anv: Implement VK_EXT_subgroup_size_control
[mesa.git] / src / intel / vulkan / anv_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "util/mesa-sha1.h"
31 #include "util/os_time.h"
32 #include "common/gen_l3_config.h"
33 #include "anv_private.h"
34 #include "compiler/brw_nir.h"
35 #include "anv_nir.h"
36 #include "nir/nir_xfb_info.h"
37 #include "spirv/nir_spirv.h"
38 #include "vk_util.h"
39
40 /* Needed for SWIZZLE macros */
41 #include "program/prog_instruction.h"
42
43 // Shader functions
44
45 VkResult anv_CreateShaderModule(
46 VkDevice _device,
47 const VkShaderModuleCreateInfo* pCreateInfo,
48 const VkAllocationCallbacks* pAllocator,
49 VkShaderModule* pShaderModule)
50 {
51 ANV_FROM_HANDLE(anv_device, device, _device);
52 struct anv_shader_module *module;
53
54 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
55 assert(pCreateInfo->flags == 0);
56
57 module = vk_alloc2(&device->alloc, pAllocator,
58 sizeof(*module) + pCreateInfo->codeSize, 8,
59 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
60 if (module == NULL)
61 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
62
63 module->size = pCreateInfo->codeSize;
64 memcpy(module->data, pCreateInfo->pCode, module->size);
65
66 _mesa_sha1_compute(module->data, module->size, module->sha1);
67
68 *pShaderModule = anv_shader_module_to_handle(module);
69
70 return VK_SUCCESS;
71 }
72
73 void anv_DestroyShaderModule(
74 VkDevice _device,
75 VkShaderModule _module,
76 const VkAllocationCallbacks* pAllocator)
77 {
78 ANV_FROM_HANDLE(anv_device, device, _device);
79 ANV_FROM_HANDLE(anv_shader_module, module, _module);
80
81 if (!module)
82 return;
83
84 vk_free2(&device->alloc, pAllocator, module);
85 }
86
87 #define SPIR_V_MAGIC_NUMBER 0x07230203
88
89 static const uint64_t stage_to_debug[] = {
90 [MESA_SHADER_VERTEX] = DEBUG_VS,
91 [MESA_SHADER_TESS_CTRL] = DEBUG_TCS,
92 [MESA_SHADER_TESS_EVAL] = DEBUG_TES,
93 [MESA_SHADER_GEOMETRY] = DEBUG_GS,
94 [MESA_SHADER_FRAGMENT] = DEBUG_WM,
95 [MESA_SHADER_COMPUTE] = DEBUG_CS,
96 };
97
98 struct anv_spirv_debug_data {
99 struct anv_device *device;
100 const struct anv_shader_module *module;
101 };
102
103 static void anv_spirv_nir_debug(void *private_data,
104 enum nir_spirv_debug_level level,
105 size_t spirv_offset,
106 const char *message)
107 {
108 struct anv_spirv_debug_data *debug_data = private_data;
109 static const VkDebugReportFlagsEXT vk_flags[] = {
110 [NIR_SPIRV_DEBUG_LEVEL_INFO] = VK_DEBUG_REPORT_INFORMATION_BIT_EXT,
111 [NIR_SPIRV_DEBUG_LEVEL_WARNING] = VK_DEBUG_REPORT_WARNING_BIT_EXT,
112 [NIR_SPIRV_DEBUG_LEVEL_ERROR] = VK_DEBUG_REPORT_ERROR_BIT_EXT,
113 };
114 char buffer[256];
115
116 snprintf(buffer, sizeof(buffer), "SPIR-V offset %lu: %s", (unsigned long) spirv_offset, message);
117
118 vk_debug_report(&debug_data->device->instance->debug_report_callbacks,
119 vk_flags[level],
120 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
121 (uint64_t) (uintptr_t) debug_data->module,
122 0, 0, "anv", buffer);
123 }
124
125 /* Eventually, this will become part of anv_CreateShader. Unfortunately,
126 * we can't do that yet because we don't have the ability to copy nir.
127 */
128 static nir_shader *
129 anv_shader_compile_to_nir(struct anv_device *device,
130 void *mem_ctx,
131 const struct anv_shader_module *module,
132 const char *entrypoint_name,
133 gl_shader_stage stage,
134 const VkSpecializationInfo *spec_info)
135 {
136 const struct anv_physical_device *pdevice =
137 &device->instance->physicalDevice;
138 const struct brw_compiler *compiler = pdevice->compiler;
139 const nir_shader_compiler_options *nir_options =
140 compiler->glsl_compiler_options[stage].NirOptions;
141
142 uint32_t *spirv = (uint32_t *) module->data;
143 assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
144 assert(module->size % 4 == 0);
145
146 uint32_t num_spec_entries = 0;
147 struct nir_spirv_specialization *spec_entries = NULL;
148 if (spec_info && spec_info->mapEntryCount > 0) {
149 num_spec_entries = spec_info->mapEntryCount;
150 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
151 for (uint32_t i = 0; i < num_spec_entries; i++) {
152 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
153 const void *data = spec_info->pData + entry.offset;
154 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
155
156 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
157 if (spec_info->dataSize == 8)
158 spec_entries[i].data64 = *(const uint64_t *)data;
159 else
160 spec_entries[i].data32 = *(const uint32_t *)data;
161 }
162 }
163
164 struct anv_spirv_debug_data spirv_debug_data = {
165 .device = device,
166 .module = module,
167 };
168 struct spirv_to_nir_options spirv_options = {
169 .lower_workgroup_access_to_offsets = true,
170 .caps = {
171 .demote_to_helper_invocation = true,
172 .derivative_group = true,
173 .descriptor_array_dynamic_indexing = true,
174 .descriptor_array_non_uniform_indexing = true,
175 .descriptor_indexing = true,
176 .device_group = true,
177 .draw_parameters = true,
178 .float16 = pdevice->info.gen >= 8,
179 .float64 = pdevice->info.gen >= 8,
180 .fragment_shader_sample_interlock = pdevice->info.gen >= 9,
181 .fragment_shader_pixel_interlock = pdevice->info.gen >= 9,
182 .geometry_streams = true,
183 .image_write_without_format = true,
184 .int8 = pdevice->info.gen >= 8,
185 .int16 = pdevice->info.gen >= 8,
186 .int64 = pdevice->info.gen >= 8,
187 .int64_atomics = pdevice->info.gen >= 9 && pdevice->use_softpin,
188 .min_lod = true,
189 .multiview = true,
190 .physical_storage_buffer_address = pdevice->has_a64_buffer_access,
191 .post_depth_coverage = pdevice->info.gen >= 9,
192 .runtime_descriptor_array = true,
193 .shader_viewport_index_layer = true,
194 .stencil_export = pdevice->info.gen >= 9,
195 .storage_8bit = pdevice->info.gen >= 8,
196 .storage_16bit = pdevice->info.gen >= 8,
197 .subgroup_arithmetic = true,
198 .subgroup_basic = true,
199 .subgroup_ballot = true,
200 .subgroup_quad = true,
201 .subgroup_shuffle = true,
202 .subgroup_vote = true,
203 .tessellation = true,
204 .transform_feedback = pdevice->info.gen >= 8,
205 .variable_pointers = true,
206 },
207 .ubo_addr_format = nir_address_format_32bit_index_offset,
208 .ssbo_addr_format =
209 anv_nir_ssbo_addr_format(pdevice, device->robust_buffer_access),
210 .phys_ssbo_addr_format = nir_address_format_64bit_global,
211 .push_const_addr_format = nir_address_format_logical,
212
213 /* TODO: Consider changing this to an address format that has the NULL
214 * pointer equals to 0. That might be a better format to play nice
215 * with certain code / code generators.
216 */
217 .shared_addr_format = nir_address_format_32bit_offset,
218 .debug = {
219 .func = anv_spirv_nir_debug,
220 .private_data = &spirv_debug_data,
221 },
222 };
223
224
225 nir_shader *nir =
226 spirv_to_nir(spirv, module->size / 4,
227 spec_entries, num_spec_entries,
228 stage, entrypoint_name, &spirv_options, nir_options);
229 assert(nir->info.stage == stage);
230 nir_validate_shader(nir, "after spirv_to_nir");
231 ralloc_steal(mem_ctx, nir);
232
233 free(spec_entries);
234
235 if (unlikely(INTEL_DEBUG & stage_to_debug[stage])) {
236 fprintf(stderr, "NIR (from SPIR-V) for %s shader:\n",
237 gl_shader_stage_name(stage));
238 nir_print_shader(nir, stderr);
239 }
240
241 /* We have to lower away local constant initializers right before we
242 * inline functions. That way they get properly initialized at the top
243 * of the function and not at the top of its caller.
244 */
245 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_function_temp);
246 NIR_PASS_V(nir, nir_lower_returns);
247 NIR_PASS_V(nir, nir_inline_functions);
248 NIR_PASS_V(nir, nir_opt_deref);
249
250 /* Pick off the single entrypoint that we want */
251 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
252 if (!func->is_entrypoint)
253 exec_node_remove(&func->node);
254 }
255 assert(exec_list_length(&nir->functions) == 1);
256
257 /* Now that we've deleted all but the main function, we can go ahead and
258 * lower the rest of the constant initializers. We do this here so that
259 * nir_remove_dead_variables and split_per_member_structs below see the
260 * corresponding stores.
261 */
262 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
263
264 /* Split member structs. We do this before lower_io_to_temporaries so that
265 * it doesn't lower system values to temporaries by accident.
266 */
267 NIR_PASS_V(nir, nir_split_var_copies);
268 NIR_PASS_V(nir, nir_split_per_member_structs);
269
270 NIR_PASS_V(nir, nir_remove_dead_variables,
271 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
272
273 NIR_PASS_V(nir, nir_propagate_invariant);
274 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
275 nir_shader_get_entrypoint(nir), true, false);
276
277 NIR_PASS_V(nir, nir_lower_frexp);
278
279 /* Vulkan uses the separate-shader linking model */
280 nir->info.separate_shader = true;
281
282 brw_preprocess_nir(compiler, nir, NULL);
283
284 return nir;
285 }
286
287 void anv_DestroyPipeline(
288 VkDevice _device,
289 VkPipeline _pipeline,
290 const VkAllocationCallbacks* pAllocator)
291 {
292 ANV_FROM_HANDLE(anv_device, device, _device);
293 ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
294
295 if (!pipeline)
296 return;
297
298 anv_reloc_list_finish(&pipeline->batch_relocs,
299 pAllocator ? pAllocator : &device->alloc);
300 if (pipeline->blend_state.map)
301 anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
302
303 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
304 if (pipeline->shaders[s])
305 anv_shader_bin_unref(device, pipeline->shaders[s]);
306 }
307
308 vk_free2(&device->alloc, pAllocator, pipeline);
309 }
310
311 static const uint32_t vk_to_gen_primitive_type[] = {
312 [VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
313 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
314 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
315 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
316 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
317 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
318 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
319 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
320 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
321 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
322 };
323
324 static void
325 populate_sampler_prog_key(const struct gen_device_info *devinfo,
326 struct brw_sampler_prog_key_data *key)
327 {
328 /* Almost all multisampled textures are compressed. The only time when we
329 * don't compress a multisampled texture is for 16x MSAA with a surface
330 * width greater than 8k which is a bit of an edge case. Since the sampler
331 * just ignores the MCS parameter to ld2ms when MCS is disabled, it's safe
332 * to tell the compiler to always assume compression.
333 */
334 key->compressed_multisample_layout_mask = ~0;
335
336 /* SkyLake added support for 16x MSAA. With this came a new message for
337 * reading from a 16x MSAA surface with compression. The new message was
338 * needed because now the MCS data is 64 bits instead of 32 or lower as is
339 * the case for 8x, 4x, and 2x. The key->msaa_16 bit-field controls which
340 * message we use. Fortunately, the 16x message works for 8x, 4x, and 2x
341 * so we can just use it unconditionally. This may not be quite as
342 * efficient but it saves us from recompiling.
343 */
344 if (devinfo->gen >= 9)
345 key->msaa_16 = ~0;
346
347 /* XXX: Handle texture swizzle on HSW- */
348 for (int i = 0; i < MAX_SAMPLERS; i++) {
349 /* Assume color sampler, no swizzling. (Works for BDW+) */
350 key->swizzles[i] = SWIZZLE_XYZW;
351 }
352 }
353
354 static void
355 populate_base_prog_key(const struct gen_device_info *devinfo,
356 VkPipelineShaderStageCreateFlags flags,
357 struct brw_base_prog_key *key)
358 {
359 if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT)
360 key->subgroup_size_type = BRW_SUBGROUP_SIZE_VARYING;
361 else
362 key->subgroup_size_type = BRW_SUBGROUP_SIZE_API_CONSTANT;
363
364 populate_sampler_prog_key(devinfo, &key->tex);
365 }
366
367 static void
368 populate_vs_prog_key(const struct gen_device_info *devinfo,
369 VkPipelineShaderStageCreateFlags flags,
370 struct brw_vs_prog_key *key)
371 {
372 memset(key, 0, sizeof(*key));
373
374 populate_base_prog_key(devinfo, flags, &key->base);
375
376 /* XXX: Handle vertex input work-arounds */
377
378 /* XXX: Handle sampler_prog_key */
379 }
380
381 static void
382 populate_tcs_prog_key(const struct gen_device_info *devinfo,
383 VkPipelineShaderStageCreateFlags flags,
384 unsigned input_vertices,
385 struct brw_tcs_prog_key *key)
386 {
387 memset(key, 0, sizeof(*key));
388
389 populate_base_prog_key(devinfo, flags, &key->base);
390
391 key->input_vertices = input_vertices;
392 }
393
394 static void
395 populate_tes_prog_key(const struct gen_device_info *devinfo,
396 VkPipelineShaderStageCreateFlags flags,
397 struct brw_tes_prog_key *key)
398 {
399 memset(key, 0, sizeof(*key));
400
401 populate_base_prog_key(devinfo, flags, &key->base);
402 }
403
404 static void
405 populate_gs_prog_key(const struct gen_device_info *devinfo,
406 VkPipelineShaderStageCreateFlags flags,
407 struct brw_gs_prog_key *key)
408 {
409 memset(key, 0, sizeof(*key));
410
411 populate_base_prog_key(devinfo, flags, &key->base);
412 }
413
414 static void
415 populate_wm_prog_key(const struct gen_device_info *devinfo,
416 VkPipelineShaderStageCreateFlags flags,
417 const struct anv_subpass *subpass,
418 const VkPipelineMultisampleStateCreateInfo *ms_info,
419 struct brw_wm_prog_key *key)
420 {
421 memset(key, 0, sizeof(*key));
422
423 populate_base_prog_key(devinfo, flags, &key->base);
424
425 /* We set this to 0 here and set to the actual value before we call
426 * brw_compile_fs.
427 */
428 key->input_slots_valid = 0;
429
430 /* Vulkan doesn't specify a default */
431 key->high_quality_derivatives = false;
432
433 /* XXX Vulkan doesn't appear to specify */
434 key->clamp_fragment_color = false;
435
436 assert(subpass->color_count <= MAX_RTS);
437 for (uint32_t i = 0; i < subpass->color_count; i++) {
438 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
439 key->color_outputs_valid |= (1 << i);
440 }
441
442 key->nr_color_regions = util_bitcount(key->color_outputs_valid);
443
444 /* To reduce possible shader recompilations we would need to know if
445 * there is a SampleMask output variable to compute if we should emit
446 * code to workaround the issue that hardware disables alpha to coverage
447 * when there is SampleMask output.
448 */
449 key->alpha_to_coverage = ms_info && ms_info->alphaToCoverageEnable;
450
451 /* Vulkan doesn't support fixed-function alpha test */
452 key->alpha_test_replicate_alpha = false;
453
454 if (ms_info) {
455 /* We should probably pull this out of the shader, but it's fairly
456 * harmless to compute it and then let dead-code take care of it.
457 */
458 if (ms_info->rasterizationSamples > 1) {
459 key->persample_interp = ms_info->sampleShadingEnable &&
460 (ms_info->minSampleShading * ms_info->rasterizationSamples) > 1;
461 key->multisample_fbo = true;
462 }
463
464 key->frag_coord_adds_sample_pos = key->persample_interp;
465 }
466 }
467
468 static void
469 populate_cs_prog_key(const struct gen_device_info *devinfo,
470 VkPipelineShaderStageCreateFlags flags,
471 const VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT *rss_info,
472 struct brw_cs_prog_key *key)
473 {
474 memset(key, 0, sizeof(*key));
475
476 populate_base_prog_key(devinfo, flags, &key->base);
477
478 if (rss_info) {
479 assert(key->base.subgroup_size_type != BRW_SUBGROUP_SIZE_VARYING);
480
481 /* These enum values are expressly chosen to be equal to the subgroup
482 * size that they require.
483 */
484 assert(rss_info->requiredSubgroupSize == 8 ||
485 rss_info->requiredSubgroupSize == 16 ||
486 rss_info->requiredSubgroupSize == 32);
487 key->base.subgroup_size_type = rss_info->requiredSubgroupSize;
488 } else if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT) {
489 /* If the client expressly requests full subgroups and they don't
490 * specify a subgroup size, we need to pick one. If they're requested
491 * varying subgroup sizes, we set it to UNIFORM and let the back-end
492 * compiler pick. Otherwise, we specify the API value of 32.
493 * Performance will likely be terrible in this case but there's nothing
494 * we can do about that. The client should have chosen a size.
495 */
496 if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT)
497 key->base.subgroup_size_type = BRW_SUBGROUP_SIZE_UNIFORM;
498 else
499 key->base.subgroup_size_type = BRW_SUBGROUP_SIZE_REQUIRE_32;
500 }
501 }
502
503 struct anv_pipeline_stage {
504 gl_shader_stage stage;
505
506 const struct anv_shader_module *module;
507 const char *entrypoint;
508 const VkSpecializationInfo *spec_info;
509
510 unsigned char shader_sha1[20];
511
512 union brw_any_prog_key key;
513
514 struct {
515 gl_shader_stage stage;
516 unsigned char sha1[20];
517 } cache_key;
518
519 nir_shader *nir;
520
521 struct anv_pipeline_binding surface_to_descriptor[256];
522 struct anv_pipeline_binding sampler_to_descriptor[256];
523 struct anv_pipeline_bind_map bind_map;
524
525 union brw_any_prog_data prog_data;
526
527 VkPipelineCreationFeedbackEXT feedback;
528 };
529
530 static void
531 anv_pipeline_hash_shader(const struct anv_shader_module *module,
532 const char *entrypoint,
533 gl_shader_stage stage,
534 const VkSpecializationInfo *spec_info,
535 unsigned char *sha1_out)
536 {
537 struct mesa_sha1 ctx;
538 _mesa_sha1_init(&ctx);
539
540 _mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1));
541 _mesa_sha1_update(&ctx, entrypoint, strlen(entrypoint));
542 _mesa_sha1_update(&ctx, &stage, sizeof(stage));
543 if (spec_info) {
544 _mesa_sha1_update(&ctx, spec_info->pMapEntries,
545 spec_info->mapEntryCount *
546 sizeof(*spec_info->pMapEntries));
547 _mesa_sha1_update(&ctx, spec_info->pData,
548 spec_info->dataSize);
549 }
550
551 _mesa_sha1_final(&ctx, sha1_out);
552 }
553
554 static void
555 anv_pipeline_hash_graphics(struct anv_pipeline *pipeline,
556 struct anv_pipeline_layout *layout,
557 struct anv_pipeline_stage *stages,
558 unsigned char *sha1_out)
559 {
560 struct mesa_sha1 ctx;
561 _mesa_sha1_init(&ctx);
562
563 _mesa_sha1_update(&ctx, &pipeline->subpass->view_mask,
564 sizeof(pipeline->subpass->view_mask));
565
566 if (layout)
567 _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
568
569 const bool rba = pipeline->device->robust_buffer_access;
570 _mesa_sha1_update(&ctx, &rba, sizeof(rba));
571
572 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
573 if (stages[s].entrypoint) {
574 _mesa_sha1_update(&ctx, stages[s].shader_sha1,
575 sizeof(stages[s].shader_sha1));
576 _mesa_sha1_update(&ctx, &stages[s].key, brw_prog_key_size(s));
577 }
578 }
579
580 _mesa_sha1_final(&ctx, sha1_out);
581 }
582
583 static void
584 anv_pipeline_hash_compute(struct anv_pipeline *pipeline,
585 struct anv_pipeline_layout *layout,
586 struct anv_pipeline_stage *stage,
587 unsigned char *sha1_out)
588 {
589 struct mesa_sha1 ctx;
590 _mesa_sha1_init(&ctx);
591
592 if (layout)
593 _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
594
595 const bool rba = pipeline->device->robust_buffer_access;
596 _mesa_sha1_update(&ctx, &rba, sizeof(rba));
597
598 _mesa_sha1_update(&ctx, stage->shader_sha1,
599 sizeof(stage->shader_sha1));
600 _mesa_sha1_update(&ctx, &stage->key.cs, sizeof(stage->key.cs));
601
602 _mesa_sha1_final(&ctx, sha1_out);
603 }
604
605 static nir_shader *
606 anv_pipeline_stage_get_nir(struct anv_pipeline *pipeline,
607 struct anv_pipeline_cache *cache,
608 void *mem_ctx,
609 struct anv_pipeline_stage *stage)
610 {
611 const struct brw_compiler *compiler =
612 pipeline->device->instance->physicalDevice.compiler;
613 const nir_shader_compiler_options *nir_options =
614 compiler->glsl_compiler_options[stage->stage].NirOptions;
615 nir_shader *nir;
616
617 nir = anv_device_search_for_nir(pipeline->device, cache,
618 nir_options,
619 stage->shader_sha1,
620 mem_ctx);
621 if (nir) {
622 assert(nir->info.stage == stage->stage);
623 return nir;
624 }
625
626 nir = anv_shader_compile_to_nir(pipeline->device,
627 mem_ctx,
628 stage->module,
629 stage->entrypoint,
630 stage->stage,
631 stage->spec_info);
632 if (nir) {
633 anv_device_upload_nir(pipeline->device, cache, nir, stage->shader_sha1);
634 return nir;
635 }
636
637 return NULL;
638 }
639
640 static void
641 anv_pipeline_lower_nir(struct anv_pipeline *pipeline,
642 void *mem_ctx,
643 struct anv_pipeline_stage *stage,
644 struct anv_pipeline_layout *layout)
645 {
646 const struct anv_physical_device *pdevice =
647 &pipeline->device->instance->physicalDevice;
648 const struct brw_compiler *compiler = pdevice->compiler;
649
650 struct brw_stage_prog_data *prog_data = &stage->prog_data.base;
651 nir_shader *nir = stage->nir;
652
653 if (nir->info.stage == MESA_SHADER_FRAGMENT) {
654 NIR_PASS_V(nir, nir_lower_wpos_center, pipeline->sample_shading_enable);
655 NIR_PASS_V(nir, nir_lower_input_attachments, false);
656 }
657
658 NIR_PASS_V(nir, anv_nir_lower_ycbcr_textures, layout);
659
660 NIR_PASS_V(nir, anv_nir_lower_push_constants);
661
662 if (nir->info.stage != MESA_SHADER_COMPUTE)
663 NIR_PASS_V(nir, anv_nir_lower_multiview, pipeline->subpass->view_mask);
664
665 if (nir->info.stage == MESA_SHADER_COMPUTE)
666 prog_data->total_shared = nir->num_shared;
667
668 nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
669
670 if (nir->num_uniforms > 0) {
671 assert(prog_data->nr_params == 0);
672
673 /* If the shader uses any push constants at all, we'll just give
674 * them the maximum possible number
675 */
676 assert(nir->num_uniforms <= MAX_PUSH_CONSTANTS_SIZE);
677 nir->num_uniforms = MAX_PUSH_CONSTANTS_SIZE;
678 prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
679 prog_data->param = ralloc_array(mem_ctx, uint32_t, prog_data->nr_params);
680
681 /* We now set the param values to be offsets into a
682 * anv_push_constant_data structure. Since the compiler doesn't
683 * actually dereference any of the gl_constant_value pointers in the
684 * params array, it doesn't really matter what we put here.
685 */
686 struct anv_push_constants *null_data = NULL;
687 /* Fill out the push constants section of the param array */
688 for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++) {
689 prog_data->param[i] = ANV_PARAM_PUSH(
690 (uintptr_t)&null_data->client_data[i * sizeof(float)]);
691 }
692 }
693
694 if (nir->info.num_ssbos > 0 || nir->info.num_images > 0)
695 pipeline->needs_data_cache = true;
696
697 NIR_PASS_V(nir, brw_nir_lower_image_load_store, compiler->devinfo);
698
699 NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_global,
700 nir_address_format_64bit_global);
701
702 /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
703 if (layout) {
704 anv_nir_apply_pipeline_layout(pdevice,
705 pipeline->device->robust_buffer_access,
706 layout, nir, prog_data,
707 &stage->bind_map);
708
709 NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ubo,
710 nir_address_format_32bit_index_offset);
711 NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ssbo,
712 anv_nir_ssbo_addr_format(pdevice,
713 pipeline->device->robust_buffer_access));
714
715 NIR_PASS_V(nir, nir_opt_constant_folding);
716
717 /* We don't support non-uniform UBOs and non-uniform SSBO access is
718 * handled naturally by falling back to A64 messages.
719 */
720 NIR_PASS_V(nir, nir_lower_non_uniform_access,
721 nir_lower_non_uniform_texture_access |
722 nir_lower_non_uniform_image_access);
723 }
724
725 if (nir->info.stage != MESA_SHADER_COMPUTE)
726 brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges);
727
728 assert(nir->num_uniforms == prog_data->nr_params * 4);
729
730 stage->nir = nir;
731 }
732
733 static void
734 anv_pipeline_link_vs(const struct brw_compiler *compiler,
735 struct anv_pipeline_stage *vs_stage,
736 struct anv_pipeline_stage *next_stage)
737 {
738 if (next_stage)
739 brw_nir_link_shaders(compiler, vs_stage->nir, next_stage->nir);
740 }
741
742 static const unsigned *
743 anv_pipeline_compile_vs(const struct brw_compiler *compiler,
744 void *mem_ctx,
745 struct anv_device *device,
746 struct anv_pipeline_stage *vs_stage)
747 {
748 brw_compute_vue_map(compiler->devinfo,
749 &vs_stage->prog_data.vs.base.vue_map,
750 vs_stage->nir->info.outputs_written,
751 vs_stage->nir->info.separate_shader);
752
753 return brw_compile_vs(compiler, device, mem_ctx, &vs_stage->key.vs,
754 &vs_stage->prog_data.vs, vs_stage->nir, -1, NULL);
755 }
756
757 static void
758 merge_tess_info(struct shader_info *tes_info,
759 const struct shader_info *tcs_info)
760 {
761 /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
762 *
763 * "PointMode. Controls generation of points rather than triangles
764 * or lines. This functionality defaults to disabled, and is
765 * enabled if either shader stage includes the execution mode.
766 *
767 * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
768 * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
769 * and OutputVertices, it says:
770 *
771 * "One mode must be set in at least one of the tessellation
772 * shader stages."
773 *
774 * So, the fields can be set in either the TCS or TES, but they must
775 * agree if set in both. Our backend looks at TES, so bitwise-or in
776 * the values from the TCS.
777 */
778 assert(tcs_info->tess.tcs_vertices_out == 0 ||
779 tes_info->tess.tcs_vertices_out == 0 ||
780 tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
781 tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
782
783 assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
784 tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
785 tcs_info->tess.spacing == tes_info->tess.spacing);
786 tes_info->tess.spacing |= tcs_info->tess.spacing;
787
788 assert(tcs_info->tess.primitive_mode == 0 ||
789 tes_info->tess.primitive_mode == 0 ||
790 tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode);
791 tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode;
792 tes_info->tess.ccw |= tcs_info->tess.ccw;
793 tes_info->tess.point_mode |= tcs_info->tess.point_mode;
794 }
795
796 static void
797 anv_pipeline_link_tcs(const struct brw_compiler *compiler,
798 struct anv_pipeline_stage *tcs_stage,
799 struct anv_pipeline_stage *tes_stage)
800 {
801 assert(tes_stage && tes_stage->stage == MESA_SHADER_TESS_EVAL);
802
803 brw_nir_link_shaders(compiler, tcs_stage->nir, tes_stage->nir);
804
805 nir_lower_patch_vertices(tes_stage->nir,
806 tcs_stage->nir->info.tess.tcs_vertices_out,
807 NULL);
808
809 /* Copy TCS info into the TES info */
810 merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
811
812 /* Whacking the key after cache lookup is a bit sketchy, but all of
813 * this comes from the SPIR-V, which is part of the hash used for the
814 * pipeline cache. So it should be safe.
815 */
816 tcs_stage->key.tcs.tes_primitive_mode =
817 tes_stage->nir->info.tess.primitive_mode;
818 tcs_stage->key.tcs.quads_workaround =
819 compiler->devinfo->gen < 9 &&
820 tes_stage->nir->info.tess.primitive_mode == 7 /* GL_QUADS */ &&
821 tes_stage->nir->info.tess.spacing == TESS_SPACING_EQUAL;
822 }
823
824 static const unsigned *
825 anv_pipeline_compile_tcs(const struct brw_compiler *compiler,
826 void *mem_ctx,
827 struct anv_device *device,
828 struct anv_pipeline_stage *tcs_stage,
829 struct anv_pipeline_stage *prev_stage)
830 {
831 tcs_stage->key.tcs.outputs_written =
832 tcs_stage->nir->info.outputs_written;
833 tcs_stage->key.tcs.patch_outputs_written =
834 tcs_stage->nir->info.patch_outputs_written;
835
836 return brw_compile_tcs(compiler, device, mem_ctx, &tcs_stage->key.tcs,
837 &tcs_stage->prog_data.tcs, tcs_stage->nir,
838 -1, NULL);
839 }
840
841 static void
842 anv_pipeline_link_tes(const struct brw_compiler *compiler,
843 struct anv_pipeline_stage *tes_stage,
844 struct anv_pipeline_stage *next_stage)
845 {
846 if (next_stage)
847 brw_nir_link_shaders(compiler, tes_stage->nir, next_stage->nir);
848 }
849
850 static const unsigned *
851 anv_pipeline_compile_tes(const struct brw_compiler *compiler,
852 void *mem_ctx,
853 struct anv_device *device,
854 struct anv_pipeline_stage *tes_stage,
855 struct anv_pipeline_stage *tcs_stage)
856 {
857 tes_stage->key.tes.inputs_read =
858 tcs_stage->nir->info.outputs_written;
859 tes_stage->key.tes.patch_inputs_read =
860 tcs_stage->nir->info.patch_outputs_written;
861
862 return brw_compile_tes(compiler, device, mem_ctx, &tes_stage->key.tes,
863 &tcs_stage->prog_data.tcs.base.vue_map,
864 &tes_stage->prog_data.tes, tes_stage->nir,
865 NULL, -1, NULL);
866 }
867
868 static void
869 anv_pipeline_link_gs(const struct brw_compiler *compiler,
870 struct anv_pipeline_stage *gs_stage,
871 struct anv_pipeline_stage *next_stage)
872 {
873 if (next_stage)
874 brw_nir_link_shaders(compiler, gs_stage->nir, next_stage->nir);
875 }
876
877 static const unsigned *
878 anv_pipeline_compile_gs(const struct brw_compiler *compiler,
879 void *mem_ctx,
880 struct anv_device *device,
881 struct anv_pipeline_stage *gs_stage,
882 struct anv_pipeline_stage *prev_stage)
883 {
884 brw_compute_vue_map(compiler->devinfo,
885 &gs_stage->prog_data.gs.base.vue_map,
886 gs_stage->nir->info.outputs_written,
887 gs_stage->nir->info.separate_shader);
888
889 return brw_compile_gs(compiler, device, mem_ctx, &gs_stage->key.gs,
890 &gs_stage->prog_data.gs, gs_stage->nir,
891 NULL, -1, NULL);
892 }
893
894 static void
895 anv_pipeline_link_fs(const struct brw_compiler *compiler,
896 struct anv_pipeline_stage *stage)
897 {
898 unsigned num_rts = 0;
899 const int max_rt = FRAG_RESULT_DATA7 - FRAG_RESULT_DATA0 + 1;
900 struct anv_pipeline_binding rt_bindings[max_rt];
901 nir_function_impl *impl = nir_shader_get_entrypoint(stage->nir);
902 int rt_to_bindings[max_rt];
903 memset(rt_to_bindings, -1, sizeof(rt_to_bindings));
904 bool rt_used[max_rt];
905 memset(rt_used, 0, sizeof(rt_used));
906
907 /* Flag used render targets */
908 nir_foreach_variable_safe(var, &stage->nir->outputs) {
909 if (var->data.location < FRAG_RESULT_DATA0)
910 continue;
911
912 const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
913 /* Out-of-bounds */
914 if (rt >= MAX_RTS)
915 continue;
916
917 const unsigned array_len =
918 glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
919 assert(rt + array_len <= max_rt);
920
921 /* Unused */
922 if (!(stage->key.wm.color_outputs_valid & BITFIELD_RANGE(rt, array_len))) {
923 /* If this is the RT at location 0 and we have alpha to coverage
924 * enabled we will have to create a null RT for it, so mark it as
925 * used.
926 */
927 if (rt > 0 || !stage->key.wm.alpha_to_coverage)
928 continue;
929 }
930
931 for (unsigned i = 0; i < array_len; i++)
932 rt_used[rt + i] = true;
933 }
934
935 /* Set new, compacted, location */
936 for (unsigned i = 0; i < max_rt; i++) {
937 if (!rt_used[i])
938 continue;
939
940 rt_to_bindings[i] = num_rts;
941
942 if (stage->key.wm.color_outputs_valid & (1 << i)) {
943 rt_bindings[rt_to_bindings[i]] = (struct anv_pipeline_binding) {
944 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
945 .binding = 0,
946 .index = i,
947 };
948 } else {
949 /* Setup a null render target */
950 rt_bindings[rt_to_bindings[i]] = (struct anv_pipeline_binding) {
951 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
952 .binding = 0,
953 .index = UINT32_MAX,
954 };
955 }
956
957 num_rts++;
958 }
959
960 bool deleted_output = false;
961 nir_foreach_variable_safe(var, &stage->nir->outputs) {
962 if (var->data.location < FRAG_RESULT_DATA0)
963 continue;
964
965 const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
966
967 if (rt >= MAX_RTS || !rt_used[rt]) {
968 /* Unused or out-of-bounds, throw it away, unless it is the first
969 * RT and we have alpha to coverage enabled.
970 */
971 deleted_output = true;
972 var->data.mode = nir_var_function_temp;
973 exec_node_remove(&var->node);
974 exec_list_push_tail(&impl->locals, &var->node);
975 continue;
976 }
977
978 /* Give it the new location */
979 assert(rt_to_bindings[rt] != -1);
980 var->data.location = rt_to_bindings[rt] + FRAG_RESULT_DATA0;
981 }
982
983 if (deleted_output)
984 nir_fixup_deref_modes(stage->nir);
985
986 if (num_rts == 0) {
987 /* If we have no render targets, we need a null render target */
988 rt_bindings[0] = (struct anv_pipeline_binding) {
989 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
990 .binding = 0,
991 .index = UINT32_MAX,
992 };
993 num_rts = 1;
994 }
995
996 /* Now that we've determined the actual number of render targets, adjust
997 * the key accordingly.
998 */
999 stage->key.wm.nr_color_regions = num_rts;
1000 stage->key.wm.color_outputs_valid = (1 << num_rts) - 1;
1001
1002 assert(num_rts <= max_rt);
1003 assert(stage->bind_map.surface_count == 0);
1004 typed_memcpy(stage->bind_map.surface_to_descriptor,
1005 rt_bindings, num_rts);
1006 stage->bind_map.surface_count += num_rts;
1007 }
1008
1009 static const unsigned *
1010 anv_pipeline_compile_fs(const struct brw_compiler *compiler,
1011 void *mem_ctx,
1012 struct anv_device *device,
1013 struct anv_pipeline_stage *fs_stage,
1014 struct anv_pipeline_stage *prev_stage)
1015 {
1016 /* TODO: we could set this to 0 based on the information in nir_shader, but
1017 * we need this before we call spirv_to_nir.
1018 */
1019 assert(prev_stage);
1020 fs_stage->key.wm.input_slots_valid =
1021 prev_stage->prog_data.vue.vue_map.slots_valid;
1022
1023 const unsigned *code =
1024 brw_compile_fs(compiler, device, mem_ctx, &fs_stage->key.wm,
1025 &fs_stage->prog_data.wm, fs_stage->nir,
1026 NULL, -1, -1, -1, true, false, NULL, NULL);
1027
1028 if (fs_stage->key.wm.nr_color_regions == 0 &&
1029 !fs_stage->prog_data.wm.has_side_effects &&
1030 !fs_stage->prog_data.wm.uses_kill &&
1031 fs_stage->prog_data.wm.computed_depth_mode == BRW_PSCDEPTH_OFF &&
1032 !fs_stage->prog_data.wm.computed_stencil) {
1033 /* This fragment shader has no outputs and no side effects. Go ahead
1034 * and return the code pointer so we don't accidentally think the
1035 * compile failed but zero out prog_data which will set program_size to
1036 * zero and disable the stage.
1037 */
1038 memset(&fs_stage->prog_data, 0, sizeof(fs_stage->prog_data));
1039 }
1040
1041 return code;
1042 }
1043
1044 static VkResult
1045 anv_pipeline_compile_graphics(struct anv_pipeline *pipeline,
1046 struct anv_pipeline_cache *cache,
1047 const VkGraphicsPipelineCreateInfo *info)
1048 {
1049 VkPipelineCreationFeedbackEXT pipeline_feedback = {
1050 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
1051 };
1052 int64_t pipeline_start = os_time_get_nano();
1053
1054 const struct brw_compiler *compiler =
1055 pipeline->device->instance->physicalDevice.compiler;
1056 struct anv_pipeline_stage stages[MESA_SHADER_STAGES] = {};
1057
1058 pipeline->active_stages = 0;
1059
1060 VkResult result;
1061 for (uint32_t i = 0; i < info->stageCount; i++) {
1062 const VkPipelineShaderStageCreateInfo *sinfo = &info->pStages[i];
1063 gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage);
1064
1065 pipeline->active_stages |= sinfo->stage;
1066
1067 int64_t stage_start = os_time_get_nano();
1068
1069 stages[stage].stage = stage;
1070 stages[stage].module = anv_shader_module_from_handle(sinfo->module);
1071 stages[stage].entrypoint = sinfo->pName;
1072 stages[stage].spec_info = sinfo->pSpecializationInfo;
1073 anv_pipeline_hash_shader(stages[stage].module,
1074 stages[stage].entrypoint,
1075 stage,
1076 stages[stage].spec_info,
1077 stages[stage].shader_sha1);
1078
1079 const struct gen_device_info *devinfo = &pipeline->device->info;
1080 switch (stage) {
1081 case MESA_SHADER_VERTEX:
1082 populate_vs_prog_key(devinfo, sinfo->flags, &stages[stage].key.vs);
1083 break;
1084 case MESA_SHADER_TESS_CTRL:
1085 populate_tcs_prog_key(devinfo, sinfo->flags,
1086 info->pTessellationState->patchControlPoints,
1087 &stages[stage].key.tcs);
1088 break;
1089 case MESA_SHADER_TESS_EVAL:
1090 populate_tes_prog_key(devinfo, sinfo->flags, &stages[stage].key.tes);
1091 break;
1092 case MESA_SHADER_GEOMETRY:
1093 populate_gs_prog_key(devinfo, sinfo->flags, &stages[stage].key.gs);
1094 break;
1095 case MESA_SHADER_FRAGMENT:
1096 populate_wm_prog_key(devinfo, sinfo->flags,
1097 pipeline->subpass,
1098 info->pMultisampleState,
1099 &stages[stage].key.wm);
1100 break;
1101 default:
1102 unreachable("Invalid graphics shader stage");
1103 }
1104
1105 stages[stage].feedback.duration += os_time_get_nano() - stage_start;
1106 stages[stage].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT;
1107 }
1108
1109 if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)
1110 pipeline->active_stages |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
1111
1112 assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
1113
1114 ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
1115
1116 unsigned char sha1[20];
1117 anv_pipeline_hash_graphics(pipeline, layout, stages, sha1);
1118
1119 unsigned found = 0;
1120 unsigned cache_hits = 0;
1121 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1122 if (!stages[s].entrypoint)
1123 continue;
1124
1125 int64_t stage_start = os_time_get_nano();
1126
1127 stages[s].cache_key.stage = s;
1128 memcpy(stages[s].cache_key.sha1, sha1, sizeof(sha1));
1129
1130 bool cache_hit;
1131 struct anv_shader_bin *bin =
1132 anv_device_search_for_kernel(pipeline->device, cache,
1133 &stages[s].cache_key,
1134 sizeof(stages[s].cache_key), &cache_hit);
1135 if (bin) {
1136 found++;
1137 pipeline->shaders[s] = bin;
1138 }
1139
1140 if (cache_hit) {
1141 cache_hits++;
1142 stages[s].feedback.flags |=
1143 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1144 }
1145 stages[s].feedback.duration += os_time_get_nano() - stage_start;
1146 }
1147
1148 if (found == __builtin_popcount(pipeline->active_stages)) {
1149 if (cache_hits == found) {
1150 pipeline_feedback.flags |=
1151 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1152 }
1153 /* We found all our shaders in the cache. We're done. */
1154 goto done;
1155 } else if (found > 0) {
1156 /* We found some but not all of our shaders. This shouldn't happen
1157 * most of the time but it can if we have a partially populated
1158 * pipeline cache.
1159 */
1160 assert(found < __builtin_popcount(pipeline->active_stages));
1161
1162 vk_debug_report(&pipeline->device->instance->debug_report_callbacks,
1163 VK_DEBUG_REPORT_WARNING_BIT_EXT |
1164 VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
1165 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT,
1166 (uint64_t)(uintptr_t)cache,
1167 0, 0, "anv",
1168 "Found a partial pipeline in the cache. This is "
1169 "most likely caused by an incomplete pipeline cache "
1170 "import or export");
1171
1172 /* We're going to have to recompile anyway, so just throw away our
1173 * references to the shaders in the cache. We'll get them out of the
1174 * cache again as part of the compilation process.
1175 */
1176 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1177 stages[s].feedback.flags = 0;
1178 if (pipeline->shaders[s]) {
1179 anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]);
1180 pipeline->shaders[s] = NULL;
1181 }
1182 }
1183 }
1184
1185 void *pipeline_ctx = ralloc_context(NULL);
1186
1187 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1188 if (!stages[s].entrypoint)
1189 continue;
1190
1191 int64_t stage_start = os_time_get_nano();
1192
1193 assert(stages[s].stage == s);
1194 assert(pipeline->shaders[s] == NULL);
1195
1196 stages[s].bind_map = (struct anv_pipeline_bind_map) {
1197 .surface_to_descriptor = stages[s].surface_to_descriptor,
1198 .sampler_to_descriptor = stages[s].sampler_to_descriptor
1199 };
1200
1201 stages[s].nir = anv_pipeline_stage_get_nir(pipeline, cache,
1202 pipeline_ctx,
1203 &stages[s]);
1204 if (stages[s].nir == NULL) {
1205 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1206 goto fail;
1207 }
1208
1209 stages[s].feedback.duration += os_time_get_nano() - stage_start;
1210 }
1211
1212 /* Walk backwards to link */
1213 struct anv_pipeline_stage *next_stage = NULL;
1214 for (int s = MESA_SHADER_STAGES - 1; s >= 0; s--) {
1215 if (!stages[s].entrypoint)
1216 continue;
1217
1218 switch (s) {
1219 case MESA_SHADER_VERTEX:
1220 anv_pipeline_link_vs(compiler, &stages[s], next_stage);
1221 break;
1222 case MESA_SHADER_TESS_CTRL:
1223 anv_pipeline_link_tcs(compiler, &stages[s], next_stage);
1224 break;
1225 case MESA_SHADER_TESS_EVAL:
1226 anv_pipeline_link_tes(compiler, &stages[s], next_stage);
1227 break;
1228 case MESA_SHADER_GEOMETRY:
1229 anv_pipeline_link_gs(compiler, &stages[s], next_stage);
1230 break;
1231 case MESA_SHADER_FRAGMENT:
1232 anv_pipeline_link_fs(compiler, &stages[s]);
1233 break;
1234 default:
1235 unreachable("Invalid graphics shader stage");
1236 }
1237
1238 next_stage = &stages[s];
1239 }
1240
1241 struct anv_pipeline_stage *prev_stage = NULL;
1242 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1243 if (!stages[s].entrypoint)
1244 continue;
1245
1246 int64_t stage_start = os_time_get_nano();
1247
1248 void *stage_ctx = ralloc_context(NULL);
1249
1250 nir_xfb_info *xfb_info = NULL;
1251 if (s == MESA_SHADER_VERTEX ||
1252 s == MESA_SHADER_TESS_EVAL ||
1253 s == MESA_SHADER_GEOMETRY)
1254 xfb_info = nir_gather_xfb_info(stages[s].nir, stage_ctx);
1255
1256 anv_pipeline_lower_nir(pipeline, stage_ctx, &stages[s], layout);
1257
1258 const unsigned *code;
1259 switch (s) {
1260 case MESA_SHADER_VERTEX:
1261 code = anv_pipeline_compile_vs(compiler, stage_ctx, pipeline->device,
1262 &stages[s]);
1263 break;
1264 case MESA_SHADER_TESS_CTRL:
1265 code = anv_pipeline_compile_tcs(compiler, stage_ctx, pipeline->device,
1266 &stages[s], prev_stage);
1267 break;
1268 case MESA_SHADER_TESS_EVAL:
1269 code = anv_pipeline_compile_tes(compiler, stage_ctx, pipeline->device,
1270 &stages[s], prev_stage);
1271 break;
1272 case MESA_SHADER_GEOMETRY:
1273 code = anv_pipeline_compile_gs(compiler, stage_ctx, pipeline->device,
1274 &stages[s], prev_stage);
1275 break;
1276 case MESA_SHADER_FRAGMENT:
1277 code = anv_pipeline_compile_fs(compiler, stage_ctx, pipeline->device,
1278 &stages[s], prev_stage);
1279 break;
1280 default:
1281 unreachable("Invalid graphics shader stage");
1282 }
1283 if (code == NULL) {
1284 ralloc_free(stage_ctx);
1285 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1286 goto fail;
1287 }
1288
1289 struct anv_shader_bin *bin =
1290 anv_device_upload_kernel(pipeline->device, cache,
1291 &stages[s].cache_key,
1292 sizeof(stages[s].cache_key),
1293 code, stages[s].prog_data.base.program_size,
1294 stages[s].nir->constant_data,
1295 stages[s].nir->constant_data_size,
1296 &stages[s].prog_data.base,
1297 brw_prog_data_size(s),
1298 xfb_info, &stages[s].bind_map);
1299 if (!bin) {
1300 ralloc_free(stage_ctx);
1301 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1302 goto fail;
1303 }
1304
1305 pipeline->shaders[s] = bin;
1306 ralloc_free(stage_ctx);
1307
1308 stages[s].feedback.duration += os_time_get_nano() - stage_start;
1309
1310 prev_stage = &stages[s];
1311 }
1312
1313 ralloc_free(pipeline_ctx);
1314
1315 done:
1316
1317 if (pipeline->shaders[MESA_SHADER_FRAGMENT] &&
1318 pipeline->shaders[MESA_SHADER_FRAGMENT]->prog_data->program_size == 0) {
1319 /* This can happen if we decided to implicitly disable the fragment
1320 * shader. See anv_pipeline_compile_fs().
1321 */
1322 anv_shader_bin_unref(pipeline->device,
1323 pipeline->shaders[MESA_SHADER_FRAGMENT]);
1324 pipeline->shaders[MESA_SHADER_FRAGMENT] = NULL;
1325 pipeline->active_stages &= ~VK_SHADER_STAGE_FRAGMENT_BIT;
1326 }
1327
1328 pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
1329
1330 const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
1331 vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
1332 if (create_feedback) {
1333 *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
1334
1335 assert(info->stageCount == create_feedback->pipelineStageCreationFeedbackCount);
1336 for (uint32_t i = 0; i < info->stageCount; i++) {
1337 gl_shader_stage s = vk_to_mesa_shader_stage(info->pStages[i].stage);
1338 create_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback;
1339 }
1340 }
1341
1342 return VK_SUCCESS;
1343
1344 fail:
1345 ralloc_free(pipeline_ctx);
1346
1347 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1348 if (pipeline->shaders[s])
1349 anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]);
1350 }
1351
1352 return result;
1353 }
1354
1355 VkResult
1356 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1357 struct anv_pipeline_cache *cache,
1358 const VkComputePipelineCreateInfo *info,
1359 const struct anv_shader_module *module,
1360 const char *entrypoint,
1361 const VkSpecializationInfo *spec_info)
1362 {
1363 VkPipelineCreationFeedbackEXT pipeline_feedback = {
1364 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
1365 };
1366 int64_t pipeline_start = os_time_get_nano();
1367
1368 const struct brw_compiler *compiler =
1369 pipeline->device->instance->physicalDevice.compiler;
1370
1371 struct anv_pipeline_stage stage = {
1372 .stage = MESA_SHADER_COMPUTE,
1373 .module = module,
1374 .entrypoint = entrypoint,
1375 .spec_info = spec_info,
1376 .cache_key = {
1377 .stage = MESA_SHADER_COMPUTE,
1378 },
1379 .feedback = {
1380 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
1381 },
1382 };
1383 anv_pipeline_hash_shader(stage.module,
1384 stage.entrypoint,
1385 MESA_SHADER_COMPUTE,
1386 stage.spec_info,
1387 stage.shader_sha1);
1388
1389 struct anv_shader_bin *bin = NULL;
1390
1391 const VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT *rss_info =
1392 vk_find_struct_const(info->stage.pNext,
1393 PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO_EXT);
1394
1395 populate_cs_prog_key(&pipeline->device->info, info->stage.flags,
1396 rss_info, &stage.key.cs);
1397
1398 ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
1399
1400 anv_pipeline_hash_compute(pipeline, layout, &stage, stage.cache_key.sha1);
1401 bool cache_hit;
1402 bin = anv_device_search_for_kernel(pipeline->device, cache, &stage.cache_key,
1403 sizeof(stage.cache_key), &cache_hit);
1404
1405 if (bin == NULL) {
1406 int64_t stage_start = os_time_get_nano();
1407
1408 stage.bind_map = (struct anv_pipeline_bind_map) {
1409 .surface_to_descriptor = stage.surface_to_descriptor,
1410 .sampler_to_descriptor = stage.sampler_to_descriptor
1411 };
1412
1413 /* Set up a binding for the gl_NumWorkGroups */
1414 stage.bind_map.surface_count = 1;
1415 stage.bind_map.surface_to_descriptor[0] = (struct anv_pipeline_binding) {
1416 .set = ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS,
1417 };
1418
1419 void *mem_ctx = ralloc_context(NULL);
1420
1421 stage.nir = anv_pipeline_stage_get_nir(pipeline, cache, mem_ctx, &stage);
1422 if (stage.nir == NULL) {
1423 ralloc_free(mem_ctx);
1424 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1425 }
1426
1427 anv_pipeline_lower_nir(pipeline, mem_ctx, &stage, layout);
1428
1429 NIR_PASS_V(stage.nir, anv_nir_add_base_work_group_id,
1430 &stage.prog_data.cs);
1431
1432 const unsigned *shader_code =
1433 brw_compile_cs(compiler, pipeline->device, mem_ctx, &stage.key.cs,
1434 &stage.prog_data.cs, stage.nir, -1, NULL);
1435 if (shader_code == NULL) {
1436 ralloc_free(mem_ctx);
1437 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1438 }
1439
1440 const unsigned code_size = stage.prog_data.base.program_size;
1441 bin = anv_device_upload_kernel(pipeline->device, cache,
1442 &stage.cache_key, sizeof(stage.cache_key),
1443 shader_code, code_size,
1444 stage.nir->constant_data,
1445 stage.nir->constant_data_size,
1446 &stage.prog_data.base,
1447 sizeof(stage.prog_data.cs),
1448 NULL, &stage.bind_map);
1449 if (!bin) {
1450 ralloc_free(mem_ctx);
1451 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1452 }
1453
1454 ralloc_free(mem_ctx);
1455
1456 stage.feedback.duration = os_time_get_nano() - stage_start;
1457 }
1458
1459 if (cache_hit) {
1460 stage.feedback.flags |=
1461 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1462 pipeline_feedback.flags |=
1463 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1464 }
1465 pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
1466
1467 const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
1468 vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
1469 if (create_feedback) {
1470 *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
1471
1472 assert(create_feedback->pipelineStageCreationFeedbackCount == 1);
1473 create_feedback->pPipelineStageCreationFeedbacks[0] = stage.feedback;
1474 }
1475
1476 pipeline->active_stages = VK_SHADER_STAGE_COMPUTE_BIT;
1477 pipeline->shaders[MESA_SHADER_COMPUTE] = bin;
1478
1479 return VK_SUCCESS;
1480 }
1481
1482 /**
1483 * Copy pipeline state not marked as dynamic.
1484 * Dynamic state is pipeline state which hasn't been provided at pipeline
1485 * creation time, but is dynamically provided afterwards using various
1486 * vkCmdSet* functions.
1487 *
1488 * The set of state considered "non_dynamic" is determined by the pieces of
1489 * state that have their corresponding VkDynamicState enums omitted from
1490 * VkPipelineDynamicStateCreateInfo::pDynamicStates.
1491 *
1492 * @param[out] pipeline Destination non_dynamic state.
1493 * @param[in] pCreateInfo Source of non_dynamic state to be copied.
1494 */
1495 static void
1496 copy_non_dynamic_state(struct anv_pipeline *pipeline,
1497 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1498 {
1499 anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
1500 struct anv_subpass *subpass = pipeline->subpass;
1501
1502 pipeline->dynamic_state = default_dynamic_state;
1503
1504 if (pCreateInfo->pDynamicState) {
1505 /* Remove all of the states that are marked as dynamic */
1506 uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
1507 for (uint32_t s = 0; s < count; s++)
1508 states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
1509 }
1510
1511 struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
1512
1513 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1514 *
1515 * pViewportState is [...] NULL if the pipeline
1516 * has rasterization disabled.
1517 */
1518 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1519 assert(pCreateInfo->pViewportState);
1520
1521 dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
1522 if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
1523 typed_memcpy(dynamic->viewport.viewports,
1524 pCreateInfo->pViewportState->pViewports,
1525 pCreateInfo->pViewportState->viewportCount);
1526 }
1527
1528 dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
1529 if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
1530 typed_memcpy(dynamic->scissor.scissors,
1531 pCreateInfo->pViewportState->pScissors,
1532 pCreateInfo->pViewportState->scissorCount);
1533 }
1534 }
1535
1536 if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
1537 assert(pCreateInfo->pRasterizationState);
1538 dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
1539 }
1540
1541 if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
1542 assert(pCreateInfo->pRasterizationState);
1543 dynamic->depth_bias.bias =
1544 pCreateInfo->pRasterizationState->depthBiasConstantFactor;
1545 dynamic->depth_bias.clamp =
1546 pCreateInfo->pRasterizationState->depthBiasClamp;
1547 dynamic->depth_bias.slope =
1548 pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
1549 }
1550
1551 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1552 *
1553 * pColorBlendState is [...] NULL if the pipeline has rasterization
1554 * disabled or if the subpass of the render pass the pipeline is
1555 * created against does not use any color attachments.
1556 */
1557 bool uses_color_att = false;
1558 for (unsigned i = 0; i < subpass->color_count; ++i) {
1559 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
1560 uses_color_att = true;
1561 break;
1562 }
1563 }
1564
1565 if (uses_color_att &&
1566 !pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1567 assert(pCreateInfo->pColorBlendState);
1568
1569 if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS))
1570 typed_memcpy(dynamic->blend_constants,
1571 pCreateInfo->pColorBlendState->blendConstants, 4);
1572 }
1573
1574 /* If there is no depthstencil attachment, then don't read
1575 * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
1576 * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
1577 * no need to override the depthstencil defaults in
1578 * anv_pipeline::dynamic_state when there is no depthstencil attachment.
1579 *
1580 * Section 9.2 of the Vulkan 1.0.15 spec says:
1581 *
1582 * pDepthStencilState is [...] NULL if the pipeline has rasterization
1583 * disabled or if the subpass of the render pass the pipeline is created
1584 * against does not use a depth/stencil attachment.
1585 */
1586 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
1587 subpass->depth_stencil_attachment) {
1588 assert(pCreateInfo->pDepthStencilState);
1589
1590 if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
1591 dynamic->depth_bounds.min =
1592 pCreateInfo->pDepthStencilState->minDepthBounds;
1593 dynamic->depth_bounds.max =
1594 pCreateInfo->pDepthStencilState->maxDepthBounds;
1595 }
1596
1597 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
1598 dynamic->stencil_compare_mask.front =
1599 pCreateInfo->pDepthStencilState->front.compareMask;
1600 dynamic->stencil_compare_mask.back =
1601 pCreateInfo->pDepthStencilState->back.compareMask;
1602 }
1603
1604 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
1605 dynamic->stencil_write_mask.front =
1606 pCreateInfo->pDepthStencilState->front.writeMask;
1607 dynamic->stencil_write_mask.back =
1608 pCreateInfo->pDepthStencilState->back.writeMask;
1609 }
1610
1611 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
1612 dynamic->stencil_reference.front =
1613 pCreateInfo->pDepthStencilState->front.reference;
1614 dynamic->stencil_reference.back =
1615 pCreateInfo->pDepthStencilState->back.reference;
1616 }
1617 }
1618
1619 pipeline->dynamic_state_mask = states;
1620 }
1621
1622 static void
1623 anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
1624 {
1625 #ifdef DEBUG
1626 struct anv_render_pass *renderpass = NULL;
1627 struct anv_subpass *subpass = NULL;
1628
1629 /* Assert that all required members of VkGraphicsPipelineCreateInfo are
1630 * present. See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines.
1631 */
1632 assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
1633
1634 renderpass = anv_render_pass_from_handle(info->renderPass);
1635 assert(renderpass);
1636
1637 assert(info->subpass < renderpass->subpass_count);
1638 subpass = &renderpass->subpasses[info->subpass];
1639
1640 assert(info->stageCount >= 1);
1641 assert(info->pVertexInputState);
1642 assert(info->pInputAssemblyState);
1643 assert(info->pRasterizationState);
1644 if (!info->pRasterizationState->rasterizerDiscardEnable) {
1645 assert(info->pViewportState);
1646 assert(info->pMultisampleState);
1647
1648 if (subpass && subpass->depth_stencil_attachment)
1649 assert(info->pDepthStencilState);
1650
1651 if (subpass && subpass->color_count > 0) {
1652 bool all_color_unused = true;
1653 for (int i = 0; i < subpass->color_count; i++) {
1654 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
1655 all_color_unused = false;
1656 }
1657 /* pColorBlendState is ignored if the pipeline has rasterization
1658 * disabled or if the subpass of the render pass the pipeline is
1659 * created against does not use any color attachments.
1660 */
1661 assert(info->pColorBlendState || all_color_unused);
1662 }
1663 }
1664
1665 for (uint32_t i = 0; i < info->stageCount; ++i) {
1666 switch (info->pStages[i].stage) {
1667 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
1668 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
1669 assert(info->pTessellationState);
1670 break;
1671 default:
1672 break;
1673 }
1674 }
1675 #endif
1676 }
1677
1678 /**
1679 * Calculate the desired L3 partitioning based on the current state of the
1680 * pipeline. For now this simply returns the conservative defaults calculated
1681 * by get_default_l3_weights(), but we could probably do better by gathering
1682 * more statistics from the pipeline state (e.g. guess of expected URB usage
1683 * and bound surfaces), or by using feed-back from performance counters.
1684 */
1685 void
1686 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
1687 {
1688 const struct gen_device_info *devinfo = &pipeline->device->info;
1689
1690 const struct gen_l3_weights w =
1691 gen_get_default_l3_weights(devinfo, pipeline->needs_data_cache, needs_slm);
1692
1693 pipeline->urb.l3_config = gen_get_l3_config(devinfo, w);
1694 pipeline->urb.total_size =
1695 gen_get_l3_config_urb_size(devinfo, pipeline->urb.l3_config);
1696 }
1697
1698 VkResult
1699 anv_pipeline_init(struct anv_pipeline *pipeline,
1700 struct anv_device *device,
1701 struct anv_pipeline_cache *cache,
1702 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1703 const VkAllocationCallbacks *alloc)
1704 {
1705 VkResult result;
1706
1707 anv_pipeline_validate_create_info(pCreateInfo);
1708
1709 if (alloc == NULL)
1710 alloc = &device->alloc;
1711
1712 pipeline->device = device;
1713
1714 ANV_FROM_HANDLE(anv_render_pass, render_pass, pCreateInfo->renderPass);
1715 assert(pCreateInfo->subpass < render_pass->subpass_count);
1716 pipeline->subpass = &render_pass->subpasses[pCreateInfo->subpass];
1717
1718 result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
1719 if (result != VK_SUCCESS)
1720 return result;
1721
1722 pipeline->batch.alloc = alloc;
1723 pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
1724 pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
1725 pipeline->batch.relocs = &pipeline->batch_relocs;
1726 pipeline->batch.status = VK_SUCCESS;
1727
1728 copy_non_dynamic_state(pipeline, pCreateInfo);
1729 pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState &&
1730 pCreateInfo->pRasterizationState->depthClampEnable;
1731
1732 /* Previously we enabled depth clipping when !depthClampEnable.
1733 * DepthClipStateCreateInfo now makes depth clipping explicit so if the
1734 * clipping info is available, use its enable value to determine clipping,
1735 * otherwise fallback to the previous !depthClampEnable logic.
1736 */
1737 const VkPipelineRasterizationDepthClipStateCreateInfoEXT *clip_info =
1738 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
1739 PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT);
1740 pipeline->depth_clip_enable = clip_info ? clip_info->depthClipEnable : !pipeline->depth_clamp_enable;
1741
1742 pipeline->sample_shading_enable = pCreateInfo->pMultisampleState &&
1743 pCreateInfo->pMultisampleState->sampleShadingEnable;
1744
1745 pipeline->needs_data_cache = false;
1746
1747 /* When we free the pipeline, we detect stages based on the NULL status
1748 * of various prog_data pointers. Make them NULL by default.
1749 */
1750 memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
1751
1752 result = anv_pipeline_compile_graphics(pipeline, cache, pCreateInfo);
1753 if (result != VK_SUCCESS) {
1754 anv_reloc_list_finish(&pipeline->batch_relocs, alloc);
1755 return result;
1756 }
1757
1758 assert(pipeline->shaders[MESA_SHADER_VERTEX]);
1759
1760 anv_pipeline_setup_l3_config(pipeline, false);
1761
1762 const VkPipelineVertexInputStateCreateInfo *vi_info =
1763 pCreateInfo->pVertexInputState;
1764
1765 const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;
1766
1767 pipeline->vb_used = 0;
1768 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
1769 const VkVertexInputAttributeDescription *desc =
1770 &vi_info->pVertexAttributeDescriptions[i];
1771
1772 if (inputs_read & (1ull << (VERT_ATTRIB_GENERIC0 + desc->location)))
1773 pipeline->vb_used |= 1 << desc->binding;
1774 }
1775
1776 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
1777 const VkVertexInputBindingDescription *desc =
1778 &vi_info->pVertexBindingDescriptions[i];
1779
1780 pipeline->vb[desc->binding].stride = desc->stride;
1781
1782 /* Step rate is programmed per vertex element (attribute), not
1783 * binding. Set up a map of which bindings step per instance, for
1784 * reference by vertex element setup. */
1785 switch (desc->inputRate) {
1786 default:
1787 case VK_VERTEX_INPUT_RATE_VERTEX:
1788 pipeline->vb[desc->binding].instanced = false;
1789 break;
1790 case VK_VERTEX_INPUT_RATE_INSTANCE:
1791 pipeline->vb[desc->binding].instanced = true;
1792 break;
1793 }
1794
1795 pipeline->vb[desc->binding].instance_divisor = 1;
1796 }
1797
1798 const VkPipelineVertexInputDivisorStateCreateInfoEXT *vi_div_state =
1799 vk_find_struct_const(vi_info->pNext,
1800 PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT);
1801 if (vi_div_state) {
1802 for (uint32_t i = 0; i < vi_div_state->vertexBindingDivisorCount; i++) {
1803 const VkVertexInputBindingDivisorDescriptionEXT *desc =
1804 &vi_div_state->pVertexBindingDivisors[i];
1805
1806 pipeline->vb[desc->binding].instance_divisor = desc->divisor;
1807 }
1808 }
1809
1810 /* Our implementation of VK_KHR_multiview uses instancing to draw the
1811 * different views. If the client asks for instancing, we need to multiply
1812 * the instance divisor by the number of views ensure that we repeat the
1813 * client's per-instance data once for each view.
1814 */
1815 if (pipeline->subpass->view_mask) {
1816 const uint32_t view_count = anv_subpass_view_count(pipeline->subpass);
1817 for (uint32_t vb = 0; vb < MAX_VBS; vb++) {
1818 if (pipeline->vb[vb].instanced)
1819 pipeline->vb[vb].instance_divisor *= view_count;
1820 }
1821 }
1822
1823 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
1824 pCreateInfo->pInputAssemblyState;
1825 const VkPipelineTessellationStateCreateInfo *tess_info =
1826 pCreateInfo->pTessellationState;
1827 pipeline->primitive_restart = ia_info->primitiveRestartEnable;
1828
1829 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1830 pipeline->topology = _3DPRIM_PATCHLIST(tess_info->patchControlPoints);
1831 else
1832 pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
1833
1834 return VK_SUCCESS;
1835 }