anv: add missing `break`
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/os_file.h"
41 #include "util/u_atomic.h"
42 #include "util/u_string.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_defines.h"
46 #include "compiler/glsl_types.h"
47
48 #include "genxml/gen7_pack.h"
49
50 /* This is probably far to big but it reflects the max size used for messages
51 * in OpenGLs KHR_debug.
52 */
53 #define MAX_DEBUG_MESSAGE_LENGTH 4096
54
55 static void
56 compiler_debug_log(void *data, const char *fmt, ...)
57 {
58 char str[MAX_DEBUG_MESSAGE_LENGTH];
59 struct anv_device *device = (struct anv_device *)data;
60
61 if (list_empty(&device->instance->debug_report_callbacks.callbacks))
62 return;
63
64 va_list args;
65 va_start(args, fmt);
66 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
67 va_end(args);
68
69 vk_debug_report(&device->instance->debug_report_callbacks,
70 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
71 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
72 0, 0, 0, "anv", str);
73 }
74
75 static void
76 compiler_perf_log(void *data, const char *fmt, ...)
77 {
78 va_list args;
79 va_start(args, fmt);
80
81 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
82 intel_logd_v(fmt, args);
83
84 va_end(args);
85 }
86
87 static uint64_t
88 anv_compute_heap_size(int fd, uint64_t gtt_size)
89 {
90 /* Query the total ram from the system */
91 struct sysinfo info;
92 sysinfo(&info);
93
94 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
95
96 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
97 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
98 */
99 uint64_t available_ram;
100 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
101 available_ram = total_ram / 2;
102 else
103 available_ram = total_ram * 3 / 4;
104
105 /* We also want to leave some padding for things we allocate in the driver,
106 * so don't go over 3/4 of the GTT either.
107 */
108 uint64_t available_gtt = gtt_size * 3 / 4;
109
110 return MIN2(available_ram, available_gtt);
111 }
112
113 static VkResult
114 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
115 {
116 uint64_t gtt_size;
117 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
118 &gtt_size) == -1) {
119 /* If, for whatever reason, we can't actually get the GTT size from the
120 * kernel (too old?) fall back to the aperture size.
121 */
122 anv_perf_warn(NULL, NULL,
123 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
124
125 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
126 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
127 "failed to get aperture size: %m");
128 }
129 }
130
131 device->supports_48bit_addresses = (device->info.gen >= 8) &&
132 gtt_size > (4ULL << 30 /* GiB */);
133
134 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
135
136 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
137 /* When running with an overridden PCI ID, we may get a GTT size from
138 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
139 * address support can still fail. Just clamp the address space size to
140 * 2 GiB if we don't have 48-bit support.
141 */
142 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
143 "not support for 48-bit addresses",
144 __FILE__, __LINE__);
145 heap_size = 2ull << 30;
146 }
147
148 if (heap_size <= 3ull * (1ull << 30)) {
149 /* In this case, everything fits nicely into the 32-bit address space,
150 * so there's no need for supporting 48bit addresses on client-allocated
151 * memory objects.
152 */
153 device->memory.heap_count = 1;
154 device->memory.heaps[0] = (struct anv_memory_heap) {
155 .vma_start = LOW_HEAP_MIN_ADDRESS,
156 .vma_size = LOW_HEAP_SIZE,
157 .size = heap_size,
158 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
159 .supports_48bit_addresses = false,
160 };
161 } else {
162 /* Not everything will fit nicely into a 32-bit address space. In this
163 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
164 * larger 48-bit heap. If we're in this case, then we have a total heap
165 * size larger than 3GiB which most likely means they have 8 GiB of
166 * video memory and so carving off 1 GiB for the 32-bit heap should be
167 * reasonable.
168 */
169 const uint64_t heap_size_32bit = 1ull << 30;
170 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
171
172 assert(device->supports_48bit_addresses);
173
174 device->memory.heap_count = 2;
175 device->memory.heaps[0] = (struct anv_memory_heap) {
176 .vma_start = HIGH_HEAP_MIN_ADDRESS,
177 /* Leave the last 4GiB out of the high vma range, so that no state
178 * base address + size can overflow 48 bits. For more information see
179 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
180 */
181 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
182 .size = heap_size_48bit,
183 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
184 .supports_48bit_addresses = true,
185 };
186 device->memory.heaps[1] = (struct anv_memory_heap) {
187 .vma_start = LOW_HEAP_MIN_ADDRESS,
188 .vma_size = LOW_HEAP_SIZE,
189 .size = heap_size_32bit,
190 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
191 .supports_48bit_addresses = false,
192 };
193 }
194
195 uint32_t type_count = 0;
196 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
197 uint32_t valid_buffer_usage = ~0;
198
199 /* There appears to be a hardware issue in the VF cache where it only
200 * considers the bottom 32 bits of memory addresses. If you happen to
201 * have two vertex buffers which get placed exactly 4 GiB apart and use
202 * them in back-to-back draw calls, you can get collisions. In order to
203 * solve this problem, we require vertex and index buffers be bound to
204 * memory allocated out of the 32-bit heap.
205 */
206 if (device->memory.heaps[heap].supports_48bit_addresses) {
207 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
208 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
209 }
210
211 if (device->info.has_llc) {
212 /* Big core GPUs share LLC with the CPU and thus one memory type can be
213 * both cached and coherent at the same time.
214 */
215 device->memory.types[type_count++] = (struct anv_memory_type) {
216 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
217 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
218 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
219 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
220 .heapIndex = heap,
221 .valid_buffer_usage = valid_buffer_usage,
222 };
223 } else {
224 /* The spec requires that we expose a host-visible, coherent memory
225 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
226 * to give the application a choice between cached, but not coherent and
227 * coherent but uncached (WC though).
228 */
229 device->memory.types[type_count++] = (struct anv_memory_type) {
230 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
231 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
232 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
233 .heapIndex = heap,
234 .valid_buffer_usage = valid_buffer_usage,
235 };
236 device->memory.types[type_count++] = (struct anv_memory_type) {
237 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
238 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
239 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
240 .heapIndex = heap,
241 .valid_buffer_usage = valid_buffer_usage,
242 };
243 }
244 }
245 device->memory.type_count = type_count;
246
247 return VK_SUCCESS;
248 }
249
250 static VkResult
251 anv_physical_device_init_uuids(struct anv_physical_device *device)
252 {
253 const struct build_id_note *note =
254 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
255 if (!note) {
256 return vk_errorf(device->instance, device,
257 VK_ERROR_INITIALIZATION_FAILED,
258 "Failed to find build-id");
259 }
260
261 unsigned build_id_len = build_id_length(note);
262 if (build_id_len < 20) {
263 return vk_errorf(device->instance, device,
264 VK_ERROR_INITIALIZATION_FAILED,
265 "build-id too short. It needs to be a SHA");
266 }
267
268 memcpy(device->driver_build_sha1, build_id_data(note), 20);
269
270 struct mesa_sha1 sha1_ctx;
271 uint8_t sha1[20];
272 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
273
274 /* The pipeline cache UUID is used for determining when a pipeline cache is
275 * invalid. It needs both a driver build and the PCI ID of the device.
276 */
277 _mesa_sha1_init(&sha1_ctx);
278 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
279 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
280 sizeof(device->chipset_id));
281 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
282 sizeof(device->always_use_bindless));
283 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
284 sizeof(device->has_a64_buffer_access));
285 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
286 sizeof(device->has_bindless_images));
287 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
288 sizeof(device->has_bindless_samplers));
289 _mesa_sha1_final(&sha1_ctx, sha1);
290 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
291
292 /* The driver UUID is used for determining sharability of images and memory
293 * between two Vulkan instances in separate processes. People who want to
294 * share memory need to also check the device UUID (below) so all this
295 * needs to be is the build-id.
296 */
297 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
298
299 /* The device UUID uniquely identifies the given device within the machine.
300 * Since we never have more than one device, this doesn't need to be a real
301 * UUID. However, on the off-chance that someone tries to use this to
302 * cache pre-tiled images or something of the like, we use the PCI ID and
303 * some bits of ISL info to ensure that this is safe.
304 */
305 _mesa_sha1_init(&sha1_ctx);
306 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
307 sizeof(device->chipset_id));
308 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
309 sizeof(device->isl_dev.has_bit6_swizzling));
310 _mesa_sha1_final(&sha1_ctx, sha1);
311 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
312
313 return VK_SUCCESS;
314 }
315
316 static void
317 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
318 {
319 #ifdef ENABLE_SHADER_CACHE
320 char renderer[10];
321 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
322 device->chipset_id);
323 assert(len == sizeof(renderer) - 2);
324
325 char timestamp[41];
326 _mesa_sha1_format(timestamp, device->driver_build_sha1);
327
328 const uint64_t driver_flags =
329 brw_get_compiler_config_value(device->compiler);
330 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
331 #else
332 device->disk_cache = NULL;
333 #endif
334 }
335
336 static void
337 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
338 {
339 #ifdef ENABLE_SHADER_CACHE
340 if (device->disk_cache)
341 disk_cache_destroy(device->disk_cache);
342 #else
343 assert(device->disk_cache == NULL);
344 #endif
345 }
346
347 static uint64_t
348 get_available_system_memory()
349 {
350 char *meminfo = os_read_file("/proc/meminfo");
351 if (!meminfo)
352 return 0;
353
354 char *str = strstr(meminfo, "MemAvailable:");
355 if (!str) {
356 free(meminfo);
357 return 0;
358 }
359
360 uint64_t kb_mem_available;
361 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
362 free(meminfo);
363 return kb_mem_available << 10;
364 }
365
366 free(meminfo);
367 return 0;
368 }
369
370 static VkResult
371 anv_physical_device_init(struct anv_physical_device *device,
372 struct anv_instance *instance,
373 drmDevicePtr drm_device)
374 {
375 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
376 const char *path = drm_device->nodes[DRM_NODE_RENDER];
377 VkResult result;
378 int fd;
379 int master_fd = -1;
380
381 brw_process_intel_debug_variable();
382
383 fd = open(path, O_RDWR | O_CLOEXEC);
384 if (fd < 0)
385 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
386
387 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
388 device->instance = instance;
389
390 assert(strlen(path) < ARRAY_SIZE(device->path));
391 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
392
393 if (!gen_get_device_info_from_fd(fd, &device->info)) {
394 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
395 goto fail;
396 }
397 device->chipset_id = device->info.chipset_id;
398 device->no_hw = device->info.no_hw;
399
400 if (getenv("INTEL_NO_HW") != NULL)
401 device->no_hw = true;
402
403 device->pci_info.domain = drm_device->businfo.pci->domain;
404 device->pci_info.bus = drm_device->businfo.pci->bus;
405 device->pci_info.device = drm_device->businfo.pci->dev;
406 device->pci_info.function = drm_device->businfo.pci->func;
407
408 device->name = gen_get_device_name(device->chipset_id);
409
410 if (device->info.is_haswell) {
411 intel_logw("Haswell Vulkan support is incomplete");
412 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
413 intel_logw("Ivy Bridge Vulkan support is incomplete");
414 } else if (device->info.gen == 7 && device->info.is_baytrail) {
415 intel_logw("Bay Trail Vulkan support is incomplete");
416 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
417 /* Gen8-11 fully supported */
418 } else {
419 result = vk_errorf(device->instance, device,
420 VK_ERROR_INCOMPATIBLE_DRIVER,
421 "Vulkan not yet supported on %s", device->name);
422 goto fail;
423 }
424
425 device->cmd_parser_version = -1;
426 if (device->info.gen == 7) {
427 device->cmd_parser_version =
428 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
429 if (device->cmd_parser_version == -1) {
430 result = vk_errorf(device->instance, device,
431 VK_ERROR_INITIALIZATION_FAILED,
432 "failed to get command parser version");
433 goto fail;
434 }
435 }
436
437 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
438 result = vk_errorf(device->instance, device,
439 VK_ERROR_INITIALIZATION_FAILED,
440 "kernel missing gem wait");
441 goto fail;
442 }
443
444 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
445 result = vk_errorf(device->instance, device,
446 VK_ERROR_INITIALIZATION_FAILED,
447 "kernel missing execbuf2");
448 goto fail;
449 }
450
451 if (!device->info.has_llc &&
452 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
453 result = vk_errorf(device->instance, device,
454 VK_ERROR_INITIALIZATION_FAILED,
455 "kernel missing wc mmap");
456 goto fail;
457 }
458
459 result = anv_physical_device_init_heaps(device, fd);
460 if (result != VK_SUCCESS)
461 goto fail;
462
463 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
464 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
465 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
466 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
467 device->has_syncobj_wait = device->has_syncobj &&
468 anv_gem_supports_syncobj_wait(fd);
469 device->has_context_priority = anv_gem_has_context_priority(fd);
470
471 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
472 && device->supports_48bit_addresses;
473
474 device->has_context_isolation =
475 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
476
477 device->always_use_bindless =
478 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
479
480 /* We first got the A64 messages on broadwell and we can only use them if
481 * we can pass addresses directly into the shader which requires softpin.
482 */
483 device->has_a64_buffer_access = device->info.gen >= 8 &&
484 device->use_softpin;
485
486 /* We first get bindless image access on Skylake and we can only really do
487 * it if we don't have any relocations so we need softpin.
488 */
489 device->has_bindless_images = device->info.gen >= 9 &&
490 device->use_softpin;
491
492 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
493 * because it's just a matter of setting the sampler address in the sample
494 * message header. However, we've not bothered to wire it up for vec4 so
495 * we leave it disabled on gen7.
496 */
497 device->has_bindless_samplers = device->info.gen >= 8;
498
499 device->has_mem_available = get_available_system_memory() != 0;
500
501 /* Starting with Gen10, the timestamp frequency of the command streamer may
502 * vary from one part to another. We can query the value from the kernel.
503 */
504 if (device->info.gen >= 10) {
505 int timestamp_frequency =
506 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
507
508 if (timestamp_frequency < 0)
509 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
510 else
511 device->info.timestamp_frequency = timestamp_frequency;
512 }
513
514 /* GENs prior to 8 do not support EU/Subslice info */
515 if (device->info.gen >= 8) {
516 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
517 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
518
519 /* Without this information, we cannot get the right Braswell
520 * brandstrings, and we have to use conservative numbers for GPGPU on
521 * many platforms, but otherwise, things will just work.
522 */
523 if (device->subslice_total < 1 || device->eu_total < 1) {
524 intel_logw("Kernel 4.1 required to properly query GPU properties");
525 }
526 } else if (device->info.gen == 7) {
527 device->subslice_total = 1 << (device->info.gt - 1);
528 }
529
530 if (device->info.is_cherryview &&
531 device->subslice_total > 0 && device->eu_total > 0) {
532 /* Logical CS threads = EUs per subslice * num threads per EU */
533 uint32_t max_cs_threads =
534 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
535
536 /* Fuse configurations may give more threads than expected, never less. */
537 if (max_cs_threads > device->info.max_cs_threads)
538 device->info.max_cs_threads = max_cs_threads;
539 }
540
541 device->compiler = brw_compiler_create(NULL, &device->info);
542 if (device->compiler == NULL) {
543 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
544 goto fail;
545 }
546 device->compiler->shader_debug_log = compiler_debug_log;
547 device->compiler->shader_perf_log = compiler_perf_log;
548 device->compiler->supports_pull_constants = false;
549 device->compiler->constant_buffer_0_is_relative =
550 device->info.gen < 8 || !device->has_context_isolation;
551 device->compiler->supports_shader_constants = true;
552
553 /* Broadwell PRM says:
554 *
555 * "Before Gen8, there was a historical configuration control field to
556 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
557 * different places: TILECTL[1:0], ARB_MODE[5:4], and
558 * DISP_ARB_CTL[14:13].
559 *
560 * For Gen8 and subsequent generations, the swizzle fields are all
561 * reserved, and the CPU's memory controller performs all address
562 * swizzling modifications."
563 */
564 bool swizzled =
565 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
566
567 isl_device_init(&device->isl_dev, &device->info, swizzled);
568
569 result = anv_physical_device_init_uuids(device);
570 if (result != VK_SUCCESS)
571 goto fail;
572
573 anv_physical_device_init_disk_cache(device);
574
575 if (instance->enabled_extensions.KHR_display) {
576 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
577 if (master_fd >= 0) {
578 /* prod the device with a GETPARAM call which will fail if
579 * we don't have permission to even render on this device
580 */
581 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
582 close(master_fd);
583 master_fd = -1;
584 }
585 }
586 }
587 device->master_fd = master_fd;
588
589 result = anv_init_wsi(device);
590 if (result != VK_SUCCESS) {
591 ralloc_free(device->compiler);
592 anv_physical_device_free_disk_cache(device);
593 goto fail;
594 }
595
596 anv_physical_device_get_supported_extensions(device,
597 &device->supported_extensions);
598
599
600 device->local_fd = fd;
601
602 return VK_SUCCESS;
603
604 fail:
605 close(fd);
606 if (master_fd != -1)
607 close(master_fd);
608 return result;
609 }
610
611 static void
612 anv_physical_device_finish(struct anv_physical_device *device)
613 {
614 anv_finish_wsi(device);
615 anv_physical_device_free_disk_cache(device);
616 ralloc_free(device->compiler);
617 close(device->local_fd);
618 if (device->master_fd >= 0)
619 close(device->master_fd);
620 }
621
622 static void *
623 default_alloc_func(void *pUserData, size_t size, size_t align,
624 VkSystemAllocationScope allocationScope)
625 {
626 return malloc(size);
627 }
628
629 static void *
630 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
631 size_t align, VkSystemAllocationScope allocationScope)
632 {
633 return realloc(pOriginal, size);
634 }
635
636 static void
637 default_free_func(void *pUserData, void *pMemory)
638 {
639 free(pMemory);
640 }
641
642 static const VkAllocationCallbacks default_alloc = {
643 .pUserData = NULL,
644 .pfnAllocation = default_alloc_func,
645 .pfnReallocation = default_realloc_func,
646 .pfnFree = default_free_func,
647 };
648
649 VkResult anv_EnumerateInstanceExtensionProperties(
650 const char* pLayerName,
651 uint32_t* pPropertyCount,
652 VkExtensionProperties* pProperties)
653 {
654 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
655
656 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
657 if (anv_instance_extensions_supported.extensions[i]) {
658 vk_outarray_append(&out, prop) {
659 *prop = anv_instance_extensions[i];
660 }
661 }
662 }
663
664 return vk_outarray_status(&out);
665 }
666
667 VkResult anv_CreateInstance(
668 const VkInstanceCreateInfo* pCreateInfo,
669 const VkAllocationCallbacks* pAllocator,
670 VkInstance* pInstance)
671 {
672 struct anv_instance *instance;
673 VkResult result;
674
675 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
676
677 struct anv_instance_extension_table enabled_extensions = {};
678 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
679 int idx;
680 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
681 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
682 anv_instance_extensions[idx].extensionName) == 0)
683 break;
684 }
685
686 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
687 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
688
689 if (!anv_instance_extensions_supported.extensions[idx])
690 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
691
692 enabled_extensions.extensions[idx] = true;
693 }
694
695 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
696 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
697 if (!instance)
698 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
699
700 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
701
702 if (pAllocator)
703 instance->alloc = *pAllocator;
704 else
705 instance->alloc = default_alloc;
706
707 instance->app_info = (struct anv_app_info) { .api_version = 0 };
708 if (pCreateInfo->pApplicationInfo) {
709 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
710
711 instance->app_info.app_name =
712 vk_strdup(&instance->alloc, app->pApplicationName,
713 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
714 instance->app_info.app_version = app->applicationVersion;
715
716 instance->app_info.engine_name =
717 vk_strdup(&instance->alloc, app->pEngineName,
718 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
719 instance->app_info.engine_version = app->engineVersion;
720
721 instance->app_info.api_version = app->apiVersion;
722 }
723
724 if (instance->app_info.api_version == 0)
725 instance->app_info.api_version = VK_API_VERSION_1_0;
726
727 instance->enabled_extensions = enabled_extensions;
728
729 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
730 /* Vulkan requires that entrypoints for extensions which have not been
731 * enabled must not be advertised.
732 */
733 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
734 &instance->enabled_extensions)) {
735 instance->dispatch.entrypoints[i] = NULL;
736 } else {
737 instance->dispatch.entrypoints[i] =
738 anv_instance_dispatch_table.entrypoints[i];
739 }
740 }
741
742 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
743 /* Vulkan requires that entrypoints for extensions which have not been
744 * enabled must not be advertised.
745 */
746 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
747 &instance->enabled_extensions, NULL)) {
748 instance->device_dispatch.entrypoints[i] = NULL;
749 } else {
750 instance->device_dispatch.entrypoints[i] =
751 anv_device_dispatch_table.entrypoints[i];
752 }
753 }
754
755 instance->physicalDeviceCount = -1;
756
757 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
758 if (result != VK_SUCCESS) {
759 vk_free2(&default_alloc, pAllocator, instance);
760 return vk_error(result);
761 }
762
763 instance->pipeline_cache_enabled =
764 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
765
766 _mesa_locale_init();
767 glsl_type_singleton_init_or_ref();
768
769 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
770
771 *pInstance = anv_instance_to_handle(instance);
772
773 return VK_SUCCESS;
774 }
775
776 void anv_DestroyInstance(
777 VkInstance _instance,
778 const VkAllocationCallbacks* pAllocator)
779 {
780 ANV_FROM_HANDLE(anv_instance, instance, _instance);
781
782 if (!instance)
783 return;
784
785 if (instance->physicalDeviceCount > 0) {
786 /* We support at most one physical device. */
787 assert(instance->physicalDeviceCount == 1);
788 anv_physical_device_finish(&instance->physicalDevice);
789 }
790
791 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
792 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
793
794 VG(VALGRIND_DESTROY_MEMPOOL(instance));
795
796 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
797
798 glsl_type_singleton_decref();
799 _mesa_locale_fini();
800
801 vk_free(&instance->alloc, instance);
802 }
803
804 static VkResult
805 anv_enumerate_devices(struct anv_instance *instance)
806 {
807 /* TODO: Check for more devices ? */
808 drmDevicePtr devices[8];
809 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
810 int max_devices;
811
812 instance->physicalDeviceCount = 0;
813
814 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
815 if (max_devices < 1)
816 return VK_ERROR_INCOMPATIBLE_DRIVER;
817
818 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
819 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
820 devices[i]->bustype == DRM_BUS_PCI &&
821 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
822
823 result = anv_physical_device_init(&instance->physicalDevice,
824 instance, devices[i]);
825 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
826 break;
827 }
828 }
829 drmFreeDevices(devices, max_devices);
830
831 if (result == VK_SUCCESS)
832 instance->physicalDeviceCount = 1;
833
834 return result;
835 }
836
837 static VkResult
838 anv_instance_ensure_physical_device(struct anv_instance *instance)
839 {
840 if (instance->physicalDeviceCount < 0) {
841 VkResult result = anv_enumerate_devices(instance);
842 if (result != VK_SUCCESS &&
843 result != VK_ERROR_INCOMPATIBLE_DRIVER)
844 return result;
845 }
846
847 return VK_SUCCESS;
848 }
849
850 VkResult anv_EnumeratePhysicalDevices(
851 VkInstance _instance,
852 uint32_t* pPhysicalDeviceCount,
853 VkPhysicalDevice* pPhysicalDevices)
854 {
855 ANV_FROM_HANDLE(anv_instance, instance, _instance);
856 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
857
858 VkResult result = anv_instance_ensure_physical_device(instance);
859 if (result != VK_SUCCESS)
860 return result;
861
862 if (instance->physicalDeviceCount == 0)
863 return VK_SUCCESS;
864
865 assert(instance->physicalDeviceCount == 1);
866 vk_outarray_append(&out, i) {
867 *i = anv_physical_device_to_handle(&instance->physicalDevice);
868 }
869
870 return vk_outarray_status(&out);
871 }
872
873 VkResult anv_EnumeratePhysicalDeviceGroups(
874 VkInstance _instance,
875 uint32_t* pPhysicalDeviceGroupCount,
876 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
877 {
878 ANV_FROM_HANDLE(anv_instance, instance, _instance);
879 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
880 pPhysicalDeviceGroupCount);
881
882 VkResult result = anv_instance_ensure_physical_device(instance);
883 if (result != VK_SUCCESS)
884 return result;
885
886 if (instance->physicalDeviceCount == 0)
887 return VK_SUCCESS;
888
889 assert(instance->physicalDeviceCount == 1);
890
891 vk_outarray_append(&out, p) {
892 p->physicalDeviceCount = 1;
893 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
894 p->physicalDevices[0] =
895 anv_physical_device_to_handle(&instance->physicalDevice);
896 p->subsetAllocation = false;
897
898 vk_foreach_struct(ext, p->pNext)
899 anv_debug_ignored_stype(ext->sType);
900 }
901
902 return vk_outarray_status(&out);
903 }
904
905 void anv_GetPhysicalDeviceFeatures(
906 VkPhysicalDevice physicalDevice,
907 VkPhysicalDeviceFeatures* pFeatures)
908 {
909 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
910
911 *pFeatures = (VkPhysicalDeviceFeatures) {
912 .robustBufferAccess = true,
913 .fullDrawIndexUint32 = true,
914 .imageCubeArray = true,
915 .independentBlend = true,
916 .geometryShader = true,
917 .tessellationShader = true,
918 .sampleRateShading = true,
919 .dualSrcBlend = true,
920 .logicOp = true,
921 .multiDrawIndirect = true,
922 .drawIndirectFirstInstance = true,
923 .depthClamp = true,
924 .depthBiasClamp = true,
925 .fillModeNonSolid = true,
926 .depthBounds = false,
927 .wideLines = true,
928 .largePoints = true,
929 .alphaToOne = true,
930 .multiViewport = true,
931 .samplerAnisotropy = true,
932 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
933 pdevice->info.is_baytrail,
934 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
935 .textureCompressionBC = true,
936 .occlusionQueryPrecise = true,
937 .pipelineStatisticsQuery = true,
938 .fragmentStoresAndAtomics = true,
939 .shaderTessellationAndGeometryPointSize = true,
940 .shaderImageGatherExtended = true,
941 .shaderStorageImageExtendedFormats = true,
942 .shaderStorageImageMultisample = false,
943 .shaderStorageImageReadWithoutFormat = false,
944 .shaderStorageImageWriteWithoutFormat = true,
945 .shaderUniformBufferArrayDynamicIndexing = true,
946 .shaderSampledImageArrayDynamicIndexing = true,
947 .shaderStorageBufferArrayDynamicIndexing = true,
948 .shaderStorageImageArrayDynamicIndexing = true,
949 .shaderClipDistance = true,
950 .shaderCullDistance = true,
951 .shaderFloat64 = pdevice->info.gen >= 8 &&
952 pdevice->info.has_64bit_types,
953 .shaderInt64 = pdevice->info.gen >= 8 &&
954 pdevice->info.has_64bit_types,
955 .shaderInt16 = pdevice->info.gen >= 8,
956 .shaderResourceMinLod = pdevice->info.gen >= 9,
957 .variableMultisampleRate = true,
958 .inheritedQueries = true,
959 };
960
961 /* We can't do image stores in vec4 shaders */
962 pFeatures->vertexPipelineStoresAndAtomics =
963 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
964 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
965
966 struct anv_app_info *app_info = &pdevice->instance->app_info;
967
968 /* The new DOOM and Wolfenstein games require depthBounds without
969 * checking for it. They seem to run fine without it so just claim it's
970 * there and accept the consequences.
971 */
972 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
973 pFeatures->depthBounds = true;
974 }
975
976 void anv_GetPhysicalDeviceFeatures2(
977 VkPhysicalDevice physicalDevice,
978 VkPhysicalDeviceFeatures2* pFeatures)
979 {
980 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
981 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
982
983 vk_foreach_struct(ext, pFeatures->pNext) {
984 switch (ext->sType) {
985 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
986 VkPhysicalDevice8BitStorageFeaturesKHR *features =
987 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
988 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
989 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
990 features->storagePushConstant8 = pdevice->info.gen >= 8;
991 break;
992 }
993
994 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
995 VkPhysicalDevice16BitStorageFeatures *features =
996 (VkPhysicalDevice16BitStorageFeatures *)ext;
997 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
998 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
999 features->storagePushConstant16 = pdevice->info.gen >= 8;
1000 features->storageInputOutput16 = false;
1001 break;
1002 }
1003
1004 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1005 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1006 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1007 features->bufferDeviceAddressCaptureReplay = false;
1008 features->bufferDeviceAddressMultiDevice = false;
1009 break;
1010 }
1011
1012 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1013 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1014 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1015 features->computeDerivativeGroupQuads = true;
1016 features->computeDerivativeGroupLinear = true;
1017 break;
1018 }
1019
1020 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1021 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1022 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1023 features->conditionalRendering = pdevice->info.gen >= 8 ||
1024 pdevice->info.is_haswell;
1025 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1026 pdevice->info.is_haswell;
1027 break;
1028 }
1029
1030 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1031 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1032 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1033 features->depthClipEnable = true;
1034 break;
1035 }
1036
1037 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1038 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1039 features->shaderFloat16 = pdevice->info.gen >= 8;
1040 features->shaderInt8 = pdevice->info.gen >= 8;
1041 break;
1042 }
1043
1044 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1045 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1046 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1047 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1048 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1049 features->fragmentShaderShadingRateInterlock = false;
1050 break;
1051 }
1052
1053 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1054 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1055 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1056 features->hostQueryReset = true;
1057 break;
1058 }
1059
1060 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1061 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1062 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1063 features->shaderInputAttachmentArrayDynamicIndexing = false;
1064 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1065 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1066 features->shaderUniformBufferArrayNonUniformIndexing = false;
1067 features->shaderSampledImageArrayNonUniformIndexing = true;
1068 features->shaderStorageBufferArrayNonUniformIndexing = true;
1069 features->shaderStorageImageArrayNonUniformIndexing = true;
1070 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1071 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1072 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1073 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1074 features->descriptorBindingSampledImageUpdateAfterBind = true;
1075 features->descriptorBindingStorageImageUpdateAfterBind = true;
1076 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1077 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1078 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1079 features->descriptorBindingUpdateUnusedWhilePending = true;
1080 features->descriptorBindingPartiallyBound = true;
1081 features->descriptorBindingVariableDescriptorCount = false;
1082 features->runtimeDescriptorArray = true;
1083 break;
1084 }
1085
1086 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1087 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1088 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1089 features->indexTypeUint8 = true;
1090 break;
1091 }
1092
1093 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1094 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1095 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1096 features->inlineUniformBlock = true;
1097 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1098 break;
1099 }
1100
1101 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1102 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1103 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1104 features->rectangularLines = true;
1105 features->bresenhamLines = true;
1106 features->smoothLines = true;
1107 features->stippledRectangularLines = false;
1108 features->stippledBresenhamLines = true;
1109 features->stippledSmoothLines = false;
1110 break;
1111 }
1112
1113 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1114 VkPhysicalDeviceMultiviewFeatures *features =
1115 (VkPhysicalDeviceMultiviewFeatures *)ext;
1116 features->multiview = true;
1117 features->multiviewGeometryShader = true;
1118 features->multiviewTessellationShader = true;
1119 break;
1120 }
1121
1122 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1123 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1124 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1125 features->imagelessFramebuffer = true;
1126 break;
1127 }
1128
1129 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1130 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1131 features->protectedMemory = false;
1132 break;
1133 }
1134
1135 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1136 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1137 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1138 features->samplerYcbcrConversion = true;
1139 break;
1140 }
1141
1142 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1143 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1144 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1145 features->scalarBlockLayout = true;
1146 break;
1147 }
1148
1149 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1150 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1151 features->shaderBufferInt64Atomics =
1152 pdevice->info.gen >= 9 && pdevice->use_softpin;
1153 features->shaderSharedInt64Atomics = VK_FALSE;
1154 break;
1155 }
1156
1157 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1158 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1159 features->shaderDemoteToHelperInvocation = true;
1160 break;
1161 }
1162
1163 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1164 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1165 features->shaderDrawParameters = true;
1166 break;
1167 }
1168
1169 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1170 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1171 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1172 features->texelBufferAlignment = true;
1173 break;
1174 }
1175
1176 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1177 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1178 features->variablePointersStorageBuffer = true;
1179 features->variablePointers = true;
1180 break;
1181 }
1182
1183 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1184 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1185 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1186 features->transformFeedback = true;
1187 features->geometryStreams = true;
1188 break;
1189 }
1190
1191 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1192 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1193 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1194 features->uniformBufferStandardLayout = true;
1195 break;
1196 }
1197
1198 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1199 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1200 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1201 features->vertexAttributeInstanceRateDivisor = true;
1202 features->vertexAttributeInstanceRateZeroDivisor = true;
1203 break;
1204 }
1205
1206 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1207 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1208 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1209 features->ycbcrImageArrays = true;
1210 break;
1211 }
1212
1213 default:
1214 anv_debug_ignored_stype(ext->sType);
1215 break;
1216 }
1217 }
1218 }
1219
1220 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1221
1222 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1223 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1224
1225 void anv_GetPhysicalDeviceProperties(
1226 VkPhysicalDevice physicalDevice,
1227 VkPhysicalDeviceProperties* pProperties)
1228 {
1229 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1230 const struct gen_device_info *devinfo = &pdevice->info;
1231
1232 /* See assertions made when programming the buffer surface state. */
1233 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1234 (1ul << 30) : (1ul << 27);
1235
1236 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1237 const uint32_t max_textures =
1238 pdevice->has_bindless_images ? UINT16_MAX : 128;
1239 const uint32_t max_samplers =
1240 pdevice->has_bindless_samplers ? UINT16_MAX :
1241 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1242 const uint32_t max_images =
1243 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1244
1245 /* The moment we have anything bindless, claim a high per-stage limit */
1246 const uint32_t max_per_stage =
1247 pdevice->has_a64_buffer_access ? UINT32_MAX :
1248 MAX_BINDING_TABLE_SIZE - MAX_RTS;
1249
1250 VkSampleCountFlags sample_counts =
1251 isl_device_get_sample_counts(&pdevice->isl_dev);
1252
1253
1254 VkPhysicalDeviceLimits limits = {
1255 .maxImageDimension1D = (1 << 14),
1256 .maxImageDimension2D = (1 << 14),
1257 .maxImageDimension3D = (1 << 11),
1258 .maxImageDimensionCube = (1 << 14),
1259 .maxImageArrayLayers = (1 << 11),
1260 .maxTexelBufferElements = 128 * 1024 * 1024,
1261 .maxUniformBufferRange = (1ul << 27),
1262 .maxStorageBufferRange = max_raw_buffer_sz,
1263 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1264 .maxMemoryAllocationCount = UINT32_MAX,
1265 .maxSamplerAllocationCount = 64 * 1024,
1266 .bufferImageGranularity = 64, /* A cache line */
1267 .sparseAddressSpaceSize = 0,
1268 .maxBoundDescriptorSets = MAX_SETS,
1269 .maxPerStageDescriptorSamplers = max_samplers,
1270 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1271 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1272 .maxPerStageDescriptorSampledImages = max_textures,
1273 .maxPerStageDescriptorStorageImages = max_images,
1274 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1275 .maxPerStageResources = max_per_stage,
1276 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1277 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1278 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1279 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1280 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1281 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1282 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1283 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1284 .maxVertexInputAttributes = MAX_VBS,
1285 .maxVertexInputBindings = MAX_VBS,
1286 .maxVertexInputAttributeOffset = 2047,
1287 .maxVertexInputBindingStride = 2048,
1288 .maxVertexOutputComponents = 128,
1289 .maxTessellationGenerationLevel = 64,
1290 .maxTessellationPatchSize = 32,
1291 .maxTessellationControlPerVertexInputComponents = 128,
1292 .maxTessellationControlPerVertexOutputComponents = 128,
1293 .maxTessellationControlPerPatchOutputComponents = 128,
1294 .maxTessellationControlTotalOutputComponents = 2048,
1295 .maxTessellationEvaluationInputComponents = 128,
1296 .maxTessellationEvaluationOutputComponents = 128,
1297 .maxGeometryShaderInvocations = 32,
1298 .maxGeometryInputComponents = 64,
1299 .maxGeometryOutputComponents = 128,
1300 .maxGeometryOutputVertices = 256,
1301 .maxGeometryTotalOutputComponents = 1024,
1302 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1303 .maxFragmentOutputAttachments = 8,
1304 .maxFragmentDualSrcAttachments = 1,
1305 .maxFragmentCombinedOutputResources = 8,
1306 .maxComputeSharedMemorySize = 64 * 1024,
1307 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1308 .maxComputeWorkGroupInvocations = 32 * devinfo->max_cs_threads,
1309 .maxComputeWorkGroupSize = {
1310 16 * devinfo->max_cs_threads,
1311 16 * devinfo->max_cs_threads,
1312 16 * devinfo->max_cs_threads,
1313 },
1314 .subPixelPrecisionBits = 8,
1315 .subTexelPrecisionBits = 8,
1316 .mipmapPrecisionBits = 8,
1317 .maxDrawIndexedIndexValue = UINT32_MAX,
1318 .maxDrawIndirectCount = UINT32_MAX,
1319 .maxSamplerLodBias = 16,
1320 .maxSamplerAnisotropy = 16,
1321 .maxViewports = MAX_VIEWPORTS,
1322 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1323 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1324 .viewportSubPixelBits = 13, /* We take a float? */
1325 .minMemoryMapAlignment = 4096, /* A page */
1326 /* The dataport requires texel alignment so we need to assume a worst
1327 * case of R32G32B32A32 which is 16 bytes.
1328 */
1329 .minTexelBufferOffsetAlignment = 16,
1330 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1331 .minUniformBufferOffsetAlignment = 32,
1332 .minStorageBufferOffsetAlignment = 4,
1333 .minTexelOffset = -8,
1334 .maxTexelOffset = 7,
1335 .minTexelGatherOffset = -32,
1336 .maxTexelGatherOffset = 31,
1337 .minInterpolationOffset = -0.5,
1338 .maxInterpolationOffset = 0.4375,
1339 .subPixelInterpolationOffsetBits = 4,
1340 .maxFramebufferWidth = (1 << 14),
1341 .maxFramebufferHeight = (1 << 14),
1342 .maxFramebufferLayers = (1 << 11),
1343 .framebufferColorSampleCounts = sample_counts,
1344 .framebufferDepthSampleCounts = sample_counts,
1345 .framebufferStencilSampleCounts = sample_counts,
1346 .framebufferNoAttachmentsSampleCounts = sample_counts,
1347 .maxColorAttachments = MAX_RTS,
1348 .sampledImageColorSampleCounts = sample_counts,
1349 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1350 .sampledImageDepthSampleCounts = sample_counts,
1351 .sampledImageStencilSampleCounts = sample_counts,
1352 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1353 .maxSampleMaskWords = 1,
1354 .timestampComputeAndGraphics = true,
1355 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1356 .maxClipDistances = 8,
1357 .maxCullDistances = 8,
1358 .maxCombinedClipAndCullDistances = 8,
1359 .discreteQueuePriorities = 2,
1360 .pointSizeRange = { 0.125, 255.875 },
1361 .lineWidthRange = {
1362 0.0,
1363 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1364 2047.9921875 : 7.9921875,
1365 },
1366 .pointSizeGranularity = (1.0 / 8.0),
1367 .lineWidthGranularity = (1.0 / 128.0),
1368 .strictLines = false,
1369 .standardSampleLocations = true,
1370 .optimalBufferCopyOffsetAlignment = 128,
1371 .optimalBufferCopyRowPitchAlignment = 128,
1372 .nonCoherentAtomSize = 64,
1373 };
1374
1375 *pProperties = (VkPhysicalDeviceProperties) {
1376 .apiVersion = anv_physical_device_api_version(pdevice),
1377 .driverVersion = vk_get_driver_version(),
1378 .vendorID = 0x8086,
1379 .deviceID = pdevice->chipset_id,
1380 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1381 .limits = limits,
1382 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1383 };
1384
1385 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1386 "%s", pdevice->name);
1387 memcpy(pProperties->pipelineCacheUUID,
1388 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1389 }
1390
1391 void anv_GetPhysicalDeviceProperties2(
1392 VkPhysicalDevice physicalDevice,
1393 VkPhysicalDeviceProperties2* pProperties)
1394 {
1395 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1396
1397 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1398
1399 vk_foreach_struct(ext, pProperties->pNext) {
1400 switch (ext->sType) {
1401 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1402 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1403 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1404
1405 /* We support all of the depth resolve modes */
1406 props->supportedDepthResolveModes =
1407 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1408 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1409 VK_RESOLVE_MODE_MIN_BIT_KHR |
1410 VK_RESOLVE_MODE_MAX_BIT_KHR;
1411
1412 /* Average doesn't make sense for stencil so we don't support that */
1413 props->supportedStencilResolveModes =
1414 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1415 if (pdevice->info.gen >= 8) {
1416 /* The advanced stencil resolve modes currently require stencil
1417 * sampling be supported by the hardware.
1418 */
1419 props->supportedStencilResolveModes |=
1420 VK_RESOLVE_MODE_MIN_BIT_KHR |
1421 VK_RESOLVE_MODE_MAX_BIT_KHR;
1422 }
1423
1424 props->independentResolveNone = true;
1425 props->independentResolve = true;
1426 break;
1427 }
1428
1429 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1430 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1431 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1432
1433 /* It's a bit hard to exactly map our implementation to the limits
1434 * described here. The bindless surface handle in the extended
1435 * message descriptors is 20 bits and it's an index into the table of
1436 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1437 * address. Given that most things consume two surface states per
1438 * view (general/sampled for textures and write-only/read-write for
1439 * images), we claim 2^19 things.
1440 *
1441 * For SSBOs, we just use A64 messages so there is no real limit
1442 * there beyond the limit on the total size of a descriptor set.
1443 */
1444 const unsigned max_bindless_views = 1 << 19;
1445
1446 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1447 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1448 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1449 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1450 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1451 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1452 props->robustBufferAccessUpdateAfterBind = true;
1453 props->quadDivergentImplicitLod = false;
1454 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1455 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1456 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1457 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1458 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1459 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1460 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1461 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1462 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1463 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1464 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1465 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1466 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1467 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1468 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1469 break;
1470 }
1471
1472 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1473 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1474 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1475
1476 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1477 snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1478 "Intel open-source Mesa driver");
1479
1480 snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1481 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1482
1483 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1484 .major = 1,
1485 .minor = 1,
1486 .subminor = 2,
1487 .patch = 0,
1488 };
1489 break;
1490 }
1491
1492 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1493 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1494 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1495 /* Userptr needs page aligned memory. */
1496 props->minImportedHostPointerAlignment = 4096;
1497 break;
1498 }
1499
1500 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1501 VkPhysicalDeviceIDProperties *id_props =
1502 (VkPhysicalDeviceIDProperties *)ext;
1503 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1504 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1505 /* The LUID is for Windows. */
1506 id_props->deviceLUIDValid = false;
1507 break;
1508 }
1509
1510 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1511 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1512 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1513 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1514 props->maxPerStageDescriptorInlineUniformBlocks =
1515 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1516 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1517 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1518 props->maxDescriptorSetInlineUniformBlocks =
1519 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1520 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1521 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1522 break;
1523 }
1524
1525 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1526 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1527 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1528 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1529 * Sampling Rules - Legacy Mode", it says the following:
1530 *
1531 * "Note that the device divides a pixel into a 16x16 array of
1532 * subpixels, referenced by their upper left corners."
1533 *
1534 * This is the only known reference in the PRMs to the subpixel
1535 * precision of line rasterization and a "16x16 array of subpixels"
1536 * implies 4 subpixel precision bits. Empirical testing has shown
1537 * that 4 subpixel precision bits applies to all line rasterization
1538 * types.
1539 */
1540 props->lineSubPixelPrecisionBits = 4;
1541 break;
1542 }
1543
1544 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1545 VkPhysicalDeviceMaintenance3Properties *props =
1546 (VkPhysicalDeviceMaintenance3Properties *)ext;
1547 /* This value doesn't matter for us today as our per-stage
1548 * descriptors are the real limit.
1549 */
1550 props->maxPerSetDescriptors = 1024;
1551 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1552 break;
1553 }
1554
1555 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1556 VkPhysicalDeviceMultiviewProperties *properties =
1557 (VkPhysicalDeviceMultiviewProperties *)ext;
1558 properties->maxMultiviewViewCount = 16;
1559 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1560 break;
1561 }
1562
1563 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1564 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1565 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1566 properties->pciDomain = pdevice->pci_info.domain;
1567 properties->pciBus = pdevice->pci_info.bus;
1568 properties->pciDevice = pdevice->pci_info.device;
1569 properties->pciFunction = pdevice->pci_info.function;
1570 break;
1571 }
1572
1573 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1574 VkPhysicalDevicePointClippingProperties *properties =
1575 (VkPhysicalDevicePointClippingProperties *) ext;
1576 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1577 break;
1578 }
1579
1580 #pragma GCC diagnostic push
1581 #pragma GCC diagnostic ignored "-Wswitch"
1582 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1583 VkPhysicalDevicePresentationPropertiesANDROID *props =
1584 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1585 props->sharedImage = VK_FALSE;
1586 break;
1587 }
1588 #pragma GCC diagnostic pop
1589
1590 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1591 VkPhysicalDeviceProtectedMemoryProperties *props =
1592 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1593 props->protectedNoFault = false;
1594 break;
1595 }
1596
1597 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1598 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1599 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1600
1601 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1602 break;
1603 }
1604
1605 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1606 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1607 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1608 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1609 properties->filterMinmaxSingleComponentFormats = true;
1610 break;
1611 }
1612
1613 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1614 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1615
1616 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1617
1618 VkShaderStageFlags scalar_stages = 0;
1619 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1620 if (pdevice->compiler->scalar_stage[stage])
1621 scalar_stages |= mesa_to_vk_shader_stage(stage);
1622 }
1623 properties->supportedStages = scalar_stages;
1624
1625 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1626 VK_SUBGROUP_FEATURE_VOTE_BIT |
1627 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1628 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1629 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1630 VK_SUBGROUP_FEATURE_QUAD_BIT;
1631 if (pdevice->info.gen >= 8) {
1632 /* TODO: There's no technical reason why these can't be made to
1633 * work on gen7 but they don't at the moment so it's best to leave
1634 * the feature disabled than enabled and broken.
1635 */
1636 properties->supportedOperations |=
1637 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1638 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1639 }
1640 properties->quadOperationsInAllStages = pdevice->info.gen >= 8;
1641 break;
1642 }
1643
1644 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1645 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1646 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1647 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1648 props->minSubgroupSize = 8;
1649 props->maxSubgroupSize = 32;
1650 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1651 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1652 break;
1653 }
1654
1655 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1656 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1657 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1658
1659 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1660 * Base Address:
1661 *
1662 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1663 * specifies the base address of the first element of the surface,
1664 * computed in software by adding the surface base address to the
1665 * byte offset of the element in the buffer. The base address must
1666 * be aligned to element size."
1667 *
1668 * The typed dataport messages require that things be texel aligned.
1669 * Otherwise, we may just load/store the wrong data or, in the worst
1670 * case, there may be hangs.
1671 */
1672 props->storageTexelBufferOffsetAlignmentBytes = 16;
1673 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1674
1675 /* The sampler, however, is much more forgiving and it can handle
1676 * arbitrary byte alignment for linear and buffer surfaces. It's
1677 * hard to find a good PRM citation for this but years of empirical
1678 * experience demonstrate that this is true.
1679 */
1680 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1681 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1682 break;
1683 }
1684
1685 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1686 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1687 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1688
1689 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1690 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1691 props->maxTransformFeedbackBufferSize = (1ull << 32);
1692 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1693 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1694 props->maxTransformFeedbackBufferDataStride = 2048;
1695 props->transformFeedbackQueries = true;
1696 props->transformFeedbackStreamsLinesTriangles = false;
1697 props->transformFeedbackRasterizationStreamSelect = false;
1698 props->transformFeedbackDraw = true;
1699 break;
1700 }
1701
1702 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1703 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1704 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1705 /* We have to restrict this a bit for multiview */
1706 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1707 break;
1708 }
1709
1710 default:
1711 anv_debug_ignored_stype(ext->sType);
1712 break;
1713 }
1714 }
1715 }
1716
1717 /* We support exactly one queue family. */
1718 static const VkQueueFamilyProperties
1719 anv_queue_family_properties = {
1720 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1721 VK_QUEUE_COMPUTE_BIT |
1722 VK_QUEUE_TRANSFER_BIT,
1723 .queueCount = 1,
1724 .timestampValidBits = 36, /* XXX: Real value here */
1725 .minImageTransferGranularity = { 1, 1, 1 },
1726 };
1727
1728 void anv_GetPhysicalDeviceQueueFamilyProperties(
1729 VkPhysicalDevice physicalDevice,
1730 uint32_t* pCount,
1731 VkQueueFamilyProperties* pQueueFamilyProperties)
1732 {
1733 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1734
1735 vk_outarray_append(&out, p) {
1736 *p = anv_queue_family_properties;
1737 }
1738 }
1739
1740 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1741 VkPhysicalDevice physicalDevice,
1742 uint32_t* pQueueFamilyPropertyCount,
1743 VkQueueFamilyProperties2* pQueueFamilyProperties)
1744 {
1745
1746 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1747
1748 vk_outarray_append(&out, p) {
1749 p->queueFamilyProperties = anv_queue_family_properties;
1750
1751 vk_foreach_struct(s, p->pNext) {
1752 anv_debug_ignored_stype(s->sType);
1753 }
1754 }
1755 }
1756
1757 void anv_GetPhysicalDeviceMemoryProperties(
1758 VkPhysicalDevice physicalDevice,
1759 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1760 {
1761 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1762
1763 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1764 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1765 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1766 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1767 .heapIndex = physical_device->memory.types[i].heapIndex,
1768 };
1769 }
1770
1771 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1772 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1773 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1774 .size = physical_device->memory.heaps[i].size,
1775 .flags = physical_device->memory.heaps[i].flags,
1776 };
1777 }
1778 }
1779
1780 static void
1781 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1782 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1783 {
1784 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1785 uint64_t sys_available = get_available_system_memory();
1786 assert(sys_available > 0);
1787
1788 VkDeviceSize total_heaps_size = 0;
1789 for (size_t i = 0; i < device->memory.heap_count; i++)
1790 total_heaps_size += device->memory.heaps[i].size;
1791
1792 for (size_t i = 0; i < device->memory.heap_count; i++) {
1793 VkDeviceSize heap_size = device->memory.heaps[i].size;
1794 VkDeviceSize heap_used = device->memory.heaps[i].used;
1795 VkDeviceSize heap_budget;
1796
1797 double heap_proportion = (double) heap_size / total_heaps_size;
1798 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1799
1800 /*
1801 * Let's not incite the app to starve the system: report at most 90% of
1802 * available system memory.
1803 */
1804 uint64_t heap_available = sys_available_prop * 9 / 10;
1805 heap_budget = MIN2(heap_size, heap_used + heap_available);
1806
1807 /*
1808 * Round down to the nearest MB
1809 */
1810 heap_budget &= ~((1ull << 20) - 1);
1811
1812 /*
1813 * The heapBudget value must be non-zero for array elements less than
1814 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1815 * value must be less than or equal to VkMemoryHeap::size for each heap.
1816 */
1817 assert(0 < heap_budget && heap_budget <= heap_size);
1818
1819 memoryBudget->heapUsage[i] = heap_used;
1820 memoryBudget->heapBudget[i] = heap_budget;
1821 }
1822
1823 /* The heapBudget and heapUsage values must be zero for array elements
1824 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1825 */
1826 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1827 memoryBudget->heapBudget[i] = 0;
1828 memoryBudget->heapUsage[i] = 0;
1829 }
1830 }
1831
1832 void anv_GetPhysicalDeviceMemoryProperties2(
1833 VkPhysicalDevice physicalDevice,
1834 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1835 {
1836 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1837 &pMemoryProperties->memoryProperties);
1838
1839 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1840 switch (ext->sType) {
1841 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1842 anv_get_memory_budget(physicalDevice, (void*)ext);
1843 break;
1844 default:
1845 anv_debug_ignored_stype(ext->sType);
1846 break;
1847 }
1848 }
1849 }
1850
1851 void
1852 anv_GetDeviceGroupPeerMemoryFeatures(
1853 VkDevice device,
1854 uint32_t heapIndex,
1855 uint32_t localDeviceIndex,
1856 uint32_t remoteDeviceIndex,
1857 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1858 {
1859 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1860 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1861 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1862 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1863 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1864 }
1865
1866 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1867 VkInstance _instance,
1868 const char* pName)
1869 {
1870 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1871
1872 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1873 * when we have to return valid function pointers, NULL, or it's left
1874 * undefined. See the table for exact details.
1875 */
1876 if (pName == NULL)
1877 return NULL;
1878
1879 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1880 if (strcmp(pName, "vk" #entrypoint) == 0) \
1881 return (PFN_vkVoidFunction)anv_##entrypoint
1882
1883 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1884 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1885 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1886 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1887
1888 #undef LOOKUP_ANV_ENTRYPOINT
1889
1890 if (instance == NULL)
1891 return NULL;
1892
1893 int idx = anv_get_instance_entrypoint_index(pName);
1894 if (idx >= 0)
1895 return instance->dispatch.entrypoints[idx];
1896
1897 idx = anv_get_device_entrypoint_index(pName);
1898 if (idx >= 0)
1899 return instance->device_dispatch.entrypoints[idx];
1900
1901 return NULL;
1902 }
1903
1904 /* With version 1+ of the loader interface the ICD should expose
1905 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1906 */
1907 PUBLIC
1908 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1909 VkInstance instance,
1910 const char* pName);
1911
1912 PUBLIC
1913 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1914 VkInstance instance,
1915 const char* pName)
1916 {
1917 return anv_GetInstanceProcAddr(instance, pName);
1918 }
1919
1920 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1921 VkDevice _device,
1922 const char* pName)
1923 {
1924 ANV_FROM_HANDLE(anv_device, device, _device);
1925
1926 if (!device || !pName)
1927 return NULL;
1928
1929 int idx = anv_get_device_entrypoint_index(pName);
1930 if (idx < 0)
1931 return NULL;
1932
1933 return device->dispatch.entrypoints[idx];
1934 }
1935
1936 VkResult
1937 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1938 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1939 const VkAllocationCallbacks* pAllocator,
1940 VkDebugReportCallbackEXT* pCallback)
1941 {
1942 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1943 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1944 pCreateInfo, pAllocator, &instance->alloc,
1945 pCallback);
1946 }
1947
1948 void
1949 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1950 VkDebugReportCallbackEXT _callback,
1951 const VkAllocationCallbacks* pAllocator)
1952 {
1953 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1954 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1955 _callback, pAllocator, &instance->alloc);
1956 }
1957
1958 void
1959 anv_DebugReportMessageEXT(VkInstance _instance,
1960 VkDebugReportFlagsEXT flags,
1961 VkDebugReportObjectTypeEXT objectType,
1962 uint64_t object,
1963 size_t location,
1964 int32_t messageCode,
1965 const char* pLayerPrefix,
1966 const char* pMessage)
1967 {
1968 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1969 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1970 object, location, messageCode, pLayerPrefix, pMessage);
1971 }
1972
1973 static void
1974 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1975 {
1976 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1977 queue->device = device;
1978 queue->flags = 0;
1979 }
1980
1981 static void
1982 anv_queue_finish(struct anv_queue *queue)
1983 {
1984 }
1985
1986 static struct anv_state
1987 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1988 {
1989 struct anv_state state;
1990
1991 state = anv_state_pool_alloc(pool, size, align);
1992 memcpy(state.map, p, size);
1993
1994 return state;
1995 }
1996
1997 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
1998 * straightforward 32-bit float color in the first 64 bytes. Instead of using
1999 * a nice float/integer union like Gen8+, Haswell specifies the integer border
2000 * color as a separate entry /after/ the float color. The layout of this entry
2001 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
2002 *
2003 * Since we don't know the format/bpp, we can't make any of the border colors
2004 * containing '1' work for all formats, as it would be in the wrong place for
2005 * some of them. We opt to make 32-bit integers work as this seems like the
2006 * most common option. Fortunately, transparent black works regardless, as
2007 * all zeroes is the same in every bit-size.
2008 */
2009 struct hsw_border_color {
2010 float float32[4];
2011 uint32_t _pad0[12];
2012 uint32_t uint32[4];
2013 uint32_t _pad1[108];
2014 };
2015
2016 struct gen8_border_color {
2017 union {
2018 float float32[4];
2019 uint32_t uint32[4];
2020 };
2021 /* Pad out to 64 bytes */
2022 uint32_t _pad[12];
2023 };
2024
2025 static void
2026 anv_device_init_border_colors(struct anv_device *device)
2027 {
2028 if (device->info.is_haswell) {
2029 static const struct hsw_border_color border_colors[] = {
2030 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2031 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2032 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2033 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2034 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2035 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2036 };
2037
2038 device->border_colors =
2039 anv_state_pool_emit_data(&device->dynamic_state_pool,
2040 sizeof(border_colors), 512, border_colors);
2041 } else {
2042 static const struct gen8_border_color border_colors[] = {
2043 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2044 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2045 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2046 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2047 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2048 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2049 };
2050
2051 device->border_colors =
2052 anv_state_pool_emit_data(&device->dynamic_state_pool,
2053 sizeof(border_colors), 64, border_colors);
2054 }
2055 }
2056
2057 static void
2058 anv_device_init_trivial_batch(struct anv_device *device)
2059 {
2060 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
2061
2062 if (device->instance->physicalDevice.has_exec_async)
2063 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
2064
2065 if (device->instance->physicalDevice.use_softpin)
2066 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
2067
2068 anv_vma_alloc(device, &device->trivial_batch_bo);
2069
2070 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
2071 0, 4096, 0);
2072
2073 struct anv_batch batch = {
2074 .start = map,
2075 .next = map,
2076 .end = map + 4096,
2077 };
2078
2079 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2080 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2081
2082 if (!device->info.has_llc)
2083 gen_clflush_range(map, batch.next - map);
2084
2085 anv_gem_munmap(map, device->trivial_batch_bo.size);
2086 }
2087
2088 VkResult anv_EnumerateDeviceExtensionProperties(
2089 VkPhysicalDevice physicalDevice,
2090 const char* pLayerName,
2091 uint32_t* pPropertyCount,
2092 VkExtensionProperties* pProperties)
2093 {
2094 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2095 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2096
2097 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2098 if (device->supported_extensions.extensions[i]) {
2099 vk_outarray_append(&out, prop) {
2100 *prop = anv_device_extensions[i];
2101 }
2102 }
2103 }
2104
2105 return vk_outarray_status(&out);
2106 }
2107
2108 static void
2109 anv_device_init_dispatch(struct anv_device *device)
2110 {
2111 const struct anv_device_dispatch_table *genX_table;
2112 switch (device->info.gen) {
2113 case 11:
2114 genX_table = &gen11_device_dispatch_table;
2115 break;
2116 case 10:
2117 genX_table = &gen10_device_dispatch_table;
2118 break;
2119 case 9:
2120 genX_table = &gen9_device_dispatch_table;
2121 break;
2122 case 8:
2123 genX_table = &gen8_device_dispatch_table;
2124 break;
2125 case 7:
2126 if (device->info.is_haswell)
2127 genX_table = &gen75_device_dispatch_table;
2128 else
2129 genX_table = &gen7_device_dispatch_table;
2130 break;
2131 default:
2132 unreachable("unsupported gen\n");
2133 }
2134
2135 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2136 /* Vulkan requires that entrypoints for extensions which have not been
2137 * enabled must not be advertised.
2138 */
2139 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
2140 &device->instance->enabled_extensions,
2141 &device->enabled_extensions)) {
2142 device->dispatch.entrypoints[i] = NULL;
2143 } else if (genX_table->entrypoints[i]) {
2144 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2145 } else {
2146 device->dispatch.entrypoints[i] =
2147 anv_device_dispatch_table.entrypoints[i];
2148 }
2149 }
2150 }
2151
2152 static int
2153 vk_priority_to_gen(int priority)
2154 {
2155 switch (priority) {
2156 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2157 return GEN_CONTEXT_LOW_PRIORITY;
2158 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2159 return GEN_CONTEXT_MEDIUM_PRIORITY;
2160 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2161 return GEN_CONTEXT_HIGH_PRIORITY;
2162 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2163 return GEN_CONTEXT_REALTIME_PRIORITY;
2164 default:
2165 unreachable("Invalid priority");
2166 }
2167 }
2168
2169 static void
2170 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2171 {
2172 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
2173
2174 if (device->instance->physicalDevice.has_exec_async)
2175 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
2176
2177 if (device->instance->physicalDevice.use_softpin)
2178 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
2179
2180 anv_vma_alloc(device, &device->hiz_clear_bo);
2181
2182 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
2183 0, 4096, 0);
2184
2185 union isl_color_value hiz_clear = { .u32 = { 0, } };
2186 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2187
2188 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
2189 anv_gem_munmap(map, device->hiz_clear_bo.size);
2190 }
2191
2192 static bool
2193 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2194 struct anv_block_pool *pool,
2195 uint64_t address)
2196 {
2197 for (uint32_t i = 0; i < pool->nbos; i++) {
2198 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
2199 uint32_t bo_size = pool->bos[i].size;
2200 if (address >= bo_address && address < (bo_address + bo_size)) {
2201 *ret = (struct gen_batch_decode_bo) {
2202 .addr = bo_address,
2203 .size = bo_size,
2204 .map = pool->bos[i].map,
2205 };
2206 return true;
2207 }
2208 }
2209 return false;
2210 }
2211
2212 /* Finding a buffer for batch decoding */
2213 static struct gen_batch_decode_bo
2214 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2215 {
2216 struct anv_device *device = v_batch;
2217 struct gen_batch_decode_bo ret_bo = {};
2218
2219 assert(ppgtt);
2220
2221 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2222 return ret_bo;
2223 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2224 return ret_bo;
2225 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2226 return ret_bo;
2227 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2228 return ret_bo;
2229
2230 if (!device->cmd_buffer_being_decoded)
2231 return (struct gen_batch_decode_bo) { };
2232
2233 struct anv_batch_bo **bo;
2234
2235 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2236 /* The decoder zeroes out the top 16 bits, so we need to as well */
2237 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
2238
2239 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
2240 return (struct gen_batch_decode_bo) {
2241 .addr = bo_address,
2242 .size = (*bo)->bo.size,
2243 .map = (*bo)->bo.map,
2244 };
2245 }
2246 }
2247
2248 return (struct gen_batch_decode_bo) { };
2249 }
2250
2251 VkResult anv_CreateDevice(
2252 VkPhysicalDevice physicalDevice,
2253 const VkDeviceCreateInfo* pCreateInfo,
2254 const VkAllocationCallbacks* pAllocator,
2255 VkDevice* pDevice)
2256 {
2257 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2258 VkResult result;
2259 struct anv_device *device;
2260
2261 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2262
2263 struct anv_device_extension_table enabled_extensions = { };
2264 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2265 int idx;
2266 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2267 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2268 anv_device_extensions[idx].extensionName) == 0)
2269 break;
2270 }
2271
2272 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2273 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2274
2275 if (!physical_device->supported_extensions.extensions[idx])
2276 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2277
2278 enabled_extensions.extensions[idx] = true;
2279 }
2280
2281 /* Check enabled features */
2282 if (pCreateInfo->pEnabledFeatures) {
2283 VkPhysicalDeviceFeatures supported_features;
2284 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2285 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2286 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2287 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2288 for (uint32_t i = 0; i < num_features; i++) {
2289 if (enabled_feature[i] && !supported_feature[i])
2290 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2291 }
2292 }
2293
2294 /* Check requested queues and fail if we are requested to create any
2295 * queues with flags we don't support.
2296 */
2297 assert(pCreateInfo->queueCreateInfoCount > 0);
2298 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2299 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2300 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2301 }
2302
2303 /* Check if client specified queue priority. */
2304 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2305 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2306 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2307
2308 VkQueueGlobalPriorityEXT priority =
2309 queue_priority ? queue_priority->globalPriority :
2310 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2311
2312 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2313 sizeof(*device), 8,
2314 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2315 if (!device)
2316 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2317
2318 if (INTEL_DEBUG & DEBUG_BATCH) {
2319 const unsigned decode_flags =
2320 GEN_BATCH_DECODE_FULL |
2321 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2322 GEN_BATCH_DECODE_OFFSETS |
2323 GEN_BATCH_DECODE_FLOATS;
2324
2325 gen_batch_decode_ctx_init(&device->decoder_ctx,
2326 &physical_device->info,
2327 stderr, decode_flags, NULL,
2328 decode_get_bo, NULL, device);
2329 }
2330
2331 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2332 device->instance = physical_device->instance;
2333 device->chipset_id = physical_device->chipset_id;
2334 device->no_hw = physical_device->no_hw;
2335 device->_lost = false;
2336
2337 if (pAllocator)
2338 device->alloc = *pAllocator;
2339 else
2340 device->alloc = physical_device->instance->alloc;
2341
2342 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2343 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2344 if (device->fd == -1) {
2345 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2346 goto fail_device;
2347 }
2348
2349 device->context_id = anv_gem_create_context(device);
2350 if (device->context_id == -1) {
2351 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2352 goto fail_fd;
2353 }
2354
2355 if (physical_device->use_softpin) {
2356 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2357 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2358 goto fail_fd;
2359 }
2360
2361 /* keep the page with address zero out of the allocator */
2362 struct anv_memory_heap *low_heap =
2363 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2364 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2365 device->vma_lo_available = low_heap->size;
2366
2367 struct anv_memory_heap *high_heap =
2368 &physical_device->memory.heaps[0];
2369 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2370 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2371 high_heap->size;
2372 }
2373
2374 list_inithead(&device->memory_objects);
2375
2376 /* As per spec, the driver implementation may deny requests to acquire
2377 * a priority above the default priority (MEDIUM) if the caller does not
2378 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2379 * is returned.
2380 */
2381 if (physical_device->has_context_priority) {
2382 int err = anv_gem_set_context_param(device->fd, device->context_id,
2383 I915_CONTEXT_PARAM_PRIORITY,
2384 vk_priority_to_gen(priority));
2385 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2386 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2387 goto fail_fd;
2388 }
2389 }
2390
2391 device->info = physical_device->info;
2392 device->isl_dev = physical_device->isl_dev;
2393
2394 /* On Broadwell and later, we can use batch chaining to more efficiently
2395 * implement growing command buffers. Prior to Haswell, the kernel
2396 * command parser gets in the way and we have to fall back to growing
2397 * the batch.
2398 */
2399 device->can_chain_batches = device->info.gen >= 8;
2400
2401 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2402 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2403 device->enabled_extensions = enabled_extensions;
2404
2405 anv_device_init_dispatch(device);
2406
2407 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2408 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2409 goto fail_context_id;
2410 }
2411
2412 pthread_condattr_t condattr;
2413 if (pthread_condattr_init(&condattr) != 0) {
2414 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2415 goto fail_mutex;
2416 }
2417 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2418 pthread_condattr_destroy(&condattr);
2419 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2420 goto fail_mutex;
2421 }
2422 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2423 pthread_condattr_destroy(&condattr);
2424 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2425 goto fail_mutex;
2426 }
2427 pthread_condattr_destroy(&condattr);
2428
2429 uint64_t bo_flags =
2430 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2431 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2432 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2433 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2434
2435 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2436
2437 result = anv_bo_cache_init(&device->bo_cache);
2438 if (result != VK_SUCCESS)
2439 goto fail_batch_bo_pool;
2440
2441 if (!physical_device->use_softpin)
2442 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2443
2444 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2445 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2446 16384,
2447 bo_flags);
2448 if (result != VK_SUCCESS)
2449 goto fail_bo_cache;
2450
2451 result = anv_state_pool_init(&device->instruction_state_pool, device,
2452 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2453 16384,
2454 bo_flags);
2455 if (result != VK_SUCCESS)
2456 goto fail_dynamic_state_pool;
2457
2458 result = anv_state_pool_init(&device->surface_state_pool, device,
2459 SURFACE_STATE_POOL_MIN_ADDRESS,
2460 4096,
2461 bo_flags);
2462 if (result != VK_SUCCESS)
2463 goto fail_instruction_state_pool;
2464
2465 if (physical_device->use_softpin) {
2466 result = anv_state_pool_init(&device->binding_table_pool, device,
2467 BINDING_TABLE_POOL_MIN_ADDRESS,
2468 4096,
2469 bo_flags);
2470 if (result != VK_SUCCESS)
2471 goto fail_surface_state_pool;
2472 }
2473
2474 result = anv_bo_init_new(&device->workaround_bo, device, 4096);
2475 if (result != VK_SUCCESS)
2476 goto fail_binding_table_pool;
2477
2478 if (physical_device->use_softpin)
2479 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2480
2481 if (!anv_vma_alloc(device, &device->workaround_bo))
2482 goto fail_workaround_bo;
2483
2484 anv_device_init_trivial_batch(device);
2485
2486 if (device->info.gen >= 10)
2487 anv_device_init_hiz_clear_value_bo(device);
2488
2489 anv_scratch_pool_init(device, &device->scratch_pool);
2490
2491 anv_queue_init(device, &device->queue);
2492
2493 switch (device->info.gen) {
2494 case 7:
2495 if (!device->info.is_haswell)
2496 result = gen7_init_device_state(device);
2497 else
2498 result = gen75_init_device_state(device);
2499 break;
2500 case 8:
2501 result = gen8_init_device_state(device);
2502 break;
2503 case 9:
2504 result = gen9_init_device_state(device);
2505 break;
2506 case 10:
2507 result = gen10_init_device_state(device);
2508 break;
2509 case 11:
2510 result = gen11_init_device_state(device);
2511 break;
2512 default:
2513 /* Shouldn't get here as we don't create physical devices for any other
2514 * gens. */
2515 unreachable("unhandled gen");
2516 }
2517 if (result != VK_SUCCESS)
2518 goto fail_workaround_bo;
2519
2520 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2521
2522 anv_device_init_blorp(device);
2523
2524 anv_device_init_border_colors(device);
2525
2526 *pDevice = anv_device_to_handle(device);
2527
2528 return VK_SUCCESS;
2529
2530 fail_workaround_bo:
2531 anv_queue_finish(&device->queue);
2532 anv_scratch_pool_finish(device, &device->scratch_pool);
2533 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2534 anv_gem_close(device, device->workaround_bo.gem_handle);
2535 fail_binding_table_pool:
2536 if (physical_device->use_softpin)
2537 anv_state_pool_finish(&device->binding_table_pool);
2538 fail_surface_state_pool:
2539 anv_state_pool_finish(&device->surface_state_pool);
2540 fail_instruction_state_pool:
2541 anv_state_pool_finish(&device->instruction_state_pool);
2542 fail_dynamic_state_pool:
2543 anv_state_pool_finish(&device->dynamic_state_pool);
2544 fail_bo_cache:
2545 anv_bo_cache_finish(&device->bo_cache);
2546 fail_batch_bo_pool:
2547 anv_bo_pool_finish(&device->batch_bo_pool);
2548 pthread_cond_destroy(&device->queue_submit);
2549 fail_mutex:
2550 pthread_mutex_destroy(&device->mutex);
2551 fail_context_id:
2552 anv_gem_destroy_context(device, device->context_id);
2553 fail_fd:
2554 close(device->fd);
2555 fail_device:
2556 vk_free(&device->alloc, device);
2557
2558 return result;
2559 }
2560
2561 void anv_DestroyDevice(
2562 VkDevice _device,
2563 const VkAllocationCallbacks* pAllocator)
2564 {
2565 ANV_FROM_HANDLE(anv_device, device, _device);
2566 struct anv_physical_device *physical_device;
2567
2568 if (!device)
2569 return;
2570
2571 physical_device = &device->instance->physicalDevice;
2572
2573 anv_device_finish_blorp(device);
2574
2575 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2576
2577 anv_queue_finish(&device->queue);
2578
2579 #ifdef HAVE_VALGRIND
2580 /* We only need to free these to prevent valgrind errors. The backing
2581 * BO will go away in a couple of lines so we don't actually leak.
2582 */
2583 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2584 #endif
2585
2586 anv_scratch_pool_finish(device, &device->scratch_pool);
2587
2588 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2589 anv_vma_free(device, &device->workaround_bo);
2590 anv_gem_close(device, device->workaround_bo.gem_handle);
2591
2592 anv_vma_free(device, &device->trivial_batch_bo);
2593 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2594 if (device->info.gen >= 10)
2595 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2596
2597 if (physical_device->use_softpin)
2598 anv_state_pool_finish(&device->binding_table_pool);
2599 anv_state_pool_finish(&device->surface_state_pool);
2600 anv_state_pool_finish(&device->instruction_state_pool);
2601 anv_state_pool_finish(&device->dynamic_state_pool);
2602
2603 anv_bo_cache_finish(&device->bo_cache);
2604
2605 anv_bo_pool_finish(&device->batch_bo_pool);
2606
2607 pthread_cond_destroy(&device->queue_submit);
2608 pthread_mutex_destroy(&device->mutex);
2609
2610 anv_gem_destroy_context(device, device->context_id);
2611
2612 if (INTEL_DEBUG & DEBUG_BATCH)
2613 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2614
2615 close(device->fd);
2616
2617 vk_free(&device->alloc, device);
2618 }
2619
2620 VkResult anv_EnumerateInstanceLayerProperties(
2621 uint32_t* pPropertyCount,
2622 VkLayerProperties* pProperties)
2623 {
2624 if (pProperties == NULL) {
2625 *pPropertyCount = 0;
2626 return VK_SUCCESS;
2627 }
2628
2629 /* None supported at this time */
2630 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2631 }
2632
2633 VkResult anv_EnumerateDeviceLayerProperties(
2634 VkPhysicalDevice physicalDevice,
2635 uint32_t* pPropertyCount,
2636 VkLayerProperties* pProperties)
2637 {
2638 if (pProperties == NULL) {
2639 *pPropertyCount = 0;
2640 return VK_SUCCESS;
2641 }
2642
2643 /* None supported at this time */
2644 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2645 }
2646
2647 void anv_GetDeviceQueue(
2648 VkDevice _device,
2649 uint32_t queueNodeIndex,
2650 uint32_t queueIndex,
2651 VkQueue* pQueue)
2652 {
2653 ANV_FROM_HANDLE(anv_device, device, _device);
2654
2655 assert(queueIndex == 0);
2656
2657 *pQueue = anv_queue_to_handle(&device->queue);
2658 }
2659
2660 void anv_GetDeviceQueue2(
2661 VkDevice _device,
2662 const VkDeviceQueueInfo2* pQueueInfo,
2663 VkQueue* pQueue)
2664 {
2665 ANV_FROM_HANDLE(anv_device, device, _device);
2666
2667 assert(pQueueInfo->queueIndex == 0);
2668
2669 if (pQueueInfo->flags == device->queue.flags)
2670 *pQueue = anv_queue_to_handle(&device->queue);
2671 else
2672 *pQueue = NULL;
2673 }
2674
2675 VkResult
2676 _anv_device_set_lost(struct anv_device *device,
2677 const char *file, int line,
2678 const char *msg, ...)
2679 {
2680 VkResult err;
2681 va_list ap;
2682
2683 device->_lost = true;
2684
2685 va_start(ap, msg);
2686 err = __vk_errorv(device->instance, device,
2687 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2688 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2689 va_end(ap);
2690
2691 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2692 abort();
2693
2694 return err;
2695 }
2696
2697 VkResult
2698 anv_device_query_status(struct anv_device *device)
2699 {
2700 /* This isn't likely as most of the callers of this function already check
2701 * for it. However, it doesn't hurt to check and it potentially lets us
2702 * avoid an ioctl.
2703 */
2704 if (anv_device_is_lost(device))
2705 return VK_ERROR_DEVICE_LOST;
2706
2707 uint32_t active, pending;
2708 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2709 if (ret == -1) {
2710 /* We don't know the real error. */
2711 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2712 }
2713
2714 if (active) {
2715 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2716 } else if (pending) {
2717 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2718 }
2719
2720 return VK_SUCCESS;
2721 }
2722
2723 VkResult
2724 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2725 {
2726 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2727 * Other usages of the BO (such as on different hardware) will not be
2728 * flagged as "busy" by this ioctl. Use with care.
2729 */
2730 int ret = anv_gem_busy(device, bo->gem_handle);
2731 if (ret == 1) {
2732 return VK_NOT_READY;
2733 } else if (ret == -1) {
2734 /* We don't know the real error. */
2735 return anv_device_set_lost(device, "gem wait failed: %m");
2736 }
2737
2738 /* Query for device status after the busy call. If the BO we're checking
2739 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2740 * client because it clearly doesn't have valid data. Yes, this most
2741 * likely means an ioctl, but we just did an ioctl to query the busy status
2742 * so it's no great loss.
2743 */
2744 return anv_device_query_status(device);
2745 }
2746
2747 VkResult
2748 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2749 int64_t timeout)
2750 {
2751 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2752 if (ret == -1 && errno == ETIME) {
2753 return VK_TIMEOUT;
2754 } else if (ret == -1) {
2755 /* We don't know the real error. */
2756 return anv_device_set_lost(device, "gem wait failed: %m");
2757 }
2758
2759 /* Query for device status after the wait. If the BO we're waiting on got
2760 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2761 * because it clearly doesn't have valid data. Yes, this most likely means
2762 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2763 */
2764 return anv_device_query_status(device);
2765 }
2766
2767 VkResult anv_DeviceWaitIdle(
2768 VkDevice _device)
2769 {
2770 ANV_FROM_HANDLE(anv_device, device, _device);
2771 if (anv_device_is_lost(device))
2772 return VK_ERROR_DEVICE_LOST;
2773
2774 struct anv_batch batch;
2775
2776 uint32_t cmds[8];
2777 batch.start = batch.next = cmds;
2778 batch.end = (void *) cmds + sizeof(cmds);
2779
2780 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2781 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2782
2783 return anv_device_submit_simple_batch(device, &batch);
2784 }
2785
2786 bool
2787 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2788 {
2789 if (!(bo->flags & EXEC_OBJECT_PINNED))
2790 return true;
2791
2792 pthread_mutex_lock(&device->vma_mutex);
2793
2794 bo->offset = 0;
2795
2796 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2797 device->vma_hi_available >= bo->size) {
2798 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2799 if (addr) {
2800 bo->offset = gen_canonical_address(addr);
2801 assert(addr == gen_48b_address(bo->offset));
2802 device->vma_hi_available -= bo->size;
2803 }
2804 }
2805
2806 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2807 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2808 if (addr) {
2809 bo->offset = gen_canonical_address(addr);
2810 assert(addr == gen_48b_address(bo->offset));
2811 device->vma_lo_available -= bo->size;
2812 }
2813 }
2814
2815 pthread_mutex_unlock(&device->vma_mutex);
2816
2817 return bo->offset != 0;
2818 }
2819
2820 void
2821 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2822 {
2823 if (!(bo->flags & EXEC_OBJECT_PINNED))
2824 return;
2825
2826 const uint64_t addr_48b = gen_48b_address(bo->offset);
2827
2828 pthread_mutex_lock(&device->vma_mutex);
2829
2830 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2831 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2832 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2833 device->vma_lo_available += bo->size;
2834 } else {
2835 ASSERTED const struct anv_physical_device *physical_device =
2836 &device->instance->physicalDevice;
2837 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
2838 addr_48b < (physical_device->memory.heaps[0].vma_start +
2839 physical_device->memory.heaps[0].vma_size));
2840 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2841 device->vma_hi_available += bo->size;
2842 }
2843
2844 pthread_mutex_unlock(&device->vma_mutex);
2845
2846 bo->offset = 0;
2847 }
2848
2849 VkResult
2850 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
2851 {
2852 uint32_t gem_handle = anv_gem_create(device, size);
2853 if (!gem_handle)
2854 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2855
2856 anv_bo_init(bo, gem_handle, size);
2857
2858 return VK_SUCCESS;
2859 }
2860
2861 VkResult anv_AllocateMemory(
2862 VkDevice _device,
2863 const VkMemoryAllocateInfo* pAllocateInfo,
2864 const VkAllocationCallbacks* pAllocator,
2865 VkDeviceMemory* pMem)
2866 {
2867 ANV_FROM_HANDLE(anv_device, device, _device);
2868 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2869 struct anv_device_memory *mem;
2870 VkResult result = VK_SUCCESS;
2871
2872 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
2873
2874 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
2875 assert(pAllocateInfo->allocationSize > 0);
2876
2877 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
2878 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2879
2880 /* FINISHME: Fail if allocation request exceeds heap size. */
2881
2882 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
2883 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2884 if (mem == NULL)
2885 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2886
2887 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
2888 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
2889 mem->map = NULL;
2890 mem->map_size = 0;
2891 mem->ahw = NULL;
2892 mem->host_ptr = NULL;
2893
2894 uint64_t bo_flags = 0;
2895
2896 assert(mem->type->heapIndex < pdevice->memory.heap_count);
2897 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
2898 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2899
2900 const struct wsi_memory_allocate_info *wsi_info =
2901 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2902 if (wsi_info && wsi_info->implicit_sync) {
2903 /* We need to set the WRITE flag on window system buffers so that GEM
2904 * will know we're writing to them and synchronize uses on other rings
2905 * (eg if the display server uses the blitter ring).
2906 */
2907 bo_flags |= EXEC_OBJECT_WRITE;
2908 } else if (pdevice->has_exec_async) {
2909 bo_flags |= EXEC_OBJECT_ASYNC;
2910 }
2911
2912 if (pdevice->use_softpin)
2913 bo_flags |= EXEC_OBJECT_PINNED;
2914
2915 const VkExportMemoryAllocateInfo *export_info =
2916 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
2917
2918 /* Check if we need to support Android HW buffer export. If so,
2919 * create AHardwareBuffer and import memory from it.
2920 */
2921 bool android_export = false;
2922 if (export_info && export_info->handleTypes &
2923 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
2924 android_export = true;
2925
2926 /* Android memory import. */
2927 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
2928 vk_find_struct_const(pAllocateInfo->pNext,
2929 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
2930
2931 if (ahw_import_info) {
2932 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
2933 if (result != VK_SUCCESS)
2934 goto fail;
2935
2936 goto success;
2937 } else if (android_export) {
2938 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
2939 if (result != VK_SUCCESS)
2940 goto fail;
2941
2942 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
2943 .buffer = mem->ahw,
2944 };
2945 result = anv_import_ahw_memory(_device, mem, &import_info);
2946 if (result != VK_SUCCESS)
2947 goto fail;
2948
2949 goto success;
2950 }
2951
2952 const VkImportMemoryFdInfoKHR *fd_info =
2953 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
2954
2955 /* The Vulkan spec permits handleType to be 0, in which case the struct is
2956 * ignored.
2957 */
2958 if (fd_info && fd_info->handleType) {
2959 /* At the moment, we support only the below handle types. */
2960 assert(fd_info->handleType ==
2961 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2962 fd_info->handleType ==
2963 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2964
2965 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
2966 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
2967 if (result != VK_SUCCESS)
2968 goto fail;
2969
2970 VkDeviceSize aligned_alloc_size =
2971 align_u64(pAllocateInfo->allocationSize, 4096);
2972
2973 /* For security purposes, we reject importing the bo if it's smaller
2974 * than the requested allocation size. This prevents a malicious client
2975 * from passing a buffer to a trusted client, lying about the size, and
2976 * telling the trusted client to try and texture from an image that goes
2977 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
2978 * in the trusted client. The trusted client can protect itself against
2979 * this sort of attack but only if it can trust the buffer size.
2980 */
2981 if (mem->bo->size < aligned_alloc_size) {
2982 result = vk_errorf(device->instance, device,
2983 VK_ERROR_INVALID_EXTERNAL_HANDLE,
2984 "aligned allocationSize too large for "
2985 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
2986 "%"PRIu64"B > %"PRIu64"B",
2987 aligned_alloc_size, mem->bo->size);
2988 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2989 goto fail;
2990 }
2991
2992 /* From the Vulkan spec:
2993 *
2994 * "Importing memory from a file descriptor transfers ownership of
2995 * the file descriptor from the application to the Vulkan
2996 * implementation. The application must not perform any operations on
2997 * the file descriptor after a successful import."
2998 *
2999 * If the import fails, we leave the file descriptor open.
3000 */
3001 close(fd_info->fd);
3002 goto success;
3003 }
3004
3005 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
3006 vk_find_struct_const(pAllocateInfo->pNext,
3007 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
3008 if (host_ptr_info && host_ptr_info->handleType) {
3009 if (host_ptr_info->handleType ==
3010 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3011 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3012 goto fail;
3013 }
3014
3015 assert(host_ptr_info->handleType ==
3016 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3017
3018 result = anv_bo_cache_import_host_ptr(
3019 device, &device->bo_cache, host_ptr_info->pHostPointer,
3020 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
3021
3022 if (result != VK_SUCCESS)
3023 goto fail;
3024
3025 mem->host_ptr = host_ptr_info->pHostPointer;
3026 goto success;
3027 }
3028
3029 /* Regular allocate (not importing memory). */
3030
3031 if (export_info && export_info->handleTypes)
3032 bo_flags |= ANV_BO_EXTERNAL;
3033
3034 result = anv_bo_cache_alloc(device, &device->bo_cache,
3035 pAllocateInfo->allocationSize, bo_flags,
3036 &mem->bo);
3037 if (result != VK_SUCCESS)
3038 goto fail;
3039
3040 const VkMemoryDedicatedAllocateInfo *dedicated_info =
3041 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
3042 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3043 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3044
3045 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3046 * the BO. In this case, we have a dedicated allocation.
3047 */
3048 if (image->needs_set_tiling) {
3049 const uint32_t i915_tiling =
3050 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3051 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3052 image->planes[0].surface.isl.row_pitch_B,
3053 i915_tiling);
3054 if (ret) {
3055 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3056 return vk_errorf(device->instance, NULL,
3057 VK_ERROR_OUT_OF_DEVICE_MEMORY,
3058 "failed to set BO tiling: %m");
3059 }
3060 }
3061 }
3062
3063 success:
3064 pthread_mutex_lock(&device->mutex);
3065 list_addtail(&mem->link, &device->memory_objects);
3066 pthread_mutex_unlock(&device->mutex);
3067
3068 *pMem = anv_device_memory_to_handle(mem);
3069
3070 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3071 mem->bo->size);
3072
3073 return VK_SUCCESS;
3074
3075 fail:
3076 vk_free2(&device->alloc, pAllocator, mem);
3077
3078 return result;
3079 }
3080
3081 VkResult anv_GetMemoryFdKHR(
3082 VkDevice device_h,
3083 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3084 int* pFd)
3085 {
3086 ANV_FROM_HANDLE(anv_device, dev, device_h);
3087 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3088
3089 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3090
3091 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3092 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3093
3094 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
3095 }
3096
3097 VkResult anv_GetMemoryFdPropertiesKHR(
3098 VkDevice _device,
3099 VkExternalMemoryHandleTypeFlagBits handleType,
3100 int fd,
3101 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3102 {
3103 ANV_FROM_HANDLE(anv_device, device, _device);
3104 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3105
3106 switch (handleType) {
3107 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3108 /* dma-buf can be imported as any memory type */
3109 pMemoryFdProperties->memoryTypeBits =
3110 (1 << pdevice->memory.type_count) - 1;
3111 return VK_SUCCESS;
3112
3113 default:
3114 /* The valid usage section for this function says:
3115 *
3116 * "handleType must not be one of the handle types defined as
3117 * opaque."
3118 *
3119 * So opaque handle types fall into the default "unsupported" case.
3120 */
3121 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3122 }
3123 }
3124
3125 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3126 VkDevice _device,
3127 VkExternalMemoryHandleTypeFlagBits handleType,
3128 const void* pHostPointer,
3129 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3130 {
3131 ANV_FROM_HANDLE(anv_device, device, _device);
3132
3133 assert(pMemoryHostPointerProperties->sType ==
3134 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3135
3136 switch (handleType) {
3137 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
3138 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3139
3140 /* Host memory can be imported as any memory type. */
3141 pMemoryHostPointerProperties->memoryTypeBits =
3142 (1ull << pdevice->memory.type_count) - 1;
3143
3144 return VK_SUCCESS;
3145 }
3146 default:
3147 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3148 }
3149 }
3150
3151 void anv_FreeMemory(
3152 VkDevice _device,
3153 VkDeviceMemory _mem,
3154 const VkAllocationCallbacks* pAllocator)
3155 {
3156 ANV_FROM_HANDLE(anv_device, device, _device);
3157 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3158 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3159
3160 if (mem == NULL)
3161 return;
3162
3163 pthread_mutex_lock(&device->mutex);
3164 list_del(&mem->link);
3165 pthread_mutex_unlock(&device->mutex);
3166
3167 if (mem->map)
3168 anv_UnmapMemory(_device, _mem);
3169
3170 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3171 -mem->bo->size);
3172
3173 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3174
3175 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3176 if (mem->ahw)
3177 AHardwareBuffer_release(mem->ahw);
3178 #endif
3179
3180 vk_free2(&device->alloc, pAllocator, mem);
3181 }
3182
3183 VkResult anv_MapMemory(
3184 VkDevice _device,
3185 VkDeviceMemory _memory,
3186 VkDeviceSize offset,
3187 VkDeviceSize size,
3188 VkMemoryMapFlags flags,
3189 void** ppData)
3190 {
3191 ANV_FROM_HANDLE(anv_device, device, _device);
3192 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3193
3194 if (mem == NULL) {
3195 *ppData = NULL;
3196 return VK_SUCCESS;
3197 }
3198
3199 if (mem->host_ptr) {
3200 *ppData = mem->host_ptr + offset;
3201 return VK_SUCCESS;
3202 }
3203
3204 if (size == VK_WHOLE_SIZE)
3205 size = mem->bo->size - offset;
3206
3207 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3208 *
3209 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3210 * assert(size != 0);
3211 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3212 * equal to the size of the memory minus offset
3213 */
3214 assert(size > 0);
3215 assert(offset + size <= mem->bo->size);
3216
3217 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3218 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3219 * at a time is valid. We could just mmap up front and return an offset
3220 * pointer here, but that may exhaust virtual memory on 32 bit
3221 * userspace. */
3222
3223 uint32_t gem_flags = 0;
3224
3225 if (!device->info.has_llc &&
3226 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3227 gem_flags |= I915_MMAP_WC;
3228
3229 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3230 uint64_t map_offset = offset & ~4095ull;
3231 assert(offset >= map_offset);
3232 uint64_t map_size = (offset + size) - map_offset;
3233
3234 /* Let's map whole pages */
3235 map_size = align_u64(map_size, 4096);
3236
3237 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3238 map_offset, map_size, gem_flags);
3239 if (map == MAP_FAILED)
3240 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3241
3242 mem->map = map;
3243 mem->map_size = map_size;
3244
3245 *ppData = mem->map + (offset - map_offset);
3246
3247 return VK_SUCCESS;
3248 }
3249
3250 void anv_UnmapMemory(
3251 VkDevice _device,
3252 VkDeviceMemory _memory)
3253 {
3254 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3255
3256 if (mem == NULL || mem->host_ptr)
3257 return;
3258
3259 anv_gem_munmap(mem->map, mem->map_size);
3260
3261 mem->map = NULL;
3262 mem->map_size = 0;
3263 }
3264
3265 static void
3266 clflush_mapped_ranges(struct anv_device *device,
3267 uint32_t count,
3268 const VkMappedMemoryRange *ranges)
3269 {
3270 for (uint32_t i = 0; i < count; i++) {
3271 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3272 if (ranges[i].offset >= mem->map_size)
3273 continue;
3274
3275 gen_clflush_range(mem->map + ranges[i].offset,
3276 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3277 }
3278 }
3279
3280 VkResult anv_FlushMappedMemoryRanges(
3281 VkDevice _device,
3282 uint32_t memoryRangeCount,
3283 const VkMappedMemoryRange* pMemoryRanges)
3284 {
3285 ANV_FROM_HANDLE(anv_device, device, _device);
3286
3287 if (device->info.has_llc)
3288 return VK_SUCCESS;
3289
3290 /* Make sure the writes we're flushing have landed. */
3291 __builtin_ia32_mfence();
3292
3293 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3294
3295 return VK_SUCCESS;
3296 }
3297
3298 VkResult anv_InvalidateMappedMemoryRanges(
3299 VkDevice _device,
3300 uint32_t memoryRangeCount,
3301 const VkMappedMemoryRange* pMemoryRanges)
3302 {
3303 ANV_FROM_HANDLE(anv_device, device, _device);
3304
3305 if (device->info.has_llc)
3306 return VK_SUCCESS;
3307
3308 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3309
3310 /* Make sure no reads get moved up above the invalidate. */
3311 __builtin_ia32_mfence();
3312
3313 return VK_SUCCESS;
3314 }
3315
3316 void anv_GetBufferMemoryRequirements(
3317 VkDevice _device,
3318 VkBuffer _buffer,
3319 VkMemoryRequirements* pMemoryRequirements)
3320 {
3321 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3322 ANV_FROM_HANDLE(anv_device, device, _device);
3323 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3324
3325 /* The Vulkan spec (git aaed022) says:
3326 *
3327 * memoryTypeBits is a bitfield and contains one bit set for every
3328 * supported memory type for the resource. The bit `1<<i` is set if and
3329 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3330 * structure for the physical device is supported.
3331 */
3332 uint32_t memory_types = 0;
3333 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3334 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3335 if ((valid_usage & buffer->usage) == buffer->usage)
3336 memory_types |= (1u << i);
3337 }
3338
3339 /* Base alignment requirement of a cache line */
3340 uint32_t alignment = 16;
3341
3342 /* We need an alignment of 32 for pushing UBOs */
3343 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3344 alignment = MAX2(alignment, 32);
3345
3346 pMemoryRequirements->size = buffer->size;
3347 pMemoryRequirements->alignment = alignment;
3348
3349 /* Storage and Uniform buffers should have their size aligned to
3350 * 32-bits to avoid boundary checks when last DWord is not complete.
3351 * This would ensure that not internal padding would be needed for
3352 * 16-bit types.
3353 */
3354 if (device->robust_buffer_access &&
3355 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3356 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3357 pMemoryRequirements->size = align_u64(buffer->size, 4);
3358
3359 pMemoryRequirements->memoryTypeBits = memory_types;
3360 }
3361
3362 void anv_GetBufferMemoryRequirements2(
3363 VkDevice _device,
3364 const VkBufferMemoryRequirementsInfo2* pInfo,
3365 VkMemoryRequirements2* pMemoryRequirements)
3366 {
3367 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3368 &pMemoryRequirements->memoryRequirements);
3369
3370 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3371 switch (ext->sType) {
3372 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3373 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3374 requirements->prefersDedicatedAllocation = false;
3375 requirements->requiresDedicatedAllocation = false;
3376 break;
3377 }
3378
3379 default:
3380 anv_debug_ignored_stype(ext->sType);
3381 break;
3382 }
3383 }
3384 }
3385
3386 void anv_GetImageMemoryRequirements(
3387 VkDevice _device,
3388 VkImage _image,
3389 VkMemoryRequirements* pMemoryRequirements)
3390 {
3391 ANV_FROM_HANDLE(anv_image, image, _image);
3392 ANV_FROM_HANDLE(anv_device, device, _device);
3393 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3394
3395 /* The Vulkan spec (git aaed022) says:
3396 *
3397 * memoryTypeBits is a bitfield and contains one bit set for every
3398 * supported memory type for the resource. The bit `1<<i` is set if and
3399 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3400 * structure for the physical device is supported.
3401 *
3402 * All types are currently supported for images.
3403 */
3404 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3405
3406 /* We must have image allocated or imported at this point. According to the
3407 * specification, external images must have been bound to memory before
3408 * calling GetImageMemoryRequirements.
3409 */
3410 assert(image->size > 0);
3411
3412 pMemoryRequirements->size = image->size;
3413 pMemoryRequirements->alignment = image->alignment;
3414 pMemoryRequirements->memoryTypeBits = memory_types;
3415 }
3416
3417 void anv_GetImageMemoryRequirements2(
3418 VkDevice _device,
3419 const VkImageMemoryRequirementsInfo2* pInfo,
3420 VkMemoryRequirements2* pMemoryRequirements)
3421 {
3422 ANV_FROM_HANDLE(anv_device, device, _device);
3423 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3424
3425 anv_GetImageMemoryRequirements(_device, pInfo->image,
3426 &pMemoryRequirements->memoryRequirements);
3427
3428 vk_foreach_struct_const(ext, pInfo->pNext) {
3429 switch (ext->sType) {
3430 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3431 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3432 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3433 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3434 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3435 plane_reqs->planeAspect);
3436
3437 assert(image->planes[plane].offset == 0);
3438
3439 /* The Vulkan spec (git aaed022) says:
3440 *
3441 * memoryTypeBits is a bitfield and contains one bit set for every
3442 * supported memory type for the resource. The bit `1<<i` is set
3443 * if and only if the memory type `i` in the
3444 * VkPhysicalDeviceMemoryProperties structure for the physical
3445 * device is supported.
3446 *
3447 * All types are currently supported for images.
3448 */
3449 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3450 (1ull << pdevice->memory.type_count) - 1;
3451
3452 /* We must have image allocated or imported at this point. According to the
3453 * specification, external images must have been bound to memory before
3454 * calling GetImageMemoryRequirements.
3455 */
3456 assert(image->planes[plane].size > 0);
3457
3458 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3459 pMemoryRequirements->memoryRequirements.alignment =
3460 image->planes[plane].alignment;
3461 break;
3462 }
3463
3464 default:
3465 anv_debug_ignored_stype(ext->sType);
3466 break;
3467 }
3468 }
3469
3470 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3471 switch (ext->sType) {
3472 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3473 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3474 if (image->needs_set_tiling || image->external_format) {
3475 /* If we need to set the tiling for external consumers, we need a
3476 * dedicated allocation.
3477 *
3478 * See also anv_AllocateMemory.
3479 */
3480 requirements->prefersDedicatedAllocation = true;
3481 requirements->requiresDedicatedAllocation = true;
3482 } else {
3483 requirements->prefersDedicatedAllocation = false;
3484 requirements->requiresDedicatedAllocation = false;
3485 }
3486 break;
3487 }
3488
3489 default:
3490 anv_debug_ignored_stype(ext->sType);
3491 break;
3492 }
3493 }
3494 }
3495
3496 void anv_GetImageSparseMemoryRequirements(
3497 VkDevice device,
3498 VkImage image,
3499 uint32_t* pSparseMemoryRequirementCount,
3500 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3501 {
3502 *pSparseMemoryRequirementCount = 0;
3503 }
3504
3505 void anv_GetImageSparseMemoryRequirements2(
3506 VkDevice device,
3507 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3508 uint32_t* pSparseMemoryRequirementCount,
3509 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3510 {
3511 *pSparseMemoryRequirementCount = 0;
3512 }
3513
3514 void anv_GetDeviceMemoryCommitment(
3515 VkDevice device,
3516 VkDeviceMemory memory,
3517 VkDeviceSize* pCommittedMemoryInBytes)
3518 {
3519 *pCommittedMemoryInBytes = 0;
3520 }
3521
3522 static void
3523 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3524 {
3525 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3526 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3527
3528 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3529
3530 if (mem) {
3531 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3532 buffer->address = (struct anv_address) {
3533 .bo = mem->bo,
3534 .offset = pBindInfo->memoryOffset,
3535 };
3536 } else {
3537 buffer->address = ANV_NULL_ADDRESS;
3538 }
3539 }
3540
3541 VkResult anv_BindBufferMemory(
3542 VkDevice device,
3543 VkBuffer buffer,
3544 VkDeviceMemory memory,
3545 VkDeviceSize memoryOffset)
3546 {
3547 anv_bind_buffer_memory(
3548 &(VkBindBufferMemoryInfo) {
3549 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3550 .buffer = buffer,
3551 .memory = memory,
3552 .memoryOffset = memoryOffset,
3553 });
3554
3555 return VK_SUCCESS;
3556 }
3557
3558 VkResult anv_BindBufferMemory2(
3559 VkDevice device,
3560 uint32_t bindInfoCount,
3561 const VkBindBufferMemoryInfo* pBindInfos)
3562 {
3563 for (uint32_t i = 0; i < bindInfoCount; i++)
3564 anv_bind_buffer_memory(&pBindInfos[i]);
3565
3566 return VK_SUCCESS;
3567 }
3568
3569 VkResult anv_QueueBindSparse(
3570 VkQueue _queue,
3571 uint32_t bindInfoCount,
3572 const VkBindSparseInfo* pBindInfo,
3573 VkFence fence)
3574 {
3575 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3576 if (anv_device_is_lost(queue->device))
3577 return VK_ERROR_DEVICE_LOST;
3578
3579 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3580 }
3581
3582 // Event functions
3583
3584 VkResult anv_CreateEvent(
3585 VkDevice _device,
3586 const VkEventCreateInfo* pCreateInfo,
3587 const VkAllocationCallbacks* pAllocator,
3588 VkEvent* pEvent)
3589 {
3590 ANV_FROM_HANDLE(anv_device, device, _device);
3591 struct anv_state state;
3592 struct anv_event *event;
3593
3594 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3595
3596 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3597 sizeof(*event), 8);
3598 event = state.map;
3599 event->state = state;
3600 event->semaphore = VK_EVENT_RESET;
3601
3602 if (!device->info.has_llc) {
3603 /* Make sure the writes we're flushing have landed. */
3604 __builtin_ia32_mfence();
3605 __builtin_ia32_clflush(event);
3606 }
3607
3608 *pEvent = anv_event_to_handle(event);
3609
3610 return VK_SUCCESS;
3611 }
3612
3613 void anv_DestroyEvent(
3614 VkDevice _device,
3615 VkEvent _event,
3616 const VkAllocationCallbacks* pAllocator)
3617 {
3618 ANV_FROM_HANDLE(anv_device, device, _device);
3619 ANV_FROM_HANDLE(anv_event, event, _event);
3620
3621 if (!event)
3622 return;
3623
3624 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3625 }
3626
3627 VkResult anv_GetEventStatus(
3628 VkDevice _device,
3629 VkEvent _event)
3630 {
3631 ANV_FROM_HANDLE(anv_device, device, _device);
3632 ANV_FROM_HANDLE(anv_event, event, _event);
3633
3634 if (anv_device_is_lost(device))
3635 return VK_ERROR_DEVICE_LOST;
3636
3637 if (!device->info.has_llc) {
3638 /* Invalidate read cache before reading event written by GPU. */
3639 __builtin_ia32_clflush(event);
3640 __builtin_ia32_mfence();
3641
3642 }
3643
3644 return event->semaphore;
3645 }
3646
3647 VkResult anv_SetEvent(
3648 VkDevice _device,
3649 VkEvent _event)
3650 {
3651 ANV_FROM_HANDLE(anv_device, device, _device);
3652 ANV_FROM_HANDLE(anv_event, event, _event);
3653
3654 event->semaphore = VK_EVENT_SET;
3655
3656 if (!device->info.has_llc) {
3657 /* Make sure the writes we're flushing have landed. */
3658 __builtin_ia32_mfence();
3659 __builtin_ia32_clflush(event);
3660 }
3661
3662 return VK_SUCCESS;
3663 }
3664
3665 VkResult anv_ResetEvent(
3666 VkDevice _device,
3667 VkEvent _event)
3668 {
3669 ANV_FROM_HANDLE(anv_device, device, _device);
3670 ANV_FROM_HANDLE(anv_event, event, _event);
3671
3672 event->semaphore = VK_EVENT_RESET;
3673
3674 if (!device->info.has_llc) {
3675 /* Make sure the writes we're flushing have landed. */
3676 __builtin_ia32_mfence();
3677 __builtin_ia32_clflush(event);
3678 }
3679
3680 return VK_SUCCESS;
3681 }
3682
3683 // Buffer functions
3684
3685 VkResult anv_CreateBuffer(
3686 VkDevice _device,
3687 const VkBufferCreateInfo* pCreateInfo,
3688 const VkAllocationCallbacks* pAllocator,
3689 VkBuffer* pBuffer)
3690 {
3691 ANV_FROM_HANDLE(anv_device, device, _device);
3692 struct anv_buffer *buffer;
3693
3694 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3695
3696 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3697 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3698 if (buffer == NULL)
3699 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3700
3701 buffer->size = pCreateInfo->size;
3702 buffer->usage = pCreateInfo->usage;
3703 buffer->address = ANV_NULL_ADDRESS;
3704
3705 *pBuffer = anv_buffer_to_handle(buffer);
3706
3707 return VK_SUCCESS;
3708 }
3709
3710 void anv_DestroyBuffer(
3711 VkDevice _device,
3712 VkBuffer _buffer,
3713 const VkAllocationCallbacks* pAllocator)
3714 {
3715 ANV_FROM_HANDLE(anv_device, device, _device);
3716 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3717
3718 if (!buffer)
3719 return;
3720
3721 vk_free2(&device->alloc, pAllocator, buffer);
3722 }
3723
3724 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3725 VkDevice device,
3726 const VkBufferDeviceAddressInfoEXT* pInfo)
3727 {
3728 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3729
3730 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3731
3732 return anv_address_physical(buffer->address);
3733 }
3734
3735 void
3736 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3737 enum isl_format format,
3738 struct anv_address address,
3739 uint32_t range, uint32_t stride)
3740 {
3741 isl_buffer_fill_state(&device->isl_dev, state.map,
3742 .address = anv_address_physical(address),
3743 .mocs = device->default_mocs,
3744 .size_B = range,
3745 .format = format,
3746 .swizzle = ISL_SWIZZLE_IDENTITY,
3747 .stride_B = stride);
3748 }
3749
3750 void anv_DestroySampler(
3751 VkDevice _device,
3752 VkSampler _sampler,
3753 const VkAllocationCallbacks* pAllocator)
3754 {
3755 ANV_FROM_HANDLE(anv_device, device, _device);
3756 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3757
3758 if (!sampler)
3759 return;
3760
3761 if (sampler->bindless_state.map) {
3762 anv_state_pool_free(&device->dynamic_state_pool,
3763 sampler->bindless_state);
3764 }
3765
3766 vk_free2(&device->alloc, pAllocator, sampler);
3767 }
3768
3769 VkResult anv_CreateFramebuffer(
3770 VkDevice _device,
3771 const VkFramebufferCreateInfo* pCreateInfo,
3772 const VkAllocationCallbacks* pAllocator,
3773 VkFramebuffer* pFramebuffer)
3774 {
3775 ANV_FROM_HANDLE(anv_device, device, _device);
3776 struct anv_framebuffer *framebuffer;
3777
3778 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3779
3780 size_t size = sizeof(*framebuffer);
3781
3782 /* VK_KHR_imageless_framebuffer extension says:
3783 *
3784 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
3785 * parameter pAttachments is ignored.
3786 */
3787 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
3788 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3789 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3790 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3791 if (framebuffer == NULL)
3792 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3793
3794 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3795 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
3796 framebuffer->attachments[i] = iview;
3797 }
3798 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3799 } else {
3800 assert(device->enabled_extensions.KHR_imageless_framebuffer);
3801 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3802 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3803 if (framebuffer == NULL)
3804 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3805
3806 framebuffer->attachment_count = 0;
3807 }
3808
3809 framebuffer->width = pCreateInfo->width;
3810 framebuffer->height = pCreateInfo->height;
3811 framebuffer->layers = pCreateInfo->layers;
3812
3813 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3814
3815 return VK_SUCCESS;
3816 }
3817
3818 void anv_DestroyFramebuffer(
3819 VkDevice _device,
3820 VkFramebuffer _fb,
3821 const VkAllocationCallbacks* pAllocator)
3822 {
3823 ANV_FROM_HANDLE(anv_device, device, _device);
3824 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3825
3826 if (!fb)
3827 return;
3828
3829 vk_free2(&device->alloc, pAllocator, fb);
3830 }
3831
3832 static const VkTimeDomainEXT anv_time_domains[] = {
3833 VK_TIME_DOMAIN_DEVICE_EXT,
3834 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3835 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3836 };
3837
3838 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3839 VkPhysicalDevice physicalDevice,
3840 uint32_t *pTimeDomainCount,
3841 VkTimeDomainEXT *pTimeDomains)
3842 {
3843 int d;
3844 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
3845
3846 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
3847 vk_outarray_append(&out, i) {
3848 *i = anv_time_domains[d];
3849 }
3850 }
3851
3852 return vk_outarray_status(&out);
3853 }
3854
3855 static uint64_t
3856 anv_clock_gettime(clockid_t clock_id)
3857 {
3858 struct timespec current;
3859 int ret;
3860
3861 ret = clock_gettime(clock_id, &current);
3862 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
3863 ret = clock_gettime(CLOCK_MONOTONIC, &current);
3864 if (ret < 0)
3865 return 0;
3866
3867 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
3868 }
3869
3870 #define TIMESTAMP 0x2358
3871
3872 VkResult anv_GetCalibratedTimestampsEXT(
3873 VkDevice _device,
3874 uint32_t timestampCount,
3875 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
3876 uint64_t *pTimestamps,
3877 uint64_t *pMaxDeviation)
3878 {
3879 ANV_FROM_HANDLE(anv_device, device, _device);
3880 uint64_t timestamp_frequency = device->info.timestamp_frequency;
3881 int ret;
3882 int d;
3883 uint64_t begin, end;
3884 uint64_t max_clock_period = 0;
3885
3886 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3887
3888 for (d = 0; d < timestampCount; d++) {
3889 switch (pTimestampInfos[d].timeDomain) {
3890 case VK_TIME_DOMAIN_DEVICE_EXT:
3891 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
3892 &pTimestamps[d]);
3893
3894 if (ret != 0) {
3895 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
3896 "register: %m");
3897 }
3898 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
3899 max_clock_period = MAX2(max_clock_period, device_period);
3900 break;
3901 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
3902 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
3903 max_clock_period = MAX2(max_clock_period, 1);
3904 break;
3905
3906 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
3907 pTimestamps[d] = begin;
3908 break;
3909 default:
3910 pTimestamps[d] = 0;
3911 break;
3912 }
3913 }
3914
3915 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3916
3917 /*
3918 * The maximum deviation is the sum of the interval over which we
3919 * perform the sampling and the maximum period of any sampled
3920 * clock. That's because the maximum skew between any two sampled
3921 * clock edges is when the sampled clock with the largest period is
3922 * sampled at the end of that period but right at the beginning of the
3923 * sampling interval and some other clock is sampled right at the
3924 * begining of its sampling period and right at the end of the
3925 * sampling interval. Let's assume the GPU has the longest clock
3926 * period and that the application is sampling GPU and monotonic:
3927 *
3928 * s e
3929 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
3930 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3931 *
3932 * g
3933 * 0 1 2 3
3934 * GPU -----_____-----_____-----_____-----_____
3935 *
3936 * m
3937 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
3938 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3939 *
3940 * Interval <----------------->
3941 * Deviation <-------------------------->
3942 *
3943 * s = read(raw) 2
3944 * g = read(GPU) 1
3945 * m = read(monotonic) 2
3946 * e = read(raw) b
3947 *
3948 * We round the sample interval up by one tick to cover sampling error
3949 * in the interval clock
3950 */
3951
3952 uint64_t sample_interval = end - begin + 1;
3953
3954 *pMaxDeviation = sample_interval + max_clock_period;
3955
3956 return VK_SUCCESS;
3957 }
3958
3959 /* vk_icd.h does not declare this function, so we declare it here to
3960 * suppress Wmissing-prototypes.
3961 */
3962 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3963 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
3964
3965 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3966 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
3967 {
3968 /* For the full details on loader interface versioning, see
3969 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
3970 * What follows is a condensed summary, to help you navigate the large and
3971 * confusing official doc.
3972 *
3973 * - Loader interface v0 is incompatible with later versions. We don't
3974 * support it.
3975 *
3976 * - In loader interface v1:
3977 * - The first ICD entrypoint called by the loader is
3978 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
3979 * entrypoint.
3980 * - The ICD must statically expose no other Vulkan symbol unless it is
3981 * linked with -Bsymbolic.
3982 * - Each dispatchable Vulkan handle created by the ICD must be
3983 * a pointer to a struct whose first member is VK_LOADER_DATA. The
3984 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
3985 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
3986 * vkDestroySurfaceKHR(). The ICD must be capable of working with
3987 * such loader-managed surfaces.
3988 *
3989 * - Loader interface v2 differs from v1 in:
3990 * - The first ICD entrypoint called by the loader is
3991 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
3992 * statically expose this entrypoint.
3993 *
3994 * - Loader interface v3 differs from v2 in:
3995 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
3996 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
3997 * because the loader no longer does so.
3998 */
3999 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
4000 return VK_SUCCESS;
4001 }