anv: Implement VK_KHR_shader_clock
[mesa.git] / src / intel / vulkan / anv_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "util/mesa-sha1.h"
31 #include "util/os_time.h"
32 #include "common/gen_l3_config.h"
33 #include "common/gen_disasm.h"
34 #include "anv_private.h"
35 #include "compiler/brw_nir.h"
36 #include "anv_nir.h"
37 #include "nir/nir_xfb_info.h"
38 #include "spirv/nir_spirv.h"
39 #include "vk_util.h"
40
41 /* Needed for SWIZZLE macros */
42 #include "program/prog_instruction.h"
43
44 // Shader functions
45
46 VkResult anv_CreateShaderModule(
47 VkDevice _device,
48 const VkShaderModuleCreateInfo* pCreateInfo,
49 const VkAllocationCallbacks* pAllocator,
50 VkShaderModule* pShaderModule)
51 {
52 ANV_FROM_HANDLE(anv_device, device, _device);
53 struct anv_shader_module *module;
54
55 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
56 assert(pCreateInfo->flags == 0);
57
58 module = vk_alloc2(&device->alloc, pAllocator,
59 sizeof(*module) + pCreateInfo->codeSize, 8,
60 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
61 if (module == NULL)
62 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
63
64 module->size = pCreateInfo->codeSize;
65 memcpy(module->data, pCreateInfo->pCode, module->size);
66
67 _mesa_sha1_compute(module->data, module->size, module->sha1);
68
69 *pShaderModule = anv_shader_module_to_handle(module);
70
71 return VK_SUCCESS;
72 }
73
74 void anv_DestroyShaderModule(
75 VkDevice _device,
76 VkShaderModule _module,
77 const VkAllocationCallbacks* pAllocator)
78 {
79 ANV_FROM_HANDLE(anv_device, device, _device);
80 ANV_FROM_HANDLE(anv_shader_module, module, _module);
81
82 if (!module)
83 return;
84
85 vk_free2(&device->alloc, pAllocator, module);
86 }
87
88 #define SPIR_V_MAGIC_NUMBER 0x07230203
89
90 static const uint64_t stage_to_debug[] = {
91 [MESA_SHADER_VERTEX] = DEBUG_VS,
92 [MESA_SHADER_TESS_CTRL] = DEBUG_TCS,
93 [MESA_SHADER_TESS_EVAL] = DEBUG_TES,
94 [MESA_SHADER_GEOMETRY] = DEBUG_GS,
95 [MESA_SHADER_FRAGMENT] = DEBUG_WM,
96 [MESA_SHADER_COMPUTE] = DEBUG_CS,
97 };
98
99 struct anv_spirv_debug_data {
100 struct anv_device *device;
101 const struct anv_shader_module *module;
102 };
103
104 static void anv_spirv_nir_debug(void *private_data,
105 enum nir_spirv_debug_level level,
106 size_t spirv_offset,
107 const char *message)
108 {
109 struct anv_spirv_debug_data *debug_data = private_data;
110 static const VkDebugReportFlagsEXT vk_flags[] = {
111 [NIR_SPIRV_DEBUG_LEVEL_INFO] = VK_DEBUG_REPORT_INFORMATION_BIT_EXT,
112 [NIR_SPIRV_DEBUG_LEVEL_WARNING] = VK_DEBUG_REPORT_WARNING_BIT_EXT,
113 [NIR_SPIRV_DEBUG_LEVEL_ERROR] = VK_DEBUG_REPORT_ERROR_BIT_EXT,
114 };
115 char buffer[256];
116
117 snprintf(buffer, sizeof(buffer), "SPIR-V offset %lu: %s", (unsigned long) spirv_offset, message);
118
119 vk_debug_report(&debug_data->device->instance->debug_report_callbacks,
120 vk_flags[level],
121 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
122 (uint64_t) (uintptr_t) debug_data->module,
123 0, 0, "anv", buffer);
124 }
125
126 /* Eventually, this will become part of anv_CreateShader. Unfortunately,
127 * we can't do that yet because we don't have the ability to copy nir.
128 */
129 static nir_shader *
130 anv_shader_compile_to_nir(struct anv_device *device,
131 void *mem_ctx,
132 const struct anv_shader_module *module,
133 const char *entrypoint_name,
134 gl_shader_stage stage,
135 const VkSpecializationInfo *spec_info)
136 {
137 const struct anv_physical_device *pdevice =
138 &device->instance->physicalDevice;
139 const struct brw_compiler *compiler = pdevice->compiler;
140 const nir_shader_compiler_options *nir_options =
141 compiler->glsl_compiler_options[stage].NirOptions;
142
143 uint32_t *spirv = (uint32_t *) module->data;
144 assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
145 assert(module->size % 4 == 0);
146
147 uint32_t num_spec_entries = 0;
148 struct nir_spirv_specialization *spec_entries = NULL;
149 if (spec_info && spec_info->mapEntryCount > 0) {
150 num_spec_entries = spec_info->mapEntryCount;
151 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
152 for (uint32_t i = 0; i < num_spec_entries; i++) {
153 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
154 const void *data = spec_info->pData + entry.offset;
155 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
156
157 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
158 if (spec_info->dataSize == 8)
159 spec_entries[i].data64 = *(const uint64_t *)data;
160 else
161 spec_entries[i].data32 = *(const uint32_t *)data;
162 }
163 }
164
165 struct anv_spirv_debug_data spirv_debug_data = {
166 .device = device,
167 .module = module,
168 };
169 struct spirv_to_nir_options spirv_options = {
170 .frag_coord_is_sysval = true,
171 .caps = {
172 .demote_to_helper_invocation = true,
173 .derivative_group = true,
174 .descriptor_array_dynamic_indexing = true,
175 .descriptor_array_non_uniform_indexing = true,
176 .descriptor_indexing = true,
177 .device_group = true,
178 .draw_parameters = true,
179 .float16 = pdevice->info.gen >= 8,
180 .float64 = pdevice->info.gen >= 8,
181 .fragment_shader_sample_interlock = pdevice->info.gen >= 9,
182 .fragment_shader_pixel_interlock = pdevice->info.gen >= 9,
183 .geometry_streams = true,
184 .image_write_without_format = true,
185 .int8 = pdevice->info.gen >= 8,
186 .int16 = pdevice->info.gen >= 8,
187 .int64 = pdevice->info.gen >= 8,
188 .int64_atomics = pdevice->info.gen >= 9 && pdevice->use_softpin,
189 .min_lod = true,
190 .multiview = true,
191 .physical_storage_buffer_address = pdevice->has_a64_buffer_access,
192 .post_depth_coverage = pdevice->info.gen >= 9,
193 .runtime_descriptor_array = true,
194 .float_controls = pdevice->info.gen >= 8,
195 .shader_clock = true,
196 .shader_viewport_index_layer = true,
197 .stencil_export = pdevice->info.gen >= 9,
198 .storage_8bit = pdevice->info.gen >= 8,
199 .storage_16bit = pdevice->info.gen >= 8,
200 .subgroup_arithmetic = true,
201 .subgroup_basic = true,
202 .subgroup_ballot = true,
203 .subgroup_quad = true,
204 .subgroup_shuffle = true,
205 .subgroup_vote = true,
206 .tessellation = true,
207 .transform_feedback = pdevice->info.gen >= 8,
208 .variable_pointers = true,
209 },
210 .ubo_addr_format = nir_address_format_32bit_index_offset,
211 .ssbo_addr_format =
212 anv_nir_ssbo_addr_format(pdevice, device->robust_buffer_access),
213 .phys_ssbo_addr_format = nir_address_format_64bit_global,
214 .push_const_addr_format = nir_address_format_logical,
215
216 /* TODO: Consider changing this to an address format that has the NULL
217 * pointer equals to 0. That might be a better format to play nice
218 * with certain code / code generators.
219 */
220 .shared_addr_format = nir_address_format_32bit_offset,
221 .debug = {
222 .func = anv_spirv_nir_debug,
223 .private_data = &spirv_debug_data,
224 },
225 };
226
227
228 nir_shader *nir =
229 spirv_to_nir(spirv, module->size / 4,
230 spec_entries, num_spec_entries,
231 stage, entrypoint_name, &spirv_options, nir_options);
232 assert(nir->info.stage == stage);
233 nir_validate_shader(nir, "after spirv_to_nir");
234 ralloc_steal(mem_ctx, nir);
235
236 free(spec_entries);
237
238 if (unlikely(INTEL_DEBUG & stage_to_debug[stage])) {
239 fprintf(stderr, "NIR (from SPIR-V) for %s shader:\n",
240 gl_shader_stage_name(stage));
241 nir_print_shader(nir, stderr);
242 }
243
244 /* We have to lower away local constant initializers right before we
245 * inline functions. That way they get properly initialized at the top
246 * of the function and not at the top of its caller.
247 */
248 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_function_temp);
249 NIR_PASS_V(nir, nir_lower_returns);
250 NIR_PASS_V(nir, nir_inline_functions);
251 NIR_PASS_V(nir, nir_opt_deref);
252
253 /* Pick off the single entrypoint that we want */
254 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
255 if (!func->is_entrypoint)
256 exec_node_remove(&func->node);
257 }
258 assert(exec_list_length(&nir->functions) == 1);
259
260 /* Now that we've deleted all but the main function, we can go ahead and
261 * lower the rest of the constant initializers. We do this here so that
262 * nir_remove_dead_variables and split_per_member_structs below see the
263 * corresponding stores.
264 */
265 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
266
267 /* Split member structs. We do this before lower_io_to_temporaries so that
268 * it doesn't lower system values to temporaries by accident.
269 */
270 NIR_PASS_V(nir, nir_split_var_copies);
271 NIR_PASS_V(nir, nir_split_per_member_structs);
272
273 NIR_PASS_V(nir, nir_remove_dead_variables,
274 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
275
276 NIR_PASS_V(nir, nir_propagate_invariant);
277 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
278 nir_shader_get_entrypoint(nir), true, false);
279
280 NIR_PASS_V(nir, nir_lower_frexp);
281
282 /* Vulkan uses the separate-shader linking model */
283 nir->info.separate_shader = true;
284
285 brw_preprocess_nir(compiler, nir, NULL);
286
287 return nir;
288 }
289
290 void anv_DestroyPipeline(
291 VkDevice _device,
292 VkPipeline _pipeline,
293 const VkAllocationCallbacks* pAllocator)
294 {
295 ANV_FROM_HANDLE(anv_device, device, _device);
296 ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
297
298 if (!pipeline)
299 return;
300
301 anv_reloc_list_finish(&pipeline->batch_relocs,
302 pAllocator ? pAllocator : &device->alloc);
303
304 ralloc_free(pipeline->mem_ctx);
305
306 if (pipeline->blend_state.map)
307 anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
308
309 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
310 if (pipeline->shaders[s])
311 anv_shader_bin_unref(device, pipeline->shaders[s]);
312 }
313
314 vk_free2(&device->alloc, pAllocator, pipeline);
315 }
316
317 static const uint32_t vk_to_gen_primitive_type[] = {
318 [VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
319 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
320 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
321 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
322 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
323 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
324 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
325 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
326 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
327 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
328 };
329
330 static void
331 populate_sampler_prog_key(const struct gen_device_info *devinfo,
332 struct brw_sampler_prog_key_data *key)
333 {
334 /* Almost all multisampled textures are compressed. The only time when we
335 * don't compress a multisampled texture is for 16x MSAA with a surface
336 * width greater than 8k which is a bit of an edge case. Since the sampler
337 * just ignores the MCS parameter to ld2ms when MCS is disabled, it's safe
338 * to tell the compiler to always assume compression.
339 */
340 key->compressed_multisample_layout_mask = ~0;
341
342 /* SkyLake added support for 16x MSAA. With this came a new message for
343 * reading from a 16x MSAA surface with compression. The new message was
344 * needed because now the MCS data is 64 bits instead of 32 or lower as is
345 * the case for 8x, 4x, and 2x. The key->msaa_16 bit-field controls which
346 * message we use. Fortunately, the 16x message works for 8x, 4x, and 2x
347 * so we can just use it unconditionally. This may not be quite as
348 * efficient but it saves us from recompiling.
349 */
350 if (devinfo->gen >= 9)
351 key->msaa_16 = ~0;
352
353 /* XXX: Handle texture swizzle on HSW- */
354 for (int i = 0; i < MAX_SAMPLERS; i++) {
355 /* Assume color sampler, no swizzling. (Works for BDW+) */
356 key->swizzles[i] = SWIZZLE_XYZW;
357 }
358 }
359
360 static void
361 populate_base_prog_key(const struct gen_device_info *devinfo,
362 VkPipelineShaderStageCreateFlags flags,
363 struct brw_base_prog_key *key)
364 {
365 if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT)
366 key->subgroup_size_type = BRW_SUBGROUP_SIZE_VARYING;
367 else
368 key->subgroup_size_type = BRW_SUBGROUP_SIZE_API_CONSTANT;
369
370 populate_sampler_prog_key(devinfo, &key->tex);
371 }
372
373 static void
374 populate_vs_prog_key(const struct gen_device_info *devinfo,
375 VkPipelineShaderStageCreateFlags flags,
376 struct brw_vs_prog_key *key)
377 {
378 memset(key, 0, sizeof(*key));
379
380 populate_base_prog_key(devinfo, flags, &key->base);
381
382 /* XXX: Handle vertex input work-arounds */
383
384 /* XXX: Handle sampler_prog_key */
385 }
386
387 static void
388 populate_tcs_prog_key(const struct gen_device_info *devinfo,
389 VkPipelineShaderStageCreateFlags flags,
390 unsigned input_vertices,
391 struct brw_tcs_prog_key *key)
392 {
393 memset(key, 0, sizeof(*key));
394
395 populate_base_prog_key(devinfo, flags, &key->base);
396
397 key->input_vertices = input_vertices;
398 }
399
400 static void
401 populate_tes_prog_key(const struct gen_device_info *devinfo,
402 VkPipelineShaderStageCreateFlags flags,
403 struct brw_tes_prog_key *key)
404 {
405 memset(key, 0, sizeof(*key));
406
407 populate_base_prog_key(devinfo, flags, &key->base);
408 }
409
410 static void
411 populate_gs_prog_key(const struct gen_device_info *devinfo,
412 VkPipelineShaderStageCreateFlags flags,
413 struct brw_gs_prog_key *key)
414 {
415 memset(key, 0, sizeof(*key));
416
417 populate_base_prog_key(devinfo, flags, &key->base);
418 }
419
420 static void
421 populate_wm_prog_key(const struct gen_device_info *devinfo,
422 VkPipelineShaderStageCreateFlags flags,
423 const struct anv_subpass *subpass,
424 const VkPipelineMultisampleStateCreateInfo *ms_info,
425 struct brw_wm_prog_key *key)
426 {
427 memset(key, 0, sizeof(*key));
428
429 populate_base_prog_key(devinfo, flags, &key->base);
430
431 /* We set this to 0 here and set to the actual value before we call
432 * brw_compile_fs.
433 */
434 key->input_slots_valid = 0;
435
436 /* Vulkan doesn't specify a default */
437 key->high_quality_derivatives = false;
438
439 /* XXX Vulkan doesn't appear to specify */
440 key->clamp_fragment_color = false;
441
442 assert(subpass->color_count <= MAX_RTS);
443 for (uint32_t i = 0; i < subpass->color_count; i++) {
444 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
445 key->color_outputs_valid |= (1 << i);
446 }
447
448 key->nr_color_regions = util_bitcount(key->color_outputs_valid);
449
450 /* To reduce possible shader recompilations we would need to know if
451 * there is a SampleMask output variable to compute if we should emit
452 * code to workaround the issue that hardware disables alpha to coverage
453 * when there is SampleMask output.
454 */
455 key->alpha_to_coverage = ms_info && ms_info->alphaToCoverageEnable;
456
457 /* Vulkan doesn't support fixed-function alpha test */
458 key->alpha_test_replicate_alpha = false;
459
460 if (ms_info) {
461 /* We should probably pull this out of the shader, but it's fairly
462 * harmless to compute it and then let dead-code take care of it.
463 */
464 if (ms_info->rasterizationSamples > 1) {
465 key->persample_interp = ms_info->sampleShadingEnable &&
466 (ms_info->minSampleShading * ms_info->rasterizationSamples) > 1;
467 key->multisample_fbo = true;
468 }
469
470 key->frag_coord_adds_sample_pos = key->persample_interp;
471 }
472 }
473
474 static void
475 populate_cs_prog_key(const struct gen_device_info *devinfo,
476 VkPipelineShaderStageCreateFlags flags,
477 const VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT *rss_info,
478 struct brw_cs_prog_key *key)
479 {
480 memset(key, 0, sizeof(*key));
481
482 populate_base_prog_key(devinfo, flags, &key->base);
483
484 if (rss_info) {
485 assert(key->base.subgroup_size_type != BRW_SUBGROUP_SIZE_VARYING);
486
487 /* These enum values are expressly chosen to be equal to the subgroup
488 * size that they require.
489 */
490 assert(rss_info->requiredSubgroupSize == 8 ||
491 rss_info->requiredSubgroupSize == 16 ||
492 rss_info->requiredSubgroupSize == 32);
493 key->base.subgroup_size_type = rss_info->requiredSubgroupSize;
494 } else if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT) {
495 /* If the client expressly requests full subgroups and they don't
496 * specify a subgroup size, we need to pick one. If they're requested
497 * varying subgroup sizes, we set it to UNIFORM and let the back-end
498 * compiler pick. Otherwise, we specify the API value of 32.
499 * Performance will likely be terrible in this case but there's nothing
500 * we can do about that. The client should have chosen a size.
501 */
502 if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT)
503 key->base.subgroup_size_type = BRW_SUBGROUP_SIZE_UNIFORM;
504 else
505 key->base.subgroup_size_type = BRW_SUBGROUP_SIZE_REQUIRE_32;
506 }
507 }
508
509 struct anv_pipeline_stage {
510 gl_shader_stage stage;
511
512 const struct anv_shader_module *module;
513 const char *entrypoint;
514 const VkSpecializationInfo *spec_info;
515
516 unsigned char shader_sha1[20];
517
518 union brw_any_prog_key key;
519
520 struct {
521 gl_shader_stage stage;
522 unsigned char sha1[20];
523 } cache_key;
524
525 nir_shader *nir;
526
527 struct anv_pipeline_binding surface_to_descriptor[256];
528 struct anv_pipeline_binding sampler_to_descriptor[256];
529 struct anv_pipeline_bind_map bind_map;
530
531 union brw_any_prog_data prog_data;
532
533 uint32_t num_stats;
534 struct brw_compile_stats stats[3];
535 char *disasm[3];
536
537 VkPipelineCreationFeedbackEXT feedback;
538
539 const unsigned *code;
540 };
541
542 static void
543 anv_pipeline_hash_shader(const struct anv_shader_module *module,
544 const char *entrypoint,
545 gl_shader_stage stage,
546 const VkSpecializationInfo *spec_info,
547 unsigned char *sha1_out)
548 {
549 struct mesa_sha1 ctx;
550 _mesa_sha1_init(&ctx);
551
552 _mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1));
553 _mesa_sha1_update(&ctx, entrypoint, strlen(entrypoint));
554 _mesa_sha1_update(&ctx, &stage, sizeof(stage));
555 if (spec_info) {
556 _mesa_sha1_update(&ctx, spec_info->pMapEntries,
557 spec_info->mapEntryCount *
558 sizeof(*spec_info->pMapEntries));
559 _mesa_sha1_update(&ctx, spec_info->pData,
560 spec_info->dataSize);
561 }
562
563 _mesa_sha1_final(&ctx, sha1_out);
564 }
565
566 static void
567 anv_pipeline_hash_graphics(struct anv_pipeline *pipeline,
568 struct anv_pipeline_layout *layout,
569 struct anv_pipeline_stage *stages,
570 unsigned char *sha1_out)
571 {
572 struct mesa_sha1 ctx;
573 _mesa_sha1_init(&ctx);
574
575 _mesa_sha1_update(&ctx, &pipeline->subpass->view_mask,
576 sizeof(pipeline->subpass->view_mask));
577
578 if (layout)
579 _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
580
581 const bool rba = pipeline->device->robust_buffer_access;
582 _mesa_sha1_update(&ctx, &rba, sizeof(rba));
583
584 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
585 if (stages[s].entrypoint) {
586 _mesa_sha1_update(&ctx, stages[s].shader_sha1,
587 sizeof(stages[s].shader_sha1));
588 _mesa_sha1_update(&ctx, &stages[s].key, brw_prog_key_size(s));
589 }
590 }
591
592 _mesa_sha1_final(&ctx, sha1_out);
593 }
594
595 static void
596 anv_pipeline_hash_compute(struct anv_pipeline *pipeline,
597 struct anv_pipeline_layout *layout,
598 struct anv_pipeline_stage *stage,
599 unsigned char *sha1_out)
600 {
601 struct mesa_sha1 ctx;
602 _mesa_sha1_init(&ctx);
603
604 if (layout)
605 _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
606
607 const bool rba = pipeline->device->robust_buffer_access;
608 _mesa_sha1_update(&ctx, &rba, sizeof(rba));
609
610 _mesa_sha1_update(&ctx, stage->shader_sha1,
611 sizeof(stage->shader_sha1));
612 _mesa_sha1_update(&ctx, &stage->key.cs, sizeof(stage->key.cs));
613
614 _mesa_sha1_final(&ctx, sha1_out);
615 }
616
617 static nir_shader *
618 anv_pipeline_stage_get_nir(struct anv_pipeline *pipeline,
619 struct anv_pipeline_cache *cache,
620 void *mem_ctx,
621 struct anv_pipeline_stage *stage)
622 {
623 const struct brw_compiler *compiler =
624 pipeline->device->instance->physicalDevice.compiler;
625 const nir_shader_compiler_options *nir_options =
626 compiler->glsl_compiler_options[stage->stage].NirOptions;
627 nir_shader *nir;
628
629 nir = anv_device_search_for_nir(pipeline->device, cache,
630 nir_options,
631 stage->shader_sha1,
632 mem_ctx);
633 if (nir) {
634 assert(nir->info.stage == stage->stage);
635 return nir;
636 }
637
638 nir = anv_shader_compile_to_nir(pipeline->device,
639 mem_ctx,
640 stage->module,
641 stage->entrypoint,
642 stage->stage,
643 stage->spec_info);
644 if (nir) {
645 anv_device_upload_nir(pipeline->device, cache, nir, stage->shader_sha1);
646 return nir;
647 }
648
649 return NULL;
650 }
651
652 static void
653 anv_pipeline_lower_nir(struct anv_pipeline *pipeline,
654 void *mem_ctx,
655 struct anv_pipeline_stage *stage,
656 struct anv_pipeline_layout *layout)
657 {
658 const struct anv_physical_device *pdevice =
659 &pipeline->device->instance->physicalDevice;
660 const struct brw_compiler *compiler = pdevice->compiler;
661
662 struct brw_stage_prog_data *prog_data = &stage->prog_data.base;
663 nir_shader *nir = stage->nir;
664
665 if (nir->info.stage == MESA_SHADER_FRAGMENT) {
666 NIR_PASS_V(nir, nir_lower_wpos_center, pipeline->sample_shading_enable);
667 NIR_PASS_V(nir, nir_lower_input_attachments, true);
668 }
669
670 NIR_PASS_V(nir, anv_nir_lower_ycbcr_textures, layout);
671
672 NIR_PASS_V(nir, anv_nir_lower_push_constants);
673
674 if (nir->info.stage != MESA_SHADER_COMPUTE)
675 NIR_PASS_V(nir, anv_nir_lower_multiview, pipeline->subpass->view_mask);
676
677 nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
678
679 if (nir->num_uniforms > 0) {
680 assert(prog_data->nr_params == 0);
681
682 /* If the shader uses any push constants at all, we'll just give
683 * them the maximum possible number
684 */
685 assert(nir->num_uniforms <= MAX_PUSH_CONSTANTS_SIZE);
686 nir->num_uniforms = MAX_PUSH_CONSTANTS_SIZE;
687 prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
688 prog_data->param = ralloc_array(mem_ctx, uint32_t, prog_data->nr_params);
689
690 /* We now set the param values to be offsets into a
691 * anv_push_constant_data structure. Since the compiler doesn't
692 * actually dereference any of the gl_constant_value pointers in the
693 * params array, it doesn't really matter what we put here.
694 */
695 struct anv_push_constants *null_data = NULL;
696 /* Fill out the push constants section of the param array */
697 for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++) {
698 prog_data->param[i] = ANV_PARAM_PUSH(
699 (uintptr_t)&null_data->client_data[i * sizeof(float)]);
700 }
701 }
702
703 if (nir->info.num_ssbos > 0 || nir->info.num_images > 0)
704 pipeline->needs_data_cache = true;
705
706 NIR_PASS_V(nir, brw_nir_lower_image_load_store, compiler->devinfo);
707
708 NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_global,
709 nir_address_format_64bit_global);
710
711 /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
712 if (layout) {
713 anv_nir_apply_pipeline_layout(pdevice,
714 pipeline->device->robust_buffer_access,
715 layout, nir, prog_data,
716 &stage->bind_map);
717
718 NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ubo,
719 nir_address_format_32bit_index_offset);
720 NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ssbo,
721 anv_nir_ssbo_addr_format(pdevice,
722 pipeline->device->robust_buffer_access));
723
724 NIR_PASS_V(nir, nir_opt_constant_folding);
725
726 /* We don't support non-uniform UBOs and non-uniform SSBO access is
727 * handled naturally by falling back to A64 messages.
728 */
729 NIR_PASS_V(nir, nir_lower_non_uniform_access,
730 nir_lower_non_uniform_texture_access |
731 nir_lower_non_uniform_image_access);
732 }
733
734 if (nir->info.stage != MESA_SHADER_COMPUTE)
735 brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges);
736
737 assert(nir->num_uniforms == prog_data->nr_params * 4);
738
739 stage->nir = nir;
740 }
741
742 static void
743 anv_pipeline_link_vs(const struct brw_compiler *compiler,
744 struct anv_pipeline_stage *vs_stage,
745 struct anv_pipeline_stage *next_stage)
746 {
747 if (next_stage)
748 brw_nir_link_shaders(compiler, vs_stage->nir, next_stage->nir);
749 }
750
751 static void
752 anv_pipeline_compile_vs(const struct brw_compiler *compiler,
753 void *mem_ctx,
754 struct anv_device *device,
755 struct anv_pipeline_stage *vs_stage)
756 {
757 brw_compute_vue_map(compiler->devinfo,
758 &vs_stage->prog_data.vs.base.vue_map,
759 vs_stage->nir->info.outputs_written,
760 vs_stage->nir->info.separate_shader);
761
762 vs_stage->num_stats = 1;
763 vs_stage->code = brw_compile_vs(compiler, device, mem_ctx,
764 &vs_stage->key.vs,
765 &vs_stage->prog_data.vs,
766 vs_stage->nir, -1,
767 vs_stage->stats, NULL);
768 }
769
770 static void
771 merge_tess_info(struct shader_info *tes_info,
772 const struct shader_info *tcs_info)
773 {
774 /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
775 *
776 * "PointMode. Controls generation of points rather than triangles
777 * or lines. This functionality defaults to disabled, and is
778 * enabled if either shader stage includes the execution mode.
779 *
780 * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
781 * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
782 * and OutputVertices, it says:
783 *
784 * "One mode must be set in at least one of the tessellation
785 * shader stages."
786 *
787 * So, the fields can be set in either the TCS or TES, but they must
788 * agree if set in both. Our backend looks at TES, so bitwise-or in
789 * the values from the TCS.
790 */
791 assert(tcs_info->tess.tcs_vertices_out == 0 ||
792 tes_info->tess.tcs_vertices_out == 0 ||
793 tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
794 tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
795
796 assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
797 tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
798 tcs_info->tess.spacing == tes_info->tess.spacing);
799 tes_info->tess.spacing |= tcs_info->tess.spacing;
800
801 assert(tcs_info->tess.primitive_mode == 0 ||
802 tes_info->tess.primitive_mode == 0 ||
803 tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode);
804 tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode;
805 tes_info->tess.ccw |= tcs_info->tess.ccw;
806 tes_info->tess.point_mode |= tcs_info->tess.point_mode;
807 }
808
809 static void
810 anv_pipeline_link_tcs(const struct brw_compiler *compiler,
811 struct anv_pipeline_stage *tcs_stage,
812 struct anv_pipeline_stage *tes_stage)
813 {
814 assert(tes_stage && tes_stage->stage == MESA_SHADER_TESS_EVAL);
815
816 brw_nir_link_shaders(compiler, tcs_stage->nir, tes_stage->nir);
817
818 nir_lower_patch_vertices(tes_stage->nir,
819 tcs_stage->nir->info.tess.tcs_vertices_out,
820 NULL);
821
822 /* Copy TCS info into the TES info */
823 merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
824
825 /* Whacking the key after cache lookup is a bit sketchy, but all of
826 * this comes from the SPIR-V, which is part of the hash used for the
827 * pipeline cache. So it should be safe.
828 */
829 tcs_stage->key.tcs.tes_primitive_mode =
830 tes_stage->nir->info.tess.primitive_mode;
831 tcs_stage->key.tcs.quads_workaround =
832 compiler->devinfo->gen < 9 &&
833 tes_stage->nir->info.tess.primitive_mode == 7 /* GL_QUADS */ &&
834 tes_stage->nir->info.tess.spacing == TESS_SPACING_EQUAL;
835 }
836
837 static void
838 anv_pipeline_compile_tcs(const struct brw_compiler *compiler,
839 void *mem_ctx,
840 struct anv_device *device,
841 struct anv_pipeline_stage *tcs_stage,
842 struct anv_pipeline_stage *prev_stage)
843 {
844 tcs_stage->key.tcs.outputs_written =
845 tcs_stage->nir->info.outputs_written;
846 tcs_stage->key.tcs.patch_outputs_written =
847 tcs_stage->nir->info.patch_outputs_written;
848
849 tcs_stage->num_stats = 1;
850 tcs_stage->code = brw_compile_tcs(compiler, device, mem_ctx,
851 &tcs_stage->key.tcs,
852 &tcs_stage->prog_data.tcs,
853 tcs_stage->nir, -1,
854 tcs_stage->stats, NULL);
855 }
856
857 static void
858 anv_pipeline_link_tes(const struct brw_compiler *compiler,
859 struct anv_pipeline_stage *tes_stage,
860 struct anv_pipeline_stage *next_stage)
861 {
862 if (next_stage)
863 brw_nir_link_shaders(compiler, tes_stage->nir, next_stage->nir);
864 }
865
866 static void
867 anv_pipeline_compile_tes(const struct brw_compiler *compiler,
868 void *mem_ctx,
869 struct anv_device *device,
870 struct anv_pipeline_stage *tes_stage,
871 struct anv_pipeline_stage *tcs_stage)
872 {
873 tes_stage->key.tes.inputs_read =
874 tcs_stage->nir->info.outputs_written;
875 tes_stage->key.tes.patch_inputs_read =
876 tcs_stage->nir->info.patch_outputs_written;
877
878 tes_stage->num_stats = 1;
879 tes_stage->code = brw_compile_tes(compiler, device, mem_ctx,
880 &tes_stage->key.tes,
881 &tcs_stage->prog_data.tcs.base.vue_map,
882 &tes_stage->prog_data.tes,
883 tes_stage->nir, -1,
884 tes_stage->stats, NULL);
885 }
886
887 static void
888 anv_pipeline_link_gs(const struct brw_compiler *compiler,
889 struct anv_pipeline_stage *gs_stage,
890 struct anv_pipeline_stage *next_stage)
891 {
892 if (next_stage)
893 brw_nir_link_shaders(compiler, gs_stage->nir, next_stage->nir);
894 }
895
896 static void
897 anv_pipeline_compile_gs(const struct brw_compiler *compiler,
898 void *mem_ctx,
899 struct anv_device *device,
900 struct anv_pipeline_stage *gs_stage,
901 struct anv_pipeline_stage *prev_stage)
902 {
903 brw_compute_vue_map(compiler->devinfo,
904 &gs_stage->prog_data.gs.base.vue_map,
905 gs_stage->nir->info.outputs_written,
906 gs_stage->nir->info.separate_shader);
907
908 gs_stage->num_stats = 1;
909 gs_stage->code = brw_compile_gs(compiler, device, mem_ctx,
910 &gs_stage->key.gs,
911 &gs_stage->prog_data.gs,
912 gs_stage->nir, NULL, -1,
913 gs_stage->stats, NULL);
914 }
915
916 static void
917 anv_pipeline_link_fs(const struct brw_compiler *compiler,
918 struct anv_pipeline_stage *stage)
919 {
920 unsigned num_rts = 0;
921 const int max_rt = FRAG_RESULT_DATA7 - FRAG_RESULT_DATA0 + 1;
922 struct anv_pipeline_binding rt_bindings[max_rt];
923 nir_function_impl *impl = nir_shader_get_entrypoint(stage->nir);
924 int rt_to_bindings[max_rt];
925 memset(rt_to_bindings, -1, sizeof(rt_to_bindings));
926 bool rt_used[max_rt];
927 memset(rt_used, 0, sizeof(rt_used));
928
929 /* Flag used render targets */
930 nir_foreach_variable_safe(var, &stage->nir->outputs) {
931 if (var->data.location < FRAG_RESULT_DATA0)
932 continue;
933
934 const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
935 /* Out-of-bounds */
936 if (rt >= MAX_RTS)
937 continue;
938
939 const unsigned array_len =
940 glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
941 assert(rt + array_len <= max_rt);
942
943 /* Unused */
944 if (!(stage->key.wm.color_outputs_valid & BITFIELD_RANGE(rt, array_len))) {
945 /* If this is the RT at location 0 and we have alpha to coverage
946 * enabled we will have to create a null RT for it, so mark it as
947 * used.
948 */
949 if (rt > 0 || !stage->key.wm.alpha_to_coverage)
950 continue;
951 }
952
953 for (unsigned i = 0; i < array_len; i++)
954 rt_used[rt + i] = true;
955 }
956
957 /* Set new, compacted, location */
958 for (unsigned i = 0; i < max_rt; i++) {
959 if (!rt_used[i])
960 continue;
961
962 rt_to_bindings[i] = num_rts;
963
964 if (stage->key.wm.color_outputs_valid & (1 << i)) {
965 rt_bindings[rt_to_bindings[i]] = (struct anv_pipeline_binding) {
966 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
967 .binding = 0,
968 .index = i,
969 };
970 } else {
971 /* Setup a null render target */
972 rt_bindings[rt_to_bindings[i]] = (struct anv_pipeline_binding) {
973 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
974 .binding = 0,
975 .index = UINT32_MAX,
976 };
977 }
978
979 num_rts++;
980 }
981
982 bool deleted_output = false;
983 nir_foreach_variable_safe(var, &stage->nir->outputs) {
984 if (var->data.location < FRAG_RESULT_DATA0)
985 continue;
986
987 const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
988
989 if (rt >= MAX_RTS || !rt_used[rt]) {
990 /* Unused or out-of-bounds, throw it away, unless it is the first
991 * RT and we have alpha to coverage enabled.
992 */
993 deleted_output = true;
994 var->data.mode = nir_var_function_temp;
995 exec_node_remove(&var->node);
996 exec_list_push_tail(&impl->locals, &var->node);
997 continue;
998 }
999
1000 /* Give it the new location */
1001 assert(rt_to_bindings[rt] != -1);
1002 var->data.location = rt_to_bindings[rt] + FRAG_RESULT_DATA0;
1003 }
1004
1005 if (deleted_output)
1006 nir_fixup_deref_modes(stage->nir);
1007
1008 if (num_rts == 0) {
1009 /* If we have no render targets, we need a null render target */
1010 rt_bindings[0] = (struct anv_pipeline_binding) {
1011 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
1012 .binding = 0,
1013 .index = UINT32_MAX,
1014 };
1015 num_rts = 1;
1016 }
1017
1018 /* Now that we've determined the actual number of render targets, adjust
1019 * the key accordingly.
1020 */
1021 stage->key.wm.nr_color_regions = num_rts;
1022 stage->key.wm.color_outputs_valid = (1 << num_rts) - 1;
1023
1024 assert(num_rts <= max_rt);
1025 assert(stage->bind_map.surface_count == 0);
1026 typed_memcpy(stage->bind_map.surface_to_descriptor,
1027 rt_bindings, num_rts);
1028 stage->bind_map.surface_count += num_rts;
1029 }
1030
1031 static void
1032 anv_pipeline_compile_fs(const struct brw_compiler *compiler,
1033 void *mem_ctx,
1034 struct anv_device *device,
1035 struct anv_pipeline_stage *fs_stage,
1036 struct anv_pipeline_stage *prev_stage)
1037 {
1038 /* TODO: we could set this to 0 based on the information in nir_shader, but
1039 * we need this before we call spirv_to_nir.
1040 */
1041 assert(prev_stage);
1042 fs_stage->key.wm.input_slots_valid =
1043 prev_stage->prog_data.vue.vue_map.slots_valid;
1044
1045 fs_stage->code = brw_compile_fs(compiler, device, mem_ctx,
1046 &fs_stage->key.wm,
1047 &fs_stage->prog_data.wm,
1048 fs_stage->nir, -1, -1, -1,
1049 true, false, NULL,
1050 fs_stage->stats, NULL);
1051
1052 fs_stage->num_stats = (uint32_t)fs_stage->prog_data.wm.dispatch_8 +
1053 (uint32_t)fs_stage->prog_data.wm.dispatch_16 +
1054 (uint32_t)fs_stage->prog_data.wm.dispatch_32;
1055
1056 if (fs_stage->key.wm.nr_color_regions == 0 &&
1057 !fs_stage->prog_data.wm.has_side_effects &&
1058 !fs_stage->prog_data.wm.uses_kill &&
1059 fs_stage->prog_data.wm.computed_depth_mode == BRW_PSCDEPTH_OFF &&
1060 !fs_stage->prog_data.wm.computed_stencil) {
1061 /* This fragment shader has no outputs and no side effects. Go ahead
1062 * and return the code pointer so we don't accidentally think the
1063 * compile failed but zero out prog_data which will set program_size to
1064 * zero and disable the stage.
1065 */
1066 memset(&fs_stage->prog_data, 0, sizeof(fs_stage->prog_data));
1067 }
1068 }
1069
1070 static void
1071 anv_pipeline_add_executable(struct anv_pipeline *pipeline,
1072 struct anv_pipeline_stage *stage,
1073 struct brw_compile_stats *stats,
1074 uint32_t code_offset)
1075 {
1076 char *disasm = NULL;
1077 if (stage->code &&
1078 (pipeline->flags &
1079 VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
1080 char *stream_data = NULL;
1081 size_t stream_size = 0;
1082 FILE *stream = open_memstream(&stream_data, &stream_size);
1083
1084 /* Creating this is far cheaper than it looks. It's perfectly fine to
1085 * do it for every binary.
1086 */
1087 struct gen_disasm *d = gen_disasm_create(&pipeline->device->info);
1088 gen_disasm_disassemble(d, stage->code, code_offset, stream);
1089 gen_disasm_destroy(d);
1090
1091 fclose(stream);
1092
1093 /* Copy it to a ralloc'd thing */
1094 disasm = ralloc_size(pipeline->mem_ctx, stream_size + 1);
1095 memcpy(disasm, stream_data, stream_size);
1096 disasm[stream_size] = 0;
1097
1098 free(stream_data);
1099 }
1100
1101 pipeline->executables[pipeline->num_executables++] =
1102 (struct anv_pipeline_executable) {
1103 .stage = stage->stage,
1104 .stats = *stats,
1105 .disasm = disasm,
1106 };
1107 }
1108
1109 static void
1110 anv_pipeline_add_executables(struct anv_pipeline *pipeline,
1111 struct anv_pipeline_stage *stage,
1112 struct anv_shader_bin *bin)
1113 {
1114 if (stage->stage == MESA_SHADER_FRAGMENT) {
1115 /* We pull the prog data and stats out of the anv_shader_bin because
1116 * the anv_pipeline_stage may not be fully populated if we successfully
1117 * looked up the shader in a cache.
1118 */
1119 const struct brw_wm_prog_data *wm_prog_data =
1120 (const struct brw_wm_prog_data *)bin->prog_data;
1121 struct brw_compile_stats *stats = bin->stats;
1122
1123 if (wm_prog_data->dispatch_8) {
1124 anv_pipeline_add_executable(pipeline, stage, stats++, 0);
1125 }
1126
1127 if (wm_prog_data->dispatch_16) {
1128 anv_pipeline_add_executable(pipeline, stage, stats++,
1129 wm_prog_data->prog_offset_16);
1130 }
1131
1132 if (wm_prog_data->dispatch_32) {
1133 anv_pipeline_add_executable(pipeline, stage, stats++,
1134 wm_prog_data->prog_offset_32);
1135 }
1136 } else {
1137 anv_pipeline_add_executable(pipeline, stage, bin->stats, 0);
1138 }
1139 }
1140
1141 static VkResult
1142 anv_pipeline_compile_graphics(struct anv_pipeline *pipeline,
1143 struct anv_pipeline_cache *cache,
1144 const VkGraphicsPipelineCreateInfo *info)
1145 {
1146 VkPipelineCreationFeedbackEXT pipeline_feedback = {
1147 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
1148 };
1149 int64_t pipeline_start = os_time_get_nano();
1150
1151 const struct brw_compiler *compiler =
1152 pipeline->device->instance->physicalDevice.compiler;
1153 struct anv_pipeline_stage stages[MESA_SHADER_STAGES] = {};
1154
1155 pipeline->active_stages = 0;
1156
1157 VkResult result;
1158 for (uint32_t i = 0; i < info->stageCount; i++) {
1159 const VkPipelineShaderStageCreateInfo *sinfo = &info->pStages[i];
1160 gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage);
1161
1162 pipeline->active_stages |= sinfo->stage;
1163
1164 int64_t stage_start = os_time_get_nano();
1165
1166 stages[stage].stage = stage;
1167 stages[stage].module = anv_shader_module_from_handle(sinfo->module);
1168 stages[stage].entrypoint = sinfo->pName;
1169 stages[stage].spec_info = sinfo->pSpecializationInfo;
1170 anv_pipeline_hash_shader(stages[stage].module,
1171 stages[stage].entrypoint,
1172 stage,
1173 stages[stage].spec_info,
1174 stages[stage].shader_sha1);
1175
1176 const struct gen_device_info *devinfo = &pipeline->device->info;
1177 switch (stage) {
1178 case MESA_SHADER_VERTEX:
1179 populate_vs_prog_key(devinfo, sinfo->flags, &stages[stage].key.vs);
1180 break;
1181 case MESA_SHADER_TESS_CTRL:
1182 populate_tcs_prog_key(devinfo, sinfo->flags,
1183 info->pTessellationState->patchControlPoints,
1184 &stages[stage].key.tcs);
1185 break;
1186 case MESA_SHADER_TESS_EVAL:
1187 populate_tes_prog_key(devinfo, sinfo->flags, &stages[stage].key.tes);
1188 break;
1189 case MESA_SHADER_GEOMETRY:
1190 populate_gs_prog_key(devinfo, sinfo->flags, &stages[stage].key.gs);
1191 break;
1192 case MESA_SHADER_FRAGMENT:
1193 populate_wm_prog_key(devinfo, sinfo->flags,
1194 pipeline->subpass,
1195 info->pMultisampleState,
1196 &stages[stage].key.wm);
1197 break;
1198 default:
1199 unreachable("Invalid graphics shader stage");
1200 }
1201
1202 stages[stage].feedback.duration += os_time_get_nano() - stage_start;
1203 stages[stage].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT;
1204 }
1205
1206 if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)
1207 pipeline->active_stages |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
1208
1209 assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
1210
1211 ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
1212
1213 unsigned char sha1[20];
1214 anv_pipeline_hash_graphics(pipeline, layout, stages, sha1);
1215
1216 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1217 if (!stages[s].entrypoint)
1218 continue;
1219
1220 stages[s].cache_key.stage = s;
1221 memcpy(stages[s].cache_key.sha1, sha1, sizeof(sha1));
1222 }
1223
1224 const bool skip_cache_lookup =
1225 (pipeline->flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
1226
1227 if (!skip_cache_lookup) {
1228 unsigned found = 0;
1229 unsigned cache_hits = 0;
1230 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1231 if (!stages[s].entrypoint)
1232 continue;
1233
1234 int64_t stage_start = os_time_get_nano();
1235
1236 bool cache_hit;
1237 struct anv_shader_bin *bin =
1238 anv_device_search_for_kernel(pipeline->device, cache,
1239 &stages[s].cache_key,
1240 sizeof(stages[s].cache_key), &cache_hit);
1241 if (bin) {
1242 found++;
1243 pipeline->shaders[s] = bin;
1244 }
1245
1246 if (cache_hit) {
1247 cache_hits++;
1248 stages[s].feedback.flags |=
1249 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1250 }
1251 stages[s].feedback.duration += os_time_get_nano() - stage_start;
1252 }
1253
1254 if (found == __builtin_popcount(pipeline->active_stages)) {
1255 if (cache_hits == found) {
1256 pipeline_feedback.flags |=
1257 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1258 }
1259 /* We found all our shaders in the cache. We're done. */
1260 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1261 if (!stages[s].entrypoint)
1262 continue;
1263
1264 anv_pipeline_add_executables(pipeline, &stages[s],
1265 pipeline->shaders[s]);
1266 }
1267 goto done;
1268 } else if (found > 0) {
1269 /* We found some but not all of our shaders. This shouldn't happen
1270 * most of the time but it can if we have a partially populated
1271 * pipeline cache.
1272 */
1273 assert(found < __builtin_popcount(pipeline->active_stages));
1274
1275 vk_debug_report(&pipeline->device->instance->debug_report_callbacks,
1276 VK_DEBUG_REPORT_WARNING_BIT_EXT |
1277 VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
1278 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT,
1279 (uint64_t)(uintptr_t)cache,
1280 0, 0, "anv",
1281 "Found a partial pipeline in the cache. This is "
1282 "most likely caused by an incomplete pipeline cache "
1283 "import or export");
1284
1285 /* We're going to have to recompile anyway, so just throw away our
1286 * references to the shaders in the cache. We'll get them out of the
1287 * cache again as part of the compilation process.
1288 */
1289 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1290 stages[s].feedback.flags = 0;
1291 if (pipeline->shaders[s]) {
1292 anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]);
1293 pipeline->shaders[s] = NULL;
1294 }
1295 }
1296 }
1297 }
1298
1299 void *pipeline_ctx = ralloc_context(NULL);
1300
1301 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1302 if (!stages[s].entrypoint)
1303 continue;
1304
1305 int64_t stage_start = os_time_get_nano();
1306
1307 assert(stages[s].stage == s);
1308 assert(pipeline->shaders[s] == NULL);
1309
1310 stages[s].bind_map = (struct anv_pipeline_bind_map) {
1311 .surface_to_descriptor = stages[s].surface_to_descriptor,
1312 .sampler_to_descriptor = stages[s].sampler_to_descriptor
1313 };
1314
1315 stages[s].nir = anv_pipeline_stage_get_nir(pipeline, cache,
1316 pipeline_ctx,
1317 &stages[s]);
1318 if (stages[s].nir == NULL) {
1319 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1320 goto fail;
1321 }
1322
1323 stages[s].feedback.duration += os_time_get_nano() - stage_start;
1324 }
1325
1326 /* Walk backwards to link */
1327 struct anv_pipeline_stage *next_stage = NULL;
1328 for (int s = MESA_SHADER_STAGES - 1; s >= 0; s--) {
1329 if (!stages[s].entrypoint)
1330 continue;
1331
1332 switch (s) {
1333 case MESA_SHADER_VERTEX:
1334 anv_pipeline_link_vs(compiler, &stages[s], next_stage);
1335 break;
1336 case MESA_SHADER_TESS_CTRL:
1337 anv_pipeline_link_tcs(compiler, &stages[s], next_stage);
1338 break;
1339 case MESA_SHADER_TESS_EVAL:
1340 anv_pipeline_link_tes(compiler, &stages[s], next_stage);
1341 break;
1342 case MESA_SHADER_GEOMETRY:
1343 anv_pipeline_link_gs(compiler, &stages[s], next_stage);
1344 break;
1345 case MESA_SHADER_FRAGMENT:
1346 anv_pipeline_link_fs(compiler, &stages[s]);
1347 break;
1348 default:
1349 unreachable("Invalid graphics shader stage");
1350 }
1351
1352 next_stage = &stages[s];
1353 }
1354
1355 struct anv_pipeline_stage *prev_stage = NULL;
1356 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1357 if (!stages[s].entrypoint)
1358 continue;
1359
1360 int64_t stage_start = os_time_get_nano();
1361
1362 void *stage_ctx = ralloc_context(NULL);
1363
1364 nir_xfb_info *xfb_info = NULL;
1365 if (s == MESA_SHADER_VERTEX ||
1366 s == MESA_SHADER_TESS_EVAL ||
1367 s == MESA_SHADER_GEOMETRY)
1368 xfb_info = nir_gather_xfb_info(stages[s].nir, stage_ctx);
1369
1370 anv_pipeline_lower_nir(pipeline, stage_ctx, &stages[s], layout);
1371
1372 switch (s) {
1373 case MESA_SHADER_VERTEX:
1374 anv_pipeline_compile_vs(compiler, stage_ctx, pipeline->device,
1375 &stages[s]);
1376 break;
1377 case MESA_SHADER_TESS_CTRL:
1378 anv_pipeline_compile_tcs(compiler, stage_ctx, pipeline->device,
1379 &stages[s], prev_stage);
1380 break;
1381 case MESA_SHADER_TESS_EVAL:
1382 anv_pipeline_compile_tes(compiler, stage_ctx, pipeline->device,
1383 &stages[s], prev_stage);
1384 break;
1385 case MESA_SHADER_GEOMETRY:
1386 anv_pipeline_compile_gs(compiler, stage_ctx, pipeline->device,
1387 &stages[s], prev_stage);
1388 break;
1389 case MESA_SHADER_FRAGMENT:
1390 anv_pipeline_compile_fs(compiler, stage_ctx, pipeline->device,
1391 &stages[s], prev_stage);
1392 break;
1393 default:
1394 unreachable("Invalid graphics shader stage");
1395 }
1396 if (stages[s].code == NULL) {
1397 ralloc_free(stage_ctx);
1398 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1399 goto fail;
1400 }
1401
1402 struct anv_shader_bin *bin =
1403 anv_device_upload_kernel(pipeline->device, cache,
1404 &stages[s].cache_key,
1405 sizeof(stages[s].cache_key),
1406 stages[s].code,
1407 stages[s].prog_data.base.program_size,
1408 stages[s].nir->constant_data,
1409 stages[s].nir->constant_data_size,
1410 &stages[s].prog_data.base,
1411 brw_prog_data_size(s),
1412 stages[s].stats, stages[s].num_stats,
1413 xfb_info, &stages[s].bind_map);
1414 if (!bin) {
1415 ralloc_free(stage_ctx);
1416 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1417 goto fail;
1418 }
1419
1420 anv_pipeline_add_executables(pipeline, &stages[s], bin);
1421
1422 pipeline->shaders[s] = bin;
1423 ralloc_free(stage_ctx);
1424
1425 stages[s].feedback.duration += os_time_get_nano() - stage_start;
1426
1427 prev_stage = &stages[s];
1428 }
1429
1430 ralloc_free(pipeline_ctx);
1431
1432 done:
1433
1434 if (pipeline->shaders[MESA_SHADER_FRAGMENT] &&
1435 pipeline->shaders[MESA_SHADER_FRAGMENT]->prog_data->program_size == 0) {
1436 /* This can happen if we decided to implicitly disable the fragment
1437 * shader. See anv_pipeline_compile_fs().
1438 */
1439 anv_shader_bin_unref(pipeline->device,
1440 pipeline->shaders[MESA_SHADER_FRAGMENT]);
1441 pipeline->shaders[MESA_SHADER_FRAGMENT] = NULL;
1442 pipeline->active_stages &= ~VK_SHADER_STAGE_FRAGMENT_BIT;
1443 }
1444
1445 pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
1446
1447 const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
1448 vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
1449 if (create_feedback) {
1450 *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
1451
1452 assert(info->stageCount == create_feedback->pipelineStageCreationFeedbackCount);
1453 for (uint32_t i = 0; i < info->stageCount; i++) {
1454 gl_shader_stage s = vk_to_mesa_shader_stage(info->pStages[i].stage);
1455 create_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback;
1456 }
1457 }
1458
1459 return VK_SUCCESS;
1460
1461 fail:
1462 ralloc_free(pipeline_ctx);
1463
1464 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1465 if (pipeline->shaders[s])
1466 anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]);
1467 }
1468
1469 return result;
1470 }
1471
1472 static void
1473 shared_type_info(const struct glsl_type *type, unsigned *size, unsigned *align)
1474 {
1475 assert(glsl_type_is_vector_or_scalar(type));
1476
1477 uint32_t comp_size = glsl_type_is_boolean(type)
1478 ? 4 : glsl_get_bit_size(type) / 8;
1479 unsigned length = glsl_get_vector_elements(type);
1480 *size = comp_size * length,
1481 *align = comp_size * (length == 3 ? 4 : length);
1482 }
1483
1484 VkResult
1485 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1486 struct anv_pipeline_cache *cache,
1487 const VkComputePipelineCreateInfo *info,
1488 const struct anv_shader_module *module,
1489 const char *entrypoint,
1490 const VkSpecializationInfo *spec_info)
1491 {
1492 VkPipelineCreationFeedbackEXT pipeline_feedback = {
1493 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
1494 };
1495 int64_t pipeline_start = os_time_get_nano();
1496
1497 const struct brw_compiler *compiler =
1498 pipeline->device->instance->physicalDevice.compiler;
1499
1500 struct anv_pipeline_stage stage = {
1501 .stage = MESA_SHADER_COMPUTE,
1502 .module = module,
1503 .entrypoint = entrypoint,
1504 .spec_info = spec_info,
1505 .cache_key = {
1506 .stage = MESA_SHADER_COMPUTE,
1507 },
1508 .feedback = {
1509 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
1510 },
1511 };
1512 anv_pipeline_hash_shader(stage.module,
1513 stage.entrypoint,
1514 MESA_SHADER_COMPUTE,
1515 stage.spec_info,
1516 stage.shader_sha1);
1517
1518 struct anv_shader_bin *bin = NULL;
1519
1520 const VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT *rss_info =
1521 vk_find_struct_const(info->stage.pNext,
1522 PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO_EXT);
1523
1524 populate_cs_prog_key(&pipeline->device->info, info->stage.flags,
1525 rss_info, &stage.key.cs);
1526
1527 ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
1528
1529 const bool skip_cache_lookup =
1530 (pipeline->flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
1531
1532 anv_pipeline_hash_compute(pipeline, layout, &stage, stage.cache_key.sha1);
1533
1534 bool cache_hit = false;
1535 if (!skip_cache_lookup) {
1536 bin = anv_device_search_for_kernel(pipeline->device, cache,
1537 &stage.cache_key,
1538 sizeof(stage.cache_key),
1539 &cache_hit);
1540 }
1541
1542 void *mem_ctx = ralloc_context(NULL);
1543 if (bin == NULL) {
1544 int64_t stage_start = os_time_get_nano();
1545
1546 stage.bind_map = (struct anv_pipeline_bind_map) {
1547 .surface_to_descriptor = stage.surface_to_descriptor,
1548 .sampler_to_descriptor = stage.sampler_to_descriptor
1549 };
1550
1551 /* Set up a binding for the gl_NumWorkGroups */
1552 stage.bind_map.surface_count = 1;
1553 stage.bind_map.surface_to_descriptor[0] = (struct anv_pipeline_binding) {
1554 .set = ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS,
1555 };
1556
1557 stage.nir = anv_pipeline_stage_get_nir(pipeline, cache, mem_ctx, &stage);
1558 if (stage.nir == NULL) {
1559 ralloc_free(mem_ctx);
1560 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1561 }
1562
1563 anv_pipeline_lower_nir(pipeline, mem_ctx, &stage, layout);
1564
1565 NIR_PASS_V(stage.nir, anv_nir_add_base_work_group_id,
1566 &stage.prog_data.cs);
1567
1568 NIR_PASS_V(stage.nir, nir_lower_vars_to_explicit_types,
1569 nir_var_mem_shared, shared_type_info);
1570 NIR_PASS_V(stage.nir, nir_lower_explicit_io,
1571 nir_var_mem_shared, nir_address_format_32bit_offset);
1572
1573 stage.num_stats = 1;
1574 stage.code = brw_compile_cs(compiler, pipeline->device, mem_ctx,
1575 &stage.key.cs, &stage.prog_data.cs,
1576 stage.nir, -1, stage.stats, NULL);
1577 if (stage.code == NULL) {
1578 ralloc_free(mem_ctx);
1579 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1580 }
1581
1582 const unsigned code_size = stage.prog_data.base.program_size;
1583 bin = anv_device_upload_kernel(pipeline->device, cache,
1584 &stage.cache_key, sizeof(stage.cache_key),
1585 stage.code, code_size,
1586 stage.nir->constant_data,
1587 stage.nir->constant_data_size,
1588 &stage.prog_data.base,
1589 sizeof(stage.prog_data.cs),
1590 stage.stats, stage.num_stats,
1591 NULL, &stage.bind_map);
1592 if (!bin) {
1593 ralloc_free(mem_ctx);
1594 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1595 }
1596
1597 stage.feedback.duration = os_time_get_nano() - stage_start;
1598 }
1599
1600 anv_pipeline_add_executables(pipeline, &stage, bin);
1601
1602 ralloc_free(mem_ctx);
1603
1604 if (cache_hit) {
1605 stage.feedback.flags |=
1606 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1607 pipeline_feedback.flags |=
1608 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1609 }
1610 pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
1611
1612 const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
1613 vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
1614 if (create_feedback) {
1615 *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
1616
1617 assert(create_feedback->pipelineStageCreationFeedbackCount == 1);
1618 create_feedback->pPipelineStageCreationFeedbacks[0] = stage.feedback;
1619 }
1620
1621 pipeline->active_stages = VK_SHADER_STAGE_COMPUTE_BIT;
1622 pipeline->shaders[MESA_SHADER_COMPUTE] = bin;
1623
1624 return VK_SUCCESS;
1625 }
1626
1627 /**
1628 * Copy pipeline state not marked as dynamic.
1629 * Dynamic state is pipeline state which hasn't been provided at pipeline
1630 * creation time, but is dynamically provided afterwards using various
1631 * vkCmdSet* functions.
1632 *
1633 * The set of state considered "non_dynamic" is determined by the pieces of
1634 * state that have their corresponding VkDynamicState enums omitted from
1635 * VkPipelineDynamicStateCreateInfo::pDynamicStates.
1636 *
1637 * @param[out] pipeline Destination non_dynamic state.
1638 * @param[in] pCreateInfo Source of non_dynamic state to be copied.
1639 */
1640 static void
1641 copy_non_dynamic_state(struct anv_pipeline *pipeline,
1642 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1643 {
1644 anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
1645 struct anv_subpass *subpass = pipeline->subpass;
1646
1647 pipeline->dynamic_state = default_dynamic_state;
1648
1649 if (pCreateInfo->pDynamicState) {
1650 /* Remove all of the states that are marked as dynamic */
1651 uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
1652 for (uint32_t s = 0; s < count; s++) {
1653 states &= ~anv_cmd_dirty_bit_for_vk_dynamic_state(
1654 pCreateInfo->pDynamicState->pDynamicStates[s]);
1655 }
1656 }
1657
1658 struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
1659
1660 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1661 *
1662 * pViewportState is [...] NULL if the pipeline
1663 * has rasterization disabled.
1664 */
1665 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1666 assert(pCreateInfo->pViewportState);
1667
1668 dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
1669 if (states & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT) {
1670 typed_memcpy(dynamic->viewport.viewports,
1671 pCreateInfo->pViewportState->pViewports,
1672 pCreateInfo->pViewportState->viewportCount);
1673 }
1674
1675 dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
1676 if (states & ANV_CMD_DIRTY_DYNAMIC_SCISSOR) {
1677 typed_memcpy(dynamic->scissor.scissors,
1678 pCreateInfo->pViewportState->pScissors,
1679 pCreateInfo->pViewportState->scissorCount);
1680 }
1681 }
1682
1683 if (states & ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH) {
1684 assert(pCreateInfo->pRasterizationState);
1685 dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
1686 }
1687
1688 if (states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS) {
1689 assert(pCreateInfo->pRasterizationState);
1690 dynamic->depth_bias.bias =
1691 pCreateInfo->pRasterizationState->depthBiasConstantFactor;
1692 dynamic->depth_bias.clamp =
1693 pCreateInfo->pRasterizationState->depthBiasClamp;
1694 dynamic->depth_bias.slope =
1695 pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
1696 }
1697
1698 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1699 *
1700 * pColorBlendState is [...] NULL if the pipeline has rasterization
1701 * disabled or if the subpass of the render pass the pipeline is
1702 * created against does not use any color attachments.
1703 */
1704 bool uses_color_att = false;
1705 for (unsigned i = 0; i < subpass->color_count; ++i) {
1706 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
1707 uses_color_att = true;
1708 break;
1709 }
1710 }
1711
1712 if (uses_color_att &&
1713 !pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1714 assert(pCreateInfo->pColorBlendState);
1715
1716 if (states & ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS)
1717 typed_memcpy(dynamic->blend_constants,
1718 pCreateInfo->pColorBlendState->blendConstants, 4);
1719 }
1720
1721 /* If there is no depthstencil attachment, then don't read
1722 * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
1723 * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
1724 * no need to override the depthstencil defaults in
1725 * anv_pipeline::dynamic_state when there is no depthstencil attachment.
1726 *
1727 * Section 9.2 of the Vulkan 1.0.15 spec says:
1728 *
1729 * pDepthStencilState is [...] NULL if the pipeline has rasterization
1730 * disabled or if the subpass of the render pass the pipeline is created
1731 * against does not use a depth/stencil attachment.
1732 */
1733 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
1734 subpass->depth_stencil_attachment) {
1735 assert(pCreateInfo->pDepthStencilState);
1736
1737 if (states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS) {
1738 dynamic->depth_bounds.min =
1739 pCreateInfo->pDepthStencilState->minDepthBounds;
1740 dynamic->depth_bounds.max =
1741 pCreateInfo->pDepthStencilState->maxDepthBounds;
1742 }
1743
1744 if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK) {
1745 dynamic->stencil_compare_mask.front =
1746 pCreateInfo->pDepthStencilState->front.compareMask;
1747 dynamic->stencil_compare_mask.back =
1748 pCreateInfo->pDepthStencilState->back.compareMask;
1749 }
1750
1751 if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK) {
1752 dynamic->stencil_write_mask.front =
1753 pCreateInfo->pDepthStencilState->front.writeMask;
1754 dynamic->stencil_write_mask.back =
1755 pCreateInfo->pDepthStencilState->back.writeMask;
1756 }
1757
1758 if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE) {
1759 dynamic->stencil_reference.front =
1760 pCreateInfo->pDepthStencilState->front.reference;
1761 dynamic->stencil_reference.back =
1762 pCreateInfo->pDepthStencilState->back.reference;
1763 }
1764 }
1765
1766 const VkPipelineRasterizationLineStateCreateInfoEXT *line_state =
1767 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
1768 PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT);
1769 if (line_state) {
1770 if (states & ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE) {
1771 dynamic->line_stipple.factor = line_state->lineStippleFactor;
1772 dynamic->line_stipple.pattern = line_state->lineStipplePattern;
1773 }
1774 }
1775
1776 pipeline->dynamic_state_mask = states;
1777 }
1778
1779 static void
1780 anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
1781 {
1782 #ifdef DEBUG
1783 struct anv_render_pass *renderpass = NULL;
1784 struct anv_subpass *subpass = NULL;
1785
1786 /* Assert that all required members of VkGraphicsPipelineCreateInfo are
1787 * present. See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines.
1788 */
1789 assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
1790
1791 renderpass = anv_render_pass_from_handle(info->renderPass);
1792 assert(renderpass);
1793
1794 assert(info->subpass < renderpass->subpass_count);
1795 subpass = &renderpass->subpasses[info->subpass];
1796
1797 assert(info->stageCount >= 1);
1798 assert(info->pVertexInputState);
1799 assert(info->pInputAssemblyState);
1800 assert(info->pRasterizationState);
1801 if (!info->pRasterizationState->rasterizerDiscardEnable) {
1802 assert(info->pViewportState);
1803 assert(info->pMultisampleState);
1804
1805 if (subpass && subpass->depth_stencil_attachment)
1806 assert(info->pDepthStencilState);
1807
1808 if (subpass && subpass->color_count > 0) {
1809 bool all_color_unused = true;
1810 for (int i = 0; i < subpass->color_count; i++) {
1811 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
1812 all_color_unused = false;
1813 }
1814 /* pColorBlendState is ignored if the pipeline has rasterization
1815 * disabled or if the subpass of the render pass the pipeline is
1816 * created against does not use any color attachments.
1817 */
1818 assert(info->pColorBlendState || all_color_unused);
1819 }
1820 }
1821
1822 for (uint32_t i = 0; i < info->stageCount; ++i) {
1823 switch (info->pStages[i].stage) {
1824 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
1825 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
1826 assert(info->pTessellationState);
1827 break;
1828 default:
1829 break;
1830 }
1831 }
1832 #endif
1833 }
1834
1835 /**
1836 * Calculate the desired L3 partitioning based on the current state of the
1837 * pipeline. For now this simply returns the conservative defaults calculated
1838 * by get_default_l3_weights(), but we could probably do better by gathering
1839 * more statistics from the pipeline state (e.g. guess of expected URB usage
1840 * and bound surfaces), or by using feed-back from performance counters.
1841 */
1842 void
1843 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
1844 {
1845 const struct gen_device_info *devinfo = &pipeline->device->info;
1846
1847 const struct gen_l3_weights w =
1848 gen_get_default_l3_weights(devinfo, pipeline->needs_data_cache, needs_slm);
1849
1850 pipeline->urb.l3_config = gen_get_l3_config(devinfo, w);
1851 pipeline->urb.total_size =
1852 gen_get_l3_config_urb_size(devinfo, pipeline->urb.l3_config);
1853 }
1854
1855 VkResult
1856 anv_pipeline_init(struct anv_pipeline *pipeline,
1857 struct anv_device *device,
1858 struct anv_pipeline_cache *cache,
1859 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1860 const VkAllocationCallbacks *alloc)
1861 {
1862 VkResult result;
1863
1864 anv_pipeline_validate_create_info(pCreateInfo);
1865
1866 if (alloc == NULL)
1867 alloc = &device->alloc;
1868
1869 pipeline->device = device;
1870
1871 ANV_FROM_HANDLE(anv_render_pass, render_pass, pCreateInfo->renderPass);
1872 assert(pCreateInfo->subpass < render_pass->subpass_count);
1873 pipeline->subpass = &render_pass->subpasses[pCreateInfo->subpass];
1874
1875 result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
1876 if (result != VK_SUCCESS)
1877 return result;
1878
1879 pipeline->batch.alloc = alloc;
1880 pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
1881 pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
1882 pipeline->batch.relocs = &pipeline->batch_relocs;
1883 pipeline->batch.status = VK_SUCCESS;
1884
1885 pipeline->mem_ctx = ralloc_context(NULL);
1886 pipeline->flags = pCreateInfo->flags;
1887
1888 copy_non_dynamic_state(pipeline, pCreateInfo);
1889 pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState &&
1890 pCreateInfo->pRasterizationState->depthClampEnable;
1891
1892 /* Previously we enabled depth clipping when !depthClampEnable.
1893 * DepthClipStateCreateInfo now makes depth clipping explicit so if the
1894 * clipping info is available, use its enable value to determine clipping,
1895 * otherwise fallback to the previous !depthClampEnable logic.
1896 */
1897 const VkPipelineRasterizationDepthClipStateCreateInfoEXT *clip_info =
1898 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
1899 PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT);
1900 pipeline->depth_clip_enable = clip_info ? clip_info->depthClipEnable : !pipeline->depth_clamp_enable;
1901
1902 pipeline->sample_shading_enable = pCreateInfo->pMultisampleState &&
1903 pCreateInfo->pMultisampleState->sampleShadingEnable;
1904
1905 pipeline->needs_data_cache = false;
1906
1907 /* When we free the pipeline, we detect stages based on the NULL status
1908 * of various prog_data pointers. Make them NULL by default.
1909 */
1910 memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
1911 pipeline->num_executables = 0;
1912
1913 result = anv_pipeline_compile_graphics(pipeline, cache, pCreateInfo);
1914 if (result != VK_SUCCESS) {
1915 ralloc_free(pipeline->mem_ctx);
1916 anv_reloc_list_finish(&pipeline->batch_relocs, alloc);
1917 return result;
1918 }
1919
1920 assert(pipeline->shaders[MESA_SHADER_VERTEX]);
1921
1922 anv_pipeline_setup_l3_config(pipeline, false);
1923
1924 const VkPipelineVertexInputStateCreateInfo *vi_info =
1925 pCreateInfo->pVertexInputState;
1926
1927 const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;
1928
1929 pipeline->vb_used = 0;
1930 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
1931 const VkVertexInputAttributeDescription *desc =
1932 &vi_info->pVertexAttributeDescriptions[i];
1933
1934 if (inputs_read & (1ull << (VERT_ATTRIB_GENERIC0 + desc->location)))
1935 pipeline->vb_used |= 1 << desc->binding;
1936 }
1937
1938 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
1939 const VkVertexInputBindingDescription *desc =
1940 &vi_info->pVertexBindingDescriptions[i];
1941
1942 pipeline->vb[desc->binding].stride = desc->stride;
1943
1944 /* Step rate is programmed per vertex element (attribute), not
1945 * binding. Set up a map of which bindings step per instance, for
1946 * reference by vertex element setup. */
1947 switch (desc->inputRate) {
1948 default:
1949 case VK_VERTEX_INPUT_RATE_VERTEX:
1950 pipeline->vb[desc->binding].instanced = false;
1951 break;
1952 case VK_VERTEX_INPUT_RATE_INSTANCE:
1953 pipeline->vb[desc->binding].instanced = true;
1954 break;
1955 }
1956
1957 pipeline->vb[desc->binding].instance_divisor = 1;
1958 }
1959
1960 const VkPipelineVertexInputDivisorStateCreateInfoEXT *vi_div_state =
1961 vk_find_struct_const(vi_info->pNext,
1962 PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT);
1963 if (vi_div_state) {
1964 for (uint32_t i = 0; i < vi_div_state->vertexBindingDivisorCount; i++) {
1965 const VkVertexInputBindingDivisorDescriptionEXT *desc =
1966 &vi_div_state->pVertexBindingDivisors[i];
1967
1968 pipeline->vb[desc->binding].instance_divisor = desc->divisor;
1969 }
1970 }
1971
1972 /* Our implementation of VK_KHR_multiview uses instancing to draw the
1973 * different views. If the client asks for instancing, we need to multiply
1974 * the instance divisor by the number of views ensure that we repeat the
1975 * client's per-instance data once for each view.
1976 */
1977 if (pipeline->subpass->view_mask) {
1978 const uint32_t view_count = anv_subpass_view_count(pipeline->subpass);
1979 for (uint32_t vb = 0; vb < MAX_VBS; vb++) {
1980 if (pipeline->vb[vb].instanced)
1981 pipeline->vb[vb].instance_divisor *= view_count;
1982 }
1983 }
1984
1985 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
1986 pCreateInfo->pInputAssemblyState;
1987 const VkPipelineTessellationStateCreateInfo *tess_info =
1988 pCreateInfo->pTessellationState;
1989 pipeline->primitive_restart = ia_info->primitiveRestartEnable;
1990
1991 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1992 pipeline->topology = _3DPRIM_PATCHLIST(tess_info->patchControlPoints);
1993 else
1994 pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
1995
1996 return VK_SUCCESS;
1997 }
1998
1999 #define WRITE_STR(field, ...) ({ \
2000 memset(field, 0, sizeof(field)); \
2001 UNUSED int i = snprintf(field, sizeof(field), __VA_ARGS__); \
2002 assert(i > 0 && i < sizeof(field)); \
2003 })
2004
2005 VkResult anv_GetPipelineExecutablePropertiesKHR(
2006 VkDevice device,
2007 const VkPipelineInfoKHR* pPipelineInfo,
2008 uint32_t* pExecutableCount,
2009 VkPipelineExecutablePropertiesKHR* pProperties)
2010 {
2011 ANV_FROM_HANDLE(anv_pipeline, pipeline, pPipelineInfo->pipeline);
2012 VK_OUTARRAY_MAKE(out, pProperties, pExecutableCount);
2013
2014 for (uint32_t i = 0; i < pipeline->num_executables; i++) {
2015 vk_outarray_append(&out, props) {
2016 gl_shader_stage stage = pipeline->executables[i].stage;
2017 props->stages = mesa_to_vk_shader_stage(stage);
2018
2019 unsigned simd_width = pipeline->executables[i].stats.dispatch_width;
2020 if (stage == MESA_SHADER_FRAGMENT) {
2021 WRITE_STR(props->name, "%s%d %s",
2022 simd_width ? "SIMD" : "vec",
2023 simd_width ? simd_width : 4,
2024 _mesa_shader_stage_to_string(stage));
2025 } else {
2026 WRITE_STR(props->name, "%s", _mesa_shader_stage_to_string(stage));
2027 }
2028 WRITE_STR(props->description, "%s%d %s shader",
2029 simd_width ? "SIMD" : "vec",
2030 simd_width ? simd_width : 4,
2031 _mesa_shader_stage_to_string(stage));
2032
2033 /* The compiler gives us a dispatch width of 0 for vec4 but Vulkan
2034 * wants a subgroup size of 1.
2035 */
2036 props->subgroupSize = MAX2(simd_width, 1);
2037 }
2038 }
2039
2040 return vk_outarray_status(&out);
2041 }
2042
2043 VkResult anv_GetPipelineExecutableStatisticsKHR(
2044 VkDevice device,
2045 const VkPipelineExecutableInfoKHR* pExecutableInfo,
2046 uint32_t* pStatisticCount,
2047 VkPipelineExecutableStatisticKHR* pStatistics)
2048 {
2049 ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
2050 VK_OUTARRAY_MAKE(out, pStatistics, pStatisticCount);
2051
2052 assert(pExecutableInfo->executableIndex < pipeline->num_executables);
2053 const struct anv_pipeline_executable *exe =
2054 &pipeline->executables[pExecutableInfo->executableIndex];
2055 const struct brw_stage_prog_data *prog_data =
2056 pipeline->shaders[exe->stage]->prog_data;
2057
2058 vk_outarray_append(&out, stat) {
2059 WRITE_STR(stat->name, "Instruction Count");
2060 WRITE_STR(stat->description,
2061 "Number of GEN instructions in the final generated "
2062 "shader executable.");
2063 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2064 stat->value.u64 = exe->stats.instructions;
2065 }
2066
2067 vk_outarray_append(&out, stat) {
2068 WRITE_STR(stat->name, "Loop Count");
2069 WRITE_STR(stat->description,
2070 "Number of loops (not unrolled) in the final generated "
2071 "shader executable.");
2072 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2073 stat->value.u64 = exe->stats.loops;
2074 }
2075
2076 vk_outarray_append(&out, stat) {
2077 WRITE_STR(stat->name, "Cycle Count");
2078 WRITE_STR(stat->description,
2079 "Estimate of the number of EU cycles required to execute "
2080 "the final generated executable. This is an estimate only "
2081 "and may vary greatly from actual run-time performance.");
2082 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2083 stat->value.u64 = exe->stats.cycles;
2084 }
2085
2086 vk_outarray_append(&out, stat) {
2087 WRITE_STR(stat->name, "Spill Count");
2088 WRITE_STR(stat->description,
2089 "Number of scratch spill operations. This gives a rough "
2090 "estimate of the cost incurred due to spilling temporary "
2091 "values to memory. If this is non-zero, you may want to "
2092 "adjust your shader to reduce register pressure.");
2093 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2094 stat->value.u64 = exe->stats.spills;
2095 }
2096
2097 vk_outarray_append(&out, stat) {
2098 WRITE_STR(stat->name, "Fill Count");
2099 WRITE_STR(stat->description,
2100 "Number of scratch fill operations. This gives a rough "
2101 "estimate of the cost incurred due to spilling temporary "
2102 "values to memory. If this is non-zero, you may want to "
2103 "adjust your shader to reduce register pressure.");
2104 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2105 stat->value.u64 = exe->stats.fills;
2106 }
2107
2108 vk_outarray_append(&out, stat) {
2109 WRITE_STR(stat->name, "Scratch Memory Size");
2110 WRITE_STR(stat->description,
2111 "Number of bytes of scratch memory required by the "
2112 "generated shader executable. If this is non-zero, you "
2113 "may want to adjust your shader to reduce register "
2114 "pressure.");
2115 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2116 stat->value.u64 = prog_data->total_scratch;
2117 }
2118
2119 if (exe->stage == MESA_SHADER_COMPUTE) {
2120 vk_outarray_append(&out, stat) {
2121 WRITE_STR(stat->name, "Workgroup Memory Size");
2122 WRITE_STR(stat->description,
2123 "Number of bytes of workgroup shared memory used by this "
2124 "compute shader including any padding.");
2125 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2126 stat->value.u64 = prog_data->total_scratch;
2127 }
2128 }
2129
2130 return vk_outarray_status(&out);
2131 }
2132
2133 static bool
2134 write_ir_text(VkPipelineExecutableInternalRepresentationKHR* ir,
2135 const char *data)
2136 {
2137 ir->isText = VK_TRUE;
2138
2139 size_t data_len = strlen(data) + 1;
2140
2141 if (ir->pData == NULL) {
2142 ir->dataSize = data_len;
2143 return true;
2144 }
2145
2146 strncpy(ir->pData, data, ir->dataSize);
2147 if (ir->dataSize < data_len)
2148 return false;
2149
2150 ir->dataSize = data_len;
2151 return true;
2152 }
2153
2154 VkResult anv_GetPipelineExecutableInternalRepresentationsKHR(
2155 VkDevice device,
2156 const VkPipelineExecutableInfoKHR* pExecutableInfo,
2157 uint32_t* pInternalRepresentationCount,
2158 VkPipelineExecutableInternalRepresentationKHR* pInternalRepresentations)
2159 {
2160 ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
2161 VK_OUTARRAY_MAKE(out, pInternalRepresentations,
2162 pInternalRepresentationCount);
2163 bool incomplete_text = false;
2164
2165 assert(pExecutableInfo->executableIndex < pipeline->num_executables);
2166 const struct anv_pipeline_executable *exe =
2167 &pipeline->executables[pExecutableInfo->executableIndex];
2168
2169 if (exe->disasm) {
2170 vk_outarray_append(&out, ir) {
2171 WRITE_STR(ir->name, "GEN Assembly");
2172 WRITE_STR(ir->description,
2173 "Final GEN assembly for the generated shader binary");
2174
2175 if (!write_ir_text(ir, exe->disasm))
2176 incomplete_text = true;
2177 }
2178 }
2179
2180 return incomplete_text ? VK_INCOMPLETE : vk_outarray_status(&out);
2181 }