FAILED,
400 "kernel missing gem wait");
401 goto fail;
402 }
403
404 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
405 result = vk_errorf(device->instance, device,
406 VK_ERROR_INITIALIZATION_FAILED,
407 "kernel missing execbuf2");
408 goto fail;
409 }
410
411 if (!device->info.has_llc &&
412 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
413 result = vk_errorf(device->instance, device,
414 VK_ERROR_INITIALIZATION_FAILED,
415 "kernel missing wc mmap");
416 goto fail;
417 }
418
419 device->has_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN);
420 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
421 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
422 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
423 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
424 device->has_syncobj_wait = device->has_syncobj &&
425 anv_gem_supports_syncobj_wait(fd);
426 device->has_context_priority = anv_gem_has_context_priority(fd);
427
428 result = anv_physical_device_init_heaps(device, fd);
429 if (result != VK_SUCCESS)
430 goto fail;
431
432 device->use_softpin = device->has_softpin &&
433 device->supports_48bit_addresses;
434
435 device->has_context_isolation =
436 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
437
438 device->always_use_bindless =
439 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
440
441 /* We first got the A64 messages on broadwell and we can only use them if
442 * we can pass addresses directly into the shader which requires softpin.
443 */
444 device->has_a64_buffer_access = device->info.gen >= 8 &&
445 device->use_softpin;
446
447 /* We first get bindless image access on Skylake and we can only really do
448 * it if we don't have any relocations so we need softpin.
449 */
450 device->has_bindless_images = device->info.gen >= 9 &&
451 device->use_softpin;
452
453 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
454 * because it's just a matter of setting the sampler address in the sample
455 * message header. However, we've not bothered to wire it up for vec4 so
456 * we leave it disabled on gen7.
457 */
458 device->has_bindless_samplers = device->info.gen >= 8;
459
460 device->has_mem_available = get_available_system_memory() != 0;
461
462 device->always_flush_cache =
463 driQueryOptionb(&instance->dri_options, "always_flush_cache");
464
465 /* Starting with Gen10, the timestamp frequency of the command streamer may
466 * vary from one part to another. We can query the value from the kernel.
467 */
468 if (device->info.gen >= 10) {
469 int timestamp_frequency =
470 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
471
472 if (timestamp_frequency < 0)
473 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
474 else
475 device->info.timestamp_frequency = timestamp_frequency;
476 }
477
478 /* GENs prior to 8 do not support EU/Subslice info */
479 if (device->info.gen >= 8) {
480 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
481 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
482
483 /* Without this information, we cannot get the right Braswell
484 * brandstrings, and we have to use conservative numbers for GPGPU on
485 * many platforms, but otherwise, things will just work.
486 */
487 if (device->subslice_total < 1 || device->eu_total < 1) {
488 intel_logw("Kernel 4.1 required to properly query GPU properties");
489 }
490 } else if (device->info.gen == 7) {
491 device->subslice_total = 1 << (device->info.gt - 1);
492 }
493
494 if (device->info.is_cherryview &&
495 device->subslice_total > 0 && device->eu_total > 0) {
496 /* Logical CS threads = EUs per subslice * num threads per EU */
497 uint32_t max_cs_threads =
498 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
499
500 /* Fuse configurations may give more threads than expected, never less. */
501 if (max_cs_threads > device->info.max_cs_threads)
502 device->info.max_cs_threads = max_cs_threads;
503 }
504
505 device->compiler = brw_compiler_create(NULL, &device->info);
506 if (device->compiler == NULL) {
507 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
508 goto fail;
509 }
510 device->compiler->shader_debug_log = compiler_debug_log;
511 device->compiler->shader_perf_log = compiler_perf_log;
512 device->compiler->supports_pull_constants = false;
513 device->compiler->constant_buffer_0_is_relative =
514 device->info.gen < 8 || !device->has_context_isolation;
515 device->compiler->supports_shader_constants = true;
516 device->compiler->compact_params = false;
517
518 /* Broadwell PRM says:
519 *
520 * "Before Gen8, there was a historical configuration control field to
521 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
522 * different places: TILECTL[1:0], ARB_MODE[5:4], and
523 * DISP_ARB_CTL[14:13].
524 *
525 * For Gen8 and subsequent generations, the swizzle fields are all
526 * reserved, and the CPU's memory controller performs all address
527 * swizzling modifications."
528 */
529 bool swizzled =
530 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
531
532 isl_device_init(&device->isl_dev, &device->info, swizzled);
533
534 result = anv_physical_device_init_uuids(device);
535 if (result != VK_SUCCESS)
536 goto fail;
537
538 anv_physical_device_init_disk_cache(device);
539
540 if (instance->enabled_extensions.KHR_display) {
541 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
542 if (master_fd >= 0) {
543 /* prod the device with a GETPARAM call which will fail if
544 * we don't have permission to even render on this device
545 */
546 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
547 close(master_fd);
548 master_fd = -1;
549 }
550 }
551 }
552 device->master_fd = master_fd;
553
554 result = anv_init_wsi(device);
555 if (result != VK_SUCCESS) {
556 ralloc_free(device->compiler);
557 anv_physical_device_free_disk_cache(device);
558 goto fail;
559 }
560
561 device->perf = anv_get_perf(&device->info, fd);
562
563 anv_physical_device_get_supported_extensions(device,
564 &device->supported_extensions);
565
566
567 device->local_fd = fd;
568
569 return VK_SUCCESS;
570
571 fail:
572 close(fd);
573 if (master_fd != -1)
574 close(master_fd);
575 return result;
576 }
577
578 static void
579 anv_physical_device_finish(struct anv_physical_device *device)
580 {
581 anv_finish_wsi(device);
582 anv_physical_device_free_disk_cache(device);
583 ralloc_free(device->compiler);
584 ralloc_free(device->perf);
585 close(device->local_fd);
586 if (device->master_fd >= 0)
587 close(device->master_fd);
588 }
589
590 static void *
591 default_alloc_func(void *pUserData, size_t size, size_t align,
592 VkSystemAllocationScope allocationScope)
593 {
594 return malloc(size);
595 }
596
597 static void *
598 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
599 size_t align, VkSystemAllocationScope allocationScope)
600 {
601 return realloc(pOriginal, size);
602 }
603
604 static void
605 default_free_func(void *pUserData, void *pMemory)
606 {
607 free(pMemory);
608 }
609
610 static const VkAllocationCallbacks default_alloc = {
611 .pUserData = NULL,
612 .pfnAllocation = default_alloc_func,
613 .pfnReallocation = default_realloc_func,
614 .pfnFree = default_free_func,
615 };
616
617 VkResult anv_EnumerateInstanceExtensionProperties(
618 const char* pLayerName,
619 uint32_t* pPropertyCount,
620 VkExtensionProperties* pProperties)
621 {
622 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
623
624 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
625 if (anv_instance_extensions_supported.extensions[i]) {
626 vk_outarray_append(&out, prop) {
627 *prop = anv_instance_extensions[i];
628 }
629 }
630 }
631
632 return vk_outarray_status(&out);
633 }
634
635 VkResult anv_CreateInstance(
636 const VkInstanceCreateInfo* pCreateInfo,
637 const VkAllocationCallbacks* pAllocator,
638 VkInstance* pInstance)
639 {
640 struct anv_instance *instance;
641 VkResult result;
642
643 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
644
645 struct anv_instance_extension_table enabled_extensions = {};
646 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
647 int idx;
648 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
649 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
650 anv_instance_extensions[idx].extensionName) == 0)
651 break;
652 }
653
654 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
655 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
656
657 if (!anv_instance_extensions_supported.extensions[idx])
658 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
659
660 enabled_extensions.extensions[idx] = true;
661 }
662
663 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
664 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
665 if (!instance)
666 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
667
668 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
669
670 if (pAllocator)
671 instance->alloc = *pAllocator;
672 else
673 instance->alloc = default_alloc;
674
675 instance->app_info = (struct anv_app_info) { .api_version = 0 };
676 if (pCreateInfo->pApplicationInfo) {
677 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
678
679 instance->app_info.app_name =
680 vk_strdup(&instance->alloc, app->pApplicationName,
681 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
682 instance->app_info.app_version = app->applicationVersion;
683
684 instance->app_info.engine_name =
685 vk_strdup(&instance->alloc, app->pEngineName,
686 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
687 instance->app_info.engine_version = app->engineVersion;
688
689 instance->app_info.api_version = app->apiVersion;
690 }
691
692 if (instance->app_info.api_version == 0)
693 instance->app_info.api_version = VK_API_VERSION_1_0;
694
695 instance->enabled_extensions = enabled_extensions;
696
697 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
698 /* Vulkan requires that entrypoints for extensions which have not been
699 * enabled must not be advertised.
700 */
701 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
702 &instance->enabled_extensions)) {
703 instance->dispatch.entrypoints[i] = NULL;
704 } else {
705 instance->dispatch.entrypoints[i] =
706 anv_instance_dispatch_table.entrypoints[i];
707 }
708 }
709
710 struct anv_physical_device *pdevice = &instance->physicalDevice;
711 for (unsigned i = 0; i < ARRAY_SIZE(pdevice->dispatch.entrypoints); i++) {
712 /* Vulkan requires that entrypoints for extensions which have not been
713 * enabled must not be advertised.
714 */
715 if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
716 &instance->enabled_extensions)) {
717 pdevice->dispatch.entrypoints[i] = NULL;
718 } else {
719 pdevice->dispatch.entrypoints[i] =
720 anv_physical_device_dispatch_table.entrypoints[i];
721 }
722 }
723
724 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
725 /* Vulkan requires that entrypoints for extensions which have not been
726 * enabled must not be advertised.
727 */
728 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
729 &instance->enabled_extensions, NULL)) {
730 instance->device_dispatch.entrypoints[i] = NULL;
731 } else {
732 instance->device_dispatch.entrypoints[i] =
733 anv_device_dispatch_table.entrypoints[i];
734 }
735 }
736
737 instance->physicalDeviceCount = -1;
738
739 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
740 if (result != VK_SUCCESS) {
741 vk_free2(&default_alloc, pAllocator, instance);
742 return vk_error(result);
743 }
744
745 instance->pipeline_cache_enabled =
746 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
747
748 glsl_type_singleton_init_or_ref();
749
750 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
751
752 driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
753 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
754 0, "anv", NULL,
755 instance->app_info.engine_name,
756 instance->app_info.engine_version);
757
758 *pInstance = anv_instance_to_handle(instance);
759
760 return VK_SUCCESS;
761 }
762
763 void anv_DestroyInstance(
764 VkInstance _instance,
765 const VkAllocationCallbacks* pAllocator)
766 {
767 ANV_FROM_HANDLE(anv_instance, instance, _instance);
768
769 if (!instance)
770 return;
771
772 if (instance->physicalDeviceCount > 0) {
773 /* We support at most one physical device. */
774 assert(instance->physicalDeviceCount == 1);
775 anv_physical_device_finish(&instance->physicalDevice);
776 }
777
778 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
779 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
780
781 VG(VALGRIND_DESTROY_MEMPOOL(instance));
782
783 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
784
785 glsl_type_singleton_decref();
786
787 driDestroyOptionCache(&instance->dri_options);
788 driDestroyOptionInfo(&instance->available_dri_options);
789
790 vk_free(&instance->alloc, instance);
791 }
792
793 static VkResult
794 anv_enumerate_devices(struct anv_instance *instance)
795 {
796 /* TODO: Check for more devices ? */
797 drmDevicePtr devices[8];
798 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
799 int max_devices;
800
801 instance->physicalDeviceCount = 0;
802
803 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
804 if (max_devices < 1)
805 return VK_ERROR_INCOMPATIBLE_DRIVER;
806
807 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
808 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
809 devices[i]->bustype == DRM_BUS_PCI &&
810 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
811
812 result = anv_physical_device_init(&instance->physicalDevice,
813 instance, devices[i]);
814 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
815 break;
816 }
817 }
818 drmFreeDevices(devices, max_devices);
819
820 if (result == VK_SUCCESS)
821 instance->physicalDeviceCount = 1;
822
823 return result;
824 }
825
826 static VkResult
827 anv_instance_ensure_physical_device(struct anv_instance *instance)
828 {
829 if (instance->physicalDeviceCount < 0) {
830 VkResult result = anv_enumerate_devices(instance);
831 if (result != VK_SUCCESS &&
832 result != VK_ERROR_INCOMPATIBLE_DRIVER)
833 return result;
834 }
835
836 return VK_SUCCESS;
837 }
838
839 VkResult anv_EnumeratePhysicalDevices(
840 VkInstance _instance,
841 uint32_t* pPhysicalDeviceCount,
842 VkPhysicalDevice* pPhysicalDevices)
843 {
844 ANV_FROM_HANDLE(anv_instance, instance, _instance);
845 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
846
847 VkResult result = anv_instance_ensure_physical_device(instance);
848 if (result != VK_SUCCESS)
849 return result;
850
851 if (instance->physicalDeviceCount == 0)
852 return VK_SUCCESS;
853
854 assert(instance->physicalDeviceCount == 1);
855 vk_outarray_append(&out, i) {
856 *i = anv_physical_device_to_handle(&instance->physicalDevice);
857 }
858
859 return vk_outarray_status(&out);
860 }
861
862 VkResult anv_EnumeratePhysicalDeviceGroups(
863 VkInstance _instance,
864 uint32_t* pPhysicalDeviceGroupCount,
865 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
866 {
867 ANV_FROM_HANDLE(anv_instance, instance, _instance);
868 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
869 pPhysicalDeviceGroupCount);
870
871 VkResult result = anv_instance_ensure_physical_device(instance);
872 if (result != VK_SUCCESS)
873 return result;
874
875 if (instance->physicalDeviceCount == 0)
876 return VK_SUCCESS;
877
878 assert(instance->physicalDeviceCount == 1);
879
880 vk_outarray_append(&out, p) {
881 p->physicalDeviceCount = 1;
882 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
883 p->physicalDevices[0] =
884 anv_physical_device_to_handle(&instance->physicalDevice);
885 p->subsetAllocation = false;
886
887 vk_foreach_struct(ext, p->pNext)
888 anv_debug_ignored_stype(ext->sType);
889 }
890
891 return vk_outarray_status(&out);
892 }
893
894 void anv_GetPhysicalDeviceFeatures(
895 VkPhysicalDevice physicalDevice,
896 VkPhysicalDeviceFeatures* pFeatures)
897 {
898 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
899
900 *pFeatures = (VkPhysicalDeviceFeatures) {
901 .robustBufferAccess = true,
902 .fullDrawIndexUint32 = true,
903 .imageCubeArray = true,
904 .independentBlend = true,
905 .geometryShader = true,
906 .tessellationShader = true,
907 .sampleRateShading = true,
908 .dualSrcBlend = true,
909 .logicOp = true,
910 .multiDrawIndirect = true,
911 .drawIndirectFirstInstance = true,
912 .depthClamp = true,
913 .depthBiasClamp = true,
914 .fillModeNonSolid = true,
915 .depthBounds = pdevice->info.gen >= 12,
916 .wideLines = true,
917 .largePoints = true,
918 .alphaToOne = true,
919 .multiViewport = true,
920 .samplerAnisotropy = true,
921 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
922 pdevice->info.is_baytrail,
923 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
924 .textureCompressionBC = true,
925 .occlusionQueryPrecise = true,
926 .pipelineStatisticsQuery = true,
927 .fragmentStoresAndAtomics = true,
928 .shaderTessellationAndGeometryPointSize = true,
929 .shaderImageGatherExtended = true,
930 .shaderStorageImageExtendedFormats = true,
931 .shaderStorageImageMultisample = false,
932 .shaderStorageImageReadWithoutFormat = false,
933 .shaderStorageImageWriteWithoutFormat = true,
934 .shaderUniformBufferArrayDynamicIndexing = true,
935 .shaderSampledImageArrayDynamicIndexing = true,
936 .shaderStorageBufferArrayDynamicIndexing = true,
937 .shaderStorageImageArrayDynamicIndexing = true,
938 .shaderClipDistance = true,
939 .shaderCullDistance = true,
940 .shaderFloat64 = pdevice->info.gen >= 8 &&
941 pdevice->info.has_64bit_types,
942 .shaderInt64 = pdevice->info.gen >= 8 &&
943 pdevice->info.has_64bit_types,
944 .shaderInt16 = pdevice->info.gen >= 8,
945 .shaderResourceMinLod = pdevice->info.gen >= 9,
946 .variableMultisampleRate = true,
947 .inheritedQueries = true,
948 };
949
950 /* We can't do image stores in vec4 shaders */
951 pFeatures->vertexPipelineStoresAndAtomics =
952 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
953 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
954
955 struct anv_app_info *app_info = &pdevice->instance->app_info;
956
957 /* The new DOOM and Wolfenstein games require depthBounds without
958 * checking for it. They seem to run fine without it so just claim it's
959 * there and accept the consequences.
960 */
961 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
962 pFeatures->depthBounds = true;
963 }
964
965 void anv_GetPhysicalDeviceFeatures2(
966 VkPhysicalDevice physicalDevice,
967 VkPhysicalDeviceFeatures2* pFeatures)
968 {
969 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
970 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
971
972 vk_foreach_struct(ext, pFeatures->pNext) {
973 switch (ext->sType) {
974 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
975 VkPhysicalDevice8BitStorageFeaturesKHR *features =
976 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
977 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
978 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
979 features->storagePushConstant8 = pdevice->info.gen >= 8;
980 break;
981 }
982
983 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
984 VkPhysicalDevice16BitStorageFeatures *features =
985 (VkPhysicalDevice16BitStorageFeatures *)ext;
986 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
987 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
988 features->storagePushConstant16 = pdevice->info.gen >= 8;
989 features->storageInputOutput16 = false;
990 break;
991 }
992
993 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
994 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
995 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
996 features->bufferDeviceAddressCaptureReplay = false;
997 features->bufferDeviceAddressMultiDevice = false;
998 break;
999 }
1000
1001 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_KHR: {
1002 VkPhysicalDeviceBufferDeviceAddressFeaturesKHR *features = (void *)ext;
1003 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1004 features->bufferDeviceAddressCaptureReplay =
1005 pdevice->has_a64_buffer_access;
1006 features->bufferDeviceAddressMultiDevice = false;
1007 break;
1008 }
1009
1010 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1011 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1012 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1013 features->computeDerivativeGroupQuads = true;
1014 features->computeDerivativeGroupLinear = true;
1015 break;
1016 }
1017
1018 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1019 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1020 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1021 features->conditionalRendering = pdevice->info.gen >= 8 ||
1022 pdevice->info.is_haswell;
1023 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1024 pdevice->info.is_haswell;
1025 break;
1026 }
1027
1028 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1029 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1030 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1031 features->depthClipEnable = true;
1032 break;
1033 }
1034
1035 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1036 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1037 features->shaderFloat16 = pdevice->info.gen >= 8;
1038 features->shaderInt8 = pdevice->info.gen >= 8;
1039 break;
1040 }
1041
1042 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1043 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1044 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1045 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1046 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1047 features->fragmentShaderShadingRateInterlock = false;
1048 break;
1049 }
1050
1051 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1052 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1053 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1054 features->hostQueryReset = true;
1055 break;
1056 }
1057
1058 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1059 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1060 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1061 bool descIndexing = pdevice->has_a64_buffer_access &&
1062 pdevice->has_bindless_images;
1063 features->shaderInputAttachmentArrayDynamicIndexing = false;
1064 features->shaderUniformTexelBufferArrayDynamicIndexing = descIndexing;
1065 features->shaderStorageTexelBufferArrayDynamicIndexing = descIndexing;
1066 features->shaderUniformBufferArrayNonUniformIndexing = false;
1067 features->shaderSampledImageArrayNonUniformIndexing = descIndexing;
1068 features->shaderStorageBufferArrayNonUniformIndexing = descIndexing;
1069 features->shaderStorageImageArrayNonUniformIndexing = descIndexing;
1070 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1071 features->shaderUniformTexelBufferArrayNonUniformIndexing = descIndexing;
1072 features->shaderStorageTexelBufferArrayNonUniformIndexing = descIndexing;
1073 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1074 features->descriptorBindingSampledImageUpdateAfterBind = descIndexing;
1075 features->descriptorBindingStorageImageUpdateAfterBind = descIndexing;
1076 features->descriptorBindingStorageBufferUpdateAfterBind = descIndexing;
1077 features->descriptorBindingUniformTexelBufferUpdateAfterBind = descIndexing;
1078 features->descriptorBindingStorageTexelBufferUpdateAfterBind = descIndexing;
1079 features->descriptorBindingUpdateUnusedWhilePending = descIndexing;
1080 features->descriptorBindingPartiallyBound = descIndexing;
1081 features->descriptorBindingVariableDescriptorCount = false;
1082 features->runtimeDescriptorArray = descIndexing;
1083 break;
1084 }
1085
1086 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1087 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1088 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1089 features->indexTypeUint8 = true;
1090 break;
1091 }
1092
1093 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1094 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1095 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1096 features->inlineUniformBlock = true;
1097 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1098 break;
1099 }
1100
1101 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1102 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1103 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1104 features->rectangularLines = true;
1105 features->bresenhamLines = true;
1106 /* Support for Smooth lines with MSAA was removed on gen11. From the
1107 * BSpec section "Multisample ModesState" table for "AA Line Support
1108 * Requirements":
1109 *
1110 * GEN10:BUG:######## NUM_MULTISAMPLES == 1
1111 *
1112 * Fortunately, this isn't a case most people care about.
1113 */
1114 features->smoothLines = pdevice->info.gen < 10;
1115 features->stippledRectangularLines = false;
1116 features->stippledBresenhamLines = true;
1117 features->stippledSmoothLines = false;
1118 break;
1119 }
1120
1121 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1122 VkPhysicalDeviceMultiviewFeatures *features =
1123 (VkPhysicalDeviceMultiviewFeatures *)ext;
1124 features->multiview = true;
1125 features->multiviewGeometryShader = true;
1126 features->multiviewTessellationShader = true;
1127 break;
1128 }
1129
1130 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1131 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1132 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1133 features->imagelessFramebuffer = true;
1134 break;
1135 }
1136
1137 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1138 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1139 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1140 features->pipelineExecutableInfo = true;
1141 break;
1142 }
1143
1144 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1145 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1146 features->protectedMemory = false;
1147 break;
1148 }
1149
1150 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1151 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1152 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1153 features->samplerYcbcrConversion = true;
1154 break;
1155 }
1156
1157 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1158 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1159 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1160 features->scalarBlockLayout = true;
1161 break;
1162 }
1163
1164 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: {
1165 VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *features =
1166 (VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *)ext;
1167 features->separateDepthStencilLayouts = true;
1168 break;
1169 }
1170
1171 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1172 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1173 features->shaderBufferInt64Atomics =
1174 pdevice->info.gen >= 9 && pdevice->use_softpin;
1175 features->shaderSharedInt64Atomics = VK_FALSE;
1176 break;
1177 }
1178
1179 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1180 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1181 features->shaderDemoteToHelperInvocation = true;
1182 break;
1183 }
1184
1185 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1186 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1187 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1188 features->shaderSubgroupClock = true;
1189 features->shaderDeviceClock = false;
1190 break;
1191 }
1192
1193 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1194 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1195 features->shaderDrawParameters = true;
1196 break;
1197 }
1198
1199 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
1200 VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
1201 (VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
1202 features->shaderSubgroupExtendedTypes = true;
1203 break;
1204 }
1205
1206 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1207 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1208 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1209 features->subgroupSizeControl = true;
1210 features->computeFullSubgroups = true;
1211 break;
1212 }
1213
1214 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1215 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1216 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1217 features->texelBufferAlignment = true;
1218 break;
1219 }
1220
1221 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES_KHR: {
1222 VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *features =
1223 (VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *) ext;
1224 features->timelineSemaphore = true;
1225 break;
1226 }
1227
1228 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1229 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1230 features->variablePointersStorageBuffer = true;
1231 features->variablePointers = true;
1232 break;
1233 }
1234
1235 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1236 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1237 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1238 features->transformFeedback = true;
1239 features->geometryStreams = true;
1240 break;
1241 }
1242
1243 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1244 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1245 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1246 features->uniformBufferStandardLayout = true;
1247 break;
1248 }
1249
1250 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1251 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1252 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1253 features->vertexAttributeInstanceRateDivisor = true;
1254 features->vertexAttributeInstanceRateZeroDivisor = true;
1255 break;
1256 }
1257
1258 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR: {
1259 VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *features = (void *)ext;
1260 features->vulkanMemoryModel = true;
1261 features->vulkanMemoryModelDeviceScope = true;
1262 features->vulkanMemoryModelAvailabilityVisibilityChains = true;
1263 break;
1264 }
1265
1266 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1267 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1268 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1269 features->ycbcrImageArrays = true;
1270 break;
1271 }
1272
1273 default:
1274 anv_debug_ignored_stype(ext->sType);
1275 break;
1276 }
1277 }
1278 }
1279
1280 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1281
1282 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1283 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1284
1285 void anv_GetPhysicalDeviceProperties(
1286 VkPhysicalDevice physicalDevice,
1287 VkPhysicalDeviceProperties* pProperties)
1288 {
1289 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1290 const struct gen_device_info *devinfo = &pdevice->info;
1291
1292 /* See assertions made when programming the buffer surface state. */
1293 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1294 (1ul << 30) : (1ul << 27);
1295
1296 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1297 const uint32_t max_textures =
1298 pdevice->has_bindless_images ? UINT16_MAX : 128;
1299 const uint32_t max_samplers =
1300 pdevice->has_bindless_samplers ? UINT16_MAX :
1301 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1302 const uint32_t max_images =
1303 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1304
1305 /* If we can use bindless for everything, claim a high per-stage limit,
1306 * otherwise use the binding table size, minus the slots reserved for
1307 * render targets and one slot for the descriptor buffer. */
1308 const uint32_t max_per_stage =
1309 pdevice->has_bindless_images && pdevice->has_a64_buffer_access
1310 ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
1311
1312 const uint32_t max_workgroup_size = 32 * devinfo->max_cs_threads;
1313
1314 VkSampleCountFlags sample_counts =
1315 isl_device_get_sample_counts(&pdevice->isl_dev);
1316
1317
1318 VkPhysicalDeviceLimits limits = {
1319 .maxImageDimension1D = (1 << 14),
1320 .maxImageDimension2D = (1 << 14),
1321 .maxImageDimension3D = (1 << 11),
1322 .maxImageDimensionCube = (1 << 14),
1323 .maxImageArrayLayers = (1 << 11),
1324 .maxTexelBufferElements = 128 * 1024 * 1024,
1325 .maxUniformBufferRange = (1ul << 27),
1326 .maxStorageBufferRange = max_raw_buffer_sz,
1327 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1328 .maxMemoryAllocationCount = UINT32_MAX,
1329 .maxSamplerAllocationCount = 64 * 1024,
1330 .bufferImageGranularity = 64, /* A cache line */
1331 .sparseAddressSpaceSize = 0,
1332 .maxBoundDescriptorSets = MAX_SETS,
1333 .maxPerStageDescriptorSamplers = max_samplers,
1334 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1335 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1336 .maxPerStageDescriptorSampledImages = max_textures,
1337 .maxPerStageDescriptorStorageImages = max_images,
1338 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1339 .maxPerStageResources = max_per_stage,
1340 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1341 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1342 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1343 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1344 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1345 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1346 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1347 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1348 .maxVertexInputAttributes = MAX_VBS,
1349 .maxVertexInputBindings = MAX_VBS,
1350 .maxVertexInputAttributeOffset = 2047,
1351 .maxVertexInputBindingStride = 2048,
1352 .maxVertexOutputComponents = 128,
1353 .maxTessellationGenerationLevel = 64,
1354 .maxTessellationPatchSize = 32,
1355 .maxTessellationControlPerVertexInputComponents = 128,
1356 .maxTessellationControlPerVertexOutputComponents = 128,
1357 .maxTessellationControlPerPatchOutputComponents = 128,
1358 .maxTessellationControlTotalOutputComponents = 2048,
1359 .maxTessellationEvaluationInputComponents = 128,
1360 .maxTessellationEvaluationOutputComponents = 128,
1361 .maxGeometryShaderInvocations = 32,
1362 .maxGeometryInputComponents = 64,
1363 .maxGeometryOutputComponents = 128,
1364 .maxGeometryOutputVertices = 256,
1365 .maxGeometryTotalOutputComponents = 1024,
1366 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1367 .maxFragmentOutputAttachments = 8,
1368 .maxFragmentDualSrcAttachments = 1,
1369 .maxFragmentCombinedOutputResources = 8,
1370 .maxComputeSharedMemorySize = 64 * 1024,
1371 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1372 .maxComputeWorkGroupInvocations = max_workgroup_size,
1373 .maxComputeWorkGroupSize = {
1374 max_workgroup_size,
1375 max_workgroup_size,
1376 max_workgroup_size,
1377 },
1378 .subPixelPrecisionBits = 8,
1379 .subTexelPrecisionBits = 8,
1380 .mipmapPrecisionBits = 8,
1381 .maxDrawIndexedIndexValue = UINT32_MAX,
1382 .maxDrawIndirectCount = UINT32_MAX,
1383 .maxSamplerLodBias = 16,
1384 .maxSamplerAnisotropy = 16,
1385 .maxViewports = MAX_VIEWPORTS,
1386 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1387 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1388 .viewportSubPixelBits = 13, /* We take a float? */
1389 .minMemoryMapAlignment = 4096, /* A page */
1390 /* The dataport requires texel alignment so we need to assume a worst
1391 * case of R32G32B32A32 which is 16 bytes.
1392 */
1393 .minTexelBufferOffsetAlignment = 16,
1394 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1395 .minUniformBufferOffsetAlignment = 32,
1396 .minStorageBufferOffsetAlignment = 4,
1397 .minTexelOffset = -8,
1398 .maxTexelOffset = 7,
1399 .minTexelGatherOffset = -32,
1400 .maxTexelGatherOffset = 31,
1401 .minInterpolationOffset = -0.5,
1402 .maxInterpolationOffset = 0.4375,
1403 .subPixelInterpolationOffsetBits = 4,
1404 .maxFramebufferWidth = (1 << 14),
1405 .maxFramebufferHeight = (1 << 14),
1406 .maxFramebufferLayers = (1 << 11),
1407 .framebufferColorSampleCounts = sample_counts,
1408 .framebufferDepthSampleCounts = sample_counts,
1409 .framebufferStencilSampleCounts = sample_counts,
1410 .framebufferNoAttachmentsSampleCounts = sample_counts,
1411 .maxColorAttachments = MAX_RTS,
1412 .sampledImageColorSampleCounts = sample_counts,
1413 .sampledImageIntegerSampleCounts = sample_counts,
1414 .sampledImageDepthSampleCounts = sample_counts,
1415 .sampledImageStencilSampleCounts = sample_counts,
1416 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1417 .maxSampleMaskWords = 1,
1418 .timestampComputeAndGraphics = true,
1419 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1420 .maxClipDistances = 8,
1421 .maxCullDistances = 8,
1422 .maxCombinedClipAndCullDistances = 8,
1423 .discreteQueuePriorities = 2,
1424 .pointSizeRange = { 0.125, 255.875 },
1425 .lineWidthRange = {
1426 0.0,
1427 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1428 2047.9921875 : 7.9921875,
1429 },
1430 .pointSizeGranularity = (1.0 / 8.0),
1431 .lineWidthGranularity = (1.0 / 128.0),
1432 .strictLines = false,
1433 .standardSampleLocations = true,
1434 .optimalBufferCopyOffsetAlignment = 128,
1435 .optimalBufferCopyRowPitchAlignment = 128,
1436 .nonCoherentAtomSize = 64,
1437 };
1438
1439 *pProperties = (VkPhysicalDeviceProperties) {
1440 .apiVersion = anv_physical_device_api_version(pdevice),
1441 .driverVersion = vk_get_driver_version(),
1442 .vendorID = 0x8086,
1443 .deviceID = pdevice->chipset_id,
1444 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1445 .limits = limits,
1446 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1447 };
1448
1449 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1450 "%s", pdevice->name);
1451 memcpy(pProperties->pipelineCacheUUID,
1452 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1453 }
1454
1455 void anv_GetPhysicalDeviceProperties2(
1456 VkPhysicalDevice physicalDevice,
1457 VkPhysicalDeviceProperties2* pProperties)
1458 {
1459 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1460
1461 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1462
1463 vk_foreach_struct(ext, pProperties->pNext) {
1464 switch (ext->sType) {
1465 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1466 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1467 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1468
1469 /* We support all of the depth resolve modes */
1470 props->supportedDepthResolveModes =
1471 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1472 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1473 VK_RESOLVE_MODE_MIN_BIT_KHR |
1474 VK_RESOLVE_MODE_MAX_BIT_KHR;
1475
1476 /* Average doesn't make sense for stencil so we don't support that */
1477 props->supportedStencilResolveModes =
1478 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1479 if (pdevice->info.gen >= 8) {
1480 /* The advanced stencil resolve modes currently require stencil
1481 * sampling be supported by the hardware.
1482 */
1483 props->supportedStencilResolveModes |=
1484 VK_RESOLVE_MODE_MIN_BIT_KHR |
1485 VK_RESOLVE_MODE_MAX_BIT_KHR;
1486 }
1487
1488 props->independentResolveNone = true;
1489 props->independentResolve = true;
1490 break;
1491 }
1492
1493 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1494 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1495 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1496
1497 /* It's a bit hard to exactly map our implementation to the limits
1498 * described here. The bindless surface handle in the extended
1499 * message descriptors is 20 bits and it's an index into the table of
1500 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1501 * address. Given that most things consume two surface states per
1502 * view (general/sampled for textures and write-only/read-write for
1503 * images), we claim 2^19 things.
1504 *
1505 * For SSBOs, we just use A64 messages so there is no real limit
1506 * there beyond the limit on the total size of a descriptor set.
1507 */
1508 const unsigned max_bindless_views = 1 << 19;
1509
1510 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1511 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1512 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1513 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1514 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1515 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1516 props->robustBufferAccessUpdateAfterBind = true;
1517 props->quadDivergentImplicitLod = false;
1518 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1519 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1520 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1521 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1522 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1523 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1524 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1525 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1526 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1527 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1528 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1529 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1530 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1531 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1532 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1533 break;
1534 }
1535
1536 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1537 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1538 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1539
1540 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1541 snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1542 "Intel open-source Mesa driver");
1543
1544 snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1545 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1546
1547 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1548 .major = 1,
1549 .minor = 1,
1550 .subminor = 2,
1551 .patch = 0,
1552 };
1553 break;
1554 }
1555
1556 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1557 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1558 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1559 /* Userptr needs page aligned memory. */
1560 props->minImportedHostPointerAlignment = 4096;
1561 break;
1562 }
1563
1564 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1565 VkPhysicalDeviceIDProperties *id_props =
1566 (VkPhysicalDeviceIDProperties *)ext;
1567 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1568 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1569 /* The LUID is for Windows. */
1570 id_props->deviceLUIDValid = false;
1571 break;
1572 }
1573
1574 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1575 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1576 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1577 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1578 props->maxPerStageDescriptorInlineUniformBlocks =
1579 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1580 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1581 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1582 props->maxDescriptorSetInlineUniformBlocks =
1583 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1584 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1585 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1586 break;
1587 }
1588
1589 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1590 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1591 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1592 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1593 * Sampling Rules - Legacy Mode", it says the following:
1594 *
1595 * "Note that the device divides a pixel into a 16x16 array of
1596 * subpixels, referenced by their upper left corners."
1597 *
1598 * This is the only known reference in the PRMs to the subpixel
1599 * precision of line rasterization and a "16x16 array of subpixels"
1600 * implies 4 subpixel precision bits. Empirical testing has shown
1601 * that 4 subpixel precision bits applies to all line rasterization
1602 * types.
1603 */
1604 props->lineSubPixelPrecisionBits = 4;
1605 break;
1606 }
1607
1608 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1609 VkPhysicalDeviceMaintenance3Properties *props =
1610 (VkPhysicalDeviceMaintenance3Properties *)ext;
1611 /* This value doesn't matter for us today as our per-stage
1612 * descriptors are the real limit.
1613 */
1614 props->maxPerSetDescriptors = 1024;
1615 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1616 break;
1617 }
1618
1619 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1620 VkPhysicalDeviceMultiviewProperties *properties =
1621 (VkPhysicalDeviceMultiviewProperties *)ext;
1622 properties->maxMultiviewViewCount = 16;
1623 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1624 break;
1625 }
1626
1627 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1628 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1629 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1630 properties->pciDomain = pdevice->pci_info.domain;
1631 properties->pciBus = pdevice->pci_info.bus;
1632 properties->pciDevice = pdevice->pci_info.device;
1633 properties->pciFunction = pdevice->pci_info.function;
1634 break;
1635 }
1636
1637 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1638 VkPhysicalDevicePointClippingProperties *properties =
1639 (VkPhysicalDevicePointClippingProperties *) ext;
1640 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1641 break;
1642 }
1643
1644 #pragma GCC diagnostic push
1645 #pragma GCC diagnostic ignored "-Wswitch"
1646 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1647 VkPhysicalDevicePresentationPropertiesANDROID *props =
1648 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1649 props->sharedImage = VK_FALSE;
1650 break;
1651 }
1652 #pragma GCC diagnostic pop
1653
1654 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1655 VkPhysicalDeviceProtectedMemoryProperties *props =
1656 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1657 props->protectedNoFault = false;
1658 break;
1659 }
1660
1661 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1662 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1663 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1664
1665 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1666 break;
1667 }
1668
1669 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1670 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1671 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1672 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1673 properties->filterMinmaxSingleComponentFormats = pdevice->info.gen >= 9;
1674 break;
1675 }
1676
1677 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1678 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1679
1680 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1681
1682 VkShaderStageFlags scalar_stages = 0;
1683 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1684 if (pdevice->compiler->scalar_stage[stage])
1685 scalar_stages |= mesa_to_vk_shader_stage(stage);
1686 }
1687 properties->supportedStages = scalar_stages;
1688
1689 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1690 VK_SUBGROUP_FEATURE_VOTE_BIT |
1691 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1692 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1693 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1694 VK_SUBGROUP_FEATURE_QUAD_BIT;
1695 if (pdevice->info.gen >= 8) {
1696 /* TODO: There's no technical reason why these can't be made to
1697 * work on gen7 but they don't at the moment so it's best to leave
1698 * the feature disabled than enabled and broken.
1699 */
1700 properties->supportedOperations |=
1701 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1702 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1703 }
1704 properties->quadOperationsInAllStages = pdevice->info.gen >= 8;
1705 break;
1706 }
1707
1708 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1709 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1710 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1711 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1712 props->minSubgroupSize = 8;
1713 props->maxSubgroupSize = 32;
1714 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1715 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1716 break;
1717 }
1718 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
1719 VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
1720 properties->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1721 properties->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
1722
1723 /* Broadwell does not support HF denorms and there are restrictions
1724 * other gens. According to Kabylake's PRM:
1725 *
1726 * "math - Extended Math Function
1727 * [...]
1728 * Restriction : Half-float denorms are always retained."
1729 */
1730 properties->shaderDenormFlushToZeroFloat16 = false;
1731 properties->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
1732 properties->shaderRoundingModeRTEFloat16 = true;
1733 properties->shaderRoundingModeRTZFloat16 = true;
1734 properties->shaderSignedZeroInfNanPreserveFloat16 = true;
1735
1736 properties->shaderDenormFlushToZeroFloat32 = true;
1737 properties->shaderDenormPreserveFloat32 = true;
1738 properties->shaderRoundingModeRTEFloat32 = true;
1739 properties->shaderRoundingModeRTZFloat32 = true;
1740 properties->shaderSignedZeroInfNanPreserveFloat32 = true;
1741
1742 properties->shaderDenormFlushToZeroFloat64 = true;
1743 properties->shaderDenormPreserveFloat64 = true;
1744 properties->shaderRoundingModeRTEFloat64 = true;
1745 properties->shaderRoundingModeRTZFloat64 = true;
1746 properties->shaderSignedZeroInfNanPreserveFloat64 = true;
1747 break;
1748 }
1749
1750 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1751 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1752 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1753
1754 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1755 * Base Address:
1756 *
1757 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1758 * specifies the base address of the first element of the surface,
1759 * computed in software by adding the surface base address to the
1760 * byte offset of the element in the buffer. The base address must
1761 * be aligned to element size."
1762 *
1763 * The typed dataport messages require that things be texel aligned.
1764 * Otherwise, we may just load/store the wrong data or, in the worst
1765 * case, there may be hangs.
1766 */
1767 props->storageTexelBufferOffsetAlignmentBytes = 16;
1768 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1769
1770 /* The sampler, however, is much more forgiving and it can handle
1771 * arbitrary byte alignment for linear and buffer surfaces. It's
1772 * hard to find a good PRM citation for this but years of empirical
1773 * experience demonstrate that this is true.
1774 */
1775 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1776 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1777 break;
1778 }
1779
1780 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES_KHR: {
1781 VkPhysicalDeviceTimelineSemaphorePropertiesKHR *props =
1782 (VkPhysicalDeviceTimelineSemaphorePropertiesKHR *) ext;
1783 props->maxTimelineSemaphoreValueDifference = UINT64_MAX;
1784 break;
1785 }
1786
1787 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1788 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1789 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1790
1791 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1792 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1793 props->maxTransformFeedbackBufferSize = (1ull << 32);
1794 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1795 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1796 props->maxTransformFeedbackBufferDataStride = 2048;
1797 props->transformFeedbackQueries = true;
1798 props->transformFeedbackStreamsLinesTriangles = false;
1799 props->transformFeedbackRasterizationStreamSelect = false;
1800 props->transformFeedbackDraw = true;
1801 break;
1802 }
1803
1804 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1805 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1806 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1807 /* We have to restrict this a bit for multiview */
1808 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1809 break;
1810 }
1811
1812 default:
1813 anv_debug_ignored_stype(ext->sType);
1814 break;
1815 }
1816 }
1817 }
1818
1819 /* We support exactly one queue family. */
1820 static const VkQueueFamilyProperties
1821 anv_queue_family_properties = {
1822 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1823 VK_QUEUE_COMPUTE_BIT |
1824 VK_QUEUE_TRANSFER_BIT,
1825 .queueCount = 1,
1826 .timestampValidBits = 36, /* XXX: Real value here */
1827 .minImageTransferGranularity = { 1, 1, 1 },
1828 };
1829
1830 void anv_GetPhysicalDeviceQueueFamilyProperties(
1831 VkPhysicalDevice physicalDevice,
1832 uint32_t* pCount,
1833 VkQueueFamilyProperties* pQueueFamilyProperties)
1834 {
1835 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1836
1837 vk_outarray_append(&out, p) {
1838 *p = anv_queue_family_properties;
1839 }
1840 }
1841
1842 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1843 VkPhysicalDevice physicalDevice,
1844 uint32_t* pQueueFamilyPropertyCount,
1845 VkQueueFamilyProperties2* pQueueFamilyProperties)
1846 {
1847
1848 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1849
1850 vk_outarray_append(&out, p) {
1851 p->queueFamilyProperties = anv_queue_family_properties;
1852
1853 vk_foreach_struct(s, p->pNext) {
1854 anv_debug_ignored_stype(s->sType);
1855 }
1856 }
1857 }
1858
1859 void anv_GetPhysicalDeviceMemoryProperties(
1860 VkPhysicalDevice physicalDevice,
1861 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1862 {
1863 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1864
1865 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1866 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1867 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1868 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1869 .heapIndex = physical_device->memory.types[i].heapIndex,
1870 };
1871 }
1872
1873 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1874 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1875 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1876 .size = physical_device->memory.heaps[i].size,
1877 .flags = physical_device->memory.heaps[i].flags,
1878 };
1879 }
1880 }
1881
1882 static void
1883 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1884 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1885 {
1886 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1887 uint64_t sys_available = get_available_system_memory();
1888 assert(sys_available > 0);
1889
1890 VkDeviceSize total_heaps_size = 0;
1891 for (size_t i = 0; i < device->memory.heap_count; i++)
1892 total_heaps_size += device->memory.heaps[i].size;
1893
1894 for (size_t i = 0; i < device->memory.heap_count; i++) {
1895 VkDeviceSize heap_size = device->memory.heaps[i].size;
1896 VkDeviceSize heap_used = device->memory.heaps[i].used;
1897 VkDeviceSize heap_budget;
1898
1899 double heap_proportion = (double) heap_size / total_heaps_size;
1900 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1901
1902 /*
1903 * Let's not incite the app to starve the system: report at most 90% of
1904 * available system memory.
1905 */
1906 uint64_t heap_available = sys_available_prop * 9 / 10;
1907 heap_budget = MIN2(heap_size, heap_used + heap_available);
1908
1909 /*
1910 * Round down to the nearest MB
1911 */
1912 heap_budget &= ~((1ull << 20) - 1);
1913
1914 /*
1915 * The heapBudget value must be non-zero for array elements less than
1916 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1917 * value must be less than or equal to VkMemoryHeap::size for each heap.
1918 */
1919 assert(0 < heap_budget && heap_budget <= heap_size);
1920
1921 memoryBudget->heapUsage[i] = heap_used;
1922 memoryBudget->heapBudget[i] = heap_budget;
1923 }
1924
1925 /* The heapBudget and heapUsage values must be zero for array elements
1926 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1927 */
1928 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1929 memoryBudget->heapBudget[i] = 0;
1930 memoryBudget->heapUsage[i] = 0;
1931 }
1932 }
1933
1934 void anv_GetPhysicalDeviceMemoryProperties2(
1935 VkPhysicalDevice physicalDevice,
1936 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1937 {
1938 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1939 &pMemoryProperties->memoryProperties);
1940
1941 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1942 switch (ext->sType) {
1943 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1944 anv_get_memory_budget(physicalDevice, (void*)ext);
1945 break;
1946 default:
1947 anv_debug_ignored_stype(ext->sType);
1948 break;
1949 }
1950 }
1951 }
1952
1953 void
1954 anv_GetDeviceGroupPeerMemoryFeatures(
1955 VkDevice device,
1956 uint32_t heapIndex,
1957 uint32_t localDeviceIndex,
1958 uint32_t remoteDeviceIndex,
1959 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1960 {
1961 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1962 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1963 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1964 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1965 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1966 }
1967
1968 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1969 VkInstance _instance,
1970 const char* pName)
1971 {
1972 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1973
1974 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1975 * when we have to return valid function pointers, NULL, or it's left
1976 * undefined. See the table for exact details.
1977 */
1978 if (pName == NULL)
1979 return NULL;
1980
1981 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1982 if (strcmp(pName, "vk" #entrypoint) == 0) \
1983 return (PFN_vkVoidFunction)anv_##entrypoint
1984
1985 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1986 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1987 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1988 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1989
1990 #undef LOOKUP_ANV_ENTRYPOINT
1991
1992 if (instance == NULL)
1993 return NULL;
1994
1995 int idx = anv_get_instance_entrypoint_index(pName);
1996 if (idx >= 0)
1997 return instance->dispatch.entrypoints[idx];
1998
1999 idx = anv_get_physical_device_entrypoint_index(pName);
2000 if (idx >= 0)
2001 return instance->physicalDevice.dispatch.entrypoints[idx];
2002
2003 idx = anv_get_device_entrypoint_index(pName);
2004 if (idx >= 0)
2005 return instance->device_dispatch.entrypoints[idx];
2006
2007 return NULL;
2008 }
2009
2010 /* With version 1+ of the loader interface the ICD should expose
2011 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
2012 */
2013 PUBLIC
2014 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2015 VkInstance instance,
2016 const char* pName);
2017
2018 PUBLIC
2019 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2020 VkInstance instance,
2021 const char* pName)
2022 {
2023 return anv_GetInstanceProcAddr(instance, pName);
2024 }
2025
2026 PFN_vkVoidFunction anv_GetDeviceProcAddr(
2027 VkDevice _device,
2028 const char* pName)
2029 {
2030 ANV_FROM_HANDLE(anv_device, device, _device);
2031
2032 if (!device || !pName)
2033 return NULL;
2034
2035 int idx = anv_get_device_entrypoint_index(pName);
2036 if (idx < 0)
2037 return NULL;
2038
2039 return device->dispatch.entrypoints[idx];
2040 }
2041
2042 /* With version 4+ of the loader interface the ICD should expose
2043 * vk_icdGetPhysicalDeviceProcAddr()
2044 */
2045 PUBLIC
2046 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
2047 VkInstance _instance,
2048 const char* pName);
2049
2050 PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
2051 VkInstance _instance,
2052 const char* pName)
2053 {
2054 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2055
2056 if (!pName || !instance)
2057 return NULL;
2058
2059 int idx = anv_get_physical_device_entrypoint_index(pName);
2060 if (idx < 0)
2061 return NULL;
2062
2063 return instance->physicalDevice.dispatch.entrypoints[idx];
2064 }
2065
2066
2067 VkResult
2068 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
2069 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
2070 const VkAllocationCallbacks* pAllocator,
2071 VkDebugReportCallbackEXT* pCallback)
2072 {
2073 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2074 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2075 pCreateInfo, pAllocator, &instance->alloc,
2076 pCallback);
2077 }
2078
2079 void
2080 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
2081 VkDebugReportCallbackEXT _callback,
2082 const VkAllocationCallbacks* pAllocator)
2083 {
2084 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2085 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2086 _callback, pAllocator, &instance->alloc);
2087 }
2088
2089 void
2090 anv_DebugReportMessageEXT(VkInstance _instance,
2091 VkDebugReportFlagsEXT flags,
2092 VkDebugReportObjectTypeEXT objectType,
2093 uint64_t object,
2094 size_t location,
2095 int32_t messageCode,
2096 const char* pLayerPrefix,
2097 const char* pMessage)
2098 {
2099 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2100 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2101 object, location, messageCode, pLayerPrefix, pMessage);
2102 }
2103
2104 static struct anv_state
2105 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2106 {
2107 struct anv_state state;
2108
2109 state = anv_state_pool_alloc(pool, size, align);
2110 memcpy(state.map, p, size);
2111
2112 return state;
2113 }
2114
2115 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
2116 * straightforward 32-bit float color in the first 64 bytes. Instead of using
2117 * a nice float/integer union like Gen8+, Haswell specifies the integer border
2118 * color as a separate entry /after/ the float color. The layout of this entry
2119 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
2120 *
2121 * Since we don't know the format/bpp, we can't make any of the border colors
2122 * containing '1' work for all formats, as it would be in the wrong place for
2123 * some of them. We opt to make 32-bit integers work as this seems like the
2124 * most common option. Fortunately, transparent black works regardless, as
2125 * all zeroes is the same in every bit-size.
2126 */
2127 struct hsw_border_color {
2128 float float32[4];
2129 uint32_t _pad0[12];
2130 uint32_t uint32[4];
2131 uint32_t _pad1[108];
2132 };
2133
2134 struct gen8_border_color {
2135 union {
2136 float float32[4];
2137 uint32_t uint32[4];
2138 };
2139 /* Pad out to 64 bytes */
2140 uint32_t _pad[12];
2141 };
2142
2143 static void
2144 anv_device_init_border_colors(struct anv_device *device)
2145 {
2146 if (device->info.is_haswell) {
2147 static const struct hsw_border_color border_colors[] = {
2148 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2149 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2150 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2151 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2152 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2153 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2154 };
2155
2156 device->border_colors =
2157 anv_state_pool_emit_data(&device->dynamic_state_pool,
2158 sizeof(border_colors), 512, border_colors);
2159 } else {
2160 static const struct gen8_border_color border_colors[] = {
2161 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2162 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2163 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2164 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2165 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2166 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2167 };
2168
2169 device->border_colors =
2170 anv_state_pool_emit_data(&device->dynamic_state_pool,
2171 sizeof(border_colors), 64, border_colors);
2172 }
2173 }
2174
2175 static VkResult
2176 anv_device_init_trivial_batch(struct anv_device *device)
2177 {
2178 VkResult result = anv_device_alloc_bo(device, 4096,
2179 ANV_BO_ALLOC_MAPPED,
2180 0 /* explicit_address */,
2181 &device->trivial_batch_bo);
2182 if (result != VK_SUCCESS)
2183 return result;
2184
2185 struct anv_batch batch = {
2186 .start = device->trivial_batch_bo->map,
2187 .next = device->trivial_batch_bo->map,
2188 .end = device->trivial_batch_bo->map + 4096,
2189 };
2190
2191 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2192 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2193
2194 if (!device->info.has_llc)
2195 gen_clflush_range(batch.start, batch.next - batch.start);
2196
2197 return VK_SUCCESS;
2198 }
2199
2200 VkResult anv_EnumerateDeviceExtensionProperties(
2201 VkPhysicalDevice physicalDevice,
2202 const char* pLayerName,
2203 uint32_t* pPropertyCount,
2204 VkExtensionProperties* pProperties)
2205 {
2206 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2207 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2208
2209 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2210 if (device->supported_extensions.extensions[i]) {
2211 vk_outarray_append(&out, prop) {
2212 *prop = anv_device_extensions[i];
2213 }
2214 }
2215 }
2216
2217 return vk_outarray_status(&out);
2218 }
2219
2220 static void
2221 anv_device_init_dispatch(struct anv_device *device)
2222 {
2223 const struct anv_device_dispatch_table *genX_table;
2224 switch (device->info.gen) {
2225 case 12:
2226 genX_table = &gen12_device_dispatch_table;
2227 break;
2228 case 11:
2229 genX_table = &gen11_device_dispatch_table;
2230 break;
2231 case 10:
2232 genX_table = &gen10_device_dispatch_table;
2233 break;
2234 case 9:
2235 genX_table = &gen9_device_dispatch_table;
2236 break;
2237 case 8:
2238 genX_table = &gen8_device_dispatch_table;
2239 break;
2240 case 7:
2241 if (device->info.is_haswell)
2242 genX_table = &gen75_device_dispatch_table;
2243 else
2244 genX_table = &gen7_device_dispatch_table;
2245 break;
2246 default:
2247 unreachable("unsupported gen\n");
2248 }
2249
2250 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2251 /* Vulkan requires that entrypoints for extensions which have not been
2252 * enabled must not be advertised.
2253 */
2254 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
2255 &device->instance->enabled_extensions,
2256 &device->enabled_extensions)) {
2257 device->dispatch.entrypoints[i] = NULL;
2258 } else if (genX_table->entrypoints[i]) {
2259 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2260 } else {
2261 device->dispatch.entrypoints[i] =
2262 anv_device_dispatch_table.entrypoints[i];
2263 }
2264 }
2265 }
2266
2267 static int
2268 vk_priority_to_gen(int priority)
2269 {
2270 switch (priority) {
2271 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2272 return GEN_CONTEXT_LOW_PRIORITY;
2273 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2274 return GEN_CONTEXT_MEDIUM_PRIORITY;
2275 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2276 return GEN_CONTEXT_HIGH_PRIORITY;
2277 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2278 return GEN_CONTEXT_REALTIME_PRIORITY;
2279 default:
2280 unreachable("Invalid priority");
2281 }
2282 }
2283
2284 static VkResult
2285 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2286 {
2287 VkResult result = anv_device_alloc_bo(device, 4096,
2288 ANV_BO_ALLOC_MAPPED,
2289 0 /* explicit_address */,
2290 &device->hiz_clear_bo);
2291 if (result != VK_SUCCESS)
2292 return result;
2293
2294 union isl_color_value hiz_clear = { .u32 = { 0, } };
2295 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2296
2297 memcpy(device->hiz_clear_bo->map, hiz_clear.u32, sizeof(hiz_clear.u32));
2298
2299 if (!device->info.has_llc)
2300 gen_clflush_range(device->hiz_clear_bo->map, sizeof(hiz_clear.u32));
2301
2302 return VK_SUCCESS;
2303 }
2304
2305 static bool
2306 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2307 struct anv_block_pool *pool,
2308 uint64_t address)
2309 {
2310 anv_block_pool_foreach_bo(bo, pool) {
2311 uint64_t bo_address = gen_48b_address(bo->offset);
2312 if (address >= bo_address && address < (bo_address + bo->size)) {
2313 *ret = (struct gen_batch_decode_bo) {
2314 .addr = bo_address,
2315 .size = bo->size,
2316 .map = bo->map,
2317 };
2318 return true;
2319 }
2320 }
2321 return false;
2322 }
2323
2324 /* Finding a buffer for batch decoding */
2325 static struct gen_batch_decode_bo
2326 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2327 {
2328 struct anv_device *device = v_batch;
2329 struct gen_batch_decode_bo ret_bo = {};
2330
2331 assert(ppgtt);
2332
2333 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2334 return ret_bo;
2335 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2336 return ret_bo;
2337 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2338 return ret_bo;
2339 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2340 return ret_bo;
2341
2342 if (!device->cmd_buffer_being_decoded)
2343 return (struct gen_batch_decode_bo) { };
2344
2345 struct anv_batch_bo **bo;
2346
2347 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2348 /* The decoder zeroes out the top 16 bits, so we need to as well */
2349 uint64_t bo_address = (*bo)->bo->offset & (~0ull >> 16);
2350
2351 if (address >= bo_address && address < bo_address + (*bo)->bo->size) {
2352 return (struct gen_batch_decode_bo) {
2353 .addr = bo_address,
2354 .size = (*bo)->bo->size,
2355 .map = (*bo)->bo->map,
2356 };
2357 }
2358 }
2359
2360 return (struct gen_batch_decode_bo) { };
2361 }
2362
2363 struct gen_aux_map_buffer {
2364 struct gen_buffer base;
2365 struct anv_state state;
2366 };
2367
2368 static struct gen_buffer *
2369 gen_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
2370 {
2371 struct gen_aux_map_buffer *buf = malloc(sizeof(struct gen_aux_map_buffer));
2372 if (!buf)
2373 return NULL;
2374
2375 struct anv_device *device = (struct anv_device*)driver_ctx;
2376 assert(device->instance->physicalDevice.supports_48bit_addresses &&
2377 device->instance->physicalDevice.use_softpin);
2378
2379 struct anv_state_pool *pool = &device->dynamic_state_pool;
2380 buf->state = anv_state_pool_alloc(pool, size, size);
2381
2382 buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset;
2383 buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size;
2384 buf->base.map = buf->state.map;
2385 buf->base.driver_bo = &buf->state;
2386 return &buf->base;
2387 }
2388
2389 static void
2390 gen_aux_map_buffer_free(void *driver_ctx, struct gen_buffer *buffer)
2391 {
2392 struct gen_aux_map_buffer *buf = (struct gen_aux_map_buffer*)buffer;
2393 struct anv_device *device = (struct anv_device*)driver_ctx;
2394 struct anv_state_pool *pool = &device->dynamic_state_pool;
2395 anv_state_pool_free(pool, buf->state);
2396 free(buf);
2397 }
2398
2399 static struct gen_mapped_pinned_buffer_alloc aux_map_allocator = {
2400 .alloc = gen_aux_map_buffer_alloc,
2401 .free = gen_aux_map_buffer_free,
2402 };
2403
2404 VkResult anv_CreateDevice(
2405 VkPhysicalDevice physicalDevice,
2406 const VkDeviceCreateInfo* pCreateInfo,
2407 const VkAllocationCallbacks* pAllocator,
2408 VkDevice* pDevice)
2409 {
2410 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2411 VkResult result;
2412 struct anv_device *device;
2413
2414 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2415
2416 struct anv_device_extension_table enabled_extensions = { };
2417 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2418 int idx;
2419 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2420 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2421 anv_device_extensions[idx].extensionName) == 0)
2422 break;
2423 }
2424
2425 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2426 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2427
2428 if (!physical_device->supported_extensions.extensions[idx])
2429 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2430
2431 enabled_extensions.extensions[idx] = true;
2432 }
2433
2434 /* Check enabled features */
2435 if (pCreateInfo->pEnabledFeatures) {
2436 VkPhysicalDeviceFeatures supported_features;
2437 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2438 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2439 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2440 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2441 for (uint32_t i = 0; i < num_features; i++) {
2442 if (enabled_feature[i] && !supported_feature[i])
2443 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2444 }
2445 }
2446
2447 /* Check requested queues and fail if we are requested to create any
2448 * queues with flags we don't support.
2449 */
2450 assert(pCreateInfo->queueCreateInfoCount > 0);
2451 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2452 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2453 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2454 }
2455
2456 /* Check if client specified queue priority. */
2457 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2458 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2459 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2460
2461 VkQueueGlobalPriorityEXT priority =
2462 queue_priority ? queue_priority->globalPriority :
2463 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2464
2465 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2466 sizeof(*device), 8,
2467 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2468 if (!device)
2469 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2470
2471 if (INTEL_DEBUG & DEBUG_BATCH) {
2472 const unsigned decode_flags =
2473 GEN_BATCH_DECODE_FULL |
2474 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2475 GEN_BATCH_DECODE_OFFSETS |
2476 GEN_BATCH_DECODE_FLOATS;
2477
2478 gen_batch_decode_ctx_init(&device->decoder_ctx,
2479 &physical_device->info,
2480 stderr, decode_flags, NULL,
2481 decode_get_bo, NULL, device);
2482 }
2483
2484 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2485 device->instance = physical_device->instance;
2486 device->chipset_id = physical_device->chipset_id;
2487 device->no_hw = physical_device->no_hw;
2488 device->_lost = false;
2489
2490 if (pAllocator)
2491 device->alloc = *pAllocator;
2492 else
2493 device->alloc = physical_device->instance->alloc;
2494
2495 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2496 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2497 if (device->fd == -1) {
2498 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2499 goto fail_device;
2500 }
2501
2502 device->context_id = anv_gem_create_context(device);
2503 if (device->context_id == -1) {
2504 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2505 goto fail_fd;
2506 }
2507
2508 result = anv_queue_init(device, &device->queue);
2509 if (result != VK_SUCCESS)
2510 goto fail_context_id;
2511
2512 if (physical_device->use_softpin) {
2513 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2514 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2515 goto fail_queue;
2516 }
2517
2518 /* keep the page with address zero out of the allocator */
2519 util_vma_heap_init(&device->vma_lo,
2520 LOW_HEAP_MIN_ADDRESS, LOW_HEAP_SIZE);
2521
2522 util_vma_heap_init(&device->vma_cva, CLIENT_VISIBLE_HEAP_MIN_ADDRESS,
2523 CLIENT_VISIBLE_HEAP_SIZE);
2524
2525 /* Leave the last 4GiB out of the high vma range, so that no state
2526 * base address + size can overflow 48 bits. For more information see
2527 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
2528 */
2529 util_vma_heap_init(&device->vma_hi, HIGH_HEAP_MIN_ADDRESS,
2530 physical_device->gtt_size - (1ull << 32) -
2531 HIGH_HEAP_MIN_ADDRESS);
2532 }
2533
2534 list_inithead(&device->memory_objects);
2535
2536 /* As per spec, the driver implementation may deny requests to acquire
2537 * a priority above the default priority (MEDIUM) if the caller does not
2538 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2539 * is returned.
2540 */
2541 if (physical_device->has_context_priority) {
2542 int err = anv_gem_set_context_param(device->fd, device->context_id,
2543 I915_CONTEXT_PARAM_PRIORITY,
2544 vk_priority_to_gen(priority));
2545 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2546 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2547 goto fail_vmas;
2548 }
2549 }
2550
2551 device->info = physical_device->info;
2552 device->isl_dev = physical_device->isl_dev;
2553
2554 /* On Broadwell and later, we can use batch chaining to more efficiently
2555 * implement growing command buffers. Prior to Haswell, the kernel
2556 * command parser gets in the way and we have to fall back to growing
2557 * the batch.
2558 */
2559 device->can_chain_batches = device->info.gen >= 8;
2560
2561 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2562 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2563 device->enabled_extensions = enabled_extensions;
2564
2565 anv_device_init_dispatch(device);
2566
2567 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2568 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2569 goto fail_queue;
2570 }
2571
2572 pthread_condattr_t condattr;
2573 if (pthread_condattr_init(&condattr) != 0) {
2574 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2575 goto fail_mutex;
2576 }
2577 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2578 pthread_condattr_destroy(&condattr);
2579 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2580 goto fail_mutex;
2581 }
2582 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2583 pthread_condattr_destroy(&condattr);
2584 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2585 goto fail_mutex;
2586 }
2587 pthread_condattr_destroy(&condattr);
2588
2589 result = anv_bo_cache_init(&device->bo_cache);
2590 if (result != VK_SUCCESS)
2591 goto fail_queue_cond;
2592
2593 anv_bo_pool_init(&device->batch_bo_pool, device);
2594
2595 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2596 DYNAMIC_STATE_POOL_MIN_ADDRESS, 16384);
2597 if (result != VK_SUCCESS)
2598 goto fail_batch_bo_pool;
2599
2600 result = anv_state_pool_init(&device->instruction_state_pool, device,
2601 INSTRUCTION_STATE_POOL_MIN_ADDRESS, 16384);
2602 if (result != VK_SUCCESS)
2603 goto fail_dynamic_state_pool;
2604
2605 result = anv_state_pool_init(&device->surface_state_pool, device,
2606 SURFACE_STATE_POOL_MIN_ADDRESS, 4096);
2607 if (result != VK_SUCCESS)
2608 goto fail_instruction_state_pool;
2609
2610 if (physical_device->use_softpin) {
2611 result = anv_state_pool_init(&device->binding_table_pool, device,
2612 BINDING_TABLE_POOL_MIN_ADDRESS, 4096);
2613 if (result != VK_SUCCESS)
2614 goto fail_surface_state_pool;
2615 }
2616
2617 if (device->info.gen >= 12) {
2618 device->aux_map_ctx = gen_aux_map_init(device, &aux_map_allocator,
2619 &physical_device->info);
2620 if (!device->aux_map_ctx)
2621 goto fail_binding_table_pool;
2622 }
2623
2624 result = anv_device_alloc_bo(device, 4096, 0 /* flags */,
2625 0 /* explicit_address */,
2626 &device->workaround_bo);
2627 if (result != VK_SUCCESS)
2628 goto fail_surface_aux_map_pool;
2629
2630 result = anv_device_init_trivial_batch(device);
2631 if (result != VK_SUCCESS)
2632 goto fail_workaround_bo;
2633
2634 if (device->info.gen >= 10) {
2635 result = anv_device_init_hiz_clear_value_bo(device);
2636 if (result != VK_SUCCESS)
2637 goto fail_trivial_batch_bo;
2638 }
2639
2640 anv_scratch_pool_init(device, &device->scratch_pool);
2641
2642 switch (device->info.gen) {
2643 case 7:
2644 if (!device->info.is_haswell)
2645 result = gen7_init_device_state(device);
2646 else
2647 result = gen75_init_device_state(device);
2648 break;
2649 case 8:
2650 result = gen8_init_device_state(device);
2651 break;
2652 case 9:
2653 result = gen9_init_device_state(device);
2654 break;
2655 case 10:
2656 result = gen10_init_device_state(device);
2657 break;
2658 case 11:
2659 result = gen11_init_device_state(device);
2660 break;
2661 case 12:
2662 result = gen12_init_device_state(device);
2663 break;
2664 default:
2665 /* Shouldn't get here as we don't create physical devices for any other
2666 * gens. */
2667 unreachable("unhandled gen");
2668 }
2669 if (result != VK_SUCCESS)
2670 goto fail_workaround_bo;
2671
2672 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2673
2674 anv_device_init_blorp(device);
2675
2676 anv_device_init_border_colors(device);
2677
2678 anv_device_perf_init(device);
2679
2680 *pDevice = anv_device_to_handle(device);
2681
2682 return VK_SUCCESS;
2683
2684 fail_workaround_bo:
2685 anv_scratch_pool_finish(device, &device->scratch_pool);
2686 if (device->info.gen >= 10)
2687 anv_device_release_bo(device, device->hiz_clear_bo);
2688 anv_device_release_bo(device, device->workaround_bo);
2689 fail_trivial_batch_bo:
2690 anv_device_release_bo(device, device->trivial_batch_bo);
2691 fail_surface_aux_map_pool:
2692 if (device->info.gen >= 12) {
2693 gen_aux_map_finish(device->aux_map_ctx);
2694 device->aux_map_ctx = NULL;
2695 }
2696 fail_binding_table_pool:
2697 if (physical_device->use_softpin)
2698 anv_state_pool_finish(&device->binding_table_pool);
2699 fail_surface_state_pool:
2700 anv_state_pool_finish(&device->surface_state_pool);
2701 fail_instruction_state_pool:
2702 anv_state_pool_finish(&device->instruction_state_pool);
2703 fail_dynamic_state_pool:
2704 anv_state_pool_finish(&device->dynamic_state_pool);
2705 fail_batch_bo_pool:
2706 anv_bo_pool_finish(&device->batch_bo_pool);
2707 anv_bo_cache_finish(&device->bo_cache);
2708 fail_queue_cond:
2709 pthread_cond_destroy(&device->queue_submit);
2710 fail_mutex:
2711 pthread_mutex_destroy(&device->mutex);
2712 fail_vmas:
2713 if (physical_device->use_softpin) {
2714 util_vma_heap_finish(&device->vma_hi);
2715 util_vma_heap_finish(&device->vma_cva);
2716 util_vma_heap_finish(&device->vma_lo);
2717 }
2718 fail_queue:
2719 anv_queue_finish(&device->queue);
2720 fail_context_id:
2721 anv_gem_destroy_context(device, device->context_id);
2722 fail_fd:
2723 close(device->fd);
2724 fail_device:
2725 vk_free(&device->alloc, device);
2726
2727 return result;
2728 }
2729
2730 void anv_DestroyDevice(
2731 VkDevice _device,
2732 const VkAllocationCallbacks* pAllocator)
2733 {
2734 ANV_FROM_HANDLE(anv_device, device, _device);
2735 struct anv_physical_device *physical_device;
2736
2737 if (!device)
2738 return;
2739
2740 physical_device = &device->instance->physicalDevice;
2741
2742 anv_device_finish_blorp(device);
2743
2744 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2745
2746 anv_queue_finish(&device->queue);
2747
2748 #ifdef HAVE_VALGRIND
2749 /* We only need to free these to prevent valgrind errors. The backing
2750 * BO will go away in a couple of lines so we don't actually leak.
2751 */
2752 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2753 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
2754 #endif
2755
2756 anv_scratch_pool_finish(device, &device->scratch_pool);
2757
2758 anv_device_release_bo(device, device->workaround_bo);
2759 anv_device_release_bo(device, device->trivial_batch_bo);
2760 if (device->info.gen >= 10)
2761 anv_device_release_bo(device, device->hiz_clear_bo);
2762
2763 if (device->info.gen >= 12) {
2764 gen_aux_map_finish(device->aux_map_ctx);
2765 device->aux_map_ctx = NULL;
2766 }
2767
2768 if (physical_device->use_softpin)
2769 anv_state_pool_finish(&device->binding_table_pool);
2770 anv_state_pool_finish(&device->surface_state_pool);
2771 anv_state_pool_finish(&device->instruction_state_pool);
2772 anv_state_pool_finish(&device->dynamic_state_pool);
2773
2774 anv_bo_pool_finish(&device->batch_bo_pool);
2775
2776 anv_bo_cache_finish(&device->bo_cache);
2777
2778 if (physical_device->use_softpin) {
2779 util_vma_heap_finish(&device->vma_hi);
2780 util_vma_heap_finish(&device->vma_cva);
2781 util_vma_heap_finish(&device->vma_lo);
2782 }
2783
2784 pthread_cond_destroy(&device->queue_submit);
2785 pthread_mutex_destroy(&device->mutex);
2786
2787 anv_gem_destroy_context(device, device->context_id);
2788
2789 if (INTEL_DEBUG & DEBUG_BATCH)
2790 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2791
2792 close(device->fd);
2793
2794 vk_free(&device->alloc, device);
2795 }
2796
2797 VkResult anv_EnumerateInstanceLayerProperties(
2798 uint32_t* pPropertyCount,
2799 VkLayerProperties* pProperties)
2800 {
2801 if (pProperties == NULL) {
2802 *pPropertyCount = 0;
2803 return VK_SUCCESS;
2804 }
2805
2806 /* None supported at this time */
2807 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2808 }
2809
2810 VkResult anv_EnumerateDeviceLayerProperties(
2811 VkPhysicalDevice physicalDevice,
2812 uint32_t* pPropertyCount,
2813 VkLayerProperties* pProperties)
2814 {
2815 if (pProperties == NULL) {
2816 *pPropertyCount = 0;
2817 return VK_SUCCESS;
2818 }
2819
2820 /* None supported at this time */
2821 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2822 }
2823
2824 void anv_GetDeviceQueue(
2825 VkDevice _device,
2826 uint32_t queueNodeIndex,
2827 uint32_t queueIndex,
2828 VkQueue* pQueue)
2829 {
2830 const VkDeviceQueueInfo2 info = {
2831 .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
2832 .pNext = NULL,
2833 .flags = 0,
2834 .queueFamilyIndex = queueNodeIndex,
2835 .queueIndex = queueIndex,
2836 };
2837
2838 anv_GetDeviceQueue2(_device, &info, pQueue);
2839 }
2840
2841 void anv_GetDeviceQueue2(
2842 VkDevice _device,
2843 const VkDeviceQueueInfo2* pQueueInfo,
2844 VkQueue* pQueue)
2845 {
2846 ANV_FROM_HANDLE(anv_device, device, _device);
2847
2848 assert(pQueueInfo->queueIndex == 0);
2849
2850 if (pQueueInfo->flags == device->queue.flags)
2851 *pQueue = anv_queue_to_handle(&device->queue);
2852 else
2853 *pQueue = NULL;
2854 }
2855
2856 VkResult
2857 _anv_device_set_lost(struct anv_device *device,
2858 const char *file, int line,
2859 const char *msg, ...)
2860 {
2861 VkResult err;
2862 va_list ap;
2863
2864 p_atomic_inc(&device->_lost);
2865
2866 va_start(ap, msg);
2867 err = __vk_errorv(device->instance, device,
2868 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2869 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2870 va_end(ap);
2871
2872 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2873 abort();
2874
2875 return err;
2876 }
2877
2878 VkResult
2879 _anv_queue_set_lost(struct anv_queue *queue,
2880 const char *file, int line,
2881 const char *msg, ...)
2882 {
2883 VkResult err;
2884 va_list ap;
2885
2886 p_atomic_inc(&queue->device->_lost);
2887
2888 va_start(ap, msg);
2889 err = __vk_errorv(queue->device->instance, queue->device,
2890 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2891 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2892 va_end(ap);
2893
2894 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2895 abort();
2896
2897 return err;
2898 }
2899
2900 VkResult
2901 anv_device_query_status(struct anv_device *device)
2902 {
2903 /* This isn't likely as most of the callers of this function already check
2904 * for it. However, it doesn't hurt to check and it potentially lets us
2905 * avoid an ioctl.
2906 */
2907 if (anv_device_is_lost(device))
2908 return VK_ERROR_DEVICE_LOST;
2909
2910 uint32_t active, pending;
2911 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2912 if (ret == -1) {
2913 /* We don't know the real error. */
2914 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2915 }
2916
2917 if (active) {
2918 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2919 } else if (pending) {
2920 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2921 }
2922
2923 return VK_SUCCESS;
2924 }
2925
2926 VkResult
2927 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2928 {
2929 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2930 * Other usages of the BO (such as on different hardware) will not be
2931 * flagged as "busy" by this ioctl. Use with care.
2932 */
2933 int ret = anv_gem_busy(device, bo->gem_handle);
2934 if (ret == 1) {
2935 return VK_NOT_READY;
2936 } else if (ret == -1) {
2937 /* We don't know the real error. */
2938 return anv_device_set_lost(device, "gem wait failed: %m");
2939 }
2940
2941 /* Query for device status after the busy call. If the BO we're checking
2942 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2943 * client because it clearly doesn't have valid data. Yes, this most
2944 * likely means an ioctl, but we just did an ioctl to query the busy status
2945 * so it's no great loss.
2946 */
2947 return anv_device_query_status(device);
2948 }
2949
2950 VkResult
2951 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2952 int64_t timeout)
2953 {
2954 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2955 if (ret == -1 && errno == ETIME) {
2956 return VK_TIMEOUT;
2957 } else if (ret == -1) {
2958 /* We don't know the real error. */
2959 return anv_device_set_lost(device, "gem wait failed: %m");
2960 }
2961
2962 /* Query for device status after the wait. If the BO we're waiting on got
2963 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2964 * because it clearly doesn't have valid data. Yes, this most likely means
2965 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2966 */
2967 return anv_device_query_status(device);
2968 }
2969
2970 VkResult anv_DeviceWaitIdle(
2971 VkDevice _device)
2972 {
2973 ANV_FROM_HANDLE(anv_device, device, _device);
2974
2975 if (anv_device_is_lost(device))
2976 return VK_ERROR_DEVICE_LOST;
2977
2978 return anv_queue_submit_simple_batch(&device->queue, NULL);
2979 }
2980
2981 bool
2982 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo,
2983 uint64_t client_address)
2984 {
2985 const struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2986 const struct gen_device_info *devinfo = &pdevice->info;
2987 /* Gen12 CCS surface addresses need to be 64K aligned. We have no way of
2988 * telling what this allocation is for so pick the largest alignment.
2989 */
2990 const uint32_t vma_alignment =
2991 devinfo->gen >= 12 ? (64 * 1024) : (4 * 1024);
2992
2993 if (!(bo->flags & EXEC_OBJECT_PINNED)) {
2994 assert(!(bo->has_client_visible_address));
2995 return true;
2996 }
2997
2998 pthread_mutex_lock(&device->vma_mutex);
2999
3000 bo->offset = 0;
3001
3002 if (bo->has_client_visible_address) {
3003 assert(bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS);
3004 if (client_address) {
3005 if (util_vma_heap_alloc_addr(&device->vma_cva,
3006 client_address, bo->size)) {
3007 bo->offset = gen_canonical_address(client_address);
3008 }
3009 } else {
3010 uint64_t addr =
3011 util_vma_heap_alloc(&device->vma_cva, bo->size, vma_alignment);
3012 if (addr) {
3013 bo->offset = gen_canonical_address(addr);
3014 assert(addr == gen_48b_address(bo->offset));
3015 }
3016 }
3017 /* We don't want to fall back to other heaps */
3018 goto done;
3019 }
3020
3021 assert(client_address == 0);
3022
3023 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) {
3024 uint64_t addr =
3025 util_vma_heap_alloc(&device->vma_hi, bo->size, vma_alignment);
3026 if (addr) {
3027 bo->offset = gen_canonical_address(addr);
3028 assert(addr == gen_48b_address(bo->offset));
3029 }
3030 }
3031
3032 if (bo->offset == 0) {
3033 uint64_t addr =
3034 util_vma_heap_alloc(&device->vma_lo, bo->size, vma_alignment);
3035 if (addr) {
3036 bo->offset = gen_canonical_address(addr);
3037 assert(addr == gen_48b_address(bo->offset));
3038 }
3039 }
3040
3041 done:
3042 pthread_mutex_unlock(&device->vma_mutex);
3043
3044 return bo->offset != 0;
3045 }
3046
3047 void
3048 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
3049 {
3050 if (!(bo->flags & EXEC_OBJECT_PINNED))
3051 return;
3052
3053 const uint64_t addr_48b = gen_48b_address(bo->offset);
3054
3055 pthread_mutex_lock(&device->vma_mutex);
3056
3057 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
3058 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
3059 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
3060 } else if (addr_48b >= CLIENT_VISIBLE_HEAP_MIN_ADDRESS &&
3061 addr_48b <= CLIENT_VISIBLE_HEAP_MAX_ADDRESS) {
3062 util_vma_heap_free(&device->vma_cva, addr_48b, bo->size);
3063 } else {
3064 assert(addr_48b >= HIGH_HEAP_MIN_ADDRESS);
3065 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
3066 }
3067
3068 pthread_mutex_unlock(&device->vma_mutex);
3069
3070 bo->offset = 0;
3071 }
3072
3073 VkResult anv_AllocateMemory(
3074 VkDevice _device,
3075 const VkMemoryAllocateInfo* pAllocateInfo,
3076 const VkAllocationCallbacks* pAllocator,
3077 VkDeviceMemory* pMem)
3078 {
3079 ANV_FROM_HANDLE(anv_device, device, _device);
3080 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3081 struct anv_device_memory *mem;
3082 VkResult result = VK_SUCCESS;
3083
3084 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
3085
3086 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
3087 assert(pAllocateInfo->allocationSize > 0);
3088
3089 VkDeviceSize aligned_alloc_size =
3090 align_u64(pAllocateInfo->allocationSize, 4096);
3091
3092 if (aligned_alloc_size > MAX_MEMORY_ALLOCATION_SIZE)
3093 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3094
3095 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3096 struct anv_memory_type *mem_type =
3097 &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
3098 assert(mem_type->heapIndex < pdevice->memory.heap_count);
3099 struct anv_memory_heap *mem_heap =
3100 &pdevice->memory.heaps[mem_type->heapIndex];
3101
3102 uint64_t mem_heap_used = p_atomic_read(&mem_heap->used);
3103 if (mem_heap_used + aligned_alloc_size > mem_heap->size)
3104 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3105
3106 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
3107 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3108 if (mem == NULL)
3109 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3110
3111 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3112 mem->type = mem_type;
3113 mem->map = NULL;
3114 mem->map_size = 0;
3115 mem->ahw = NULL;
3116 mem->host_ptr = NULL;
3117
3118 enum anv_bo_alloc_flags alloc_flags = 0;
3119
3120 const VkExportMemoryAllocateInfo *export_info = NULL;
3121 const VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info = NULL;
3122 const VkImportMemoryFdInfoKHR *fd_info = NULL;
3123 const VkImportMemoryHostPointerInfoEXT *host_ptr_info = NULL;
3124 const VkMemoryDedicatedAllocateInfo *dedicated_info = NULL;
3125 VkMemoryAllocateFlags vk_flags = 0;
3126 uint64_t client_address = 0;
3127
3128 vk_foreach_struct_const(ext, pAllocateInfo->pNext) {
3129 switch (ext->sType) {
3130 case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO:
3131 export_info = (void *)ext;
3132 break;
3133
3134 case VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID:
3135 ahw_import_info = (void *)ext;
3136 break;
3137
3138 case VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR:
3139 fd_info = (void *)ext;
3140 break;
3141
3142 case VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT:
3143 host_ptr_info = (void *)ext;
3144 break;
3145
3146 case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO: {
3147 const VkMemoryAllocateFlagsInfo *flags_info = (void *)ext;
3148 vk_flags = flags_info->flags;
3149 break;
3150 }
3151
3152 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO:
3153 dedicated_info = (void *)ext;
3154 break;
3155
3156 case VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO_KHR: {
3157 const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *addr_info =
3158 (const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *)ext;
3159 client_address = addr_info->opaqueCaptureAddress;
3160 break;
3161 }
3162
3163 default:
3164 anv_debug_ignored_stype(ext->sType);
3165 break;
3166 }
3167 }
3168
3169 if (vk_flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR)
3170 alloc_flags |= ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS;
3171
3172 /* Check if we need to support Android HW buffer export. If so,
3173 * create AHardwareBuffer and import memory from it.
3174 */
3175 bool android_export = false;
3176 if (export_info && export_info->handleTypes &
3177 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
3178 android_export = true;
3179
3180 if (ahw_import_info) {
3181 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
3182 if (result != VK_SUCCESS)
3183 goto fail;
3184
3185 goto success;
3186 } else if (android_export) {
3187 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
3188 if (result != VK_SUCCESS)
3189 goto fail;
3190
3191 const VkImportAndroidHardwareBufferInfoANDROID import_info = {
3192 .buffer = mem->ahw,
3193 };
3194 result = anv_import_ahw_memory(_device, mem, &import_info);
3195 if (result != VK_SUCCESS)
3196 goto fail;
3197
3198 goto success;
3199 }
3200
3201 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3202 * ignored.
3203 */
3204 if (fd_info && fd_info->handleType) {
3205 /* At the moment, we support only the below handle types. */
3206 assert(fd_info->handleType ==
3207 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3208 fd_info->handleType ==
3209 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3210
3211 result = anv_device_import_bo(device, fd_info->fd, alloc_flags,
3212 client_address, &mem->bo);
3213 if (result != VK_SUCCESS)
3214 goto fail;
3215
3216 VkDeviceSize aligned_alloc_size =
3217 align_u64(pAllocateInfo->allocationSize, 4096);
3218
3219 /* For security purposes, we reject importing the bo if it's smaller
3220 * than the requested allocation size. This prevents a malicious client
3221 * from passing a buffer to a trusted client, lying about the size, and
3222 * telling the trusted client to try and texture from an image that goes
3223 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3224 * in the trusted client. The trusted client can protect itself against
3225 * this sort of attack but only if it can trust the buffer size.
3226 */
3227 if (mem->bo->size < aligned_alloc_size) {
3228 result = vk_errorf(device->instance, device,
3229 VK_ERROR_INVALID_EXTERNAL_HANDLE,
3230 "aligned allocationSize too large for "
3231 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3232 "%"PRIu64"B > %"PRIu64"B",
3233 aligned_alloc_size, mem->bo->size);
3234 anv_device_release_bo(device, mem->bo);
3235 goto fail;
3236 }
3237
3238 /* From the Vulkan spec:
3239 *
3240 * "Importing memory from a file descriptor transfers ownership of
3241 * the file descriptor from the application to the Vulkan
3242 * implementation. The application must not perform any operations on
3243 * the file descriptor after a successful import."
3244 *
3245 * If the import fails, we leave the file descriptor open.
3246 */
3247 close(fd_info->fd);
3248 goto success;
3249 }
3250
3251 if (host_ptr_info && host_ptr_info->handleType) {
3252 if (host_ptr_info->handleType ==
3253 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3254 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3255 goto fail;
3256 }
3257
3258 assert(host_ptr_info->handleType ==
3259 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3260
3261 result = anv_device_import_bo_from_host_ptr(device,
3262 host_ptr_info->pHostPointer,
3263 pAllocateInfo->allocationSize,
3264 alloc_flags,
3265 client_address,
3266 &mem->bo);
3267 if (result != VK_SUCCESS)
3268 goto fail;
3269
3270 mem->host_ptr = host_ptr_info->pHostPointer;
3271 goto success;
3272 }
3273
3274 /* Regular allocate (not importing memory). */
3275
3276 if (export_info && export_info->handleTypes)
3277 alloc_flags |= ANV_BO_ALLOC_EXTERNAL;
3278
3279 result = anv_device_alloc_bo(device, pAllocateInfo->allocationSize,
3280 alloc_flags, client_address, &mem->bo);
3281 if (result != VK_SUCCESS)
3282 goto fail;
3283
3284 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3285 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3286
3287 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3288 * the BO. In this case, we have a dedicated allocation.
3289 */
3290 if (image->needs_set_tiling) {
3291 const uint32_t i915_tiling =
3292 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3293 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3294 image->planes[0].surface.isl.row_pitch_B,
3295 i915_tiling);
3296 if (ret) {
3297 anv_device_release_bo(device, mem->bo);
3298 result = vk_errorf(device->instance, NULL,
3299 VK_ERROR_OUT_OF_DEVICE_MEMORY,
3300 "failed to set BO tiling: %m");
3301 goto fail;
3302 }
3303 }
3304 }
3305
3306 success:
3307 mem_heap_used = p_atomic_add_return(&mem_heap->used, mem->bo->size);
3308 if (mem_heap_used > mem_heap->size) {
3309 p_atomic_add(&mem_heap->used, -mem->bo->size);
3310 anv_device_release_bo(device, mem->bo);
3311 result = vk_errorf(device->instance, NULL,
3312 VK_ERROR_OUT_OF_DEVICE_MEMORY,
3313 "Out of heap memory");
3314 goto fail;
3315 }
3316
3317 pthread_mutex_lock(&device->mutex);
3318 list_addtail(&mem->link, &device->memory_objects);
3319 pthread_mutex_unlock(&device->mutex);
3320
3321 *pMem = anv_device_memory_to_handle(mem);
3322
3323 return VK_SUCCESS;
3324
3325 fail:
3326 vk_free2(&device->alloc, pAllocator, mem);
3327
3328 return result;
3329 }
3330
3331 VkResult anv_GetMemoryFdKHR(
3332 VkDevice device_h,
3333 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3334 int* pFd)
3335 {
3336 ANV_FROM_HANDLE(anv_device, dev, device_h);
3337 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3338
3339 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3340
3341 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3342 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3343
3344 return anv_device_export_bo(dev, mem->bo, pFd);
3345 }
3346
3347 VkResult anv_GetMemoryFdPropertiesKHR(
3348 VkDevice _device,
3349 VkExternalMemoryHandleTypeFlagBits handleType,
3350 int fd,
3351 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3352 {
3353 ANV_FROM_HANDLE(anv_device, device, _device);
3354 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3355
3356 switch (handleType) {
3357 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3358 /* dma-buf can be imported as any memory type */
3359 pMemoryFdProperties->memoryTypeBits =
3360 (1 << pdevice->memory.type_count) - 1;
3361 return VK_SUCCESS;
3362
3363 default:
3364 /* The valid usage section for this function says:
3365 *
3366 * "handleType must not be one of the handle types defined as
3367 * opaque."
3368 *
3369 * So opaque handle types fall into the default "unsupported" case.
3370 */
3371 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3372 }
3373 }
3374
3375 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3376 VkDevice _device,
3377 VkExternalMemoryHandleTypeFlagBits handleType,
3378 const void* pHostPointer,
3379 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3380 {
3381 ANV_FROM_HANDLE(anv_device, device, _device);
3382
3383 assert(pMemoryHostPointerProperties->sType ==
3384 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3385
3386 switch (handleType) {
3387 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
3388 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3389
3390 /* Host memory can be imported as any memory type. */
3391 pMemoryHostPointerProperties->memoryTypeBits =
3392 (1ull << pdevice->memory.type_count) - 1;
3393
3394 return VK_SUCCESS;
3395 }
3396 default:
3397 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3398 }
3399 }
3400
3401 void anv_FreeMemory(
3402 VkDevice _device,
3403 VkDeviceMemory _mem,
3404 const VkAllocationCallbacks* pAllocator)
3405 {
3406 ANV_FROM_HANDLE(anv_device, device, _device);
3407 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3408 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3409
3410 if (mem == NULL)
3411 return;
3412
3413 pthread_mutex_lock(&device->mutex);
3414 list_del(&mem->link);
3415 pthread_mutex_unlock(&device->mutex);
3416
3417 if (mem->map)
3418 anv_UnmapMemory(_device, _mem);
3419
3420 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3421 -mem->bo->size);
3422
3423 anv_device_release_bo(device, mem->bo);
3424
3425 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3426 if (mem->ahw)
3427 AHardwareBuffer_release(mem->ahw);
3428 #endif
3429
3430 vk_free2(&device->alloc, pAllocator, mem);
3431 }
3432
3433 VkResult anv_MapMemory(
3434 VkDevice _device,
3435 VkDeviceMemory _memory,
3436 VkDeviceSize offset,
3437 VkDeviceSize size,
3438 VkMemoryMapFlags flags,
3439 void** ppData)
3440 {
3441 ANV_FROM_HANDLE(anv_device, device, _device);
3442 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3443
3444 if (mem == NULL) {
3445 *ppData = NULL;
3446 return VK_SUCCESS;
3447 }
3448
3449 if (mem->host_ptr) {
3450 *ppData = mem->host_ptr + offset;
3451 return VK_SUCCESS;
3452 }
3453
3454 if (size == VK_WHOLE_SIZE)
3455 size = mem->bo->size - offset;
3456
3457 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3458 *
3459 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3460 * assert(size != 0);
3461 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3462 * equal to the size of the memory minus offset
3463 */
3464 assert(size > 0);
3465 assert(offset + size <= mem->bo->size);
3466
3467 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3468 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3469 * at a time is valid. We could just mmap up front and return an offset
3470 * pointer here, but that may exhaust virtual memory on 32 bit
3471 * userspace. */
3472
3473 uint32_t gem_flags = 0;
3474
3475 if (!device->info.has_llc &&
3476 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3477 gem_flags |= I915_MMAP_WC;
3478
3479 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3480 uint64_t map_offset = offset & ~4095ull;
3481 assert(offset >= map_offset);
3482 uint64_t map_size = (offset + size) - map_offset;
3483
3484 /* Let's map whole pages */
3485 map_size = align_u64(map_size, 4096);
3486
3487 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3488 map_offset, map_size, gem_flags);
3489 if (map == MAP_FAILED)
3490 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3491
3492 mem->map = map;
3493 mem->map_size = map_size;
3494
3495 *ppData = mem->map + (offset - map_offset);
3496
3497 return VK_SUCCESS;
3498 }
3499
3500 void anv_UnmapMemory(
3501 VkDevice _device,
3502 VkDeviceMemory _memory)
3503 {
3504 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3505
3506 if (mem == NULL || mem->host_ptr)
3507 return;
3508
3509 anv_gem_munmap(mem->map, mem->map_size);
3510
3511 mem->map = NULL;
3512 mem->map_size = 0;
3513 }
3514
3515 static void
3516 clflush_mapped_ranges(struct anv_device *device,
3517 uint32_t count,
3518 const VkMappedMemoryRange *ranges)
3519 {
3520 for (uint32_t i = 0; i < count; i++) {
3521 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3522 if (ranges[i].offset >= mem->map_size)
3523 continue;
3524
3525 gen_clflush_range(mem->map + ranges[i].offset,
3526 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3527 }
3528 }
3529
3530 VkResult anv_FlushMappedMemoryRanges(
3531 VkDevice _device,
3532 uint32_t memoryRangeCount,
3533 const VkMappedMemoryRange* pMemoryRanges)
3534 {
3535 ANV_FROM_HANDLE(anv_device, device, _device);
3536
3537 if (device->info.has_llc)
3538 return VK_SUCCESS;
3539
3540 /* Make sure the writes we're flushing have landed. */
3541 __builtin_ia32_mfence();
3542
3543 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3544
3545 return VK_SUCCESS;
3546 }
3547
3548 VkResult anv_InvalidateMappedMemoryRanges(
3549 VkDevice _device,
3550 uint32_t memoryRangeCount,
3551 const VkMappedMemoryRange* pMemoryRanges)
3552 {
3553 ANV_FROM_HANDLE(anv_device, device, _device);
3554
3555 if (device->info.has_llc)
3556 return VK_SUCCESS;
3557
3558 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3559
3560 /* Make sure no reads get moved up above the invalidate. */
3561 __builtin_ia32_mfence();
3562
3563 return VK_SUCCESS;
3564 }
3565
3566 void anv_GetBufferMemoryRequirements(
3567 VkDevice _device,
3568 VkBuffer _buffer,
3569 VkMemoryRequirements* pMemoryRequirements)
3570 {
3571 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3572 ANV_FROM_HANDLE(anv_device, device, _device);
3573 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3574
3575 /* The Vulkan spec (git aaed022) says:
3576 *
3577 * memoryTypeBits is a bitfield and contains one bit set for every
3578 * supported memory type for the resource. The bit `1<<i` is set if and
3579 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3580 * structure for the physical device is supported.
3581 */
3582 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3583
3584 /* Base alignment requirement of a cache line */
3585 uint32_t alignment = 16;
3586
3587 /* We need an alignment of 32 for pushing UBOs */
3588 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3589 alignment = MAX2(alignment, 32);
3590
3591 pMemoryRequirements->size = buffer->size;
3592 pMemoryRequirements->alignment = alignment;
3593
3594 /* Storage and Uniform buffers should have their size aligned to
3595 * 32-bits to avoid boundary checks when last DWord is not complete.
3596 * This would ensure that not internal padding would be needed for
3597 * 16-bit types.
3598 */
3599 if (device->robust_buffer_access &&
3600 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3601 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3602 pMemoryRequirements->size = align_u64(buffer->size, 4);
3603
3604 pMemoryRequirements->memoryTypeBits = memory_types;
3605 }
3606
3607 void anv_GetBufferMemoryRequirements2(
3608 VkDevice _device,
3609 const VkBufferMemoryRequirementsInfo2* pInfo,
3610 VkMemoryRequirements2* pMemoryRequirements)
3611 {
3612 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3613 &pMemoryRequirements->memoryRequirements);
3614
3615 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3616 switch (ext->sType) {
3617 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3618 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3619 requirements->prefersDedicatedAllocation = false;
3620 requirements->requiresDedicatedAllocation = false;
3621 break;
3622 }
3623
3624 default:
3625 anv_debug_ignored_stype(ext->sType);
3626 break;
3627 }
3628 }
3629 }
3630
3631 void anv_GetImageMemoryRequirements(
3632 VkDevice _device,
3633 VkImage _image,
3634 VkMemoryRequirements* pMemoryRequirements)
3635 {
3636 ANV_FROM_HANDLE(anv_image, image, _image);
3637 ANV_FROM_HANDLE(anv_device, device, _device);
3638 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3639
3640 /* The Vulkan spec (git aaed022) says:
3641 *
3642 * memoryTypeBits is a bitfield and contains one bit set for every
3643 * supported memory type for the resource. The bit `1<<i` is set if and
3644 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3645 * structure for the physical device is supported.
3646 *
3647 * All types are currently supported for images.
3648 */
3649 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3650
3651 /* We must have image allocated or imported at this point. According to the
3652 * specification, external images must have been bound to memory before
3653 * calling GetImageMemoryRequirements.
3654 */
3655 assert(image->size > 0);
3656
3657 pMemoryRequirements->size = image->size;
3658 pMemoryRequirements->alignment = image->alignment;
3659 pMemoryRequirements->memoryTypeBits = memory_types;
3660 }
3661
3662 void anv_GetImageMemoryRequirements2(
3663 VkDevice _device,
3664 const VkImageMemoryRequirementsInfo2* pInfo,
3665 VkMemoryRequirements2* pMemoryRequirements)
3666 {
3667 ANV_FROM_HANDLE(anv_device, device, _device);
3668 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3669
3670 anv_GetImageMemoryRequirements(_device, pInfo->image,
3671 &pMemoryRequirements->memoryRequirements);
3672
3673 vk_foreach_struct_const(ext, pInfo->pNext) {
3674 switch (ext->sType) {
3675 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3676 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3677 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3678 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3679 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3680 plane_reqs->planeAspect);
3681
3682 assert(image->planes[plane].offset == 0);
3683
3684 /* The Vulkan spec (git aaed022) says:
3685 *
3686 * memoryTypeBits is a bitfield and contains one bit set for every
3687 * supported memory type for the resource. The bit `1<<i` is set
3688 * if and only if the memory type `i` in the
3689 * VkPhysicalDeviceMemoryProperties structure for the physical
3690 * device is supported.
3691 *
3692 * All types are currently supported for images.
3693 */
3694 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3695 (1ull << pdevice->memory.type_count) - 1;
3696
3697 /* We must have image allocated or imported at this point. According to the
3698 * specification, external images must have been bound to memory before
3699 * calling GetImageMemoryRequirements.
3700 */
3701 assert(image->planes[plane].size > 0);
3702
3703 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3704 pMemoryRequirements->memoryRequirements.alignment =
3705 image->planes[plane].alignment;
3706 break;
3707 }
3708
3709 default:
3710 anv_debug_ignored_stype(ext->sType);
3711 break;
3712 }
3713 }
3714
3715 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3716 switch (ext->sType) {
3717 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3718 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3719 if (image->needs_set_tiling || image->external_format) {
3720 /* If we need to set the tiling for external consumers, we need a
3721 * dedicated allocation.
3722 *
3723 * See also anv_AllocateMemory.
3724 */
3725 requirements->prefersDedicatedAllocation = true;
3726 requirements->requiresDedicatedAllocation = true;
3727 } else {
3728 requirements->prefersDedicatedAllocation = false;
3729 requirements->requiresDedicatedAllocation = false;
3730 }
3731 break;
3732 }
3733
3734 default:
3735 anv_debug_ignored_stype(ext->sType);
3736 break;
3737 }
3738 }
3739 }
3740
3741 void anv_GetImageSparseMemoryRequirements(
3742 VkDevice device,
3743 VkImage image,
3744 uint32_t* pSparseMemoryRequirementCount,
3745 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3746 {
3747 *pSparseMemoryRequirementCount = 0;
3748 }
3749
3750 void anv_GetImageSparseMemoryRequirements2(
3751 VkDevice device,
3752 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3753 uint32_t* pSparseMemoryRequirementCount,
3754 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3755 {
3756 *pSparseMemoryRequirementCount = 0;
3757 }
3758
3759 void anv_GetDeviceMemoryCommitment(
3760 VkDevice device,
3761 VkDeviceMemory memory,
3762 VkDeviceSize* pCommittedMemoryInBytes)
3763 {
3764 *pCommittedMemoryInBytes = 0;
3765 }
3766
3767 static void
3768 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3769 {
3770 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3771 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3772
3773 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3774
3775 if (mem) {
3776 buffer->address = (struct anv_address) {
3777 .bo = mem->bo,
3778 .offset = pBindInfo->memoryOffset,
3779 };
3780 } else {
3781 buffer->address = ANV_NULL_ADDRESS;
3782 }
3783 }
3784
3785 VkResult anv_BindBufferMemory(
3786 VkDevice device,
3787 VkBuffer buffer,
3788 VkDeviceMemory memory,
3789 VkDeviceSize memoryOffset)
3790 {
3791 anv_bind_buffer_memory(
3792 &(VkBindBufferMemoryInfo) {
3793 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3794 .buffer = buffer,
3795 .memory = memory,
3796 .memoryOffset = memoryOffset,
3797 });
3798
3799 return VK_SUCCESS;
3800 }
3801
3802 VkResult anv_BindBufferMemory2(
3803 VkDevice device,
3804 uint32_t bindInfoCount,
3805 const VkBindBufferMemoryInfo* pBindInfos)
3806 {
3807 for (uint32_t i = 0; i < bindInfoCount; i++)
3808 anv_bind_buffer_memory(&pBindInfos[i]);
3809
3810 return VK_SUCCESS;
3811 }
3812
3813 VkResult anv_QueueBindSparse(
3814 VkQueue _queue,
3815 uint32_t bindInfoCount,
3816 const VkBindSparseInfo* pBindInfo,
3817 VkFence fence)
3818 {
3819 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3820 if (anv_device_is_lost(queue->device))
3821 return VK_ERROR_DEVICE_LOST;
3822
3823 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3824 }
3825
3826 // Event functions
3827
3828 VkResult anv_CreateEvent(
3829 VkDevice _device,
3830 const VkEventCreateInfo* pCreateInfo,
3831 const VkAllocationCallbacks* pAllocator,
3832 VkEvent* pEvent)
3833 {
3834 ANV_FROM_HANDLE(anv_device, device, _device);
3835 struct anv_state state;
3836 struct anv_event *event;
3837
3838 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3839
3840 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3841 sizeof(*event), 8);
3842 event = state.map;
3843 event->state = state;
3844 event->semaphore = VK_EVENT_RESET;
3845
3846 if (!device->info.has_llc) {
3847 /* Make sure the writes we're flushing have landed. */
3848 __builtin_ia32_mfence();
3849 __builtin_ia32_clflush(event);
3850 }
3851
3852 *pEvent = anv_event_to_handle(event);
3853
3854 return VK_SUCCESS;
3855 }
3856
3857 void anv_DestroyEvent(
3858 VkDevice _device,
3859 VkEvent _event,
3860 const VkAllocationCallbacks* pAllocator)
3861 {
3862 ANV_FROM_HANDLE(anv_device, device, _device);
3863 ANV_FROM_HANDLE(anv_event, event, _event);
3864
3865 if (!event)
3866 return;
3867
3868 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3869 }
3870
3871 VkResult anv_GetEventStatus(
3872 VkDevice _device,
3873 VkEvent _event)
3874 {
3875 ANV_FROM_HANDLE(anv_device, device, _device);
3876 ANV_FROM_HANDLE(anv_event, event, _event);
3877
3878 if (anv_device_is_lost(device))
3879 return VK_ERROR_DEVICE_LOST;
3880
3881 if (!device->info.has_llc) {
3882 /* Invalidate read cache before reading event written by GPU. */
3883 __builtin_ia32_clflush(event);
3884 __builtin_ia32_mfence();
3885
3886 }
3887
3888 return event->semaphore;
3889 }
3890
3891 VkResult anv_SetEvent(
3892 VkDevice _device,
3893 VkEvent _event)
3894 {
3895 ANV_FROM_HANDLE(anv_device, device, _device);
3896 ANV_FROM_HANDLE(anv_event, event, _event);
3897
3898 event->semaphore = VK_EVENT_SET;
3899
3900 if (!device->info.has_llc) {
3901 /* Make sure the writes we're flushing have landed. */
3902 __builtin_ia32_mfence();
3903 __builtin_ia32_clflush(event);
3904 }
3905
3906 return VK_SUCCESS;
3907 }
3908
3909 VkResult anv_ResetEvent(
3910 VkDevice _device,
3911 VkEvent _event)
3912 {
3913 ANV_FROM_HANDLE(anv_device, device, _device);
3914 ANV_FROM_HANDLE(anv_event, event, _event);
3915
3916 event->semaphore = VK_EVENT_RESET;
3917
3918 if (!device->info.has_llc) {
3919 /* Make sure the writes we're flushing have landed. */
3920 __builtin_ia32_mfence();
3921 __builtin_ia32_clflush(event);
3922 }
3923
3924 return VK_SUCCESS;
3925 }
3926
3927 // Buffer functions
3928
3929 VkResult anv_CreateBuffer(
3930 VkDevice _device,
3931 const VkBufferCreateInfo* pCreateInfo,
3932 const VkAllocationCallbacks* pAllocator,
3933 VkBuffer* pBuffer)
3934 {
3935 ANV_FROM_HANDLE(anv_device, device, _device);
3936 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3937 struct anv_buffer *buffer;
3938
3939 /* Don't allow creating buffers bigger than our address space. The real
3940 * issue here is that we may align up the buffer size and we don't want
3941 * doing so to cause roll-over. However, no one has any business
3942 * allocating a buffer larger than our GTT size.
3943 */
3944 if (pCreateInfo->size > pdevice->gtt_size)
3945 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3946
3947 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3948
3949 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3950 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3951 if (buffer == NULL)
3952 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3953
3954 buffer->size = pCreateInfo->size;
3955 buffer->usage = pCreateInfo->usage;
3956 buffer->address = ANV_NULL_ADDRESS;
3957
3958 *pBuffer = anv_buffer_to_handle(buffer);
3959
3960 return VK_SUCCESS;
3961 }
3962
3963 void anv_DestroyBuffer(
3964 VkDevice _device,
3965 VkBuffer _buffer,
3966 const VkAllocationCallbacks* pAllocator)
3967 {
3968 ANV_FROM_HANDLE(anv_device, device, _device);
3969 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3970
3971 if (!buffer)
3972 return;
3973
3974 vk_free2(&device->alloc, pAllocator, buffer);
3975 }
3976
3977 VkDeviceAddress anv_GetBufferDeviceAddressKHR(
3978 VkDevice device,
3979 const VkBufferDeviceAddressInfoKHR* pInfo)
3980 {
3981 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3982
3983 assert(!anv_address_is_null(buffer->address));
3984 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3985
3986 return anv_address_physical(buffer->address);
3987 }
3988
3989 uint64_t anv_GetBufferOpaqueCaptureAddressKHR(
3990 VkDevice device,
3991 const VkBufferDeviceAddressInfoKHR* pInfo)
3992 {
3993 return 0;
3994 }
3995
3996 uint64_t anv_GetDeviceMemoryOpaqueCaptureAddressKHR(
3997 VkDevice device,
3998 const VkDeviceMemoryOpaqueCaptureAddressInfoKHR* pInfo)
3999 {
4000 ANV_FROM_HANDLE(anv_device_memory, memory, pInfo->memory);
4001
4002 assert(memory->bo->flags & EXEC_OBJECT_PINNED);
4003 assert(memory->bo->has_client_visible_address);
4004
4005 return gen_48b_address(memory->bo->offset);
4006 }
4007
4008 void
4009 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
4010 enum isl_format format,
4011 struct anv_address address,
4012 uint32_t range, uint32_t stride)
4013 {
4014 isl_buffer_fill_state(&device->isl_dev, state.map,
4015 .address = anv_address_physical(address),
4016 .mocs = device->isl_dev.mocs.internal,
4017 .size_B = range,
4018 .format = format,
4019 .swizzle = ISL_SWIZZLE_IDENTITY,
4020 .stride_B = stride);
4021 }
4022
4023 void anv_DestroySampler(
4024 VkDevice _device,
4025 VkSampler _sampler,
4026 const VkAllocationCallbacks* pAllocator)
4027 {
4028 ANV_FROM_HANDLE(anv_device, device, _device);
4029 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
4030
4031 if (!sampler)
4032 return;
4033
4034 if (sampler->bindless_state.map) {
4035 anv_state_pool_free(&device->dynamic_state_pool,
4036 sampler->bindless_state);
4037 }
4038
4039 vk_free2(&device->alloc, pAllocator, sampler);
4040 }
4041
4042 VkResult anv_CreateFramebuffer(
4043 VkDevice _device,
4044 const VkFramebufferCreateInfo* pCreateInfo,
4045 const VkAllocationCallbacks* pAllocator,
4046 VkFramebuffer* pFramebuffer)
4047 {
4048 ANV_FROM_HANDLE(anv_device, device, _device);
4049 struct anv_framebuffer *framebuffer;
4050
4051 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
4052
4053 size_t size = sizeof(*framebuffer);
4054
4055 /* VK_KHR_imageless_framebuffer extension says:
4056 *
4057 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
4058 * parameter pAttachments is ignored.
4059 */
4060 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
4061 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
4062 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
4063 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4064 if (framebuffer == NULL)
4065 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4066
4067 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
4068 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
4069 framebuffer->attachments[i] = iview;
4070 }
4071 framebuffer->attachment_count = pCreateInfo->attachmentCount;
4072 } else {
4073 assert(device->enabled_extensions.KHR_imageless_framebuffer);
4074 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
4075 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4076 if (framebuffer == NULL)
4077 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4078
4079 framebuffer->attachment_count = 0;
4080 }
4081
4082 framebuffer->width = pCreateInfo->width;
4083 framebuffer->height = pCreateInfo->height;
4084 framebuffer->layers = pCreateInfo->layers;
4085
4086 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
4087
4088 return VK_SUCCESS;
4089 }
4090
4091 void anv_DestroyFramebuffer(
4092 VkDevice _device,
4093 VkFramebuffer _fb,
4094 const VkAllocationCallbacks* pAllocator)
4095 {
4096 ANV_FROM_HANDLE(anv_device, device, _device);
4097 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
4098
4099 if (!fb)
4100 return;
4101
4102 vk_free2(&device->alloc, pAllocator, fb);
4103 }
4104
4105 static const VkTimeDomainEXT anv_time_domains[] = {
4106 VK_TIME_DOMAIN_DEVICE_EXT,
4107 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
4108 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
4109 };
4110
4111 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
4112 VkPhysicalDevice physicalDevice,
4113 uint32_t *pTimeDomainCount,
4114 VkTimeDomainEXT *pTimeDomains)
4115 {
4116 int d;
4117 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
4118
4119 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
4120 vk_outarray_append(&out, i) {
4121 *i = anv_time_domains[d];
4122 }
4123 }
4124
4125 return vk_outarray_status(&out);
4126 }
4127
4128 static uint64_t
4129 anv_clock_gettime(clockid_t clock_id)
4130 {
4131 struct timespec current;
4132 int ret;
4133
4134 ret = clock_gettime(clock_id, &current);
4135 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
4136 ret = clock_gettime(CLOCK_MONOTONIC, &current);
4137 if (ret < 0)
4138 return 0;
4139
4140 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
4141 }
4142
4143 #define TIMESTAMP 0x2358
4144
4145 VkResult anv_GetCalibratedTimestampsEXT(
4146 VkDevice _device,
4147 uint32_t timestampCount,
4148 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
4149 uint64_t *pTimestamps,
4150 uint64_t *pMaxDeviation)
4151 {
4152 ANV_FROM_HANDLE(anv_device, device, _device);
4153 uint64_t timestamp_frequency = device->info.timestamp_frequency;
4154 int ret;
4155 int d;
4156 uint64_t begin, end;
4157 uint64_t max_clock_period = 0;
4158
4159 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4160
4161 for (d = 0; d < timestampCount; d++) {
4162 switch (pTimestampInfos[d].timeDomain) {
4163 case VK_TIME_DOMAIN_DEVICE_EXT:
4164 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
4165 &pTimestamps[d]);
4166
4167 if (ret != 0) {
4168 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
4169 "register: %m");
4170 }
4171 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
4172 max_clock_period = MAX2(max_clock_period, device_period);
4173 break;
4174 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
4175 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
4176 max_clock_period = MAX2(max_clock_period, 1);
4177 break;
4178
4179 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
4180 pTimestamps[d] = begin;
4181 break;
4182 default:
4183 pTimestamps[d] = 0;
4184 break;
4185 }
4186 }
4187
4188 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4189
4190 /*
4191 * The maximum deviation is the sum of the interval over which we
4192 * perform the sampling and the maximum period of any sampled
4193 * clock. That's because the maximum skew between any two sampled
4194 * clock edges is when the sampled clock with the largest period is
4195 * sampled at the end of that period but right at the beginning of the
4196 * sampling interval and some other clock is sampled right at the
4197 * begining of its sampling period and right at the end of the
4198 * sampling interval. Let's assume the GPU has the longest clock
4199 * period and that the application is sampling GPU and monotonic:
4200 *
4201 * s e
4202 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
4203 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4204 *
4205 * g
4206 * 0 1 2 3
4207 * GPU -----_____-----_____-----_____-----_____
4208 *
4209 * m
4210 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
4211 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4212 *
4213 * Interval <----------------->
4214 * Deviation <-------------------------->
4215 *
4216 * s = read(raw) 2
4217 * g = read(GPU) 1
4218 * m = read(monotonic) 2
4219 * e = read(raw) b
4220 *
4221 * We round the sample interval up by one tick to cover sampling error
4222 * in the interval clock
4223 */
4224
4225 uint64_t sample_interval = end - begin + 1;
4226
4227 *pMaxDeviation = sample_interval + max_clock_period;
4228
4229 return VK_SUCCESS;
4230 }
4231
4232 /* vk_icd.h does not declare this function, so we declare it here to
4233 * suppress Wmissing-prototypes.
4234 */
4235 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4236 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4237
4238 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4239 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4240 {
4241 /* For the full details on loader interface versioning, see
4242 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4243 * What follows is a condensed summary, to help you navigate the large and
4244 * confusing official doc.
4245 *
4246 * - Loader interface v0 is incompatible with later versions. We don't
4247 * support it.
4248 *
4249 * - In loader interface v1:
4250 * - The first ICD entrypoint called by the loader is
4251 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4252 * entrypoint.
4253 * - The ICD must statically expose no other Vulkan symbol unless it is
4254 * linked with -Bsymbolic.
4255 * - Each dispatchable Vulkan handle created by the ICD must be
4256 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4257 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4258 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4259 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4260 * such loader-managed surfaces.
4261 *
4262 * - Loader interface v2 differs from v1 in:
4263 * - The first ICD entrypoint called by the loader is
4264 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4265 * statically expose this entrypoint.
4266 *
4267 * - Loader interface v3 differs from v2 in:
4268 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4269 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4270 * because the loader no longer does so.
4271 *
4272 * - Loader interface v4 differs from v3 in:
4273 * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
4274 */
4275 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
4276 return VK_SUCCESS;
4277 }