anv: Rework push constant handling
[mesa.git] / src / intel / vulkan / anv_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "util/mesa-sha1.h"
31 #include "util/os_time.h"
32 #include "common/gen_l3_config.h"
33 #include "common/gen_disasm.h"
34 #include "anv_private.h"
35 #include "compiler/brw_nir.h"
36 #include "anv_nir.h"
37 #include "nir/nir_xfb_info.h"
38 #include "spirv/nir_spirv.h"
39 #include "vk_util.h"
40
41 /* Needed for SWIZZLE macros */
42 #include "program/prog_instruction.h"
43
44 // Shader functions
45
46 VkResult anv_CreateShaderModule(
47 VkDevice _device,
48 const VkShaderModuleCreateInfo* pCreateInfo,
49 const VkAllocationCallbacks* pAllocator,
50 VkShaderModule* pShaderModule)
51 {
52 ANV_FROM_HANDLE(anv_device, device, _device);
53 struct anv_shader_module *module;
54
55 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
56 assert(pCreateInfo->flags == 0);
57
58 module = vk_alloc2(&device->alloc, pAllocator,
59 sizeof(*module) + pCreateInfo->codeSize, 8,
60 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
61 if (module == NULL)
62 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
63
64 module->size = pCreateInfo->codeSize;
65 memcpy(module->data, pCreateInfo->pCode, module->size);
66
67 _mesa_sha1_compute(module->data, module->size, module->sha1);
68
69 *pShaderModule = anv_shader_module_to_handle(module);
70
71 return VK_SUCCESS;
72 }
73
74 void anv_DestroyShaderModule(
75 VkDevice _device,
76 VkShaderModule _module,
77 const VkAllocationCallbacks* pAllocator)
78 {
79 ANV_FROM_HANDLE(anv_device, device, _device);
80 ANV_FROM_HANDLE(anv_shader_module, module, _module);
81
82 if (!module)
83 return;
84
85 vk_free2(&device->alloc, pAllocator, module);
86 }
87
88 #define SPIR_V_MAGIC_NUMBER 0x07230203
89
90 static const uint64_t stage_to_debug[] = {
91 [MESA_SHADER_VERTEX] = DEBUG_VS,
92 [MESA_SHADER_TESS_CTRL] = DEBUG_TCS,
93 [MESA_SHADER_TESS_EVAL] = DEBUG_TES,
94 [MESA_SHADER_GEOMETRY] = DEBUG_GS,
95 [MESA_SHADER_FRAGMENT] = DEBUG_WM,
96 [MESA_SHADER_COMPUTE] = DEBUG_CS,
97 };
98
99 struct anv_spirv_debug_data {
100 struct anv_device *device;
101 const struct anv_shader_module *module;
102 };
103
104 static void anv_spirv_nir_debug(void *private_data,
105 enum nir_spirv_debug_level level,
106 size_t spirv_offset,
107 const char *message)
108 {
109 struct anv_spirv_debug_data *debug_data = private_data;
110 static const VkDebugReportFlagsEXT vk_flags[] = {
111 [NIR_SPIRV_DEBUG_LEVEL_INFO] = VK_DEBUG_REPORT_INFORMATION_BIT_EXT,
112 [NIR_SPIRV_DEBUG_LEVEL_WARNING] = VK_DEBUG_REPORT_WARNING_BIT_EXT,
113 [NIR_SPIRV_DEBUG_LEVEL_ERROR] = VK_DEBUG_REPORT_ERROR_BIT_EXT,
114 };
115 char buffer[256];
116
117 snprintf(buffer, sizeof(buffer), "SPIR-V offset %lu: %s", (unsigned long) spirv_offset, message);
118
119 vk_debug_report(&debug_data->device->instance->debug_report_callbacks,
120 vk_flags[level],
121 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
122 (uint64_t) (uintptr_t) debug_data->module,
123 0, 0, "anv", buffer);
124 }
125
126 /* Eventually, this will become part of anv_CreateShader. Unfortunately,
127 * we can't do that yet because we don't have the ability to copy nir.
128 */
129 static nir_shader *
130 anv_shader_compile_to_nir(struct anv_device *device,
131 void *mem_ctx,
132 const struct anv_shader_module *module,
133 const char *entrypoint_name,
134 gl_shader_stage stage,
135 const VkSpecializationInfo *spec_info)
136 {
137 const struct anv_physical_device *pdevice =
138 &device->instance->physicalDevice;
139 const struct brw_compiler *compiler = pdevice->compiler;
140 const nir_shader_compiler_options *nir_options =
141 compiler->glsl_compiler_options[stage].NirOptions;
142
143 uint32_t *spirv = (uint32_t *) module->data;
144 assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
145 assert(module->size % 4 == 0);
146
147 uint32_t num_spec_entries = 0;
148 struct nir_spirv_specialization *spec_entries = NULL;
149 if (spec_info && spec_info->mapEntryCount > 0) {
150 num_spec_entries = spec_info->mapEntryCount;
151 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
152 for (uint32_t i = 0; i < num_spec_entries; i++) {
153 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
154 const void *data = spec_info->pData + entry.offset;
155 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
156
157 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
158 if (spec_info->dataSize == 8)
159 spec_entries[i].data64 = *(const uint64_t *)data;
160 else
161 spec_entries[i].data32 = *(const uint32_t *)data;
162 }
163 }
164
165 struct anv_spirv_debug_data spirv_debug_data = {
166 .device = device,
167 .module = module,
168 };
169 struct spirv_to_nir_options spirv_options = {
170 .frag_coord_is_sysval = true,
171 .use_scoped_memory_barrier = true,
172 .caps = {
173 .demote_to_helper_invocation = true,
174 .derivative_group = true,
175 .descriptor_array_dynamic_indexing = true,
176 .descriptor_array_non_uniform_indexing = true,
177 .descriptor_indexing = true,
178 .device_group = true,
179 .draw_parameters = true,
180 .float16 = pdevice->info.gen >= 8,
181 .float64 = pdevice->info.gen >= 8,
182 .fragment_shader_sample_interlock = pdevice->info.gen >= 9,
183 .fragment_shader_pixel_interlock = pdevice->info.gen >= 9,
184 .geometry_streams = true,
185 .image_write_without_format = true,
186 .int8 = pdevice->info.gen >= 8,
187 .int16 = pdevice->info.gen >= 8,
188 .int64 = pdevice->info.gen >= 8,
189 .int64_atomics = pdevice->info.gen >= 9 && pdevice->use_softpin,
190 .min_lod = true,
191 .multiview = true,
192 .physical_storage_buffer_address = pdevice->has_a64_buffer_access,
193 .post_depth_coverage = pdevice->info.gen >= 9,
194 .runtime_descriptor_array = true,
195 .float_controls = pdevice->info.gen >= 8,
196 .shader_clock = true,
197 .shader_viewport_index_layer = true,
198 .stencil_export = pdevice->info.gen >= 9,
199 .storage_8bit = pdevice->info.gen >= 8,
200 .storage_16bit = pdevice->info.gen >= 8,
201 .subgroup_arithmetic = true,
202 .subgroup_basic = true,
203 .subgroup_ballot = true,
204 .subgroup_quad = true,
205 .subgroup_shuffle = true,
206 .subgroup_vote = true,
207 .tessellation = true,
208 .transform_feedback = pdevice->info.gen >= 8,
209 .variable_pointers = true,
210 .vk_memory_model = true,
211 .vk_memory_model_device_scope = true,
212 },
213 .ubo_addr_format = nir_address_format_32bit_index_offset,
214 .ssbo_addr_format =
215 anv_nir_ssbo_addr_format(pdevice, device->robust_buffer_access),
216 .phys_ssbo_addr_format = nir_address_format_64bit_global,
217 .push_const_addr_format = nir_address_format_logical,
218
219 /* TODO: Consider changing this to an address format that has the NULL
220 * pointer equals to 0. That might be a better format to play nice
221 * with certain code / code generators.
222 */
223 .shared_addr_format = nir_address_format_32bit_offset,
224 .debug = {
225 .func = anv_spirv_nir_debug,
226 .private_data = &spirv_debug_data,
227 },
228 };
229
230
231 nir_shader *nir =
232 spirv_to_nir(spirv, module->size / 4,
233 spec_entries, num_spec_entries,
234 stage, entrypoint_name, &spirv_options, nir_options);
235 assert(nir->info.stage == stage);
236 nir_validate_shader(nir, "after spirv_to_nir");
237 ralloc_steal(mem_ctx, nir);
238
239 free(spec_entries);
240
241 if (unlikely(INTEL_DEBUG & stage_to_debug[stage])) {
242 fprintf(stderr, "NIR (from SPIR-V) for %s shader:\n",
243 gl_shader_stage_name(stage));
244 nir_print_shader(nir, stderr);
245 }
246
247 /* We have to lower away local constant initializers right before we
248 * inline functions. That way they get properly initialized at the top
249 * of the function and not at the top of its caller.
250 */
251 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_function_temp);
252 NIR_PASS_V(nir, nir_lower_returns);
253 NIR_PASS_V(nir, nir_inline_functions);
254 NIR_PASS_V(nir, nir_opt_deref);
255
256 /* Pick off the single entrypoint that we want */
257 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
258 if (!func->is_entrypoint)
259 exec_node_remove(&func->node);
260 }
261 assert(exec_list_length(&nir->functions) == 1);
262
263 /* Now that we've deleted all but the main function, we can go ahead and
264 * lower the rest of the constant initializers. We do this here so that
265 * nir_remove_dead_variables and split_per_member_structs below see the
266 * corresponding stores.
267 */
268 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
269
270 /* Split member structs. We do this before lower_io_to_temporaries so that
271 * it doesn't lower system values to temporaries by accident.
272 */
273 NIR_PASS_V(nir, nir_split_var_copies);
274 NIR_PASS_V(nir, nir_split_per_member_structs);
275
276 NIR_PASS_V(nir, nir_remove_dead_variables,
277 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
278
279 NIR_PASS_V(nir, nir_propagate_invariant);
280 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
281 nir_shader_get_entrypoint(nir), true, false);
282
283 NIR_PASS_V(nir, nir_lower_frexp);
284
285 /* Vulkan uses the separate-shader linking model */
286 nir->info.separate_shader = true;
287
288 brw_preprocess_nir(compiler, nir, NULL);
289
290 return nir;
291 }
292
293 void anv_DestroyPipeline(
294 VkDevice _device,
295 VkPipeline _pipeline,
296 const VkAllocationCallbacks* pAllocator)
297 {
298 ANV_FROM_HANDLE(anv_device, device, _device);
299 ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
300
301 if (!pipeline)
302 return;
303
304 anv_reloc_list_finish(&pipeline->batch_relocs,
305 pAllocator ? pAllocator : &device->alloc);
306
307 ralloc_free(pipeline->mem_ctx);
308
309 if (pipeline->blend_state.map)
310 anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
311
312 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
313 if (pipeline->shaders[s])
314 anv_shader_bin_unref(device, pipeline->shaders[s]);
315 }
316
317 vk_free2(&device->alloc, pAllocator, pipeline);
318 }
319
320 static const uint32_t vk_to_gen_primitive_type[] = {
321 [VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
322 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
323 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
324 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
325 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
326 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
327 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
328 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
329 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
330 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
331 };
332
333 static void
334 populate_sampler_prog_key(const struct gen_device_info *devinfo,
335 struct brw_sampler_prog_key_data *key)
336 {
337 /* Almost all multisampled textures are compressed. The only time when we
338 * don't compress a multisampled texture is for 16x MSAA with a surface
339 * width greater than 8k which is a bit of an edge case. Since the sampler
340 * just ignores the MCS parameter to ld2ms when MCS is disabled, it's safe
341 * to tell the compiler to always assume compression.
342 */
343 key->compressed_multisample_layout_mask = ~0;
344
345 /* SkyLake added support for 16x MSAA. With this came a new message for
346 * reading from a 16x MSAA surface with compression. The new message was
347 * needed because now the MCS data is 64 bits instead of 32 or lower as is
348 * the case for 8x, 4x, and 2x. The key->msaa_16 bit-field controls which
349 * message we use. Fortunately, the 16x message works for 8x, 4x, and 2x
350 * so we can just use it unconditionally. This may not be quite as
351 * efficient but it saves us from recompiling.
352 */
353 if (devinfo->gen >= 9)
354 key->msaa_16 = ~0;
355
356 /* XXX: Handle texture swizzle on HSW- */
357 for (int i = 0; i < MAX_SAMPLERS; i++) {
358 /* Assume color sampler, no swizzling. (Works for BDW+) */
359 key->swizzles[i] = SWIZZLE_XYZW;
360 }
361 }
362
363 static void
364 populate_base_prog_key(const struct gen_device_info *devinfo,
365 VkPipelineShaderStageCreateFlags flags,
366 struct brw_base_prog_key *key)
367 {
368 if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT)
369 key->subgroup_size_type = BRW_SUBGROUP_SIZE_VARYING;
370 else
371 key->subgroup_size_type = BRW_SUBGROUP_SIZE_API_CONSTANT;
372
373 populate_sampler_prog_key(devinfo, &key->tex);
374 }
375
376 static void
377 populate_vs_prog_key(const struct gen_device_info *devinfo,
378 VkPipelineShaderStageCreateFlags flags,
379 struct brw_vs_prog_key *key)
380 {
381 memset(key, 0, sizeof(*key));
382
383 populate_base_prog_key(devinfo, flags, &key->base);
384
385 /* XXX: Handle vertex input work-arounds */
386
387 /* XXX: Handle sampler_prog_key */
388 }
389
390 static void
391 populate_tcs_prog_key(const struct gen_device_info *devinfo,
392 VkPipelineShaderStageCreateFlags flags,
393 unsigned input_vertices,
394 struct brw_tcs_prog_key *key)
395 {
396 memset(key, 0, sizeof(*key));
397
398 populate_base_prog_key(devinfo, flags, &key->base);
399
400 key->input_vertices = input_vertices;
401 }
402
403 static void
404 populate_tes_prog_key(const struct gen_device_info *devinfo,
405 VkPipelineShaderStageCreateFlags flags,
406 struct brw_tes_prog_key *key)
407 {
408 memset(key, 0, sizeof(*key));
409
410 populate_base_prog_key(devinfo, flags, &key->base);
411 }
412
413 static void
414 populate_gs_prog_key(const struct gen_device_info *devinfo,
415 VkPipelineShaderStageCreateFlags flags,
416 struct brw_gs_prog_key *key)
417 {
418 memset(key, 0, sizeof(*key));
419
420 populate_base_prog_key(devinfo, flags, &key->base);
421 }
422
423 static void
424 populate_wm_prog_key(const struct gen_device_info *devinfo,
425 VkPipelineShaderStageCreateFlags flags,
426 const struct anv_subpass *subpass,
427 const VkPipelineMultisampleStateCreateInfo *ms_info,
428 struct brw_wm_prog_key *key)
429 {
430 memset(key, 0, sizeof(*key));
431
432 populate_base_prog_key(devinfo, flags, &key->base);
433
434 /* We set this to 0 here and set to the actual value before we call
435 * brw_compile_fs.
436 */
437 key->input_slots_valid = 0;
438
439 /* Vulkan doesn't specify a default */
440 key->high_quality_derivatives = false;
441
442 /* XXX Vulkan doesn't appear to specify */
443 key->clamp_fragment_color = false;
444
445 assert(subpass->color_count <= MAX_RTS);
446 for (uint32_t i = 0; i < subpass->color_count; i++) {
447 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
448 key->color_outputs_valid |= (1 << i);
449 }
450
451 key->nr_color_regions = subpass->color_count;
452
453 /* To reduce possible shader recompilations we would need to know if
454 * there is a SampleMask output variable to compute if we should emit
455 * code to workaround the issue that hardware disables alpha to coverage
456 * when there is SampleMask output.
457 */
458 key->alpha_to_coverage = ms_info && ms_info->alphaToCoverageEnable;
459
460 /* Vulkan doesn't support fixed-function alpha test */
461 key->alpha_test_replicate_alpha = false;
462
463 if (ms_info) {
464 /* We should probably pull this out of the shader, but it's fairly
465 * harmless to compute it and then let dead-code take care of it.
466 */
467 if (ms_info->rasterizationSamples > 1) {
468 key->persample_interp = ms_info->sampleShadingEnable &&
469 (ms_info->minSampleShading * ms_info->rasterizationSamples) > 1;
470 key->multisample_fbo = true;
471 }
472
473 key->frag_coord_adds_sample_pos = key->persample_interp;
474 }
475 }
476
477 static void
478 populate_cs_prog_key(const struct gen_device_info *devinfo,
479 VkPipelineShaderStageCreateFlags flags,
480 const VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT *rss_info,
481 struct brw_cs_prog_key *key)
482 {
483 memset(key, 0, sizeof(*key));
484
485 populate_base_prog_key(devinfo, flags, &key->base);
486
487 if (rss_info) {
488 assert(key->base.subgroup_size_type != BRW_SUBGROUP_SIZE_VARYING);
489
490 /* These enum values are expressly chosen to be equal to the subgroup
491 * size that they require.
492 */
493 assert(rss_info->requiredSubgroupSize == 8 ||
494 rss_info->requiredSubgroupSize == 16 ||
495 rss_info->requiredSubgroupSize == 32);
496 key->base.subgroup_size_type = rss_info->requiredSubgroupSize;
497 } else if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT) {
498 /* If the client expressly requests full subgroups and they don't
499 * specify a subgroup size, we need to pick one. If they're requested
500 * varying subgroup sizes, we set it to UNIFORM and let the back-end
501 * compiler pick. Otherwise, we specify the API value of 32.
502 * Performance will likely be terrible in this case but there's nothing
503 * we can do about that. The client should have chosen a size.
504 */
505 if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT)
506 key->base.subgroup_size_type = BRW_SUBGROUP_SIZE_UNIFORM;
507 else
508 key->base.subgroup_size_type = BRW_SUBGROUP_SIZE_REQUIRE_32;
509 }
510 }
511
512 struct anv_pipeline_stage {
513 gl_shader_stage stage;
514
515 const struct anv_shader_module *module;
516 const char *entrypoint;
517 const VkSpecializationInfo *spec_info;
518
519 unsigned char shader_sha1[20];
520
521 union brw_any_prog_key key;
522
523 struct {
524 gl_shader_stage stage;
525 unsigned char sha1[20];
526 } cache_key;
527
528 nir_shader *nir;
529
530 struct anv_pipeline_binding surface_to_descriptor[256];
531 struct anv_pipeline_binding sampler_to_descriptor[256];
532 struct anv_pipeline_bind_map bind_map;
533
534 union brw_any_prog_data prog_data;
535
536 uint32_t num_stats;
537 struct brw_compile_stats stats[3];
538 char *disasm[3];
539
540 VkPipelineCreationFeedbackEXT feedback;
541
542 const unsigned *code;
543 };
544
545 static void
546 anv_pipeline_hash_shader(const struct anv_shader_module *module,
547 const char *entrypoint,
548 gl_shader_stage stage,
549 const VkSpecializationInfo *spec_info,
550 unsigned char *sha1_out)
551 {
552 struct mesa_sha1 ctx;
553 _mesa_sha1_init(&ctx);
554
555 _mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1));
556 _mesa_sha1_update(&ctx, entrypoint, strlen(entrypoint));
557 _mesa_sha1_update(&ctx, &stage, sizeof(stage));
558 if (spec_info) {
559 _mesa_sha1_update(&ctx, spec_info->pMapEntries,
560 spec_info->mapEntryCount *
561 sizeof(*spec_info->pMapEntries));
562 _mesa_sha1_update(&ctx, spec_info->pData,
563 spec_info->dataSize);
564 }
565
566 _mesa_sha1_final(&ctx, sha1_out);
567 }
568
569 static void
570 anv_pipeline_hash_graphics(struct anv_pipeline *pipeline,
571 struct anv_pipeline_layout *layout,
572 struct anv_pipeline_stage *stages,
573 unsigned char *sha1_out)
574 {
575 struct mesa_sha1 ctx;
576 _mesa_sha1_init(&ctx);
577
578 _mesa_sha1_update(&ctx, &pipeline->subpass->view_mask,
579 sizeof(pipeline->subpass->view_mask));
580
581 if (layout)
582 _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
583
584 const bool rba = pipeline->device->robust_buffer_access;
585 _mesa_sha1_update(&ctx, &rba, sizeof(rba));
586
587 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
588 if (stages[s].entrypoint) {
589 _mesa_sha1_update(&ctx, stages[s].shader_sha1,
590 sizeof(stages[s].shader_sha1));
591 _mesa_sha1_update(&ctx, &stages[s].key, brw_prog_key_size(s));
592 }
593 }
594
595 _mesa_sha1_final(&ctx, sha1_out);
596 }
597
598 static void
599 anv_pipeline_hash_compute(struct anv_pipeline *pipeline,
600 struct anv_pipeline_layout *layout,
601 struct anv_pipeline_stage *stage,
602 unsigned char *sha1_out)
603 {
604 struct mesa_sha1 ctx;
605 _mesa_sha1_init(&ctx);
606
607 if (layout)
608 _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
609
610 const bool rba = pipeline->device->robust_buffer_access;
611 _mesa_sha1_update(&ctx, &rba, sizeof(rba));
612
613 _mesa_sha1_update(&ctx, stage->shader_sha1,
614 sizeof(stage->shader_sha1));
615 _mesa_sha1_update(&ctx, &stage->key.cs, sizeof(stage->key.cs));
616
617 _mesa_sha1_final(&ctx, sha1_out);
618 }
619
620 static nir_shader *
621 anv_pipeline_stage_get_nir(struct anv_pipeline *pipeline,
622 struct anv_pipeline_cache *cache,
623 void *mem_ctx,
624 struct anv_pipeline_stage *stage)
625 {
626 const struct brw_compiler *compiler =
627 pipeline->device->instance->physicalDevice.compiler;
628 const nir_shader_compiler_options *nir_options =
629 compiler->glsl_compiler_options[stage->stage].NirOptions;
630 nir_shader *nir;
631
632 nir = anv_device_search_for_nir(pipeline->device, cache,
633 nir_options,
634 stage->shader_sha1,
635 mem_ctx);
636 if (nir) {
637 assert(nir->info.stage == stage->stage);
638 return nir;
639 }
640
641 nir = anv_shader_compile_to_nir(pipeline->device,
642 mem_ctx,
643 stage->module,
644 stage->entrypoint,
645 stage->stage,
646 stage->spec_info);
647 if (nir) {
648 anv_device_upload_nir(pipeline->device, cache, nir, stage->shader_sha1);
649 return nir;
650 }
651
652 return NULL;
653 }
654
655 static void
656 anv_pipeline_lower_nir(struct anv_pipeline *pipeline,
657 void *mem_ctx,
658 struct anv_pipeline_stage *stage,
659 struct anv_pipeline_layout *layout)
660 {
661 const struct anv_physical_device *pdevice =
662 &pipeline->device->instance->physicalDevice;
663 const struct brw_compiler *compiler = pdevice->compiler;
664
665 struct brw_stage_prog_data *prog_data = &stage->prog_data.base;
666 nir_shader *nir = stage->nir;
667
668 if (nir->info.stage == MESA_SHADER_FRAGMENT) {
669 NIR_PASS_V(nir, nir_lower_wpos_center, pipeline->sample_shading_enable);
670 NIR_PASS_V(nir, nir_lower_input_attachments, true);
671 }
672
673 NIR_PASS_V(nir, anv_nir_lower_ycbcr_textures, layout);
674
675 if (nir->info.stage != MESA_SHADER_COMPUTE)
676 NIR_PASS_V(nir, anv_nir_lower_multiview, pipeline->subpass->view_mask);
677
678 nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
679
680 if (nir->info.num_ssbos > 0 || nir->info.num_images > 0)
681 pipeline->needs_data_cache = true;
682
683 NIR_PASS_V(nir, brw_nir_lower_image_load_store, compiler->devinfo);
684
685 NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_global,
686 nir_address_format_64bit_global);
687
688 /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
689 anv_nir_apply_pipeline_layout(pdevice,
690 pipeline->device->robust_buffer_access,
691 layout, nir, prog_data,
692 &stage->bind_map);
693
694 NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ubo,
695 nir_address_format_32bit_index_offset);
696 NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ssbo,
697 anv_nir_ssbo_addr_format(pdevice,
698 pipeline->device->robust_buffer_access));
699
700 NIR_PASS_V(nir, nir_opt_constant_folding);
701
702 /* We don't support non-uniform UBOs and non-uniform SSBO access is
703 * handled naturally by falling back to A64 messages.
704 */
705 NIR_PASS_V(nir, nir_lower_non_uniform_access,
706 nir_lower_non_uniform_texture_access |
707 nir_lower_non_uniform_image_access);
708
709 anv_nir_compute_push_layout(pdevice, nir, prog_data,
710 &stage->bind_map, mem_ctx);
711
712 stage->nir = nir;
713 }
714
715 static void
716 anv_pipeline_link_vs(const struct brw_compiler *compiler,
717 struct anv_pipeline_stage *vs_stage,
718 struct anv_pipeline_stage *next_stage)
719 {
720 if (next_stage)
721 brw_nir_link_shaders(compiler, vs_stage->nir, next_stage->nir);
722 }
723
724 static void
725 anv_pipeline_compile_vs(const struct brw_compiler *compiler,
726 void *mem_ctx,
727 struct anv_device *device,
728 struct anv_pipeline_stage *vs_stage)
729 {
730 brw_compute_vue_map(compiler->devinfo,
731 &vs_stage->prog_data.vs.base.vue_map,
732 vs_stage->nir->info.outputs_written,
733 vs_stage->nir->info.separate_shader);
734
735 vs_stage->num_stats = 1;
736 vs_stage->code = brw_compile_vs(compiler, device, mem_ctx,
737 &vs_stage->key.vs,
738 &vs_stage->prog_data.vs,
739 vs_stage->nir, -1,
740 vs_stage->stats, NULL);
741 }
742
743 static void
744 merge_tess_info(struct shader_info *tes_info,
745 const struct shader_info *tcs_info)
746 {
747 /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
748 *
749 * "PointMode. Controls generation of points rather than triangles
750 * or lines. This functionality defaults to disabled, and is
751 * enabled if either shader stage includes the execution mode.
752 *
753 * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
754 * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
755 * and OutputVertices, it says:
756 *
757 * "One mode must be set in at least one of the tessellation
758 * shader stages."
759 *
760 * So, the fields can be set in either the TCS or TES, but they must
761 * agree if set in both. Our backend looks at TES, so bitwise-or in
762 * the values from the TCS.
763 */
764 assert(tcs_info->tess.tcs_vertices_out == 0 ||
765 tes_info->tess.tcs_vertices_out == 0 ||
766 tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
767 tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
768
769 assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
770 tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
771 tcs_info->tess.spacing == tes_info->tess.spacing);
772 tes_info->tess.spacing |= tcs_info->tess.spacing;
773
774 assert(tcs_info->tess.primitive_mode == 0 ||
775 tes_info->tess.primitive_mode == 0 ||
776 tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode);
777 tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode;
778 tes_info->tess.ccw |= tcs_info->tess.ccw;
779 tes_info->tess.point_mode |= tcs_info->tess.point_mode;
780 }
781
782 static void
783 anv_pipeline_link_tcs(const struct brw_compiler *compiler,
784 struct anv_pipeline_stage *tcs_stage,
785 struct anv_pipeline_stage *tes_stage)
786 {
787 assert(tes_stage && tes_stage->stage == MESA_SHADER_TESS_EVAL);
788
789 brw_nir_link_shaders(compiler, tcs_stage->nir, tes_stage->nir);
790
791 nir_lower_patch_vertices(tes_stage->nir,
792 tcs_stage->nir->info.tess.tcs_vertices_out,
793 NULL);
794
795 /* Copy TCS info into the TES info */
796 merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
797
798 /* Whacking the key after cache lookup is a bit sketchy, but all of
799 * this comes from the SPIR-V, which is part of the hash used for the
800 * pipeline cache. So it should be safe.
801 */
802 tcs_stage->key.tcs.tes_primitive_mode =
803 tes_stage->nir->info.tess.primitive_mode;
804 tcs_stage->key.tcs.quads_workaround =
805 compiler->devinfo->gen < 9 &&
806 tes_stage->nir->info.tess.primitive_mode == 7 /* GL_QUADS */ &&
807 tes_stage->nir->info.tess.spacing == TESS_SPACING_EQUAL;
808 }
809
810 static void
811 anv_pipeline_compile_tcs(const struct brw_compiler *compiler,
812 void *mem_ctx,
813 struct anv_device *device,
814 struct anv_pipeline_stage *tcs_stage,
815 struct anv_pipeline_stage *prev_stage)
816 {
817 tcs_stage->key.tcs.outputs_written =
818 tcs_stage->nir->info.outputs_written;
819 tcs_stage->key.tcs.patch_outputs_written =
820 tcs_stage->nir->info.patch_outputs_written;
821
822 tcs_stage->num_stats = 1;
823 tcs_stage->code = brw_compile_tcs(compiler, device, mem_ctx,
824 &tcs_stage->key.tcs,
825 &tcs_stage->prog_data.tcs,
826 tcs_stage->nir, -1,
827 tcs_stage->stats, NULL);
828 }
829
830 static void
831 anv_pipeline_link_tes(const struct brw_compiler *compiler,
832 struct anv_pipeline_stage *tes_stage,
833 struct anv_pipeline_stage *next_stage)
834 {
835 if (next_stage)
836 brw_nir_link_shaders(compiler, tes_stage->nir, next_stage->nir);
837 }
838
839 static void
840 anv_pipeline_compile_tes(const struct brw_compiler *compiler,
841 void *mem_ctx,
842 struct anv_device *device,
843 struct anv_pipeline_stage *tes_stage,
844 struct anv_pipeline_stage *tcs_stage)
845 {
846 tes_stage->key.tes.inputs_read =
847 tcs_stage->nir->info.outputs_written;
848 tes_stage->key.tes.patch_inputs_read =
849 tcs_stage->nir->info.patch_outputs_written;
850
851 tes_stage->num_stats = 1;
852 tes_stage->code = brw_compile_tes(compiler, device, mem_ctx,
853 &tes_stage->key.tes,
854 &tcs_stage->prog_data.tcs.base.vue_map,
855 &tes_stage->prog_data.tes,
856 tes_stage->nir, -1,
857 tes_stage->stats, NULL);
858 }
859
860 static void
861 anv_pipeline_link_gs(const struct brw_compiler *compiler,
862 struct anv_pipeline_stage *gs_stage,
863 struct anv_pipeline_stage *next_stage)
864 {
865 if (next_stage)
866 brw_nir_link_shaders(compiler, gs_stage->nir, next_stage->nir);
867 }
868
869 static void
870 anv_pipeline_compile_gs(const struct brw_compiler *compiler,
871 void *mem_ctx,
872 struct anv_device *device,
873 struct anv_pipeline_stage *gs_stage,
874 struct anv_pipeline_stage *prev_stage)
875 {
876 brw_compute_vue_map(compiler->devinfo,
877 &gs_stage->prog_data.gs.base.vue_map,
878 gs_stage->nir->info.outputs_written,
879 gs_stage->nir->info.separate_shader);
880
881 gs_stage->num_stats = 1;
882 gs_stage->code = brw_compile_gs(compiler, device, mem_ctx,
883 &gs_stage->key.gs,
884 &gs_stage->prog_data.gs,
885 gs_stage->nir, NULL, -1,
886 gs_stage->stats, NULL);
887 }
888
889 static void
890 anv_pipeline_link_fs(const struct brw_compiler *compiler,
891 struct anv_pipeline_stage *stage)
892 {
893 unsigned num_rt_bindings;
894 struct anv_pipeline_binding rt_bindings[MAX_RTS];
895 if (stage->key.wm.nr_color_regions > 0) {
896 assert(stage->key.wm.nr_color_regions <= MAX_RTS);
897 for (unsigned rt = 0; rt < stage->key.wm.nr_color_regions; rt++) {
898 if (stage->key.wm.color_outputs_valid & BITFIELD_BIT(rt)) {
899 rt_bindings[rt] = (struct anv_pipeline_binding) {
900 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
901 .index = rt,
902 };
903 } else {
904 /* Setup a null render target */
905 rt_bindings[rt] = (struct anv_pipeline_binding) {
906 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
907 .index = UINT32_MAX,
908 };
909 }
910 }
911 num_rt_bindings = stage->key.wm.nr_color_regions;
912 } else {
913 /* Setup a null render target */
914 rt_bindings[0] = (struct anv_pipeline_binding) {
915 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
916 .index = UINT32_MAX,
917 };
918 num_rt_bindings = 1;
919 }
920
921 assert(num_rt_bindings <= MAX_RTS);
922 assert(stage->bind_map.surface_count == 0);
923 typed_memcpy(stage->bind_map.surface_to_descriptor,
924 rt_bindings, num_rt_bindings);
925 stage->bind_map.surface_count += num_rt_bindings;
926
927 /* Now that we've set up the color attachments, we can go through and
928 * eliminate any shader outputs that map to VK_ATTACHMENT_UNUSED in the
929 * hopes that dead code can clean them up in this and any earlier shader
930 * stages.
931 */
932 nir_function_impl *impl = nir_shader_get_entrypoint(stage->nir);
933 bool deleted_output = false;
934 nir_foreach_variable_safe(var, &stage->nir->outputs) {
935 /* TODO: We don't delete depth/stencil writes. We probably could if the
936 * subpass doesn't have a depth/stencil attachment.
937 */
938 if (var->data.location < FRAG_RESULT_DATA0)
939 continue;
940
941 const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
942
943 /* If this is the RT at location 0 and we have alpha to coverage
944 * enabled we still need that write because it will affect the coverage
945 * mask even if it's never written to a color target.
946 */
947 if (rt == 0 && stage->key.wm.alpha_to_coverage)
948 continue;
949
950 const unsigned array_len =
951 glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
952 assert(rt + array_len <= MAX_RTS);
953
954 if (rt >= MAX_RTS || !(stage->key.wm.color_outputs_valid &
955 BITFIELD_RANGE(rt, array_len))) {
956 deleted_output = true;
957 var->data.mode = nir_var_function_temp;
958 exec_node_remove(&var->node);
959 exec_list_push_tail(&impl->locals, &var->node);
960 }
961 }
962
963 if (deleted_output)
964 nir_fixup_deref_modes(stage->nir);
965
966 /* We stored the number of subpass color attachments in nr_color_regions
967 * when calculating the key for caching. Now that we've computed the bind
968 * map, we can reduce this to the actual max before we go into the back-end
969 * compiler.
970 */
971 stage->key.wm.nr_color_regions =
972 util_last_bit(stage->key.wm.color_outputs_valid);
973 }
974
975 static void
976 anv_pipeline_compile_fs(const struct brw_compiler *compiler,
977 void *mem_ctx,
978 struct anv_device *device,
979 struct anv_pipeline_stage *fs_stage,
980 struct anv_pipeline_stage *prev_stage)
981 {
982 /* TODO: we could set this to 0 based on the information in nir_shader, but
983 * we need this before we call spirv_to_nir.
984 */
985 assert(prev_stage);
986 fs_stage->key.wm.input_slots_valid =
987 prev_stage->prog_data.vue.vue_map.slots_valid;
988
989 fs_stage->code = brw_compile_fs(compiler, device, mem_ctx,
990 &fs_stage->key.wm,
991 &fs_stage->prog_data.wm,
992 fs_stage->nir, -1, -1, -1,
993 true, false, NULL,
994 fs_stage->stats, NULL);
995
996 fs_stage->num_stats = (uint32_t)fs_stage->prog_data.wm.dispatch_8 +
997 (uint32_t)fs_stage->prog_data.wm.dispatch_16 +
998 (uint32_t)fs_stage->prog_data.wm.dispatch_32;
999
1000 if (fs_stage->key.wm.color_outputs_valid == 0 &&
1001 !fs_stage->prog_data.wm.has_side_effects &&
1002 !fs_stage->prog_data.wm.uses_omask &&
1003 !fs_stage->key.wm.alpha_to_coverage &&
1004 !fs_stage->prog_data.wm.uses_kill &&
1005 fs_stage->prog_data.wm.computed_depth_mode == BRW_PSCDEPTH_OFF &&
1006 !fs_stage->prog_data.wm.computed_stencil) {
1007 /* This fragment shader has no outputs and no side effects. Go ahead
1008 * and return the code pointer so we don't accidentally think the
1009 * compile failed but zero out prog_data which will set program_size to
1010 * zero and disable the stage.
1011 */
1012 memset(&fs_stage->prog_data, 0, sizeof(fs_stage->prog_data));
1013 }
1014 }
1015
1016 static void
1017 anv_pipeline_add_executable(struct anv_pipeline *pipeline,
1018 struct anv_pipeline_stage *stage,
1019 struct brw_compile_stats *stats,
1020 uint32_t code_offset)
1021 {
1022 char *nir = NULL;
1023 if (stage->nir &&
1024 (pipeline->flags &
1025 VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
1026 char *stream_data = NULL;
1027 size_t stream_size = 0;
1028 FILE *stream = open_memstream(&stream_data, &stream_size);
1029
1030 nir_print_shader(stage->nir, stream);
1031
1032 fclose(stream);
1033
1034 /* Copy it to a ralloc'd thing */
1035 nir = ralloc_size(pipeline->mem_ctx, stream_size + 1);
1036 memcpy(nir, stream_data, stream_size);
1037 nir[stream_size] = 0;
1038
1039 free(stream_data);
1040 }
1041
1042 char *disasm = NULL;
1043 if (stage->code &&
1044 (pipeline->flags &
1045 VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
1046 char *stream_data = NULL;
1047 size_t stream_size = 0;
1048 FILE *stream = open_memstream(&stream_data, &stream_size);
1049
1050 /* Creating this is far cheaper than it looks. It's perfectly fine to
1051 * do it for every binary.
1052 */
1053 struct gen_disasm *d = gen_disasm_create(&pipeline->device->info);
1054 gen_disasm_disassemble(d, stage->code, code_offset, stream);
1055 gen_disasm_destroy(d);
1056
1057 fclose(stream);
1058
1059 /* Copy it to a ralloc'd thing */
1060 disasm = ralloc_size(pipeline->mem_ctx, stream_size + 1);
1061 memcpy(disasm, stream_data, stream_size);
1062 disasm[stream_size] = 0;
1063
1064 free(stream_data);
1065 }
1066
1067 pipeline->executables[pipeline->num_executables++] =
1068 (struct anv_pipeline_executable) {
1069 .stage = stage->stage,
1070 .stats = *stats,
1071 .nir = nir,
1072 .disasm = disasm,
1073 };
1074 }
1075
1076 static void
1077 anv_pipeline_add_executables(struct anv_pipeline *pipeline,
1078 struct anv_pipeline_stage *stage,
1079 struct anv_shader_bin *bin)
1080 {
1081 if (stage->stage == MESA_SHADER_FRAGMENT) {
1082 /* We pull the prog data and stats out of the anv_shader_bin because
1083 * the anv_pipeline_stage may not be fully populated if we successfully
1084 * looked up the shader in a cache.
1085 */
1086 const struct brw_wm_prog_data *wm_prog_data =
1087 (const struct brw_wm_prog_data *)bin->prog_data;
1088 struct brw_compile_stats *stats = bin->stats;
1089
1090 if (wm_prog_data->dispatch_8) {
1091 anv_pipeline_add_executable(pipeline, stage, stats++, 0);
1092 }
1093
1094 if (wm_prog_data->dispatch_16) {
1095 anv_pipeline_add_executable(pipeline, stage, stats++,
1096 wm_prog_data->prog_offset_16);
1097 }
1098
1099 if (wm_prog_data->dispatch_32) {
1100 anv_pipeline_add_executable(pipeline, stage, stats++,
1101 wm_prog_data->prog_offset_32);
1102 }
1103 } else {
1104 anv_pipeline_add_executable(pipeline, stage, bin->stats, 0);
1105 }
1106 }
1107
1108 static VkResult
1109 anv_pipeline_compile_graphics(struct anv_pipeline *pipeline,
1110 struct anv_pipeline_cache *cache,
1111 const VkGraphicsPipelineCreateInfo *info)
1112 {
1113 VkPipelineCreationFeedbackEXT pipeline_feedback = {
1114 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
1115 };
1116 int64_t pipeline_start = os_time_get_nano();
1117
1118 const struct brw_compiler *compiler =
1119 pipeline->device->instance->physicalDevice.compiler;
1120 struct anv_pipeline_stage stages[MESA_SHADER_STAGES] = {};
1121
1122 pipeline->active_stages = 0;
1123
1124 VkResult result;
1125 for (uint32_t i = 0; i < info->stageCount; i++) {
1126 const VkPipelineShaderStageCreateInfo *sinfo = &info->pStages[i];
1127 gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage);
1128
1129 pipeline->active_stages |= sinfo->stage;
1130
1131 int64_t stage_start = os_time_get_nano();
1132
1133 stages[stage].stage = stage;
1134 stages[stage].module = anv_shader_module_from_handle(sinfo->module);
1135 stages[stage].entrypoint = sinfo->pName;
1136 stages[stage].spec_info = sinfo->pSpecializationInfo;
1137 anv_pipeline_hash_shader(stages[stage].module,
1138 stages[stage].entrypoint,
1139 stage,
1140 stages[stage].spec_info,
1141 stages[stage].shader_sha1);
1142
1143 const struct gen_device_info *devinfo = &pipeline->device->info;
1144 switch (stage) {
1145 case MESA_SHADER_VERTEX:
1146 populate_vs_prog_key(devinfo, sinfo->flags, &stages[stage].key.vs);
1147 break;
1148 case MESA_SHADER_TESS_CTRL:
1149 populate_tcs_prog_key(devinfo, sinfo->flags,
1150 info->pTessellationState->patchControlPoints,
1151 &stages[stage].key.tcs);
1152 break;
1153 case MESA_SHADER_TESS_EVAL:
1154 populate_tes_prog_key(devinfo, sinfo->flags, &stages[stage].key.tes);
1155 break;
1156 case MESA_SHADER_GEOMETRY:
1157 populate_gs_prog_key(devinfo, sinfo->flags, &stages[stage].key.gs);
1158 break;
1159 case MESA_SHADER_FRAGMENT:
1160 populate_wm_prog_key(devinfo, sinfo->flags,
1161 pipeline->subpass,
1162 info->pMultisampleState,
1163 &stages[stage].key.wm);
1164 break;
1165 default:
1166 unreachable("Invalid graphics shader stage");
1167 }
1168
1169 stages[stage].feedback.duration += os_time_get_nano() - stage_start;
1170 stages[stage].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT;
1171 }
1172
1173 if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)
1174 pipeline->active_stages |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
1175
1176 assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
1177
1178 ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
1179
1180 unsigned char sha1[20];
1181 anv_pipeline_hash_graphics(pipeline, layout, stages, sha1);
1182
1183 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1184 if (!stages[s].entrypoint)
1185 continue;
1186
1187 stages[s].cache_key.stage = s;
1188 memcpy(stages[s].cache_key.sha1, sha1, sizeof(sha1));
1189 }
1190
1191 const bool skip_cache_lookup =
1192 (pipeline->flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
1193
1194 if (!skip_cache_lookup) {
1195 unsigned found = 0;
1196 unsigned cache_hits = 0;
1197 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1198 if (!stages[s].entrypoint)
1199 continue;
1200
1201 int64_t stage_start = os_time_get_nano();
1202
1203 bool cache_hit;
1204 struct anv_shader_bin *bin =
1205 anv_device_search_for_kernel(pipeline->device, cache,
1206 &stages[s].cache_key,
1207 sizeof(stages[s].cache_key), &cache_hit);
1208 if (bin) {
1209 found++;
1210 pipeline->shaders[s] = bin;
1211 }
1212
1213 if (cache_hit) {
1214 cache_hits++;
1215 stages[s].feedback.flags |=
1216 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1217 }
1218 stages[s].feedback.duration += os_time_get_nano() - stage_start;
1219 }
1220
1221 if (found == __builtin_popcount(pipeline->active_stages)) {
1222 if (cache_hits == found) {
1223 pipeline_feedback.flags |=
1224 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1225 }
1226 /* We found all our shaders in the cache. We're done. */
1227 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1228 if (!stages[s].entrypoint)
1229 continue;
1230
1231 anv_pipeline_add_executables(pipeline, &stages[s],
1232 pipeline->shaders[s]);
1233 }
1234 goto done;
1235 } else if (found > 0) {
1236 /* We found some but not all of our shaders. This shouldn't happen
1237 * most of the time but it can if we have a partially populated
1238 * pipeline cache.
1239 */
1240 assert(found < __builtin_popcount(pipeline->active_stages));
1241
1242 vk_debug_report(&pipeline->device->instance->debug_report_callbacks,
1243 VK_DEBUG_REPORT_WARNING_BIT_EXT |
1244 VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
1245 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT,
1246 (uint64_t)(uintptr_t)cache,
1247 0, 0, "anv",
1248 "Found a partial pipeline in the cache. This is "
1249 "most likely caused by an incomplete pipeline cache "
1250 "import or export");
1251
1252 /* We're going to have to recompile anyway, so just throw away our
1253 * references to the shaders in the cache. We'll get them out of the
1254 * cache again as part of the compilation process.
1255 */
1256 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1257 stages[s].feedback.flags = 0;
1258 if (pipeline->shaders[s]) {
1259 anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]);
1260 pipeline->shaders[s] = NULL;
1261 }
1262 }
1263 }
1264 }
1265
1266 void *pipeline_ctx = ralloc_context(NULL);
1267
1268 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1269 if (!stages[s].entrypoint)
1270 continue;
1271
1272 int64_t stage_start = os_time_get_nano();
1273
1274 assert(stages[s].stage == s);
1275 assert(pipeline->shaders[s] == NULL);
1276
1277 stages[s].bind_map = (struct anv_pipeline_bind_map) {
1278 .surface_to_descriptor = stages[s].surface_to_descriptor,
1279 .sampler_to_descriptor = stages[s].sampler_to_descriptor
1280 };
1281
1282 stages[s].nir = anv_pipeline_stage_get_nir(pipeline, cache,
1283 pipeline_ctx,
1284 &stages[s]);
1285 if (stages[s].nir == NULL) {
1286 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1287 goto fail;
1288 }
1289
1290 stages[s].feedback.duration += os_time_get_nano() - stage_start;
1291 }
1292
1293 /* Walk backwards to link */
1294 struct anv_pipeline_stage *next_stage = NULL;
1295 for (int s = MESA_SHADER_STAGES - 1; s >= 0; s--) {
1296 if (!stages[s].entrypoint)
1297 continue;
1298
1299 switch (s) {
1300 case MESA_SHADER_VERTEX:
1301 anv_pipeline_link_vs(compiler, &stages[s], next_stage);
1302 break;
1303 case MESA_SHADER_TESS_CTRL:
1304 anv_pipeline_link_tcs(compiler, &stages[s], next_stage);
1305 break;
1306 case MESA_SHADER_TESS_EVAL:
1307 anv_pipeline_link_tes(compiler, &stages[s], next_stage);
1308 break;
1309 case MESA_SHADER_GEOMETRY:
1310 anv_pipeline_link_gs(compiler, &stages[s], next_stage);
1311 break;
1312 case MESA_SHADER_FRAGMENT:
1313 anv_pipeline_link_fs(compiler, &stages[s]);
1314 break;
1315 default:
1316 unreachable("Invalid graphics shader stage");
1317 }
1318
1319 next_stage = &stages[s];
1320 }
1321
1322 struct anv_pipeline_stage *prev_stage = NULL;
1323 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1324 if (!stages[s].entrypoint)
1325 continue;
1326
1327 int64_t stage_start = os_time_get_nano();
1328
1329 void *stage_ctx = ralloc_context(NULL);
1330
1331 nir_xfb_info *xfb_info = NULL;
1332 if (s == MESA_SHADER_VERTEX ||
1333 s == MESA_SHADER_TESS_EVAL ||
1334 s == MESA_SHADER_GEOMETRY)
1335 xfb_info = nir_gather_xfb_info(stages[s].nir, stage_ctx);
1336
1337 anv_pipeline_lower_nir(pipeline, stage_ctx, &stages[s], layout);
1338
1339 switch (s) {
1340 case MESA_SHADER_VERTEX:
1341 anv_pipeline_compile_vs(compiler, stage_ctx, pipeline->device,
1342 &stages[s]);
1343 break;
1344 case MESA_SHADER_TESS_CTRL:
1345 anv_pipeline_compile_tcs(compiler, stage_ctx, pipeline->device,
1346 &stages[s], prev_stage);
1347 break;
1348 case MESA_SHADER_TESS_EVAL:
1349 anv_pipeline_compile_tes(compiler, stage_ctx, pipeline->device,
1350 &stages[s], prev_stage);
1351 break;
1352 case MESA_SHADER_GEOMETRY:
1353 anv_pipeline_compile_gs(compiler, stage_ctx, pipeline->device,
1354 &stages[s], prev_stage);
1355 break;
1356 case MESA_SHADER_FRAGMENT:
1357 anv_pipeline_compile_fs(compiler, stage_ctx, pipeline->device,
1358 &stages[s], prev_stage);
1359 break;
1360 default:
1361 unreachable("Invalid graphics shader stage");
1362 }
1363 if (stages[s].code == NULL) {
1364 ralloc_free(stage_ctx);
1365 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1366 goto fail;
1367 }
1368
1369 anv_nir_validate_push_layout(&stages[s].prog_data.base,
1370 &stages[s].bind_map);
1371
1372 struct anv_shader_bin *bin =
1373 anv_device_upload_kernel(pipeline->device, cache,
1374 &stages[s].cache_key,
1375 sizeof(stages[s].cache_key),
1376 stages[s].code,
1377 stages[s].prog_data.base.program_size,
1378 stages[s].nir->constant_data,
1379 stages[s].nir->constant_data_size,
1380 &stages[s].prog_data.base,
1381 brw_prog_data_size(s),
1382 stages[s].stats, stages[s].num_stats,
1383 xfb_info, &stages[s].bind_map);
1384 if (!bin) {
1385 ralloc_free(stage_ctx);
1386 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1387 goto fail;
1388 }
1389
1390 anv_pipeline_add_executables(pipeline, &stages[s], bin);
1391
1392 pipeline->shaders[s] = bin;
1393 ralloc_free(stage_ctx);
1394
1395 stages[s].feedback.duration += os_time_get_nano() - stage_start;
1396
1397 prev_stage = &stages[s];
1398 }
1399
1400 ralloc_free(pipeline_ctx);
1401
1402 done:
1403
1404 if (pipeline->shaders[MESA_SHADER_FRAGMENT] &&
1405 pipeline->shaders[MESA_SHADER_FRAGMENT]->prog_data->program_size == 0) {
1406 /* This can happen if we decided to implicitly disable the fragment
1407 * shader. See anv_pipeline_compile_fs().
1408 */
1409 anv_shader_bin_unref(pipeline->device,
1410 pipeline->shaders[MESA_SHADER_FRAGMENT]);
1411 pipeline->shaders[MESA_SHADER_FRAGMENT] = NULL;
1412 pipeline->active_stages &= ~VK_SHADER_STAGE_FRAGMENT_BIT;
1413 }
1414
1415 pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
1416
1417 const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
1418 vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
1419 if (create_feedback) {
1420 *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
1421
1422 assert(info->stageCount == create_feedback->pipelineStageCreationFeedbackCount);
1423 for (uint32_t i = 0; i < info->stageCount; i++) {
1424 gl_shader_stage s = vk_to_mesa_shader_stage(info->pStages[i].stage);
1425 create_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback;
1426 }
1427 }
1428
1429 return VK_SUCCESS;
1430
1431 fail:
1432 ralloc_free(pipeline_ctx);
1433
1434 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1435 if (pipeline->shaders[s])
1436 anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]);
1437 }
1438
1439 return result;
1440 }
1441
1442 static void
1443 shared_type_info(const struct glsl_type *type, unsigned *size, unsigned *align)
1444 {
1445 assert(glsl_type_is_vector_or_scalar(type));
1446
1447 uint32_t comp_size = glsl_type_is_boolean(type)
1448 ? 4 : glsl_get_bit_size(type) / 8;
1449 unsigned length = glsl_get_vector_elements(type);
1450 *size = comp_size * length,
1451 *align = comp_size * (length == 3 ? 4 : length);
1452 }
1453
1454 VkResult
1455 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1456 struct anv_pipeline_cache *cache,
1457 const VkComputePipelineCreateInfo *info,
1458 const struct anv_shader_module *module,
1459 const char *entrypoint,
1460 const VkSpecializationInfo *spec_info)
1461 {
1462 VkPipelineCreationFeedbackEXT pipeline_feedback = {
1463 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
1464 };
1465 int64_t pipeline_start = os_time_get_nano();
1466
1467 const struct brw_compiler *compiler =
1468 pipeline->device->instance->physicalDevice.compiler;
1469
1470 struct anv_pipeline_stage stage = {
1471 .stage = MESA_SHADER_COMPUTE,
1472 .module = module,
1473 .entrypoint = entrypoint,
1474 .spec_info = spec_info,
1475 .cache_key = {
1476 .stage = MESA_SHADER_COMPUTE,
1477 },
1478 .feedback = {
1479 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
1480 },
1481 };
1482 anv_pipeline_hash_shader(stage.module,
1483 stage.entrypoint,
1484 MESA_SHADER_COMPUTE,
1485 stage.spec_info,
1486 stage.shader_sha1);
1487
1488 struct anv_shader_bin *bin = NULL;
1489
1490 const VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT *rss_info =
1491 vk_find_struct_const(info->stage.pNext,
1492 PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO_EXT);
1493
1494 populate_cs_prog_key(&pipeline->device->info, info->stage.flags,
1495 rss_info, &stage.key.cs);
1496
1497 ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
1498
1499 const bool skip_cache_lookup =
1500 (pipeline->flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
1501
1502 anv_pipeline_hash_compute(pipeline, layout, &stage, stage.cache_key.sha1);
1503
1504 bool cache_hit = false;
1505 if (!skip_cache_lookup) {
1506 bin = anv_device_search_for_kernel(pipeline->device, cache,
1507 &stage.cache_key,
1508 sizeof(stage.cache_key),
1509 &cache_hit);
1510 }
1511
1512 void *mem_ctx = ralloc_context(NULL);
1513 if (bin == NULL) {
1514 int64_t stage_start = os_time_get_nano();
1515
1516 stage.bind_map = (struct anv_pipeline_bind_map) {
1517 .surface_to_descriptor = stage.surface_to_descriptor,
1518 .sampler_to_descriptor = stage.sampler_to_descriptor
1519 };
1520
1521 /* Set up a binding for the gl_NumWorkGroups */
1522 stage.bind_map.surface_count = 1;
1523 stage.bind_map.surface_to_descriptor[0] = (struct anv_pipeline_binding) {
1524 .set = ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS,
1525 };
1526
1527 stage.nir = anv_pipeline_stage_get_nir(pipeline, cache, mem_ctx, &stage);
1528 if (stage.nir == NULL) {
1529 ralloc_free(mem_ctx);
1530 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1531 }
1532
1533 NIR_PASS_V(stage.nir, anv_nir_add_base_work_group_id);
1534
1535 anv_pipeline_lower_nir(pipeline, mem_ctx, &stage, layout);
1536
1537 NIR_PASS_V(stage.nir, nir_lower_vars_to_explicit_types,
1538 nir_var_mem_shared, shared_type_info);
1539 NIR_PASS_V(stage.nir, nir_lower_explicit_io,
1540 nir_var_mem_shared, nir_address_format_32bit_offset);
1541
1542 stage.num_stats = 1;
1543 stage.code = brw_compile_cs(compiler, pipeline->device, mem_ctx,
1544 &stage.key.cs, &stage.prog_data.cs,
1545 stage.nir, -1, stage.stats, NULL);
1546 if (stage.code == NULL) {
1547 ralloc_free(mem_ctx);
1548 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1549 }
1550
1551 anv_nir_validate_push_layout(&stage.prog_data.base, &stage.bind_map);
1552
1553 const unsigned code_size = stage.prog_data.base.program_size;
1554 bin = anv_device_upload_kernel(pipeline->device, cache,
1555 &stage.cache_key, sizeof(stage.cache_key),
1556 stage.code, code_size,
1557 stage.nir->constant_data,
1558 stage.nir->constant_data_size,
1559 &stage.prog_data.base,
1560 sizeof(stage.prog_data.cs),
1561 stage.stats, stage.num_stats,
1562 NULL, &stage.bind_map);
1563 if (!bin) {
1564 ralloc_free(mem_ctx);
1565 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1566 }
1567
1568 stage.feedback.duration = os_time_get_nano() - stage_start;
1569 }
1570
1571 anv_pipeline_add_executables(pipeline, &stage, bin);
1572
1573 ralloc_free(mem_ctx);
1574
1575 if (cache_hit) {
1576 stage.feedback.flags |=
1577 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1578 pipeline_feedback.flags |=
1579 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1580 }
1581 pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
1582
1583 const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
1584 vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
1585 if (create_feedback) {
1586 *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
1587
1588 assert(create_feedback->pipelineStageCreationFeedbackCount == 1);
1589 create_feedback->pPipelineStageCreationFeedbacks[0] = stage.feedback;
1590 }
1591
1592 pipeline->active_stages = VK_SHADER_STAGE_COMPUTE_BIT;
1593 pipeline->shaders[MESA_SHADER_COMPUTE] = bin;
1594
1595 return VK_SUCCESS;
1596 }
1597
1598 /**
1599 * Copy pipeline state not marked as dynamic.
1600 * Dynamic state is pipeline state which hasn't been provided at pipeline
1601 * creation time, but is dynamically provided afterwards using various
1602 * vkCmdSet* functions.
1603 *
1604 * The set of state considered "non_dynamic" is determined by the pieces of
1605 * state that have their corresponding VkDynamicState enums omitted from
1606 * VkPipelineDynamicStateCreateInfo::pDynamicStates.
1607 *
1608 * @param[out] pipeline Destination non_dynamic state.
1609 * @param[in] pCreateInfo Source of non_dynamic state to be copied.
1610 */
1611 static void
1612 copy_non_dynamic_state(struct anv_pipeline *pipeline,
1613 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1614 {
1615 anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
1616 struct anv_subpass *subpass = pipeline->subpass;
1617
1618 pipeline->dynamic_state = default_dynamic_state;
1619
1620 if (pCreateInfo->pDynamicState) {
1621 /* Remove all of the states that are marked as dynamic */
1622 uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
1623 for (uint32_t s = 0; s < count; s++) {
1624 states &= ~anv_cmd_dirty_bit_for_vk_dynamic_state(
1625 pCreateInfo->pDynamicState->pDynamicStates[s]);
1626 }
1627 }
1628
1629 struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
1630
1631 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1632 *
1633 * pViewportState is [...] NULL if the pipeline
1634 * has rasterization disabled.
1635 */
1636 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1637 assert(pCreateInfo->pViewportState);
1638
1639 dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
1640 if (states & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT) {
1641 typed_memcpy(dynamic->viewport.viewports,
1642 pCreateInfo->pViewportState->pViewports,
1643 pCreateInfo->pViewportState->viewportCount);
1644 }
1645
1646 dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
1647 if (states & ANV_CMD_DIRTY_DYNAMIC_SCISSOR) {
1648 typed_memcpy(dynamic->scissor.scissors,
1649 pCreateInfo->pViewportState->pScissors,
1650 pCreateInfo->pViewportState->scissorCount);
1651 }
1652 }
1653
1654 if (states & ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH) {
1655 assert(pCreateInfo->pRasterizationState);
1656 dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
1657 }
1658
1659 if (states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS) {
1660 assert(pCreateInfo->pRasterizationState);
1661 dynamic->depth_bias.bias =
1662 pCreateInfo->pRasterizationState->depthBiasConstantFactor;
1663 dynamic->depth_bias.clamp =
1664 pCreateInfo->pRasterizationState->depthBiasClamp;
1665 dynamic->depth_bias.slope =
1666 pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
1667 }
1668
1669 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1670 *
1671 * pColorBlendState is [...] NULL if the pipeline has rasterization
1672 * disabled or if the subpass of the render pass the pipeline is
1673 * created against does not use any color attachments.
1674 */
1675 bool uses_color_att = false;
1676 for (unsigned i = 0; i < subpass->color_count; ++i) {
1677 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
1678 uses_color_att = true;
1679 break;
1680 }
1681 }
1682
1683 if (uses_color_att &&
1684 !pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1685 assert(pCreateInfo->pColorBlendState);
1686
1687 if (states & ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS)
1688 typed_memcpy(dynamic->blend_constants,
1689 pCreateInfo->pColorBlendState->blendConstants, 4);
1690 }
1691
1692 /* If there is no depthstencil attachment, then don't read
1693 * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
1694 * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
1695 * no need to override the depthstencil defaults in
1696 * anv_pipeline::dynamic_state when there is no depthstencil attachment.
1697 *
1698 * Section 9.2 of the Vulkan 1.0.15 spec says:
1699 *
1700 * pDepthStencilState is [...] NULL if the pipeline has rasterization
1701 * disabled or if the subpass of the render pass the pipeline is created
1702 * against does not use a depth/stencil attachment.
1703 */
1704 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
1705 subpass->depth_stencil_attachment) {
1706 assert(pCreateInfo->pDepthStencilState);
1707
1708 if (states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS) {
1709 dynamic->depth_bounds.min =
1710 pCreateInfo->pDepthStencilState->minDepthBounds;
1711 dynamic->depth_bounds.max =
1712 pCreateInfo->pDepthStencilState->maxDepthBounds;
1713 }
1714
1715 if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK) {
1716 dynamic->stencil_compare_mask.front =
1717 pCreateInfo->pDepthStencilState->front.compareMask;
1718 dynamic->stencil_compare_mask.back =
1719 pCreateInfo->pDepthStencilState->back.compareMask;
1720 }
1721
1722 if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK) {
1723 dynamic->stencil_write_mask.front =
1724 pCreateInfo->pDepthStencilState->front.writeMask;
1725 dynamic->stencil_write_mask.back =
1726 pCreateInfo->pDepthStencilState->back.writeMask;
1727 }
1728
1729 if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE) {
1730 dynamic->stencil_reference.front =
1731 pCreateInfo->pDepthStencilState->front.reference;
1732 dynamic->stencil_reference.back =
1733 pCreateInfo->pDepthStencilState->back.reference;
1734 }
1735 }
1736
1737 const VkPipelineRasterizationLineStateCreateInfoEXT *line_state =
1738 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
1739 PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT);
1740 if (line_state) {
1741 if (states & ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE) {
1742 dynamic->line_stipple.factor = line_state->lineStippleFactor;
1743 dynamic->line_stipple.pattern = line_state->lineStipplePattern;
1744 }
1745 }
1746
1747 pipeline->dynamic_state_mask = states;
1748 }
1749
1750 static void
1751 anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
1752 {
1753 #ifdef DEBUG
1754 struct anv_render_pass *renderpass = NULL;
1755 struct anv_subpass *subpass = NULL;
1756
1757 /* Assert that all required members of VkGraphicsPipelineCreateInfo are
1758 * present. See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines.
1759 */
1760 assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
1761
1762 renderpass = anv_render_pass_from_handle(info->renderPass);
1763 assert(renderpass);
1764
1765 assert(info->subpass < renderpass->subpass_count);
1766 subpass = &renderpass->subpasses[info->subpass];
1767
1768 assert(info->stageCount >= 1);
1769 assert(info->pVertexInputState);
1770 assert(info->pInputAssemblyState);
1771 assert(info->pRasterizationState);
1772 if (!info->pRasterizationState->rasterizerDiscardEnable) {
1773 assert(info->pViewportState);
1774 assert(info->pMultisampleState);
1775
1776 if (subpass && subpass->depth_stencil_attachment)
1777 assert(info->pDepthStencilState);
1778
1779 if (subpass && subpass->color_count > 0) {
1780 bool all_color_unused = true;
1781 for (int i = 0; i < subpass->color_count; i++) {
1782 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
1783 all_color_unused = false;
1784 }
1785 /* pColorBlendState is ignored if the pipeline has rasterization
1786 * disabled or if the subpass of the render pass the pipeline is
1787 * created against does not use any color attachments.
1788 */
1789 assert(info->pColorBlendState || all_color_unused);
1790 }
1791 }
1792
1793 for (uint32_t i = 0; i < info->stageCount; ++i) {
1794 switch (info->pStages[i].stage) {
1795 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
1796 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
1797 assert(info->pTessellationState);
1798 break;
1799 default:
1800 break;
1801 }
1802 }
1803 #endif
1804 }
1805
1806 /**
1807 * Calculate the desired L3 partitioning based on the current state of the
1808 * pipeline. For now this simply returns the conservative defaults calculated
1809 * by get_default_l3_weights(), but we could probably do better by gathering
1810 * more statistics from the pipeline state (e.g. guess of expected URB usage
1811 * and bound surfaces), or by using feed-back from performance counters.
1812 */
1813 void
1814 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
1815 {
1816 const struct gen_device_info *devinfo = &pipeline->device->info;
1817
1818 const struct gen_l3_weights w =
1819 gen_get_default_l3_weights(devinfo, pipeline->needs_data_cache, needs_slm);
1820
1821 pipeline->urb.l3_config = gen_get_l3_config(devinfo, w);
1822 pipeline->urb.total_size =
1823 gen_get_l3_config_urb_size(devinfo, pipeline->urb.l3_config);
1824 }
1825
1826 VkResult
1827 anv_pipeline_init(struct anv_pipeline *pipeline,
1828 struct anv_device *device,
1829 struct anv_pipeline_cache *cache,
1830 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1831 const VkAllocationCallbacks *alloc)
1832 {
1833 VkResult result;
1834
1835 anv_pipeline_validate_create_info(pCreateInfo);
1836
1837 if (alloc == NULL)
1838 alloc = &device->alloc;
1839
1840 pipeline->device = device;
1841
1842 ANV_FROM_HANDLE(anv_render_pass, render_pass, pCreateInfo->renderPass);
1843 assert(pCreateInfo->subpass < render_pass->subpass_count);
1844 pipeline->subpass = &render_pass->subpasses[pCreateInfo->subpass];
1845
1846 result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
1847 if (result != VK_SUCCESS)
1848 return result;
1849
1850 pipeline->batch.alloc = alloc;
1851 pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
1852 pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
1853 pipeline->batch.relocs = &pipeline->batch_relocs;
1854 pipeline->batch.status = VK_SUCCESS;
1855
1856 pipeline->mem_ctx = ralloc_context(NULL);
1857 pipeline->flags = pCreateInfo->flags;
1858
1859 copy_non_dynamic_state(pipeline, pCreateInfo);
1860 pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState &&
1861 pCreateInfo->pRasterizationState->depthClampEnable;
1862
1863 /* Previously we enabled depth clipping when !depthClampEnable.
1864 * DepthClipStateCreateInfo now makes depth clipping explicit so if the
1865 * clipping info is available, use its enable value to determine clipping,
1866 * otherwise fallback to the previous !depthClampEnable logic.
1867 */
1868 const VkPipelineRasterizationDepthClipStateCreateInfoEXT *clip_info =
1869 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
1870 PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT);
1871 pipeline->depth_clip_enable = clip_info ? clip_info->depthClipEnable : !pipeline->depth_clamp_enable;
1872
1873 pipeline->sample_shading_enable = pCreateInfo->pMultisampleState &&
1874 pCreateInfo->pMultisampleState->sampleShadingEnable;
1875
1876 pipeline->needs_data_cache = false;
1877
1878 /* When we free the pipeline, we detect stages based on the NULL status
1879 * of various prog_data pointers. Make them NULL by default.
1880 */
1881 memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
1882 pipeline->num_executables = 0;
1883
1884 result = anv_pipeline_compile_graphics(pipeline, cache, pCreateInfo);
1885 if (result != VK_SUCCESS) {
1886 ralloc_free(pipeline->mem_ctx);
1887 anv_reloc_list_finish(&pipeline->batch_relocs, alloc);
1888 return result;
1889 }
1890
1891 assert(pipeline->shaders[MESA_SHADER_VERTEX]);
1892
1893 anv_pipeline_setup_l3_config(pipeline, false);
1894
1895 const VkPipelineVertexInputStateCreateInfo *vi_info =
1896 pCreateInfo->pVertexInputState;
1897
1898 const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;
1899
1900 pipeline->vb_used = 0;
1901 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
1902 const VkVertexInputAttributeDescription *desc =
1903 &vi_info->pVertexAttributeDescriptions[i];
1904
1905 if (inputs_read & (1ull << (VERT_ATTRIB_GENERIC0 + desc->location)))
1906 pipeline->vb_used |= 1 << desc->binding;
1907 }
1908
1909 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
1910 const VkVertexInputBindingDescription *desc =
1911 &vi_info->pVertexBindingDescriptions[i];
1912
1913 pipeline->vb[desc->binding].stride = desc->stride;
1914
1915 /* Step rate is programmed per vertex element (attribute), not
1916 * binding. Set up a map of which bindings step per instance, for
1917 * reference by vertex element setup. */
1918 switch (desc->inputRate) {
1919 default:
1920 case VK_VERTEX_INPUT_RATE_VERTEX:
1921 pipeline->vb[desc->binding].instanced = false;
1922 break;
1923 case VK_VERTEX_INPUT_RATE_INSTANCE:
1924 pipeline->vb[desc->binding].instanced = true;
1925 break;
1926 }
1927
1928 pipeline->vb[desc->binding].instance_divisor = 1;
1929 }
1930
1931 const VkPipelineVertexInputDivisorStateCreateInfoEXT *vi_div_state =
1932 vk_find_struct_const(vi_info->pNext,
1933 PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT);
1934 if (vi_div_state) {
1935 for (uint32_t i = 0; i < vi_div_state->vertexBindingDivisorCount; i++) {
1936 const VkVertexInputBindingDivisorDescriptionEXT *desc =
1937 &vi_div_state->pVertexBindingDivisors[i];
1938
1939 pipeline->vb[desc->binding].instance_divisor = desc->divisor;
1940 }
1941 }
1942
1943 /* Our implementation of VK_KHR_multiview uses instancing to draw the
1944 * different views. If the client asks for instancing, we need to multiply
1945 * the instance divisor by the number of views ensure that we repeat the
1946 * client's per-instance data once for each view.
1947 */
1948 if (pipeline->subpass->view_mask) {
1949 const uint32_t view_count = anv_subpass_view_count(pipeline->subpass);
1950 for (uint32_t vb = 0; vb < MAX_VBS; vb++) {
1951 if (pipeline->vb[vb].instanced)
1952 pipeline->vb[vb].instance_divisor *= view_count;
1953 }
1954 }
1955
1956 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
1957 pCreateInfo->pInputAssemblyState;
1958 const VkPipelineTessellationStateCreateInfo *tess_info =
1959 pCreateInfo->pTessellationState;
1960 pipeline->primitive_restart = ia_info->primitiveRestartEnable;
1961
1962 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1963 pipeline->topology = _3DPRIM_PATCHLIST(tess_info->patchControlPoints);
1964 else
1965 pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
1966
1967 return VK_SUCCESS;
1968 }
1969
1970 #define WRITE_STR(field, ...) ({ \
1971 memset(field, 0, sizeof(field)); \
1972 UNUSED int i = snprintf(field, sizeof(field), __VA_ARGS__); \
1973 assert(i > 0 && i < sizeof(field)); \
1974 })
1975
1976 VkResult anv_GetPipelineExecutablePropertiesKHR(
1977 VkDevice device,
1978 const VkPipelineInfoKHR* pPipelineInfo,
1979 uint32_t* pExecutableCount,
1980 VkPipelineExecutablePropertiesKHR* pProperties)
1981 {
1982 ANV_FROM_HANDLE(anv_pipeline, pipeline, pPipelineInfo->pipeline);
1983 VK_OUTARRAY_MAKE(out, pProperties, pExecutableCount);
1984
1985 for (uint32_t i = 0; i < pipeline->num_executables; i++) {
1986 vk_outarray_append(&out, props) {
1987 gl_shader_stage stage = pipeline->executables[i].stage;
1988 props->stages = mesa_to_vk_shader_stage(stage);
1989
1990 unsigned simd_width = pipeline->executables[i].stats.dispatch_width;
1991 if (stage == MESA_SHADER_FRAGMENT) {
1992 WRITE_STR(props->name, "%s%d %s",
1993 simd_width ? "SIMD" : "vec",
1994 simd_width ? simd_width : 4,
1995 _mesa_shader_stage_to_string(stage));
1996 } else {
1997 WRITE_STR(props->name, "%s", _mesa_shader_stage_to_string(stage));
1998 }
1999 WRITE_STR(props->description, "%s%d %s shader",
2000 simd_width ? "SIMD" : "vec",
2001 simd_width ? simd_width : 4,
2002 _mesa_shader_stage_to_string(stage));
2003
2004 /* The compiler gives us a dispatch width of 0 for vec4 but Vulkan
2005 * wants a subgroup size of 1.
2006 */
2007 props->subgroupSize = MAX2(simd_width, 1);
2008 }
2009 }
2010
2011 return vk_outarray_status(&out);
2012 }
2013
2014 VkResult anv_GetPipelineExecutableStatisticsKHR(
2015 VkDevice device,
2016 const VkPipelineExecutableInfoKHR* pExecutableInfo,
2017 uint32_t* pStatisticCount,
2018 VkPipelineExecutableStatisticKHR* pStatistics)
2019 {
2020 ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
2021 VK_OUTARRAY_MAKE(out, pStatistics, pStatisticCount);
2022
2023 assert(pExecutableInfo->executableIndex < pipeline->num_executables);
2024 const struct anv_pipeline_executable *exe =
2025 &pipeline->executables[pExecutableInfo->executableIndex];
2026 const struct brw_stage_prog_data *prog_data =
2027 pipeline->shaders[exe->stage]->prog_data;
2028
2029 vk_outarray_append(&out, stat) {
2030 WRITE_STR(stat->name, "Instruction Count");
2031 WRITE_STR(stat->description,
2032 "Number of GEN instructions in the final generated "
2033 "shader executable.");
2034 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2035 stat->value.u64 = exe->stats.instructions;
2036 }
2037
2038 vk_outarray_append(&out, stat) {
2039 WRITE_STR(stat->name, "Loop Count");
2040 WRITE_STR(stat->description,
2041 "Number of loops (not unrolled) in the final generated "
2042 "shader executable.");
2043 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2044 stat->value.u64 = exe->stats.loops;
2045 }
2046
2047 vk_outarray_append(&out, stat) {
2048 WRITE_STR(stat->name, "Cycle Count");
2049 WRITE_STR(stat->description,
2050 "Estimate of the number of EU cycles required to execute "
2051 "the final generated executable. This is an estimate only "
2052 "and may vary greatly from actual run-time performance.");
2053 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2054 stat->value.u64 = exe->stats.cycles;
2055 }
2056
2057 vk_outarray_append(&out, stat) {
2058 WRITE_STR(stat->name, "Spill Count");
2059 WRITE_STR(stat->description,
2060 "Number of scratch spill operations. This gives a rough "
2061 "estimate of the cost incurred due to spilling temporary "
2062 "values to memory. If this is non-zero, you may want to "
2063 "adjust your shader to reduce register pressure.");
2064 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2065 stat->value.u64 = exe->stats.spills;
2066 }
2067
2068 vk_outarray_append(&out, stat) {
2069 WRITE_STR(stat->name, "Fill Count");
2070 WRITE_STR(stat->description,
2071 "Number of scratch fill operations. This gives a rough "
2072 "estimate of the cost incurred due to spilling temporary "
2073 "values to memory. If this is non-zero, you may want to "
2074 "adjust your shader to reduce register pressure.");
2075 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2076 stat->value.u64 = exe->stats.fills;
2077 }
2078
2079 vk_outarray_append(&out, stat) {
2080 WRITE_STR(stat->name, "Scratch Memory Size");
2081 WRITE_STR(stat->description,
2082 "Number of bytes of scratch memory required by the "
2083 "generated shader executable. If this is non-zero, you "
2084 "may want to adjust your shader to reduce register "
2085 "pressure.");
2086 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2087 stat->value.u64 = prog_data->total_scratch;
2088 }
2089
2090 if (exe->stage == MESA_SHADER_COMPUTE) {
2091 vk_outarray_append(&out, stat) {
2092 WRITE_STR(stat->name, "Workgroup Memory Size");
2093 WRITE_STR(stat->description,
2094 "Number of bytes of workgroup shared memory used by this "
2095 "compute shader including any padding.");
2096 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2097 stat->value.u64 = prog_data->total_scratch;
2098 }
2099 }
2100
2101 return vk_outarray_status(&out);
2102 }
2103
2104 static bool
2105 write_ir_text(VkPipelineExecutableInternalRepresentationKHR* ir,
2106 const char *data)
2107 {
2108 ir->isText = VK_TRUE;
2109
2110 size_t data_len = strlen(data) + 1;
2111
2112 if (ir->pData == NULL) {
2113 ir->dataSize = data_len;
2114 return true;
2115 }
2116
2117 strncpy(ir->pData, data, ir->dataSize);
2118 if (ir->dataSize < data_len)
2119 return false;
2120
2121 ir->dataSize = data_len;
2122 return true;
2123 }
2124
2125 VkResult anv_GetPipelineExecutableInternalRepresentationsKHR(
2126 VkDevice device,
2127 const VkPipelineExecutableInfoKHR* pExecutableInfo,
2128 uint32_t* pInternalRepresentationCount,
2129 VkPipelineExecutableInternalRepresentationKHR* pInternalRepresentations)
2130 {
2131 ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
2132 VK_OUTARRAY_MAKE(out, pInternalRepresentations,
2133 pInternalRepresentationCount);
2134 bool incomplete_text = false;
2135
2136 assert(pExecutableInfo->executableIndex < pipeline->num_executables);
2137 const struct anv_pipeline_executable *exe =
2138 &pipeline->executables[pExecutableInfo->executableIndex];
2139
2140 if (exe->nir) {
2141 vk_outarray_append(&out, ir) {
2142 WRITE_STR(ir->name, "Final NIR");
2143 WRITE_STR(ir->description,
2144 "Final NIR before going into the back-end compiler");
2145
2146 if (!write_ir_text(ir, exe->nir))
2147 incomplete_text = true;
2148 }
2149 }
2150
2151 if (exe->disasm) {
2152 vk_outarray_append(&out, ir) {
2153 WRITE_STR(ir->name, "GEN Assembly");
2154 WRITE_STR(ir->description,
2155 "Final GEN assembly for the generated shader binary");
2156
2157 if (!write_ir_text(ir, exe->disasm))
2158 incomplete_text = true;
2159 }
2160 }
2161
2162 return incomplete_text ? VK_INCOMPLETE : vk_outarray_status(&out);
2163 }