anv: Ignore some CreateInfo structs when rasterization is disabled
[mesa.git] / src / intel / vulkan / anv_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "util/mesa-sha1.h"
31 #include "util/os_time.h"
32 #include "common/gen_l3_config.h"
33 #include "common/gen_disasm.h"
34 #include "anv_private.h"
35 #include "compiler/brw_nir.h"
36 #include "anv_nir.h"
37 #include "nir/nir_xfb_info.h"
38 #include "spirv/nir_spirv.h"
39 #include "vk_util.h"
40
41 /* Needed for SWIZZLE macros */
42 #include "program/prog_instruction.h"
43
44 // Shader functions
45
46 VkResult anv_CreateShaderModule(
47 VkDevice _device,
48 const VkShaderModuleCreateInfo* pCreateInfo,
49 const VkAllocationCallbacks* pAllocator,
50 VkShaderModule* pShaderModule)
51 {
52 ANV_FROM_HANDLE(anv_device, device, _device);
53 struct anv_shader_module *module;
54
55 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
56 assert(pCreateInfo->flags == 0);
57
58 module = vk_alloc2(&device->alloc, pAllocator,
59 sizeof(*module) + pCreateInfo->codeSize, 8,
60 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
61 if (module == NULL)
62 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
63
64 module->size = pCreateInfo->codeSize;
65 memcpy(module->data, pCreateInfo->pCode, module->size);
66
67 _mesa_sha1_compute(module->data, module->size, module->sha1);
68
69 *pShaderModule = anv_shader_module_to_handle(module);
70
71 return VK_SUCCESS;
72 }
73
74 void anv_DestroyShaderModule(
75 VkDevice _device,
76 VkShaderModule _module,
77 const VkAllocationCallbacks* pAllocator)
78 {
79 ANV_FROM_HANDLE(anv_device, device, _device);
80 ANV_FROM_HANDLE(anv_shader_module, module, _module);
81
82 if (!module)
83 return;
84
85 vk_free2(&device->alloc, pAllocator, module);
86 }
87
88 #define SPIR_V_MAGIC_NUMBER 0x07230203
89
90 static const uint64_t stage_to_debug[] = {
91 [MESA_SHADER_VERTEX] = DEBUG_VS,
92 [MESA_SHADER_TESS_CTRL] = DEBUG_TCS,
93 [MESA_SHADER_TESS_EVAL] = DEBUG_TES,
94 [MESA_SHADER_GEOMETRY] = DEBUG_GS,
95 [MESA_SHADER_FRAGMENT] = DEBUG_WM,
96 [MESA_SHADER_COMPUTE] = DEBUG_CS,
97 };
98
99 struct anv_spirv_debug_data {
100 struct anv_device *device;
101 const struct anv_shader_module *module;
102 };
103
104 static void anv_spirv_nir_debug(void *private_data,
105 enum nir_spirv_debug_level level,
106 size_t spirv_offset,
107 const char *message)
108 {
109 struct anv_spirv_debug_data *debug_data = private_data;
110 static const VkDebugReportFlagsEXT vk_flags[] = {
111 [NIR_SPIRV_DEBUG_LEVEL_INFO] = VK_DEBUG_REPORT_INFORMATION_BIT_EXT,
112 [NIR_SPIRV_DEBUG_LEVEL_WARNING] = VK_DEBUG_REPORT_WARNING_BIT_EXT,
113 [NIR_SPIRV_DEBUG_LEVEL_ERROR] = VK_DEBUG_REPORT_ERROR_BIT_EXT,
114 };
115 char buffer[256];
116
117 snprintf(buffer, sizeof(buffer), "SPIR-V offset %lu: %s", (unsigned long) spirv_offset, message);
118
119 vk_debug_report(&debug_data->device->instance->debug_report_callbacks,
120 vk_flags[level],
121 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
122 (uint64_t) (uintptr_t) debug_data->module,
123 0, 0, "anv", buffer);
124 }
125
126 /* Eventually, this will become part of anv_CreateShader. Unfortunately,
127 * we can't do that yet because we don't have the ability to copy nir.
128 */
129 static nir_shader *
130 anv_shader_compile_to_nir(struct anv_device *device,
131 void *mem_ctx,
132 const struct anv_shader_module *module,
133 const char *entrypoint_name,
134 gl_shader_stage stage,
135 const VkSpecializationInfo *spec_info)
136 {
137 const struct anv_physical_device *pdevice =
138 &device->instance->physicalDevice;
139 const struct brw_compiler *compiler = pdevice->compiler;
140 const nir_shader_compiler_options *nir_options =
141 compiler->glsl_compiler_options[stage].NirOptions;
142
143 uint32_t *spirv = (uint32_t *) module->data;
144 assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
145 assert(module->size % 4 == 0);
146
147 uint32_t num_spec_entries = 0;
148 struct nir_spirv_specialization *spec_entries = NULL;
149 if (spec_info && spec_info->mapEntryCount > 0) {
150 num_spec_entries = spec_info->mapEntryCount;
151 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
152 for (uint32_t i = 0; i < num_spec_entries; i++) {
153 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
154 const void *data = spec_info->pData + entry.offset;
155 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
156
157 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
158 if (spec_info->dataSize == 8)
159 spec_entries[i].data64 = *(const uint64_t *)data;
160 else
161 spec_entries[i].data32 = *(const uint32_t *)data;
162 }
163 }
164
165 struct anv_spirv_debug_data spirv_debug_data = {
166 .device = device,
167 .module = module,
168 };
169 struct spirv_to_nir_options spirv_options = {
170 .frag_coord_is_sysval = true,
171 .use_scoped_memory_barrier = true,
172 .caps = {
173 .demote_to_helper_invocation = true,
174 .derivative_group = true,
175 .descriptor_array_dynamic_indexing = true,
176 .descriptor_array_non_uniform_indexing = true,
177 .descriptor_indexing = true,
178 .device_group = true,
179 .draw_parameters = true,
180 .float16 = pdevice->info.gen >= 8,
181 .float64 = pdevice->info.gen >= 8,
182 .fragment_shader_sample_interlock = pdevice->info.gen >= 9,
183 .fragment_shader_pixel_interlock = pdevice->info.gen >= 9,
184 .geometry_streams = true,
185 .image_write_without_format = true,
186 .int8 = pdevice->info.gen >= 8,
187 .int16 = pdevice->info.gen >= 8,
188 .int64 = pdevice->info.gen >= 8,
189 .int64_atomics = pdevice->info.gen >= 9 && pdevice->use_softpin,
190 .min_lod = true,
191 .multiview = true,
192 .physical_storage_buffer_address = pdevice->has_a64_buffer_access,
193 .post_depth_coverage = pdevice->info.gen >= 9,
194 .runtime_descriptor_array = true,
195 .float_controls = pdevice->info.gen >= 8,
196 .shader_clock = true,
197 .shader_viewport_index_layer = true,
198 .stencil_export = pdevice->info.gen >= 9,
199 .storage_8bit = pdevice->info.gen >= 8,
200 .storage_16bit = pdevice->info.gen >= 8,
201 .subgroup_arithmetic = true,
202 .subgroup_basic = true,
203 .subgroup_ballot = true,
204 .subgroup_quad = true,
205 .subgroup_shuffle = true,
206 .subgroup_vote = true,
207 .tessellation = true,
208 .transform_feedback = pdevice->info.gen >= 8,
209 .variable_pointers = true,
210 .vk_memory_model = true,
211 .vk_memory_model_device_scope = true,
212 },
213 .ubo_addr_format = nir_address_format_32bit_index_offset,
214 .ssbo_addr_format =
215 anv_nir_ssbo_addr_format(pdevice, device->robust_buffer_access),
216 .phys_ssbo_addr_format = nir_address_format_64bit_global,
217 .push_const_addr_format = nir_address_format_logical,
218
219 /* TODO: Consider changing this to an address format that has the NULL
220 * pointer equals to 0. That might be a better format to play nice
221 * with certain code / code generators.
222 */
223 .shared_addr_format = nir_address_format_32bit_offset,
224 .debug = {
225 .func = anv_spirv_nir_debug,
226 .private_data = &spirv_debug_data,
227 },
228 };
229
230
231 nir_shader *nir =
232 spirv_to_nir(spirv, module->size / 4,
233 spec_entries, num_spec_entries,
234 stage, entrypoint_name, &spirv_options, nir_options);
235 assert(nir->info.stage == stage);
236 nir_validate_shader(nir, "after spirv_to_nir");
237 ralloc_steal(mem_ctx, nir);
238
239 free(spec_entries);
240
241 if (unlikely(INTEL_DEBUG & stage_to_debug[stage])) {
242 fprintf(stderr, "NIR (from SPIR-V) for %s shader:\n",
243 gl_shader_stage_name(stage));
244 nir_print_shader(nir, stderr);
245 }
246
247 /* We have to lower away local constant initializers right before we
248 * inline functions. That way they get properly initialized at the top
249 * of the function and not at the top of its caller.
250 */
251 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_function_temp);
252 NIR_PASS_V(nir, nir_lower_returns);
253 NIR_PASS_V(nir, nir_inline_functions);
254 NIR_PASS_V(nir, nir_opt_deref);
255
256 /* Pick off the single entrypoint that we want */
257 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
258 if (!func->is_entrypoint)
259 exec_node_remove(&func->node);
260 }
261 assert(exec_list_length(&nir->functions) == 1);
262
263 /* Now that we've deleted all but the main function, we can go ahead and
264 * lower the rest of the constant initializers. We do this here so that
265 * nir_remove_dead_variables and split_per_member_structs below see the
266 * corresponding stores.
267 */
268 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
269
270 /* Split member structs. We do this before lower_io_to_temporaries so that
271 * it doesn't lower system values to temporaries by accident.
272 */
273 NIR_PASS_V(nir, nir_split_var_copies);
274 NIR_PASS_V(nir, nir_split_per_member_structs);
275
276 NIR_PASS_V(nir, nir_remove_dead_variables,
277 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
278
279 NIR_PASS_V(nir, nir_propagate_invariant);
280 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
281 nir_shader_get_entrypoint(nir), true, false);
282
283 NIR_PASS_V(nir, nir_lower_frexp);
284
285 /* Vulkan uses the separate-shader linking model */
286 nir->info.separate_shader = true;
287
288 brw_preprocess_nir(compiler, nir, NULL);
289
290 return nir;
291 }
292
293 void anv_DestroyPipeline(
294 VkDevice _device,
295 VkPipeline _pipeline,
296 const VkAllocationCallbacks* pAllocator)
297 {
298 ANV_FROM_HANDLE(anv_device, device, _device);
299 ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
300
301 if (!pipeline)
302 return;
303
304 anv_reloc_list_finish(&pipeline->batch_relocs,
305 pAllocator ? pAllocator : &device->alloc);
306
307 ralloc_free(pipeline->mem_ctx);
308
309 if (pipeline->blend_state.map)
310 anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
311
312 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
313 if (pipeline->shaders[s])
314 anv_shader_bin_unref(device, pipeline->shaders[s]);
315 }
316
317 vk_free2(&device->alloc, pAllocator, pipeline);
318 }
319
320 static const uint32_t vk_to_gen_primitive_type[] = {
321 [VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
322 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
323 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
324 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
325 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
326 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
327 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
328 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
329 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
330 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
331 };
332
333 static void
334 populate_sampler_prog_key(const struct gen_device_info *devinfo,
335 struct brw_sampler_prog_key_data *key)
336 {
337 /* Almost all multisampled textures are compressed. The only time when we
338 * don't compress a multisampled texture is for 16x MSAA with a surface
339 * width greater than 8k which is a bit of an edge case. Since the sampler
340 * just ignores the MCS parameter to ld2ms when MCS is disabled, it's safe
341 * to tell the compiler to always assume compression.
342 */
343 key->compressed_multisample_layout_mask = ~0;
344
345 /* SkyLake added support for 16x MSAA. With this came a new message for
346 * reading from a 16x MSAA surface with compression. The new message was
347 * needed because now the MCS data is 64 bits instead of 32 or lower as is
348 * the case for 8x, 4x, and 2x. The key->msaa_16 bit-field controls which
349 * message we use. Fortunately, the 16x message works for 8x, 4x, and 2x
350 * so we can just use it unconditionally. This may not be quite as
351 * efficient but it saves us from recompiling.
352 */
353 if (devinfo->gen >= 9)
354 key->msaa_16 = ~0;
355
356 /* XXX: Handle texture swizzle on HSW- */
357 for (int i = 0; i < MAX_SAMPLERS; i++) {
358 /* Assume color sampler, no swizzling. (Works for BDW+) */
359 key->swizzles[i] = SWIZZLE_XYZW;
360 }
361 }
362
363 static void
364 populate_base_prog_key(const struct gen_device_info *devinfo,
365 VkPipelineShaderStageCreateFlags flags,
366 struct brw_base_prog_key *key)
367 {
368 if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT)
369 key->subgroup_size_type = BRW_SUBGROUP_SIZE_VARYING;
370 else
371 key->subgroup_size_type = BRW_SUBGROUP_SIZE_API_CONSTANT;
372
373 populate_sampler_prog_key(devinfo, &key->tex);
374 }
375
376 static void
377 populate_vs_prog_key(const struct gen_device_info *devinfo,
378 VkPipelineShaderStageCreateFlags flags,
379 struct brw_vs_prog_key *key)
380 {
381 memset(key, 0, sizeof(*key));
382
383 populate_base_prog_key(devinfo, flags, &key->base);
384
385 /* XXX: Handle vertex input work-arounds */
386
387 /* XXX: Handle sampler_prog_key */
388 }
389
390 static void
391 populate_tcs_prog_key(const struct gen_device_info *devinfo,
392 VkPipelineShaderStageCreateFlags flags,
393 unsigned input_vertices,
394 struct brw_tcs_prog_key *key)
395 {
396 memset(key, 0, sizeof(*key));
397
398 populate_base_prog_key(devinfo, flags, &key->base);
399
400 key->input_vertices = input_vertices;
401 }
402
403 static void
404 populate_tes_prog_key(const struct gen_device_info *devinfo,
405 VkPipelineShaderStageCreateFlags flags,
406 struct brw_tes_prog_key *key)
407 {
408 memset(key, 0, sizeof(*key));
409
410 populate_base_prog_key(devinfo, flags, &key->base);
411 }
412
413 static void
414 populate_gs_prog_key(const struct gen_device_info *devinfo,
415 VkPipelineShaderStageCreateFlags flags,
416 struct brw_gs_prog_key *key)
417 {
418 memset(key, 0, sizeof(*key));
419
420 populate_base_prog_key(devinfo, flags, &key->base);
421 }
422
423 static void
424 populate_wm_prog_key(const struct gen_device_info *devinfo,
425 VkPipelineShaderStageCreateFlags flags,
426 const struct anv_subpass *subpass,
427 const VkPipelineMultisampleStateCreateInfo *ms_info,
428 struct brw_wm_prog_key *key)
429 {
430 memset(key, 0, sizeof(*key));
431
432 populate_base_prog_key(devinfo, flags, &key->base);
433
434 /* We set this to 0 here and set to the actual value before we call
435 * brw_compile_fs.
436 */
437 key->input_slots_valid = 0;
438
439 /* Vulkan doesn't specify a default */
440 key->high_quality_derivatives = false;
441
442 /* XXX Vulkan doesn't appear to specify */
443 key->clamp_fragment_color = false;
444
445 assert(subpass->color_count <= MAX_RTS);
446 for (uint32_t i = 0; i < subpass->color_count; i++) {
447 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
448 key->color_outputs_valid |= (1 << i);
449 }
450
451 key->nr_color_regions = subpass->color_count;
452
453 /* To reduce possible shader recompilations we would need to know if
454 * there is a SampleMask output variable to compute if we should emit
455 * code to workaround the issue that hardware disables alpha to coverage
456 * when there is SampleMask output.
457 */
458 key->alpha_to_coverage = ms_info && ms_info->alphaToCoverageEnable;
459
460 /* Vulkan doesn't support fixed-function alpha test */
461 key->alpha_test_replicate_alpha = false;
462
463 if (ms_info) {
464 /* We should probably pull this out of the shader, but it's fairly
465 * harmless to compute it and then let dead-code take care of it.
466 */
467 if (ms_info->rasterizationSamples > 1) {
468 key->persample_interp = ms_info->sampleShadingEnable &&
469 (ms_info->minSampleShading * ms_info->rasterizationSamples) > 1;
470 key->multisample_fbo = true;
471 }
472
473 key->frag_coord_adds_sample_pos = key->persample_interp;
474 }
475 }
476
477 static void
478 populate_cs_prog_key(const struct gen_device_info *devinfo,
479 VkPipelineShaderStageCreateFlags flags,
480 const VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT *rss_info,
481 struct brw_cs_prog_key *key)
482 {
483 memset(key, 0, sizeof(*key));
484
485 populate_base_prog_key(devinfo, flags, &key->base);
486
487 if (rss_info) {
488 assert(key->base.subgroup_size_type != BRW_SUBGROUP_SIZE_VARYING);
489
490 /* These enum values are expressly chosen to be equal to the subgroup
491 * size that they require.
492 */
493 assert(rss_info->requiredSubgroupSize == 8 ||
494 rss_info->requiredSubgroupSize == 16 ||
495 rss_info->requiredSubgroupSize == 32);
496 key->base.subgroup_size_type = rss_info->requiredSubgroupSize;
497 } else if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT) {
498 /* If the client expressly requests full subgroups and they don't
499 * specify a subgroup size, we need to pick one. If they're requested
500 * varying subgroup sizes, we set it to UNIFORM and let the back-end
501 * compiler pick. Otherwise, we specify the API value of 32.
502 * Performance will likely be terrible in this case but there's nothing
503 * we can do about that. The client should have chosen a size.
504 */
505 if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT)
506 key->base.subgroup_size_type = BRW_SUBGROUP_SIZE_UNIFORM;
507 else
508 key->base.subgroup_size_type = BRW_SUBGROUP_SIZE_REQUIRE_32;
509 }
510 }
511
512 struct anv_pipeline_stage {
513 gl_shader_stage stage;
514
515 const struct anv_shader_module *module;
516 const char *entrypoint;
517 const VkSpecializationInfo *spec_info;
518
519 unsigned char shader_sha1[20];
520
521 union brw_any_prog_key key;
522
523 struct {
524 gl_shader_stage stage;
525 unsigned char sha1[20];
526 } cache_key;
527
528 nir_shader *nir;
529
530 struct anv_pipeline_binding surface_to_descriptor[256];
531 struct anv_pipeline_binding sampler_to_descriptor[256];
532 struct anv_pipeline_bind_map bind_map;
533
534 union brw_any_prog_data prog_data;
535
536 uint32_t num_stats;
537 struct brw_compile_stats stats[3];
538 char *disasm[3];
539
540 VkPipelineCreationFeedbackEXT feedback;
541
542 const unsigned *code;
543 };
544
545 static void
546 anv_pipeline_hash_shader(const struct anv_shader_module *module,
547 const char *entrypoint,
548 gl_shader_stage stage,
549 const VkSpecializationInfo *spec_info,
550 unsigned char *sha1_out)
551 {
552 struct mesa_sha1 ctx;
553 _mesa_sha1_init(&ctx);
554
555 _mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1));
556 _mesa_sha1_update(&ctx, entrypoint, strlen(entrypoint));
557 _mesa_sha1_update(&ctx, &stage, sizeof(stage));
558 if (spec_info) {
559 _mesa_sha1_update(&ctx, spec_info->pMapEntries,
560 spec_info->mapEntryCount *
561 sizeof(*spec_info->pMapEntries));
562 _mesa_sha1_update(&ctx, spec_info->pData,
563 spec_info->dataSize);
564 }
565
566 _mesa_sha1_final(&ctx, sha1_out);
567 }
568
569 static void
570 anv_pipeline_hash_graphics(struct anv_pipeline *pipeline,
571 struct anv_pipeline_layout *layout,
572 struct anv_pipeline_stage *stages,
573 unsigned char *sha1_out)
574 {
575 struct mesa_sha1 ctx;
576 _mesa_sha1_init(&ctx);
577
578 _mesa_sha1_update(&ctx, &pipeline->subpass->view_mask,
579 sizeof(pipeline->subpass->view_mask));
580
581 if (layout)
582 _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
583
584 const bool rba = pipeline->device->robust_buffer_access;
585 _mesa_sha1_update(&ctx, &rba, sizeof(rba));
586
587 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
588 if (stages[s].entrypoint) {
589 _mesa_sha1_update(&ctx, stages[s].shader_sha1,
590 sizeof(stages[s].shader_sha1));
591 _mesa_sha1_update(&ctx, &stages[s].key, brw_prog_key_size(s));
592 }
593 }
594
595 _mesa_sha1_final(&ctx, sha1_out);
596 }
597
598 static void
599 anv_pipeline_hash_compute(struct anv_pipeline *pipeline,
600 struct anv_pipeline_layout *layout,
601 struct anv_pipeline_stage *stage,
602 unsigned char *sha1_out)
603 {
604 struct mesa_sha1 ctx;
605 _mesa_sha1_init(&ctx);
606
607 if (layout)
608 _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
609
610 const bool rba = pipeline->device->robust_buffer_access;
611 _mesa_sha1_update(&ctx, &rba, sizeof(rba));
612
613 _mesa_sha1_update(&ctx, stage->shader_sha1,
614 sizeof(stage->shader_sha1));
615 _mesa_sha1_update(&ctx, &stage->key.cs, sizeof(stage->key.cs));
616
617 _mesa_sha1_final(&ctx, sha1_out);
618 }
619
620 static nir_shader *
621 anv_pipeline_stage_get_nir(struct anv_pipeline *pipeline,
622 struct anv_pipeline_cache *cache,
623 void *mem_ctx,
624 struct anv_pipeline_stage *stage)
625 {
626 const struct brw_compiler *compiler =
627 pipeline->device->instance->physicalDevice.compiler;
628 const nir_shader_compiler_options *nir_options =
629 compiler->glsl_compiler_options[stage->stage].NirOptions;
630 nir_shader *nir;
631
632 nir = anv_device_search_for_nir(pipeline->device, cache,
633 nir_options,
634 stage->shader_sha1,
635 mem_ctx);
636 if (nir) {
637 assert(nir->info.stage == stage->stage);
638 return nir;
639 }
640
641 nir = anv_shader_compile_to_nir(pipeline->device,
642 mem_ctx,
643 stage->module,
644 stage->entrypoint,
645 stage->stage,
646 stage->spec_info);
647 if (nir) {
648 anv_device_upload_nir(pipeline->device, cache, nir, stage->shader_sha1);
649 return nir;
650 }
651
652 return NULL;
653 }
654
655 static void
656 anv_pipeline_lower_nir(struct anv_pipeline *pipeline,
657 void *mem_ctx,
658 struct anv_pipeline_stage *stage,
659 struct anv_pipeline_layout *layout)
660 {
661 const struct anv_physical_device *pdevice =
662 &pipeline->device->instance->physicalDevice;
663 const struct brw_compiler *compiler = pdevice->compiler;
664
665 struct brw_stage_prog_data *prog_data = &stage->prog_data.base;
666 nir_shader *nir = stage->nir;
667
668 if (nir->info.stage == MESA_SHADER_FRAGMENT) {
669 NIR_PASS_V(nir, nir_lower_wpos_center, pipeline->sample_shading_enable);
670 NIR_PASS_V(nir, nir_lower_input_attachments, true);
671 }
672
673 NIR_PASS_V(nir, anv_nir_lower_ycbcr_textures, layout);
674
675 if (nir->info.stage != MESA_SHADER_COMPUTE)
676 NIR_PASS_V(nir, anv_nir_lower_multiview, pipeline->subpass->view_mask);
677
678 nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
679
680 if (nir->info.num_ssbos > 0 || nir->info.num_images > 0)
681 pipeline->needs_data_cache = true;
682
683 NIR_PASS_V(nir, brw_nir_lower_image_load_store, compiler->devinfo);
684
685 NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_global,
686 nir_address_format_64bit_global);
687
688 /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
689 anv_nir_apply_pipeline_layout(pdevice,
690 pipeline->device->robust_buffer_access,
691 layout, nir, &stage->bind_map);
692
693 NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ubo,
694 nir_address_format_32bit_index_offset);
695 NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ssbo,
696 anv_nir_ssbo_addr_format(pdevice,
697 pipeline->device->robust_buffer_access));
698
699 NIR_PASS_V(nir, nir_opt_constant_folding);
700
701 /* We don't support non-uniform UBOs and non-uniform SSBO access is
702 * handled naturally by falling back to A64 messages.
703 */
704 NIR_PASS_V(nir, nir_lower_non_uniform_access,
705 nir_lower_non_uniform_texture_access |
706 nir_lower_non_uniform_image_access);
707
708 anv_nir_compute_push_layout(pdevice, nir, prog_data,
709 &stage->bind_map, mem_ctx);
710
711 stage->nir = nir;
712 }
713
714 static void
715 anv_pipeline_link_vs(const struct brw_compiler *compiler,
716 struct anv_pipeline_stage *vs_stage,
717 struct anv_pipeline_stage *next_stage)
718 {
719 if (next_stage)
720 brw_nir_link_shaders(compiler, vs_stage->nir, next_stage->nir);
721 }
722
723 static void
724 anv_pipeline_compile_vs(const struct brw_compiler *compiler,
725 void *mem_ctx,
726 struct anv_device *device,
727 struct anv_pipeline_stage *vs_stage)
728 {
729 brw_compute_vue_map(compiler->devinfo,
730 &vs_stage->prog_data.vs.base.vue_map,
731 vs_stage->nir->info.outputs_written,
732 vs_stage->nir->info.separate_shader);
733
734 vs_stage->num_stats = 1;
735 vs_stage->code = brw_compile_vs(compiler, device, mem_ctx,
736 &vs_stage->key.vs,
737 &vs_stage->prog_data.vs,
738 vs_stage->nir, -1,
739 vs_stage->stats, NULL);
740 }
741
742 static void
743 merge_tess_info(struct shader_info *tes_info,
744 const struct shader_info *tcs_info)
745 {
746 /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
747 *
748 * "PointMode. Controls generation of points rather than triangles
749 * or lines. This functionality defaults to disabled, and is
750 * enabled if either shader stage includes the execution mode.
751 *
752 * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
753 * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
754 * and OutputVertices, it says:
755 *
756 * "One mode must be set in at least one of the tessellation
757 * shader stages."
758 *
759 * So, the fields can be set in either the TCS or TES, but they must
760 * agree if set in both. Our backend looks at TES, so bitwise-or in
761 * the values from the TCS.
762 */
763 assert(tcs_info->tess.tcs_vertices_out == 0 ||
764 tes_info->tess.tcs_vertices_out == 0 ||
765 tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
766 tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
767
768 assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
769 tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
770 tcs_info->tess.spacing == tes_info->tess.spacing);
771 tes_info->tess.spacing |= tcs_info->tess.spacing;
772
773 assert(tcs_info->tess.primitive_mode == 0 ||
774 tes_info->tess.primitive_mode == 0 ||
775 tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode);
776 tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode;
777 tes_info->tess.ccw |= tcs_info->tess.ccw;
778 tes_info->tess.point_mode |= tcs_info->tess.point_mode;
779 }
780
781 static void
782 anv_pipeline_link_tcs(const struct brw_compiler *compiler,
783 struct anv_pipeline_stage *tcs_stage,
784 struct anv_pipeline_stage *tes_stage)
785 {
786 assert(tes_stage && tes_stage->stage == MESA_SHADER_TESS_EVAL);
787
788 brw_nir_link_shaders(compiler, tcs_stage->nir, tes_stage->nir);
789
790 nir_lower_patch_vertices(tes_stage->nir,
791 tcs_stage->nir->info.tess.tcs_vertices_out,
792 NULL);
793
794 /* Copy TCS info into the TES info */
795 merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
796
797 /* Whacking the key after cache lookup is a bit sketchy, but all of
798 * this comes from the SPIR-V, which is part of the hash used for the
799 * pipeline cache. So it should be safe.
800 */
801 tcs_stage->key.tcs.tes_primitive_mode =
802 tes_stage->nir->info.tess.primitive_mode;
803 tcs_stage->key.tcs.quads_workaround =
804 compiler->devinfo->gen < 9 &&
805 tes_stage->nir->info.tess.primitive_mode == 7 /* GL_QUADS */ &&
806 tes_stage->nir->info.tess.spacing == TESS_SPACING_EQUAL;
807 }
808
809 static void
810 anv_pipeline_compile_tcs(const struct brw_compiler *compiler,
811 void *mem_ctx,
812 struct anv_device *device,
813 struct anv_pipeline_stage *tcs_stage,
814 struct anv_pipeline_stage *prev_stage)
815 {
816 tcs_stage->key.tcs.outputs_written =
817 tcs_stage->nir->info.outputs_written;
818 tcs_stage->key.tcs.patch_outputs_written =
819 tcs_stage->nir->info.patch_outputs_written;
820
821 tcs_stage->num_stats = 1;
822 tcs_stage->code = brw_compile_tcs(compiler, device, mem_ctx,
823 &tcs_stage->key.tcs,
824 &tcs_stage->prog_data.tcs,
825 tcs_stage->nir, -1,
826 tcs_stage->stats, NULL);
827 }
828
829 static void
830 anv_pipeline_link_tes(const struct brw_compiler *compiler,
831 struct anv_pipeline_stage *tes_stage,
832 struct anv_pipeline_stage *next_stage)
833 {
834 if (next_stage)
835 brw_nir_link_shaders(compiler, tes_stage->nir, next_stage->nir);
836 }
837
838 static void
839 anv_pipeline_compile_tes(const struct brw_compiler *compiler,
840 void *mem_ctx,
841 struct anv_device *device,
842 struct anv_pipeline_stage *tes_stage,
843 struct anv_pipeline_stage *tcs_stage)
844 {
845 tes_stage->key.tes.inputs_read =
846 tcs_stage->nir->info.outputs_written;
847 tes_stage->key.tes.patch_inputs_read =
848 tcs_stage->nir->info.patch_outputs_written;
849
850 tes_stage->num_stats = 1;
851 tes_stage->code = brw_compile_tes(compiler, device, mem_ctx,
852 &tes_stage->key.tes,
853 &tcs_stage->prog_data.tcs.base.vue_map,
854 &tes_stage->prog_data.tes,
855 tes_stage->nir, -1,
856 tes_stage->stats, NULL);
857 }
858
859 static void
860 anv_pipeline_link_gs(const struct brw_compiler *compiler,
861 struct anv_pipeline_stage *gs_stage,
862 struct anv_pipeline_stage *next_stage)
863 {
864 if (next_stage)
865 brw_nir_link_shaders(compiler, gs_stage->nir, next_stage->nir);
866 }
867
868 static void
869 anv_pipeline_compile_gs(const struct brw_compiler *compiler,
870 void *mem_ctx,
871 struct anv_device *device,
872 struct anv_pipeline_stage *gs_stage,
873 struct anv_pipeline_stage *prev_stage)
874 {
875 brw_compute_vue_map(compiler->devinfo,
876 &gs_stage->prog_data.gs.base.vue_map,
877 gs_stage->nir->info.outputs_written,
878 gs_stage->nir->info.separate_shader);
879
880 gs_stage->num_stats = 1;
881 gs_stage->code = brw_compile_gs(compiler, device, mem_ctx,
882 &gs_stage->key.gs,
883 &gs_stage->prog_data.gs,
884 gs_stage->nir, NULL, -1,
885 gs_stage->stats, NULL);
886 }
887
888 static void
889 anv_pipeline_link_fs(const struct brw_compiler *compiler,
890 struct anv_pipeline_stage *stage)
891 {
892 unsigned num_rt_bindings;
893 struct anv_pipeline_binding rt_bindings[MAX_RTS];
894 if (stage->key.wm.nr_color_regions > 0) {
895 assert(stage->key.wm.nr_color_regions <= MAX_RTS);
896 for (unsigned rt = 0; rt < stage->key.wm.nr_color_regions; rt++) {
897 if (stage->key.wm.color_outputs_valid & BITFIELD_BIT(rt)) {
898 rt_bindings[rt] = (struct anv_pipeline_binding) {
899 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
900 .index = rt,
901 };
902 } else {
903 /* Setup a null render target */
904 rt_bindings[rt] = (struct anv_pipeline_binding) {
905 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
906 .index = UINT32_MAX,
907 };
908 }
909 }
910 num_rt_bindings = stage->key.wm.nr_color_regions;
911 } else {
912 /* Setup a null render target */
913 rt_bindings[0] = (struct anv_pipeline_binding) {
914 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
915 .index = UINT32_MAX,
916 };
917 num_rt_bindings = 1;
918 }
919
920 assert(num_rt_bindings <= MAX_RTS);
921 assert(stage->bind_map.surface_count == 0);
922 typed_memcpy(stage->bind_map.surface_to_descriptor,
923 rt_bindings, num_rt_bindings);
924 stage->bind_map.surface_count += num_rt_bindings;
925
926 /* Now that we've set up the color attachments, we can go through and
927 * eliminate any shader outputs that map to VK_ATTACHMENT_UNUSED in the
928 * hopes that dead code can clean them up in this and any earlier shader
929 * stages.
930 */
931 nir_function_impl *impl = nir_shader_get_entrypoint(stage->nir);
932 bool deleted_output = false;
933 nir_foreach_variable_safe(var, &stage->nir->outputs) {
934 /* TODO: We don't delete depth/stencil writes. We probably could if the
935 * subpass doesn't have a depth/stencil attachment.
936 */
937 if (var->data.location < FRAG_RESULT_DATA0)
938 continue;
939
940 const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
941
942 /* If this is the RT at location 0 and we have alpha to coverage
943 * enabled we still need that write because it will affect the coverage
944 * mask even if it's never written to a color target.
945 */
946 if (rt == 0 && stage->key.wm.alpha_to_coverage)
947 continue;
948
949 const unsigned array_len =
950 glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
951 assert(rt + array_len <= MAX_RTS);
952
953 if (rt >= MAX_RTS || !(stage->key.wm.color_outputs_valid &
954 BITFIELD_RANGE(rt, array_len))) {
955 deleted_output = true;
956 var->data.mode = nir_var_function_temp;
957 exec_node_remove(&var->node);
958 exec_list_push_tail(&impl->locals, &var->node);
959 }
960 }
961
962 if (deleted_output)
963 nir_fixup_deref_modes(stage->nir);
964
965 /* We stored the number of subpass color attachments in nr_color_regions
966 * when calculating the key for caching. Now that we've computed the bind
967 * map, we can reduce this to the actual max before we go into the back-end
968 * compiler.
969 */
970 stage->key.wm.nr_color_regions =
971 util_last_bit(stage->key.wm.color_outputs_valid);
972 }
973
974 static void
975 anv_pipeline_compile_fs(const struct brw_compiler *compiler,
976 void *mem_ctx,
977 struct anv_device *device,
978 struct anv_pipeline_stage *fs_stage,
979 struct anv_pipeline_stage *prev_stage)
980 {
981 /* TODO: we could set this to 0 based on the information in nir_shader, but
982 * we need this before we call spirv_to_nir.
983 */
984 assert(prev_stage);
985 fs_stage->key.wm.input_slots_valid =
986 prev_stage->prog_data.vue.vue_map.slots_valid;
987
988 fs_stage->code = brw_compile_fs(compiler, device, mem_ctx,
989 &fs_stage->key.wm,
990 &fs_stage->prog_data.wm,
991 fs_stage->nir, -1, -1, -1,
992 true, false, NULL,
993 fs_stage->stats, NULL);
994
995 fs_stage->num_stats = (uint32_t)fs_stage->prog_data.wm.dispatch_8 +
996 (uint32_t)fs_stage->prog_data.wm.dispatch_16 +
997 (uint32_t)fs_stage->prog_data.wm.dispatch_32;
998
999 if (fs_stage->key.wm.color_outputs_valid == 0 &&
1000 !fs_stage->prog_data.wm.has_side_effects &&
1001 !fs_stage->prog_data.wm.uses_omask &&
1002 !fs_stage->key.wm.alpha_to_coverage &&
1003 !fs_stage->prog_data.wm.uses_kill &&
1004 fs_stage->prog_data.wm.computed_depth_mode == BRW_PSCDEPTH_OFF &&
1005 !fs_stage->prog_data.wm.computed_stencil) {
1006 /* This fragment shader has no outputs and no side effects. Go ahead
1007 * and return the code pointer so we don't accidentally think the
1008 * compile failed but zero out prog_data which will set program_size to
1009 * zero and disable the stage.
1010 */
1011 memset(&fs_stage->prog_data, 0, sizeof(fs_stage->prog_data));
1012 }
1013 }
1014
1015 static void
1016 anv_pipeline_add_executable(struct anv_pipeline *pipeline,
1017 struct anv_pipeline_stage *stage,
1018 struct brw_compile_stats *stats,
1019 uint32_t code_offset)
1020 {
1021 char *nir = NULL;
1022 if (stage->nir &&
1023 (pipeline->flags &
1024 VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
1025 char *stream_data = NULL;
1026 size_t stream_size = 0;
1027 FILE *stream = open_memstream(&stream_data, &stream_size);
1028
1029 nir_print_shader(stage->nir, stream);
1030
1031 fclose(stream);
1032
1033 /* Copy it to a ralloc'd thing */
1034 nir = ralloc_size(pipeline->mem_ctx, stream_size + 1);
1035 memcpy(nir, stream_data, stream_size);
1036 nir[stream_size] = 0;
1037
1038 free(stream_data);
1039 }
1040
1041 char *disasm = NULL;
1042 if (stage->code &&
1043 (pipeline->flags &
1044 VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
1045 char *stream_data = NULL;
1046 size_t stream_size = 0;
1047 FILE *stream = open_memstream(&stream_data, &stream_size);
1048
1049 /* Creating this is far cheaper than it looks. It's perfectly fine to
1050 * do it for every binary.
1051 */
1052 struct gen_disasm *d = gen_disasm_create(&pipeline->device->info);
1053 gen_disasm_disassemble(d, stage->code, code_offset, stream);
1054 gen_disasm_destroy(d);
1055
1056 fclose(stream);
1057
1058 /* Copy it to a ralloc'd thing */
1059 disasm = ralloc_size(pipeline->mem_ctx, stream_size + 1);
1060 memcpy(disasm, stream_data, stream_size);
1061 disasm[stream_size] = 0;
1062
1063 free(stream_data);
1064 }
1065
1066 pipeline->executables[pipeline->num_executables++] =
1067 (struct anv_pipeline_executable) {
1068 .stage = stage->stage,
1069 .stats = *stats,
1070 .nir = nir,
1071 .disasm = disasm,
1072 };
1073 }
1074
1075 static void
1076 anv_pipeline_add_executables(struct anv_pipeline *pipeline,
1077 struct anv_pipeline_stage *stage,
1078 struct anv_shader_bin *bin)
1079 {
1080 if (stage->stage == MESA_SHADER_FRAGMENT) {
1081 /* We pull the prog data and stats out of the anv_shader_bin because
1082 * the anv_pipeline_stage may not be fully populated if we successfully
1083 * looked up the shader in a cache.
1084 */
1085 const struct brw_wm_prog_data *wm_prog_data =
1086 (const struct brw_wm_prog_data *)bin->prog_data;
1087 struct brw_compile_stats *stats = bin->stats;
1088
1089 if (wm_prog_data->dispatch_8) {
1090 anv_pipeline_add_executable(pipeline, stage, stats++, 0);
1091 }
1092
1093 if (wm_prog_data->dispatch_16) {
1094 anv_pipeline_add_executable(pipeline, stage, stats++,
1095 wm_prog_data->prog_offset_16);
1096 }
1097
1098 if (wm_prog_data->dispatch_32) {
1099 anv_pipeline_add_executable(pipeline, stage, stats++,
1100 wm_prog_data->prog_offset_32);
1101 }
1102 } else {
1103 anv_pipeline_add_executable(pipeline, stage, bin->stats, 0);
1104 }
1105 }
1106
1107 static VkResult
1108 anv_pipeline_compile_graphics(struct anv_pipeline *pipeline,
1109 struct anv_pipeline_cache *cache,
1110 const VkGraphicsPipelineCreateInfo *info)
1111 {
1112 VkPipelineCreationFeedbackEXT pipeline_feedback = {
1113 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
1114 };
1115 int64_t pipeline_start = os_time_get_nano();
1116
1117 const struct brw_compiler *compiler =
1118 pipeline->device->instance->physicalDevice.compiler;
1119 struct anv_pipeline_stage stages[MESA_SHADER_STAGES] = {};
1120
1121 pipeline->active_stages = 0;
1122
1123 VkResult result;
1124 for (uint32_t i = 0; i < info->stageCount; i++) {
1125 const VkPipelineShaderStageCreateInfo *sinfo = &info->pStages[i];
1126 gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage);
1127
1128 pipeline->active_stages |= sinfo->stage;
1129
1130 int64_t stage_start = os_time_get_nano();
1131
1132 stages[stage].stage = stage;
1133 stages[stage].module = anv_shader_module_from_handle(sinfo->module);
1134 stages[stage].entrypoint = sinfo->pName;
1135 stages[stage].spec_info = sinfo->pSpecializationInfo;
1136 anv_pipeline_hash_shader(stages[stage].module,
1137 stages[stage].entrypoint,
1138 stage,
1139 stages[stage].spec_info,
1140 stages[stage].shader_sha1);
1141
1142 const struct gen_device_info *devinfo = &pipeline->device->info;
1143 switch (stage) {
1144 case MESA_SHADER_VERTEX:
1145 populate_vs_prog_key(devinfo, sinfo->flags, &stages[stage].key.vs);
1146 break;
1147 case MESA_SHADER_TESS_CTRL:
1148 populate_tcs_prog_key(devinfo, sinfo->flags,
1149 info->pTessellationState->patchControlPoints,
1150 &stages[stage].key.tcs);
1151 break;
1152 case MESA_SHADER_TESS_EVAL:
1153 populate_tes_prog_key(devinfo, sinfo->flags, &stages[stage].key.tes);
1154 break;
1155 case MESA_SHADER_GEOMETRY:
1156 populate_gs_prog_key(devinfo, sinfo->flags, &stages[stage].key.gs);
1157 break;
1158 case MESA_SHADER_FRAGMENT: {
1159 const bool raster_enabled =
1160 !info->pRasterizationState->rasterizerDiscardEnable;
1161 populate_wm_prog_key(devinfo, sinfo->flags,
1162 pipeline->subpass,
1163 raster_enabled ? info->pMultisampleState : NULL,
1164 &stages[stage].key.wm);
1165 break;
1166 }
1167 default:
1168 unreachable("Invalid graphics shader stage");
1169 }
1170
1171 stages[stage].feedback.duration += os_time_get_nano() - stage_start;
1172 stages[stage].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT;
1173 }
1174
1175 if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)
1176 pipeline->active_stages |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
1177
1178 assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
1179
1180 ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
1181
1182 unsigned char sha1[20];
1183 anv_pipeline_hash_graphics(pipeline, layout, stages, sha1);
1184
1185 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1186 if (!stages[s].entrypoint)
1187 continue;
1188
1189 stages[s].cache_key.stage = s;
1190 memcpy(stages[s].cache_key.sha1, sha1, sizeof(sha1));
1191 }
1192
1193 const bool skip_cache_lookup =
1194 (pipeline->flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
1195
1196 if (!skip_cache_lookup) {
1197 unsigned found = 0;
1198 unsigned cache_hits = 0;
1199 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1200 if (!stages[s].entrypoint)
1201 continue;
1202
1203 int64_t stage_start = os_time_get_nano();
1204
1205 bool cache_hit;
1206 struct anv_shader_bin *bin =
1207 anv_device_search_for_kernel(pipeline->device, cache,
1208 &stages[s].cache_key,
1209 sizeof(stages[s].cache_key), &cache_hit);
1210 if (bin) {
1211 found++;
1212 pipeline->shaders[s] = bin;
1213 }
1214
1215 if (cache_hit) {
1216 cache_hits++;
1217 stages[s].feedback.flags |=
1218 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1219 }
1220 stages[s].feedback.duration += os_time_get_nano() - stage_start;
1221 }
1222
1223 if (found == __builtin_popcount(pipeline->active_stages)) {
1224 if (cache_hits == found) {
1225 pipeline_feedback.flags |=
1226 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1227 }
1228 /* We found all our shaders in the cache. We're done. */
1229 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1230 if (!stages[s].entrypoint)
1231 continue;
1232
1233 anv_pipeline_add_executables(pipeline, &stages[s],
1234 pipeline->shaders[s]);
1235 }
1236 goto done;
1237 } else if (found > 0) {
1238 /* We found some but not all of our shaders. This shouldn't happen
1239 * most of the time but it can if we have a partially populated
1240 * pipeline cache.
1241 */
1242 assert(found < __builtin_popcount(pipeline->active_stages));
1243
1244 vk_debug_report(&pipeline->device->instance->debug_report_callbacks,
1245 VK_DEBUG_REPORT_WARNING_BIT_EXT |
1246 VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
1247 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT,
1248 (uint64_t)(uintptr_t)cache,
1249 0, 0, "anv",
1250 "Found a partial pipeline in the cache. This is "
1251 "most likely caused by an incomplete pipeline cache "
1252 "import or export");
1253
1254 /* We're going to have to recompile anyway, so just throw away our
1255 * references to the shaders in the cache. We'll get them out of the
1256 * cache again as part of the compilation process.
1257 */
1258 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1259 stages[s].feedback.flags = 0;
1260 if (pipeline->shaders[s]) {
1261 anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]);
1262 pipeline->shaders[s] = NULL;
1263 }
1264 }
1265 }
1266 }
1267
1268 void *pipeline_ctx = ralloc_context(NULL);
1269
1270 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1271 if (!stages[s].entrypoint)
1272 continue;
1273
1274 int64_t stage_start = os_time_get_nano();
1275
1276 assert(stages[s].stage == s);
1277 assert(pipeline->shaders[s] == NULL);
1278
1279 stages[s].bind_map = (struct anv_pipeline_bind_map) {
1280 .surface_to_descriptor = stages[s].surface_to_descriptor,
1281 .sampler_to_descriptor = stages[s].sampler_to_descriptor
1282 };
1283
1284 stages[s].nir = anv_pipeline_stage_get_nir(pipeline, cache,
1285 pipeline_ctx,
1286 &stages[s]);
1287 if (stages[s].nir == NULL) {
1288 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1289 goto fail;
1290 }
1291
1292 stages[s].feedback.duration += os_time_get_nano() - stage_start;
1293 }
1294
1295 /* Walk backwards to link */
1296 struct anv_pipeline_stage *next_stage = NULL;
1297 for (int s = MESA_SHADER_STAGES - 1; s >= 0; s--) {
1298 if (!stages[s].entrypoint)
1299 continue;
1300
1301 switch (s) {
1302 case MESA_SHADER_VERTEX:
1303 anv_pipeline_link_vs(compiler, &stages[s], next_stage);
1304 break;
1305 case MESA_SHADER_TESS_CTRL:
1306 anv_pipeline_link_tcs(compiler, &stages[s], next_stage);
1307 break;
1308 case MESA_SHADER_TESS_EVAL:
1309 anv_pipeline_link_tes(compiler, &stages[s], next_stage);
1310 break;
1311 case MESA_SHADER_GEOMETRY:
1312 anv_pipeline_link_gs(compiler, &stages[s], next_stage);
1313 break;
1314 case MESA_SHADER_FRAGMENT:
1315 anv_pipeline_link_fs(compiler, &stages[s]);
1316 break;
1317 default:
1318 unreachable("Invalid graphics shader stage");
1319 }
1320
1321 next_stage = &stages[s];
1322 }
1323
1324 struct anv_pipeline_stage *prev_stage = NULL;
1325 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1326 if (!stages[s].entrypoint)
1327 continue;
1328
1329 int64_t stage_start = os_time_get_nano();
1330
1331 void *stage_ctx = ralloc_context(NULL);
1332
1333 nir_xfb_info *xfb_info = NULL;
1334 if (s == MESA_SHADER_VERTEX ||
1335 s == MESA_SHADER_TESS_EVAL ||
1336 s == MESA_SHADER_GEOMETRY)
1337 xfb_info = nir_gather_xfb_info(stages[s].nir, stage_ctx);
1338
1339 anv_pipeline_lower_nir(pipeline, stage_ctx, &stages[s], layout);
1340
1341 switch (s) {
1342 case MESA_SHADER_VERTEX:
1343 anv_pipeline_compile_vs(compiler, stage_ctx, pipeline->device,
1344 &stages[s]);
1345 break;
1346 case MESA_SHADER_TESS_CTRL:
1347 anv_pipeline_compile_tcs(compiler, stage_ctx, pipeline->device,
1348 &stages[s], prev_stage);
1349 break;
1350 case MESA_SHADER_TESS_EVAL:
1351 anv_pipeline_compile_tes(compiler, stage_ctx, pipeline->device,
1352 &stages[s], prev_stage);
1353 break;
1354 case MESA_SHADER_GEOMETRY:
1355 anv_pipeline_compile_gs(compiler, stage_ctx, pipeline->device,
1356 &stages[s], prev_stage);
1357 break;
1358 case MESA_SHADER_FRAGMENT:
1359 anv_pipeline_compile_fs(compiler, stage_ctx, pipeline->device,
1360 &stages[s], prev_stage);
1361 break;
1362 default:
1363 unreachable("Invalid graphics shader stage");
1364 }
1365 if (stages[s].code == NULL) {
1366 ralloc_free(stage_ctx);
1367 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1368 goto fail;
1369 }
1370
1371 anv_nir_validate_push_layout(&stages[s].prog_data.base,
1372 &stages[s].bind_map);
1373
1374 struct anv_shader_bin *bin =
1375 anv_device_upload_kernel(pipeline->device, cache,
1376 &stages[s].cache_key,
1377 sizeof(stages[s].cache_key),
1378 stages[s].code,
1379 stages[s].prog_data.base.program_size,
1380 stages[s].nir->constant_data,
1381 stages[s].nir->constant_data_size,
1382 &stages[s].prog_data.base,
1383 brw_prog_data_size(s),
1384 stages[s].stats, stages[s].num_stats,
1385 xfb_info, &stages[s].bind_map);
1386 if (!bin) {
1387 ralloc_free(stage_ctx);
1388 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1389 goto fail;
1390 }
1391
1392 anv_pipeline_add_executables(pipeline, &stages[s], bin);
1393
1394 pipeline->shaders[s] = bin;
1395 ralloc_free(stage_ctx);
1396
1397 stages[s].feedback.duration += os_time_get_nano() - stage_start;
1398
1399 prev_stage = &stages[s];
1400 }
1401
1402 ralloc_free(pipeline_ctx);
1403
1404 done:
1405
1406 if (pipeline->shaders[MESA_SHADER_FRAGMENT] &&
1407 pipeline->shaders[MESA_SHADER_FRAGMENT]->prog_data->program_size == 0) {
1408 /* This can happen if we decided to implicitly disable the fragment
1409 * shader. See anv_pipeline_compile_fs().
1410 */
1411 anv_shader_bin_unref(pipeline->device,
1412 pipeline->shaders[MESA_SHADER_FRAGMENT]);
1413 pipeline->shaders[MESA_SHADER_FRAGMENT] = NULL;
1414 pipeline->active_stages &= ~VK_SHADER_STAGE_FRAGMENT_BIT;
1415 }
1416
1417 pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
1418
1419 const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
1420 vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
1421 if (create_feedback) {
1422 *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
1423
1424 assert(info->stageCount == create_feedback->pipelineStageCreationFeedbackCount);
1425 for (uint32_t i = 0; i < info->stageCount; i++) {
1426 gl_shader_stage s = vk_to_mesa_shader_stage(info->pStages[i].stage);
1427 create_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback;
1428 }
1429 }
1430
1431 return VK_SUCCESS;
1432
1433 fail:
1434 ralloc_free(pipeline_ctx);
1435
1436 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1437 if (pipeline->shaders[s])
1438 anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]);
1439 }
1440
1441 return result;
1442 }
1443
1444 static void
1445 shared_type_info(const struct glsl_type *type, unsigned *size, unsigned *align)
1446 {
1447 assert(glsl_type_is_vector_or_scalar(type));
1448
1449 uint32_t comp_size = glsl_type_is_boolean(type)
1450 ? 4 : glsl_get_bit_size(type) / 8;
1451 unsigned length = glsl_get_vector_elements(type);
1452 *size = comp_size * length,
1453 *align = comp_size * (length == 3 ? 4 : length);
1454 }
1455
1456 VkResult
1457 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1458 struct anv_pipeline_cache *cache,
1459 const VkComputePipelineCreateInfo *info,
1460 const struct anv_shader_module *module,
1461 const char *entrypoint,
1462 const VkSpecializationInfo *spec_info)
1463 {
1464 VkPipelineCreationFeedbackEXT pipeline_feedback = {
1465 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
1466 };
1467 int64_t pipeline_start = os_time_get_nano();
1468
1469 const struct brw_compiler *compiler =
1470 pipeline->device->instance->physicalDevice.compiler;
1471
1472 struct anv_pipeline_stage stage = {
1473 .stage = MESA_SHADER_COMPUTE,
1474 .module = module,
1475 .entrypoint = entrypoint,
1476 .spec_info = spec_info,
1477 .cache_key = {
1478 .stage = MESA_SHADER_COMPUTE,
1479 },
1480 .feedback = {
1481 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
1482 },
1483 };
1484 anv_pipeline_hash_shader(stage.module,
1485 stage.entrypoint,
1486 MESA_SHADER_COMPUTE,
1487 stage.spec_info,
1488 stage.shader_sha1);
1489
1490 struct anv_shader_bin *bin = NULL;
1491
1492 const VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT *rss_info =
1493 vk_find_struct_const(info->stage.pNext,
1494 PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO_EXT);
1495
1496 populate_cs_prog_key(&pipeline->device->info, info->stage.flags,
1497 rss_info, &stage.key.cs);
1498
1499 ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
1500
1501 const bool skip_cache_lookup =
1502 (pipeline->flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
1503
1504 anv_pipeline_hash_compute(pipeline, layout, &stage, stage.cache_key.sha1);
1505
1506 bool cache_hit = false;
1507 if (!skip_cache_lookup) {
1508 bin = anv_device_search_for_kernel(pipeline->device, cache,
1509 &stage.cache_key,
1510 sizeof(stage.cache_key),
1511 &cache_hit);
1512 }
1513
1514 void *mem_ctx = ralloc_context(NULL);
1515 if (bin == NULL) {
1516 int64_t stage_start = os_time_get_nano();
1517
1518 stage.bind_map = (struct anv_pipeline_bind_map) {
1519 .surface_to_descriptor = stage.surface_to_descriptor,
1520 .sampler_to_descriptor = stage.sampler_to_descriptor
1521 };
1522
1523 /* Set up a binding for the gl_NumWorkGroups */
1524 stage.bind_map.surface_count = 1;
1525 stage.bind_map.surface_to_descriptor[0] = (struct anv_pipeline_binding) {
1526 .set = ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS,
1527 };
1528
1529 stage.nir = anv_pipeline_stage_get_nir(pipeline, cache, mem_ctx, &stage);
1530 if (stage.nir == NULL) {
1531 ralloc_free(mem_ctx);
1532 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1533 }
1534
1535 NIR_PASS_V(stage.nir, anv_nir_add_base_work_group_id);
1536
1537 anv_pipeline_lower_nir(pipeline, mem_ctx, &stage, layout);
1538
1539 NIR_PASS_V(stage.nir, nir_lower_vars_to_explicit_types,
1540 nir_var_mem_shared, shared_type_info);
1541 NIR_PASS_V(stage.nir, nir_lower_explicit_io,
1542 nir_var_mem_shared, nir_address_format_32bit_offset);
1543
1544 stage.num_stats = 1;
1545 stage.code = brw_compile_cs(compiler, pipeline->device, mem_ctx,
1546 &stage.key.cs, &stage.prog_data.cs,
1547 stage.nir, -1, stage.stats, NULL);
1548 if (stage.code == NULL) {
1549 ralloc_free(mem_ctx);
1550 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1551 }
1552
1553 anv_nir_validate_push_layout(&stage.prog_data.base, &stage.bind_map);
1554
1555 if (!stage.prog_data.cs.uses_num_work_groups) {
1556 assert(stage.bind_map.surface_to_descriptor[0].set ==
1557 ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS);
1558 stage.bind_map.surface_to_descriptor[0].set = ANV_DESCRIPTOR_SET_NULL;
1559 }
1560
1561 const unsigned code_size = stage.prog_data.base.program_size;
1562 bin = anv_device_upload_kernel(pipeline->device, cache,
1563 &stage.cache_key, sizeof(stage.cache_key),
1564 stage.code, code_size,
1565 stage.nir->constant_data,
1566 stage.nir->constant_data_size,
1567 &stage.prog_data.base,
1568 sizeof(stage.prog_data.cs),
1569 stage.stats, stage.num_stats,
1570 NULL, &stage.bind_map);
1571 if (!bin) {
1572 ralloc_free(mem_ctx);
1573 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1574 }
1575
1576 stage.feedback.duration = os_time_get_nano() - stage_start;
1577 }
1578
1579 anv_pipeline_add_executables(pipeline, &stage, bin);
1580
1581 ralloc_free(mem_ctx);
1582
1583 if (cache_hit) {
1584 stage.feedback.flags |=
1585 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1586 pipeline_feedback.flags |=
1587 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1588 }
1589 pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
1590
1591 const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
1592 vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
1593 if (create_feedback) {
1594 *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
1595
1596 assert(create_feedback->pipelineStageCreationFeedbackCount == 1);
1597 create_feedback->pPipelineStageCreationFeedbacks[0] = stage.feedback;
1598 }
1599
1600 pipeline->active_stages = VK_SHADER_STAGE_COMPUTE_BIT;
1601 pipeline->shaders[MESA_SHADER_COMPUTE] = bin;
1602
1603 return VK_SUCCESS;
1604 }
1605
1606 /**
1607 * Copy pipeline state not marked as dynamic.
1608 * Dynamic state is pipeline state which hasn't been provided at pipeline
1609 * creation time, but is dynamically provided afterwards using various
1610 * vkCmdSet* functions.
1611 *
1612 * The set of state considered "non_dynamic" is determined by the pieces of
1613 * state that have their corresponding VkDynamicState enums omitted from
1614 * VkPipelineDynamicStateCreateInfo::pDynamicStates.
1615 *
1616 * @param[out] pipeline Destination non_dynamic state.
1617 * @param[in] pCreateInfo Source of non_dynamic state to be copied.
1618 */
1619 static void
1620 copy_non_dynamic_state(struct anv_pipeline *pipeline,
1621 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1622 {
1623 anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
1624 struct anv_subpass *subpass = pipeline->subpass;
1625
1626 pipeline->dynamic_state = default_dynamic_state;
1627
1628 if (pCreateInfo->pDynamicState) {
1629 /* Remove all of the states that are marked as dynamic */
1630 uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
1631 for (uint32_t s = 0; s < count; s++) {
1632 states &= ~anv_cmd_dirty_bit_for_vk_dynamic_state(
1633 pCreateInfo->pDynamicState->pDynamicStates[s]);
1634 }
1635 }
1636
1637 struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
1638
1639 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1640 *
1641 * pViewportState is [...] NULL if the pipeline
1642 * has rasterization disabled.
1643 */
1644 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1645 assert(pCreateInfo->pViewportState);
1646
1647 dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
1648 if (states & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT) {
1649 typed_memcpy(dynamic->viewport.viewports,
1650 pCreateInfo->pViewportState->pViewports,
1651 pCreateInfo->pViewportState->viewportCount);
1652 }
1653
1654 dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
1655 if (states & ANV_CMD_DIRTY_DYNAMIC_SCISSOR) {
1656 typed_memcpy(dynamic->scissor.scissors,
1657 pCreateInfo->pViewportState->pScissors,
1658 pCreateInfo->pViewportState->scissorCount);
1659 }
1660 }
1661
1662 if (states & ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH) {
1663 assert(pCreateInfo->pRasterizationState);
1664 dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
1665 }
1666
1667 if (states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS) {
1668 assert(pCreateInfo->pRasterizationState);
1669 dynamic->depth_bias.bias =
1670 pCreateInfo->pRasterizationState->depthBiasConstantFactor;
1671 dynamic->depth_bias.clamp =
1672 pCreateInfo->pRasterizationState->depthBiasClamp;
1673 dynamic->depth_bias.slope =
1674 pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
1675 }
1676
1677 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1678 *
1679 * pColorBlendState is [...] NULL if the pipeline has rasterization
1680 * disabled or if the subpass of the render pass the pipeline is
1681 * created against does not use any color attachments.
1682 */
1683 bool uses_color_att = false;
1684 for (unsigned i = 0; i < subpass->color_count; ++i) {
1685 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
1686 uses_color_att = true;
1687 break;
1688 }
1689 }
1690
1691 if (uses_color_att &&
1692 !pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1693 assert(pCreateInfo->pColorBlendState);
1694
1695 if (states & ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS)
1696 typed_memcpy(dynamic->blend_constants,
1697 pCreateInfo->pColorBlendState->blendConstants, 4);
1698 }
1699
1700 /* If there is no depthstencil attachment, then don't read
1701 * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
1702 * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
1703 * no need to override the depthstencil defaults in
1704 * anv_pipeline::dynamic_state when there is no depthstencil attachment.
1705 *
1706 * Section 9.2 of the Vulkan 1.0.15 spec says:
1707 *
1708 * pDepthStencilState is [...] NULL if the pipeline has rasterization
1709 * disabled or if the subpass of the render pass the pipeline is created
1710 * against does not use a depth/stencil attachment.
1711 */
1712 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
1713 subpass->depth_stencil_attachment) {
1714 assert(pCreateInfo->pDepthStencilState);
1715
1716 if (states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS) {
1717 dynamic->depth_bounds.min =
1718 pCreateInfo->pDepthStencilState->minDepthBounds;
1719 dynamic->depth_bounds.max =
1720 pCreateInfo->pDepthStencilState->maxDepthBounds;
1721 }
1722
1723 if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK) {
1724 dynamic->stencil_compare_mask.front =
1725 pCreateInfo->pDepthStencilState->front.compareMask;
1726 dynamic->stencil_compare_mask.back =
1727 pCreateInfo->pDepthStencilState->back.compareMask;
1728 }
1729
1730 if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK) {
1731 dynamic->stencil_write_mask.front =
1732 pCreateInfo->pDepthStencilState->front.writeMask;
1733 dynamic->stencil_write_mask.back =
1734 pCreateInfo->pDepthStencilState->back.writeMask;
1735 }
1736
1737 if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE) {
1738 dynamic->stencil_reference.front =
1739 pCreateInfo->pDepthStencilState->front.reference;
1740 dynamic->stencil_reference.back =
1741 pCreateInfo->pDepthStencilState->back.reference;
1742 }
1743 }
1744
1745 const VkPipelineRasterizationLineStateCreateInfoEXT *line_state =
1746 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
1747 PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT);
1748 if (line_state) {
1749 if (states & ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE) {
1750 dynamic->line_stipple.factor = line_state->lineStippleFactor;
1751 dynamic->line_stipple.pattern = line_state->lineStipplePattern;
1752 }
1753 }
1754
1755 pipeline->dynamic_state_mask = states;
1756 }
1757
1758 static void
1759 anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
1760 {
1761 #ifdef DEBUG
1762 struct anv_render_pass *renderpass = NULL;
1763 struct anv_subpass *subpass = NULL;
1764
1765 /* Assert that all required members of VkGraphicsPipelineCreateInfo are
1766 * present. See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines.
1767 */
1768 assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
1769
1770 renderpass = anv_render_pass_from_handle(info->renderPass);
1771 assert(renderpass);
1772
1773 assert(info->subpass < renderpass->subpass_count);
1774 subpass = &renderpass->subpasses[info->subpass];
1775
1776 assert(info->stageCount >= 1);
1777 assert(info->pVertexInputState);
1778 assert(info->pInputAssemblyState);
1779 assert(info->pRasterizationState);
1780 if (!info->pRasterizationState->rasterizerDiscardEnable) {
1781 assert(info->pViewportState);
1782 assert(info->pMultisampleState);
1783
1784 if (subpass && subpass->depth_stencil_attachment)
1785 assert(info->pDepthStencilState);
1786
1787 if (subpass && subpass->color_count > 0) {
1788 bool all_color_unused = true;
1789 for (int i = 0; i < subpass->color_count; i++) {
1790 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
1791 all_color_unused = false;
1792 }
1793 /* pColorBlendState is ignored if the pipeline has rasterization
1794 * disabled or if the subpass of the render pass the pipeline is
1795 * created against does not use any color attachments.
1796 */
1797 assert(info->pColorBlendState || all_color_unused);
1798 }
1799 }
1800
1801 for (uint32_t i = 0; i < info->stageCount; ++i) {
1802 switch (info->pStages[i].stage) {
1803 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
1804 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
1805 assert(info->pTessellationState);
1806 break;
1807 default:
1808 break;
1809 }
1810 }
1811 #endif
1812 }
1813
1814 /**
1815 * Calculate the desired L3 partitioning based on the current state of the
1816 * pipeline. For now this simply returns the conservative defaults calculated
1817 * by get_default_l3_weights(), but we could probably do better by gathering
1818 * more statistics from the pipeline state (e.g. guess of expected URB usage
1819 * and bound surfaces), or by using feed-back from performance counters.
1820 */
1821 void
1822 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
1823 {
1824 const struct gen_device_info *devinfo = &pipeline->device->info;
1825
1826 const struct gen_l3_weights w =
1827 gen_get_default_l3_weights(devinfo, pipeline->needs_data_cache, needs_slm);
1828
1829 pipeline->urb.l3_config = gen_get_l3_config(devinfo, w);
1830 pipeline->urb.total_size =
1831 gen_get_l3_config_urb_size(devinfo, pipeline->urb.l3_config);
1832 }
1833
1834 VkResult
1835 anv_pipeline_init(struct anv_pipeline *pipeline,
1836 struct anv_device *device,
1837 struct anv_pipeline_cache *cache,
1838 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1839 const VkAllocationCallbacks *alloc)
1840 {
1841 VkResult result;
1842
1843 anv_pipeline_validate_create_info(pCreateInfo);
1844
1845 if (alloc == NULL)
1846 alloc = &device->alloc;
1847
1848 pipeline->device = device;
1849
1850 ANV_FROM_HANDLE(anv_render_pass, render_pass, pCreateInfo->renderPass);
1851 assert(pCreateInfo->subpass < render_pass->subpass_count);
1852 pipeline->subpass = &render_pass->subpasses[pCreateInfo->subpass];
1853
1854 result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
1855 if (result != VK_SUCCESS)
1856 return result;
1857
1858 pipeline->batch.alloc = alloc;
1859 pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
1860 pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
1861 pipeline->batch.relocs = &pipeline->batch_relocs;
1862 pipeline->batch.status = VK_SUCCESS;
1863
1864 pipeline->mem_ctx = ralloc_context(NULL);
1865 pipeline->flags = pCreateInfo->flags;
1866
1867 assert(pCreateInfo->pRasterizationState);
1868
1869 copy_non_dynamic_state(pipeline, pCreateInfo);
1870 pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState->depthClampEnable;
1871
1872 /* Previously we enabled depth clipping when !depthClampEnable.
1873 * DepthClipStateCreateInfo now makes depth clipping explicit so if the
1874 * clipping info is available, use its enable value to determine clipping,
1875 * otherwise fallback to the previous !depthClampEnable logic.
1876 */
1877 const VkPipelineRasterizationDepthClipStateCreateInfoEXT *clip_info =
1878 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
1879 PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT);
1880 pipeline->depth_clip_enable = clip_info ? clip_info->depthClipEnable : !pipeline->depth_clamp_enable;
1881
1882 pipeline->sample_shading_enable =
1883 !pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
1884 pCreateInfo->pMultisampleState &&
1885 pCreateInfo->pMultisampleState->sampleShadingEnable;
1886
1887 pipeline->needs_data_cache = false;
1888
1889 /* When we free the pipeline, we detect stages based on the NULL status
1890 * of various prog_data pointers. Make them NULL by default.
1891 */
1892 memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
1893 pipeline->num_executables = 0;
1894
1895 result = anv_pipeline_compile_graphics(pipeline, cache, pCreateInfo);
1896 if (result != VK_SUCCESS) {
1897 ralloc_free(pipeline->mem_ctx);
1898 anv_reloc_list_finish(&pipeline->batch_relocs, alloc);
1899 return result;
1900 }
1901
1902 assert(pipeline->shaders[MESA_SHADER_VERTEX]);
1903
1904 anv_pipeline_setup_l3_config(pipeline, false);
1905
1906 const VkPipelineVertexInputStateCreateInfo *vi_info =
1907 pCreateInfo->pVertexInputState;
1908
1909 const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;
1910
1911 pipeline->vb_used = 0;
1912 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
1913 const VkVertexInputAttributeDescription *desc =
1914 &vi_info->pVertexAttributeDescriptions[i];
1915
1916 if (inputs_read & (1ull << (VERT_ATTRIB_GENERIC0 + desc->location)))
1917 pipeline->vb_used |= 1 << desc->binding;
1918 }
1919
1920 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
1921 const VkVertexInputBindingDescription *desc =
1922 &vi_info->pVertexBindingDescriptions[i];
1923
1924 pipeline->vb[desc->binding].stride = desc->stride;
1925
1926 /* Step rate is programmed per vertex element (attribute), not
1927 * binding. Set up a map of which bindings step per instance, for
1928 * reference by vertex element setup. */
1929 switch (desc->inputRate) {
1930 default:
1931 case VK_VERTEX_INPUT_RATE_VERTEX:
1932 pipeline->vb[desc->binding].instanced = false;
1933 break;
1934 case VK_VERTEX_INPUT_RATE_INSTANCE:
1935 pipeline->vb[desc->binding].instanced = true;
1936 break;
1937 }
1938
1939 pipeline->vb[desc->binding].instance_divisor = 1;
1940 }
1941
1942 const VkPipelineVertexInputDivisorStateCreateInfoEXT *vi_div_state =
1943 vk_find_struct_const(vi_info->pNext,
1944 PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT);
1945 if (vi_div_state) {
1946 for (uint32_t i = 0; i < vi_div_state->vertexBindingDivisorCount; i++) {
1947 const VkVertexInputBindingDivisorDescriptionEXT *desc =
1948 &vi_div_state->pVertexBindingDivisors[i];
1949
1950 pipeline->vb[desc->binding].instance_divisor = desc->divisor;
1951 }
1952 }
1953
1954 /* Our implementation of VK_KHR_multiview uses instancing to draw the
1955 * different views. If the client asks for instancing, we need to multiply
1956 * the instance divisor by the number of views ensure that we repeat the
1957 * client's per-instance data once for each view.
1958 */
1959 if (pipeline->subpass->view_mask) {
1960 const uint32_t view_count = anv_subpass_view_count(pipeline->subpass);
1961 for (uint32_t vb = 0; vb < MAX_VBS; vb++) {
1962 if (pipeline->vb[vb].instanced)
1963 pipeline->vb[vb].instance_divisor *= view_count;
1964 }
1965 }
1966
1967 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
1968 pCreateInfo->pInputAssemblyState;
1969 const VkPipelineTessellationStateCreateInfo *tess_info =
1970 pCreateInfo->pTessellationState;
1971 pipeline->primitive_restart = ia_info->primitiveRestartEnable;
1972
1973 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1974 pipeline->topology = _3DPRIM_PATCHLIST(tess_info->patchControlPoints);
1975 else
1976 pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
1977
1978 return VK_SUCCESS;
1979 }
1980
1981 #define WRITE_STR(field, ...) ({ \
1982 memset(field, 0, sizeof(field)); \
1983 UNUSED int i = snprintf(field, sizeof(field), __VA_ARGS__); \
1984 assert(i > 0 && i < sizeof(field)); \
1985 })
1986
1987 VkResult anv_GetPipelineExecutablePropertiesKHR(
1988 VkDevice device,
1989 const VkPipelineInfoKHR* pPipelineInfo,
1990 uint32_t* pExecutableCount,
1991 VkPipelineExecutablePropertiesKHR* pProperties)
1992 {
1993 ANV_FROM_HANDLE(anv_pipeline, pipeline, pPipelineInfo->pipeline);
1994 VK_OUTARRAY_MAKE(out, pProperties, pExecutableCount);
1995
1996 for (uint32_t i = 0; i < pipeline->num_executables; i++) {
1997 vk_outarray_append(&out, props) {
1998 gl_shader_stage stage = pipeline->executables[i].stage;
1999 props->stages = mesa_to_vk_shader_stage(stage);
2000
2001 unsigned simd_width = pipeline->executables[i].stats.dispatch_width;
2002 if (stage == MESA_SHADER_FRAGMENT) {
2003 WRITE_STR(props->name, "%s%d %s",
2004 simd_width ? "SIMD" : "vec",
2005 simd_width ? simd_width : 4,
2006 _mesa_shader_stage_to_string(stage));
2007 } else {
2008 WRITE_STR(props->name, "%s", _mesa_shader_stage_to_string(stage));
2009 }
2010 WRITE_STR(props->description, "%s%d %s shader",
2011 simd_width ? "SIMD" : "vec",
2012 simd_width ? simd_width : 4,
2013 _mesa_shader_stage_to_string(stage));
2014
2015 /* The compiler gives us a dispatch width of 0 for vec4 but Vulkan
2016 * wants a subgroup size of 1.
2017 */
2018 props->subgroupSize = MAX2(simd_width, 1);
2019 }
2020 }
2021
2022 return vk_outarray_status(&out);
2023 }
2024
2025 VkResult anv_GetPipelineExecutableStatisticsKHR(
2026 VkDevice device,
2027 const VkPipelineExecutableInfoKHR* pExecutableInfo,
2028 uint32_t* pStatisticCount,
2029 VkPipelineExecutableStatisticKHR* pStatistics)
2030 {
2031 ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
2032 VK_OUTARRAY_MAKE(out, pStatistics, pStatisticCount);
2033
2034 assert(pExecutableInfo->executableIndex < pipeline->num_executables);
2035 const struct anv_pipeline_executable *exe =
2036 &pipeline->executables[pExecutableInfo->executableIndex];
2037 const struct brw_stage_prog_data *prog_data =
2038 pipeline->shaders[exe->stage]->prog_data;
2039
2040 vk_outarray_append(&out, stat) {
2041 WRITE_STR(stat->name, "Instruction Count");
2042 WRITE_STR(stat->description,
2043 "Number of GEN instructions in the final generated "
2044 "shader executable.");
2045 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2046 stat->value.u64 = exe->stats.instructions;
2047 }
2048
2049 vk_outarray_append(&out, stat) {
2050 WRITE_STR(stat->name, "Loop Count");
2051 WRITE_STR(stat->description,
2052 "Number of loops (not unrolled) in the final generated "
2053 "shader executable.");
2054 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2055 stat->value.u64 = exe->stats.loops;
2056 }
2057
2058 vk_outarray_append(&out, stat) {
2059 WRITE_STR(stat->name, "Cycle Count");
2060 WRITE_STR(stat->description,
2061 "Estimate of the number of EU cycles required to execute "
2062 "the final generated executable. This is an estimate only "
2063 "and may vary greatly from actual run-time performance.");
2064 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2065 stat->value.u64 = exe->stats.cycles;
2066 }
2067
2068 vk_outarray_append(&out, stat) {
2069 WRITE_STR(stat->name, "Spill Count");
2070 WRITE_STR(stat->description,
2071 "Number of scratch spill operations. This gives a rough "
2072 "estimate of the cost incurred due to spilling temporary "
2073 "values to memory. If this is non-zero, you may want to "
2074 "adjust your shader to reduce register pressure.");
2075 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2076 stat->value.u64 = exe->stats.spills;
2077 }
2078
2079 vk_outarray_append(&out, stat) {
2080 WRITE_STR(stat->name, "Fill Count");
2081 WRITE_STR(stat->description,
2082 "Number of scratch fill operations. This gives a rough "
2083 "estimate of the cost incurred due to spilling temporary "
2084 "values to memory. If this is non-zero, you may want to "
2085 "adjust your shader to reduce register pressure.");
2086 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2087 stat->value.u64 = exe->stats.fills;
2088 }
2089
2090 vk_outarray_append(&out, stat) {
2091 WRITE_STR(stat->name, "Scratch Memory Size");
2092 WRITE_STR(stat->description,
2093 "Number of bytes of scratch memory required by the "
2094 "generated shader executable. If this is non-zero, you "
2095 "may want to adjust your shader to reduce register "
2096 "pressure.");
2097 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2098 stat->value.u64 = prog_data->total_scratch;
2099 }
2100
2101 if (exe->stage == MESA_SHADER_COMPUTE) {
2102 vk_outarray_append(&out, stat) {
2103 WRITE_STR(stat->name, "Workgroup Memory Size");
2104 WRITE_STR(stat->description,
2105 "Number of bytes of workgroup shared memory used by this "
2106 "compute shader including any padding.");
2107 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2108 stat->value.u64 = prog_data->total_scratch;
2109 }
2110 }
2111
2112 return vk_outarray_status(&out);
2113 }
2114
2115 static bool
2116 write_ir_text(VkPipelineExecutableInternalRepresentationKHR* ir,
2117 const char *data)
2118 {
2119 ir->isText = VK_TRUE;
2120
2121 size_t data_len = strlen(data) + 1;
2122
2123 if (ir->pData == NULL) {
2124 ir->dataSize = data_len;
2125 return true;
2126 }
2127
2128 strncpy(ir->pData, data, ir->dataSize);
2129 if (ir->dataSize < data_len)
2130 return false;
2131
2132 ir->dataSize = data_len;
2133 return true;
2134 }
2135
2136 VkResult anv_GetPipelineExecutableInternalRepresentationsKHR(
2137 VkDevice device,
2138 const VkPipelineExecutableInfoKHR* pExecutableInfo,
2139 uint32_t* pInternalRepresentationCount,
2140 VkPipelineExecutableInternalRepresentationKHR* pInternalRepresentations)
2141 {
2142 ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
2143 VK_OUTARRAY_MAKE(out, pInternalRepresentations,
2144 pInternalRepresentationCount);
2145 bool incomplete_text = false;
2146
2147 assert(pExecutableInfo->executableIndex < pipeline->num_executables);
2148 const struct anv_pipeline_executable *exe =
2149 &pipeline->executables[pExecutableInfo->executableIndex];
2150
2151 if (exe->nir) {
2152 vk_outarray_append(&out, ir) {
2153 WRITE_STR(ir->name, "Final NIR");
2154 WRITE_STR(ir->description,
2155 "Final NIR before going into the back-end compiler");
2156
2157 if (!write_ir_text(ir, exe->nir))
2158 incomplete_text = true;
2159 }
2160 }
2161
2162 if (exe->disasm) {
2163 vk_outarray_append(&out, ir) {
2164 WRITE_STR(ir->name, "GEN Assembly");
2165 WRITE_STR(ir->description,
2166 "Final GEN assembly for the generated shader binary");
2167
2168 if (!write_ir_text(ir, exe->disasm))
2169 incomplete_text = true;
2170 }
2171 }
2172
2173 return incomplete_text ? VK_INCOMPLETE : vk_outarray_status(&out);
2174 }